+

WO2016039001A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2016039001A1
WO2016039001A1 PCT/JP2015/069603 JP2015069603W WO2016039001A1 WO 2016039001 A1 WO2016039001 A1 WO 2016039001A1 JP 2015069603 W JP2015069603 W JP 2015069603W WO 2016039001 A1 WO2016039001 A1 WO 2016039001A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
camera
image
fluorescence
light
Prior art date
Application number
PCT/JP2015/069603
Other languages
French (fr)
Japanese (ja)
Inventor
小田 一郎
紘之 妻鳥
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2016039001A1 publication Critical patent/WO2016039001A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to an imaging apparatus for irradiating a fluorescent dye injected into a subject with excitation light and photographing fluorescence generated from the fluorescent dye.
  • near-infrared fluorescence imaging In recent years, a technique called near-infrared fluorescence imaging has been used for surgery.
  • indocyanine green (ICG) as a fluorescent dye is injected into the affected area.
  • ICG indocyanine green
  • the indocyanine green When the indocyanine green is irradiated with near-infrared light of about 600 to 850 nm (nanometer) as excitation light, the indocyanine green emits near-infrared fluorescence of about 750 to 900 nm.
  • This fluorescence is photographed by a camera capable of detecting near infrared light, and the image is displayed on a display unit such as a liquid crystal display panel.
  • a display unit such as a liquid crystal display panel.
  • Patent Document 1 discloses a near-infrared fluorescence intensity distribution image obtained by irradiating an indocyanine green excitation light to a living organ to which indocyanine green is administered, and indocyanine green administration. Compared with the cancer lesion distribution image obtained by applying X-rays, nuclear magnetic resonance or ultrasound to the previous test organ, it is detected by the intensity distribution image of near-infrared fluorescence, A data collection method is disclosed in which data of a region that is not detected in a cancer lesion distribution image is collected as cancer secondary lesion region data.
  • near infrared light having a wavelength of about 700 nm is not impossible to visually confirm, but near infrared light having a wavelength of about 800 nm cannot be visually confirmed.
  • a card-like or rod-like jig kneaded with indocyanine green has been prepared in the past. The operation of the camera is confirmed by irradiating the excitation light and photographing the jig irradiated with the excitation light with a camera. For this reason, not only a dedicated jig is required, but also a complicated operation of preparing the jig and executing a photographing operation is required.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an imaging apparatus capable of very easily executing an operation check of a camera for photographing fluorescence.
  • the excitation light source that irradiates the subject with excitation light for exciting the fluorescent dye injected into the subject, and the fluorescence generated from the fluorescent dye when irradiated with the excitation light are photographed.
  • a second light source for irradiating light with a wavelength corresponding to the fluorescence is attached to the excitation light source.
  • the second light source irradiates light having a wavelength corresponding to the fluorescence and takes an image of an irradiation area with the camera to check whether the camera is operating normally. This is a light source for confirmation.
  • the excitation light source and the second light source are attached to the camera.
  • the excitation light and the fluorescence are near-infrared light.
  • an image processing unit for displaying a blood vessel image obtained by irradiating a subject with light having a wavelength corresponding to the fluorescence, on a display unit.
  • the present invention it is possible to very easily check the operation of a camera that captures fluorescence using light having a wavelength corresponding to the fluorescence from the second light source.
  • the third invention by turning on the second light source, it is always easy to check the operation of the camera that captures fluorescence regardless of the arrangement of the camera that captures fluorescence and the second light source. It becomes possible. In addition, it is possible to direct excitation light and fluorescence to the imaging region of the camera simply by moving the camera.
  • the fourth aspect of the present invention it is possible to check the operation of a camera that captures fluorescence with respect to near infrared rays that are difficult to visually recognize.
  • the fifth aspect it is possible to display a blood vessel image using a mechanism for confirming the operation of a camera that captures fluorescence.
  • FIG. 1 is a schematic diagram of an imaging apparatus according to the present invention.
  • 2 is a perspective view of an illumination / photographing unit 12.
  • FIG. FIG. 3 is a schematic front view of the illumination / photographing unit 12. It is a block diagram which shows the main control systems of the imaging device which concerns on this invention. It is a schematic diagram which shows the state which displays the image of the blood vessel 101 in the hand 100 of the patient 17 with the imaging device which concerns on this invention.
  • FIG. 1 is a schematic diagram of an imaging apparatus according to the present invention.
  • the imaging apparatus includes an input unit 11 such as a touch panel, and includes a main body 10 including a control unit 30 and the like described later, an illumination / photographing unit 12 supported movably by an arm 13, a liquid crystal display panel, and the like. And a treatment table 16 on which a patient 17 is placed.
  • the illumination / imaging unit 12 is not limited to the one supported by the arm 13, and may be one carried by the operator or fixed to an existing facility.
  • FIG. 2 is a perspective view of the illumination / photographing unit 12 described above.
  • FIG. 3 is a schematic front view of the illumination / photographing unit 12.
  • the illumination / photographing unit 12 includes a camera 21 capable of detecting near-infrared light and visible light, a visible light source 22 including one or more LEDs disposed on the outer periphery of the camera 21, and an outer periphery of the visible light source 22.
  • An excitation light source 23 composed of one or more LEDs disposed in the section, and a confirmation light source 24 composed of one or more LEDs disposed in the LEDs constituting the visible light source 22 (corresponding to a second light source) .
