WO2014192138A1 - Refrigeration cycle device - Google Patents
Refrigeration cycle device Download PDFInfo
- Publication number
- WO2014192138A1 WO2014192138A1 PCT/JP2013/065207 JP2013065207W WO2014192138A1 WO 2014192138 A1 WO2014192138 A1 WO 2014192138A1 JP 2013065207 W JP2013065207 W JP 2013065207W WO 2014192138 A1 WO2014192138 A1 WO 2014192138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- flow rate
- refrigerant
- rate adjustment
- heat storage
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 62
- 238000005338 heat storage Methods 0.000 claims abstract description 115
- 239000003507 refrigerant Substances 0.000 claims abstract description 89
- 238000010438 heat treatment Methods 0.000 claims abstract description 68
- 238000010257 thawing Methods 0.000 claims description 39
- 238000001816 cooling Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 9
- 239000011232 storage material Substances 0.000 description 8
- 238000004781 supercooling Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/24—Storage receiver heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
- F25B40/02—Subcoolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present invention relates to a refrigeration cycle apparatus including a heat storage device in a refrigerant circuit.
- a heat storage device is arranged in the refrigerant circuit, and when heating is started up or when the outdoor heat exchanger is defrosted at a low outdoor temperature, the heat stored in the heat storage device is used for quick heating operation.
- a refrigeration cycle apparatus that starts or shortens the defrosting operation time.
- a separate heating unit is provided as a heat source in the heat storage device, and during the heat storage operation, the system that drives the heating unit or exhaust heat from the shell of the compressor
- a configuration in which heat is transferred to a heat storage material to perform a heat storage operation, or a discharge refrigerant of a compressor is used as a heat source see, for example, Patent Documents 1 and 2).
- JP 2000-291985 A Japanese Patent No. 2503637
- the conventional heat storage device requires additional equipment and electric power by preparing a heating unit for the heat storage device, which is an external heat source, and because the heat storage device takes away the exhaust heat from the compressor shell, There is a problem that the rise is worse, and that the rise of the heating is also worsened because heat for storing heat is taken from the refrigerant discharged from the compressor.
- the present invention has been made to solve such problems, and does not require an external heat source. Also, heating is started by taking necessary heat from the refrigeration cycle as a heat storage heat source.
- An object of the present invention is to provide a refrigeration cycle device that stores heat in a heat storage device without adversely affecting the temperature, shortens the time of defrosting operation, and improves indoor comfort.
- the refrigeration cycle apparatus includes a compressor, a use side heat exchanger, a heat source side flow rate adjustment valve, and a heat source side heat exchanger, and the compressor, the use side heat exchange during heating operation.
- a refrigerating cycle device in which the refrigerant circulates in the order of a heat exchanger, the heat source side flow rate adjustment valve, and the heat source side heat exchanger, and a heat storage device that stores heat by exchanging heat with the circulating refrigerant is the use side heat exchanger It is provided between the heat source side flow rate adjustment valves.
- the refrigeration cycle apparatus when the heat storage device is heated, the liquid refrigerant that has radiated heat at the use side heat exchanger and finished the heating operation is used as a heat source, thereby providing another heat source for heating the heat storage device.
- the heat storage device can be warmed up.
- the exhaust heat of the compressor shell in the refrigeration cycle and the heat of the discharged refrigerant are not used as the heat source, it is possible to provide a refrigeration cycle apparatus in which the heating operation starts quickly.
- FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
- FIG. It is a Mollier diagram at the time of the heating heat storage driving
- FIG. It is the figure which showed the heating capability at the time of the defrost operation of the refrigeration cycle apparatus which concerns on Embodiment 1.
- FIG. 3 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2.
- 6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3.
- FIG. 6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4.
- FIG. 1 is a configuration diagram of the refrigeration cycle apparatus according to the first embodiment.
- the compressor 1, the heat source side heat exchanger 2, the heat source side flow rate adjustment valve 3, the four-way valve 4, the use side heat exchanger 5, and the heat storage device 6 are connected by a refrigerant pipe 7 to constitute a refrigeration cycle apparatus.
- the heat storage device 6 of the refrigeration cycle device is provided between the use side heat exchanger 5 and the heat source side flow rate adjustment valve 3.
- Fig. 2 is a Mollier diagram during heating and heat storage operation. As shown in FIG. 2, the high-pressure liquid refrigerant condensed in the use side heat exchanger 5 continues to be supercooled through the heat storage device 6.
- the opening degree of the heat source side flow rate adjusting valve 3 is controlled by the degree of supercooling of the outlet refrigerant of the use side heat exchanger 5 or the degree of superheat of the outlet refrigerant of the heat source side heat exchanger 2.
- the heat storage device 6 when the heat storage device 6 is heated, the heat storage device 6 is provided without providing a separate heat source for heating the heat storage device 6 by using the high-pressure liquid refrigerant radiated by the use-side heat exchanger 5 and finishing the heating operation as a heat source. 6 can be warmed. Moreover, since the exhaust heat of the compressor shell in the refrigeration cycle and the heat of the discharged refrigerant are not used, the start-up of the heating operation is not deteriorated.
- the four-way valve 4 is switched from the heating and heat storage operation, and the gas refrigerant discharged from the compressor 1 is sent to the heat source side heat exchanger 2 to be condensed and defrosted.
- the condensed liquid refrigerant is sent to the heat storage device 6 via the heat source side flow rate adjustment valve 3 and is evaporated by the heat stored during the heating heat storage operation.
- the evaporated gas refrigerant is sucked into the compressor 1 through the use side heat exchanger 5.
- the heat-source-side flow rate adjustment valve 3 during the defrosting operation has a fully opened opening.
- the change of the heating capacity which compared the time when the defrost operation of the heat source side heat exchanger 2 was performed with the heat stored in the heat storage device 6 and the time when the defrost operation was performed in a refrigeration cycle without the heat storage device 6 Is shown in FIG.
- the defrosting operation of the refrigeration cycle with the heat storage device 6 is shorter than the refrigeration cycle without the heat storage device 6, and the defrosting time is shortened and the heating operation is restored in a short time from the start of the defrosting operation. For this reason, the indoor comfort at the time of heating operation improves.
- the heat storage device 6 includes a type that is built in the outdoor unit and a type that is arranged by being interrupted in the middle of the refrigerant pipe outside the outdoor unit. In the case of installing outside, it is possible to enhance the defrosting capability without increasing the installation area in plan view by installing it in the lower part of the outdoor unit. Moreover, it is also possible to employ
- Either the sensible heat storage material or the latent heat storage material can be adopted as the heat storage material incorporated in the heat storage device 6.
- a latent heat storage material is preferable.
- paraffin or polyethylene glycol having a melting point higher than 0 ° C. is preferable.
- the refrigerant flow path in the heat storage device 6 may have any shape as long as it can contact the heat storage material over a large area for heat transfer.
- a spiral heat transfer tube or a plate heat exchanger shape can be considered.
- FIG. 4 is a configuration diagram of the refrigeration cycle apparatus according to the second embodiment.
- the compressor 1, the heat source side heat exchanger 2, the heat source side flow rate adjustment valve 3, the four-way valve 4, the use side heat exchanger 5, the use side flow rate adjustment valve 8, and the heat storage device 6 are connected by a refrigerant pipe 7, and a refrigeration cycle Configure the device.
- the heat storage device 6 of the refrigeration cycle apparatus is provided between the use side flow rate adjustment valve 8 and the heat source side flow rate adjustment valve 3.
- FIG. 5 is a Mollier diagram at the time of heating and heat storage operation.
- the high-pressure liquid refrigerant condensed in the use-side heat exchanger 5 becomes an intermediate pressure between the condensing pressure and the evaporation pressure after the first-stage pressure reduction is performed by the use-side flow rate adjustment valve 8. Then, it is supercooled through the heat storage device 6. Then, the second pressure reduction is performed by the heat source side flow rate adjustment valve 3 and the heat source side heat exchanger 2 evaporates.
- the use side flow rate adjustment valve 8 controls the opening degree by the degree of supercooling of the outlet refrigerant of the use side heat exchanger 5 or the degree of superheat of the outlet refrigerant of the heat source side heat exchanger 2. Further, the heat source side flow rate adjustment valve 3 controls the opening degree so that the refrigerant radiated by the upstream heat storage device 6 becomes an intermediate pressure between the condensation pressure and the evaporation pressure.
- the heat storage device 6 When the heat storage device 6 is heated in this way, the high-pressure liquid refrigerant that has radiated heat at the plurality of use-side heat exchangers 5 and finished the heating operation is reduced to an intermediate pressure by the use-side flow rate adjustment valve 8 and used as a heat source.
- the heat storage device 6 can be warmed without providing another heat source for heating the heat storage device 6.
