+

WO2016114253A1 - 重合性組成物及びそれを用いた光学異方体 - Google Patents

重合性組成物及びそれを用いた光学異方体 Download PDF

Info

Publication number
WO2016114253A1
WO2016114253A1 PCT/JP2016/050661 JP2016050661W WO2016114253A1 WO 2016114253 A1 WO2016114253 A1 WO 2016114253A1 JP 2016050661 W JP2016050661 W JP 2016050661W WO 2016114253 A1 WO2016114253 A1 WO 2016114253A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oco
coo
formula
polymerizable
Prior art date
Application number
PCT/JP2016/050661
Other languages
English (en)
French (fr)
Inventor
浩一 延藤
融 石井
桑名 康弘
一輝 初阪
美花 山本
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201680005608.0A priority Critical patent/CN107108775B/zh
Priority to US15/543,430 priority patent/US11697695B2/en
Priority to JP2016569355A priority patent/JP6237934B2/ja
Priority to KR1020177019455A priority patent/KR102444525B1/ko
Publication of WO2016114253A1 publication Critical patent/WO2016114253A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • C08F2/42Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using short-stopping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • C08F222/1035Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate of aromatic trialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Definitions

  • the present invention relates to a polymer having optical anisotropy that requires various optical properties, a polymerizable composition useful as a component of a film, an optical anisotropic body comprising the polymerizable composition, a retardation film, and optical compensation.
  • a compound having a polymerizable group is used in various optical materials.
  • a polymer having a uniform orientation by aligning a polymerizable composition containing a polymerizable compound in a liquid crystal state and then polymerizing it.
  • Such a polymer can be used for polarizing plates, retardation plates and the like necessary for displays.
  • two or more types of polymerization are used to satisfy the required optical properties, polymerization rate, solubility, melting point, glass transition temperature, polymer transparency, mechanical strength, surface hardness, heat resistance and light resistance.
  • a polymerizable composition containing a functional compound is used. In that case, the polymerizable compound to be used is required to bring good physical properties to the polymerizable composition without adversely affecting other properties.
  • Patent Documents 1 to 3 there is a problem that unevenness tends to occur when the polymerizable composition is applied to a substrate and polymerized.
  • a polymerizable compound inferior in solubility it is very difficult to suppress coating unevenness because there are limitations on the types of solvents that can be used.
  • a film with unevenness is used for, for example, a display, the brightness of the screen is uneven or the color is unnatural, which causes a problem of greatly reducing the quality of the display product. Therefore, there has been a demand for the development of a polymerizable liquid crystal compound having reverse wavelength dispersibility or low wavelength dispersibility excellent in solubility that can solve such problems.
  • the polymerizable composition is coated on a substrate and used as a retardation film, the durability under high temperature and high humidity is not sufficiently satisfactory.
  • the problem to be solved by the present invention is to provide a polymerizable composition that is excellent in solubility, does not cause crystal precipitation, and has high storage stability even when stored in a high temperature and high humidity state. It is intended to provide a polymerizable composition having excellent durability with little unevenness on the surface of the coating film while maintaining excellent orientation with respect to a film-like polymer obtained by polymerizing the above.
  • an optical anisotropic body, retardation film, optical compensation film, antireflection film, lens, lens sheet, liquid crystal display device, organic light emitting display device, and lighting device using the polymerizable composition comprising the polymerizable composition It is to provide optical parts, colorants, security markings, laser emission members, polarizing films, coloring materials, printed materials, and the like.
  • the present invention focuses on a polymerizable composition using a specific polymerizable compound having one or more polymerizable groups, a specific photopolymerization initiator, and a polymerization inhibitor.
  • the present invention a) a polymerizable compound having one or more polymerizable groups and satisfying formula (I), Re (450 nm) / Re (550 nm) ⁇ 1.0 (I) (In the formula, Re (450 nm) is the value obtained when the long axis direction of the molecule is oriented substantially horizontally with respect to the substrate on the substrate, with the polymerizable compound having one or more polymerizable groups.
  • the in-plane retardation at a wavelength of 450 nm, Re (550 nm), indicates that the polymerizable compound having one or more polymerizable groups is placed on the substrate so that the long axis direction of the molecule is substantially horizontal to the substrate.
  • Re 550 nm
  • a polymerizable composition is provided.
  • an optical anisotropic body, a retardation film, an optical compensation film, an antireflection film, a lens, a lens sheet, a liquid crystal display device using the polymerizable composition, and an organic light emitting display device comprising the polymerizable composition Provide lighting elements, optical components, colorants, security markings, laser emission members, printed materials, and the like.
  • the polymerizable composition of the present invention has one or more polymerizable groups, and includes a specific polymerizable compound, an alkylphenone compound, an acylphosphine oxide compound, and an oxime ester compound. At least one or more photopolymerization initiators selected, By using a polymerization inhibitor at the same time, a polymerizable composition excellent in solubility and storage stability can be obtained, and while maintaining excellent orientation, there is little unevenness on the surface of the coating film, and durability It is possible to obtain a polymer, an optical anisotropic body, a retardation film, and the like that are excellent and have excellent productivity.
  • liquid crystalline compound is intended to indicate a compound having a mesogenic skeleton, and the compound alone, It does not have to exhibit liquid crystallinity.
  • the polymerizable composition can be polymerized (formed into a film) by performing a polymerization treatment by irradiation with light such as ultraviolet rays or heating.
  • the polymerizable compound having one or more polymerizable groups of the present invention has a characteristic that the birefringence of the compound is larger in the longer wavelength side than in the shorter wavelength side in the visible light region.
  • Re (450 nm) is the value obtained when the long axis direction of the molecule is oriented substantially horizontally with respect to the substrate on the substrate, with the polymerizable compound having one or more polymerizable groups.
  • the in-plane retardation at a wavelength of 450 nm, Re (550 nm), indicates that the polymerizable compound having one or more polymerizable groups is placed on the substrate so that the long axis direction of the molecule is substantially horizontal to the substrate.
  • the birefringence need not be greater on the long wavelength side than on the short wavelength side in the ultraviolet region or infrared region.
  • the compound is preferably a liquid crystal compound. In particular, it is preferable to contain at least one liquid crystalline compound of any one of the general formulas (1) to (7).
  • S 11 to S 72 represent a spacer group or a single bond, and when a plurality of S 11 to S 72 are present, they may be the same or different, X 11 to X 72 are —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, — O—CO—O—, —CO—NH—, —NH—CO—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —, —OCO—CH 2 CH 2 —, —,
  • a 11 and A 12 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2.
  • these groups may be unsubstituted or substituted with one or more L 1 groups, and when a plurality of A 11 and / or A 12 appear, they may be the same or different from each other, Z 11 and Z 12 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CH 2 CH 2 —, —CO—, —COO—, —OCO—, —CO.
  • G is the following formula (G-1) to formula (G-6)
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear or branched, and any of the alkyl groups the hydrogen atoms may be substituted by a fluorine atom, one -CH 2 in the alkyl group - or nonadjacent two or more -CH 2 - are each independently -O -, - S- , —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—.
  • W 81 represents a group having 5 to 30 carbon atoms having at least one aromatic group, and the group may be unsubstituted or substituted by one or more L 1
  • W82 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear or branched, and any hydrogen atom in the alkyl group may be a fluorine atom.
  • W 83 and W 84 each independently has 5 to 30 carbon atoms having a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, a carbamoyloxy group, an amino group, a sulfamoyl group, or at least one aromatic group.
  • alkyl groups having 1 to 20 carbon atoms alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 3 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, cycloalkenyl groups having 3 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • the above —CH 2 — is independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—.
  • G represents Formula (G-6);
  • L 1 is a fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, nitro group, isocyano group, amino group, hydroxyl group, mercapto group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino.
  • R 11 and R 31 are hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, cyano group, nitro group, isocyano group, thioisocyano group, or carbon number of 1 to 20
  • the alkyl group may be linear or branched, and any hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • One —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—.
  • m11 represents an integer of 0 to 8; ⁇ M7, n2 ⁇ n7, l4 ⁇ 16, k6 are each independently 0 5 of an integer.
  • the polymerizable groups P 11 to P 74 are represented by the following formulas (P-1) to (P-20).
  • these polymerizable groups are polymerized by radical polymerization, radical addition polymerization, cationic polymerization and anionic polymerization.
  • the formula (P-1), formula (P-2), formula (P-3), formula (P-4), formula (P-5), formula (P ⁇ 7), formula (P-11), formula (P-13), formula (P-15) or formula (P-18) are preferred, and formula (P-1), formula (P-2), formula (P-18) P-7), formula (P-11) or formula (P-13) is more preferred, formula (P-1), formula (P-2) or formula (P-3) is more preferred, and formula (P- Particular preference is given to 1) or formula (P-2).
  • S 11 to S 72 represent a spacer group or a single bond. When a plurality of S 11 to S 72 are present, they may be the same or different. good.
  • the spacer group one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —COO—, —OCO—, —OCO—O—, —CO—NH—, —NH—CO—, —CH ⁇ CH—, —C ⁇ C— or the following formula (S-1)
  • It preferably represents an alkylene group having 1 to 20 carbon atoms which may be replaced by
  • a plurality of S may be the same or different, and each independently represents one —CH 2 — or not adjacent 2
  • two or more —CH 2 — each independently represents an alkylene group having 1 to 10 carbon atoms or a single bond that may be independently replaced by —O—, —COO—, or —OCO—, each independently
  • an alkylene group having 1 to 10 carbon atoms or a single bond and when there are a plurality of alkylene groups, they may be the same or different and each independently an alkylene group having 1 to 8 carbon atoms. Is particularly preferred.
  • X 11 to X 72 are —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —SCH 2 —, —CH 2 S—, —CF 2 O—, — OCF 2 —, —CF 2 S—, —SCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO— CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—
  • a 11 and A 12 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidin-2 , 5-diyl group, naphthalene-2,6-diyl group, naphthalene-1,4-diyl group, tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,3-dioxane -2,5-diyl groups, these groups may be unsubstituted or substituted by one or more L, but when multiple occurrences of A 11 and / or A 12 appear, they are the same.
  • a 11 and A 12 are each independently an unsubstituted or 1,4-phenylene group that may be substituted with one or more L 1 , 1,4-cyclohexane from the viewpoint of availability of raw materials and ease of synthesis.
  • each group independently represents a group selected from formula (A-1) to formula (A-8), and each independently represents a group selected from formula (A-1). It is particularly preferable to represent a group selected from the formula (A-4).
  • Z 11 and Z 12 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CH 2 CH 2 —, — CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —OCO—NH—, — NH—COO—, —NH—CO—NH—, —NH—O—, —O—NH—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, — OCO—CH 2 CH 2 —, —,
  • Z 11 and Z 12 are each independently a single bond, —OCH 2 —, —CH 2 O—, —COO—, —OCO— from the viewpoint of liquid crystallinity of the compound, availability of raw materials, and ease of synthesis.
  • M is the following formula (M-1) to formula (M-11)
  • M is each independently unsubstituted or substituted by one or more L 1 from the viewpoints of availability of raw materials and ease of synthesis, and the formula (M-1) or the formula (M-2) Alternatively, it preferably represents a group selected from unsubstituted formula (M-3) to (M-6), and may be unsubstituted or substituted by one or more L 1 . It is more preferable to represent a group selected from (M-2), and it is particularly preferable to represent a group selected from unsubstituted formula (M-1) or (M-2).
  • R 11 and R 31 are hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, cyano group, nitro group, isocyano group, A thioisocyano group, or one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO—, —OCO—, 1 to 20 carbon atoms which may be substituted by —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—.
  • a linear or branched alkyl group is represented, and any hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • R 1 is a hydrogen atom in view of easiness of the liquid crystal and synthetic, fluorine atom, chlorine atom, cyano group, or one -CH 2 - or nonadjacent two or more -CH 2 - are each independently It preferably represents a linear or branched alkyl group having 1 to 12 carbon atoms which may be substituted by —O—, —COO—, —OCO—, —O—CO—O—, a hydrogen atom, fluorine It is more preferable to represent an atom, a chlorine atom, a cyano group, or a linear alkyl group or linear alkoxy group having 1 to 12 carbon atoms, and a linear alkyl group or linear alkoxy group having 1 to 12 carbon atoms. It is particularly preferred to represent.
  • G represents a group selected from the formulas (G-1) to (G-6).
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear or branched.
  • hydrogen atom may be substituted by a fluorine atom, one -CH 2 in the alkyl group - or nonadjacent two or more -CH 2 - are each independently -O -, - S-, By —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—.
  • W 81 represents a group having 5 to 30 carbon atoms having at least one aromatic group, and the group may be unsubstituted or substituted by one or more L 1
  • W 82 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear or branched, and any hydrogen atom in the alkyl group may be fluorine.
  • W 82 is may represent the same meaning as W 81, W 81 and W 82 is good also form a ring together , Or W 82 is the following groups
  • P W82 represents the same meaning as P 11
  • S W82 represents the same meaning as S 11
  • X W82 represents the same meaning as X 11
  • n W82 represents the same meaning as m 11).
  • the aromatic group contained in W 81 may be an aromatic hydrocarbon group or aromatic heterocyclic group may contain both. These aromatic groups may be bonded via a single bond or a linking group (—OCO—, —COO—, —CO—, —O—), and may form a condensed ring. W 81 may contain an acyclic structure and / or a cyclic structure other than the aromatic group in addition to the aromatic group. From the viewpoint of availability of raw materials and ease of synthesis, the aromatic group contained in W 81 is unsubstituted or may be substituted with one or more L 1 from the following formula (W-1) Formula (W-19)
  • Q 1 Represents —O—, —S—, —NR 4 — (wherein R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms) or —CO—.
  • Each —CH ⁇ may be independently replaced by —N ⁇ , and each —CH 2 — independently represents —O—, —S—, —NR 4 — (wherein R 4 represents a hydrogen atom or carbon Represents an alkyl group having 1 to 8 atoms.) Or may be replaced by —CO—, but does not include an —O—O— bond, and the group represented by the formula (W-1) is unsubstituted. Or the following formula (W-1-1) to formula (W-1-8) which may be substituted by one or more L 1
  • these groups may have a bond at an arbitrary position), preferably a group selected from the group represented by the formula (W-7) is unsubstituted. Or the following formula (W-7-1) to formula (W-7-7) which may be substituted by one or more L 1
  • these groups may have a bond at an arbitrary position), preferably a group selected from the group represented by formula (W-10) is unsubstituted. Or one or more of L 1 may be substituted by the following formulas (W-10-1) to (W-10-8)
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the group represented by the formula (W-12) include the following formula (W-12-1) to formula (W-12-19) which may be unsubstituted or substituted with one or more L 1 groups. )
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of It is preferable that the group represented by the formula (W-13) is unsubstituted or substituted by one or more L 1 groups.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of It is preferable that the group represented by the formula (W-14) is unsubstituted or substituted by one or more L 1 groups.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • the group represented by the formula (W-15) may be unsubstituted or substituted with one or more L 1 from the following formulas (W-15-1) to (W-15-18) )
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the group represented by the formula (W-18) include the following formulas (W-18-1) to (W-18-6) which may be unsubstituted or substituted with one or more L 1 groups.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of It is preferable that the group represented by the formula (W-19) is unsubstituted or substituted with one or more L 1 groups.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of Or may be different. It is preferable to represent a group selected from:
  • the aromatic group contained in W 81 is unsubstituted or may be substituted by one or more L 1.
  • r represents an integer of 0 to 5
  • s represents an integer of 0 to 4
  • t represents an integer of 0 to 3.
  • W 82 represents a hydrogen atom, one —CH 2 —, or two or more non-adjacent —CH 2 —, each independently —O—, —S—, —CO—, —COO—, —OCO—.
  • any hydrogen atom in the alkyl group may be substituted by a fluorine atom, or W 82 may represent the same meaning as the W 81, W 81 and W 82 are together And may form a ring structure, or W 82 may be
  • P W82 represents the same meaning as P 11
  • S W82 represents the same meaning as S 11
  • X W82 represents the same meaning as X 11
  • n W82 represents the same meaning as m 11).
  • W 82 represents a linear or branched alkyl group, and particularly preferably represents a hydrogen atom or a linear alkyl group having 1 to 12 carbon atoms.
  • W 82 may be different even identical to W 81, the preferred group is the same as described for W 81.
  • the cyclic group represented by —NW 81 W 82 may be unsubstituted or substituted with one or more L 1 Formula (Wb-1) to Formula (Wb-42)
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • Wb-20 Formula (Wb-21), Formula (Wb-22), Formula (Wb-23), Formula (Wb) that may be substituted by one or more L 1
  • CW 81 W 82 may be unsubstituted or may be substituted with one or more L 1 .
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and when there are a plurality of R 6 s , they may be the same or different from each other).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and when there are a plurality of R 6 s , they may be the same or different from each other.
  • Formula (Wc-11), Formula (Wc-12), which may be unsubstituted or substituted by one or more L, Formula (Wc-13), Formula (Wc-14), Formula (Wc-53), Formula (Wc-54), Formula (Wc-55), Formula (Wc -56), a group selected from formula (Wc-57) or formula (Wc-78) is particularly preferred.
  • W 82 is the following group
  • preferred P W82 is the same as described for P 11
  • preferred S W82 is the same as described for S 11
  • preferred X W82 is the same as described for X 11
  • preferred n W82 is This is the same as described for m11.
  • the total number of ⁇ electrons contained in W 81 and W 82 is preferably 4 to 24 from the viewpoints of wavelength dispersion characteristics, storage stability, liquid crystallinity, and ease of synthesis.
  • W 83 and W 84 each independently has 5 to 30 carbon atoms having a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, a carbamoyloxy group, an amino group, a sulfamoyl group, or at least one aromatic group.
  • alkyl groups having 1 to 20 carbon atoms alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 3 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, cycloalkenyl groups having 3 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a cyano group, a carboxyl group, one —CH 2 — or two or more non-adjacent —C H 2 — is each independently substituted by —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—
  • W84 is a cyano group, a nitro group, a carboxyl group, one —CH 2 — or adjacent group.
  • Two or more —CH 2 — that are not present are each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O.
  • L 1 is a fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, nitro group, isocyano group, amino group, hydroxyl group, mercapto group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino.
  • L 1 represents a fluorine atom, a chlorine atom, a pentafluorosulfuranyl group, a nitro group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, or an arbitrary hydrogen.
  • the atom may be substituted with a fluorine atom, and one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO.
  • m11 represents an integer of 0 to 8, and preferably represents an integer of 0 to 4 from the viewpoint of liquid crystallinity, availability of raw materials and ease of synthesis, and an integer of 0 to 2 Is more preferable, 0 or 1 is more preferable, and 1 is particularly preferable.
  • m2 to m7 represent an integer of 0 to 5, but represent an integer of 0 to 4 from the viewpoints of liquid crystallinity, availability of raw materials, and ease of synthesis. Is preferable, it is more preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 1.
  • j11 and j12 each independently represent an integer of 1 to 5, but j11 + j12 represents an integer of 2 to 5. From the viewpoints of liquid crystallinity, ease of synthesis, and storage stability, j11 and j12 each independently preferably represent an integer of 1 to 4, more preferably an integer of 1 to 3, more preferably 1 or 2. It is particularly preferred to represent. j11 + j12 preferably represents an integer of 2 to 4.
  • the compounds represented by the general formula (1) are preferably compounds represented by the following formulas (1-a-1) to (1-a-105).
  • liquid crystalline compounds can be used alone or in combination of two or more.
  • the compound represented by the general formula (2) is preferably a compound represented by the following formula (2-a-1) to formula (2-a-61).
  • n represents an integer of 1 to 10.
  • liquid crystalline compounds can be used alone or in combination of two or more.
  • P 43 - ( S 43 -X 43) l4 - group represented by binds to A 11 or A 12 in the general formula (a).
  • compounds represented by the following formulas (4-a-1) to (4-a-26) are preferable.
  • liquid crystalline compounds can be used alone or in combination of two or more.
  • the compound represented by the general formula (5) is preferably a compound represented by the following formula (5-a-1) to formula (5-a-29).
  • n 1 to 10 carbon atoms.
  • liquid crystalline compounds can be used alone or in combination of two or more. You can also
  • the compound represented by the general formula (7) is preferably a compound represented by the following formula (7-a-1) to formula (7-a-26).
  • liquid crystalline compounds can be used alone or in combination of two or more.
  • the total content of the liquid crystal compound having one or more polymerizable groups is preferably 60 to 100% by mass, and preferably 65 to 98% by mass, based on the total amount of the liquid crystal compound used in the polymerizable composition. More preferably, the content is 70 to 95% by mass.
  • the polymerizable composition of the present invention contains at least one photopolymerization initiator selected from the group consisting of alkylphenone compounds, acylphosphine oxide compounds, and oxime ester compounds.
  • the photopolymerization initiator is preferably at least one photopolymerization initiator selected from the group consisting of alkylphenone compounds, acylphosphine oxide compounds, and oxime ester compounds. Examples of the photopolymerization initiator include compounds represented by the formula (b-1).
  • R 1 s are independently represented by the following formulas (R 1 -1) to (R 1 -6)
  • R 2 represents a single bond, a group selected from —O—, —C (CH 3 ) 2 , —C (OCH 3 ) 2 , —C (CH 2 CH 3 ) —N (CH 3 ) 2
  • R 3 is represented by the following formulas (R 3 -1) to (R 3 -8)
  • the compounds represented by the above formula (b-1) are preferably compounds represented by the following formulas (b-1-1) to (b-1-10).
  • the content of the photopolymerization initiator is preferably from 0.1 to 10% by mass, particularly preferably from 1 to 6% by mass, based on the total amount of the polymerizable compounds contained in the polymerizable composition. These can be used alone or in combination of two or more.
  • the photopolymerization initiator is dissolved in the polymerizable composition, the polymerizable compound is uniformly dissolved by stirring in an organic solvent in order to uniformly dissolve so that the reaction by heat is not started. It is preferable to stir and dissolve at a temperature of less than or equal to ° C.
  • the dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the organic solvent, but is preferably 10 ° C to 40 ° C from the viewpoint of productivity, and is preferably 10 ° C to 35 ° C. Further preferred is 10 ° C. to 30 ° C.
  • the polymerizable composition of the present invention contains a polymerization inhibitor.
  • a polymerization inhibitor is preferably a phenol polymerization inhibitor.
  • the polymerization inhibitor hydroquinone, methoxyphenol, methyl hydroquinone, tertiary butyl hydroquinone, or tertiary butyl catechol is preferable.
  • the content of the polymerization inhibitor is preferably from 0.01 to 1% by mass, particularly preferably from 0.01 to 0.5% by mass, based on the total amount of polymerizable compounds contained in the polymerizable composition. These can be used alone or in combination of two or more.
  • the polymerization inhibitor is dissolved in the polymerizable composition, it is preferable that the polymerizable compound is simultaneously dissolved in the organic solvent by heating and stirring. Moreover, after dissolving a polymerizable compound in an organic solvent by heating and stirring, it may be further added and dissolved in the polymerizable composition.
  • additives can be used according to each purpose.
  • antioxidants ultraviolet absorbers, leveling agents, alignment control agents, chain transfer agents, infrared absorbers, thixotropic agents, antistatic agents, dyes, fillers, chiral compounds, non-liquid crystalline compounds having a polymerizable group, etc.
  • Additives such as liquid crystal compounds and alignment materials can be added to such an extent that the alignment of the liquid crystal is not significantly reduced.
  • the polymerizable composition used in the present invention can contain an antioxidant and the like as necessary.
  • antioxidants include hydroquinone derivatives, nitrosamine polymerization inhibitors, hindered phenol antioxidants, and more specifically, tert-butyl hydroquinone, “Q-1300” manufactured by Wako Pure Chemical Industries, Ltd.
  • the addition amount of the antioxidant is preferably 0.01 to 2.0% by mass, and preferably 0.05 to 1.0% by mass with respect to the total amount of the polymerizable compounds contained in the polymerizable composition. Is more preferable.
  • the polymerizable composition used in the present invention can contain an ultraviolet absorber and a light stabilizer as necessary.
  • the ultraviolet absorber and light stabilizer to be used are not particularly limited, those which improve light resistance such as an optical anisotropic body and an optical film are preferable.
  • UV absorber examples include 2- (2-hydroxy-5-t-butylphenyl) -2H-benzotriazole “Tinuvin PS”, “Tinuvin 99-2”, “Tinuvin 109”, “TINUVIN 213”, “TINUVIN 234”, “TINUVIN 326”, “TINUVIN 328”, “TINUVIN 329”, “TINUVIN 384-2”, “TINUVIN 571”, 2- (2H-benzotriazol-2-yl) -4,6-bis (1-Methyl-1-phenylethyl) phenol “TINUVIN 900”, 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3 , 3-tetramethylbutyl) phenol “TINUVIN 928”, TINUVIN 1130, TINUVIN 400, TINUVIN 405, 2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1
  • Examples of the light stabilizer include “TINUVIN 111FDL”, “TINUVIN 123”, “TINUVIN 144”, “TINUVIN 152”, “TINUVIN 292”, “TINUVIN 622”, “TINUVIN 770”, “TINUVIN 765”, “TINUVIN 780”.
  • the polymerizable composition of the present invention can contain a leveling agent as necessary.
  • a leveling agent is preferably used in order to reduce film thickness unevenness when forming a thin film such as an optical anisotropic body or optical film.
  • the leveling agent include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, fluoroalkylethylene oxide derivatives, polyethylene Examples include glycol derivatives, alkyl ammonium salts, and fluoroalkyl ammonium salts.
  • the addition amount of the leveling agent is preferably 0.01 to 2% by mass, and 0.05 to 0.5% by mass with respect to the total amount of the polymerizable compounds used in the polymerizable composition of the present invention. It is more preferable. Moreover, when the polymerizable composition of the present invention is used as an optical anisotropic body, there are some which can effectively reduce the tilt angle of the air interface by using the leveling agent.
  • the polymerizable composition used in the present invention can contain an alignment controller in order to control the alignment state of the polymerizable compound.
  • the alignment control agent to be used include those in which the liquid crystalline compound is substantially horizontally aligned, substantially vertically aligned, or substantially hybridly aligned with respect to the substrate.