  • positioning is not limited to this.
  • the visible light source 22 emits visible light.
  • the excitation light source 23 irradiates near infrared light having a wavelength of 760 nm, which is excitation light for exciting indocyanine green.
  • the confirmation light source 24 emits near-infrared light having a wavelength of 810 nm, which approximates the wavelength of fluorescence generated from indocyanine green.
  • the wavelength of the excitation light source 23 is not limited to 760 nm, and may be any wavelength that can excite indocyanine green.
  • the wavelength of the light source 24 for confirmation is not limited to 810 nm, and may be longer than the wavelength emitted by indocyanine green.
  • FIG. 4 is a block diagram showing a main control system of the imaging apparatus according to the present invention.
  • This imaging apparatus is composed of a CPU that performs logical operations, a ROM that stores operation programs necessary for controlling the apparatus, a RAM that temporarily stores data during control, and the like, and a control unit that controls the entire apparatus 30.
  • the control unit 30 includes an image processing unit 31 that executes various image processing described later.
  • the control unit 30 is connected to the input unit 11 and the display unit 14 described above.
  • the control unit 30 is connected to an illumination / photographing unit 12 including a camera 21, a visible light source 22, an excitation light source 23, and a confirmation light source 24. Further, the control unit 30 may be connected to an image storage unit 33 that stores an image captured by the camera 21.
  • the image storage unit 33 includes a near-infrared image storage unit 34 that stores a near-infrared image and a visible image storage unit 35 that stores a visible image.
  • a composite image storage unit that stores an image obtained by combining the visible image and the near-infrared image may be provided.
  • the confirmation light source 24 When performing an operation for breast cancer using the imaging apparatus according to the present invention, first, the confirmation light source 24 is turned on and an image at that time is taken by the camera 21.
  • the confirmation light source 24 emits near-infrared light having a wavelength of 810 nm that approximates the wavelength of fluorescence generated from indocyanine green. This near infrared light cannot be confirmed by human eyes.
  • near-infrared light having a wavelength of 810 nm is emitted from the light source for confirmation 24 and an image of this irradiation region is taken by the camera 21, when the camera 21 is operating normally, near-infrared light is emitted.
  • An image of a region irradiated with is taken by the camera 21, and the image is displayed on the display unit 14. This makes it possible to easily check the operation of the camera 21.
  • indocyanine green is injected into the breast of the patient 17 who is supine on the treatment table 16 by injection. Then, near infrared rays are emitted from the excitation light source 23 toward the subject including the affected part, and visible light is emitted from the visible light source 22. As the near infrared light emitted from the excitation light source 23, as described above, 760 nm near infrared light acting as excitation light for indocyanine green to emit fluorescence is employed. Thereby, indocyanine green generates fluorescence in the near infrared region having a peak at about 800 nm.
  • the camera 21 captures the vicinity of the affected part of the patient 17.
  • the camera 21 can detect near infrared light and visible light.
  • the near-infrared image and visible image captured by the camera 21 are sent to the image processing unit 31 shown in FIG.
  • the image processing unit 31 converts the near-infrared image and the visible image into image data that can be displayed on the display unit 14.
  • the near-infrared image data is stored in the near-infrared image storage unit 34 in the image storage unit 33.
  • the visible image data is stored in the visible image storage unit 35 of the image storage unit 33.
  • the image processing unit 31 uses the near-infrared image data and the visible image data to create a composite image obtained by fusing the visible image and the near-infrared image. Then, the image processing unit 31 displays the near-infrared image, the visible image, and the composite image on the display unit 14 at the same time or selectively in divided regions.
  • FIG. 5 is a schematic diagram showing a state in which an image of the blood vessel 101 in the hand 100 of the patient 17 is displayed by the imaging apparatus according to the present invention.
  • near-infrared light having a wavelength of 810 nm is irradiated from the light source 24 for confirmation.
  • near-infrared light having a wavelength of 810 nm blood vessels can be visualized, and in particular, an artery in the blood vessel 101 can be clearly visualized.
  • the vein since the vein is close to the body surface, the vein can be visualized with near-infrared light of 810 nm.
  • the hand 100 of the patient 17 is irradiated with near-infrared light having a wavelength of 810 nm from the confirmation light source 24 and photographed with the camera 21, as shown in FIG.
  • the blood vessel 101 in the hand 100 of the patient 17 can be displayed on the display unit 14. For this reason, the image of the blood vessel 101 can be visualized using the confirmation light source 24 for confirming the operation of the camera 21.
  • the excitation light source 23 and the confirmation light source 24 are attached to the camera 21, near-infrared light having a wavelength of 810 nm and a wavelength of 760 are associated with the movement of the camera 21.
  • the irradiation region of near infrared light can also be moved.
  • the confirmation light source 24 since the confirmation light source 24 always faces the imaging region of the camera 21, it is extremely easy to confirm the operation of photographing a near-infrared image having a wavelength of 810 nm by the camera 21 regardless of the orientation of the camera 21 and the confirmation light source 24. Can be executed.
  • the camera 21, the visible light source 22, the excitation light source 23, and the confirmation light source 24 may be arranged separately. Even in this case, it is possible to shoot and display a necessary image by matching the imaging region of the camera 21 with the light irradiation region of the visible light source 22, the excitation light source 23, and the confirmation light source 24. .