- the exhaust heat of the compressor shell in the refrigeration cycle and the heat of the discharged refrigerant are not used as in the first embodiment, the start-up of the heating operation is not deteriorated.
- FIG. 3 shows the same as in the first embodiment.
- Embodiment 3 In the third embodiment, by providing a bypass refrigerant circuit in the refrigeration cycle apparatus according to the second embodiment, the heating operation and the defrosting operation can be performed simultaneously.
- FIG. 6 is a configuration diagram of the refrigeration cycle apparatus according to the third embodiment.
- a built-in heat storage device 6 is connected by a refrigerant pipe 7 to constitute a refrigeration cycle device.
- a first bypass circuit 9 connected from the discharge side of the compressor 1 to the refrigerant inlet side of the heat source side heat exchanger 2, and a first bypass flow rate provided in the first bypass circuit 9
- a second bypass circuit 11 branched from the refrigerant pipe 7 between the regulating valve 10, the use side flow regulating valve 8 and the heat storage device 6 and connected to the suction refrigerant pipe of the compressor 1 through the heat exchanger 6b for heat radiation;
- a second bypass flow rate adjustment valve 12 provided in the second bypass circuit 11 is provided.
- the Mollier diagram during the heating and heat storage operation in the third embodiment is the same as that in the second embodiment and is as shown in FIG. That is, the high-pressure liquid refrigerant condensed in the use-side heat exchanger 5 is reduced to the first stage by the use-side flow rate adjustment valve 8 and then becomes an intermediate pressure between the condensing pressure and the evaporation pressure. 6 is supercooled. Then, the second pressure reduction is performed by the heat source side flow rate adjustment valve 3 and the heat source side heat exchanger 2 evaporates.
- the use side flow rate adjustment valve 8 controls the opening degree by the degree of supercooling of the outlet refrigerant of the use side heat exchanger 5 or the degree of superheat of the outlet refrigerant of the heat source side heat exchanger 2. Further, the heat source side flow rate adjustment valve 3 controls the opening degree so that the refrigerant radiated by the upstream heat storage device 6 becomes an intermediate pressure between the condensation pressure and the evaporation pressure.
- Heating defrosting operation Next, the heating defrosting operation in which the heating operation is performed while defrosting the heat source side heat exchanger 2 will be described.
- the heat source side flow rate adjustment valve 3 is fully closed, the first bypass flow rate adjustment valve 10 and the second bypass flow rate adjustment valve 12 are opened, and the gas refrigerant discharged from the compressor 1 is used on the usage side.
- Fig. 7 shows the Mollier diagram during this heating defrosting operation.
- the gas refrigerant discharged from the compressor 1 branches into two, one of which condenses in the use side heat exchanger 5 and is depressurized by the use side flow rate adjustment valve 8 and the second bypass flow rate adjustment valve 12 to release heat from the heat storage device 6. It evaporates in the heat exchanger 6b and is sucked into the compressor 1.
- the other side of the branched gas refrigerant discharged from the compressor 1 is depressurized by the first bypass flow rate adjusting valve 10 and then condensed by the heat source side heat exchanger 2 to perform defrosting.
- Embodiments 1 to 3 are embodiments assuming heating operation or defrosting operation.
- the heat storage device 6 When the heat storage device 6 is caused to function during cooling operation, the low-temperature and low-pressure refrigerant passes through the heat storage device 6 and cools and stores heat in the heat storage material. As a result, the rise of the cooling operation is worsened.
- the fourth embodiment is a refrigeration cycle apparatus in which a heat storage device bypass circuit 13 for bypassing a low-temperature and low-pressure refrigerant is provided in the heat storage device 6 in order to suppress a decrease in capacity at the start of cooling operation.
- FIG. 9 shows a refrigeration cycle apparatus according to the fourth embodiment.
- the heat storage device 6 is provided with a heat storage device bypass circuit 13 that allows the refrigerant to flow from the heat source side heat exchanger 2 to the use side heat exchanger 5.
- the heat storage device bypass circuit 13 is provided with a check valve 14 to regulate the flow of the refrigerant.
- the refrigerant pipe 7 of the refrigeration cycle apparatus is provided with a check valve 15 for blocking the refrigerant flow from the heat source side heat exchanger 2 to the heat storage apparatus 6 side, thereby restricting the refrigerant flow.
- refrigerant employed in the refrigeration cycle apparatus is not particularly limited.
- refrigerants such as R410A, R32, R407C, R404A, and HFO1234yf can be used from natural refrigerants such as carbon dioxide, hydrocarbons, and helium. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
A refrigeration cycle device having a compressor (1), a usage-side heat exchanger (5), a heat-source-side flow volume adjustment valve (3), and a heat-source-side heat exchanger (2), with a refrigerant circulating successively through the compressor (1), the usage-side heat exchanger (5), the heat-source-side flow volume adjustment valve (3), and the heat-source-side heat exchanger (2), during a heating operation. A heat storage device (6), which accumulates heat by exchanging heat with the circulating refrigerant, is provided between the usage-side heat exchanger (5) and the heat-source-side flow volume adjustment valve (3).
Description
本発明は、蓄熱装置を冷媒回路内に備えた冷凍サイクル装置に関するものである。
The present invention relates to a refrigeration cycle apparatus including a heat storage device in a refrigerant circuit.
従来の技術として、冷媒回路内に蓄熱装置を配置し、暖房の立ち上がり時や低外気温のときの室外熱交換器の除霜時に、蓄熱装置に蓄えた熱を利用して速やかな暖房運転の開始を行ったり、除霜運転時間の短縮化を行う冷凍サイクル装置が知られている。
As a conventional technology, a heat storage device is arranged in the refrigerant circuit, and when heating is started up or when the outdoor heat exchanger is defrosted at a low outdoor temperature, the heat stored in the heat storage device is used for quick heating operation. There is known a refrigeration cycle apparatus that starts or shortens the defrosting operation time.
このような冷凍サイクル装置の蓄熱装置に蓄熱する際には、その熱源として例えば別途加熱部を蓄熱装置内に設け、蓄熱運転時は加熱部を駆動するシステムや、圧縮機のシェルからの排熱を蓄熱材に伝熱させ蓄熱運転を実施する構成、または圧縮機の吐出冷媒を熱源とするものなどがある(例えば特許文献1、2を参照)。
When storing heat in the heat storage device of such a refrigeration cycle device, for example, a separate heating unit is provided as a heat source in the heat storage device, and during the heat storage operation, the system that drives the heating unit or exhaust heat from the shell of the compressor There is a configuration in which heat is transferred to a heat storage material to perform a heat storage operation, or a discharge refrigerant of a compressor is used as a heat source (see, for example, Patent Documents 1 and 2).
従来の蓄熱装置は、外部熱源である蓄熱装置用の加熱部を用意することで追加の設備や電力を必要としてしまう点や、圧縮機のシェルからの排熱を蓄熱装置に奪われるため暖房の立ち上がりが悪くなる点、また、圧縮機の吐出冷媒から蓄熱用の熱を奪うためやはり暖房の立ち上がりが悪くなってしまう点などの問題があった。
The conventional heat storage device requires additional equipment and electric power by preparing a heating unit for the heat storage device, which is an external heat source, and because the heat storage device takes away the exhaust heat from the compressor shell, There is a problem that the rise is worse, and that the rise of the heating is also worsened because heat for storing heat is taken from the refrigerant discharged from the compressor.
本発明は、このような問題点を解決するためになされたもので、外部熱源を必要とすることがなく、また、冷凍サイクル内から必要な熱を蓄熱用熱源として奪うことで暖房の立ち上がりなどに悪影響を与えないで蓄熱装置に蓄熱を行い、除霜運転の時間を短縮し室内の快適性を向上させる冷凍サイクル装置を提供することを目的としている。
The present invention has been made to solve such problems, and does not require an external heat source. Also, heating is started by taking necessary heat from the refrigeration cycle as a heat storage heat source. An object of the present invention is to provide a refrigeration cycle device that stores heat in a heat storage device without adversely affecting the temperature, shortens the time of defrosting operation, and improves indoor comfort.
本発明に係る冷凍サイクル装置は、圧縮機と、利用側熱交換器と、熱源側流量調整弁と、熱源側熱交換器と、を有し、暖房運転時に前記圧縮機、前記利用側熱交換器、前記熱源側流量調整弁、前記熱源側熱交換器、の順で冷媒が循環する冷凍サイクル装置であって、循環冷媒と熱交換して蓄熱する蓄熱装置が、前記利用側熱交換器と前記熱源側流量調整弁の間に設けられているものである。
The refrigeration cycle apparatus according to the present invention includes a compressor, a use side heat exchanger, a heat source side flow rate adjustment valve, and a heat source side heat exchanger, and the compressor, the use side heat exchange during heating operation. A refrigerating cycle device in which the refrigerant circulates in the order of a heat exchanger, the heat source side flow rate adjustment valve, and the heat source side heat exchanger, and a heat storage device that stores heat by exchanging heat with the circulating refrigerant is the use side heat exchanger It is provided between the heat source side flow rate adjustment valves.