  • a chiral compound when a chiral compound is added, those which are substantially planarly oriented can be mentioned.
  • horizontal alignment and planar alignment may be induced by the surfactant, but there is no particular limitation as long as each alignment state is induced, and a known and conventional one should be used. Can do.
  • a weight average molecular weight having a repeating unit represented by the following general formula (8) having an effect of effectively reducing the tilt angle of the air interface when an optical anisotropic body is used Is a compound having a molecular weight of 100 or more and 1000000 or less.
  • R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • It may be substituted with the above halogen atoms.
  • a rod-like liquid crystal compound modified with a fluoroalkyl group a discotic liquid crystal compound, a polymerizable compound containing a long-chain aliphatic alkyl group which may have a branched structure, and the like are also included.
  • Chain transfer agent The polymerizable composition used in the present invention can contain a chain transfer agent in order to further improve the adhesion between the polymer or optical anisotropic body and the substrate.
  • Chain transfer agents include aromatic hydrocarbons, halogenated hydrocarbons such as chloroform, carbon tetrachloride, carbon tetrabromide, bromotrichloromethane, Mercaptan compounds such as octyl mercaptan, n-butyl mercaptan, n-pentyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl merc, n-dodecyl mercaptan, t-tetradecyl mercaptan, t-dodecyl mercaptan, hexanedithiol, decandithiol 1,4-butanediol bisthiopropionate, 1,4-butane
  • R 95 represents an alkyl group having 2 to 18 carbon atoms, and the alkyl group may be linear or branched, and one or more methylene groups in the alkyl group are oxygen atoms.
  • a sulfur atom that is not directly bonded to each other may be substituted with an oxygen atom, a sulfur atom, —CO—, —OCO—, —COO—, or —CH ⁇ CH—
  • R 96 is a carbon atom Represents an alkylene group of 2 to 18, and one or more methylene groups in the alkylene group are oxygen atoms, sulfur atoms, —CO—, —OCO—, wherein oxygen atoms and sulfur atoms are not directly bonded to each other.
  • —COO—, or —CH ⁇ CH— may be substituted.
  • the chain transfer agent is preferably added in a step of preparing a polymerizable solution by mixing a polymerizable compound in an organic solvent and heating and stirring, but it is added in a step of mixing a polymerization initiator in the subsequent polymerizable solution. It may be added in both steps.
  • the addition amount of the chain transfer agent is preferably 0.5 to 10% by mass, and preferably 1.0 to 5.0% by mass, based on the total amount of polymerizable compounds contained in the polymerizable composition. More preferred.
  • liquid crystal compounds that are not polymerizable can be added as necessary to adjust the physical properties.
  • a polymerizable compound having no liquid crystallinity is preferably added in the step of preparing a polymerizable solution by mixing the polymerizable compound with an organic solvent and stirring under heating. You may add in the process of mixing a polymerization initiator with a solution, and may add in both processes.
  • the amount of these compounds added is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less, based on the polymerizable composition.
  • the polymerizable composition used in the present invention can contain an infrared absorber as necessary.
  • the infrared absorber to be used is not particularly limited, and any known and conventional one can be contained within a range not disturbing the orientation.
  • Examples of the infrared absorber include cyanine compounds, phthalocyanine compounds, naphthoquinone compounds, dithiol compounds, diimmonium compounds, azo compounds, and aluminum salts.
  • diimmonium salt type “NIR-IM1”, aluminum salt type “NIR-AM1” manufactured by Nagase Chemtech Co., Ltd.
  • Karenz IR-T aluminum salt type
  • Karenz IR-13F Showa Denko Co., Ltd.
  • YKR-2200 "YKR-2100”
  • IRA908 "IRA931”
  • IRA955" "IRA1034"
  • INDECO Corporation INDECO Corporation
  • the polymerizable composition used in the present invention can contain an antistatic agent as necessary.
  • the antistatic agent to be used is not particularly limited, and a known and commonly used antistatic agent can be contained as long as the orientation is not disturbed.
  • examples of such an antistatic agent include a polymer compound having at least one sulfonate group or phosphate group in the molecule, a compound having a quaternary ammonium salt, a surfactant having a polymerizable group, and the like.
  • surfactants having a polymerizable group are preferred.
  • anionic surfactants such as “Antox SAD” and “Antox MS-2N” Made by company), “AQUALON KH-05”, “AQUALON KH-10”, “AQUALON KH-20”, “AQUALON KH-0530”, “AQUALON KH-1025” (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Alkyl ethers such as “ADEKA rear soap SR-10N”, “ADEKA rear soap SR-20N” (manufactured by ADEKA Corporation), “Latemul PD-104” (manufactured by Kao Corporation), etc., “Latemuru S-120” “Latemul S-120A”, “Latemul S-180P”, “Latemul S-180A” (manufactured by Kao Corporation), “Eleminor” S-2 "(manufactureured by Kao Corporation), “Eleminor” S-2 "(
  • nonionic surfactants having a polymerizable group include, for example, “Antox LMA-20”, “Antox LMA-27”, “Antox EMH-20”, “Antox LMH— 20, “Antox SMH-20” (manufactured by Nippon Emulsifier Co., Ltd.), “Adekalia Soap ER-10”, “Adekalia Soap ER-20”, “Adekalia Soap ER-30”, “Adekalia Soap” ER-40 "(above, manufactured by ADEKA Corporation),” Latemul PD-420 “,” Latemuru PD-430 “,” Latemuru PD-450 “(above, manufactured by Kao Corporation), etc.
  • RN-10 Aqualon RN-20, Aqualon RN-30, Aqualon RN-50, Aqualon RN-2025 ( (Daiichi Kogyo Seiyaku Co., Ltd.), “Adekalia Soap NE-10”, “Adekalia Soap NE-20”, “Adekalia Soap NE-30”, “Adekalia Soap NE-40” (Meth) acrylate sulfuric acid such as alkylphenyl ether type or alkylphenyl ester type such as “RMA-564”, “RMA-568”, “RMA-1114” (above, manufactured by Nippon Emulsifier Co., Ltd.) An ester type is mentioned.
  • antistatic agents examples include polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, propoxypolyethylene glycol (meth) acrylate, and n-butoxypolyethylene glycol (meth) acrylate.
  • the antistatic agent can be used alone or in combination of two or more.
  • the amount of the antistatic agent added is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, based on the total amount of polymerizable compounds contained in the polymerizable composition.
  • the polymerizable composition used in the present invention can contain a dye as necessary.
  • the dye to be used is not particularly limited, and may include known and commonly used dyes as long as the orientation is not disturbed.
  • Examples of the dye include a dichroic dye and a fluorescent dye.
  • Examples of such dyes include polyazo dyes, anthraquinone dyes, cyanine dyes, phthalocyanine dyes, perylene dyes, perinone dyes, squarylium dyes and the like. From the viewpoint of addition, the dye is preferably a liquid crystal dye. .
  • dichroic dye examples include the following formulas (d-1) to (d-8):
  • the addition amount of the dichroic dye or the like is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, based on the total amount of the polymerizable compounds contained in the polymerizable composition. preferable.
  • the polymerizable composition used in the present invention can contain a filler as necessary.
  • the filler to be used is not particularly limited, and may contain known and commonly used fillers as long as the thermal conductivity of the obtained polymer is not lowered.
  • Examples of the filler include inorganic fillers such as alumina, titanium white, aluminum hydroxide, talc, clay, mica, barium titanate, zinc oxide, and glass fiber, metal powder such as silver powder and copper powder, aluminum nitride, and nitride.
  • Thermally conductive fillers such as boron, silicon nitride, gallium nitride, silicon carbide, magnesia (aluminum oxide), alumina (aluminum oxide), crystalline silica (silicon oxide), fused silica (silicon oxide), silver nanoparticles, etc. Can be mentioned.
  • the polymerizable composition of the present invention may contain a chiral compound for the purpose of obtaining a chiral nematic phase.
  • the chiral compound itself does not need to exhibit liquid crystallinity, and may or may not have a polymerizable group.
  • the direction of the spiral of the chiral compound can be appropriately selected depending on the intended use of the polymer.
  • the chiral compound having a polymerizable group is not particularly limited, and known and conventional ones can be used, but a chiral compound having a large helical twisting power (HTP) is preferable.
  • the polymerizable group is preferably a vinyl group, a vinyloxy group, an allyl group, an allyloxy group, an acryloyloxy group, a methacryloyloxy group, a glycidyl group, or an oxetanyl group, and particularly preferably an acryloyloxy group, a glycidyl group, or an oxetanyl group.
  • the compounding amount of the chiral compound needs to be appropriately adjusted depending on the helical induction force of the compound, but it should be contained in an amount of 0.5 to 80% by mass based on the total amount of the liquid crystalline compound having a polymerizable group and the chiral compound.
  • the content is preferably 3 to 50% by mass, more preferably 5 to 30% by mass.
  • Specific examples of the chiral compound include compounds represented by the following general formulas (10-1) to (10-4), but are not limited to the following general formulas.
  • Sp 5a and Sp 5b each independently represent an alkylene group having 0 to 18 carbon atoms, and the alkylene group is a carbon atom having one or more halogen atoms, CN groups, or polymerizable functional groups.
  • alkyl group having 1 to 8 may be substituted by an alkyl group having 1 to 8, two or more of CH 2 groups, independently of one another each of the present in the radical is not one CH 2 group or adjacent, each other oxygen atom in the form that does not bind directly to, -O -, - S -, - NH -, - N (CH 3) -, - CO -, - COO -, - OCO -, - OCOO -, - SCO -, - COS- Or it may be replaced by -C ⁇ C- A1, A2, A3, A4, A5 and A6 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-
  • R 5a and R 5b represent a hydrogen atom, a halogen atom, a cyano group, or an alkyl group having 1 to 18 carbon atoms, and the alkyl group may be substituted with one or more halogen atoms or CN.
  • R 5a and R 5b are represented by the general formula (10-a)
  • P 5a represents a polymerizable functional group
  • Sp 5a represents the same meaning as Sp 1
  • P 5a represents a substituent selected from the polymerizable groups represented by the following formulas (P-1) to (P-20).
  • chiral compound examples include compounds represented by the following general formulas (10-5) to (10-31).
  • n and n each independently represents an integer of 1 to 10
  • R represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a fluorine atom. These may be the same or different.
  • chiral compound having no polymerizable group examples include, for example, pelargonic acid cholesterol having a cholesteryl group as a chiral group, cholesterol stearate, and a product of BDH having a 2-methylbutyl group as a chiral group.
  • the value obtained by dividing the thickness (d) of the polymer obtained by the helical pitch (P) in the polymer (d / P) is preferably added in an amount in the range of 0.1 to 100, and more preferably in an amount in the range of 0.1 to 20.
  • Non-liquid crystalline compound having a polymerizable group In the polymerizable composition of the present invention, a compound having a polymerizable group but not a liquid crystal compound can be added. Such a compound can be used without particular limitation as long as it is generally recognized as a polymerizable monomer or polymerizable oligomer in this technical field. When adding, it is preferable that it is 15 mass% or less with respect to the total amount of the polymeric compound used for the polymeric composition of this invention, and 10 mass% or less is still more preferable.
  • the polymerizable composition used in the present invention can contain a liquid crystalline compound having one or more polymerizable groups in addition to the liquid crystalline compounds of the general formulas (1) to (7).
  • a liquid crystalline compound having one or more polymerizable groups in addition to the liquid crystalline compounds of the general formulas (1) to (7).
  • the retardation ratio may increase when used as a retardation plate.
  • the total amount of polymerizable compounds used in the polymerizable composition of the present invention may be increased. It is preferably 30% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • Examples of such a liquid crystal compound include liquid crystal compounds of general formula (1-b) to general formula (7-b).
  • X 11 to X 72 may be different from each other, and X 11 to X 72 are —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, — S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —,
  • MG 11 to MG 71 each independently represents the formula (b);
  • a 83 and A 84 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2.
  • Z 83 and Z 84 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CH 2 CH 2 —, —CO—, —COO—, —OCO—, —CO.
  • L 2 is fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, nitro group, isocyano group, amino group, hydroxyl group, mercapto group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino.
  • L 2 when a plurality of L 2 are present in the compound, they may be the same or different, m represents an integer of 0 to 8, and j83 and j84 each independently represents an integer of 0 to 5. J83 + j84 represents an integer of 1 to 5.
  • R 11 and R 31 are hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, cyano group, nitro group, isocyano group, thioisocyano group, or carbon number of 1 to 20
  • the alkyl group may be linear or branched, and any hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • One —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—.
  • m11 represents an integer of 0 to 8; ⁇ M7, n2 ⁇ n7, l4 ⁇ 16, k6 are each independently 0 5 of an integer.
  • general formula (7) is excluded from general formula (1).
  • Specific examples of the compound represented by the general formula (1-b) include compounds represented by the following formulas (1-b-1) to (1-b-39).
  • R 111 and R 112 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a fluorine atom.
  • R 113 is a hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, cyano group, nitro group, isocyano group, thioisocyano group, or one —CH 2 — or adjacent Two or more —CH 2 — are each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—.
  • Specific examples of the compound represented by the general formula (2-b) include compounds represented by the following formulas (2-b-1) to (2-b-33).
  • n and n each independently represents an integer of 1 to 18, and R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group.
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group.
  • these groups are alkyl groups having 1 to 6 carbon atoms or alkoxy groups having 1 to 6 carbon atoms, they may be all unsubstituted or substituted with one or more halogen atoms.
  • These liquid crystal compounds can be used alone or in combination of two or more.
  • Specific examples of the compound represented by the general formula (3-b) include compounds represented by the following formulas (3-b-1) to (3-b-16).
  • liquid crystalline compounds can be used alone or in combination of two or more.
  • Specific examples of the compound represented by the general formula (4-b) include compounds represented by the following formulas (4-b-1) to (4-b-29).
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group.
  • these groups are alkyl groups having 1 to 6 carbon atoms or alkoxy groups having 1 to 6 carbon atoms, they may be all unsubstituted or substituted with one or more halogen atoms.
  • These liquid crystalline compounds can be used alone or in combination of two or more.
  • Specific examples of the compound represented by the general formula (5-b) include compounds represented by the following formulas (5-b-1) to (5-b-26).
  • each n independently represents an integer of 1 to 10.
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group.
  • the group is an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, all of them may be unsubstituted or may be substituted with one or more halogen atoms.
  • These liquid crystalline compounds can be used alone or in combination of two or more.
  • Specific examples of the compound represented by the general formula (6-b) include compounds represented by the following formulas (6-b-1) to (6-b-23).
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, In the case where these groups are alkyl groups having 1 to 6 carbon atoms or alkoxy groups having 1 to 6 carbon atoms, they are all unsubstituted or substituted by one or more halogen atoms.
  • These liquid crystalline compounds can be used alone or in combination of two or more.
  • Specific examples of the compound represented by the general formula (7-b) include compounds represented by the following formulas (7-b-1) to (7-b-25).
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group. These groups are alkyl groups having 1 to 6 carbon atoms, or carbon atoms. In the case of the alkoxy groups of 1 to 6, all may be unsubstituted, or may be substituted by one or more halogen atoms.) These liquid crystalline compounds may be used alone. It can also be used in combination of two or more.
  • the polymerizable composition of the present invention may contain an alignment material that improves the orientation in order to improve the orientation.
  • the alignment material to be used may be a known and usual one as long as it is soluble in a solvent capable of dissolving the liquid crystalline compound having a polymerizable group used in the polymerizable composition of the present invention. It can be added as long as the orientation is not significantly deteriorated. Specifically, it is preferably 0.05 to 30% by weight, more preferably 0.5 to 15% by weight, and more preferably 1 to 10% by weight based on the total amount of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. Particularly preferred.
  • the alignment material is polyimide, polyamide, BCB (Penzocyclobutene Polymer), polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic Resin, coumarin compound, chalcone compound, cinnamate compound, fulgide compound, anthraquinone compound, azo compound, arylethene compound, and other compounds that can be photoisomerized or photodimerized, but materials that are oriented by UV irradiation or visible light irradiation (Photo-alignment material) is preferable.
  • photo-alignment material examples include polyimide having a cyclic cycloalkane, wholly aromatic polyarylate, polyvinyl cinnamate as disclosed in JP-A-5-232473, polyvinyl ester of paramethoxycinnamic acid, and JP-A-6-6. 287453, cinnamate derivatives as shown in JP-A-6-289374, maleimide derivatives as shown in JP-A-2002-265541, and the like. Specifically, compounds represented by the following formulas (12-1) to (12-7) are preferable.
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group, a nitro group
  • R ′ represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. May be linear or branched, and any hydrogen atom in the alkyl group may be substituted with a fluorine atom, and one —CH 2 — or adjacent group in the alkyl group may be substituted.
  • two or more —CH 2 — groups independently represent —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—.
  • the polymer of the present invention is obtained by polymerizing the polymerizable composition of the present invention in a state containing an initiator.
  • the polymer of the present invention is used for optical anisotropic bodies, retardation films, lenses, colorants, printed materials and the like.
  • optical anisotropic body manufacturing method (Optical anisotropic)
  • the polymerizable composition of the present invention is coated on a substrate or a substrate having an alignment function, and the liquid crystal molecules in the polymerizable liquid crystal composition of the present invention are uniformly retained in a nematic phase or a smectic phase.
  • the optical anisotropic body of the present invention is obtained by orienting and polymerizing.
  • the base material used for the optical anisotropic body of the present invention is a base material usually used for liquid crystal display elements, organic light emitting display elements, other display elements, optical components, colorants, markings, printed matter and optical films, If it is the material which has heat resistance which can endure the heating at the time of drying after application
  • base materials include glass base materials, metal base materials, ceramic base materials, plastic base materials, and organic materials such as paper.
  • the substrate when the substrate is an organic material, examples thereof include cellulose derivatives, polyolefins, polyesters, polyolefins, polycarbonates, polyacrylates, polyarylates, polyether sulfones, polyimides, polyphenylene sulfides, polyphenylene ethers, nylons, and polystyrenes.
  • plastic substrates such as polyester, polystyrene, polyolefin, cellulose derivatives, polyarylate, and polycarbonate are preferable.
  • a shape of a base material you may have a curved surface other than a flat plate. These base materials may have an electrode layer, an antireflection function, and a reflection function as needed.
  • surface treatment of these substrates may be performed.
  • the surface treatment include ozone treatment, plasma treatment, corona treatment, silane coupling treatment, and the like.
  • an organic thin film, an inorganic oxide thin film, a metal thin film, etc. are provided on the surface of the substrate by a method such as vapor deposition, or in order to add optical added value.
  • the material may be a pickup lens, a rod lens, an optical disk, a retardation film, a light diffusion film, a color filter, or the like. Among these, a pickup lens, a retardation film, a light diffusion film, and a color filter that have higher added value are preferable.
  • the base material may be subjected to a normal orientation treatment or may be provided with an orientation film so that the polymerizable composition is oriented when the polymerizable composition of the present invention is applied and dried.
  • the alignment treatment include stretching treatment, rubbing treatment, polarized ultraviolet visible light irradiation treatment, ion beam treatment, oblique deposition treatment of SiO 2 on the substrate, and the like.
  • the alignment film is used, a known and conventional alignment film is used.
  • Such alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyethersulfone, epoxy resin, epoxy acrylate resin, acrylic resin, azo compound, coumarin.
  • Examples thereof include compounds such as compounds, chalcone compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds and arylethene compounds, and polymers and copolymers of the above compounds.
  • the compound subjected to the alignment treatment by rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by inserting a heating step after the alignment treatment.
  • liquid crystal molecules are aligned in the direction in which the substrate is aligned in the vicinity of the substrate. Whether the liquid crystal molecules are aligned horizontally with respect to the substrate or inclined or perpendicular to the substrate is greatly influenced by the alignment treatment method for the substrate. For example, when an alignment film having a very small pretilt angle as used in an in-plane switching (IPS) type liquid crystal display element is provided on a substrate, a polymerizable liquid crystal layer aligned substantially horizontally can be obtained.
  • IPS in-plane switching
  • an alignment film used for a TN type liquid crystal display element is provided on the substrate, a polymerizable liquid crystal layer having a slightly inclined alignment is obtained, and the alignment film used for an STN type liquid crystal display element is obtained.
  • a polymerizable liquid crystal layer having a large alignment gradient can be obtained.
  • Application methods for obtaining the optical anisotropic body of the present invention include applicator method, bar coating method, spin coating method, roll coating method, direct gravure coating method, reverse gravure coating method, flexo coating method, ink jet method, and die coating. Methods, cap coating methods, dip coating methods, slit coating methods, spray coating methods, and the like can be used. After applying the polymerizable composition, it is dried.
  • the liquid crystal molecules in the polymerizable composition of the present invention are preferably uniformly aligned while maintaining the smectic phase or nematic phase.
  • One of the methods is a heat treatment method. Specifically, after coating the polymerizable composition of the present invention on a substrate, the N (nematic phase) -I (isotropic liquid phase) transition temperature (hereinafter abbreviated as the NI transition temperature) of the liquid crystal composition. ) The liquid crystal composition is brought into an isotropic liquid state by heating to the above. From there, it is gradually cooled as necessary to develop a nematic phase. At this time, it is desirable to maintain the temperature at which the liquid crystal phase is once exhibited, and to sufficiently grow the liquid crystal phase domain into a mono domain.
  • a heat treatment may be performed such that the temperature is maintained for a certain time within a temperature range in which the nematic phase of the polymerizable composition of the present invention is expressed.
  • the heating temperature is too high, the polymerizable liquid crystal compound may deteriorate due to an undesirable polymerization reaction. Moreover, when it cools too much, a polymeric composition raise
  • By performing such a heat treatment it is possible to produce a homogeneous optical anisotropic body with few alignment defects as compared with a coating method in which coating is simply performed.
  • the liquid crystal phase is cooled to a minimum temperature at which phase separation does not occur, that is, is supercooled, and polymerization is performed in a state where the liquid crystal phase is aligned at the temperature.
  • a minimum temperature at which phase separation does not occur that is, is supercooled
  • polymerization is performed in a state where the liquid crystal phase is aligned at the temperature.
  • the polymerization treatment of the dried polymerizable composition is generally performed by light irradiation such as visible ultraviolet rays or heating in a uniformly oriented state.
  • light irradiation such as visible ultraviolet rays or heating in a uniformly oriented state.
  • the polymerizable composition causes decomposition or the like due to visible ultraviolet light of 420 nm or less, it may be preferable to perform polymerization treatment with visible ultraviolet light of 420 nm or more.
  • Examples of the method for polymerizing the polymerizable composition of the present invention include a method of irradiating active energy rays and a thermal polymerization method. However, the reaction proceeds at room temperature without requiring heating, and the active energy rays are irradiated. Among them, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple.
  • the temperature at the time of irradiation is preferably set to 30 ° C. or less as much as possible in order to avoid the induction of thermal polymerization of the polymerizable composition by setting the temperature at which the polymerizable composition of the present invention can maintain the liquid crystal phase.
  • the polymerizable liquid crystal composition usually has a temperature within the range from the C (solid phase) -N (nematic) transition temperature (hereinafter abbreviated as the CN transition temperature) to the NI transition temperature range during the temperature rising process. Shows liquid crystal phase.
  • the CN transition temperature N (nematic) transition temperature
  • the NI transition temperature N (nematic) transition temperature range during the temperature rising process. Shows liquid crystal phase.
  • the temperature lowering process since the thermodynamically non-equilibrium state is obtained, there is a case where the liquid crystal state is not solidified even at a temperature below the CN transition temperature. This state is called a supercooled state.
  • the liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is retained.
  • irradiation with ultraviolet light of 390 nm or less is preferable, and irradiation with light having a wavelength of 250 to 370 nm is most preferable.
  • the polymerizable composition causes decomposition or the like due to ultraviolet light of 390 nm or less
  • This light is preferably diffused light and unpolarized light.
  • Ultraviolet irradiation intensity in the range of 0.05kW / m 2 ⁇ 10kW / m 2 is preferred.
  • the range of 0.2 kW / m 2 to 2 kW / m 2 is preferable.
  • the ultraviolet intensity is less than 0.05 kW / m 2 , it takes a lot of time to complete the polymerization.
  • the strength exceeds 2 kW / m 2 , the liquid crystal molecules in the polymerizable composition tend to be photodegraded, or a large amount of polymerization heat is generated to increase the temperature during the polymerization. May change, and the retardation of the film after polymerization may be distorted.
  • the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized.
  • An optical anisotropic body having a plurality of regions having orientation directions can also be obtained.
  • the alignment was regulated in advance by applying an electric field, magnetic field or temperature to the unpolymerized polymerizable liquid crystal composition, and the state was maintained.
  • An optical anisotropic body having a plurality of regions having different orientation directions can also be obtained by irradiating light from above the mask and polymerizing it.
  • the optical anisotropic body obtained by polymerizing the polymerizable liquid crystal composition of the present invention can be peeled off from the substrate and used alone as an optical anisotropic body, or it can be used as an optical anisotropic body as it is without peeling off from the substrate. You can also In particular, since it is difficult to contaminate other members, it is useful when used as a laminated substrate or by being attached to another substrate.
  • the retardation film of the present invention contains the optical anisotropic body, and the liquid crystalline compound forms a uniform continuous alignment state with respect to the substrate, and is in-plane with respect to the substrate. It is only necessary to have biaxiality outside, in-plane and out-of-plane or in-plane.
  • an adhesive, an adhesive layer, an adhesive, an adhesive layer, a protective film, a polarizing film, or the like may be laminated.
  • a retardation film for example, a positive A plate in which a rod-like liquid crystalline compound is substantially horizontally aligned with respect to a base material, and a negative A plate in which a disk-like liquid crystalline compound is vertically uniaxially oriented with respect to a base material