  • the confirmation light source 24 is installed in another place such as the main body 10, it is necessary to point the camera 21 in that direction in order to confirm the operation state of the camera 21. At this time, as described above, near-infrared light having a wavelength of 810 nm cannot be visually confirmed, so that the operation confirmation operation of the camera 21 becomes complicated.
  • the excitation light source 23 that emits near-infrared light having a wavelength of 760 nm is used.
  • indocyanine green is excited to emit light. What can irradiate near infrared light of about 700 nm to 900 nm can be used.
  • the confirmation light source 24 that emits near-infrared light having a wavelength of 810 nm is used.
  • the confirmation light source 24 has a light emission wavelength of indocyanine green of 750 nm to 900 nm. Any device can be used as long as it can irradiate nearby near infrared rays.
  • indocyanine green is used as a material containing a fluorescent dye, and the indocyanine green is irradiated with near-infrared light of 760 nm as excitation light, thereby approximately 800 nm from indocyanine green.
  • near-infrared light 760 nm as excitation light
  • near-infrared light 760 nm
  • light other than near-infrared light may be used.
  • 5-ALA (5-aminolevulinic acid / 5-aminolevulinic acid) can be used as a fluorescent dye.
  • 5-ALA When 5-ALA is used, 5-ALA that has entered the body of the patient 17 changes to a protoporphyrin IX / PpIX that is a fluorescent substance.
  • visible light of about 400 nm When visible light of about 400 nm is irradiated toward the protoporphyrin, red visible light is irradiated as fluorescence from the protoporphyrin. Therefore, when 5-ALA is used, an excitation light source that emits visible light having a wavelength of about 400 nm may be used, and a light source for confirmation emits fluorescence from protoporphyrin. What irradiates red visible light to be used may be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A light source for verification (24) is lit, and an image at that time is photographed with a camera (21). A near-infrared light with a wavelength of 810nm is projected from the light source for verification (24), approximating the wavelength of fluorescent light which is emitted from indocyanine green. When the camera (21) is operating normally, an image of a region in which the near-infrared light is projected is photographed by the camera (21), and the image thereof is displayed in a display unit (14). It is thus possible to easily execute an operation verification of the camera (21).

Description

イメージング装置Imaging device
 この発明は、被写体に注入された蛍光色素に対して励起光を照射し、蛍光色素から発生した蛍光を撮影するイメージング装置に関する。 The present invention relates to an imaging apparatus for irradiating a fluorescent dye injected into a subject with excitation light and photographing fluorescence generated from the fluorescent dye.
 近年、近赤外蛍光イメージングと呼称される手法が外科手術に利用されている。この近赤外蛍光イメージングにおいては、蛍光色素としてのインドシアニングリーン(ICG)を患部に注入する。そして、このインドシアニングリーンにおおよそ600~850nm(ナノメータ)の近赤外光を励起光として照射すると、インドシアニングリーンはおおよそ750~900nmの近赤外蛍光を発する。この蛍光を、近赤外光を検出可能なカメラで撮影し、その画像を液晶表示パネル等の表示部に表示する。この近赤外蛍光イメージングによれば、体表から20mm程度までの深さに存在する血管やリンパ管等の観察が可能となる。 In recent years, a technique called near-infrared fluorescence imaging has been used for surgery. In this near-infrared fluorescence imaging, indocyanine green (ICG) as a fluorescent dye is injected into the affected area. When the indocyanine green is irradiated with near-infrared light of about 600 to 850 nm (nanometer) as excitation light, the indocyanine green emits near-infrared fluorescence of about 750 to 900 nm. This fluorescence is photographed by a camera capable of detecting near infrared light, and the image is displayed on a display unit such as a liquid crystal display panel. According to this near-infrared fluorescence imaging, it is possible to observe blood vessels, lymph vessels, and the like existing at a depth of about 20 mm from the body surface.
 特許文献1には、インドシアニングリーンが投与された生体の被検臓器に対して、インドシアニングリーンの励起光を照射して得られた、近赤外蛍光の強度分布イメージと、インドシアニングリーン投与前の被検臓器に対して、X線、核磁気共鳴または超音波を作用させて得られた、癌病巣分布イメージと、を比較し、近赤外蛍光の強度分布イメージで検出されるが、癌病巣分布イメージでは検出されない領域のデータを、癌の副病巣領域データとして収集するデータ収集方法が開示されている。 Patent Document 1 discloses a near-infrared fluorescence intensity distribution image obtained by irradiating an indocyanine green excitation light to a living organ to which indocyanine green is administered, and indocyanine green administration. Compared with the cancer lesion distribution image obtained by applying X-rays, nuclear magnetic resonance or ultrasound to the previous test organ, it is detected by the intensity distribution image of near-infrared fluorescence, A data collection method is disclosed in which data of a region that is not detected in a cancer lesion distribution image is collected as cancer secondary lesion region data.