本発明に係る冷凍サイクル装置によれば、蓄熱装置を加熱する際に利用側熱交換器で放熱し暖房運転を終えた液冷媒を熱源とすることで、蓄熱装置を加熱する別熱源を設けることなく蓄熱装置を暖めることができる。また、熱源として冷凍サイクル内の圧縮機のシェルの排熱や、吐出冷媒の熱を利用することもないので、暖房運転の立ち上がりが速やかな冷凍サイクル装置を提供することが可能となる。
According to the refrigeration cycle apparatus according to the present invention, when the heat storage device is heated, the liquid refrigerant that has radiated heat at the use side heat exchanger and finished the heating operation is used as a heat source, thereby providing another heat source for heating the heat storage device. The heat storage device can be warmed up. In addition, since the exhaust heat of the compressor shell in the refrigeration cycle and the heat of the discharged refrigerant are not used as the heat source, it is possible to provide a refrigeration cycle apparatus in which the heating operation starts quickly.
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below.
実施の形態1.
図1は、本実施の形態1に係る冷凍サイクル装置の構成図である。圧縮機1、熱源側熱交換器2、熱源側流量調整弁3、四方弁4、利用側熱交換器5、蓄熱装置6、が冷媒配管7で接続され、冷凍サイクル装置を構成している。この冷凍サイクル装置の蓄熱装置6は、利用側熱交換器5と熱源側流量調整弁3の間に設けられている。Embodiment 1 FIG.
FIG. 1 is a configuration diagram of the refrigeration cycle apparatus according to the first embodiment. Thecompressor 1, the heat source side heat exchanger 2, the heat source side flow rate adjustment valve 3, the four-way valve 4, the use side heat exchanger 5, and the heat storage device 6 are connected by a refrigerant pipe 7 to constitute a refrigeration cycle apparatus. The heat storage device 6 of the refrigeration cycle device is provided between the use side heat exchanger 5 and the heat source side flow rate adjustment valve 3.
図1は、本実施の形態1に係る冷凍サイクル装置の構成図である。圧縮機1、熱源側熱交換器2、熱源側流量調整弁3、四方弁4、利用側熱交換器5、蓄熱装置6、が冷媒配管7で接続され、冷凍サイクル装置を構成している。この冷凍サイクル装置の蓄熱装置6は、利用側熱交換器5と熱源側流量調整弁3の間に設けられている。
FIG. 1 is a configuration diagram of the refrigeration cycle apparatus according to the first embodiment. The
次に本実施の形態1における暖房蓄熱運転と除霜運転について説明する。
[暖房蓄熱運転]
本実施の形態1に係る冷凍サイクル装置を暖房運転すると、圧縮機1を出たガス冷媒は利用側熱交換器5において凝縮し、液冷媒となる。利用側熱交換器5を出た高圧の液冷媒は蓄熱装置6内を通過する。このとき蓄熱装置6は、高圧の液冷媒により蓄熱される。高圧の液冷媒は蓄熱装置6に放熱して過冷却状態となり、熱源側流量調整弁3を介して熱源側熱交換器2で蒸発し、圧縮機1に吸引される。 Next, the heating heat storage operation and the defrosting operation in the first embodiment will be described.
[Heating heat storage operation]
When the refrigeration cycle apparatus according to the first embodiment is operated for heating, the gas refrigerant exiting thecompressor 1 is condensed in the use-side heat exchanger 5 and becomes liquid refrigerant. The high-pressure liquid refrigerant that has exited from the use-side heat exchanger 5 passes through the heat storage device 6. At this time, the heat storage device 6 is stored with a high-pressure liquid refrigerant. The high-pressure liquid refrigerant dissipates heat to the heat storage device 6 to be in a supercooled state, evaporates in the heat source side heat exchanger 2 through the heat source side flow rate adjustment valve 3, and is sucked into the compressor 1.
[暖房蓄熱運転]
本実施の形態1に係る冷凍サイクル装置を暖房運転すると、圧縮機1を出たガス冷媒は利用側熱交換器5において凝縮し、液冷媒となる。利用側熱交換器5を出た高圧の液冷媒は蓄熱装置6内を通過する。このとき蓄熱装置6は、高圧の液冷媒により蓄熱される。高圧の液冷媒は蓄熱装置6に放熱して過冷却状態となり、熱源側流量調整弁3を介して熱源側熱交換器2で蒸発し、圧縮機1に吸引される。 Next, the heating heat storage operation and the defrosting operation in the first embodiment will be described.
[Heating heat storage operation]
When the refrigeration cycle apparatus according to the first embodiment is operated for heating, the gas refrigerant exiting the
図2は暖房蓄熱運転時のモリエル線図である。図2に示すように利用側熱交換器5で凝縮した高圧の液冷媒は、引き続き蓄熱装置6を通り過冷却されている。また、熱源側流量調整弁3は、利用側熱交換器5の出口冷媒の過冷却度もしくは熱源側熱交換器2の出口冷媒の過熱度により開度が制御される。
Fig. 2 is a Mollier diagram during heating and heat storage operation. As shown in FIG. 2, the high-pressure liquid refrigerant condensed in the use side heat exchanger 5 continues to be supercooled through the heat storage device 6. The opening degree of the heat source side flow rate adjusting valve 3 is controlled by the degree of supercooling of the outlet refrigerant of the use side heat exchanger 5 or the degree of superheat of the outlet refrigerant of the heat source side heat exchanger 2.
このように蓄熱装置6を加熱する際に利用側熱交換器5で放熱し暖房運転を終えた高圧の液冷媒を熱源とすることで、蓄熱装置6を加熱する別熱源を設けることなく蓄熱装置6を暖めることができる。また、冷凍サイクル内の圧縮機のシェルの排熱や、吐出冷媒の熱を利用することもないので、暖房運転の立ち上がりが悪くなることもない。
Thus, when the heat storage device 6 is heated, the heat storage device 6 is provided without providing a separate heat source for heating the heat storage device 6 by using the high-pressure liquid refrigerant radiated by the use-side heat exchanger 5 and finishing the heating operation as a heat source. 6 can be warmed. Moreover, since the exhaust heat of the compressor shell in the refrigeration cycle and the heat of the discharged refrigerant are not used, the start-up of the heating operation is not deteriorated.
[除霜運転]
次に、熱源側熱交換器2を除霜する際の運転を説明する。暖房蓄熱運転から四方弁4を切り替え、圧縮機1を出たガス冷媒を熱源側熱交換器2に送って凝縮させ除霜を行う。凝縮した液冷媒は熱源側流量調整弁3を介して蓄熱装置6に送られ暖房蓄熱運転時に蓄熱した熱により蒸発する。蒸発したガス冷媒は利用側熱交換器5を通って圧縮機1に吸引される。除霜運転時の熱源側流量調整弁3は、全開開度となっている。 [Defrosting operation]
Next, the operation at the time of defrosting the heat sourceside heat exchanger 2 will be described. The four-way valve 4 is switched from the heating and heat storage operation, and the gas refrigerant discharged from the compressor 1 is sent to the heat source side heat exchanger 2 to be condensed and defrosted. The condensed liquid refrigerant is sent to the heat storage device 6 via the heat source side flow rate adjustment valve 3 and is evaporated by the heat stored during the heating heat storage operation. The evaporated gas refrigerant is sucked into the compressor 1 through the use side heat exchanger 5. The heat-source-side flow rate adjustment valve 3 during the defrosting operation has a fully opened opening.
次に、熱源側熱交換器2を除霜する際の運転を説明する。暖房蓄熱運転から四方弁4を切り替え、圧縮機1を出たガス冷媒を熱源側熱交換器2に送って凝縮させ除霜を行う。凝縮した液冷媒は熱源側流量調整弁3を介して蓄熱装置6に送られ暖房蓄熱運転時に蓄熱した熱により蒸発する。蒸発したガス冷媒は利用側熱交換器5を通って圧縮機1に吸引される。除霜運転時の熱源側流量調整弁3は、全開開度となっている。 [Defrosting operation]
Next, the operation at the time of defrosting the heat source
このように蓄熱装置6に蓄えた熱で熱源側熱交換器2の除霜運転を行った時と、蓄熱装置6がない冷凍サイクルで除霜運転を行った時とを比較した暖房能力の変化を図3に示す。
図3に示すように蓄熱装置6がない冷凍サイクルに比べて蓄熱装置6がある冷凍サイクルの除霜運転は、除霜時間が短くなり除霜運転の開始から短時間で暖房運転に復旧する。
このため、暖房運転時の室内の快適性が向上する。 Thus, the change of the heating capacity which compared the time when the defrost operation of the heat sourceside heat exchanger 2 was performed with the heat stored in the heat storage device 6 and the time when the defrost operation was performed in a refrigeration cycle without the heat storage device 6 Is shown in FIG.