  • a positive C plate in which rod-like liquid crystalline compounds are aligned substantially vertically with respect to the substrate, a rod-like liquid crystalline compound is cholesteric aligned with respect to the substrate, or a negative C in which disc-like liquid crystalline compounds are horizontally aligned uniaxially.
  • An orientation mode of a plate, a biaxial plate, a positive O plate in which a rod-like liquid crystalline compound is hybrid-aligned with respect to a substrate, and a negative O plate in which a disc-like liquid crystalline compound is hybrid-aligned with respect to a substrate can be applied.
  • various orientation modes can be applied without particular limitation as long as the viewing angle dependency is improved.
  • orientation modes of positive A plate, negative A plate, positive C plate, negative C plate, biaxial plate, positive O plate, and negative O plate can be applied.
  • the positive A plate means an optical anisotropic body in which the polymerizable liquid crystal composition is homogeneously aligned.
  • a negative C plate means the optically anisotropic body which made the polymerizable liquid crystal composition the cholesteric orientation.
  • a positive A plate as the first retardation layer in order to compensate the viewing angle dependence of polarization axis orthogonality and widen the viewing angle.
  • the positive A plate has a refractive index in the in-plane slow axis direction of the film as nx, a refractive index in the in-plane fast axis direction of the film as ny, and a refractive index in the thickness direction of the film as nz.
  • the positive A plate preferably has an in-plane retardation value in the range of 30 to 500 nm at a wavelength of 550 nm.
  • the thickness direction retardation value is not particularly limited.
  • the Nz coefficient is preferably in the range of 0.9 to 1.1.
  • a so-called negative C plate having negative refractive index anisotropy is preferably used as the second retardation layer.
  • a negative C plate may be laminated on a positive A plate.
  • the negative C plate has a refractive index nx in the in-plane slow axis direction of the retardation layer, ny in the in-plane fast axis direction of the retardation layer, and a refractive index in the thickness direction of the retardation layer.
  • the thickness direction retardation value of the negative C plate is preferably in the range of 20 to 400 nm.
  • the refractive index anisotropy in the thickness direction is represented by a thickness direction retardation value Rth defined by the following formula (2).
  • a thickness direction retardation value Rth an in-plane retardation value R 0 , a retardation value R 50 measured with a slow axis as an inclination axis and an inclination of 50 °, a film thickness d, and an average refractive index n 0 of the film are used.
  • nx, ny, and nz can be obtained by numerical calculation from the equation (1) and the following equations (4) to (7), and these can be substituted into the equation (2).
  • R 0 (nx ⁇ ny) ⁇ d (1)
  • Rth [(nx + ny) / 2 ⁇ nz] ⁇ d (2)
  • Nz coefficient (nx ⁇ nz) / (nx ⁇ ny) (3)
  • R 50 (nx ⁇ ny ′) ⁇ d / cos ( ⁇ ) (4)
  • ny ′ ny ⁇ nz / [ny 2 ⁇ sin 2 ( ⁇ ) + nz 2 ⁇ cos 2 ( ⁇ )] 1/2 (7)
  • the numerical calculation shown here is automatically performed in the device, and the in-plane retardation value R0 , the thickness direction retardation value Rth, etc. are automatically displayed. There are many.
  • An example of such a measuring apparatus is RETS-100 (manufactured by Ots, etc
  • the polymerizable composition of the present invention is coated on a base material or a base material having an orientation function, or injected into a lens-shaped mold, and uniformly oriented while maintaining a nematic phase or a smectic phase. By polymerizing, it can be used for the lens of the present invention.
  • the shape of the lens include a simple cell type, a prism type, and a lenticular type.
  • the polymerizable composition of the present invention is coated on a substrate or a substrate having an alignment function, and is uniformly aligned and polymerized while maintaining a nematic phase or a smectic phase. It can be used for an element. Examples of usage forms include optical compensation films, patterned retardation films for liquid crystal stereoscopic display elements, retardation correction layers for color filters, overcoat layers, alignment films for liquid crystal media, and the like.
  • the liquid crystal display element has a liquid crystal medium layer, a TFT drive circuit, a black matrix layer, a color filter layer, a spacer, and a liquid crystal medium layer at least sandwiched by corresponding electrode circuits on at least two base materials.
  • the layer, the polarizing plate layer, and the touch panel layer are arranged outside the two substrates, but in some cases, the optical compensation layer, the overcoat layer, the polarizing plate layer, and the electrode layer for the touch panel are narrowed in the two substrates. May be held.
  • Alignment modes of liquid crystal display elements include TN mode, VA mode, IPS mode, FFS mode, OCB mode, etc.
  • a phase difference corresponding to the orientation mode is used.
  • the liquid crystalline compound in the polymerizable composition may be substantially horizontally aligned with the substrate.
  • a liquid crystalline compound having more polymerizable groups in one molecule may be thermally polymerized.
  • the organic light emitting display of the present invention can be used for an element.
  • it can be used as an antireflection film of an organic light emitting display element by combining the retardation film obtained by the polymerization and a polarizing plate.
  • the angle formed by the polarizing axis of the polarizing plate and the slow axis of the retardation film is preferably about 45 °.
  • the polarizing plate and the retardation film may be bonded together with an adhesive or a pressure-sensitive adhesive. Moreover, you may laminate
  • the polarizing plate used at this time may be in the form of a film doped with a pigment or in the form of a metal such as a wire grid.
  • a polymer obtained by polymerizing the polymerizable composition of the present invention in a nematic phase, a smectic phase, or in a state of being oriented on a substrate having an orientation function should be used as a heat dissipation material for an illumination element, particularly a light emitting diode element. You can also.
  • the form of the heat dissipation material is preferably a prepreg, a polymer sheet, an adhesive, a sheet with metal foil, or the like.
  • the polymerizable composition of the present invention can be used as the optical component of the present invention by polymerizing the polymerizable composition while maintaining a nematic phase or a smectic phase, or in combination with an alignment material.
  • the polymerizable composition of the present invention can be used as a colorant by adding a colorant such as a dye or an organic pigment.
  • the polymerizable composition of the present invention can be combined with or added to a dichroic dye, a lyotropic liquid crystal, a chromonic liquid crystal, or the like to be used as a polarizing film.
  • MEK methyl ethyl ketone
  • CPN cyclopentanone
  • Examples 2 to 59, Comparative Examples 1 to 3 The polymerizable compositions (2) to (59) of Examples 2 to 59 were prepared under the same conditions as the preparation of the polymerizable composition (1) of Example 1, except that the respective compounds shown in the following table were changed to the ratios shown in the following table. Polymeric compositions (C1) to (C3) of (59) and Comparative Examples 1 to 3 were obtained. Tables 1 to 7 below show specific compositions of the polymerizable compositions (1) to (59) of Examples 1 to 59 of the present invention and the polymerizable compositions (C1) to (C3) of Comparative Examples 1 to 3. Indicates.
  • Methyl ethyl ketone (MEK) Cyclopentanone (CPN) Methyl isobutyl ketone (MIBK)
  • Irgacure 784 H-1) p-Methoxyphenol (I-1) Hydroquinone (I-2) Methyl hydroquinone (I-3) Tertiary butyl hydroquinone (I-4) Tertiary butyl catechol (I-5) Phenothiazine (I-6)
  • Re (450 nm) / Re (550 nm) of the compounds represented by the above formulas are shown in the following table.
  • X Precipitation of the compound is confirmed after standing at room temperature for 1 hour.
  • Storage stability evaluation 2 The amount of the polymerization component (weight average molecular weight Mw: 7000 or more) in the polymerizable composition after Examples 1 to 59 and Comparative Examples 1 to 3 were allowed to stand at 40 ° C. for 1 month was measured using GPC (made by Shimadzu Corporation). It was calculated by measurement and area ratio. The storage stability was evaluated as follows. A: Polymerization component amount is 0.1% or less. ⁇ : Polymerization component amount is 0.1 or more and less than 0.2%. X: Polymerization component amount is 0.2% or more.
  • Example 60 A 40 ⁇ m thick unstretched cycloolefin polymer film “ZEONOR” (manufactured by Nippon Zeon Co., Ltd.) was rubbed using a commercially available rubbing apparatus, and then the polymerizable composition (1) of the present invention was applied by a bar coating method. And dried at 80 ° C. for 2 minutes. The obtained coated film is cooled to room temperature, and then irradiated with ultraviolet rays using a UV conveyor device (manufactured by GS Yuasa Co., Ltd.) at a conveyor speed of 6 m / min. Got. The obtained optical anisotropic body was evaluated for orientation, retardation ratio, coating unevenness evaluation, and durability evaluation according to the following criteria.
  • phase difference at a wavelength of 550 nm was measured with RETS-100 manufactured by Otsuka Electronics, and the rate of change in phase difference after heating was calculated and evaluated when the phase difference before heating was 100%.
  • A decrease of less than 3% is observed.
  • A decrease of 3% to less than 7% is observed.
  • X A decrease of 7% or more is observed.
  • Examples 61 to 90, Comparative Examples 5 to 6 Under the same conditions as in Example 60, except that the polymerizable composition used was changed to the polymerizable compositions (2) to (31) of the present invention and the comparative polymerizable compositions (C1) to (C2), respectively.
  • Optical anisotropic bodies which are positive A plates of Examples 61 to 90 and Comparative Examples 5 to 6, were obtained.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. The results obtained are shown in the table below.
  • Example 91 A uniaxially stretched PET film having a thickness of 50 ⁇ m was rubbed using a commercially available rubbing apparatus, and then the polymerizable composition (32) of the present invention was applied by a bar coating method and dried at 80 ° C. for 2 minutes. The obtained coated film is cooled to room temperature, and then irradiated with ultraviolet rays at a conveyor speed of 6 m / min using a UV conveyor device (manufactured by GS Yuasa Co., Ltd.), which is an optical anisotropic body that is a positive A plate of Example 91 Got.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60.
  • Example 92 was carried out under the same conditions as in Example 91, except that the polymerizable compositions used were changed to the polymerizable compositions (33) to (43) of the present invention and the polymerizable composition for comparison (C3), respectively.
  • Example 102 and the optical anisotropic body which is a positive A plate of Comparative Example 7 was obtained.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. The results obtained are shown in the table below.
  • Example 103 The polyimide solution for alignment film was applied to a glass substrate having a thickness of 0.7 mm using a spin coating method, dried at 100 ° C. for 10 minutes, and then baked at 200 ° C. for 60 minutes to obtain a coating film. The obtained coating film was rubbed. The rubbing treatment was performed using a commercially available rubbing apparatus. The polymerizable composition (44) of the present invention was applied to the rubbed substrate by a spin coating method and dried at 100 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp, to obtain an optical anisotropic body which is a positive A plate of Example 103.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60.
  • Examples 104 to 116 The optical composition that is the positive A plate of Examples 104 to 116 under the same conditions as Example 103, except that the polymerizable composition used was changed to the polymerizable compositions (45) to (57) of the present invention, respectively. I got a cuboid. The orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. The results obtained are shown in the table below.
  • Example 117 5 parts of a photo-alignment material represented by the following formula (12-4) was dissolved in 95 parts of cyclopentanone to obtain a solution. The obtained solution was filtered with a 0.45 ⁇ m membrane filter to obtain a photo-alignment solution (1). Next, it was applied to a glass substrate having a thickness of 0.7 mm by using a spin coating method, dried at 80 ° C. for 2 minutes, and then immediately irradiated with 313 nm linearly polarized light at an intensity of 10 mW / cm 2 for 20 seconds. A membrane (1) was obtained. The polymerizable composition (58) was applied on the obtained photo-alignment film by a spin coating method and dried at 100 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp, to obtain an optical anisotropic body which is a positive A plate of Example 117.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. As a result of the evaluation of orientation, there were no defects visually, and there were no defects even when observed with a polarizing microscope.
  • the in-plane retardation (Re (550)) at a wavelength of 550 nm was 125 nm, and the uniformity was good. A phase difference film was obtained.
  • Example 118 5 parts of a photoalignment material represented by the following formula (12-9) is dissolved in 95 parts of N-methyl-2-pyrrolidone, and the resulting solution is filtered through a 0.45 ⁇ m membrane filter to obtain a photoalignment solution (2 ) Next, it was applied to a glass substrate having a thickness of 0.7 mm using a spin coating method, dried at 100 ° C. for 5 minutes, further dried at 130 ° C. for 10 minutes, and then immediately applied 313 nm linearly polarized light to 10 mW / cm 2. The photo-alignment film (2) was obtained by irradiating at an intensity of 1 minute.
  • the polymerizable composition (58) was applied on the obtained photo-alignment film by a spin coating method and dried at 100 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp, to obtain an optical anisotropic body as a positive A plate of Example 118.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. As a result of the evaluation of orientation, there were no defects visually, and there were no defects even when observed with a polarizing microscope.
  • the retardation of the obtained optical anisotropic body was measured with RETS-100 (manufactured by Otsuka Electronics Co., Ltd.).
  • the in-plane retardation (Re (550)) at a wavelength of 550 nm was 120 nm, and the uniformity was good.
  • a phase difference film was obtained.
  • Example 119 1 part of the photo-alignment material (weight average molecular weight: 10,000) represented by the above formula (12-8) is dissolved in 50 parts of (2-ethoxyethoxy) ethanol and 49 parts of 2-butoxyethanol, and the resulting solution is dissolved. Filtration through a 0.45 ⁇ m membrane filter gave a photoalignment solution (3). Next, it was applied to a polymethyl methacrylate (PMMA) film having a thickness of 80 ⁇ m using a bar coating method, dried at 80 ° C. for 2 minutes, and irradiated with 365 nm linearly polarized light at an intensity of 10 mW / cm 2 for 50 seconds. A photo-alignment film (3) was obtained.
  • PMMA polymethyl methacrylate
  • the polymerizable composition (58) was applied on the obtained photo-alignment film by a spin coating method and dried at 100 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp, to obtain an optical anisotropic body which is a positive A plate of Example 119.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. As a result of the evaluation of orientation, there were no defects visually, and there were no defects even when observed with a polarizing microscope.
  • the retardation of the obtained optical anisotropic body was measured with RETS-100 (manufactured by Otsuka Electronics Co., Ltd.). As a result, the in-plane retardation (Re (550)) at a wavelength of 550 nm was 137 nm, and the uniformity was good. A phase difference film was obtained.
  • Example 120 A 180 ⁇ m-thick PET film was rubbed using a commercially available rubbing apparatus, and then the polymerizable composition (59) of the present invention was applied by a bar coating method and dried at 80 ° C. for 2 minutes. The obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at a conveyor speed of 5 m / min using a UV conveyor device (manufactured by GS Yuasa Co., Ltd.) having a lamp output of 2 kW. An optical anisotropic body was obtained. The orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60.
  • the obtained optical anisotropic body has a phase difference Re (550) of 137 nm and an in-plane phase difference (Re (450)) / Re (550) ratio Re (450) / Re (550) of 0.871 at a wavelength of 450 nm.
  • a retardation film with good uniformity was obtained.
  • a polyvinyl alcohol film having an average degree of polymerization of about 2400 and a saponification degree of 99.9 mol% or more and a thickness of 75 ⁇ m was uniaxially stretched about 5.5 times in a dry manner, and further kept at 60 ° C.
  • After being immersed in pure water for 60 seconds it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 20 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds.
  • the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizing film in which iodine was adsorbed and oriented on a polyvinyl alcohol resin.
  • the antireflection film of the present invention was obtained by laminating with an adhesive so that the angle between the polarization axis of the obtained polarizing film and the slow axis of the retardation film was 45 °. Furthermore, when the obtained antireflection film and an aluminum plate used as an alternative to the organic light-emitting element were bonded together with an adhesive, the reflection visibility coming from the aluminum plate was visually confirmed from the front and oblique 45 °. No plate-derived transfer was observed.
  • Examples 121 to 164 The polymerizable compositions (60) to (165) of Examples 121 to 165 were prepared under the same conditions as the preparation of the polymerizable composition (1) of Example 1, except that the respective compounds shown in the following table were changed to the ratios shown in the following table. (103) was obtained.
  • the following table shows specific compositions of the polymerizable compositions (60) to (103) of the present invention.
  • Irganox 1076 (I-1076) Trimethylolpropane tris (3-mercaptopropionate) (TMMP)
  • TMMP Trimethylolpropane tris (3-mercaptopropionate)
  • Solubility evaluation The solubility of Examples 121 to 164 was evaluated as follows. ⁇ : After adjustment, a transparent and uniform state can be visually confirmed. ⁇ : A transparent and uniform state can be visually confirmed when heated and expanded, but precipitation of the compound is confirmed when the temperature is returned to room temperature. X: The compound cannot be uniformly dissolved even when heated and stirred. (Storage stability evaluation 1) The state after Examples 121 to 164 were allowed to stand at room temperature for 1 week was visually observed. The storage stability was evaluated as follows. ⁇ : A transparent and uniform state is maintained even after standing at room temperature for 3 days. ⁇ : A transparent and uniform state is maintained even after standing at room temperature for 1 day. X: Precipitation of the compound is confirmed after standing at room temperature for 1 hour.
  • Storage stability evaluation 2 The amount of the polymerization component (weight average molecular weight Mw: 7000 or more) in the polymerizable composition after leaving Examples 121 to 164 at 40 ° C. for 1 month was measured using GPC (made by Shimadzu Corporation), and calculated by the area ratio. did. The storage stability was evaluated as follows. A: Polymerization component amount is 0.1% or less. ⁇ : Polymerization component amount is 0.1 or more and less than 0.2%. X: Polymerization component amount is 0.2% or more. The results obtained are shown in the table below.
  • Example 165 to 196 The optical composition that is the positive A plate of Examples 165 to 196 is the same as Example 91 except that the polymerizable composition used is changed to the polymerizable compositions (60) to (91) of the present invention. I got a cuboid. The orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 91. The results obtained are shown in the table below.
  • Examples 197 to 201 The polymerizable compositions (92) to (96) of the present invention were applied by a bar coating method to a film obtained by laminating a silane coupling type vertical alignment film on a COP film substrate, and dried at 90 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature and then irradiated with ultraviolet rays at a conveyor speed of 6 m / min using a UV conveyor device (manufactured by GS Yuasa Co., Ltd.). I got a cuboid.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 91. The results obtained are shown in the table below.
  • Examples 202 to 204 A uniaxially stretched PET film having a thickness of 50 ⁇ m was rubbed using a commercially available rubbing apparatus, and then the polymerizable compositions (97) to (99) of the present invention were applied by a bar coating method and dried at 90 ° C. for 2 minutes. .
  • the obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at a conveyor speed of 6 m / min using a UV conveyor device (manufactured by GS Yuasa Co., Ltd.). I got a cuboid.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 89. The results obtained are shown in the table below.
  • Example 162 to 164 The polymerizable compositions (101) to 164 of Examples 162 to 164 were prepared under the same conditions as the preparation of the polymerizable composition (100) of Example 161 except that the respective compounds shown in the following table were changed to the ratios shown in the following table. (103) was obtained.
  • the following table shows specific compositions of the polymerizable compositions (100) to (103) of the present invention.
  • Irganox 1076 (I-1076) Trimethylolpropane tris (3-mercaptopropionate) (TMMP) (Solubility evaluation)
  • TMMP Trimethylolpropane tris (3-mercaptopropionate)
  • Storage stability evaluation 1 The state after Examples 161 to 164 were allowed to stand at room temperature for 1 week was visually observed. The storage stability was evaluated as follows. ⁇ : A transparent and uniform state is maintained even after standing at room temperature for 3 days.
  • A transparent and uniform state is maintained even after standing at room temperature for 1 day.
  • X Precipitation of the compound is confirmed after standing at room temperature for 1 hour.
  • Storage stability evaluation 2 The amount of the polymerization component (weight average molecular weight Mw: 7000 or more) in the polymerizable composition after leaving Examples 161-164 to stand at 40 ° C. for 1 month was measured using GPC (manufactured by Shimadzu Corporation), and calculated from the area ratio. did. The storage stability was evaluated as follows. A: Polymerization component amount is 0.1% or less. ⁇ : Polymerization component amount is 0.1 or more and less than 0.2%. X: Polymerization component amount is 0.2% or more. The results obtained are shown in the table below.
  • Example 205 The polyimide solution for alignment film was applied to a glass substrate having a thickness of 0.7 mm using a spin coating method, dried at 100 ° C. for 10 minutes, and then baked at 200 ° C. for 60 minutes to obtain a coating film. The obtained coating film was rubbed. The rubbing treatment was performed using a commercially available rubbing apparatus. The polymerizable composition (100) of the present invention was applied to the rubbed substrate by a spin coating method and dried at 90 ° C. for 2 minutes. The obtained coating film was cooled to room temperature over 2 minutes, and then irradiated with ultraviolet rays at a strength of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp. Got.
  • the polarization degree, transmittance, and contrast of the obtained optical anisotropic body were measured with RETS-100 (manufactured by Otsuka Electronics Co., Ltd.), the polarization degree was 99.0%, the transmittance was 44.5%, and the contrast was It was 93, and it turned out that it functions as a polarizing film.
  • Example 206 The polymerizable composition (101) of the present invention was applied to a glass substrate having a thickness of 0.7 mm by using a spin coating method, dried at 70 ° C. for 2 minutes, further dried at 100 ° C. for 2 minutes, and 313 nm. Linearly polarized light was irradiated at an intensity of 10 mW / cm 2 for 30 seconds. Thereafter, the coating film was returned to room temperature and irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp to obtain an optical anisotropic body which is a positive A plate of Example 206.
  • Example 207 An optical anisotropic body, which is a positive A plate of Example 207, was obtained under the same conditions as in Example 206, except that the polymerizable composition used was changed to the polymerizable composition (102) of the present invention.
  • the retardation of the obtained optical anisotropic body was measured with RETS-100 (manufactured by Otsuka Electronics Co., Ltd.).
  • the in-plane retardation (Re (550)) at a wavelength of 550 nm was 130 nm, and the uniformity was good. A phase difference film was obtained.
  • Example 208 An optical anisotropic body, which is a positive A plate of Example 208, was obtained under the same conditions as in Example 206 except that the polymerizable composition used was changed to the polymerizable composition (103) of the present invention.
  • the orientation of the obtained optical anisotropic body was evaluated, there was no defect by visual observation, and there was no defect even by observation with a polarizing microscope.
  • the retardation of the obtained optical anisotropic body was measured with RETS-100 (manufactured by Otsuka Electronics Co., Ltd.), the in-plane retardation (Re (550)) at a wavelength of 550 nm was 108 nm, and the uniformity was excellent. A phase difference film was obtained.
  • MEK methyl ethyl ketone
  • MEK methyl ethyl ketone
  • Solubility evaluation The solubility of Examples 209 to 210 was evaluated as follows. ⁇ : After adjustment, a transparent and uniform state can be visually confirmed. ⁇ : A transparent and uniform state can be visually confirmed when heated and expanded, but precipitation of the compound is confirmed when the temperature is returned to room temperature. X: The compound cannot be uniformly dissolved even when heated and stirred. (Storage stability evaluation 1) The state after Examples 209 to 210 were allowed to stand at room temperature for 1 week was visually observed. The storage stability was evaluated as follows. ⁇ : A transparent and uniform state is maintained even after standing at room temperature for 3 days. ⁇ : A transparent and uniform state is maintained even after standing at room temperature for 1 day. X: Precipitation of the compound is confirmed after standing at room temperature for 1 hour.
  • Storage stability evaluation 2 The amount of the polymerization component (weight average molecular weight Mw: 7000 or more) in the polymerizable composition after leaving Examples 209 to 210 at 40 ° C. for 1 month was measured using GPC (manufactured by Shimadzu Corporation), and calculated from the area ratio. did. The storage stability was evaluated as follows. A: Polymerization component amount is 0.1% or less. ⁇ : Polymerization component amount is 0.1 or more and less than 0.2%. X: Polymerization component amount is 0.2% or more. The results obtained are shown in the table below.
  • Example 211 The polyimide solution for alignment film was applied to a glass substrate having a thickness of 0.7 mm using a spin coating method, dried at 100 ° C. for 10 minutes, and then baked at 200 ° C. for 60 minutes to obtain a coating film. The obtained coating film was rubbed. The rubbing treatment was performed using a commercially available rubbing apparatus. The polymerizable composition (104) of the present invention was applied to the rubbed substrate by a spin coating method and dried at 100 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature, and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp, to obtain an optical anisotropic body which is a positive A plate of Example 211.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60.
  • Example 212 An optical anisotropic body, which is a positive A plate of Example 212, was obtained under the same conditions as in Example 211 except that the polymerizable composition used was changed to the polymerizable composition (105) of the present invention.
  • the orientation evaluation, retardation ratio, coating unevenness evaluation, and durability evaluation of the obtained optical anisotropic body were performed in the same manner as in Example 60. The results obtained are shown in the table below.
  • alkylphenone compounds As shown in the polymerizable compositions (1) to (105) of the present invention (Examples 1 to 59, Examples 121 to 164, and Examples 209 to 210), alkylphenone compounds, acylphosphine oxide compounds , And at least one photopolymerization initiator selected from the group consisting of oxime ester compounds, and a polymerizable composition using a polymerization inhibitor are excellent in solubility and storage stability, and have a polymerizable liquid crystal composition (
  • the optical anisotropic bodies (Examples 60 to 120, Examples 165 to 208, and Examples 211 to 212) formed from 1) to (105) all have orientation evaluation results, coating unevenness evaluations, and durability evaluation results. It is good and it can be said that it is excellent in productivity.
  • a polymerizable liquid crystal composition using a compound represented by the formula (b-1-1) as a photopolymerization initiator and p-methoxyphenol as a polymerization inhibitor is used for evaluation of orientation, evaluation of coating unevenness, durability.
  • the result of sex evaluation was very good.
  • Comparative Examples 1 to 7 when the specific polymerizable compound, the specific photopolymerization initiator and the polymerization inhibitor in the present invention are not used, the storage stability evaluation and the durability evaluation results are poor. The result was inferior to the polymerizable liquid crystal composition of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、a)1つまたは2つ以上の重合性基を有し、かつ、式(I)を満たす重合性化合物、 Re(450nm)/Re(550nm)<1.0 (I) b)アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤、 c)重合抑制剤 を含有する重合性組成物を提供するものである。また、本発明の重合性液晶組成物を用いて作製した光学異方体、位相差膜、反射防止膜、液晶表示装置もあわせて提供するものである。 本発明の重合性組成物は、溶解性に優れ、結晶の析出等が起こらない高い保存安定性を有し、当該組成物を重合して得られるフィルム状の重合物を作製した際に液晶の配向性を維持しつつ、塗膜表面のムラが少なく、耐久性に優れているため有用である。