国際公開第2009/139466号International Publication No. 2009/139466
 近赤外光のうちでも、波長が700nm程度の近赤外光は目視で確認することは不可能ではないが、波長が800nm程度の近赤外光は、目視では確認することができない。このような状況下において、蛍光を撮影するためのカメラの動作確認を行うためには、従来は、インドシアニングリーンを練り込んだカード状あるいは棒状の治具を準備し、この治具に対して励起光を照射するとともに、励起光を照射された治具をカメラにより撮影することで、カメラの動作確認を行っている。このため、専用の治具が必要となるばかりではなく、この治具を準備して撮影動作を実行するという煩雑な動作を必要とした。 Among near infrared light, near infrared light having a wavelength of about 700 nm is not impossible to visually confirm, but near infrared light having a wavelength of about 800 nm cannot be visually confirmed. Under these circumstances, in order to check the operation of a camera for photographing fluorescence, a card-like or rod-like jig kneaded with indocyanine green has been prepared in the past. The operation of the camera is confirmed by irradiating the excitation light and photographing the jig irradiated with the excitation light with a camera. For this reason, not only a dedicated jig is required, but also a complicated operation of preparing the jig and executing a photographing operation is required.
 この発明は上記課題を解決するためになされたものであり、蛍光を撮影するカメラの動作確認を極めて容易に実行することが可能なイメージング装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an imaging apparatus capable of very easily executing an operation check of a camera for photographing fluorescence.
 第1の発明では、被写体に注入された蛍光色素を励起させるための励起光を前記被写体に向けて照射する励起用光源と、励起光が照射されることにより前記蛍光色素から発生する蛍光を撮影するカメラと、を備えた蛍光イメージング装置において、前記励起用光源に、前記蛍光に相当する波長の光を照射するための第2の光源を付設した。 In the first invention, the excitation light source that irradiates the subject with excitation light for exciting the fluorescent dye injected into the subject, and the fluorescence generated from the fluorescent dye when irradiated with the excitation light are photographed. A second light source for irradiating light with a wavelength corresponding to the fluorescence is attached to the excitation light source.
 第2の発明では、前記第2の光源は、前記蛍光に相当する波長の光を照射して照射領域の画像を前記カメラで撮影することにより前記カメラが正常に動作しているか否かを確認するための確認用光源である。 In the second invention, the second light source irradiates light having a wavelength corresponding to the fluorescence and takes an image of an irradiation area with the camera to check whether the camera is operating normally. This is a light source for confirmation.
 第3の発明では、前記励起用光源と前記第2の光源とは、前記カメラに付設されている。 In the third invention, the excitation light source and the second light source are attached to the camera.
 第4の発明では、前記励起光および前記蛍光は、近赤外光である。 In the fourth invention, the excitation light and the fluorescence are near-infrared light.
 第5の発明では、前記蛍光に相当する波長の光を被写体に照射して得られた血管の画像を表示部に表示するための画像処理部を備える。 In the fifth invention, an image processing unit is provided for displaying a blood vessel image obtained by irradiating a subject with light having a wavelength corresponding to the fluorescence, on a display unit.
 第1および第2の発明によれば、第2の光源からの蛍光に相当する波長の光により、蛍光を撮影するカメラの動作確認を極めて容易に実行することが可能となる。 According to the first and second aspects of the present invention, it is possible to very easily check the operation of a camera that captures fluorescence using light having a wavelength corresponding to the fluorescence from the second light source.
 第3の発明によれば、第2の光源を点灯することにより、蛍光を撮影するカメラおよび第2の光源の配置にかかわらず、常に、蛍光を撮影するカメラの動作確認を極めて容易に実行することが可能となる。また、カメラを移動するだけで、励起光と蛍光とをカメラの撮像領域に向けることが可能となる。 According to the third invention, by turning on the second light source, it is always easy to check the operation of the camera that captures fluorescence regardless of the arrangement of the camera that captures fluorescence and the second light source. It becomes possible. In addition, it is possible to direct excitation light and fluorescence to the imaging region of the camera simply by moving the camera.
 第4の発明によれば、視認しにくい近赤外線に対して、蛍光を撮影するカメラの動作確認を実行することが可能となる。 According to the fourth aspect of the present invention, it is possible to check the operation of a camera that captures fluorescence with respect to near infrared rays that are difficult to visually recognize.
 第5の発明によれば、蛍光を撮影するカメラの動作確認のための機構を利用して、血管の画像を表示することが可能となる。 According to the fifth aspect, it is possible to display a blood vessel image using a mechanism for confirming the operation of a camera that captures fluorescence.
この発明に係るイメージング装置の概要図である。1 is a schematic diagram of an imaging apparatus according to the present invention. 照明・撮影部12の斜視図である。2 is a perspective view of an illumination / photographing unit 12. FIG. 照明・撮影部12の正面概要図である。FIG. 3 is a schematic front view of the illumination / photographing unit 12. この発明に係るイメージング装置の主要な制御系を示すブロック図である。It is a block diagram which shows the main control systems of the imaging device which concerns on this invention. この発明に係るイメージング装置により患者17の手100における血管101の画像を表示する状態を示す模式図である。It is a schematic diagram which shows the state which displays the image of the blood vessel 101 in the hand 100 of the patient 17 with the imaging device which concerns on this invention.
 以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明に係るイメージング装置の概要図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an imaging apparatus according to the present invention.
 このイメージング装置は、タッチパネル等の入力部11を備え、後述する制御部30等を内蔵した本体10と、アーム13により移動可能に支持された照明・撮影部12と、液晶表示パネル等から構成される表示部14と、患者17を載置する治療台16とを備える。なお、照明・撮影部12はアーム13によって支持されたものに限定されず、術者が手に携帯するものや、既存の設備に固定するものであってもよい。 The imaging apparatus includes an input unit 11 such as a touch panel, and includes a main body 10 including a control unit 30 and the like described later, an illumination / photographing unit 12 supported movably by an arm 13, a liquid crystal display panel, and the like. And a treatment table 16 on which a patient 17 is placed. Note that the illumination / imaging unit 12 is not limited to the one supported by the arm 13, and may be one carried by the operator or fixed to an existing facility.