As shown in FIG. 3, the defrosting operation of the refrigeration cycle with theheat storage device 6 is shorter than the refrigeration cycle without the heat storage device 6, and the defrosting time is shortened and the heating operation is restored in a short time from the start of the defrosting operation.
For this reason, the indoor comfort at the time of heating operation improves.
図3に示すように蓄熱装置6がない冷凍サイクルに比べて蓄熱装置6がある冷凍サイクルの除霜運転は、除霜時間が短くなり除霜運転の開始から短時間で暖房運転に復旧する。
このため、暖房運転時の室内の快適性が向上する。 Thus, the change of the heating capacity which compared the time when the defrost operation of the heat source
As shown in FIG. 3, the defrosting operation of the refrigeration cycle with the
For this reason, the indoor comfort at the time of heating operation improves.
蓄熱装置6は、室外ユニットに内蔵される形式や、室外ユニットの外部で冷媒配管の途中に割り込ませて配置する形式がある。外部に設置する場合には、室外ユニットの下部に設置することで平面視の設置面積を増やすことなく除霜能力を増強することが可能となる。また、室外ユニット外部に蓄熱装置6を配置することで、既設の室外ユニットに蓄熱装置6を採用することも可能である。
The heat storage device 6 includes a type that is built in the outdoor unit and a type that is arranged by being interrupted in the middle of the refrigerant pipe outside the outdoor unit. In the case of installing outside, it is possible to enhance the defrosting capability without increasing the installation area in plan view by installing it in the lower part of the outdoor unit. Moreover, it is also possible to employ | adopt the heat storage apparatus 6 to the existing outdoor unit by arrange | positioning the heat storage apparatus 6 outside an outdoor unit.
蓄熱装置6に内蔵される蓄熱材は、顕熱蓄熱材と潜熱蓄熱材のどちらでも採用することができる。熱容量の観点からは、潜熱蓄熱材が好ましく、例えばパラフィンやポリエチレングリコールなどで融点が0℃よりも大きいものが好適である。融点が0℃以上の潜熱蓄熱材を用いることで除霜運転時の熱量を十分に確保することができる。
Either the sensible heat storage material or the latent heat storage material can be adopted as the heat storage material incorporated in the heat storage device 6. From the viewpoint of heat capacity, a latent heat storage material is preferable. For example, paraffin or polyethylene glycol having a melting point higher than 0 ° C. is preferable. By using a latent heat storage material having a melting point of 0 ° C. or higher, a sufficient amount of heat during the defrosting operation can be secured.
蓄熱装置6内の冷媒流路は、伝熱のため蓄熱材と大きい面積で接触することができればどのような形状でもよい。例えば螺旋形状の伝熱管や、プレート式熱交換器形状などが考えられる。
The refrigerant flow path in the heat storage device 6 may have any shape as long as it can contact the heat storage material over a large area for heat transfer. For example, a spiral heat transfer tube or a plate heat exchanger shape can be considered.
実施の形態2.
本実施の形態2に係る冷凍サイクル装置は、複数の利用側熱交換器5とこの複数の利用側熱交換器5に対応した利用側流量調整弁8を備える点で実施の形態1に係る冷凍装置と異なる。
図4は、本実施の形態2に係る冷凍サイクル装置の構成図である。圧縮機1、熱源側熱交換器2、熱源側流量調整弁3、四方弁4、利用側熱交換器5、利用側流量調整弁8、蓄熱装置6、が冷媒配管7で接続され、冷凍サイクル装置を構成している。この冷凍サイクル装置の蓄熱装置6は、利用側流量調整弁8と熱源側流量調整弁3の間に設けられている。Embodiment 2. FIG.
The refrigeration cycle apparatus according to the second embodiment is a refrigeration according to the first embodiment in that it includes a plurality of usage-side heat exchangers 5 and a usage-side flow rate adjustment valve 8 corresponding to the plurality of usage-side heat exchangers 5. Different from the device.
FIG. 4 is a configuration diagram of the refrigeration cycle apparatus according to the second embodiment. Thecompressor 1, the heat source side heat exchanger 2, the heat source side flow rate adjustment valve 3, the four-way valve 4, the use side heat exchanger 5, the use side flow rate adjustment valve 8, and the heat storage device 6 are connected by a refrigerant pipe 7, and a refrigeration cycle Configure the device. The heat storage device 6 of the refrigeration cycle apparatus is provided between the use side flow rate adjustment valve 8 and the heat source side flow rate adjustment valve 3.
本実施の形態2に係る冷凍サイクル装置は、複数の利用側熱交換器5とこの複数の利用側熱交換器5に対応した利用側流量調整弁8を備える点で実施の形態1に係る冷凍装置と異なる。
図4は、本実施の形態2に係る冷凍サイクル装置の構成図である。圧縮機1、熱源側熱交換器2、熱源側流量調整弁3、四方弁4、利用側熱交換器5、利用側流量調整弁8、蓄熱装置6、が冷媒配管7で接続され、冷凍サイクル装置を構成している。この冷凍サイクル装置の蓄熱装置6は、利用側流量調整弁8と熱源側流量調整弁3の間に設けられている。
The refrigeration cycle apparatus according to the second embodiment is a refrigeration according to the first embodiment in that it includes a plurality of usage-
FIG. 4 is a configuration diagram of the refrigeration cycle apparatus according to the second embodiment. The
次に本実施の形態2における暖房蓄熱運転と除霜運転について説明する。
[暖房蓄熱運転]
本実施の形態2に係る冷凍サイクル装置を暖房運転すると、圧縮機1を出たガス冷媒は利用側熱交換器5において凝縮し、液冷媒となる。利用側熱交換器5を出た高圧の液冷媒は、利用側流量調整弁8を介して蓄熱装置6内を通過する。このとき蓄熱装置6は、高圧の液冷媒により蓄熱される。高圧の液冷媒は蓄熱装置6に放熱して過冷却状態となり、熱源側流量調整弁3を介して熱源側熱交換器2で蒸発し、圧縮機1に吸引される。 Next, the heating and heat storage operation and the defrosting operation in the second embodiment will be described.
[Heating heat storage operation]
When the refrigeration cycle apparatus according toEmbodiment 2 is operated for heating, the gas refrigerant exiting the compressor 1 is condensed in the use-side heat exchanger 5 and becomes liquid refrigerant. The high-pressure liquid refrigerant exiting the use side heat exchanger 5 passes through the heat storage device 6 via the use side flow rate adjustment valve 8. At this time, the heat storage device 6 is stored with a high-pressure liquid refrigerant. The high-pressure liquid refrigerant dissipates heat to the heat storage device 6 to be in a supercooled state, evaporates in the heat source side heat exchanger 2 through the heat source side flow rate adjustment valve 3, and is sucked into the compressor 1.
[暖房蓄熱運転]
本実施の形態2に係る冷凍サイクル装置を暖房運転すると、圧縮機1を出たガス冷媒は利用側熱交換器5において凝縮し、液冷媒となる。利用側熱交換器5を出た高圧の液冷媒は、利用側流量調整弁8を介して蓄熱装置6内を通過する。このとき蓄熱装置6は、高圧の液冷媒により蓄熱される。高圧の液冷媒は蓄熱装置6に放熱して過冷却状態となり、熱源側流量調整弁3を介して熱源側熱交換器2で蒸発し、圧縮機1に吸引される。 Next, the heating and heat storage operation and the defrosting operation in the second embodiment will be described.
[Heating heat storage operation]
When the refrigeration cycle apparatus according to
図5は、暖房蓄熱運転時のモリエル線図である。図5に示すように利用側熱交換器5で凝縮した高圧の液冷媒は、利用側流量調整弁8で1段目の減圧を行った後、凝縮圧力と蒸発圧力の間の中間圧力となって、蓄熱装置6を通り過冷却される。そして、熱源側流量調整弁3で2段目の減圧を行い熱源側熱交換器2で蒸発する。このとき、利用側流量調整弁8は、利用側熱交換器5の出口冷媒の過冷却度もしくは熱源側熱交換器2の出口冷媒の過熱度により開度を制御する。また、熱源側流量調整弁3は、上流側の蓄熱装置6で放熱する冷媒が凝縮圧力と蒸発圧力の間の中間圧力となるように開度を制御する。
FIG. 5 is a Mollier diagram at the time of heating and heat storage operation. As shown in FIG. 5, the high-pressure liquid refrigerant condensed in the use-side heat exchanger 5 becomes an intermediate pressure between the condensing pressure and the evaporation pressure after the first-stage pressure reduction is performed by the use-side flow rate adjustment valve 8. Then, it is supercooled through the heat storage device 6. Then, the second pressure reduction is performed by the heat source side flow rate adjustment valve 3 and the heat source side heat exchanger 2 evaporates. At this time, the use side flow rate adjustment valve 8 controls the opening degree by the degree of supercooling of the outlet refrigerant of the use side heat exchanger 5 or the degree of superheat of the outlet refrigerant of the heat source side heat exchanger 2. Further, the heat source side flow rate adjustment valve 3 controls the opening degree so that the refrigerant radiated by the upstream heat storage device 6 becomes an intermediate pressure between the condensation pressure and the evaporation pressure.