Description

重合性組成物及びそれを用いた光学異方体
 本発明は、種々の光学特性を要する光学異方性を有する重合体、フィルムの構成部材として有用な重合性組成物、及び該重合性組成物からなる光学異方体、位相差膜、光学補償膜、反射防止膜、レンズ、レンズシート、該重合性組成物を用いた液晶表示素子、有機発光表示素子、照明素子、光学部品、偏光フィルム、着色剤、セキュリティ用マーキング、レーザー発光用部材、印刷物等に関する。
 重合性基を有する化合物(重合性化合物)は種々の光学材料に使用される。例えば、重合性化合物を含む重合性組成物を液晶状態で配列させた後、重合させることにより、均一な配向を有する重合体を作製することが可能である。このような重合体は、ディスプレイに必要な偏光板、位相差板等に使用することができる。多くの場合、要求される光学特性、重合速度、溶解性、融点、ガラス転移温度、重合体の透明性、機械的強度、表面硬度、耐熱性及び耐光性を満たすために、2種類以上の重合性化合物を含む重合性組成物が使用される。その際、使用する重合性化合物には、他の特性に悪影響を及ぼすことなく、重合性組成物に良好な物性をもたらすことが求められる。
 液晶ディスプレイの視野角を向上させるために、位相差フィルムの複屈折率の波長分散性を小さく、若しくは逆にすることが求められている。そのための材料として、逆波長分散性若しくは低波長分散性を有する重合性液晶化合物が種々開発されてきた。しかしながら、それらの重合性化合物は、重合性組成物に添加した場合に結晶の析出が起こり、保存安定性が不十分であった(特許文献1)。
 また、重合性組成物を基材に塗布し重合させた場合に、ムラが生じやすい問題があった(特許文献1~特許文献3)。溶解性に劣る重合性化合物を使用する場合、使用可能な溶剤種に制限があるため、塗布ムラを抑制することが非常に困難である。ムラの生じたフィルムを、例えばディスプレイに使用した場合、画面の明るさにムラが生じたり、色味が不自然であったりしてしまい、ディスプレイ製品の品質を大きく低下させてしまう問題がある。そのため、このような問題を解決することができる溶解性に優れた逆波長分散性若しくは低波長分散性を有する重合性液晶化合物の開発が求められていた。さらに、重合性組成物を基材に塗布成膜し、位相差フィルムとして使用する場合、高温高湿下での耐久性が十分に満足できるものではなかった。
特開2008-107767号公報 特表2010-522892号公報 特表2013-509458号公報
 本発明が解決しようとする課題は、溶解性に優れ、結晶の析出が起こらず、高温高湿状態で保管された状態においても高い保存安定性を有する重合性組成物を提供し、当該組成物を重合して得られるフィルム状の重合物について、優れた配向性を維持しつつ、塗膜表面のムラが少なく、優れた耐久性を有する重合性組成物を提供することである。更に、当該重合性組成物からなる光学異方体、位相差膜、光学補償膜、反射防止膜、レンズ、レンズシート、該重合性組成物を用いた液晶表示素子、有機発光表示素子、照明素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、偏光フィルム、色材、印刷物等を提供することである。
 本発明は、上記課題を解決するために、1つまたは2つ以上の重合性基を有する特定の重合性化合物、特定の光重合開始剤及び重合抑制剤を用いた重合性組成物に着目して鋭意研究を重ねた結果、本発明を提供するに至った。
即ち本発明は、
a)1つまたは2つ以上の重合性基を有し、かつ、式(I)を満たす重合性化合物、
 Re(450nm)/Re(550nm)<1.0 (I)
(式中、Re(450nm)は、前記1つまたは2つ以上の重合性基を有する重合性化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの450nmの波長における面内位相差、Re(550nm)は、前記1つまたは2つ以上の重合性基を有する重合性化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの550nmの波長における面内位相差を表す。)
b)アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤、
c)重合抑制剤、
を含有する重合性組成物を提供する。
 また、併せて、当該重合性組成物からなる光学異方体、位相差膜、光学補償膜、反射防止膜、レンズ、レンズシート、該重合性組成物を用いた液晶表示素子、有機発光表示素子、照明素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、印刷物等を提供する。
 本発明の重合性組成物は、1つまたは2つ以上の重合性基を有し、特定の重合性化合物と、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤、
、重合抑制剤を同時に用いることで、溶解性、保存安定性に優れた重合性組成物を得ることができ、かつ優れた配向性を維持しつつ、塗膜表面のムラが少なく、耐久性に優れ、生産性に優れた重合体、光学異方体、位相差フィルム等を得ることができる。
 以下に本発明による重合性組成物の最良の形態について説明するが、本発明において、「液晶性化合物」とは、メソゲン性骨格を有する化合物を示すことを意図するものであり、化合物単独では、液晶性を示さなくてもよい。なお、重合性組成物を紫外線等の光照射、あるいは加熱によって重合処理を行うことでポリマー化(フィルム化)することができる。
(1つまたは2つ以上の重合性基を有する重合性化合物)
 本発明の1つまたは2つ以上の重合性基を有する重合性化合物は、前記化合物の複屈折性が可視光領域において、短波長側より長波長側で大きい特徴を有する。具体的には、式(I)
 Re(450nm)/Re(550nm)<1.0 (I)
(式中、Re(450nm)は、前記1つまたは2つ以上の重合性基を有する重合性化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの450nmの波長における面内位相差、Re(550nm)は、前記1つまたは2つ以上の重合性基を有する重合性化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの550nmの波長における面内位相差、を表す。)
を満たしていればよく、紫外線領域や赤外線領域では複屈折性が短波長側より長波長側で大きい必要はない。
 前記化合物としては液晶性化合物が好ましい。なかでも、一般式(1)~(7)のいずれかの液晶性化合物を少なくとも1つ以上含有することが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中、P11~P74は重合性基を表し、
11~S72はスペーサー基を又は単結合を表すが、S11~S72が複数存在する場合それらは各々同一であっても異なっていても良く、
11~X72は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、X11~X72が複数存在する場合それらは各々同一であっても異なっていても良く(ただし、各P-(S-X)-結合には-O-O-を含まない。)、
MG11~MG71は各々独立して式(a)を表し、
Figure JPOXMLDOC01-appb-C000011
(式中、A11、A12は各々独立して1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良いが、A11及び/又はA12が複数現れる場合は各々同一であっても異なっていても良く、
11及びZ12は各々独立して-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Z11及び/又はZ12が複数現れる場合は各々同一であっても異なっていても良く、
Mは下記の式(M-1)から式(M-11)
Figure JPOXMLDOC01-appb-C000012
から選ばれる基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良く、
Gは下記の式(G-1)から式(G-6)
Figure JPOXMLDOC01-appb-C000013
(式中、Rは水素原子、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、
81は少なくとも1つの芳香族基を有する、炭素原子数5から30の基を表すが、当該基は無置換又は1つ以上のLによって置換されても良く、
82は水素原子又は炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、或いはW82はW81と同様の意味を表しても良く、W81及びW82は互いに連結し同一の環構造を形成しても良く、或いはW82は下記の基
Figure JPOXMLDOC01-appb-C000014
(式中、PW82はP11と同じ意味を表し、SW82はS11と同じ意味を表し、XW82はX11と同じ意味を表し、nW82はm11と同じ意味を表す。)を表し、
83及びW84はそれぞれ独立してハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、カルボキシル基、カルバモイルオキシ基、アミノ基、スルファモイル基、少なくとも1つの芳香族基を有する炭素原子数5から30の基、炭素原子数1から20のアルキル基、炭素原子数3から20のシクロアルキル基、炭素原子数2から20のアルケニル基、炭素原子数3から20のシクロアルケニル基、炭素原子数1から20のアルコキシ基、炭素原子数2から20のアシルオキシ基、炭素原子数2から20の又は、アルキルカルボニルオキシ基を表すが、前記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルコキシ基、アシルオキシ基、アルキルカルボニルオキシ基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、但し、上記Mが式(M-1)~式(M-10)から選択される場合Gは式(G-1)~式(G-5)から選択され、Mが式(M-11)である場合Gは式(G-6)を表し、
はフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-から選択される基によって置換されても良いが、化合物内にLが複数存在する場合それらは同一であっても異なっていても良く、
j11は1から5の整数、j12は1~5の整数を表すが、j11+j12は2から5の整数を表す。)、R11及びR31は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、m11は0~8の整数を表し、m2~m7、n2~n7、l4~l6、k6は各々独立して0から5の整数を表す。)
 一般式(1)から一般式(7)において、重合性基P11~P74は下記の式(P-1)から式(P-20)
Figure JPOXMLDOC01-appb-C000015
から選ばれる基を表すことが好ましく、これらの重合性基はラジカル重合、ラジカル付加重合、カチオン重合及びアニオン重合により重合する。特に重合方法として紫外線重合を行う場合には、式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-5)、式(P-7)、式(P-11)、式(P-13)、式(P-15)又は式(P-18)が好ましく、式(P-1)、式(P-2)、式(P-7)、式(P-11)又は式(P-13)がより好ましく、式(P-1)、式(P-2)又は式(P-3)がさらに好ましく、式(P-1)又は式(P-2)が特に好ましい。
 一般式(1)から一般式(7)において、S11~S72はスペーサー基又は単結合を表すが、S11~S72が複数存在する場合、それらは同一であっても異なっていても良い。また、スペーサー基としては、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、-C≡C-又は下記の式(S-1)
Figure JPOXMLDOC01-appb-C000016
に置き換えられても良い炭素原子数1から20のアルキレン基を表すことが好ましい。Sは原料の入手容易さ及び合成の容易さの観点から複数存在する場合は各々同一であっても異なっていても良く、各々独立して、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-に置き換えられても良い炭素原子数1から10のアルキレン基又は単結合を表すことがより好ましく、各々独立して炭素原子数1から10のアルキレン基又は単結合を表すことがさらに好ましく、複数存在する場合は各々同一であっても異なっていても良く各々独立して炭素原子数1から8のアルキレン基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、X11~X72は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、X11~X72が複数存在する場合それらは同一であっても異なっていても良い(ただし、P-(S-X)-結合には-O-O-を含まない。)。
 また、原料の入手容易さ及び合成の容易さの観点から、複数存在する場合は各々同一であっても異なっていても良く、各々独立して-O-、-S-、-OCH-、-CHO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-又は単結合を表すことが好ましく、各々独立して-O-、-OCH-、-CHO-、-COO-、-OCO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-又は単結合を表すことがより好ましく、複数存在する場合は各々同一であっても異なっていても良く、各々独立して-O-、-COO-、-OCO-又は単結合を表すことが特に好ましい。
 一般式(1)から一般式(7)において、A11及びA12は各々独立して1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、これらの基は無置換であるか又は1つ以上のLによって置換されても良いが、A11及び/又はA12が複数現れる場合は各々同一であっても異なっていても良い。A11及びA12は原料の入手容易さ及び合成の容易さの観点から各々独立して無置換又は1つ以上のLによって置換されても良い1,4-フェニレン基、1,4-シクロへキシレン基又はナフタレン-2,6-ジイルを表すことが好ましく、各々独立して下記の式(A-1)から式(A-11)
Figure JPOXMLDOC01-appb-C000017
から選ばれる基を表すことがより好ましく、各々独立して式(A-1)から式(A-8)から選ばれる基を表すことがさらに好ましく、各々独立して式(A-1)から式(A-4)から選ばれる基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、Z11及びZ12は各々独立して-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Z11及び/又はZ12が複数現れる場合は各々同一であっても異なっていても良い。
 Z11及びZ12は化合物の液晶性、原料の入手容易さ及び合成の容易さの観点から、各々独立して単結合、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、各々独立して-OCH-、-CHO-、-CHCH-、-COO-、-OCO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-CH=CH-、-C≡C-又は単結合を表すことがより好ましく、各々独立して-CHCH-、-COO-、-OCO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-又は単結合を表すことがさらに好ましく、各々独立して-CHCH-、-COO-、-OCO-又は単結合を表すことが特に好ましい。
 一般式(1)から一般式(7)において、Mは下記の式(M-1)から式(M-11)
Figure JPOXMLDOC01-appb-C000018
から選ばれる基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良い。Mは原料の入手容易さ及び合成の容易さの観点から各々独立して無置換であるか又は1つ以上のLによって置換されても良い式(M-1)又は式(M-2)若しくは無置換の式(M-3)から式(M-6)から選ばれる基を表すことが好ましく、無置換又は1つ以上のLによって置換されても良い式(M-1)又は式(M-2)から選ばれる基を表すことがより好ましく、無置換の式(M-1)又は式(M-2)から選ばれる基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、R11及びR31は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良い。
 Rは液晶性及び合成の容易さの観点から水素原子、フッ素原子、塩素原子、シアノ基、若しくは、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-、-O-CO-O-によって置換されても良い炭素原子数1から12の直鎖又は分岐アルキル基を表すことが好ましく、水素原子、フッ素原子、塩素原子、シアノ基、若しくは、炭素原子数1から12の直鎖アルキル基又は直鎖アルコキシ基を表すことがより好ましく、炭素原子数1から12の直鎖アルキル基又は直鎖アルコキシ基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、Gは式(G-1)から式(G-6)から選ばれる基を表す。
Figure JPOXMLDOC01-appb-C000019
 式中、Rは水素原子、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、
81は少なくとも1つの芳香族基を有する、炭素原子数5から30の基を表すが、当該基は無置換であるか又は1つ以上のLによって置換されても良く、
82は、水素原子又は炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、或いはW82はW81と同様の意味を表しても良く、W81及びW82は一緒になって環構造を形成しても良く、或いはW82は下記の基
Figure JPOXMLDOC01-appb-C000020
(式中、PW82はP11と同じ意味を表し、SW82はS11と同じ意味を表し、XW82はX11と同じ意味を表し、nW82はm11と同じ意味を表す。)を表す。
 W81に含まれる芳香族基は芳香族炭化水素基又は芳香族複素基であっても良く、両方を含んでいても良い。これらの芳香族基は単結合又は連結基(-OCO-、-COO-、-CO-、-O-)を介して結合していても良く、縮合環を形成しても良い。また、W81は芳香族基に加えて芳香族基以外の非環式構造及び/又は環式構造を含んでいても良い。W81に含まれる芳香族基は原料の入手容易さ及び合成の容易さの観点から、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-1)から式(W-19)
Figure JPOXMLDOC01-appb-C000021
(式中、これらの基は任意の位置に結合手を有していて良く、これらの基から選ばれる2つ以上の芳香族基を単結合で連結した基を形成しても良く、Qは-O-、-S-、-NR-(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)又は-CO-を表す。これらの芳香族基中の-CH=は各々独立して-N=に置き換えられても良く、-CH-は各々独立して-O-、-S-、-NR-(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)又は-CO-に置き換えられても良いが、-O-O-結合を含まない。式(W-1)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-1-1)から式(W-1-8)
Figure JPOXMLDOC01-appb-C000022
(式中、これらの基は任意の位置に結合手を有していて良い。)から選ばれる基を表すことが好ましく、式(W-7)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-7-1)から式(W-7-7)
Figure JPOXMLDOC01-appb-C000023
(式中、これらの基は任意の位置に結合手を有していて良い。)から選ばれる基を表すことが好ましく、式(W-10)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-10-1)から式(W-10-8)
Figure JPOXMLDOC01-appb-C000024
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-11)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-11-1)から式(W-11-13)
Figure JPOXMLDOC01-appb-C000025
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-12)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-12-1)から式(W-12-19)
Figure JPOXMLDOC01-appb-C000026
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、式(W-13)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-13-1)から式(W-13-10)
Figure JPOXMLDOC01-appb-C000027
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、式(W-14)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-14-1)から式(W-14-4)
Figure JPOXMLDOC01-appb-C000028
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-15)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-15-1)から式(W-15-18)
Figure JPOXMLDOC01-appb-C000029
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-16)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-16-1)から式(W-16-4)
Figure JPOXMLDOC01-appb-C000030
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-17)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-17-1)から式(W-17-6)
Figure JPOXMLDOC01-appb-C000031
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-18)で表される基としては、無置換又は1つ以上のLによって置換されても良い下記の式(W-18-1)から式(W-18-6)
Figure JPOXMLDOC01-appb-C000032
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、式(W-19)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-19-1)から式(W-19-9)
Figure JPOXMLDOC01-appb-C000033
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましい。W81に含まれる芳香族基は、無置換であるか又は1つ以上のLによって置換されても良い式(W-1-1)、式(W-7-1)、式(W-7-2)、式(W-7-7)、式(W-8)、式(W-10-6)、式(W-10-7)、式(W-10-8)、式(W-11-8)、式(W-11-9)、式(W-11-10)、式(W-11-11)、式(W-11-12)又は式(W-11-13)から選ばれる基を表すことがより好ましく、無置換であるか又は1つ以上のLによって置換されても良い式(W-1-1)、式(W-7-1)、式(W-7-2)、式(W-7-7)、式(W-10-6)、式(W-10-7)又は式(W-10-8)から選ばれる基を表すことが特に好ましい。さらに、W81は下記の式(W-a-1)から式(W-a-6)
Figure JPOXMLDOC01-appb-C000034
(式中、rは0から5の整数を表し、sは0から4の整数を表し、tは0から3の整数を表す。)から選ばれる基を表すことが特に好ましい。
 W82は水素原子又は1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、或いはW82はW81と同様の意味を表しても良く、W81及びW82は一緒になって環構造を形成しても良く、或いはW82は下記の基
Figure JPOXMLDOC01-appb-C000035
(式中、PW82はP11と同じ意味を表し、SW82はS11と同じ意味を表し、XW82はX11と同じ意味を表し、nW82はm11と同じ意味を表す。)を表す。
 W82は原料の入手容易さ及び合成の容易さの観点から、水素原子、若しくは、任意の水素原子はフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-CO-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い、炭素原子数1から20の直鎖状又は分岐状アルキル基を表すことが好ましく、水素原子、若しくは、炭素原子数1から20の直鎖状又は分岐状アルキル基を表すことがより好ましく、水素原子、若しくは、炭素原子数1から12の直鎖状アルキル基を表すことが特に好ましい。また、W82がW81と同様の意味を表す場合、W82はW81と同一であっても異なっていても良いが、好ましい基はW81についての記載と同様である。また、W81及びW82が一緒になって環構造を形成する場合、-NW8182で表される環状基は無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-b-1)から式(W-b-42)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、原料の入手容易さ及び合成の容易さの観点から、無置換又は1つ以上のLによって置換されても良い式(W-b-20)、式(W-b-21)、式(W-b-22)、式(W-b-23)、式(W-b-24)、式(W-b-25)又は式(W-b-33)から選ばれる基を表すことが特に好ましい。
 また、=CW8182で表される環状基は無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-c-1)から式(W-c-81)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、原料の入手容易さ及び合成の容易さの観点から、無置換又は1つ以上のLによって置換されても良い式(W-c-11)、式(W-c-12)、式(W-c-13)、式(W-c-14)、式(W-c-53)、式(W-c-54)、式(W-c-55)、式(W-c-56)、式(W-c-57)又は式(W-c-78)から選ばれる基を表すことが特に好ましい。
 W82が下記の基
Figure JPOXMLDOC01-appb-C000041
を表す場合、好ましいPW82はP11についての記載と同様であり、好ましいSW82はS11についての記載と同様であり、好ましいXW82はX11についての記載と同様であり、好ましいnW82はm11についての記載と同様である。
 W81及びW82に含まれるπ電子の総数は、波長分散特性、保存安定性、液晶性及び合成の容易さの観点から4から24であることが好ましい。W83、W84はそれぞれ独立してハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、カルボキシル基、カルバモイルオキシ基、アミノ基、スルファモイル基、少なくとも1つの芳香族基を有する炭素原子数5から30の基、炭素原子数1から20のアルキル基、炭素原子数3から20のシクロアルキル基、炭素原子数2から20のアルケニル基、炭素原子数3から20のシクロアルケニル基、炭素原子数1から20のアルコキシ基、炭素原子数2から20のアシルオキシ基、炭素原子数2から20の又は、アルキルカルボニルオキシ基を表すが、前記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルコキシ基、アシルオキシ基、アルキルカルボニルオキシ基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、W83はシアノ基、ニトロ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基から選択される基がより好ましく、シアノ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基で選択される基が特に好ましく、W84はシアノ基、ニトロ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基から選択される基がより好ましく、シアノ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基で選択される基で選択される基が特に好ましい。
 Lはフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良い。液晶性、合成の容易さの観点から、Lはフッ素原子、塩素原子、ペンタフルオロスルフラニル基、ニトロ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、又は、任意の水素原子はフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-、-CF=CF-又は-C≡C-から選択される基によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すことが好ましく、フッ素原子、塩素原子、又は、任意の水素原子はフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-COO-又は-OCO-から選択される基によって置換されても良い炭素原子数1から12の直鎖状又は分岐状アルキル基を表すことがより好ましく、フッ素原子、塩素原子、又は、任意の水素原子はフッ素原子に置換されても良い炭素原子数1から12の直鎖状又は分岐状アルキル基若しくはアルコキシ基を表すことがさらに好ましく、フッ素原子、塩素原子、又は、炭素原子数1から8の直鎖アルキル基若しくは直鎖アルコキシ基を表すことが特に好ましい。
 一般式(1)において、m11は0から8の整数を表すが、液晶性、原料の入手容易さ及び合成の容易さの観点から0から4の整数を表すことが好ましく、0から2の整数を表すことがより好ましく、0又は1を表すことがさらに好ましく、1を表すことが特に好ましい。
 一般式(2)から一般式(7)において、m2~m7は0から5の整数を表すが、液晶性、原料の入手容易さ及び合成の容易さの観点から0から4の整数を表すことが好ましく、0から2の整数を表すことがより好ましく、0又は1を表すことがさらに好ましく、1を表すことが特に好ましい。
 一般式(a)において、j11及びj12は各々独立して1から5の整数を表すが、j11+j12は2から5の整数を表す。液晶性、合成の容易さ及び保存安定性の観点から、j11及びj12は各々独立して1から4の整数を表すことが好ましく、1から3の整数を表すことがより好ましく、1又は2を表すことが特に好ましい。j11+j12は2から4の整数を表すことが好ましい。
 一般式(1)で表される化合物として具体的には、下記の式(1-a-1)から式(1-a-105)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
(式中、m11、n11、m、nは1~10の整数を表す。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(2)で表される化合物として具体的には、下記の式(2-a-1)から式(2-a-61)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
(式中、nは1~10の整数を表す。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(3)で表される化合物として具体的には、下記の式(3-a-1)から式(3-a-17)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
 これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(4)においては、P43-(S43-X43l4-で表される基は、一般式(a)のA11又はA12に結合する。
 一般式(4)で表される化合物として具体的には、下記の式(4-a-1)から式(4-a-26)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
(式中、m及びnはそれぞれ独立して1~10の整数を表す。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(5)で表される化合物として具体的には、下記の式(5-a-1)から式(5-a-29)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
(式中、nは炭素原子数1~10を示す。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(6)においては、P63-(S63-X63l6-で表される基、及びP64-(S64-X64k6-で表される基は、一般式(a)のA11又はA12に結合する。
 一般式(6)で表される化合物として具体的には、下記の式(6-a-1)から式(6-a-25)で表される化合物が好ましい
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
(式中、k、l、m及びnはそれぞれ独立して炭素原子数1~10を表す。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(7)で表される化合物として具体的には、下記の式(7-a-1)から式(7-a-26)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 上記1つ以上の重合性基を有する液晶性化合物の合計含有量は、重合性組成物に用いる液晶性化合物の総量に対し、60~100質量%含有することが好ましく、65~98質量%含有することがより好ましく、70~95質量%含有することが特に好ましい。
(光重合開始剤)
本発明の重合性組成物には、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤を含有する。
 本発明の重合性組成物は、当該光重合開始剤を用いることにより、光学異方体とした場合に、耐熱性に優れた塗膜を形成できるため、耐久性を十分確保することができる。
 前記光重合開始剤は、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤であることが好ましい。
 前記光重合開始剤としては、式(b-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000115
(式中、Rはそれぞれ独立に、下記の式(R-1)から式(R-6)
Figure JPOXMLDOC01-appb-C000116
から選ばれる基を表し、
は単結合、-O-、-C(CH)、-C(OCH)、-C(CHCH)-N(CH)から選ばれる基を表し、
は、下記の式(R-1)から式(R-8)
Figure JPOXMLDOC01-appb-C000117
から選ばれる基を表す。)
 上記式(b-1)で表される化合物として具体的には、下記の式(b-1-1)~式(b-1-10)で表される化合物が好ましい
Figure JPOXMLDOC01-appb-C000118
 光重合開始剤の含有率は、重合性組成物に含まれる重合性化合物の総量に対し、0.1~10質量%が好ましく、1~6質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
 重合性組成物中に前記光重合開始剤を溶解する際には、熱による反応が開始されないように均一に溶解させるために、重合性化合物を有機溶剤に攪拌することにより均一溶解したのち、40℃以下で攪拌し溶解させることが好ましい。光重合開始剤の溶解温度は、用いる光重合開始剤の有機溶剤に対する溶解性を考慮して適宜調節すればよいが、生産性の点から10℃~40℃が好ましく、10℃~35℃が更に好ましく、10℃~30℃が特に好ましい。
(重合抑制剤)
 本発明の重合性組成物には、重合抑制剤を含有する。本発明の重合性組成物は、当該重合抑制剤を用いることにより、重合性組成物として高温で保存された場合に、不必要な重合が抑制され、保存安定性を確保することができる。また、光学異方体とした場合に、塗膜に耐熱性を付与できるため、耐久性を十分確保することができる。
 前記重合抑制剤は、フェノール系重合抑制剤であることが好ましい。
前記フェノール系重合抑制剤としては、ハイドロキノン、メトキシフェノール、メチルハイドロキノン、ターシャリーブチルハイドロキノン、ターシャリーブチルカテコールのいずれかが好ましい。
 重合抑制剤の含有率は、重合性組成物に含まれる重合性化合物の総量に対し、0.01~1質量%が好ましく、0.01~0.5質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
 重合性組成物中に前記重合抑制剤を溶解する際には、重合性化合物を有機溶剤に加熱攪拌により溶解する段階で同時に溶解することが好ましい。また、重合性化合物を有機溶剤に加熱攪拌により溶解させたのち、重合性組成物中にさらに添加し溶解させてもよい。
(添加剤)
 本発明に用いる重合性組成物は、各々の目的に応じて汎用の添加剤を使用することもできる。例えば、酸化防止剤、紫外線吸収剤、レベリング剤、配向制御剤、連鎖移動剤、赤外線吸収剤、チキソ剤、帯電防止剤、色素、フィラー、キラル化合物、重合性基を有する非液晶性化合物、その他液晶化合物、配向材料等の添加剤を液晶の配向性を著しく低下させない程度添加することができる。
(酸化防止剤)
 本発明に用いる重合性組成物は、必要に応じて酸化防止剤等を含有することができる。そのような化合物として、ヒドロキノン誘導体、ニトロソアミン系重合禁止剤、ヒンダードフェノール系酸化防止剤等が挙げられ、より具体的には、tert-ブチルハイドロキノン、和光純薬工業社の「Q-1300」、「Q-1301」、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート「IRGANOX1010」、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート「IRGANOX1035」、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート「IRGANOX1076」、「IRGANOX1135」、「IRGANOX1330」、4,6-ビス(オクチルチオメチル)-o-クレゾール「IRGANOX1520L」、「IRGANOX1726」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX3790」、「IRGANOX5057」、「IRGANOX565」(以上、BASF株式会社製)、株式会社ADEKA製のアデカスタブAO-20、AO-30、AO-40、AO-50、AO-60、AO-80、住友化学株式会社のスミライザーBHT、スミライザーBBM-S、およびスミライザーGA-80等々があげられる。
 酸化防止剤の添加量は、重合性組成物に含まれる重合性化合物の総量に対して0.01~2.0質量%であることが好ましく、0.05~1.0質量%であることがより好ましい。
(紫外線吸収剤)
 本発明に用いる重合性組成物は、必要に応じて紫外線吸収剤や光安定剤を含有することができる。用いる紫外線吸収剤や光安定剤は特に限定はないが、光学異方体や光学フィルム等の耐光性を向上させるものが好ましい。
 前記紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール「チヌビン PS」、「チヌビン 99-2」、「チヌビン 109」、「TINUVIN 213」、「TINUVIN 234」、「TINUVIN 326」、「TINUVIN 328」、「TINUVIN 329」、「TINUVIN 384-2」、「TINUVIN 571」、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール「TINUVIN 900」、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール「TINUVIN 928」、「TINUVIN 1130」、「TINUVIN 400」、「TINUVIN 405」、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン「TINUVIN 460」、「チヌビン 479」、「TINUVIN 5236」(以上、BASF株式会社製)、「アデカスタブLA-32」、「アデカスタブLA-34」、「アデカスタブLA-36」、「アデカスタブLA-31」、「アデカスタブ1413」、「アデカスタブLA-51」(以上、株式会社ADEKA製)等が挙げられる。
 光安定剤としては例えば、「TINUVIN 111FDL」、「TINUVIN 123」、「TINUVIN 144」、「TINUVIN 152」、「TINUVIN 292」、「TINUVIN 622」、「TINUVIN 770」、「TINUVIN 765」、「TINUVIN 780」、「TINUVIN 905」、「TINUVIN 5100」、「TINUVIN 5050」、「TINUVIN 5060」、「TINUVIN 5151」、「CHIMASSORB 119FL」、「CHIMASSORB 944FL」、「CHIMASSORB 944LD」(以上、BASF株式会社製)、「アデカスタブLA-52」、「アデカスタブLA-57」、「アデカスタブLA-62」、「アデカスタブLA-67」、「アデカスタブLA-63P」、「アデカスタブLA-68LD」、「アデカスタブLA-77」、「アデカスタブLA-82」、「アデカスタブLA-87」(以上、株式会社ADEKA製)等が挙げられる。
(レベリング剤)
 本発明の重合性組成物は、必要に応じてレベリング剤を含有することができる。用いるレベリング剤は特に限定はないが、光学異方体や光学フィルム等の薄膜を形成する場合に膜厚むらを低減させるためものが好ましい。 前記レベリング剤としては、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類等が挙げられる。
 具体的には、「メガファックF-114」、「メガファックF-251」、「メガファックF-281」、「メガファックF-410」、「メガファックF-430」、「メガファックF-444」、「メガファックF-472SF」、「メガファックF-477」、「メガファックF-510」、「メガファックF-511」、「メガファックF-552」、「メガファックF-553」、「メガファックF-554」、「メガファックF-555」、「メガファックF-556」、「メガファックF-557」、「メガファックF-558」、「メガファックF-559」、「メガファックF-560」、「メガファックF-561」、「メガファックF-562」、「メガファックF-563」、「メガファックF-565」、「メガファックF-567」、「メガファックF-568」、「メガファックF-569」、「メガファックF-570」、「メガファックF-571」、「メガファックR-40」、「メガファックR-41」、「メガファックR-43」、「メガファックR-94」、「メガファックRS-72-K」、「メガファックRS-75」、「メガファックRS-76-E」、「メガファックRS-76-NS」、「メガファックRS-90」、「メガファックEXP.TF-1367」、「メガファックEXP.TF1437」、「メガファックEXP.TF1537」、「メガファックEXP.TF-2066」(以上、DIC株式会社製)、
「フタージェント100」、「フタージェント100C」、「フタージェント110」、「フタージェント150」、「フタージェント150CH」、「フタージェント100A-K」、「フタージェント300」、「フタージェント310」、「フタージェント320」、「フタージェント400SW」、「フタージェント251」、「フタージェント215M」、「フタージェント212M」、「フタージェント215M」、「フタージェント250」、「フタージェント222F」、「フタージェント212D」、「FTX-218」、「フタージェント209F」、「フタージェント245F」、「フタージェント208G」、「フタージェント240G」、「フタージェント212P」、「フタージェント220P」、「フタージェント228P」、「DFX-18」、「フタージェント601AD」、「フタージェント602A」、「フタージェント650A」、「フタージェント750FM」、「FTX-730FM」、「フタージェント730FL」、「フタージェント710FS」、「フタージェント710FM」、「フタージェント710FL」、「フタージェント750LL」、「FTX-730LS」、「フタージェント730LM」、(以上、株式会社ネオス製)、
「BYK-300」、「BYK-302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-337」、「BYK-340」、「BYK-344」、「BYK-370」、「BYK-375」、「BYK-377」、「BYK-350」、「BYK-352」、「BYK-354」、「BYK-355」、「BYK-356」、「BYK-358N」、「BYK-361N」、「BYK-357」、「BYK-390」、「BYK-392」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、「BYK-Silclean3700」(以上、BYK株式会社製)、
「TEGO Rad2100」、「TEGO Rad2011」、「TEGO Rad2200N」、「TEGO Rad2250」、「TEGO Rad2300」、「TEGO Rad2500」、「TEGO Rad2600」、「TEGO Rad2650」、「TEGO Rad2700」、「TEGO Flow300」、「TEGO Flow370」、「TEGO Flow425」、「TEGO Flow ATF2」、「TEGO Flow ZFS460」、「TEGO Glide100」、「TEGO Glide110」、「TEGO Glide130」、「TEGO Glide410」、「TEGO Glide411」、「TEGO Glide415」、「TEGO Glide432」、「TEGO Glide440」、「TEGO Glide450」、「TEGO Glide482」、「TEGO Glide A115」、「TEGO Glide B1484」、「TEGO Glide ZG400」、「TEGO Twin4000」、「TEGO Twin4100」、「TEGO Twin4200」、「TEGO Wet240」、「TEGO Wet250」、「TEGO Wet260」、「TEGO Wet265」、「TEGO Wet270」、「TEGO Wet280」、「TEGO Wet500」、「TEGO Wet505」、「TEGO Wet510」、「TEGO Wet520」、「TEGO Wet KL245」、(以上、エボニック・インダストリーズ株式会社製)、「FC-4430」、「FC-4432」(以上、スリーエムジャパン株式会社製)、「ユニダインNS」(以上、ダイキン工業株式会社製)、「サーフロンS-241」、「サーフロンS-242」、「サーフロンS-243」、「サーフロンS-420」、「サーフロンS-611」、「サーフロンS-651」、「サーフロンS-386」(以上、AGCセイミケミカル株式会社製)、「DISPARLON OX-880EF」、「DISPARLON OX-881」、「DISPARLON OX-883」、「DISPARLON OX-77EF」、「DISPARLON OX-710」、「DISPARLON 1922」、「DISPARLON 1927」、「DISPARLON 1958」、「DISPARLON P-410EF」、「DISPARLON P-420」、「DISPARLON P-425」、「DISPARLON PD-7」、「DISPARLON 1970」、「DISPARLON 230」、「DISPARLON LF-1980」、「DISPARLON LF-1982」、「DISPARLON LF-1983」、「DISPARLON LF-1084」、「DISPARLON LF-1985」、「DISPARLON LHP-90」、「DISPARLON LHP-91」、「DISPARLON LHP-95」、「DISPARLON LHP-96」、「DISPARLON OX-715」、「DISPARLON 1930N」、「DISPARLON 1931」、「DISPARLON 1933」、「DISPARLON 1934」、「DISPARLON 1711EF」、「DISPARLON 1751N」、「DISPARLON 1761」、「DISPARLON LS-009」、「DISPARLON LS-001」、「DISPARLON LS-050」(以上、楠本化成株式会社製)、「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-652-NF」、「PF-3320」(以上、OMNOVA SOLUTIONS社製)、「ポリフローNo.7」、「ポリフローNo.50E」、「ポリフローNo.50EHF」、「ポリフローNo.54N」、「ポリフローNo.75」、「ポリフローNo.77」、「ポリフローNo.85」、「ポリフローNo.85HF」、「ポリフローNo.90」、「ポリフローNo.90D-50」、「ポリフローNo.95」、「ポリフローNo.99C」、「ポリフローKL-400K」、「ポリフローKL-400HF」、「ポリフローKL-401」、「ポリフローKL-402」、「ポリフローKL-403」、「ポリフローKL-404」、「ポリフローKL-100」、「ポリフローLE-604」、「ポリフローKL-700」、「フローレンAC-300」、「フローレンAC-303」、「フローレンAC-324」、「フローレンAC-326F」、「フローレンAC-530」、「フローレンAC-903」、「フローレンAC-903HF」、「フローレンAC-1160」、「フローレンAC-1190」、「フローレンAC-2000」、「フローレンAC-2300C」、「フローレンAO-82」、「フローレンAO-98」、「フローレンAO-108」(以上、共栄社化学株式会社製)、「L-7001」、「L-7002」、「8032ADDITIVE」、「57ADDTIVE」、「L-7064」、「FZ-2110」、「FZ-2105」、「67ADDTIVE」、「8616ADDTIVE」(以上、東レ・ダウシリコーン株式会社製)等の例を挙げることができる。
 レベリング剤の添加量は、本発明の重合性組成物に用いる、重合性化合物の合計量に対し、0.01~2質量%であることが好ましく、0.05~0.5質量%であることがより好ましい。
 また、上記レベリング剤を使用することで、本発明の重合性組成物を光学異方体とした場合、空気界面のチルト角を効果的に減じることができるものもある。
(配向制御剤)
 本発明に用いる重合性組成物は、重合性化合物の配向状態を制御するために、配向制御剤を含有することができる。用いる配向制御剤としては、液晶性化合物が、基材に対して実質的に水平配向、実質的に垂直配向、実質的にハイブリッド配向するものが挙げられる。また、キラル化合物を添加した場合には実質的に平面配向するものが挙げられる。前述したように、界面活性剤によって、水平配向、平面配向が誘起される場合もあるが、各々の配向状態が誘起されるものであれば、特に限定はなく、公知慣用のものを使用することができる。
 そのような配向制御剤としては、例えば、光学異方体とした場合の空気界面のチルト角を効果的に減じる効果を持つ、下記一般式(8)で表される繰り返し単位を有する重量平均分子量が100以上1000000以下である化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000119
(式中、R11、R12、R13及びR14はそれぞれ独立的に水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、該炭化水素基中の水素原子は1つ以上のハロゲン原子で置換されていても良い。)
 また、フルオロアルキル基で変性された棒状液晶性化合物、円盤状液晶性化合物、分岐構造を有してもよい長鎖脂肪族アルキル基を含有した重合性化合物、等も挙げられる。
 光学異方体とした場合の空気界面のチルト角を効果的に増加させる効果を持つものとしては、硝酸セルロース、酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、複素芳香族環塩変性された棒状液晶性化合物、シアノ基、シアノアルキル基で変性された棒状液晶性化合物、等が挙げられる。
(連鎖移動剤)
 本発明に用いる重合性組成物は、重合体や光学異方体と基材との密着性をより向上させるため、連鎖移動剤を含有することができる。連鎖移動剤としては、芳香族炭化水素類、クロロホルム、四塩化炭素、四臭化炭素、ブロモトリクロロメタン等のハロゲン化炭化水素類、
 オクチルメルカプタン、n―ブチルメルカプタン、n―ペンチルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメル、n―ドデシルメルカプタン、t-テトラデシルメルカプタン、t―ドデシルメルカプタン等のメルカプタン化合物、ヘキサンジチオール、デカンジチオール、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジン等のチオール化合物、ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド等のスルフィド化合物、N,N-ジメチルアニリン、N,N-ジビニルアニリン、ペンタフェニルエタン、α-メチルスチレンダイマー、アクロレイン、アリルアルコール、ターピノーレン、α-テルピネン、γ-テルビネン、ジペンテン、等が挙げられるが、2,4-ジフェニル-4-メチル-1-ペンテン、チオール化合物がより好ましい。
 具体的には下記一般式(9-1)~(9-12)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
 式中、R95は炭素原子数2~18のアルキル基を表し、該アルキル基は直鎖であっても分岐鎖であっても良く、該アルキル基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよく、R96は炭素原子数2~18のアルキレン基を表し、該アルキレン基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよい。
 連鎖移動剤は、重合性化合物を有機溶剤に混合し加熱攪拌して重合性溶液を調製する工程において添加することが好ましいが、その後の、重合性溶液に重合開始剤を混合する工程において添加してもよいし、両方の工程において添加してもよい。
 連鎖移動剤の添加量は、重合性組成物に含まれる重合性化合物の総量に対して、0.5~10質量%であることが好ましく、1.0~5.0質量%であることがより好ましい。
 更に物性調整のため、重合性でない液晶化合物等も必要に応じて添加することも可能である。液晶性のない重合性化合物は、重合性化合物を有機溶剤に混合し加熱攪拌して重合性溶液を調製する工程において添加することが好ましいが、重合性でない液晶化合物等は、その後の、重合性溶液に重合開始剤を混合する工程において添加してもよいし、両方の工程において添加してもよい。これらの化合物の添加量は重合性組成物に対して、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更により好ましい。
(赤外線吸収剤)
 本発明に用いる重合性組成物は、必要に応じて赤外線吸収剤を含有することができる。用いる赤外線吸収剤は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。
 前記赤外線吸収剤としては、シアニン化合物、フタロシアニン化合物、ナフトキノン化合物、ジチオール化合物、ジインモニウム化合物、アゾ化合物、アルミニウム塩等が挙げられる。
 具体的には、ジインモニウム塩タイプの「NIR-IM1」、アルミニウム塩タイプの「NIR-AM1」(以上、ナガセケムテック株式会社製)、「カレンズIR-T」、「カレンズIR-13F」(以上、昭和電工株式会社製)、「YKR-2200」、「YKR-2100」(以上、山本化成株式会社製)、「IRA908」、「IRA931」、「IRA955」、「IRA1034」(以上、INDECO株式会社)等が挙げられる。
(帯電防止剤)
 本発明に用いる重合性組成物は、必要に応じて帯電防止剤を含有することができる。用いる帯電防止剤は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。
 そのような帯電防止剤としては、スルホン酸塩基またはリン酸塩基を分子内に少なくとも1種類以上有する高分子化合物、4級アンモニウム塩を有する化合物、重合性基を有する界面活性剤等が挙げられる。
 中でも重合性基を有する界面活性剤が好ましく、例えば、重合性基を有する界面活性剤の内、アニオン系のものとして、「アントックスSAD」、「アントックスMS-2N」(以上、日本乳化剤株式会社製)、「アクアロンKH-05」、「アクアロンKH-10」、「アクアロンKH-20」、「アクアロンKH-0530」、「アクアロンKH-1025」(以上、第一工業製薬株式会社製)、「アデカリアソープSR-10N」、「アデカリアソープSR-20N」(以上株式会社ADEKA製)、「ラテムルPD-104」(花王株式会社製)、等のアルキルエーテル系、「ラテムルS-120」、「ラテムルS-120A」、「ラテムルS-180P」、「ラテムルS-180A」(以上、花王株式会社製)、「エレミノールJS-2」(三洋化成株式会社製)、等のスルフォコハク酸エステル系、「アクアロンH-2855A」、「アクアロンH-3855B」、「アクアロンH-3855C」、「アクアロンH-3856」、「アクアロンHS-05」、「アクアロンHS-10」、「アクアロンHS-20」、「アクアロンHS-30」、「アクアロンHS-1025」、「アクアロンBC-05」、「アクアロンBC-10」、「アクアロンBC-20」、「アクアロンBC-1025」、「アクアロンBC-2020」(以上、第一工業製薬株式会社製)、「アデカリアソープSDX-222」、「アデカリアソープSDX-223」、「アデカリアソープSDX-232」、「アデカリアソープSDX-233」、「アデカリアソープSDX-259」、「アデカリアソープSE-10N」、「アデカリアソープSE-20N」(以上、株式会社ADEKA製)、等のアルキルフェニルエーテルあるいはアルキルフェニルエステル系、「アントックスMS-60」、「アントックスMS-2N」(以上、日本乳化剤株式会社製)、「エレミノールRS-30」(三洋化成株式会社製)、等の(メタ)アクリレート硫酸エステル系、「H-3330P」(第一工業製薬株式会社製)、「アデカリアソープPP-70」(株式会社ADEKA製)、等のリン酸エステル系が挙げられる。
 一方、重合性基を有する界面活性剤の内、ノニオン系のものとして、例えば、「アントックスLMA-20」、「アントックスLMA-27」、「アントックスEMH-20」、「アントックスLMH-20、「アントックスSMH-20」(以上、日本乳化剤株式会社製)、「アデカリアソープER-10」、「アデカリアソープER-20」、「アデカリアソープER-30」、「アデカリアソープER-40」(以上、株式会社ADEKA製)、「ラテムルPD-420」、「ラテムルPD-430」、「ラテムルPD-450」(以上、花王株式会社製)、等のアルキルエーテル系、「アクアロンRN-10」、「アクアロンRN-20」、「アクアロンRN-30」、「アクアロンRN-50」、「アクアロンRN-2025」(以上、第一工業製薬株式会社製)、「アデカリアソープNE-10」、「アデカリアソープNE-20」、「アデカリアソープNE-30」、「アデカリアソープNE-40」(以上、株式会社ADEKA製)、等のアルキルフェニルエーテル系もしくはアルキルフェニルエステル系、「RMA-564」、「RMA-568」、「RMA-1114」(以上、日本乳化剤株式会社製)等の(メタ)アクリレート硫酸エステル系が挙げられる。
 その他の帯電防止剤としては、例えば、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n-ブトキシポリエチレングリコール(メタ)アクリレート、n-ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n-ブトキシポリプロピレングリコール(メタ)アクリレート、n-ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレート等が挙げられる。
 前記帯電防止剤は、1種類のみで使用することも2種類以上組み合わせて使用することもできる。 前記帯電防止剤の添加量は、重合性組成物に含まれる重合性化合物の総量に対して、0.001~10重量%が好ましく、0.01~5重量%がより好ましい。
(色素)
 本発明に用いる重合性組成物は、必要に応じて色素を含有することができる。用いる色素は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。
 前記色素としては、例えば、2色性色素、蛍光色素等が挙げられる。そのような色素としては、例えば、ポリアゾ色素、アントラキノン色素、シアニン色素、フタロシアニン色素、ペリレン色素、ペリノン色素、スクアリリウム色素等が挙げられるが、添加する観点から、前記色素は液晶性を示す色素が好ましい。
 例えば、米国特許第2,400,877号公報、DreyerJ. F., Phys. and Colloid Chem., 1948, 52, 808., "The Fixing of MolecularOrientation"、Dreyer J. F., Journal de Physique, 1969, 4, 114., "LightPolarization from Films of Lyotropic Nematic Liquid Crystals"、及び、J.Lydon, "Chromonics" in "Handbook of Liquid Crystals Vol.2B: Low MolecularWeight Liquid Crystals II", D. Demus,J. Goodby, G. W. Gray, H. W. Spiessm,V. Vill ed, Willey-VCH, P.981-1007(1998) 、Dichroic Dyes for Liquid Crystal Display A.V.lvashchenko
CRC Press、1994年、および「機能性色素市場の新展開」、第一章、1頁、1994年、CMC株式会社発光、等に記載の色素を使用することができる。
 2色性色素としては、例えば、以下の式(d-1)~式(d-8)
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
が挙げられる。前記2色性色素等の色素の添加量は、重合性組成物に含まれる重合性化合物の総量の総量に対して、0.001~10重量%が好ましく、0.01~5重量%がより好ましい。
(フィラー)
 本発明に用いる重合性組成物は、必要に応じてフィラーを含有することができる。用いるフィラーは、特に限定はなく、得られた重合物の熱伝導性が低下しない範囲で公知慣用のものを含有することができる。
 前記フィラーとしては、例えば、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレイ、マイカ、チタン酸バリウム、酸化亜鉛、ガラス繊維等の無機質充填材、銀粉、銅粉などの金属粉末や窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化ガリウム、炭化ケイ素、マグネシア(酸化アルミニウム)、アルミナ(酸化アルミニウム)、結晶性シリカ(酸化ケイ素)、溶融シリカ(酸化ケイ素)等などの熱伝導性フィラー、銀ナノ粒子等が挙げられる。
(キラル化合物)
 本発明の重合性組成物には、キラルネマチック相を得ることを目的としてキラル化合物を含有してもよい。前記キラル化合物は、それ自体が液晶性を示す必要はなく、また、重合性基を有していても、有していなくてもよい。また、キラル化合物の螺旋の向きは、重合体の使用用途によって適宜選択することができる。
 重合性基を有しているキラル化合物としては、特に限定はなく、公知慣用のものが使用できるが、らせんねじれ力(HTP)の大きなキラル化合物が好ましい。また、重合性基は、ビニル基、ビニルオキシ基、アリル基、アリルオキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジル基、オキセタニル基が好ましく、アクリロイルオキシ基、グリシジル基、オキセタニル基が特に好ましい。
 キラル化合物の配合量は、化合物の螺旋誘起力によって適宜調整することが必要であるが、重合性基を有する液晶性化合物及びキラル化合物の総量に対して、0.5~80質量%含有することが好ましく、3~50質量%含有することがより好ましく、5~30質量%含有することが特に好ましい。
 キラル化合物の具体例として、下記一般式(10-1)~式(10-4)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000124
 上記式中、Sp5a、Sp5bはそれぞれ独立して、炭素原子数0~18のアルキレン基を表し、該アルキレン基は1つ以上のハロゲン原子、CN基、又は重合性官能基を有する炭素原子数1~8のアルキル基により置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
A1、A2、A3、A4、A5及びA6はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、n、l及びkはそれぞれ独立して、0又は1を表し、0≦n+l+k≦3となり、
m5は0又は1を表し、
Z0、Z1、Z2、Z3、Z4、Z5及びZ6はそれぞれ独立して、-COO-、-OCO-、-CH2 CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CONH-、-NHCO-、炭素数2~10のハロゲン原子を有してもよいアルキル基又は単結合を表し、
5a及びR5bは、水素原子、ハロゲン原子、シアノ基又は炭素原子数1~18のアルキル基を表すが、該アルキル基は1つ以上のハロゲン原子又はCNにより置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、あるいはR5a及びR5bは一般式(10-a)
Figure JPOXMLDOC01-appb-C000125
(式中、P5aは重合性官能基を表し、Sp5aはSpと同じ意味を表す。)
 P5aは、下記の式(P-1)から式(P-20)で表される重合性基から選ばれる置換基を表す。
Figure JPOXMLDOC01-appb-C000126
 上記キラル化合物のさらなる具体的例としては、下記一般式(10-5)~式(10-31)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
 上記式中、m、nはそれぞれ独立して1~10の整数を表し、Rは水素原子、炭素原子数1~10のアルキル基、又は、フッ素原子を表すが、Rが複数存在する場合は、それぞれ同一であっても、異なっていても良い。
 重合性基を有していないキラル化合物としては、具体的には、例えば、キラル基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール、キラル基として2-メチルブチル基を有するビーディーエイチ社製の「CB-15」、「C-15」、メルク社製の「S-1082」、チッソ社製の「CM-19」、「CM-20」、「CM」、キラル基として1-メチルヘプチル基を有するメルク社製の「S-811」、チッソ社製の「CM-21」、「CM-22」などが挙げられる。
 キラル化合物を添加する場合は、本発明の重合性組成物の重合体の用途によるが、得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1~100の範囲となる量を添加することが好ましく、0.1~20の範囲となる量がさらに好ましい。
(重合性基を有する非液晶性化合物)
 本発明の重合性組成物は、重合性基を有するが液晶化合物ではない化合物を添加することもできる。このような化合物としては、通常、この技術分野で重合性モノマーあるいは重合性オリゴマーとして認識されるものであれば特に制限なく使用することができる。添加する場合は、本発明の重合性組成物に用いる重合性化合物の合計量に対して、15質量%以下であることが好ましく、10質量%以下が更に好ましい。
 具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、プロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニルオキシルエチル(メタ)アクリレート、イソボルニルオキシルエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジメチルアダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシジエチレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシエチル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、o-フェニルフェノールエトキシ(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル(メタ)アクリレート、1H,1H-ペンタデカフルオロオクチル(メタ)アクリレート、1H,1H,2H,2H-トリデカフルオロオクチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、グリシジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルりん酸、アクリロイルモルホリン、ジメチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、イロプロピルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等のモノ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクロイルオキシプロピルメタクリレート、1,6-ヘキサンジオールジグリシジルエーテルのアクリル酸付加物、1,4-ブタンジオールジグリシジルエーテルのアクリル酸付加物、等のジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-アクリロイルオキシエチル)イソシアヌレート、等のトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、等のテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、オリゴマー型の(メタ)アクリレート、各種ウレタンアクリレート、各種マクロモノマー、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、等のエポキシ化合物、マレイミド等が挙げられる。これらは単独で使用することもできるし、2種類以上混合して使用することもできる。
(その他の液晶性化合物)
 本発明に用いる重合性組成物は、一般式(1)から一般式(7)の液晶性化合物以外にも、重合性基を1つ以上有する液晶性化合物を含有することができる。しかし、添加量が多すぎると、位相差板として用いた場合に位相差比が大きくなる恐れがあり、添加する場合は、本発明の重合性組成物に用いる重合性化合物の合計量に対して30質量%以下とすることが好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。
 そのような液晶化合物として、一般式(1-b)から一般式(7-b)の液晶化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000133
(式中、P11~P74は重合性基を表し、S11~S72はスペーサー基を又は単結合を表すが、S11~S72が複数存在する場合それらは各々同一であっても異なっていても良く、X11~X72は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、X11~X72が複数存在する場合それらは各々同一であっても異なっていても良く(ただし、各P-(S-X)-結合には-O-O-を含まない。)、MG11~MG71は各々独立して式(b)を表し、
Figure JPOXMLDOC01-appb-C000134
(式中、A83、A84は各々独立して1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良いが、A83及び/又はA84が複数現れる場合は各々同一であっても異なっていても良く、
83及びZ84は各々独立して-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Z83及び/又はZ84が複数現れる場合は各々同一であっても異なっていても良く、
81は1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、ナフチレン-1,4-ジイル基、ナフチレン-1,5-ジイル基、ナフチレン-1,6-ジイル基、ナフチレン-2,6-ジイル基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基から選ばれる基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良く、
はフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-から選択される基によって置換されても良いが、化合物内にLが複数存在する場合それらは同一であっても異なっていても良く、mは0から8の整数を表し、j83及びj84は各々独立して0から5の整数を表すが、j83+j84は1から5の整数を表す。)、R11及びR31は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、m11は0~8の整数を表し、m2~m7、n2~n7、l4~l6、k6は各々独立して0から5の整数を表す。但し、一般式(1)から一般式(7)を除く。)
 一般式(1-b)で表される化合物として具体的には、下記の式(1-b-1)から式(1-b-39)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
(式中、m11、n11はそれぞれ独立して1~10の整数を表し、R111及びR112は、それぞれ独立して水素原子、炭素原子数1~10のアルキル基、又は、フッ素原子を表し、R113は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良い。)これらの液晶化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(2-b)で表される化合物として具体的には、下記の式(2-b-1)から式(2-b-33)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
(式中、m及びnはそれぞれ独立して1~18の整数を表し、Rは水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。)これらの液晶化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(3-b)で表される化合物として具体的には、下記の式(3-b-1)から式(3-b-16)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(4-b)で表される化合物として具体的には、下記の式(4-b-1)から式(4-b-29)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
(式中、m及びnはそれぞれ独立して1~10の整数を表す。Rは水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(5-b)で表される化合物として具体的には、下記の式(5-b-1)から式(5-b-26)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
(式中、nはそれぞれ独立して1~10の整数を表す。Rは水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(6-b)で表される化合物として具体的には、下記の式(6-b-1)から式(6-b-23)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
(式中、k、l、m及びnはそれぞれ独立して1~10の整数を表す。Rは水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
 一般式(7-b)で表される化合物として具体的には、下記の式(7-b-1)から式(7-b-25)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
(式中、Rは水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。)これらの液晶性化合物は、単独で使用することもできるし、2種類以上混合して使用することもできる。
(配向材料)
 本発明の重合性組成物は、配向性を向上させるために配向性が向上する配向材料を含有することができる。用いる配向材料は、本発明の重合性組成物に用いられる、重合性基を有する液晶性化合物を溶解させることができる溶剤に可溶であれば、公知慣用のものでよいが、添加することにより配向性を著しく劣化させない範囲で添加することができる。具体的には、重合性液晶組成物に含まれる重合性液晶性化合物の総量に対して0.05~30重量%が好ましく、0.5~15重量%がさらに好ましく、1~10重量%が特に好ましい。
 配向材料は具体的には、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等、光異性化、もしくは、光二量化する化合物が挙げられるが、紫外線照射、可視光照射により配向する材料(光配向材料)が好ましい。
 光配向材料としては、例えば、環状シクロアルカンを有するポリイミド、全芳香族ポリアリレート、特開5-232473号公報に示されているようなポリビニルシンナメート、パラメトキシ桂皮酸のポリビニルエステル、特開平6-287453、特開平6-289374号公報に示されているようなシンナメート誘導体、特開2002-265541号公報に示されているようなマレイミド誘導体等が挙げられる。具体的には、以下の式(12-1)~式(12-7)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000168
(式中、Rは水素原子、ハロゲン原子、炭素原子数1~3のアルキル基、アルコキシ基、ニトロ基、R‘は水素原子、炭素原子数1~10のアルキル基を示すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、末端のCHは、CF、CCl、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基に置換されても良い。nは4~100000を示し、mは1~10の整数を示す。)
(重合体)
 本発明の重合性組成物に開始剤を含有した状態で重合させることにより、本発明の重合体が得られる。本発明の重合体は、光学異方体、位相差フィルム、レンズ、着色剤、印刷物等に利用される。
(光学異方体の製造方法)
(光学異方体)
 本発明の重合性組成物を、基材、あるいは、配向機能を有する基材上に塗布し、本発明の重合性液晶組成物中の液晶分子を、ネマチック相やスメクチック相を保持した状態で均一に配向させ、重合させることによって、本発明の光学異方体が得られる。
(基材)
 本発明の光学異方体に用いられる基材は、液晶表示素子、有機発光表示素子、その他表示素子、光学部品、着色剤、マーキング、印刷物や光学フィルムに通常使用する基材であって、本発明の重合性組成物溶液の塗布後の乾燥時における加熱に耐えうる耐熱性を有する材料であれば、特に制限はない。そのような基材としては、ガラス基材、金属基材、セラミックス基材、プラスチック基材や紙等の有機材料が挙げられる。特に基材が有機材料の場合、セルロース誘導体、ポリオレフィン、ポリエステル、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアリレート、ポリエーテルサルホン、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ナイロン又はポリスチレン等が挙げられる。中でもポリエステル、ポリスチレン、ポリオレフィン、セルロース誘導体、ポリアリレート、ポリカーボネート等のプラスチック基材が好ましい。基材の形状としては、平板の他、曲面を有するものであっても良い。これらの基材は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。
 本発明の重合性組成物の塗布性や重合体との接着性向上のために、これらの基材の表面処理を行っても良い。表面処理として、オゾン処理、プラズマ処理、コロナ処理、シランカップリング処理などが挙げられる。また、光の透過率や反射率を調節するために、基材表面に有機薄膜、無機酸化物薄膜や金属薄膜等を蒸着など方法によって設ける、あるいは、光学的な付加価値をつけるために、基材がピックアップレンズ、ロッドレンズ、光ディスク、位相差フィルム、光拡散フィルム、カラーフィルター、等であっても良い。中でも付加価値がより高くなるピックアップレンズ、位相差フィルム、光拡散フィルム、カラーフィルターは好ましい。
(配向処理)
 また、上記基材には、本発明の重合性組成物を塗布乾燥した際に重合性組成物が配向するように、通常配向処理が施されている、あるいは配向膜が設けられていても良い。配向処理としては、延伸処理、ラビング処理、偏光紫外可視光照射処理、イオンビーム処理、基材へのSiOの斜方蒸着処理、等が挙げられる。配向膜を用いる場合、配向膜は公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリシロキサン、ポリアミド、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルホン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、アゾ化合物、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等の化合物、もしくは、前記化合物の重合体や共重合体が挙げられる。ラビングにより配向処理する化合物は、配向処理、もしくは配向処理の後に加熱工程を入れることで材料の結晶化が促進されるものが好ましい。ラビング以外の配向処理を行う化合物の中では光配向材料を用いることが好ましい。
 一般に、配向機能を有する基板に液晶組成物を接触させた場合、液晶分子は基板付近で基板を配向処理した方向に沿って配向する。液晶分子が基板と水平に配向するか、傾斜あるいは垂直して配向するかは、基板への配向処理方法による影響が大きい。例えば、インプレーンスイッチング(IPS)方式の液晶表示素子に使用するようなプレチルト角のごく小さな配向膜を基板上に設ければ、ほぼ水平に配向した重合性液晶層が得られる。
 また、TN型液晶表示素子に使用するような配向膜を基板上に設けた場合は、少しだけ配向が傾斜した重合性液晶層が得られ、STN方式の液晶表示素子に使用するような配向膜を使うと、大きく配向が傾斜した重合性液晶層が得られる。
(塗布)
 本発明の光学異方体を得るための塗布法としては、アプリケーター法、バーコーティング法、スピンコーティング法、ロールコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、フレキソコーティング法、インクジェット法、ダイコーティング法、キャップコーティング法、ディップコーティング法、スリットコーティング法、スプレーコーティング法等、公知慣用の方法を行うことができる。重合性組成物を塗布後、乾燥させる。
 塗布後、本発明の重合性組成物中の液晶分子をスメクチック相、あるいはネマチック相を保持した状態で均一に配向させることが好ましい。その方法の1つとして熱処理法が挙げられる。具体的には、本発明の重合性組成物を基板上に塗布後、該液晶組成物のN(ネマチック相)-I(等方性液体相)転移温度(以下、N-I転移温度と略す)以上に加熱して、該液晶組成物を等方相液体状態にする。そこから、必要に応じ徐冷してネマチック相を発現させる。このとき、一旦液晶相を呈する温度に保ち、液晶相ドメインを充分に成長させてモノドメインとすることが望ましい。あるいは、本発明の重合性組成物を基板上に塗布後、本発明の重合性組成物のネマチック相が発現する温度範囲内で温度を一定時間保つような加熱処理を施しても良い。
 加熱温度が高過ぎると重合性液晶化合物が好ましくない重合反応を起こして劣化するおそれがある。また、冷却しすぎると、重合性組成物が相分離を起こし、結晶の析出、スメクチック相のような高次液晶相を発現し、配向処理が不可能になることがある。
 このような熱処理をすることで、単に塗布するだけの塗工方法と比べて、配向欠陥の少ない均質な光学異方体を作製することができる。
 また、このようにして均質な配向処理を行った後、液晶相が相分離を起こさない最低の温度、即ち過冷却状態となるまで冷却し、該温度において液晶相を配向させた状態で重合すると、より配向秩序が高く、透明性に優れる光学異方体を得ることができる。
(重合工程)
 乾燥した重合性組成物の重合処理は、一様に配向した状態で一般に可視紫外線等の光照射、あるいは加熱によって行われる。重合を光照射で行う場合は、具体的には420nm以下の可視紫外光を照射することが好ましく、250~370nmの波長の紫外光を照射することが最も好ましい。但し、420nm以下の可視紫外光により重合性組成物が分解などを引き起こす場合は、420nm以上の可視紫外光で重合処理を行ったほうが好ましい場合もある。
(重合方法)
 本発明の重合性組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。照射時の温度は、本発明の重合性組成物が液晶相を保持できる温度とし、重合性組成物の熱重合の誘起を避けるため、可能な限り30℃以下とすることが好ましい。尚、重合性液晶組成物は、通常、昇温過程において、C(固相)-N(ネマチック)転移温度(以下、C-N転移温度と略す。)から、N-I転移温度範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C-N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。紫外線照射強度は、0.05kW/m~10kW/mの範囲が好ましい。特に、0.2kW/m~2kW/mの範囲が好ましい。紫外線強度が0.05kW/m未満の場合、重合を完了させるのに多大な時間がかかる。一方、2kW/mを超える強度では、重合性組成物中の液晶分子が光分解する傾向にあることや、重合熱が多く発生して重合中の温度が上昇し、重合性液晶のオーダーパラメーターが変化して、重合後のフィルムのリタデーションに狂いが生じる可能性がある。
 マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。
 また、マスクを使用して特定の部分のみを紫外線照射で重合させる際に、予め未重合状態の重合性液晶組成物に電場、磁場又は温度等をかけて配向を規制し、その状態を保ったままマスク上から光を照射して重合させることによっても、異なる配向方向をもった複数の領域を有する光学異方体を得ることができる。
 本発明の重合性液晶組成物を重合させて得られる光学異方体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。特に、他の部材を汚染し難いので、被積層基板として使用したり、他の基板に貼り合わせて使用したりするときに有用である。
(位相差フィルム)
 本発明の位相差フィルムは、前記光学異方体を含有しており、液晶性化合物が基材に対して一様に連続的な配向状態を形成して、基材に対して面内、面外、面内と面外の両方、あるいは面内において2軸性を有していればよい。また、接着剤や接着層、粘着剤や粘着層、保護フィルムや偏光フィルム等が積層されていてもよい。
 そのような位相差フィルムとしては、例えば、基材に対して棒状液晶性化合物が実質的に水平配向したポジティブAプレート、基材に対して円盤状液晶性化合物が垂直に一軸配向したネガティブAプレート、基材に対して棒状液晶性化合物が実質的に垂直に配向したポジティブCプレート、基材に対して棒状液晶性化合物がコレステリック配向、あるいは、円盤状液晶性化合物が水平に一軸配向したネガティブCプレート、二軸性プレート、基材に対して棒状液晶性化合物がハイブリッド配向したポジティブOプレート、基材に対して円盤状液晶性化合物がハイブリッド配向したネガティブOプレートの配向モードを適用できる。液晶表示素子に用いた場合は、視野角依存性を改善するものであれば、特に限定なく様々な配向モードが適用できる。
 例えば、ポジティブAプレート、ネガティブAプレート、ポジティブCプレート、ネガティブCプレート、二軸性プレート、ポジティブOプレート、ネガティブOプレートの配向モードを適用できる。その中でも、ポジティブAプレート及びネガティブCプレートを使用することが好ましい。更に、ポジティブAプレート及びネガティブCプレートを積層することがより好ましい。
 ここで、ポジティブAプレートとは、重合性液晶組成物をホモジニアス配向させた、光学異方体を意味する。また、ネガティブCプレートとは、重合性液晶組成物をコレステリック配向させた、光学異方体を意味する。
 位相差フィルムを利用した液晶セルでは、偏光軸直交性の視野角依存を補償して視野角を広げるため、第1の位相差層として、ポジティブAプレートを使用することが好ましい。ここで、ポジティブAプレートは、フィルムの面内遅相軸方向の屈折率をnx、フィルムの面内進相軸方向の屈折率をny、フィルムの厚み方向の屈折率をnzとしたときに、「nx>ny=nz」の関係となる。ポジティブAプレートとしては、波長550nmにおける面内位相差値が30~500nmの範囲にあるものが好ましい。また、厚み方向位相差値は特に限定されない。Nz係数は、0.9~1.1の範囲が好ましい。
 また、液晶分子自体の複屈折を打ち消すために、第2の位相差層としては負の屈折率異方性を有する、いわゆるネガティブCプレートを使用することが好ましい。また、ポジティブAプレート上にネガティブCプレートを積層してもよい。
 ここで、ネガティブCプレートは、位相差層の面内遅相軸方向の屈折率をnx、位相差層の面内進相軸方向の屈折率をny、位相差層の厚み方向の屈折率をnzとしたときに、「nx=ny>nz」の関係となる位相差層である。ネガティブCプレートの厚み方向位相差値は20~400nmの範囲が好ましい。
 なお、厚み方向の屈折率異方性は、下記式(2)により定義される厚み方向位相差値Rthで表される。厚み方向位相差値Rthは、面内位相差値R、遅相軸を傾斜軸として50°傾斜して測定した位相差値R50、フィルムの厚みd、フィルムの平均屈折率nを用いて、式(1)と次式(4)~(7)から数値計算によりnx、ny、nzを求め、これらを式(2)に代入して算出することができる。また、Nz係数=は、式(3)から算出することができる。以下、本明細書の他の記載において同様である。
 R=(nx-ny)×d         (1)
 Rth=[(nx+ny)/2-nz]×d  (2)
 Nz係数=(nx-nz)/(nx-ny)  (3)
 R50=(nx-ny’)×d/cos(φ)          (4)
 (nx+ny+nz)/3=n0               (5)
ここで、
 φ=sin-1[sin(50°)/n]           (6)
 ny’=ny×nz/[ny×sin(φ)+nz×cos(φ)]1/2 (7)
 市販の位相差測定装置では、ここに示した数値計算を装置内で自動的に行い、面内位相差値Rや厚み方向位相差値Rthなどを自動的に表示するようになっているものが多い。このような測定装置としては、例えば、RETS-100(大塚化学(株)製)を挙げることができる。
(レンズ)
 本発明の重合性組成物を、基材、あるいは、配向機能を有する基材上に塗布し、もしくは、レンズ形状の金型に注入し、ネマチック相やスメクチック相を保持した状態で均一に配向させ、重合させることによって、本発明のレンズに使用することができる。レンズの形状は単純セル型、プリズム型、レンチキュラー型、等が挙げられる。
(液晶表示素子)
 本発明の重合性組成物を、基材、あるいは、配向機能を有する基材上に塗布し、ネマチック相やスメクチック相を保持した状態で均一に配向させ、重合させることにより、本発明の液晶表示素子に使用することができる。使用形態としては、光学補償フィルム、液晶立体表示素子のパターン化された位相差フィルム、カラーフィルターの位相差補正層、オーバーコート層、液晶媒体用の配向膜、等が挙げられる。液晶表示素子は、少なくとも二つの基材に液晶媒体層、TFT駆動回路、ブラックマトリックス層、カラーフィルター層、スペーサー、液晶媒体層に相応の電極回路が最低限狭持されており、通常、光学補償層、偏光板層、タッチパネル層は二つの基材の外側に配置されるが、場合によっては、光学補償層、オーバーコート層、偏光板層、タッチパネル用の電極層が二つの基材内に狭持されてもよい。
 液晶表示素子の配向モードとしては、TNモード、VAモード、IPSモード、FFSモード、OCBモード等があるが、光学補償フィルムや光学補償層で用いられる場合には、配向モードに相応する位相差を有するフィルムを作成することができる。パターン化された位相差フィルムで使用される場合には、重合性組成物中の液晶性化合物が基材に対して実質的に水平配向であればよい。オーバーコート層で用いられる場合には、1分子中の重合性基がより多い液晶性化合物を熱重合させればよい。液晶媒体用の配向膜で用いられる場合には、配向材料と重合性基を有する液晶性化合物を混合した重合性組成物を使用することが好ましい。また、液晶媒体中にも混合することが可能であり、液晶媒体と液晶性化合物との比率により、応答速度やコントラスト等、各種の特性を向上させる効果がある。
(有機発光表示素子)
 本発明の重合性組成物を、基材、あるいは、配向機能を有する基材に塗布し、ネマチック相やスメクチック相を保持した状態で均一に配向させ、重合させることにより、本発明の有機発光表示素子に使用することができる。使用形態としては、前記重合により得られた位相差フィルムと偏光板と組み合わせることにより、有機発光表示素子の反射防止フィルムとして使用することができる。反射防止フィルムとして使用する場合、偏光板の偏光軸と位相差フィルムの遅相軸のなす角度は45°程度が好ましい。偏光板と前記位相差フィルムは、接着剤や粘着剤等で貼り合わせてもよい。また、偏光板上にラビング処理や光配向膜を積層した配向処理等により、直接積層してもよい。このとき使用する偏光板は、色素をドープしたフィルム形態のものでも、ワイヤーグリッドのような金属状のものでもよい。
(照明素子)
 本発明の重合性組成物を、ネマチック相やスメクチック相、あるいは、配向機能を有する基材上に配向させた状態で重合させた重合体は照明素子、特に発光ダイオード素子の放熱材料として使用することもできる。放熱材料の形態としては、プリプレグ、重合体シート、接着剤、金属箔付きシート、等が好ましい。
(光学部品)
 本発明の重合性組成物を、ネマチック相やスメクチック相を保持した状態、あるいは、配向材料と組み合わせた状態で重合させることにより、本発明の光学部品として使用することができる。
(着色剤)
 本発明の重合性組成物は、染料や有機顔料等の着色剤を添加して、着色剤として使用することもできる。
(偏光フィルム)
 本発明の重合性組成物は、2色性色素、リオトロピック液晶やクロモニック液晶等と組み合わせる、あるいは添加して、偏光フィルムとして使用することもできる。
以下に本発明を実施例、及び、比較例によって説明するが、もとより本発明はこれらに限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
(実施例1)
 式(1-a-2)で表される化合物25部、式(1-a-6)で表される化合物50部、式(2-a-1)で表され、n=6である化合物25部、及び式(I-1)で表される化合物0.1部をメチルエチルケトン(MEK)300部及びシクロペンタノン(CPN)100部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、式(E-1)で表される化合物3部、及びメガファックF-554(F-554:DIC株式会社製)0.2部を加えてさらに撹拌を行い、溶液を得た。溶液は透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、実施例1の重合性組成物(1)を得た。
(実施例2~59、比較例1~3)
 下記表に示す各化合物をそれぞれ下記表に示す割合に変更した以外は実施例1の重合性組成物(1)の調整と同一条件で、実施例2~59の重合性組成物(2)~(59)及び比較例1~3の重合性組成物(C1)~(C3)を得た。
 下記表1~7に、本発明の実施例1~59の重合性組成物(1)~(59)、比較例1~3の重合性組成物(C1)~(C3)の具体的な組成を示す。
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000175
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
メチルエチルケトン(MEK)
シクロペンタノン(CPN)
メチルイソブチルケトン(MIBK)
Figure JPOXMLDOC01-appb-C000183
イルガキュア784(H-1)
p-メトキシフェノール(I-1)
ハイドロキノン(I-2)
メチルハイドロキノン(I-3)
ターシャリーブチルハイドロキノン(I-4)
ターシャリーブチルカテコール(I-5)
フェノチアジン(I-6)
 上記の各式で表わされる化合物のRe(450nm)/Re(550nm)の値を下記表に示す。
Figure JPOXMLDOC01-appb-T000184
(溶解性評価)
 実施例1~59、比較例1~3の溶解性は以下のようにして評価した。
○:調整後、透明で均一な状態が目視で確認できる。
△:加温、拡販したときには透明で均一な状態が目視で確認できるが、室温に戻したときに化合物の析出が確認される。
×:加温、撹拌しても化合物が均一溶解できない。
(保存安定性評価1)
 実施例1~59、比較例1~3を室温で1週間静置した後の状態を目視で観察した。なお、保存安定性は以下のようにして評価した。
○:室温で3日放置後も透明で均一な状態が保持される。
△:室温で1日放置後も透明で均一な状態が保持される。
×:室温で1時間放置後に化合物の析出が確認される。
(保存安定性評価2)
 実施例1~59、比較例1~3を40℃で1ヶ月静置した後の重合性組成物中の重合成分量(重量平均分子量Mw:7000以上)をGPC(:島津製)を用いて測定、面積比により算出した。なお、保存安定性は以下のようにして評価した。
○:重合成分量が0.1%以下である。
△:重合成分量が0.1以上0.2%未満である。
×:重合成分量が0.2%以上である。
 得られた結果を下表に示す。
Figure JPOXMLDOC01-appb-T000185
Figure JPOXMLDOC01-appb-T000186
(実施例60)
 厚さ40μmの無延伸シクロオレフィンポリマーフィルム「ゼオノア」(日本ゼオン株式会社製)を市販のラビング装置を用いてラビング処理した後、本発明の重合性組成物(1)をバーコート法で塗布し、80℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、UVコンベア装置(GSユアサ株式会社製)を用いてコンベア速度6m/minで紫外線を照射して、実施例60のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を以下の基準に従って行った。
(配向性評価)
◎:目視で欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くない。
○:目視では欠陥がないが、偏光顕微鏡観察で一部に無配向部分が存在している。
△:目視では欠陥がないが、偏光顕微鏡観察で全体的に無配向部分が存在している。
×:目視で一部欠陥が生じており、偏光顕微鏡観察でも全体的に無配向部分が存在している。
(位相差比)
上記で作成した光学異方体のリタデーション(位相差)を位相差フィルム・光学材料検査装置RETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は121nmであった。また、波長450nmにおける面内位相差(Re(450))とRe(550)の比Re(450)/Re(550)は0.803であり、均一性良好な位相差フィルムが得られた。
(塗布ムラ評価)
 上記で作成した光学異方体の塗布ムラをクロスニコル下で目視にて観察した。
◎:塗膜にムラが全く観察されない。
○:塗膜にムラが極僅かに観察される。
△:塗膜にムラが少し観察される。
×:塗膜にムラがハッキリと観察される。
(耐久性評価)
 上記で作成した光学異方体を80℃で500時間静置し、耐久性試験後のサンプルを得た。波長550nmにおける位相差を大塚電子製のRETS-100にて測定し、加熱前の位相差を100%とした場合の加熱後の位相差変化率を算出、評価した。
○:3%未満の低下がみられる。
△:3%以上~7%未満の低下がみられる。
×:7%以上の低下がみられる。
(実施61~90、比較例5~6)
 用いる重合性組成物をそれぞれ、本発明の重合性組成物(2)~(31)、比較用重合性組成物(C1)~(C2)に変更した以外は、実施例60と同一条件にて、実施例61~90、及び比較例5~6のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000187
(実施例91)
 厚さ50μmの一軸延伸PETフィルムを市販のラビング装置を用いてラビング処理した後、本発明の重合性組成物(32)をバーコート法で塗布し、80℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、UVコンベア装置(GSユアサ株式会社製)を用いてコンベア速度6m/minで紫外線を照射して、実施例91のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。
(実施例92~102、比較例7)
 用いる重合性組成物をそれぞれ、本発明の重合性組成物(33)~(43)、比較用重合性組成物(C3)に変更した以外は、実施例91と同一条件にて、実施例92~102、及び比較例7のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000188
(実施例103)
 配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。
 ラビングした基材に本発明の重合性組成物(44)をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例103のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。
(実施例104~116)
 用いる重合性組成物をそれぞれ、本発明の重合性組成物(45)~(57)に変更した以外は、実施例103と同一条件にて、実施例104~116のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000189
(実施例117)
 下記式(12-4)で表される光配向材料5部をシクロペンタノン95部に溶解させ、溶液を得た。得られた溶液を0.45μmのメンブランフィルターでろ過し、光配向溶液(1)を得た。次に厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、80℃で2分乾燥した後、直ぐに313nmの直線偏光を10mW/cmの強度で20秒間照射して光配向膜(1)得た。得られた光配向膜上に重合性組成物(58)をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例117のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。配向性評価の結果、目視では欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くなかった。また、得られた光学異方体のリタデーションをRETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は125nmであり、均一性良好な位相差フィルムが得られた。
(実施例118)
 下記式(12-9)で表される光配向材料5部をN-メチル-2-ピロリドン95部に溶解させ、得られた溶液を0.45μmのメンブランフィルターでろ過し、光配向溶液(2)を得た。次に厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で5分乾燥した後、さらに130℃で10分乾燥した後、直ぐに313nmの直線偏光を10mW/cmの強度で1分間照射して光配向膜(2)得た。得られた光配向膜上に重合性組成物(58)をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例118のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。配向性評価の結果、目視では欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くなかった。また、得られた光学異方体のリタデーションをRETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は120nmであり、均一性良好な位相差フィルムが得られた。
Figure JPOXMLDOC01-appb-C000190
(実施例119)
 上記式(12-8)で表される光配向材料(重量平均分子量:1万)1部を(2-エトキシエトキシ)エタノール50部、2-ブトキシエタノール49部に溶解させ、得られた溶液を0.45μmのメンブランフィルターでろ過し、光配向溶液(3)を得た。次に厚さ80μmのポリメタクリル酸メチル(PMMA)フィルムにバーコート法を用いて塗布し、80℃で2分乾燥した後、365nmの直線偏光を10mW/cmの強度で50秒間照射して光配向膜(3)得た。得られた光配向膜上に重合性組成物(58)をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例119のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。配向性評価の結果、目視では欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くなかった。また、得られた光学異方体のリタデーションをRETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は137nmであり、均一性良好な位相差フィルムが得られた。
(実施例120)
 厚さ180μmのPETフィルムを市販のラビング装置を用いてラビング処理した後、本発明の重合性組成物(59)をバーコート法で塗布し、80℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、ランプ出力2kWのUVコンベア装置(GSユアサ株式会社製)を用いてコンベア速度5m/minで紫外線を照射して、実施例120のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。
 得られた光学異方体の位相差Re(550)は137nm、波長450nmにおける面内位相差(Re(450))とRe(550)の比Re(450)/Re(550)は0.871であり、均一性良好な位相差フィルムが得られた。得られた光学異方体の塗布ムラをクロスニコル下で目視にて観察したところ、塗膜にムラは全く観察されなかった。
 次に平均重合度約2400、ケン化度99.9モル%以上で厚さ75μmのポリビニルアルコールフィルムを、乾式で約5.5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に60秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で20秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥して、ポリビニルアルコール樹脂にヨウ素が吸着配向された偏光膜を得た。
 このようにして得られた偏光子の両面に、カルボキシル基変性ポリビニルアルコール〔クラレ株式会社製 クラレポバールKL318〕3部と、水溶性ポリアミドエポキシ樹脂〔住化ケムテックス株式会社製 スミレーズレジン650(固形分濃度30%の水溶液)〕1.5部から作製したポリビニルアルコール系接着剤を介して、ケン化処理を施したトリアセチルセルロースフィルム〔コニカミノルタオプト株式会社製 KC8UX2MW〕で両面を保護して偏光フィルムを作製した。
 得られた偏光フィルムの偏光軸と位相差フィルムの遅相軸との角度が45°になるように接着剤を介して貼りあわせ、本発明の反射防止フィルムを得た。さらに得られた反射防止フィルムと有機発光素子の代替として使用したアルミ板とを接着剤を介して貼りあわせ、アルミ板からくる反射視認性を正面、及び斜め45°から目視で確認したところ、アルミ板由来の移りこみは観察されなかった。
Figure JPOXMLDOC01-appb-T000191
(実施例121~164)
 下記表に示す各化合物をそれぞれ下記表に示す割合に変更した以外は実施例1の重合性組成物(1)の調整と同一条件で、実施例121~165の重合性組成物(60)~(103)を得た。下記表に、本発明の重合性組成物(60)~(103)の具体的な組成を示す。
Figure JPOXMLDOC01-appb-T000192
Figure JPOXMLDOC01-appb-T000193
Figure JPOXMLDOC01-appb-T000194
Figure JPOXMLDOC01-appb-T000195
Figure JPOXMLDOC01-appb-T000196
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-T000198
Figure JPOXMLDOC01-appb-T000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
イルガノックス1076(I-1076)
トリメチロールプロパントリス(3-メルカプトプロピオネート)(TMMP)
 上記の各式で表わされる化合物のRe(450nm)/Re(550nm)の値を下記表に示す。
Figure JPOXMLDOC01-appb-T000206
(溶解性評価)
 実施例121~164の溶解性は以下のようにして評価した。
○:調整後、透明で均一な状態が目視で確認できる。
△:加温、拡販したときには透明で均一な状態が目視で確認できるが、室温に戻したときに化合物の析出が確認される。
×:加温、撹拌しても化合物が均一溶解できない。
(保存安定性評価1)
 実施例121~164を室温で1週間静置した後の状態を目視で観察した。なお、保存安定性は以下のようにして評価した。
○:室温で3日放置後も透明で均一な状態が保持される。
△:室温で1日放置後も透明で均一な状態が保持される。
×:室温で1時間放置後に化合物の析出が確認される。
(保存安定性評価2)
 実施例121~164を40℃で1ヶ月静置した後の重合性組成物中の重合成分量(重量平均分子量Mw:7000以上)をGPC(:島津製)を用いて測定、面積比により算出した。なお、保存安定性は以下のようにして評価した。
○:重合成分量が0.1%以下である。
△:重合成分量が0.1以上0.2%未満である。
×:重合成分量が0.2%以上である。
 得られた結果を下表に示す。
Figure JPOXMLDOC01-appb-T000207
Figure JPOXMLDOC01-appb-T000208
(実施例165~196)
 用いる重合性組成物をそれぞれ、本発明の重合性組成物(60)~(91)に変更した以外は、実施例91と同一条件にて、実施例165~196のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価及び耐久性評価を、実施例91と同様に行った。得られた結果を下表に示す。
Figure JPOXMLDOC01-appb-T000209
(実施例197~201)
 COPフィルム基材上にシランカップリング系垂直配向膜を積層したフィルムに、本発明の重合性組成物(92)~(96)をバーコート法で塗布し、90℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、UVコンベア装置(GSユアサ株式会社製)を用いてコンベア速度6m/minで紫外線を照射して、実施例197~201のポジティブCプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価及び耐久性評価を、実施例91と同様に行った。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000210
(実施例202~204)
 厚さ50μmの一軸延伸PETフィルムを市販のラビング装置を用いてラビング処理した後、本発明の重合性組成物(97)~(99)をバーコート法で塗布し、90℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、UVコンベア装置(GSユアサ株式会社製)を用いてコンベア速度6m/minで紫外線を照射して、実施例202~204のポジティブOプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価及び耐久性評価を、実施例89と同様に行った。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000211
(実施例161)
 式(1-a-5)で表される化合物20部、式(1-a-6)で表される化合物50部、式(2-a-1)で表され、n=6である化合物10部、式(2-a-1)で表され、n=3である化合物10部、式(2-b-1)で表され、m=n=3である化合物10部、式(d-7)で表される化合物6部をシクロペンタノン400部に加えた後、60℃に加温、撹拌して分散溶解させ、分散溶解が確認された後、室温に戻し、式(b-1-1)で表される化合物3部、式(b-1-10)で表される化合物3部、メガファックF-554(DIC株式会社製)0.15部、p-メトキシフェノール0.1部、イルガノックス1076(BASFジャパン株式会社製)0.1部、トリメチロールプロパン トリス(3-メルカプトプロピオネート)TMMP(SC有機化学株式会社製)2部を加えて、さらに撹拌を行い、溶液を得た。溶液は、均一であった。得られた溶液を0.5μmのメンブランフィルターでろ過し、本発明の重合性組成物(100)を得た。
(実施例162~164)
 下記表に示す各化合物をそれぞれ下記表に示す割合に変更した以外は実施例161の重合性組成物(100)の調整と同一条件で、実施例162~164の重合性組成物(101)~(103)を得た。下記表に、本発明の重合性組成物(100)~(103)の具体的な組成を示す。
Figure JPOXMLDOC01-appb-T000212
Figure JPOXMLDOC01-appb-C000213
イルガノックス1076(I-1076)
トリメチロールプロパントリス(3-メルカプトプロピオネート)(TMMP)
(溶解性評価)
 実施例161~164の溶解性は以下のようにして評価した。
○:調整後、透明で均一な状態が目視で確認できる。
△:加温、拡販したときには透明で均一な状態が目視で確認できるが、室温に戻したときに化合物の析出が確認される。
×:加温、撹拌しても化合物が均一溶解できない。
(保存安定性評価1)
 実施例161~164を室温で1週間静置した後の状態を目視で観察した。なお、保存安定性は以下のようにして評価した。
○:室温で3日放置後も透明で均一な状態が保持される。
△:室温で1日放置後も透明で均一な状態が保持される。
×:室温で1時間放置後に化合物の析出が確認される。
(保存安定性評価2)
 実施例161~164を40℃で1ヶ月静置した後の重合性組成物中の重合成分量(重量平均分子量Mw:7000以上)をGPC(:島津製)を用いて測定、面積比により算出した。なお、保存安定性は以下のようにして評価した。
○:重合成分量が0.1%以下である。
△:重合成分量が0.1以上0.2%未満である。
×:重合成分量が0.2%以上である。
 得られた結果を下表に示す。
Figure JPOXMLDOC01-appb-T000214
(実施例205)
 配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。
 ラビングした基材に本発明の重合性組成物(100)をスピンコート法で塗布し、90℃で2分乾燥した。得られた塗布膜を室温まで2分かけて冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例205のポジティブAプレートである光学異方体を得た。得られた光学異方体の偏光度、透過率、及びコントラストをRETS-100(大塚電子株式会社製)で測定したところ、偏光度は99.0%、透過率は44.5%、コントラストは93であり、偏光フィルムとして機能することがわかった。
(実施例206)
 本発明の重合性組成物(101)を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、70℃で2分乾燥した後、さらに100℃で2分乾燥し、313nmの直線偏光を10mW/cmの強度で30秒間照射した。その後、塗布膜を室温まで戻し、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例206のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性を評価したところ、目視では欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くなかった。また、得られた光学異方体のリタデーションをRETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は137nmであり、均一性良好な位相差フィルムが得られた。
(実施例207)
 用いる重合性組成物を本発明の重合性組成物(102)に変更した以外は、実施例206と同一条件にて、実施例207のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性を評価したところ、目視では欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くなかった。また、得られた光学異方体のリタデーションをRETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は130nmであり、均一性良好な位相差フィルムが得られた。
(実施例208)
 用いる重合性組成物を本発明の重合性組成物(103)に変更した以外は、実施例206と同一条件にて、実施例208のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性を評価したところ、目視では欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くなかった。また、得られた光学異方体のリタデーションをRETS-100(大塚電子株式会社製)で測定したところ、波長550nmにおける面内位相差(Re(550))は108nmであり、均一性良好な位相差フィルムが得られた。
(実施例209)
 式(1-a-5)で表される化合物55部、式(1-a-6)で表される化合物25部、式(2-a-31)で表され、n=6である化合物10部、式(2-a-42)で表され、n=6である化合物10部、及び式(I-1)で表される化合物0.1部をメチルエチルケトン(MEK)300部及びシクロペンタノン(CPN)100部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、式(b-1-1)で表される化合物3部、及びメガファックF-554(F-554:DIC株式会社製)0.2部を加えてさらに撹拌を行い、溶液を得た。溶液は透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、実施例104の重合性組成物(104)を得た。
(実施例210)
 式(1-a-5)で表される化合物30部、式(1-a-6)で表される化合物40部、式(2-a-1)で表され、n=6である化合物20部、式(2-a-31)で表され、n=6である化合物10部、及び式(I-1)で表される化合物0.1部をメチルエチルケトン(MEK)300部及びシクロペンタノン(CPN)100部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、式(b-1-1)で表される化合物3部、及びメガファックF-554(F-554:DIC株式会社製)0.2部を加えてさらに撹拌を行い、溶液を得た。溶液は透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、実施例210の重合性組成物(105)を得た。
Figure JPOXMLDOC01-appb-C000215
上記式(2-a-31)でn=6である化合物のRe(450nm)/Re(550nm)は、0.900であった。
(溶解性評価)
 実施例209~210の溶解性は以下のようにして評価した。
○:調整後、透明で均一な状態が目視で確認できる。
△:加温、拡販したときには透明で均一な状態が目視で確認できるが、室温に戻したときに化合物の析出が確認される。
×:加温、撹拌しても化合物が均一溶解できない。
(保存安定性評価1)
 実施例209~210を室温で1週間静置した後の状態を目視で観察した。なお、保存安定性は以下のようにして評価した。
○:室温で3日放置後も透明で均一な状態が保持される。
△:室温で1日放置後も透明で均一な状態が保持される。
×:室温で1時間放置後に化合物の析出が確認される。
(保存安定性評価2)
 実施例209~210を40℃で1ヶ月静置した後の重合性組成物中の重合成分量(重量平均分子量Mw:7000以上)をGPC(:島津製)を用いて測定、面積比により算出した。なお、保存安定性は以下のようにして評価した。
○:重合成分量が0.1%以下である。
△:重合成分量が0.1以上0.2%未満である。
×:重合成分量が0.2%以上である。
 得られた結果を下表に示す。
Figure JPOXMLDOC01-appb-T000216
(実施例211)
 配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。
 ラビングした基材に本発明の重合性組成物(104)をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して実施例211のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。
(実施例212)
 用いる重合性組成物を本発明の重合性組成物(105)に変更した以外は、実施例211と同一条件にて、実施例212のポジティブAプレートである光学異方体を得た。得られた光学異方体の配向性評価、位相差比、塗布ムラ評価、耐久性評価を、実施例60と同様に行った。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000217
 本発明の重合性組成物(1)~(105)(実施例1~59、実施例121~164、及び実施例209~210)に示したように、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤、及び重合抑制剤を使用した重合性組成物は、溶解性、保存安定性に優れ、重合性液晶組成物(1)~(105)から形成される光学異方体(実施例60~120、実施例165~208、及び実施例211~212)は、配向性評価、塗布ムラ評価、耐久性評価結果が全て良好であり、生産性に優れているといえる。そのうち、特に、光重合開始剤として式(b-1-1)で表される化合物、重合抑制剤としてp-メトキシフェノールを用いた重合性液晶組成物は、配向性評価、塗布ムラ評価、耐久性評価結果が非常に良好な結果となった。一方、比較例1~7の結果から、本願発明における特定の重合性化合物、特定の光重合開始剤及び重合抑制剤を用いない場合、保存安定性評価、耐久性評価結果が不良であり、本発明の重合性液晶組成物に比べ劣る結果となった。

Claims (17)

  1.  a)1つまたは2つ以上の重合性基を有し、かつ、式(I)を満たす重合性化合物、
     Re(450nm)/Re(550nm)<1.0 (I)
    (式中、Re(450nm)は、前記1つまたは2つ以上の重合性基を有する重合性化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの450nmの波長における面内位相差、Re(550nm)は、前記1つまたは2つ以上の重合性基を有する重合性化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの550nmの波長における面内位相差を表す。)
     b)アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、及びオキシムエステル系化合物からなる群より選ばれる少なくとも1つ以上の光重合開始剤、
     c)重合抑制剤
    を含有する重合性組成物。
  2.  前記光重合開始剤が、式(b-1)で表される化合物である請求項1に記載の重合性組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rはそれぞれ独立に、下記の式(R-1)から式(R-6)
    Figure JPOXMLDOC01-appb-C000002
    から選ばれる基を表し、
    は単結合、-O-、-C(CH)、-C(OCH)、-C(CHCH)-N(CH)から選ばれる基を表し、
    は、下記の式(R-1)から式(R-8)
    Figure JPOXMLDOC01-appb-C000003
    から選ばれる基を表す。)
  3.  前記重合抑制剤が、フェノール系重合抑制剤である請求項1及び2のいずれか一項に記載の重合性組成物。
  4.  前記1つまたは2つ以上の重合性基を有し、かつ、式(I)を満たす重合性化合物が、一般式(1)~(7)のいずれかの液晶性化合物を少なくとも1つ以上含有する請求項1~3のいずれか一項に記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、P11~P74は重合性基を表し、
    11~S72はスペーサー基を又は単結合を表すが、S11~S72が複数存在する場合それらは各々同一であっても異なっていても良く、
    11~X72は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、X11~X72が複数存在する場合それらは各々同一であっても異なっていても良く(ただし、各P-(S-X)-結合には-O-O-を含まない。)、
    MG11~MG71は各々独立して式(a)を表し、
    Figure JPOXMLDOC01-appb-C000005
    (式中、
    11、A12は各々独立して1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良いが、A11及び/又はA12が複数現れる場合は各々同一であっても異なっていても良く、
    11及びZ12は各々独立して-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Z11及び/又はZ12が複数現れる場合は各々同一であっても異なっていても良く、
    Mは下記の式(M-1)から式(M-11)
    Figure JPOXMLDOC01-appb-C000006
    から選ばれる基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良く、
    Gは下記の式(G-1)から式(G-6)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは水素原子、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、
    81は少なくとも1つの芳香族基を有する、炭素原子数5から30の基を表すが、当該基は無置換又は1つ以上のLによって置換されても良く、
    82は水素原子又は炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、或いはW82はW81と同様の意味を表しても良く、W81及びW82は互いに連結し同一の環構造を形成しても良く、或いはW82は下記の基
    Figure JPOXMLDOC01-appb-C000008
    (式中、PW82はP11と同じ意味を表し、SW82はS11と同じ意味を表し、XW82はX11と同じ意味を表し、nW82はm11と同じ意味を表す。)を表し、
    83及びW84はそれぞれ独立してハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、カルボキシル基、カルバモイルオキシ基、アミノ基、スルファモイル基、少なくとも1つの芳香族基を有する炭素原子数5から30の基、炭素原子数1から20のアルキル基、炭素原子数3から20のシクロアルキル基、炭素原子数2から20のアルケニル基、炭素原子数3から20のシクロアルケニル基、炭素原子数1から20のアルコキシ基、炭素原子数2から20のアシルオキシ基、炭素原子数2から20の又は、アルキルカルボニルオキシ基を表すが、前記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルコキシ基、アシルオキシ基、アルキルカルボニルオキシ基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、但し、上記Mが式(M-1)~式(M-10)から選択される場合Gは式(G-1)~式(G-5)から選択され、Mが式(M-11)である場合Gは式(G-6)を表し、
    はフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-から選択される基によって置換されても良いが、化合物内にLが複数存在する場合それらは同一であっても異なっていても良く、
    j11は1から5の整数、j12は1~5の整数を表すが、j11+j12は2から5の整数を表す。)、R11及びR31は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、m11は0~8の整数を表し、m2~m7、n2~n7、l4~l6、k6は各々独立して0から5の整数を表す。)
  5.  前記重合性基P11~P74が一般式(P-1)から(P-20)のいずれかで表される、請求項4に記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000009
  6.  前記フェノール系重合抑制剤が、ハイドロキノン、メトキシフェノール、メチルハイドロキノン、ターシャリーブチルハイドロキノン、ターシャリーブチルカテコールのいずれかである請求項1~5のいずれか一項に記載の重合性組成物。
  7.  2色性色素を含有する請求項1~6のいずれか一項に記載の重合性組成物。
  8.  シンナメート誘導体を含有する請求項1~6のいずれか一項に記載の重合性組成物。
  9.  請求項1~8のいずれかに記載の重合性組成物の重合体。
  10.  請求項9に記載の重合体を用いた光学異方体。
  11.  請求項9に記載の重合体を用いた位相差フィルム。
  12.  請求項9に記載の重合体を用いた偏光フィルム。
  13.  請求項9に記載の重合体を含有するレンズシート。
  14.  請求項9に記載の重合体を含有する発光ダイオード照明装置。
  15.  請求項10に記載の光学異方体又は請求項11に記載の位相差フィルムを含有する表示素子。
  16.  請求項10に記載の光学異方体又は請求項11に記載の位相差フィルムを含有する発光素子。
  17.  請求項11に記載の位相差フィルムを含有する反射フィルム。
PCT/JP2016/050661 2015-01-16 2016-01-12 重合性組成物及びそれを用いた光学異方体 WO2016114253A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680005608.0A CN107108775B (zh) 2015-01-16 2016-01-12 聚合性组合物和使用该聚合性组合物的光学各向异性体
US15/543,430 US11697695B2 (en) 2015-01-16 2016-01-12 Polymerizable composition and optically anisotropic body using same
JP2016569355A JP6237934B2 (ja) 2015-01-16 2016-01-12 重合性組成物及びそれを用いた光学異方体
KR1020177019455A KR102444525B1 (ko) 2015-01-16 2016-01-12 중합성 조성물 및 그것을 사용한 광학 이방체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015006299 2015-01-16
JP2015-006299 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016114253A1 true WO2016114253A1 (ja) 2016-07-21

Family

ID=56405798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050661 WO2016114253A1 (ja) 2015-01-16 2016-01-12 重合性組成物及びそれを用いた光学異方体

Country Status (5)

Country Link
US (1) US11697695B2 (ja)
JP (1) JP6237934B2 (ja)
KR (1) KR102444525B1 (ja)
CN (1) CN107108775B (ja)
WO (1) WO2016114253A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038265A1 (ja) * 2015-09-01 2017-03-09 Dic株式会社 粉体混合物
WO2017068860A1 (ja) * 2015-10-23 2017-04-27 Dic株式会社 重合性化合物及び光学異方体
JP2017088591A (ja) * 2015-11-09 2017-05-25 Dic株式会社 重合性化合物及び光学異方体
WO2018003653A1 (ja) * 2016-06-27 2018-01-04 Dic株式会社 重合性液晶組成物、それを用いた光学異方体及び液晶表示素子
WO2018062137A1 (ja) * 2016-09-29 2018-04-05 Dic株式会社 液晶表示素子
WO2018079245A1 (ja) * 2016-10-25 2018-05-03 富士フイルム株式会社 タッチセンサー用導電シート、タッチセンサー用導電シートの製造方法、タッチセンサー、タッチパネル積層体、タッチパネル、及び透明絶縁層形成用組成物
WO2018096938A1 (ja) * 2016-11-22 2018-05-31 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
WO2018235873A1 (ja) * 2017-06-21 2018-12-27 富士フイルム株式会社 有機el表示装置用位相差板、有機el表示装置および位相差板の製造方法
WO2018235872A1 (ja) * 2017-06-21 2018-12-27 富士フイルム株式会社 有機el表示装置用位相差板、有機el表示装置および位相差板の製造方法
WO2019124090A1 (ja) * 2017-12-21 2019-06-27 Dic株式会社 位相差フィルム、楕円偏光板及びそれを用いた表示装置
CN110832365A (zh) * 2017-07-10 2020-02-21 株式会社Lg化学 圆偏光板
CN110914722A (zh) * 2017-07-10 2020-03-24 株式会社Lg化学 圆偏光板
CN110997872A (zh) * 2017-08-15 2020-04-10 默克专利股份有限公司 可聚合液晶材料及经聚合的液晶膜
KR20200039763A (ko) * 2017-08-15 2020-04-16 메르크 파텐트 게엠베하 평탄 광학 분산을 갖는 중합가능 액정 매질 및 중합체 필름
JP2020074021A (ja) * 2020-01-10 2020-05-14 住友化学株式会社 重合性液晶組成物
CN112639000A (zh) * 2018-11-02 2021-04-09 株式会社Lg化学 层合膜
JP2021532412A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 偏光板
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
US11261378B2 (en) 2014-12-25 2022-03-01 Dic Corporation Polymerizable compound and optically anisotropic object
WO2022138390A1 (ja) * 2020-12-24 2022-06-30 株式会社巴川製紙所 異方性光学フィルム用組成物及び異方性光学フィルム
WO2022163398A1 (ja) * 2021-01-28 2022-08-04 住友化学株式会社 重合性液晶組成物、偏光膜、偏光フィルム、円偏光板ならびに表示装置
WO2022210326A1 (ja) * 2021-03-30 2022-10-06 東ソー株式会社 フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス
JP2022544443A (ja) * 2019-06-28 2022-10-19 ロリク・テクノロジーズ・アーゲー 新規な重合性液晶
WO2023276787A1 (ja) * 2021-06-29 2023-01-05 Agc株式会社 位相差板、及び光学素子
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209309B (zh) * 2015-01-16 2020-06-02 Dic株式会社 聚合性组合物和使用该聚合性组合物的光学各向异性体
WO2017154588A1 (ja) 2016-03-10 2017-09-14 Dic株式会社 エステル基を有する化合物の製造方法
CN110023347B (zh) * 2016-11-29 2021-07-06 富士胶片株式会社 聚合性液晶组合物、光学各向异性膜、光学膜、偏振片、图像显示装置及有机电致发光显示装置
US11539002B2 (en) 2017-12-22 2022-12-27 Lg Chem, Ltd. Liquid crystal composition and use thereof
JP2019139220A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
JP6646698B2 (ja) * 2018-03-05 2020-02-14 住友化学株式会社 重合性液晶組成物
WO2020085513A1 (ja) * 2018-10-26 2020-04-30 住友化学株式会社 粒子、組成物、フィルム、積層構造体、発光装置及びディスプレイ
JP6549778B1 (ja) 2018-10-26 2019-07-24 住友化学株式会社 組成物、フィルム、積層構造体、発光装置及びディスプレイ
WO2021153510A1 (ja) * 2020-01-27 2021-08-05 富士フイルム株式会社 液晶組成物、光吸収異方性膜、積層体および画像表示装置
JP7274040B2 (ja) * 2020-02-28 2023-05-15 富士フイルム株式会社 硬化物、硬化性樹脂組成物、光学部材、レンズ、回折光学素子及び多層型回折光学素子、並びに、化合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289374A (ja) * 1993-02-17 1994-10-18 F Hoffmann La Roche Ag 光学素子及びその製造方法
JP2012021068A (ja) * 2010-07-13 2012-02-02 Sumitomo Chemical Co Ltd 組成物及び光学フィルム
WO2012141245A1 (ja) * 2011-04-15 2012-10-18 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2014063143A (ja) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd 円偏光板および表示装置
WO2014069515A1 (ja) * 2012-10-30 2014-05-08 日本ゼオン株式会社 液晶組成物、位相差板、画像表示装置、および光学異方性層の波長分散制御方法
WO2014132978A1 (ja) * 2013-02-28 2014-09-04 富士フイルム株式会社 位相差板、反射防止板、画像表示装置、および位相差板の製造方法
WO2015098702A1 (ja) * 2013-12-25 2015-07-02 Dic株式会社 メソゲン基を含有する化合物、それを用いた混合物、組成物、及び、光学異方体
JP2015143788A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 液晶硬化膜

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174367B2 (ja) 1991-10-07 2001-06-11 日東電工株式会社 積層波長板及び円偏光板
JPH0628937A (ja) 1992-07-09 1994-02-04 Mitsubishi Electric Corp 耐雷ブッシング
US5445854A (en) 1993-11-29 1995-08-29 The Dow Chemical Company Nonlinear optical epoxy-containing compositions and crosslinked nonlinear optical polymeric composition therefrom
JP3783787B2 (ja) 1995-02-27 2006-06-07 大日本インキ化学工業株式会社 重合性液晶組成物及び光学異方体の製造方法
JPH11231132A (ja) 1998-02-12 1999-08-27 Nitto Denko Corp 1/4波長板、円偏光板及び液晶表示装置
US5995184A (en) 1998-09-28 1999-11-30 Rockwell Science Center, Llc Thin film compensators having planar alignment of polymerized liquid crystals at the air interface
US6565974B1 (en) 1998-10-30 2003-05-20 Teijin Limited Retardation film and optical device employing it
DE19953804A1 (de) 1999-11-09 2001-05-10 Clariant Gmbh Tetrahydrothiophen-Derivate und ihre Verwendung in flüssigkristallinen Mischungen
JP2003270435A (ja) 2002-03-13 2003-09-25 Nippon Zeon Co Ltd 広帯域波長板
JP4606195B2 (ja) 2004-03-08 2011-01-05 富士フイルム株式会社 液晶化合物、液晶組成物、重合体、位相差板、及び楕円偏光板
WO2005112540A2 (en) 2004-05-21 2005-12-01 Merck Patent Gmbh Liquid crystal compounds, liquid crystal medium and liquid crystal display
JP4907881B2 (ja) 2004-09-09 2012-04-04 富士フイルム株式会社 液晶組成物、光学補償フィルム、及び液晶表示装置
JP5084293B2 (ja) 2006-02-07 2012-11-28 富士フイルム株式会社 光学フィルムおよび位相差板、並びに液晶化合物
JP2007304444A (ja) 2006-05-12 2007-11-22 Dainippon Printing Co Ltd 位相差フィルム、および、位相差フィルムの製造方法
JP2007328053A (ja) 2006-06-06 2007-12-20 Dainippon Printing Co Ltd 位相差フィルム、および、位相差フィルムの製造方法
JP2007334014A (ja) 2006-06-15 2007-12-27 Dainippon Printing Co Ltd 液晶組成物、カラーフィルタおよび液晶表示装置
JP2008033285A (ja) 2006-06-29 2008-02-14 Fujifilm Corp 位相差フィルム、偏光板及び液晶表示装置
JP2008037768A (ja) 2006-08-02 2008-02-21 Asahi Glass Co Ltd 重合性液晶化合物、液晶組成物、光学異方性材料、および光学素子
US7361437B2 (en) 2006-09-01 2008-04-22 E.I. Du Pont De Nemours And Company Thermal transfer donor element with a carboxylated binder and a hydroxylated organic compound
JP5013830B2 (ja) 2006-11-29 2012-08-29 株式会社ネオス 新規な含フッ素ペンタエリスリトール誘導体及びそれを用いた湿式コーティング膜の製造方法
JP2008165185A (ja) 2006-12-07 2008-07-17 Nitto Denko Corp 積層光学フィルム、積層光学フィルムを用いた液晶パネル、および液晶表示装置
EP2129742B1 (en) 2007-03-30 2012-01-25 Merck Patent GmbH Birefingent layer with negative optical dispersion
WO2008126421A1 (ja) 2007-04-11 2008-10-23 Fujifilm Corporation 光学異方性膜及び液晶表示装置
JP5504585B2 (ja) 2007-06-29 2014-05-28 住友化学株式会社 重合性化合物および光学フィルム
JP2009062508A (ja) 2007-08-14 2009-03-26 Fujifilm Corp 液晶組成物、及び光学異方性膜
JP2009134257A (ja) 2007-10-31 2009-06-18 Sumitomo Chemical Co Ltd 位相差フィルム、およびそれを用いた楕円偏光板
JP5453798B2 (ja) 2007-12-28 2014-03-26 住友化学株式会社 化合物、光学フィルムおよび光学フィルムの製造方法
JP5463666B2 (ja) 2007-12-28 2014-04-09 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP5373293B2 (ja) 2008-01-29 2013-12-18 富士フイルム株式会社 化合物、液晶組成物及び異方性材料
JP2009181104A (ja) 2008-02-01 2009-08-13 Dic Corp 光配向性基板、光学異方体及び液晶表示素子
JP2009242318A (ja) 2008-03-31 2009-10-22 Daikin Ind Ltd 多官能含フッ素化合物及び該化合物の製造方法
JP2009265317A (ja) 2008-04-24 2009-11-12 Fujifilm Corp 垂直配向膜及びvaモード液晶セル
JP5504601B2 (ja) 2008-10-15 2014-05-28 Dic株式会社 配向膜用組成物、配向膜の製造方法、及び光学異方体
JP2010100541A (ja) 2008-10-21 2010-05-06 Asahi Glass Co Ltd アクリル酸誘導体化合物、液晶性組成物、高分子液晶、光学素子および光ヘッド装置
JP2010163482A (ja) 2009-01-13 2010-07-29 Fujifilm Corp セルロース組成物、光学フィルム、位相差板、ならびに液晶表示装置
JP5899607B2 (ja) 2009-03-16 2016-04-06 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP2010230815A (ja) 2009-03-26 2010-10-14 Dic Corp 配向膜のチルト角を測定する方法、光配向膜、光学異方体
JP2010265605A (ja) 2009-05-12 2010-11-25 Shimizu Corp 耐火被覆構造
JP5381314B2 (ja) 2009-05-15 2014-01-08 コニカミノルタ株式会社 インクジェット記録用インク組成物およびインクジェット記録方法
JP5453956B2 (ja) 2009-06-26 2014-03-26 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
KR101779226B1 (ko) 2009-10-30 2017-09-18 메르크 파텐트 게엠베하 음성 광학 분산도를 갖는 중합성 lc 물질 및 중합체 필름
JP5532974B2 (ja) 2010-01-29 2014-06-25 日本ゼオン株式会社 液晶層形成用組成物、円偏光分離シート及びその製造方法、並びに輝度向上フィルム及び液晶表示装置
JP5375644B2 (ja) 2010-02-10 2013-12-25 住友化学株式会社 組成物及び光学フィルム
JP5411770B2 (ja) 2010-03-29 2014-02-12 富士フイルム株式会社 重合性液晶化合物、重合性液晶組成物、高分子、及びフィルム
JP5703594B2 (ja) 2010-05-26 2015-04-22 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP2012077055A (ja) 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd 化合物、光学フィルム及び光学フィルムの製造方法
JP5555598B2 (ja) 2010-10-15 2014-07-23 株式会社クレハ 球晶状構造を有するポリグリコール酸系樹脂多孔質体及びその製造方法
JP5621584B2 (ja) 2010-12-27 2014-11-12 日本ゼオン株式会社 重合性キラル化合物、重合性液晶組成物、液晶性高分子及び光学異方体
KR101985943B1 (ko) * 2011-04-27 2019-06-04 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 및 광학 이방체
WO2012169424A1 (ja) 2011-06-10 2012-12-13 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2013003212A (ja) 2011-06-13 2013-01-07 Nippon Zeon Co Ltd パターン位相差フィルム、ディスプレイ装置及び立体画像表示システム
JP6015655B2 (ja) 2011-06-24 2016-10-26 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
CN103764610B (zh) 2011-06-30 2016-08-17 Dic株式会社 肉桂酸衍生物及其聚合物、以及由其固化物构成的液晶取向层
WO2013018526A1 (ja) 2011-07-29 2013-02-07 日本ゼオン株式会社 光学異方体の波長分散調整方法及び重合性組成物
JP2013071956A (ja) 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd 組成物及び光学フィルム
KR101478303B1 (ko) * 2011-11-28 2014-12-31 주식회사 엘지화학 광경화성 조성물, 광학 이방성 필름 및 이의 제조 방법
JP5387807B1 (ja) * 2011-11-30 2014-01-15 Dic株式会社 重合性液晶組成物、及びそれを用いた薄膜
JP6128115B2 (ja) 2012-03-30 2017-05-17 日本ゼオン株式会社 位相差フィルム積層体およびその製造方法、ならびに液晶表示装置
KR101363479B1 (ko) 2012-04-20 2014-02-17 주식회사 엘지화학 중합성 액정 화합물, 중합성 액정 조성물 및 광학 이방체
JP6222085B2 (ja) 2012-05-30 2017-11-01 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2014017304A (ja) 2012-07-06 2014-01-30 Sumitomo Electric Ind Ltd 積層基板の剥離方法
KR102212172B1 (ko) 2012-07-09 2021-02-03 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 광학 이방체, 및 중합성 화합물의 제조 방법
JP6206413B2 (ja) 2012-10-19 2017-10-04 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
EP2910986B1 (en) 2012-10-22 2019-03-13 Zeon Corporation Retarder, circularly polarising plate, and image display device
EP2913349B1 (en) 2012-10-23 2019-06-19 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optical anistropic body
US10227292B2 (en) 2013-02-15 2019-03-12 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
JP6485354B2 (ja) 2013-08-22 2019-03-20 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP6427340B2 (ja) 2013-09-11 2018-11-21 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
CN108774293B (zh) * 2013-10-31 2021-06-04 日本瑞翁株式会社 化合物、聚合性化合物的制造方法以及肼化合物
EP3072911B1 (en) 2013-11-20 2019-09-11 DIC Corporation Polymerizable liquid crystal composition, and anisotropic optical body, phase difference film, antireflective film, and liquid crystal display element fabricated using composition
CN103664868A (zh) 2013-11-27 2014-03-26 石家庄诚志永华显示材料有限公司 氧硫杂环己烷衍生物及其制备方法与应用
CN103772335B (zh) 2014-01-27 2016-02-10 北京八亿时空液晶科技股份有限公司 一种含五氟丙烯和吡喃环的液晶化合物及其液晶组合物
JP2015143790A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 転写用光学異方性シート
JP2015143789A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 転写用光学異方性シート
JP2015143786A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 液晶硬化膜
CN104820255B (zh) * 2014-01-31 2020-04-07 住友化学株式会社 光学各向异性片材
KR102273081B1 (ko) 2014-02-12 2021-07-02 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 및 광학 이방체
KR102393259B1 (ko) 2014-02-14 2022-04-29 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 및 광학 이방체
JP6047604B2 (ja) * 2014-03-31 2016-12-21 富士フイルム株式会社 液晶化合物および光学フィルム、ならびに光学フィルムの製造方法
JP6276393B2 (ja) 2014-05-01 2018-02-07 富士フイルム株式会社 有機el表示装置
JP6217999B2 (ja) 2014-10-09 2017-10-25 Dic株式会社 重合性化合物及び光学異方体
JP6476783B2 (ja) 2014-11-18 2019-03-06 日本ゼオン株式会社 重合性液晶組成物、高分子、光学異方体、及び偏光板
CN111548324A (zh) 2014-12-04 2020-08-18 Dic株式会社 聚合性化合物、组合物、聚合物、光学各向异性体、液晶显示元件和有机el元件
JP6531935B2 (ja) 2014-12-17 2019-06-19 Dic株式会社 重合性化合物及び光学異方体
JP6568103B2 (ja) 2014-12-25 2019-08-28 Dic株式会社 重合性化合物及び光学異方体
CN107209308B (zh) 2015-01-16 2020-09-22 Dic株式会社 相位差板和圆偏光板
JP6066252B2 (ja) 2015-01-16 2017-01-25 Dic株式会社 重合性化合物及び光学異方体
JP6260841B2 (ja) 2015-01-16 2018-01-17 Dic株式会社 重合性組成物及び光学異方体
WO2016114066A1 (ja) 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
CN107209309B (zh) 2015-01-16 2020-06-02 Dic株式会社 聚合性组合物和使用该聚合性组合物的光学各向异性体
CN107108775B (zh) 2015-01-16 2019-12-13 Dic株式会社 聚合性组合物和使用该聚合性组合物的光学各向异性体
KR20170105012A (ko) 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 중합성 조성물 및 그것을 사용한 광학 이방체
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
US20180037817A1 (en) 2015-01-16 2018-02-08 Dic Corporation Polymerizable composition and optically anisotropic body
WO2016136533A1 (ja) 2015-02-24 2016-09-01 Dic株式会社 重合性化合物及び光学異方体
JP6403029B2 (ja) 2015-09-01 2018-10-10 Dic株式会社 粉体混合物
WO2017038266A1 (ja) 2015-09-03 2017-03-09 Dic株式会社 メソゲン基を有する化合物を含む組成物、並びに重合性組成物を重合することにより得られる重合体、光学異方体、並びに位相差膜
KR102098617B1 (ko) 2015-09-03 2020-04-08 디아이씨 가부시끼가이샤 메소겐기를 갖는 화합물 및 그것을 포함하는 조성물, 그리고 중합성 조성물을 중합함에 의해 얻어지는 중합체, 광학 이방체, 및 위상차막
WO2017057020A1 (ja) 2015-09-30 2017-04-06 Dic株式会社 重合性組成物及びそれを用いた光学異方体
CN108137486B (zh) 2015-10-23 2019-08-13 Dic株式会社 聚合性化合物和光学各向异性体
CN108349925B (zh) 2015-11-09 2022-08-16 Dic株式会社 聚合性化合物和光学各向异性体
KR102170657B1 (ko) * 2016-07-15 2020-10-28 디아이씨 가부시끼가이샤 중합성 조성물, 및, 그것을 이용한 광학 이방체

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289374A (ja) * 1993-02-17 1994-10-18 F Hoffmann La Roche Ag 光学素子及びその製造方法
JP2012021068A (ja) * 2010-07-13 2012-02-02 Sumitomo Chemical Co Ltd 組成物及び光学フィルム
WO2012141245A1 (ja) * 2011-04-15 2012-10-18 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2014063143A (ja) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd 円偏光板および表示装置
WO2014069515A1 (ja) * 2012-10-30 2014-05-08 日本ゼオン株式会社 液晶組成物、位相差板、画像表示装置、および光学異方性層の波長分散制御方法
WO2014132978A1 (ja) * 2013-02-28 2014-09-04 富士フイルム株式会社 位相差板、反射防止板、画像表示装置、および位相差板の製造方法
WO2015098702A1 (ja) * 2013-12-25 2015-07-02 Dic株式会社 メソゲン基を含有する化合物、それを用いた混合物、組成物、及び、光学異方体
JP2015143788A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 液晶硬化膜

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261378B2 (en) 2014-12-25 2022-03-01 Dic Corporation Polymerizable compound and optically anisotropic object
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same
JPWO2017038265A1 (ja) * 2015-09-01 2017-10-19 Dic株式会社 粉体混合物
WO2017038265A1 (ja) * 2015-09-01 2017-03-09 Dic株式会社 粉体混合物
US10428032B2 (en) 2015-10-23 2019-10-01 Dic Corporation Polymerizable compound and optically anisotropic body
WO2017068860A1 (ja) * 2015-10-23 2017-04-27 Dic株式会社 重合性化合物及び光学異方体
US10919870B2 (en) 2015-11-09 2021-02-16 Dic Corporation Polymerizable compound and optically anisotropic body
JP2017088591A (ja) * 2015-11-09 2017-05-25 Dic株式会社 重合性化合物及び光学異方体
WO2018003653A1 (ja) * 2016-06-27 2018-01-04 Dic株式会社 重合性液晶組成物、それを用いた光学異方体及び液晶表示素子
JPWO2018062137A1 (ja) * 2016-09-29 2019-06-24 Dic株式会社 液晶表示素子
WO2018062137A1 (ja) * 2016-09-29 2018-04-05 Dic株式会社 液晶表示素子
CN109937396A (zh) * 2016-10-25 2019-06-25 富士胶片株式会社 触控传感器、该传感器用导电片及其制法、触控面板及其积层体和透明绝缘层形成用组合物
JPWO2018079245A1 (ja) * 2016-10-25 2019-09-12 富士フイルム株式会社 タッチセンサー用導電シート、タッチセンサー用導電シートの製造方法、タッチセンサー、タッチパネル積層体、タッチパネル、及び透明絶縁層形成用組成物
WO2018079245A1 (ja) * 2016-10-25 2018-05-03 富士フイルム株式会社 タッチセンサー用導電シート、タッチセンサー用導電シートの製造方法、タッチセンサー、タッチパネル積層体、タッチパネル、及び透明絶縁層形成用組成物
WO2018096938A1 (ja) * 2016-11-22 2018-05-31 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
JPWO2018096938A1 (ja) * 2016-11-22 2019-10-17 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
JPWO2018235872A1 (ja) * 2017-06-21 2020-04-16 富士フイルム株式会社 有機el表示装置用位相差板、有機el表示装置および位相差板の製造方法
CN110691999A (zh) * 2017-06-21 2020-01-14 富士胶片株式会社 有机el显示装置用相位差片、有机el显示装置及相位差片的制造方法
JPWO2018235873A1 (ja) * 2017-06-21 2020-03-19 富士フイルム株式会社 有機el表示装置用位相差板、有機el表示装置および位相差板の製造方法
WO2018235873A1 (ja) * 2017-06-21 2018-12-27 富士フイルム株式会社 有機el表示装置用位相差板、有機el表示装置および位相差板の製造方法
US11374205B2 (en) 2017-06-21 2022-06-28 Fujifilm Corporation Phase difference plate for organic EL display device, organic EL display device, and method for producing phase difference plate
WO2018235872A1 (ja) * 2017-06-21 2018-12-27 富士フイルム株式会社 有機el表示装置用位相差板、有機el表示装置および位相差板の製造方法
US11193064B2 (en) 2017-06-21 2021-12-07 Fujifilm Corporation Phase difference plate for organic EL display device, organic EL display device, and method for producing phase difference plate
CN110692000A (zh) * 2017-06-21 2020-01-14 富士胶片株式会社 有机el显示装置用相位差片、有机el显示装置及相位差片的制造方法
JP7009703B2 (ja) 2017-07-10 2022-01-26 エルジー・ケム・リミテッド 円偏光板
JP2020525837A (ja) * 2017-07-10 2020-08-27 エルジー・ケム・リミテッド 円偏光板
JP2020527250A (ja) * 2017-07-10 2020-09-03 エルジー・ケム・リミテッド 円偏光板
US11411206B2 (en) 2017-07-10 2022-08-09 Lg Chem, Ltd. Circularly polarizing plate
CN110914722A (zh) * 2017-07-10 2020-03-24 株式会社Lg化学 圆偏光板
US11314007B2 (en) 2017-07-10 2022-04-26 Lg Chem, Ltd. Circularly polarizing plate
CN110914722B (zh) * 2017-07-10 2022-03-08 株式会社Lg化学 圆偏光板
JP7009702B2 (ja) 2017-07-10 2022-01-26 エルジー・ケム・リミテッド 円偏光板
CN110832365A (zh) * 2017-07-10 2020-02-21 株式会社Lg化学 圆偏光板
KR102720796B1 (ko) * 2017-08-15 2024-10-23 메르크 파텐트 게엠베하 중합가능 액정 물질 및 중합된 액정 필름
KR20200039763A (ko) * 2017-08-15 2020-04-16 메르크 파텐트 게엠베하 평탄 광학 분산을 갖는 중합가능 액정 매질 및 중합체 필름
JP7430631B2 (ja) 2017-08-15 2024-02-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性液晶材料および重合した液晶フィルム
US11939510B2 (en) 2017-08-15 2024-03-26 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
TWI794268B (zh) * 2017-08-15 2023-03-01 德商馬克專利公司 可聚合的液晶材料及經聚合的液晶膜
US12031079B2 (en) 2017-08-15 2024-07-09 Merck Patent Gmbh Polymerisable LC medium and polymer film with flat optical dispersion
KR20200041922A (ko) * 2017-08-15 2020-04-22 메르크 파텐트 게엠베하 중합가능 액정 물질 및 중합된 액정 필름
CN110997872A (zh) * 2017-08-15 2020-04-10 默克专利股份有限公司 可聚合液晶材料及经聚合的液晶膜
CN110997872B (zh) * 2017-08-15 2024-01-02 默克专利股份有限公司 可聚合液晶材料及经聚合的液晶膜
KR102720800B1 (ko) * 2017-08-15 2024-10-23 메르크 파텐트 게엠베하 평탄 광학 분산을 갖는 중합가능 액정 매질 및 중합체 필름
JP2020531625A (ja) * 2017-08-15 2020-11-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 重合性液晶材料および重合した液晶フィルム
JPWO2019124090A1 (ja) * 2017-12-21 2021-01-14 Dic株式会社 位相差フィルム、楕円偏光板及びそれを用いた表示装置
WO2019124090A1 (ja) * 2017-12-21 2019-06-27 Dic株式会社 位相差フィルム、楕円偏光板及びそれを用いた表示装置
JP2021532412A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 偏光板
JP7205981B2 (ja) 2018-11-02 2023-01-17 エルジー・ケム・リミテッド 偏光板
JP7205980B2 (ja) 2018-11-02 2023-01-17 エルジー・ケム・リミテッド 積層フィルム
CN112639000A (zh) * 2018-11-02 2021-04-09 株式会社Lg化学 层合膜
CN112639000B (zh) * 2018-11-02 2023-09-05 株式会社Lg化学 层合膜
US11867936B2 (en) 2018-11-02 2024-01-09 Lg Chem, Ltd. Laminate film
US11892669B2 (en) 2018-11-02 2024-02-06 Lg Chem, Ltd. Polarizing plate and display device
JP2021532411A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 積層フィルム
JP7389147B2 (ja) 2019-06-28 2023-11-29 ロリク・テクノロジーズ・アーゲー 新規な重合性液晶
JP2022544443A (ja) * 2019-06-28 2022-10-19 ロリク・テクノロジーズ・アーゲー 新規な重合性液晶
JP2020074021A (ja) * 2020-01-10 2020-05-14 住友化学株式会社 重合性液晶組成物
WO2022138390A1 (ja) * 2020-12-24 2022-06-30 株式会社巴川製紙所 異方性光学フィルム用組成物及び異方性光学フィルム
WO2022163398A1 (ja) * 2021-01-28 2022-08-04 住友化学株式会社 重合性液晶組成物、偏光膜、偏光フィルム、円偏光板ならびに表示装置
WO2022210326A1 (ja) * 2021-03-30 2022-10-06 東ソー株式会社 フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス
WO2023276787A1 (ja) * 2021-06-29 2023-01-05 Agc株式会社 位相差板、及び光学素子

Also Published As

Publication number Publication date
JP6237934B2 (ja) 2017-11-29
US20180002460A1 (en) 2018-01-04
KR20170105015A (ko) 2017-09-18
JPWO2016114253A1 (ja) 2017-08-31
CN107108775A (zh) 2017-08-29
CN107108775B (zh) 2019-12-13
KR102444525B1 (ko) 2022-09-20
US11697695B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6237934B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6172556B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6255632B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6172557B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6292355B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6260841B2 (ja) 重合性組成物及び光学異方体
JP6452012B2 (ja) 重合性組成物及びそれを用いた光学異方体
WO2018012390A1 (ja) 位相差フィルム、楕円偏光板及びそれを用いた表示装置
JP6627978B2 (ja) 重合性組成物及びそれを用いた光学異方体
WO2018012579A1 (ja) 重合性組成物、及び、それを用いた光学異方体
WO2018101122A1 (ja) 重合性組成物及びそれを用いた光学異方体
JPWO2019102922A1 (ja) 重合性液晶組成物、その重合体、光学異方体、及び表示素子
JP2020160449A (ja) 位相差フィルム、楕円偏光板及びそれを用いた表示装置
JPWO2019124090A1 (ja) 位相差フィルム、楕円偏光板及びそれを用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569355

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177019455

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543430

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737324

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载