 図2は、上述した照明・撮影部12の斜視図である。また、図3は、照明・撮影部12の正面概要図である。 FIG. 2 is a perspective view of the illumination / photographing unit 12 described above. FIG. 3 is a schematic front view of the illumination / photographing unit 12.
 この照明・撮影部12は、近赤外線および可視光を検出可能なカメラ21と、このカメラ21の外周部に配設された1個以上のLEDよりなる可視光源22と、この可視光源22の外周部に配設された1個以上のLEDよりなる励起用光源23と、可視光源22を構成するLED内に配設された1個以上のLEDよりなる確認用光源24(第2の光源に相当。)とを備える。なお、それぞれの配置はこれに限定されない。可視光源22は、可視光を照射する。励起用光源23は、インドシアニングリーンを励起させるための励起光であるその波長が760nmの近赤外光を照射する。また、確認用光源24は、インドシアニングリーンから発生する蛍光の波長と近似するその波長が810nmの近赤外光を照射する。なお、図3においては、可視光源22を構成する多数のLEDと、励起用光源23を構成する多数のLEDのうちの、一部の図示を省略している。励起用光源23の波長は、760nmに限定されず、インドシアニングリーンを励起できる波長であればよい。確認用光源24の波長は、810nmに限定されず、インドシアニングリーンが発する波長以上であってもよい。 The illumination / photographing unit 12 includes a camera 21 capable of detecting near-infrared light and visible light, a visible light source 22 including one or more LEDs disposed on the outer periphery of the camera 21, and an outer periphery of the visible light source 22. An excitation light source 23 composed of one or more LEDs disposed in the section, and a confirmation light source 24 composed of one or more LEDs disposed in the LEDs constituting the visible light source 22 (corresponding to a second light source) .). In addition, each arrangement | positioning is not limited to this. The visible light source 22 emits visible light. The excitation light source 23 irradiates near infrared light having a wavelength of 760 nm, which is excitation light for exciting indocyanine green. The confirmation light source 24 emits near-infrared light having a wavelength of 810 nm, which approximates the wavelength of fluorescence generated from indocyanine green. In FIG. 3, some of the many LEDs constituting the visible light source 22 and the many LEDs constituting the excitation light source 23 are not shown. The wavelength of the excitation light source 23 is not limited to 760 nm, and may be any wavelength that can excite indocyanine green. The wavelength of the light source 24 for confirmation is not limited to 810 nm, and may be longer than the wavelength emitted by indocyanine green.
 図4は、この発明に係るイメージング装置の主要な制御系を示すブロック図である。 FIG. 4 is a block diagram showing a main control system of the imaging apparatus according to the present invention.
 このイメージング装置は、論理演算を実行するCPU、装置の制御に必要な動作プログラムが格納されたROM、制御時にデータ等が一時的にストアされるRAM等から構成され、装置全体を制御する制御部30を備える。この制御部30は、後述する各種の画像処理を実行する画像処理部31を備える。また、この制御部30は、上述した入力部11および表示部14と接続されている。また、この制御部30は、カメラ21、可視光源22、励起用光源23および確認用光源24を備えた照明・撮影部12と接続されている。さらに、この制御部30は、カメラ21により撮影された画像を記憶する画像記憶部33と接続される場合がある。この画像記憶部33は、近赤外画像を記憶する近赤外画像記憶部34と、可視画像を記憶する可視画像記憶部35とから構成される。なお、近赤外画像記憶部34及び可視画像記憶部35を備える代わりに、可視画像と近赤外画像とを合成した画像を記憶する合成画像記憶部を備えていても良い。 This imaging apparatus is composed of a CPU that performs logical operations, a ROM that stores operation programs necessary for controlling the apparatus, a RAM that temporarily stores data during control, and the like, and a control unit that controls the entire apparatus 30. The control unit 30 includes an image processing unit 31 that executes various image processing described later. The control unit 30 is connected to the input unit 11 and the display unit 14 described above. The control unit 30 is connected to an illumination / photographing unit 12 including a camera 21, a visible light source 22, an excitation light source 23, and a confirmation light source 24. Further, the control unit 30 may be connected to an image storage unit 33 that stores an image captured by the camera 21. The image storage unit 33 includes a near-infrared image storage unit 34 that stores a near-infrared image and a visible image storage unit 35 that stores a visible image. Instead of providing the near-infrared image storage unit 34 and the visible image storage unit 35, a composite image storage unit that stores an image obtained by combining the visible image and the near-infrared image may be provided.
 以下、この発明に係るイメージング装置を使用して外科の手術を行う場合の動作について説明する。なお、以下の説明においては、患者17に対して乳癌の手術を行う場合について説明する。 Hereinafter, an operation when performing a surgical operation using the imaging apparatus according to the present invention will be described. In the following description, a case where breast cancer surgery is performed on the patient 17 will be described.