このように蓄熱装置6を加熱する際に、複数の利用側熱交換器5で放熱し暖房運転を終えた高圧の液冷媒を利用側流量調整弁8で中間圧力に減圧して熱源とすることで、蓄熱装置6を加熱する別熱源を設けることなく蓄熱装置6を暖めることができる。また、実施の形態1と同様に冷凍サイクル内の圧縮機のシェルの排熱や、吐出冷媒の熱を利用することもないので、暖房運転の立ち上がりが悪くなることもない。
When the heat storage device 6 is heated in this way, the high-pressure liquid refrigerant that has radiated heat at the plurality of use-side heat exchangers 5 and finished the heating operation is reduced to an intermediate pressure by the use-side flow rate adjustment valve 8 and used as a heat source. Thus, the heat storage device 6 can be warmed without providing another heat source for heating the heat storage device 6. Moreover, since the exhaust heat of the compressor shell in the refrigeration cycle and the heat of the discharged refrigerant are not used as in the first embodiment, the start-up of the heating operation is not deteriorated.
[除霜運転]
次に、熱源側熱交換器2を除霜する際の運転を説明する。
冷媒の流れは実施の形態1と同様である。ただし、実施の形態2では、熱源側流量調整弁3、及び利用側流量調整弁8の開度を共に全開開度として除霜運転を行う。
そして、蓄熱装置6に蓄えた熱で熱源側熱交換器2の除霜運転を行った時と、蓄熱装置6がない冷凍サイクルで除霜運転を行った時とを比較した暖房能力の変化は、実施の形態1と同様に図3に示すようになる。 [Defrosting operation]
Next, the operation at the time of defrosting the heat sourceside heat exchanger 2 will be described.
The flow of the refrigerant is the same as in the first embodiment. However, in the second embodiment, the defrosting operation is performed with the opening degree of the heat source side flowrate adjustment valve 3 and the use side flow rate adjustment valve 8 being both fully opened.
And the change of the heating capability which compared the time when the defrost operation of the heat sourceside heat exchanger 2 was performed with the heat stored in the heat storage device 6 and the time when the defrost operation was performed in the refrigeration cycle without the heat storage device 6 is FIG. 3 shows the same as in the first embodiment.
次に、熱源側熱交換器2を除霜する際の運転を説明する。
冷媒の流れは実施の形態1と同様である。ただし、実施の形態2では、熱源側流量調整弁3、及び利用側流量調整弁8の開度を共に全開開度として除霜運転を行う。
そして、蓄熱装置6に蓄えた熱で熱源側熱交換器2の除霜運転を行った時と、蓄熱装置6がない冷凍サイクルで除霜運転を行った時とを比較した暖房能力の変化は、実施の形態1と同様に図3に示すようになる。 [Defrosting operation]
Next, the operation at the time of defrosting the heat source
The flow of the refrigerant is the same as in the first embodiment. However, in the second embodiment, the defrosting operation is performed with the opening degree of the heat source side flow
And the change of the heating capability which compared the time when the defrost operation of the heat source
実施の形態3.
本実施の形態3は、実施の形態2に係る冷凍サイクル装置にバイパス冷媒回路を設けることで、暖房運転と除霜運転を同時に行うことを可能とするものである。Embodiment 3 FIG.
In the third embodiment, by providing a bypass refrigerant circuit in the refrigeration cycle apparatus according to the second embodiment, the heating operation and the defrosting operation can be performed simultaneously.
本実施の形態3は、実施の形態2に係る冷凍サイクル装置にバイパス冷媒回路を設けることで、暖房運転と除霜運転を同時に行うことを可能とするものである。
In the third embodiment, by providing a bypass refrigerant circuit in the refrigeration cycle apparatus according to the second embodiment, the heating operation and the defrosting operation can be performed simultaneously.
図6は、本実施の形態3に係る冷凍サイクル装置の構成図である。圧縮機1、熱源側熱交換器2、熱源側流量調整弁3、四方弁4、利用側熱交換器5、利用側流量調整弁8、蓄熱用熱交換器6a、放熱用熱交換器6bを内蔵した蓄熱装置6、が冷媒配管7で接続され、冷凍サイクル装置を構成している。さらに、この冷凍サイクルには、圧縮機1の吐出側から熱源側熱交換器2の冷媒入口側に接続される第1バイパス回路9と、この第1バイパス回路9に設けられた第1バイパス流量調整弁10と、利用側流量調整弁8と蓄熱装置6の間の冷媒配管7から分岐し放熱用熱交換器6bを通って圧縮機1の吸入冷媒配管に接続する第2バイパス回路11と、この第2バイパス回路11に設けられた第2バイパス流量調整弁12とが設けられている。
FIG. 6 is a configuration diagram of the refrigeration cycle apparatus according to the third embodiment. Compressor 1, heat source side heat exchanger 2, heat source side flow rate adjustment valve 3, four-way valve 4, use side heat exchanger 5, use side flow rate adjustment valve 8, heat storage heat exchanger 6 a, and heat radiation heat exchanger 6 b A built-in heat storage device 6 is connected by a refrigerant pipe 7 to constitute a refrigeration cycle device. Further, in this refrigeration cycle, a first bypass circuit 9 connected from the discharge side of the compressor 1 to the refrigerant inlet side of the heat source side heat exchanger 2, and a first bypass flow rate provided in the first bypass circuit 9 A second bypass circuit 11 branched from the refrigerant pipe 7 between the regulating valve 10, the use side flow regulating valve 8 and the heat storage device 6 and connected to the suction refrigerant pipe of the compressor 1 through the heat exchanger 6b for heat radiation; A second bypass flow rate adjustment valve 12 provided in the second bypass circuit 11 is provided.
次に本実施の形態3における暖房蓄熱運転と暖房除霜運転について説明する。
[暖房蓄熱運転]
本実施の形態3に係る冷凍サイクル装置を暖房運転する場合は、第1バイパス流量調整弁10と第2バイパス流量調整弁12を全閉して実施の形態2と同様に運転する。
圧縮機1を出たガス冷媒は利用側熱交換器5において凝縮し、液冷媒となる。利用側熱交換器5を出た高圧の液冷媒は、利用側流量調整弁8を介して蓄熱装置6内の蓄熱用熱交換器6aを通過する。このとき蓄熱装置6は、高圧の液冷媒により蓄熱される。高圧の液冷媒は蓄熱装置6に放熱して過冷却状態となり、熱源側流量調整弁3を介して熱源側熱交換器2で蒸発し、圧縮機1に吸引される。 Next, the heating heat storage operation and the heating defrosting operation in the third embodiment will be described.
[Heating heat storage operation]
When the refrigeration cycle apparatus according to the third embodiment is operated for heating, the first bypass flowrate adjustment valve 10 and the second bypass flow rate adjustment valve 12 are fully closed and the operation is performed in the same manner as in the second embodiment.
The gas refrigerant exiting thecompressor 1 is condensed in the use side heat exchanger 5 and becomes a liquid refrigerant. The high-pressure liquid refrigerant that has exited from the use side heat exchanger 5 passes through the heat storage heat exchanger 6 a in the heat storage device 6 via the use side flow rate adjustment valve 8. At this time, the heat storage device 6 is stored with a high-pressure liquid refrigerant. The high-pressure liquid refrigerant dissipates heat to the heat storage device 6 to be in a supercooled state, evaporates in the heat source side heat exchanger 2 through the heat source side flow rate adjustment valve 3, and is sucked into the compressor 1.
[暖房蓄熱運転]
本実施の形態3に係る冷凍サイクル装置を暖房運転する場合は、第1バイパス流量調整弁10と第2バイパス流量調整弁12を全閉して実施の形態2と同様に運転する。
圧縮機1を出たガス冷媒は利用側熱交換器5において凝縮し、液冷媒となる。利用側熱交換器5を出た高圧の液冷媒は、利用側流量調整弁8を介して蓄熱装置6内の蓄熱用熱交換器6aを通過する。このとき蓄熱装置6は、高圧の液冷媒により蓄熱される。高圧の液冷媒は蓄熱装置6に放熱して過冷却状態となり、熱源側流量調整弁3を介して熱源側熱交換器2で蒸発し、圧縮機1に吸引される。 Next, the heating heat storage operation and the heating defrosting operation in the third embodiment will be described.
[Heating heat storage operation]
When the refrigeration cycle apparatus according to the third embodiment is operated for heating, the first bypass flow
The gas refrigerant exiting the
本実施の形態3における暖房蓄熱運転時のモリエル線図は実施の形態2と同様で図5に示す通りである。すなわち、利用側熱交換器5で凝縮した高圧の液冷媒は、利用側流量調整弁8で1段目の減圧を行った後、凝縮圧力と蒸発圧力の間の中間圧力となって、蓄熱装置6を通り過冷却される。そして、熱源側流量調整弁3で2段目の減圧を行い熱源側熱交換器2で蒸発する。このとき、利用側流量調整弁8は、利用側熱交換器5の出口冷媒の過冷却度もしくは熱源側熱交換器2の出口冷媒の過熱度により開度を制御する。また、熱源側流量調整弁3は、上流側の蓄熱装置6で放熱する冷媒が凝縮圧力と蒸発圧力の間の中間圧力となるように開度を制御する。
The Mollier diagram during the heating and heat storage operation in the third embodiment is the same as that in the second embodiment and is as shown in FIG. That is, the high-pressure liquid refrigerant condensed in the use-side heat exchanger 5 is reduced to the first stage by the use-side flow rate adjustment valve 8 and then becomes an intermediate pressure between the condensing pressure and the evaporation pressure. 6 is supercooled. Then, the second pressure reduction is performed by the heat source side flow rate adjustment valve 3 and the heat source side heat exchanger 2 evaporates. At this time, the use side flow rate adjustment valve 8 controls the opening degree by the degree of supercooling of the outlet refrigerant of the use side heat exchanger 5 or the degree of superheat of the outlet refrigerant of the heat source side heat exchanger 2. Further, the heat source side flow rate adjustment valve 3 controls the opening degree so that the refrigerant radiated by the upstream heat storage device 6 becomes an intermediate pressure between the condensation pressure and the evaporation pressure.
[暖房除霜運転]
次に、熱源側熱交換器2を除霜しながら暖房運転を行う暖房除霜運転を説明する。
暖房除霜運転では、熱源側流量調整弁3を全閉にするとともに、第1バイパス流量調整弁10と第2バイパス流量調整弁12を開いて、圧縮機1から吐出したガス冷媒を、利用側熱交換器5、第2バイパス回路11、圧縮機1へと循環させる暖房回路と、圧縮機1から吐出したガス冷媒を、第1バイパス回路9、熱源側熱交換器2、圧縮機1へと循環させる除霜回路とに分岐して暖房運転と除霜運転を同時に行う。 [Heating defrosting operation]
Next, the heating defrosting operation in which the heating operation is performed while defrosting the heat sourceside heat exchanger 2 will be described.
In the heating defrosting operation, the heat source side flowrate adjustment valve 3 is fully closed, the first bypass flow rate adjustment valve 10 and the second bypass flow rate adjustment valve 12 are opened, and the gas refrigerant discharged from the compressor 1 is used on the usage side. Heat exchanger 5, second bypass circuit 11, heating circuit that circulates to compressor 1, and gas refrigerant discharged from compressor 1 to first bypass circuit 9, heat source side heat exchanger 2, compressor 1 It branches to the defrost circuit to circulate and performs heating operation and defrost operation simultaneously.
次に、熱源側熱交換器2を除霜しながら暖房運転を行う暖房除霜運転を説明する。
暖房除霜運転では、熱源側流量調整弁3を全閉にするとともに、第1バイパス流量調整弁10と第2バイパス流量調整弁12を開いて、圧縮機1から吐出したガス冷媒を、利用側熱交換器5、第2バイパス回路11、圧縮機1へと循環させる暖房回路と、圧縮機1から吐出したガス冷媒を、第1バイパス回路9、熱源側熱交換器2、圧縮機1へと循環させる除霜回路とに分岐して暖房運転と除霜運転を同時に行う。 [Heating defrosting operation]
Next, the heating defrosting operation in which the heating operation is performed while defrosting the heat source
In the heating defrosting operation, the heat source side flow
この暖房除霜運転時のモリエル線図を図7に示す。圧縮機1から吐出されたガス冷媒は2つに分岐し、一方は利用側熱交換器5で凝縮して利用側流量調整弁8及び第2バイパス流量調整弁12で減圧され蓄熱装置6の放熱用熱交換器6bで蒸発し、圧縮機1に吸引される。また、圧縮機1から吐出されたガス冷媒が分岐した他方は、第1バイパス流量調整弁10で減圧された後、熱源側熱交換器2で凝縮し、除霜を行う。
Fig. 7 shows the Mollier diagram during this heating defrosting operation. The gas refrigerant discharged from the compressor 1 branches into two, one of which condenses in the use side heat exchanger 5 and is depressurized by the use side flow rate adjustment valve 8 and the second bypass flow rate adjustment valve 12 to release heat from the heat storage device 6. It evaporates in the heat exchanger 6b and is sucked into the compressor 1. The other side of the branched gas refrigerant discharged from the compressor 1 is depressurized by the first bypass flow rate adjusting valve 10 and then condensed by the heat source side heat exchanger 2 to perform defrosting.
このような暖房除霜運転用のバイパス回路と蓄熱装置6とを備えた冷凍サイクル装置で除霜運転を行った時と、蓄熱装置6がない冷凍サイクルで除霜運転を行った時とを比較した暖房能力の変化を図8に示す。
図8に示すように蓄熱装置6がない冷凍サイクルに比べて暖房除霜運転用のバイパス回路と蓄熱装置6とがある冷凍サイクルの除霜運転は、除霜運転中も暖房運転が可能となっており、除霜運転時の室内の快適性が向上する。 Comparison between the time when the defrosting operation is performed in the refrigeration cycle apparatus including the bypass circuit for the heating defrosting operation and theheat storage device 6 and the time when the defrosting operation is performed in the refrigeration cycle without the heat storage device 6 The change in the heating capacity is shown in FIG.
As shown in FIG. 8, the defrosting operation of the refrigeration cycle having the bypass circuit for the heating defrosting operation and theheat storage device 6 as compared with the refrigeration cycle without the heat storage device 6 enables the heating operation even during the defrosting operation. This improves indoor comfort during the defrosting operation.
図8に示すように蓄熱装置6がない冷凍サイクルに比べて暖房除霜運転用のバイパス回路と蓄熱装置6とがある冷凍サイクルの除霜運転は、除霜運転中も暖房運転が可能となっており、除霜運転時の室内の快適性が向上する。 Comparison between the time when the defrosting operation is performed in the refrigeration cycle apparatus including the bypass circuit for the heating defrosting operation and the
As shown in FIG. 8, the defrosting operation of the refrigeration cycle having the bypass circuit for the heating defrosting operation and the
実施の形態4.
実施の形態1~3は、暖房運転もしくは除霜運転を想定した実施の形態であるが、冷房運転時に蓄熱装置6を機能させると、低温低圧冷媒が蓄熱装置6を通り蓄熱材に冷蓄熱することで冷房運転の立ち上がりを悪化させることとなる。
本実施の形態4は冷房運転起動時の能力低下を抑制するために、蓄熱装置6に低温低圧冷媒がバイパスする蓄熱装置バイパス回路13を設けた冷凍サイクル装置である。Embodiment 4 FIG.
Embodiments 1 to 3 are embodiments assuming heating operation or defrosting operation. When the heat storage device 6 is caused to function during cooling operation, the low-temperature and low-pressure refrigerant passes through the heat storage device 6 and cools and stores heat in the heat storage material. As a result, the rise of the cooling operation is worsened.
The fourth embodiment is a refrigeration cycle apparatus in which a heat storagedevice bypass circuit 13 for bypassing a low-temperature and low-pressure refrigerant is provided in the heat storage device 6 in order to suppress a decrease in capacity at the start of cooling operation.