 この発明に係るイメージング装置を使用して乳癌の手術を行う場合には、最初に、確認用光源24を点灯するとともに、そのときの画像をカメラ21により撮影する。確認用光源24からは、インドシアニングリーンから発生する蛍光の波長と近似する、その波長が810nmの近赤外光が照射される。この近赤外光は、人の目では確認することができない。一方、確認用光源24から波長が810nmの近赤外光を照射するとともに、この照射領域の画像をカメラ21により撮影した場合、カメラ21が正常に動作していた場合においては、近赤外光が照射された領域の画像がカメラ21により撮影され、その画像が表示部14に表示される。これにより、カメラ21の動作確認を容易に実行することが可能となる。 When performing an operation for breast cancer using the imaging apparatus according to the present invention, first, the confirmation light source 24 is turned on and an image at that time is taken by the camera 21. The confirmation light source 24 emits near-infrared light having a wavelength of 810 nm that approximates the wavelength of fluorescence generated from indocyanine green. This near infrared light cannot be confirmed by human eyes. On the other hand, when near-infrared light having a wavelength of 810 nm is emitted from the light source for confirmation 24 and an image of this irradiation region is taken by the camera 21, when the camera 21 is operating normally, near-infrared light is emitted. An image of a region irradiated with is taken by the camera 21, and the image is displayed on the display unit 14. This makes it possible to easily check the operation of the camera 21.
 しかる後、治療台16上の仰臥した患者17の乳房にインドシアニングリーンを注射により注入する。そして、患部を含む被写体に向けて、励起用光源23から近赤外線を照射するとともに可視光源22から可視光を照射する。なお、励起用光源23から照射される近赤外光としては、上述したように、インドシアニングリーンが蛍光を発するための励起光として作用する760nmの近赤外光が採用される。これにより、インドシアニングリーンは、約800nmをピークとする近赤外領域の蛍光を発生させる。 Thereafter, indocyanine green is injected into the breast of the patient 17 who is supine on the treatment table 16 by injection. Then, near infrared rays are emitted from the excitation light source 23 toward the subject including the affected part, and visible light is emitted from the visible light source 22. As the near infrared light emitted from the excitation light source 23, as described above, 760 nm near infrared light acting as excitation light for indocyanine green to emit fluorescence is employed. Thereby, indocyanine green generates fluorescence in the near infrared region having a peak at about 800 nm.
 そして、患者17の患部付近をカメラ21により撮影する。このカメラ21は、近赤外光と可視光とを検出することが可能となっている。カメラ21により撮影された近赤外画像および可視画像は、図4に示す画像処理部31に送られる。画像処理部31においては、近赤外画像および可視画像を表示部14に表示可能な画像データに変換する。近赤外画像のデータは画像記憶部33における近赤外画像記憶部34に記憶される。また、可視画像のデータは、画像記憶部33における可視画像記憶部35に記憶される。 Then, the camera 21 captures the vicinity of the affected part of the patient 17. The camera 21 can detect near infrared light and visible light. The near-infrared image and visible image captured by the camera 21 are sent to the image processing unit 31 shown in FIG. The image processing unit 31 converts the near-infrared image and the visible image into image data that can be displayed on the display unit 14. The near-infrared image data is stored in the near-infrared image storage unit 34 in the image storage unit 33. The visible image data is stored in the visible image storage unit 35 of the image storage unit 33.
 また、画像処理部31は、近赤外画像データと可視画像データとを利用して、可視画像と近赤外画像とを融合させた合成画像を作成する。そして、画像処理部31は、表示部14に、近赤外画像、可視画像および合成画像を、領域を分けて同時に、あるいは、選択的に表示する。 The image processing unit 31 uses the near-infrared image data and the visible image data to create a composite image obtained by fusing the visible image and the near-infrared image. Then, the image processing unit 31 displays the near-infrared image, the visible image, and the composite image on the display unit 14 at the same time or selectively in divided regions.
 また、このイメージング装置により患者17の血管の画像を表示することも可能である。 It is also possible to display an image of the blood vessel of the patient 17 with this imaging apparatus.
 図5は、この発明に係るイメージング装置により患者17の手100における血管101の画像を表示する状態を示す模式図である。 FIG. 5 is a schematic diagram showing a state in which an image of the blood vessel 101 in the hand 100 of the patient 17 is displayed by the imaging apparatus according to the present invention.
 血管101の画像を撮影するときには、確認用光源24から波長が810nmの近赤外光を照射する。この波長が810nmの近赤外光によれば、血管を可視化することができ、特に、血管101のうちの動脈を鮮明に可視化することができる。一方、静脈は体表面から近い位置にあることから、810nmの近赤外光により静脈の可視化も可能である。患者17の手100に確認用光源24から波長が810nmの近赤外光を照射して、これをカメラ21により撮影した場合には、画像処理部31の作用により、図5に示すように、患者17の手100における血管101を表示部14に表示することが可能となる。このため、カメラ21の動作確認用の確認用光源24を利用して血管101の画像を可視化することが可能となる。 When photographing an image of the blood vessel 101, near-infrared light having a wavelength of 810 nm is irradiated from the light source 24 for confirmation. With near-infrared light having a wavelength of 810 nm, blood vessels can be visualized, and in particular, an artery in the blood vessel 101 can be clearly visualized. On the other hand, since the vein is close to the body surface, the vein can be visualized with near-infrared light of 810 nm. When the hand 100 of the patient 17 is irradiated with near-infrared light having a wavelength of 810 nm from the confirmation light source 24 and photographed with the camera 21, as shown in FIG. The blood vessel 101 in the hand 100 of the patient 17 can be displayed on the display unit 14. For this reason, the image of the blood vessel 101 can be visualized using the confirmation light source 24 for confirming the operation of the camera 21.
 なお、上述した実施形態においては、励起用光源23と確認用光源24がカメラ21に付設されていることから、カメラ21に移動に伴って、波長が810nmの近赤外光と波長が760の近赤外光の照射領域も移動させることができる。また、確認用光源24が常にカメラ21の撮像領域を向くことから、カメラ21および確認用光源24の向きにかかわらず、カメラ21による波長が810nmの近赤外画像の撮影の動作確認を極めて容易に実行することが可能となる。 In the above-described embodiment, since the excitation light source 23 and the confirmation light source 24 are attached to the camera 21, near-infrared light having a wavelength of 810 nm and a wavelength of 760 are associated with the movement of the camera 21. The irradiation region of near infrared light can also be moved. Further, since the confirmation light source 24 always faces the imaging region of the camera 21, it is extremely easy to confirm the operation of photographing a near-infrared image having a wavelength of 810 nm by the camera 21 regardless of the orientation of the camera 21 and the confirmation light source 24. Can be executed.
 但し、カメラ21と、可視光源22、励起用光源23および確認用光源24とを、別々に配置してもよい。この場合においても、カメラ21による撮像領域と可視光源22、励起用光源23および確認用光源24による光の照射領域とを一致させることにより、必要な画像を撮影して表示することが可能となる。但し、確認用光源24を、例えば本体10等の別の場所に設置した場合には、カメラ21の動作状況を確認するためには、カメラ21をその方向に向けることが必要となる。このとき、上述したように波長810nmの近赤外光は目視により確認できないことから、カメラ21の動作確認動作が煩雑なものとなる。 However, the camera 21, the visible light source 22, the excitation light source 23, and the confirmation light source 24 may be arranged separately. Even in this case, it is possible to shoot and display a necessary image by matching the imaging region of the camera 21 with the light irradiation region of the visible light source 22, the excitation light source 23, and the confirmation light source 24. . However, when the confirmation light source 24 is installed in another place such as the main body 10, it is necessary to point the camera 21 in that direction in order to confirm the operation state of the camera 21. At this time, as described above, near-infrared light having a wavelength of 810 nm cannot be visually confirmed, so that the operation confirmation operation of the camera 21 becomes complicated.
 また、上述した実施形態においては、励起用光源23として、波長が760nmの近赤外光を照射するものを使用しているが、励起用光源23としては、インドシアニングリーンを励起させて発光させることが可能な700nm~900nm程度の近赤外光を照射させるものを使用することができる。 In the above-described embodiment, the excitation light source 23 that emits near-infrared light having a wavelength of 760 nm is used. However, as the excitation light source 23, indocyanine green is excited to emit light. What can irradiate near infrared light of about 700 nm to 900 nm can be used.
 また、上述した実施形態においては、確認用光源24として、波長が810nmの近赤外線を照射するものを使用しているが、確認用光源24としては、インドシアニングリーンの発光波長である750nm~900nm付近の近赤外線を照射しうるものであればよい。 In the above-described embodiment, the confirmation light source 24 that emits near-infrared light having a wavelength of 810 nm is used. However, the confirmation light source 24 has a light emission wavelength of indocyanine green of 750 nm to 900 nm. Any device can be used as long as it can irradiate nearby near infrared rays.
 さらに、上述した実施形態においては、蛍光色素を含む材料としてインドシアニングリーンを使用し、このインドシアニングリーンに対して760nmの近赤外光を励起光として照射することにより、インドシアニングリーンからおおよそ800nmをピークとする近赤外領域の蛍光を発光させる場合について説明したが、近赤外線以外の光を使用してもよい。 Further, in the above-described embodiment, indocyanine green is used as a material containing a fluorescent dye, and the indocyanine green is irradiated with near-infrared light of 760 nm as excitation light, thereby approximately 800 nm from indocyanine green. Although the case of emitting fluorescence in the near-infrared region having a peak at, light other than near-infrared light may be used.
 例えば、蛍光色素として、5-ALA(5-アミノレブリン酸/5-Aminolevulinic Acid)を使用することができる。この5-ALAを使用した場合には、患者17の体内に侵入した5-ALAが蛍光物質であるプロトポルフィリン(protoporphyrinIX/PpIX)に変化する。このプロトポルフィリンに向けて400nm程度の可視光を照射すると、プロトポルフィリンから赤色の可視光が蛍光として照射される。このため、5-ALAを使用する場合には、励起用光源としてはその波長が400nm程度の可視光を照射するものを使用すればよく、また、確認用光源としては、プロトポルフィリンから蛍光として発光される赤色の可視光を照射するものを使用すればよい。 For example, 5-ALA (5-aminolevulinic acid / 5-aminolevulinic acid) can be used as a fluorescent dye. When 5-ALA is used, 5-ALA that has entered the body of the patient 17 changes to a protoporphyrin IX / PpIX that is a fluorescent substance. When visible light of about 400 nm is irradiated toward the protoporphyrin, red visible light is irradiated as fluorescence from the protoporphyrin. Therefore, when 5-ALA is used, an excitation light source that emits visible light having a wavelength of about 400 nm may be used, and a light source for confirmation emits fluorescence from protoporphyrin. What irradiates red visible light to be used may be used.
 10  本体
 11  入力部
 12  照明・撮影部
 13  アーム
 14  表示部
 16  治療台
 17  患者
 21  カメラ
 22  可視光源
 23  励起用光源
 24  確認用光源
 30  制御部
 31  画像処理部
 33  画像記憶部
 34  近赤外画像記憶部
 35  可視画像記憶部
DESCRIPTION OF SYMBOLS 10 Main body 11 Input part 12 Illumination / imaging | photography part 13 Arm 14 Display part 16 Treatment table 17 Patient 21 Camera 22 Visible light source 23 Light source for excitation 24 Light source for confirmation 30 Control part 31 Image processing part 33 Image storage part 34 Near infrared image memory | storage Part 35 Visible Image Storage Unit

Claims (5)

  1.  被写体に注入された蛍光色素を励起させるための励起光を前記被写体に向けて照射する励起用光源と、
     励起光が照射されることにより前記蛍光色素から発生する蛍光を撮影するカメラと、
     を備えた蛍光イメージング装置において、
     前記励起用光源に、前記蛍光に相当する波長の光を照射するための第2の光源を付設したイメージング装置。
    An excitation light source that irradiates the subject with excitation light for exciting the fluorescent dye injected into the subject;
    A camera that captures fluorescence generated from the fluorescent dye when irradiated with excitation light;
    In a fluorescence imaging apparatus comprising:
    An imaging apparatus in which a second light source for irradiating light of a wavelength corresponding to the fluorescence is attached to the excitation light source.
  2.  請求項1に記載のイメージング装置において、
     前記第2の光源は、前記蛍光に相当する波長の光を照射して照射領域の画像を前記カメラで撮影することにより前記カメラが正常に動作しているか否かを確認するための確認用光源であるイメージング装置。
    The imaging apparatus according to claim 1, wherein
    The second light source is a confirmation light source for confirming whether or not the camera is operating normally by irradiating light of a wavelength corresponding to the fluorescence and taking an image of an irradiation area with the camera. An imaging device.
  3.  請求項2に記載のイメージング装置において、
     前記励起用光源と前記第2の光源とは、前記カメラに付設されているイメージング装置。
    The imaging apparatus according to claim 2, wherein
    The excitation light source and the second light source are imaging devices attached to the camera.
  4.  請求項1から請求項3のいずれかに記載のイメージング装置において、
     前記励起光および前記蛍光は、近赤外光であるイメージング装置。
    The imaging apparatus according to any one of claims 1 to 3,
    The imaging apparatus in which the excitation light and the fluorescence are near infrared light.
  5.  請求項4に記載のイメージング装置において、
     前記蛍光に相当する波長の光を被写体に照射して得られた血管の画像を表示部に表示するための画像処理部を備えるイメージング装置。
    The imaging device according to claim 4.
    An imaging apparatus comprising an image processing unit for displaying a blood vessel image obtained by irradiating a subject with light having a wavelength corresponding to the fluorescence on a display unit.
PCT/JP2015/069603 2014-09-08 2015-07-08 Imaging device WO2016039001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182534 2014-09-08
JP2014-182534 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039001A1 true WO2016039001A1 (en) 2016-03-17

Family

ID=55458763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069603 WO2016039001A1 (en) 2014-09-08 2015-07-08 Imaging device

Country Status (1)

Country Link
WO (1) WO2016039001A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019180712A (en) * 2018-04-09 2019-10-24 株式会社島津製作所 Medical treatment support device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050633A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Imaging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050633A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019180712A (en) * 2018-04-09 2019-10-24 株式会社島津製作所 Medical treatment support device
JP7043947B2 (en) 2018-04-09 2022-03-30 株式会社島津製作所 Treatment support device

Similar Documents

Publication Publication Date Title
JP6319448B2 (en) Imaging device
JP6299770B2 (en) Infrared imaging device
JP6319449B2 (en) Imaging device
JP5074044B2 (en) Fluorescence observation apparatus and method of operating fluorescence observation apparatus
JPH0924053A (en) Surgical operation support system
CN108882896A (en) For evaluating the method and system of the healing of tissue
US9522240B2 (en) Visualization apparatus for vein
US10413619B2 (en) Imaging device
JP6184086B2 (en) Phototherapy device
KR20130133969A (en) Automatically controlled laser apparatus by image-analysis
JP6485275B2 (en) Imaging device
US20190239749A1 (en) Imaging apparatus
WO2018003169A1 (en) Imaging device
JP6512320B2 (en) Imaging device
WO2016039001A1 (en) Imaging device
JP2019066398A (en) Imaging device
JP6295915B2 (en) Imaging device
JP2021186417A (en) Treatment support device and setup method of region of interest
US20060264761A1 (en) Portable fluorescence scanner for molecular signatures
JP2015188559A (en) Medical imaging apparatus
JP2017104147A (en) Attachment implement of phosphor marker attached to surgical instrument, method for detecting surgical instrument left inside body using the same, and device for detecting surgical instrument left inside body
JP6432533B2 (en) Imaging device
JP2016112220A (en) Imaging device
US20200261746A1 (en) Controlled irradiation of an object
JP2016112219A (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载