実施の形態1~3は、暖房運転もしくは除霜運転を想定した実施の形態であるが、冷房運転時に蓄熱装置6を機能させると、低温低圧冷媒が蓄熱装置6を通り蓄熱材に冷蓄熱することで冷房運転の立ち上がりを悪化させることとなる。
本実施の形態4は冷房運転起動時の能力低下を抑制するために、蓄熱装置6に低温低圧冷媒がバイパスする蓄熱装置バイパス回路13を設けた冷凍サイクル装置である。
The fourth embodiment is a refrigeration cycle apparatus in which a heat storage
図9に本実施の形態4に係る冷凍サイクル装置を示す。この冷凍サイクル装置は、蓄熱装置6に熱源側熱交換器2から利用側熱交換器5への冷媒の流れを許容する蓄熱装置バイパス回路13を設けたものである。蓄熱装置バイパス回路13には、逆止弁14を設けることで冷媒の流れを規制している。また、冷凍サイクル装置の冷媒配管7には、熱源側熱交換器2から蓄熱装置6側への冷媒の流れを阻止する逆止弁15を設けることで冷媒の流れを規制している。
FIG. 9 shows a refrigeration cycle apparatus according to the fourth embodiment. In this refrigeration cycle apparatus, the heat storage device 6 is provided with a heat storage device bypass circuit 13 that allows the refrigerant to flow from the heat source side heat exchanger 2 to the use side heat exchanger 5. The heat storage device bypass circuit 13 is provided with a check valve 14 to regulate the flow of the refrigerant. In addition, the refrigerant pipe 7 of the refrigeration cycle apparatus is provided with a check valve 15 for blocking the refrigerant flow from the heat source side heat exchanger 2 to the heat storage apparatus 6 side, thereby restricting the refrigerant flow.
この冷凍サイクル装置を冷房運転すると、熱源側熱交換器2から利用側熱交換器5に冷媒が流れる際に蓄熱装置6をバイパスして低温低圧冷媒が流れるため、冷房運転起動時の能力低下を抑制することができる。
なお、本実施の形態4の蓄熱装置バイパス回路13は、実施の形態1~3の蓄熱装置6に適用することができる。 When this refrigeration cycle apparatus is in a cooling operation, when the refrigerant flows from the heat sourceside heat exchanger 2 to the use side heat exchanger 5, the low-temperature and low-pressure refrigerant flows by bypassing the heat storage device 6, thereby reducing the capacity when starting the cooling operation. Can be suppressed.
The heat storagedevice bypass circuit 13 according to the fourth embodiment can be applied to the heat storage device 6 according to the first to third embodiments.
なお、本実施の形態4の蓄熱装置バイパス回路13は、実施の形態1~3の蓄熱装置6に適用することができる。 When this refrigeration cycle apparatus is in a cooling operation, when the refrigerant flows from the heat source
The heat storage
冷凍サイクル装置に採用する冷媒は特に限定されることはなく、例えば二酸化炭素や炭化水素、ヘリウムのような自然冷媒から、R410A、R32、R407C、R404A、HFO1234yfなどの冷媒を使用することが可能である。
The refrigerant employed in the refrigeration cycle apparatus is not particularly limited. For example, refrigerants such as R410A, R32, R407C, R404A, and HFO1234yf can be used from natural refrigerants such as carbon dioxide, hydrocarbons, and helium. is there.
1 圧縮機、2 熱源側熱交換器、3 熱源側流量調整弁、4 四方弁、5 利用側熱交換器、6 蓄熱装置、6a 蓄熱用熱交換器、6b 放熱用熱交換器、7 冷媒配管、8 利用側流量調整弁、9 第1バイパス回路、10 第1バイパス流量調整弁、11 第2バイパス回路、12 第2バイパス流量調整弁、13 蓄熱装置バイパス回路、14 逆止弁、15 逆止弁。
1 compressor, 2 heat source side heat exchanger, 3 heat source side flow rate adjustment valve, 4 four-way valve, 5 use side heat exchanger, 6 heat storage device, 6a heat storage heat exchanger, 6b heat dissipation heat exchanger, 7 refrigerant piping , 8 User-side flow rate adjustment valve, 9 First bypass circuit, 10 First bypass flow rate adjustment valve, 11 Second bypass circuit, 12 Second bypass flow rate adjustment valve, 13 Heat storage device bypass circuit, 14 Check valve, 15 Check valve valve.
Claims (9)
- 圧縮機と、利用側熱交換器と、熱源側流量調整弁と、熱源側熱交換器と、を有し、
暖房運転時に前記圧縮機、前記利用側熱交換器、前記熱源側流量調整弁、前記熱源側熱交換器、の順で冷媒が循環する冷凍サイクル装置であって、
循環冷媒と熱交換して蓄熱する蓄熱装置が、前記利用側熱交換器と前記熱源側流量調整弁の間に設けられていることを特徴とする冷凍サイクル装置。 A compressor, a use side heat exchanger, a heat source side flow control valve, and a heat source side heat exchanger,
In the refrigeration cycle apparatus in which the refrigerant circulates in the order of the compressor, the use side heat exchanger, the heat source side flow rate adjustment valve, and the heat source side heat exchanger during heating operation,
A refrigerating cycle device, wherein a heat storage device that stores heat by exchanging heat with a circulating refrigerant is provided between the use side heat exchanger and the heat source side flow rate adjustment valve. - 1または複数の前記利用側熱交換器と、前記利用側熱交換器に対応した1または複数の利用側流量調整弁を設け、前記蓄熱装置は、前記利用側流量調整弁と前記熱源側流量調整弁の間に設けられていることを特徴とする請求項1に記載の冷凍サイクル装置。 One or a plurality of use side heat exchangers and one or a plurality of use side flow rate adjustment valves corresponding to the use side heat exchangers are provided, and the heat storage device includes the use side flow rate adjustment valve and the heat source side flow rate adjustment. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is provided between valves.
- 前記圧縮機の吐出側から前記熱源側熱交換器の冷媒入口側に接続される第1バイパス回路と、前記第1バイパス回路に設けられた第1バイパス流量調整弁と、前記利用側流量調整弁と前記蓄熱装置の間から分岐し前記蓄熱装置を通って前記圧縮機の冷媒吸入側に接続する第2バイパス回路と、前記第2バイパス回路に設けられた第2バイパス流量調整弁と、を設けたことを特徴とする請求項2に記載の冷凍サイクル装置。 A first bypass circuit connected from a discharge side of the compressor to a refrigerant inlet side of the heat source side heat exchanger, a first bypass flow rate adjustment valve provided in the first bypass circuit, and the use side flow rate adjustment valve And a second bypass circuit that branches from between the heat storage device and connects to the refrigerant suction side of the compressor through the heat storage device, and a second bypass flow rate adjustment valve provided in the second bypass circuit. The refrigeration cycle apparatus according to claim 2, wherein:
- 前記蓄熱装置には、前記第2バイパス回路の冷媒と熱交換する放熱用熱交換器と、前記利用側流量調整弁と前記熱源側流量調整弁との間の冷媒と熱交換する蓄熱用熱交換器と、が内蔵されることを特徴とする請求項3に記載の冷凍サイクル装置。 The heat storage device includes a heat dissipation heat exchanger that exchanges heat with the refrigerant in the second bypass circuit, and heat storage heat exchange that exchanges heat with the refrigerant between the use side flow rate adjustment valve and the heat source side flow rate adjustment valve. The refrigeration cycle apparatus according to claim 3, wherein the refrigeration cycle apparatus is incorporated.
- 少なくとも暖房蓄熱運転モードと除霜運転モードを備え、前記除霜運転モード時には、前記暖房蓄熱運転モードから冷媒の流れを変更し、前記圧縮機からの吐出冷媒を前記熱源側熱交換器に導く冷媒流路とし、前記熱源側流量調整弁を全開開度とすることを特徴とする請求項1に記載の冷凍サイクル装置。 A refrigerant that has at least a heating and heat storage operation mode and a defrosting operation mode, changes the flow of the refrigerant from the heating and heat storage operation mode, and guides the refrigerant discharged from the compressor to the heat source side heat exchanger during the defrosting operation mode The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is configured as a flow path, and the heat source side flow rate adjustment valve has a fully opened opening degree.
- 少なくとも暖房蓄熱運転モードと除霜運転モードを備え、前記除霜運転モード時には、前記暖房蓄熱運転モードから冷媒の流れを変更し、前記圧縮機からの吐出冷媒を前記熱源側熱交換器に導く冷媒流路とし、前記熱源側流量調整弁と前記利用側流量調整弁とを全開開度とすることを特徴とする請求項2に記載の冷凍サイクル装置。 A refrigerant that has at least a heating and heat storage operation mode and a defrosting operation mode, changes the flow of the refrigerant from the heating and heat storage operation mode, and guides the refrigerant discharged from the compressor to the heat source side heat exchanger during the defrosting operation mode The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is configured as a flow path, and the heat source side flow rate adjustment valve and the use side flow rate adjustment valve are fully opened.
- 少なくとも暖房蓄熱運転モードと除霜運転モードを備え、前記暖房蓄熱運転モード時には、前記圧縮機からの吐出冷媒を前記利用側熱交換器を介して前記蓄熱装置に導く冷媒流路とし、前記蓄熱装置に循環する冷媒が前記利用側熱交換器の凝縮圧力と前記熱源側熱交換器の蒸発圧力の間の中間圧力になるよう前記利用側流量調整弁と前記熱源側流量調整弁との開度を設定し、前記蓄熱装置に蓄熱を行うことを特徴とする請求項2または3に記載の冷凍サイクル装置。 At least a heating heat storage operation mode and a defrosting operation mode are provided, and in the heating heat storage operation mode, a refrigerant flow path that guides refrigerant discharged from the compressor to the heat storage device via the use side heat exchanger, and the heat storage device The opening degree of the use side flow rate adjustment valve and the heat source side flow rate adjustment valve is adjusted so that the refrigerant circulating in the refrigerant reaches an intermediate pressure between the condensation pressure of the use side heat exchanger and the evaporation pressure of the heat source side heat exchanger. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is configured to store heat in the heat storage apparatus.
- 少なくとも暖房蓄熱運転モードと除霜暖房運転モードを備え、前記除霜暖房モード時には、前記熱源側流量調整弁を全閉にするとともに、前記第1バイパス流量調整弁と前記第2バイパス流量調整弁を開いて、前記圧縮機から吐出した冷媒を、前記利用側熱交換器、前記第2バイパス回路、前記圧縮機へと循環させる暖房回路と、前記圧縮機から吐出した冷媒を、前記第1バイパス回路、前記熱源側熱交換器、前記圧縮機へと循環させる除霜回路とに分岐して暖房運転と除霜運転を同時に行うことを特徴とする請求項3に記載の冷凍サイクル装置。 At least a heating heat storage operation mode and a defrost heating operation mode are provided. In the defrost heating mode, the heat source side flow rate adjustment valve is fully closed, and the first bypass flow rate adjustment valve and the second bypass flow rate adjustment valve are provided. A heating circuit that opens and circulates the refrigerant discharged from the compressor to the use side heat exchanger, the second bypass circuit, and the compressor, and the refrigerant discharged from the compressor to the first bypass circuit The refrigeration cycle apparatus according to claim 3, wherein the heating operation and the defrosting operation are performed simultaneously by branching to the heat source side heat exchanger and a defrosting circuit to be circulated to the compressor.
- 前記蓄熱装置には、冷房運転時に前記蓄熱装置を冷媒が迂回する蓄熱装置バイパス回路を備えたことを特徴とする請求項1~8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the heat storage device includes a heat storage device bypass circuit in which a refrigerant bypasses the heat storage device during a cooling operation.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015519577A JP6433422B2 (en) | 2013-05-31 | 2013-05-31 | Refrigeration cycle equipment |
| PCT/JP2013/065207 WO2014192138A1 (en) | 2013-05-31 | 2013-05-31 | Refrigeration cycle device |
| EP13885818.8A EP3006865A4 (en) | 2013-05-31 | 2013-05-31 | Refrigeration cycle device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2013/065207 WO2014192138A1 (en) | 2013-05-31 | 2013-05-31 | Refrigeration cycle device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014192138A1 true WO2014192138A1 (en) | 2014-12-04 |
Family
ID=51988206
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2013/065207 WO2014192138A1 (en) | 2013-05-31 | 2013-05-31 | Refrigeration cycle device |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3006865A4 (en) |
| JP (1) | JP6433422B2 (en) |
| WO (1) | WO2014192138A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017037891A1 (en) * | 2015-09-02 | 2017-03-09 | 三菱電機株式会社 | Refrigeration cycle device |
| JP2021012010A (en) * | 2019-07-09 | 2021-02-04 | ダイキン工業株式会社 | Refrigeration cycle equipment |
| US20230184469A1 (en) * | 2021-08-24 | 2023-06-15 | Nihon Itomic Co., Ltd. | Heat pump device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107238249B (en) * | 2017-07-27 | 2019-11-26 | 浙江雪村制冷设备有限公司 | Energy-storing defrosting refrigerator |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61119074U (en) * | 1985-12-11 | 1986-07-26 | ||
| JPS6314061A (en) * | 1986-07-02 | 1988-01-21 | 三洋電機株式会社 | Air conditioner |
| JPH03164668A (en) * | 1989-11-24 | 1991-07-16 | Mitsubishi Electric Corp | heat pump equipment |
| JP2503637B2 (en) | 1989-03-22 | 1996-06-05 | ダイキン工業株式会社 | Refrigerator compressor |
| JP2000291985A (en) | 1999-04-07 | 2000-10-20 | Daikin Ind Ltd | Air conditioner |
| JP2002147879A (en) * | 2000-11-14 | 2002-05-22 | Hitachi Ltd | Multi-chamber air conditioner and its defrost control method |
| JP2008014576A (en) * | 2006-07-06 | 2008-01-24 | Daikin Ind Ltd | Air conditioner |
| JP2009287903A (en) * | 2008-06-02 | 2009-12-10 | Kansai Electric Power Co Inc:The | Thermal storage type heat pump device |
-
2013
- 2013-05-31 EP EP13885818.8A patent/EP3006865A4/en not_active Withdrawn
- 2013-05-31 WO PCT/JP2013/065207 patent/WO2014192138A1/en active Application Filing
- 2013-05-31 JP JP2015519577A patent/JP6433422B2/en not_active Expired - Fee Related
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61119074U (en) * | 1985-12-11 | 1986-07-26 | ||
| JPS6314061A (en) * | 1986-07-02 | 1988-01-21 | 三洋電機株式会社 | Air conditioner |
| JP2503637B2 (en) | 1989-03-22 | 1996-06-05 | ダイキン工業株式会社 | Refrigerator compressor |
| JPH03164668A (en) * | 1989-11-24 | 1991-07-16 | Mitsubishi Electric Corp | heat pump equipment |
| JP2000291985A (en) | 1999-04-07 | 2000-10-20 | Daikin Ind Ltd | Air conditioner |
| JP2002147879A (en) * | 2000-11-14 | 2002-05-22 | Hitachi Ltd | Multi-chamber air conditioner and its defrost control method |
| JP2008014576A (en) * | 2006-07-06 | 2008-01-24 | Daikin Ind Ltd | Air conditioner |
| JP2009287903A (en) * | 2008-06-02 | 2009-12-10 | Kansai Electric Power Co Inc:The | Thermal storage type heat pump device |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3006865A4 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017037891A1 (en) * | 2015-09-02 | 2017-03-09 | 三菱電機株式会社 | Refrigeration cycle device |
| JPWO2017037891A1 (en) * | 2015-09-02 | 2018-04-19 | 三菱電機株式会社 | Refrigeration cycle equipment |
| JP2021012010A (en) * | 2019-07-09 | 2021-02-04 | ダイキン工業株式会社 | Refrigeration cycle equipment |
| JP6989788B2 (en) | 2019-07-09 | 2022-01-12 | ダイキン工業株式会社 | Refrigeration cycle device |
| US20230184469A1 (en) * | 2021-08-24 | 2023-06-15 | Nihon Itomic Co., Ltd. | Heat pump device |
| US11965680B2 (en) * | 2021-08-24 | 2024-04-23 | Nihon Itomic Co., Ltd. | Heat pump device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2014192138A1 (en) | 2017-02-23 |
| JP6433422B2 (en) | 2018-12-05 |
| EP3006865A1 (en) | 2016-04-13 |
| EP3006865A4 (en) | 2017-01-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3876911B2 (en) | Water heater | |
| US8640475B2 (en) | Heat pump-type hot water feeding apparatus | |
| JP5327308B2 (en) | Hot water supply air conditioning system | |
| US8713951B2 (en) | Air conditioning apparatus | |
| KR101190492B1 (en) | Hot water supply device associated with heat pump | |
| JP5183804B2 (en) | Refrigeration cycle equipment, air conditioning equipment | |
| WO2014141373A1 (en) | Air conditioner | |
| JP6883186B2 (en) | Heat pump system | |
| US12235002B2 (en) | Air-conditioning system including a management section | |
| KR20120125857A (en) | Heat storaging apparatus having cascade cycle and Control process of the same | |
| JP6246394B2 (en) | Air conditioner | |
| JP6433422B2 (en) | Refrigeration cycle equipment | |
| JP5904628B2 (en) | Refrigeration cycle with refrigerant pipe for defrost operation | |
| JP2014126350A (en) | Air conditioner | |
| JP2013083439A5 (en) | ||
| JP4608303B2 (en) | Vapor compression heat pump | |
| US8261569B2 (en) | Air conditioning system | |
| JP2015218954A (en) | Refrigeration cycle equipment | |
| KR101658021B1 (en) | A Heatpump System Using Duality Cold Cycle | |
| JP5163161B2 (en) | Auxiliary heating unit and air conditioner | |
| WO2010041453A1 (en) | Refrigeration device | |
| JP6042037B2 (en) | Refrigeration cycle equipment | |
| WO2015128980A1 (en) | Refrigeration cycle device and air-conditioning device | |
| JP5826722B2 (en) | Dual refrigeration equipment | |
| JP5800842B2 (en) | Refrigeration equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13885818 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013885818 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2015519577 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |