+

WO2014080577A1 - 赤外線検出装置 - Google Patents

赤外線検出装置 Download PDF

Info

Publication number
WO2014080577A1
WO2014080577A1 PCT/JP2013/006479 JP2013006479W WO2014080577A1 WO 2014080577 A1 WO2014080577 A1 WO 2014080577A1 JP 2013006479 W JP2013006479 W JP 2013006479W WO 2014080577 A1 WO2014080577 A1 WO 2014080577A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
detection
substrate
infrared
Prior art date
Application number
PCT/JP2013/006479
Other languages
English (en)
French (fr)
Inventor
俊成 野田
敬 久保
安平 高
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014548437A priority Critical patent/JPWO2014080577A1/ja
Priority to US14/646,835 priority patent/US20150292949A1/en
Priority to EP13856270.7A priority patent/EP2924402A4/en
Priority to CN201380061498.6A priority patent/CN104823030A/zh
Publication of WO2014080577A1 publication Critical patent/WO2014080577A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Definitions

  • This technical field relates to an infrared detection device that detects electrical properties that change with a rise in temperature by receiving infrared rays.
  • Thermal infrared detectors include pyroelectric detectors, resistance bolometer detectors, thermopile detectors, and the like.
  • the pyroelectric detection device uses a pyroelectric material that generates a charge on the surface due to a temperature change.
  • a resistance bolometer material whose resistance value changes with temperature changes is used.
  • Thermopile detection devices use the Seebeck effect, which generates thermoelectromotive force due to temperature differences.
  • the pyroelectric detector has a differential output characteristic, and an output is generated by a change in the amount of incident infrared rays. Therefore, the pyroelectric detection device is widely used as, for example, a sensor that detects the movement of an object that generates heat, such as a person or an animal.
  • a single-element type or dual-element type detection device using bulk ceramics is generally used (for example, Patent Document 1).
  • the dual element type detection device the light receiving surface electrodes or the opposing surface electrodes of two single elements are connected in series so that charges generated by temperature changes of the pyroelectric substrate have opposite polarities.
  • the phase of the output waveform is inverted depending on the moving direction of the human body, it is possible to determine the moving direction of the human body depending on which of the positive and negative human body detection signals is output first.
  • Patent Document 2 Patent Document 3
  • FIG. 14 is a cross-sectional view of a conventional pyroelectric infrared detector 40.
  • an SiO 2 layer 33, a Ti layer 34, a Pt layer 35, a PLZT layer 36, and an IrO 2 layer 37 are sequentially formed on the Si substrate 32.
  • the PLZT layer 36 is made of (Pb, La) (Zr, Ti) O 3 .
  • the thicknesses of the Ti layer 34, the Pt layer 35, the PLZT layer 36, and the IrO 2 layer 37 are about 20 nm, 100 nm, 200 nm, and 100 nm, respectively.
  • the Ti layer 34 is provided as an adhesive layer that adheres the Pt layer 35 as a lower electrode and the SiO 2 layer 33 on the Si substrate 32.
  • the Ti layer 34 substantially functions as a lower electrode.
  • the PLZT layer 36 is a pyroelectric layer, and is formed by, for example, a sol-gel method, an RF sputtering method, an organic metal CVD (MOCVD) method, or the like.
  • the IrO 2 layer 37 functions as an upper electrode.
  • the IrO 2 layer 37 is formed by, for example, a reactive sputtering method.
  • the infrared detection device includes a substrate and a thermal detection element.
  • substrate has a recessed part and the frame part located in the circumference
  • the thermal light detection element has a leg portion and a detection portion, and the leg portion is connected to the frame portion so that the detection portion is positioned on the concave portion.
  • the thermal detection element includes a first electrode layer provided on the substrate, a detection layer provided on the first electrode layer, and a second electrode layer provided on the detection layer.
  • the linear thermal expansion coefficient of the first electrode layer is larger than the linear thermal expansion coefficient of the substrate, and the linear thermal expansion coefficient of the substrate is larger than the linear thermal expansion coefficient of the detection layer.
  • FIG. 1A is a top view of the infrared detecting device according to the first embodiment.
  • 1B is a cross-sectional view taken along line 1B-1B shown in FIG. 1A.
  • FIG. 2A is a top view of another infrared detection device according to the first exemplary embodiment.
  • 2B is a cross-sectional view taken along line 2B-2B shown in FIG. 2A.
  • FIG. 3A is a top view of still another infrared detection device according to the first exemplary embodiment.
  • 3B is a cross-sectional view taken along line 3B-3B shown in FIG. 3A.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of the detection layer in the first embodiment.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of the detection layer in the first embodiment.
  • FIG. 5 is a diagram showing the characteristics of the detection layer in the first embodiment.
  • FIG. 6A is a top view of the infrared detecting device according to the second embodiment.
  • 6B is a cross-sectional view taken along line 6B-6B shown in FIG. 6A.
  • 6C is a cross-sectional view taken along line 6C-6C shown in FIG. 6A.
  • 6D is a cross-sectional view taken along line 6D-6D shown in FIG. 6A.
  • FIG. 7 is a cross-sectional view of another infrared detection device according to the second embodiment.
  • FIG. 8A is a top view of the infrared detecting device according to the third embodiment.
  • FIG. 8B is a cross-sectional view taken along line 8B-8B shown in FIG. 8A.
  • FIG. 9A is a top view of another infrared detection device according to the third exemplary embodiment.
  • 9B is a cross-sectional view taken along line 9B-9B shown in FIG. 9A.
  • 9C is a cross-sectional view taken along line 9C-9C shown in FIG. 9A.
  • 9D is a cross-sectional view taken along line 9D-9D shown in FIG. 9A.
  • FIG. 10A is a top view of the infrared detection device according to the fourth exemplary embodiment.
  • FIG. 10B is a cross-sectional view of the infrared detector taken along line 10B-10B shown in FIG. 10A.
  • FIG. 11A is a top view of another infrared detection device according to the fourth exemplary embodiment.
  • FIG. 11B is a cross-sectional view taken along line 11B-11B shown in FIG. 11A.
  • 11C is a cross-sectional view taken along line 11C-11C shown in FIG. 11A.
  • FIG. 11D is a cross-sectional view taken along line 11D-11D shown in FIG. 11A.
  • FIG. 12A is a top view of the infrared detection device according to the fifth embodiment.
  • 12B is a cross-sectional view taken along line 12B-12B shown in FIG. 12A.
  • FIG. 13A is a top view of another infrared detection device according to the fifth exemplary embodiment.
  • FIG. 13B is a cross-sectional view taken along line 13B-13B shown in FIG. 13A.
  • FIG. 13C is a cross-sectional view taken along line 13C-13C shown in FIG. 13A.
  • FIG. 13D is a cross-sectional view taken along line 13D-13D shown in FIG. 13A.
  • FIG. 14 is a cross-sectional view of a conventional infrared detection device.
  • a PLZT layer 36 having a large linear thermal expansion coefficient is formed above a Si substrate 32 having a small linear thermal expansion coefficient. Therefore, tensile stress is generated in the PLZT layer 36 due to the stress caused by the difference in linear thermal expansion coefficient between the Si substrate 32 and the PLZT layer 36. As a result, the PLZT layer 36 is preferentially oriented in the (100) plane that is not the polarization axis, and the pyroelectric characteristics may be lowered.
  • FIG. 1A is a top view of infrared detection apparatus 100 in the first embodiment.
  • 1B is a cross-sectional view taken along line 1B-1B shown in FIG. 1A.
  • FIG. 2A is a top view of infrared detection device 110 in the first exemplary embodiment.
  • 2B is a cross-sectional view taken along line 2B-2B shown in FIG. 2A.
  • FIG. 3A is a top view of infrared detection device 120 in the first exemplary embodiment.
  • 3B is a cross-sectional view taken along line 3B-3B shown in FIG. 3A.
  • the infrared detection device 100 includes a substrate 8 and a thermal detection element 1.
  • the substrate 8 has a recess 7 and a frame 6 positioned around the recess 7.
  • the thermal detection element 1 has a leg part 5 and a detection part 50, and the leg part 5 is connected to the frame part 6 so that the detection part 50 is positioned on the recess 7.
  • the leg 5 is composed of a leg 5A and a leg 5B.
  • the thermal detection element 1 has a first intermediate layer 9 provided on the substrate 8 and above the recess 7, and a second intermediate layer 10 provided on the first intermediate layer 9. Further, the thermal detection element 1 includes a first electrode layer 11 provided on the second intermediate layer 10, a detection layer 12 provided on the first electrode layer 11, and a detection layer 12.
  • the second electrode layer 13 is provided.
  • the substrate 8 has a recess 7 on at least one main surface.
  • the leg portions 5 ⁇ / b> A and 5 ⁇ / b> B extend from the main surface (frame portion 6) of the substrate 8 surrounding the recess 7 on the recess 7.
  • the detection part 50 is suspended and supported on the recessed part 7 via leg part 5A, 5B. Due to the recess 7, the thermal detection element 1 has a structure with high thermal insulation with respect to the frame 6.
  • the recessed part 7 has the space
  • the concave portion 7 may be provided so as to have a depth for supporting the thermal detection element 1 on the substrate 8 so as to be hollow by the leg portion 5.
  • the gap 7A may penetrate the substrate 8, and a bottomed recess 7 may be provided as shown in FIG. 1B.
  • the detection unit 50 is electrically connected to the first electrode pad 4 that is a part of the first electrode layer 11. Under the first electrode pad 4, a first intermediate layer 9 and a second intermediate layer 10 are stacked in order from the main surface of the substrate 8. In the first electrode pad 4, the detection layer 12 and the second electrode layer 13 are not formed on the first electrode layer 11.
  • the detection unit 50 is electrically connected to the second electrode pad 2 via the electrical wiring 3 formed on the leg 5.
  • a first intermediate layer 9, a second intermediate layer 10, and a detection layer 12 are stacked in order from the main surface of the substrate 8.
  • the substrate 8 has a larger coefficient of linear thermal expansion than the detection layer 12.
  • ferritic stainless steel mainly composed of iron or chromium, titanium, aluminum, magnesium, or other metal materials, borosilicate glass or other glass materials, magnesium oxide, calcium fluoride or other single crystal materials, titania, zirconia A ceramic material such as can be used.
  • a material having a linear thermal expansion coefficient larger than that of the detection layer 12 can be used as the substrate 8.
  • the infrared light irradiated to the concave portion 7 can be reflected in the direction of the thermal detection element 1, so that the infrared detection capability is enhanced.
  • infrared rays can be strongly reflected by using a metal material. Metal materials are less expensive than silicon substrates.
  • a rolled metal steel strip (rolled steel plate) may be used as the material of the substrate 8.
  • the substrate 8 is thicker than the first intermediate layer 9, the second intermediate layer 10, and the first electrode layer 11. Therefore, the residual stress of the detection layer 12 is more greatly affected by the linear thermal expansion coefficient of the substrate 8.
  • silicon oxide or a compound material containing silicon oxide is used.
  • silicon oxide, a silicon nitride film (SiON) obtained by nitriding silicon oxide, or the like can be used as the first intermediate layer 9.
  • elements contained in the substrate 8 are preferably diffused. Furthermore, it is more preferable that at least two kinds of elements contained in the substrate 8 are diffused in the first intermediate layer 9.
  • the diffusion amounts (concentrations) of these two types of elements are inclined, that is, decreased from the substrate 8 side toward the first electrode layer 11 side.
  • iron and chromium diffuse into the first intermediate layer 9.
  • chromium having a larger diffusion coefficient is diffused into the first intermediate layer 9 than iron having a smaller diffusion coefficient. That is, the gradients of the diffusion amounts of two or more elements included in the substrate 8 are different in the first intermediate layer 9. Therefore, in the first intermediate layer 9, the ratio of the diffusion amount of iron and chromium is not the same.
  • the linear thermal expansion coefficient is increased.
  • the linear thermal expansion coefficient decreases from the substrate 8 side toward the first electrode layer 11 side.
  • a material may be selected in consideration of a linear thermal expansion coefficient and a diffusion coefficient. It is preferable to combine an element having a large linear thermal expansion coefficient and easily diffusing with an element having a small linear thermal expansion coefficient and difficult to diffuse.
  • the second intermediate layer 10 is made of a material mainly composed of hafnium oxide.
  • the linear thermal expansion coefficient of the second intermediate layer 10 is larger than the linear thermal expansion coefficient of the first intermediate layer 9 and smaller than the linear thermal expansion coefficient of the detection layer 12.
  • the detection layer 12 is formed directly on the first intermediate layer 9, cracks or peeling may occur in the detection layer 12 depending on the material selected due to the difference in linear thermal expansion coefficient.
  • middle layer 10 between the 1st intermediate
  • the material of the second intermediate layer 10 is not limited to hafnium oxide.
  • a material having a linear thermal expansion coefficient larger than that of the first intermediate layer 9 and smaller than that of the detection layer 12 may be used.
  • titanium oxide, aluminum oxide, or the like may be used.
  • first intermediate layer 9 and the second intermediate layer 10 are not essential components, and the first intermediate layer 9 and the second intermediate layer 10 are not provided as shown in FIGS. 2A and 2B. Also good. Further, as shown in FIGS. 3A and 3B, the second intermediate layer 10 may not be provided, and only the first intermediate layer 9 may be provided.
  • the compressive stress can be applied to the detection layer 12 by increasing the linear thermal expansion coefficient of the substrate 8 from that of the detection layer 12 in the same manner as in FIGS. 1A and 1B.
  • the linear thermal expansion coefficient of the first electrode layer 11 is made larger than that of the substrate 8
  • the residual stress of the detection layer 12 and the first electrode layer 11 is released by forming the air gap 7A
  • the release direction of the stress is The direction is reversed and the stress is cancelled. Therefore, the warp and destruction of the detection layer 12 can be suppressed.
  • the first intermediate layer 9 the first electrode layer 11 with high orientation can be formed, and the orientation of the detection layer 12 can be further enhanced.
  • the difference in linear thermal expansion coefficient between the first intermediate layer 9 and the detection layer 12 can be gradually changed, and the warpage of the substrate 8 can be further reduced.
  • the first electrode layer 11 is made of lanthanum nickelate (LaNiO 3 , hereinafter referred to as “LNO”).
  • LNO is an oxide having a resistivity of 1 ⁇ 10 ⁇ 3 ( ⁇ ⁇ cm, 300 K) and metallic electrical conductivity. Moreover, the transition between the metal and the insulator does not occur even when the temperature is changed.
  • the linear thermal expansion coefficient of the first electrode layer 11 is larger than the linear thermal expansion coefficient of the substrate 8. Further, the linear thermal expansion coefficient of the detection layer 12 is smaller than the linear thermal expansion coefficient of the substrate 8. Thereby, the thermal stress received from the substrate 8 at the time of film formation in the first electrode layer 11 is in the tensile direction, and the thermal stress received from the substrate 8 at the time of film formation in the detection layer 12 is in the compression direction. Therefore, the residual stress of the first electrode layer 11 and the residual stress of the detection layer 12 are in a direction to cancel each other. Therefore, when the concave portion 7 is formed on the surface of the substrate 8 and the residual stress is released, the thermal detection element 1 and the leg portion 5 can be prevented from being warped or broken due to cracks. As a result, an infrared detector having high thermal insulation can be obtained.
  • the detection layer 12 preferably has a perovskite structure containing lead titanate and is made of rhombohedral or tetragonal (001) -oriented lead zirconate titanate (PZT).
  • the constituent material of the detection layer 12 is a perovskite oxide mainly composed of PZT, such as PZT containing at least one additive such as La, Ca, Sr, Nb, Mg, Mn, Zn, and Al. It may be a ferroelectric. That is, it may be PMN-PT (Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 ) or PZN-PT (Pb (Zn 1/3 Nb 2/3 ) O 3 -PbTiO 3 ). .
  • the detection layer 12 may be a lead-free oxide ferroelectric material such as (Na, K) NbO 3 .
  • Lattice matching refers to the matching of the lattices of two materials. In general, when a certain crystal plane is exposed on the surface, the force that tries to match the crystal lattice with the crystal lattice of the film to be deposited on it works to form an epitaxial crystal nucleus at the interface. Cheap.
  • the deviation (lattice mismatch) between the (001) plane and (100) plane of the detection layer 12 and the main orientation plane of the first electrode layer 11 is within 10% in absolute value
  • detection is performed.
  • the orientation of either the (001) plane or the (100) plane of the layer 12 can be increased. That is, the ratio of the difference between the lattice constant of the main alignment plane of the first electrode layer 11 and the lattice constant of the main alignment plane of the detection layer 12 to the lattice constant of the main alignment plane of the detection layer 12 is within ⁇ 10%. preferable.
  • Table 1 shows the preferential orientation plane and lattice constant of the first electrode layer 11, the preferential orientation plane of the detection layer 12, and the (001) plane of the detection layer 12 when various materials are used for the first electrode layer 11.
  • the lattice constant deviation (lattice mismatch degree) between the (100) plane and the main orientation plane of the first electrode layer 11 is shown.
  • the degree of lattice mismatch represents the deviation of the lattice constant of the c-plane of the PZT thin film used for the detection layer 12 in%, based on the lattice constant of the first electrode layer 11. Also from this result, it can be seen that the preferred orientation plane of the detection layer 12 can be (001) / (100) plane by using the first electrode layer 11 with good lattice matching.
  • the detection layer 12 can be selectively oriented in the (001) plane by applying a compressive stress to the detection layer 12.
  • LNO is used as the first electrode layer 11.
  • a material obtained by substituting a part of nickel in lanthanum nickelate with another metal may be used.
  • LaNiO 3 -LaFeO 3 based material obtained by substituting iron, LaNiO 3 -LaAlO 3 based material was replaced by aluminum, LaNiO 3 -LaMnO 3 based material obtained by substituting manganese, LaNiO 3 -LaCoO 3 based material obtained by substituting cobalt It may be used.
  • a conductive oxide crystal may be used as the first electrode layer 11.
  • a pseudocubic perovskite oxide mainly composed of strontium ruthenate, lanthanum-strontium-cobalt oxide, lanthanum-strontium-manganese oxide, etc. may be used.
  • a perovskite oxide mainly composed of lanthanum strontium cobaltate ((La, Sr) CoO 3 ), lanthanum strontium manganate ((La, Sr) MnO 3 ), or the like can be used.
  • the deviation of the lattice constant of the c-plane of the detection layer 12 from the lattice constant of the first electrode layer 11 can be made within 10%. Therefore, the orientation of the (001) plane and the (100) plane of the detection layer 12 is increased.
  • the second electrode layer 13 is formed of an alloy mainly composed of nickel and chromium, has conductivity, and has a high infrared absorption ability among metal materials.
  • the thickness of the second electrode layer 13 is about 20 nm.
  • the material of the second electrode layer 13 is not limited to an alloy of nickel and chromium, and may be any material that has conductivity and has infrared absorption ability.
  • a noble metal oxide such as iridium oxide or ruthenium oxide, or a conductive oxide such as lanthanum nickelate, ruthenium oxide, or strontium ruthenate may be used.
  • a metal black film called a platinum black film or a gold black film which is provided with an infrared absorbing ability by controlling the crystal grain size of platinum or gold, may be used.
  • the linear thermal expansion coefficient of the substrate 8 is larger than the linear thermal expansion coefficient of the detection layer 12.
  • an annealing process is required at the time of film formation.
  • PZT is crystallized and rearranged at a high temperature, a difference in coefficient of linear thermal expansion from the substrate 8 is reduced to room temperature. Stress remains.
  • the linear thermal expansion coefficient of SUS430 is 10.5 ppm / K, whereas the linear thermal expansion coefficient of PZT is 7.9 ppm / K.
  • the linear thermal expansion coefficient of SUS430 is larger than PZT. Therefore, a compressive stress is applied to PZT.
  • the detection layer 12 has high selective orientation in the c-axis direction that is the polarization axis direction.
  • SUS430 corresponds to ISO number 4016-430-00-I and symbol X6Cr17 in the international standard ISO15510, and is a material containing iron as a main component and chromium in an amount of 16 wt% to 18 wt%.
  • the infrared detection ability of the detection layer 12 is proportional to the pyroelectric coefficient, and the pyroelectric coefficient is known to show a high value in a film oriented in the polarization axis direction of the crystal.
  • the detection layer 12 is formed on the substrate 8 having a large linear thermal expansion coefficient, and compressive stress due to thermal stress is applied to the film during the film formation process. As a result, since it is oriented in the c-axis direction, which is the polarization axis, it has high infrared detection ability.
  • the Curie point of the detection layer 12 can be improved by applying a compressive stress to the detection layer 12 by the thermal stress from the substrate 8.
  • the Curie point is about 320 ° C.
  • the Curie point is about 380 ° C., and the Curie point is greatly improved.
  • the leg 5A includes a first intermediate layer 9, a second intermediate layer 10 formed on the first intermediate layer 9, a detection layer 12 formed on the second intermediate layer 10, A second electrode layer 13 is provided on the detection layer 12.
  • the leg 5B includes a first intermediate layer 9, a second intermediate layer 10 formed on the first intermediate layer 9, and a first electrode layer 11 formed on the second intermediate layer 10. And a detection layer 12 formed on the first electrode layer 11.
  • the detection unit 50 includes a first intermediate layer 9, a second intermediate layer 10 formed on the first intermediate layer 9, and a first electrode layer 11 formed on the second intermediate layer 10. And a detection layer 12 formed on the first electrode layer 11 and a second electrode layer 13 on the detection layer 12.
  • a silicon oxide precursor solution is applied to the main surface of the flat substrate 8 before forming the recesses 7 by a spin coating method to form a silicon oxide precursor film.
  • precursor films those that are not crystallized are referred to as precursor films.
  • the silicon oxide precursor solution a solution containing tetraethoxysilane (TEOS, Si (OC 2 H 5 ) 4 ) as a main component is used.
  • TEOS tetraethoxysilane
  • PHPS perhydropolysilazane
  • drying is performed at a temperature of 100 ° C. or higher and 300 ° C. or lower, and then the temperature is increased and heating is performed to thermally decompose the residual organic matter, thereby densifying the precursor film.
  • the intermediate layer 9 is formed.
  • iron and chromium which are constituent elements of the substrate 8, diffuse into the first intermediate layer 9 during heating.
  • the linear thermal expansion coefficient of iron and chromium is larger than the linear thermal expansion coefficient of silicon oxide that is a constituent material of the first intermediate layer 9. That is, the linear thermal expansion coefficient of the region where iron and chromium are diffused is larger than the linear thermal expansion coefficient of silicon oxide alone.
  • the diffusion amount of iron and chromium in the first intermediate layer 9 decreases from the substrate 8 side toward the first electrode layer 11. Further, chromium having a larger diffusion coefficient is diffused into the first intermediate layer 9 than iron having a smaller diffusion coefficient. Therefore, in the first intermediate layer 9, the linear thermal expansion coefficient decreases gradually from the substrate 8 side to the first electrode layer 11 side.
  • the silicon oxide layer that is the first intermediate layer 9 is formed by the CSD method.
  • the manufacturing method of the first intermediate layer 9 is not limited to the CSD method. Any method may be used as long as a silicon oxide precursor film is formed on the substrate 8 and the silicon oxide is densified by heating.
  • the film thickness of the first intermediate layer 9 is desirably in the range of 300 nm or more and 950 nm or less.
  • both iron and chromium which are constituent elements of the substrate 8 may diffuse throughout the first intermediate layer 9 and reach the first electrode layer 11.
  • iron or chromium diffuses into the first electrode layer 11, the crystallinity of LNO decreases. If the film thickness is larger than 950 nm, cracks or the like may occur in the first intermediate layer 9.
  • hafnium oxide precursor solution is applied onto the first intermediate layer 9 by a spin coating method to form a hafnium oxide precursor film.
  • a hafnium oxide precursor solution a solution containing hafnium alkoxide as a main component is used.
  • hafnium alkoxide hafnium tetramethoxide (Hf (OCH 3 ) 4 ), hafnium tetraisopropoxide (Hf (OCH (CH 3 ) 2 ) 4 ) or the like is used.
  • the second intermediate layer 10 is formed by repeating a series of operations from application of the hafnium oxide precursor solution onto the substrate 8 to densification a plurality of times until the precursor film has a desired thickness. .
  • an LNO precursor solution for forming the first electrode layer 11 is applied on the first intermediate layer 9 described above.
  • lanthanum nitrate hexahydrate La (NO 3 ) 3 .6H 2 O
  • nickel acetate tetrahydrate (CH 3 COO) 2 Ni.4H 2 O
  • 2-methoxyethanol and 2-aminoethanol are used as solvents.
  • the LNO precursor solution applied to one surface of the substrate 8 is dried at 100 ° C. or more and 300 ° C. or less, and then the temperature is increased and heat treatment is performed to thermally decompose residual organic components.
  • a series of operations from application of the LNO precursor solution on the first intermediate layer 9 to thermal decomposition is repeated a plurality of times until the LNO precursor has a desired thickness.
  • rapid heating is performed using a rapid heating furnace (Rapid Thermal Annealing, hereinafter referred to as “RTA furnace”) to generate LNO and crystallize.
  • RTA furnace Rapid Thermal Annealing
  • the temperature is further raised at 600 ° C. or higher for several minutes, compared with the densification treatment of the first intermediate layer 9 and the second intermediate layer 10 and the heat treatment of the LNO precursor solution.
  • the heating rate is 100 ° C. or more and 300 ° C. or less per minute.
  • the first electrode layer 11 By forming the first electrode layer 11 by the above procedure, LNO oriented in the (100) plane direction can be produced.
  • the steps from application to crystallization may be repeated each time.
  • the first electrode layer 11 is processed by photolithography and etching processes.
  • a resist (not shown) is formed on the first electrode layer 11, and the resist is exposed to ultraviolet rays using a chromium mask or the like on which a predetermined pattern is formed. Thereafter, the unexposed portion of the resist is removed using a developer to form a resist pattern, and then the first electrode layer 11 is patterned by dry etching. In addition to the dry etching, various methods such as wet etching can be used for patterning the first electrode layer 11.
  • a method for manufacturing the detection layer 12 will be described. First, a PZT precursor solution is prepared, and the prepared PZT precursor solution is applied on the first electrode layer 11.
  • the spin coating method is used as the coating method, but various coating methods such as a dip coating method and a spray coating method can be used.
  • the PZT precursor solution forms a wet PZT precursor film by evaporation and hydrolysis of the solvent.
  • drying is performed in a drying furnace.
  • temporary baking is performed in an electric furnace whose temperature is further raised from that of the drying furnace.
  • the PZT precursor film is formed by repeating several times from the application of the PZT precursor solution to the pre-baking step.
  • the PZT precursor film is rapidly heated using an RTA furnace.
  • the heating conditions for crystallization are set to 600 ° C. or more and several minutes or so with the temperature further raised than the pre-baking, and the temperature raising rate is 100 ° C. or more and 300 ° C. or less per minute.
  • the thickness of the detection layer 12 formed in the above process is about 50 nm or more and 400 nm or less. If more thickness is required, this step is repeated a plurality of times.
  • the PZT precursor solution is applied to form a PZT precursor film, and the drying process is repeated a plurality of times, and after the PZT precursor film is formed to the desired thickness, crystallization is performed in a lump. A process may be performed.
  • FIG. 4 shows the result of evaluating the crystallinity of the detection layer 12 using an X-ray diffraction method. For ease of explanation, only the main intensity peaks are shown.
  • FIG. 4 shows that the detection layer 12 (PZT thin film) is preferentially oriented in the (001) plane.
  • FIG. 5 shows the result of measuring the characteristics (PE hysteresis loop) of the detection layer 12 manufactured according to the present embodiment. It can be seen that the characteristic of the detection layer 12 shows a loop with good squareness, and the residual polarization value Pr is also large. Pyroelectric coefficient of the detection layer 12 are coefficients determined from the residual change in polarization value P r with temperature. In order to increase the pyroelectric coefficient, it is important that the polarization value is large.
  • the infrared detection device 100 using the detection layer 12 can realize a greater infrared detection capability than the conventional one.
  • the second electrode layer 13 made of a material mainly composed of nickel and chromium is formed on the detection layer 12 formed by the above manufacturing method by a film forming method such as a vacuum evaporation method.
  • the breakage of the leg 5 due to the residual stress can be suppressed. Even when the sputtering method is used, the breakage of the leg portion 5 due to the stress can be suppressed by controlling the residual stress by applying a bias to the substrate.
  • the first intermediate layer 9, the second intermediate layer 10, the first electrode layer 11, and the detection layer are formed in this order from the main surface side of the substrate 8 on the substrate 8 on which the recess 7 is not formed. 12. A laminated film on which the second electrode layer 13 is formed is produced.
  • the second electrode layer 13 and the second electrode pad 2 are formed by patterning by dry etching. Thereafter, the detection layer 12, the first electrode layer 11, the second intermediate layer 10, and the first intermediate layer 9 are sequentially processed by patterning by dry etching. Since the processing process is the same as the processing process of the first electrode layer 11, detailed description is omitted here.
  • wet etching is performed from a portion where the surface of the substrate 8 is exposed in a top view, thereby forming the recess 7.
  • the wet etching is performed until the back surface of the first intermediate layer 9 formed on the thermal detection element 1 and the leg 5 is separated from the surface of the substrate 8. Thereby, the thermal insulation of the infrared detecting device 100 is improved.
  • the first intermediate layer 9, the second intermediate layer 10, the first electrode layer 11, and the detection layer 12 are produced by the CSD method. This eliminates the need for a vacuum process required for vapor phase growth methods such as sputtering, and can reduce costs. Furthermore, LNO used for the first electrode layer 11 can be self-oriented in the (100) plane by being formed by the manufacturing method of the present embodiment. Therefore, the orientation direction is unlikely to depend on the material of the substrate 8. Therefore, the material of the substrate 8 is not easily limited.
  • the infrared rays that have been transmitted through the thermal detection element 1 are reflected, and the infrared rays are incident on the thermal detection element 1 again. it can. Therefore, the amount of incident infrared rays converted into heat can be increased, and the infrared detection ability can be enhanced. Furthermore, compared with a silicon substrate, a stainless steel material is very inexpensive, and the substrate cost can be reduced.
  • a metal material that reflects infrared rays such as stainless steel
  • the etching proceeds isotropically from the surface of the substrate 8. Accordingly, the processed shape of the recess 7 is an arc as shown in FIG. 1B when viewed from the cross-sectional direction. Therefore, the etched bottom surface acts on the infrared rays transmitted through the thermal detection element 1 like a concave mirror, and not only from above the second electrode layer 13 but also the first intermediate layer 9 on the back side. Can be efficiently focused on the thermal photodetecting element 1 from below.
  • a rolled stainless steel strip (rolled steel plate) is used as the stainless material of the substrate 8, and the stainless steel strip is a set of metal particles (metal structure) having a diameter smaller than the diameter of the material constituting the detection layer 12. It is preferable that it is composed of a body.
  • an etchant for wet etching penetrates from the grain boundaries of the metal grains (metal structure). As a result, the etching of the substrate 8 from the direction perpendicular to the cross section is promoted at a position below the detection layer 12 shown in the cross sectional view of FIG. 1B. Therefore, it becomes possible to increase the etching processing speed of the substrate 8 and shorten the manufacturing process of the infrared detecting device.
  • an iron chloride solution, a mixed acid solution, or the like can be used as an etching solution.
  • the first intermediate layer 9, the second intermediate layer 10, and the first electrode are provided inside the thermal detection element 1.
  • Etching holes (not shown) formed so as to penetrate the layer 11, the detection layer 12, and the second electrode layer 13 may be formed. Thereby, it becomes possible to perform wet etching also from the inside of the thermal detection element 1, and the etching time is shortened.
  • the heating furnace used in the crystallization process of the first electrode layer 11 and the detection layer 12 of the present embodiment is not limited to the RTA furnace, and an electric furnace, a hot plate, an IH heating furnace, laser annealing, or the like is used. May be.
  • FIG. 6A is a top view of infrared detecting device 125 in the second embodiment.
  • 6B is a cross-sectional view taken along line 6B-6B shown in FIG. 6A.
  • 6C is a cross-sectional view taken along line 6C-6C shown in FIG. 6A.
  • 6D is a cross-sectional view taken along line 6D-6D shown in FIG. 6A.
  • the first electrode layer 11 formed below the detection layer 12 on which the second electrode layer 13 is not formed is used as a base 11 a of the first electrode layer 11.
  • the first electrode layer 11 formed under the detection layer 12 whose entire upper part is covered with the second electrode layer 13 is referred to as a main part 11 b of the first electrode layer 11.
  • the first electrode layer 11 formed under the detection layer 12 whose upper part is covered with the second electrode layer 13 is referred to as an extending portion 11 c of the first electrode layer 11.
  • the infrared detection device 125 according to the present embodiment is different from the infrared detection device 100 according to the first embodiment in that the extending portion 11c of the first electrode layer 11 is present. That is, in the present embodiment, the first electrode layer 11 is also present under the detection layer 12 whose upper part is covered with the second electrode layer 13. In addition, about what has the structure similar to Embodiment 1, the same number is described and the description is abbreviate
  • the manufacturing method of the present embodiment is the same as that of the first embodiment.
  • the width of the main portion 11 b of the first electrode layer 11 is preferably narrower than the width of the detection layer 12.
  • the width of the base portion 11 a of the first electrode layer 11 is preferably narrower than the width of the detection layer 12.
  • the width of the first electrode layer 11 is preferably narrower than the width of the detection layer 12.
  • the first electrode layer 11 is covered with the detection layer 12 in the width direction of the first electrode layer 11. That is, the first electrode layer 11 has a portion covered with the detection layer 12.
  • the first electrode layer 11 is preferably covered with a detection layer 12 except for the first electrode pad 4 from which an electric signal is extracted.
  • the width is the direction of the line 6C-6C in FIG. 6A, that is, the direction of the line 6D-6D. It is preferable that the first electrode layer 11 is not exposed from the end face of the detection layer 12.
  • the recess 7 is formed by a step (wet etching or the like) of dissolving the substrate 8 with iron chloride or mixed acid.
  • the conductive oxide material such as LNO used for the first electrode layer 11 is dissolved by acid. Therefore, if the first electrode layer 11 is exposed at the end face of the detection layer 12, the first electrode layer 11 may be dissolved when the substrate 8 is dissolved by iron chloride or mixed acid.
  • the width of the first electrode layer 11 is smaller than the width of the detection layer 12 so that the first electrode layer 11 is not exposed at the end face of the thermal detection element 1. Thereby, dissolution of the first electrode layer 11 can be suppressed. As a result, an infrared detection device 125 having a high infrared detection capability is obtained.
  • the first electrode layer 11 is preferably covered with the detection layer 12. It is preferable that the first electrode layer 11 is not exposed to the end face of the thermal detection element 1 by covering the first electrode layer 11 other than the surface in contact with the second intermediate layer 10 with the detection layer 12. . Therefore, the cross-sectional shape in the direction perpendicular to the extending direction of the first electrode layer 11 is preferably a forward taper shape that spreads from the detection layer 12 toward the second intermediate layer 10.
  • the cross-sectional shape of the first electrode layer 11 into a forward tapered shape, the solution is applied along the tapered surface when the precursor solution of the PZT thin film is spin-coated on the first electrode layer 11. Therefore, the first electrode layer 11 can be reliably covered with the detection layer 12.
  • the first electrode layer 11 can be formed in a forward tapered shape by changing dry etching conditions.
  • the lower layer of the second electrode pad 2 is preferably a non-formation region where the extending portion 11c of the first electrode layer 11 is not formed. In this non-formation region, the second intermediate layer 10 and the extending portion 12c of the detection layer 12 are joined. Thereby, it can suppress that a capacitor structure is formed in the part in which the 2nd electrode pad 2 was formed. With the above structure, parasitic capacitance is not generated, and thus the sensitivity of the infrared detection device 125 is improved.
  • the extending part 11 c of the first electrode layer 11 and the second electrode layer 13 are not arranged on the same plane in the vertical cross section of the substrate 8. That is, it is preferable that the extending portion 11c of the first electrode layer 11 and the second electrode layer 13 are displaced in a top view. By doing so, the parasitic capacitance between the wirings can be reduced, and the sensor sensitivity of the infrared detecting device 125 can be further increased.
  • the parasitic capacitance generated between the first electrode layer 11 and the second electrode layer 13 can be reduced. As a result, the sensor sensitivity of the infrared detecting device 125 is improved.
  • the base portion 11 a, the main portion 11 b, and the extending portion 11 c of the first electrode layer 11 may be formed of different materials as long as the linear thermal expansion coefficient is larger than that of the substrate 8.
  • the base portion 11a, the main portion 11b, and the extending portion 11c of the first electrode layer 11 may be formed of different materials as long as the linear thermal expansion coefficient is larger than that of the substrate 8.
  • batch forming can be performed and productivity can be improved.
  • the linear thermal expansion coefficient at all locations of the first electrode layer 11 becomes larger than the linear thermal expansion coefficient of the substrate 8.
  • the thermal stress received from the substrate 8 at the time of film formation in the first electrode layer 11 is in the tensile direction, and the extending portion 11c of the detection layer 12 has the compressive direction as the thermal stress received from the substrate 8 in the film formation.
  • the residual stress of the first electrode layer 11 and the residual stress of the detection layer 12 are in a direction to cancel each other. Therefore, even when the concave portion 7 is formed on the surface of the substrate 8 and the residual stress is released, the breakage of the leg portions 5A and 5B due to warpage and cracks can be suppressed. As a result, an infrared detector having high thermal insulation can be realized.
  • the detection layer 12 in which the second electrode layer 13 is not formed on the upper part is referred to as a base 12a of the detection layer 12.
  • the detection layer 12 whose entire upper portion is covered with the second electrode layer 13 is referred to as a main portion 12b of the detection layer 12.
  • the detection layer 12 whose upper part is covered with the second electrode layer 13 is referred to as an extended portion 12 c of the detection layer 12.
  • the base portion 12a, the main portion 12b, and the extending portion 12c of the detection layer 12 may be formed of different materials as long as the linear thermal expansion coefficient is smaller than that of the substrate 8. However, by forming the base portion 12a, the main portion 12b, and the extending portion 12c with the same material, batch forming can be performed, and productivity is increased.
  • the extended portion 11c of the first electrode layer 11 and the second electrode layer are formed in the leg portion 5A. 13 can be reduced.
  • the sensor sensitivity of the infrared detection device is increased.
  • PZT lead zirconate titanate
  • alumina oxide, titanium oxide, zirconium oxide, hafnium oxide, or the like is used as the extending portion 12c of the detection layer 12. Is preferred.
  • FIG. 7 is a cross-sectional view of the infrared detection device 127 according to the second embodiment. As shown in FIG. 7, the second intermediate layer 10 may not be provided.
  • FIG. 8A is a top view of the infrared detecting device 130 according to the third embodiment.
  • FIG. 8B is a cross-sectional view taken along line 8B-8B shown in FIG. 8A.
  • the first conductive layer 21 is formed between the first electrode layer 11 and the second intermediate layer 10 as compared with the infrared detecting device 100 according to the first embodiment. Is different.
  • the first conductive layer 21 is preferably made of a material that has higher electrical conductivity than the first electrode layer 11 and reflects infrared rays.
  • a material mainly containing platinum (Pt) is used.
  • the material of the first conductive layer 21 is not limited to platinum, but may be an alloy material such as a platinum-iridium alloy, gold, a gold alloy, or the like.
  • the Pt thin film used for the first conductive layer 21 is a material that is usually easily oriented in the ⁇ 111> direction. Therefore, when the detection layer 12 made of PZT is directly formed thereon, a film preferentially oriented on the PZT (111) plane having good lattice matching with the Pt (111) plane is formed. For this reason, the infrared detection ability is reduced.
  • the LNO thin film as the first electrode layer 11 is formed on the first conductive layer 21, the preferential orientation is performed on the LNO (100) plane even above the Pt (111) plane. Can be produced. Therefore, the detection layer 12 on the first electrode layer 11 is also a film preferentially oriented in the PZT (100) plane, and high infrared detection ability can be realized.
  • the electric conductivity is higher than that of the first electrode layer 11 alone, so that the electric characteristics of the detection layer 12 are improved.
  • the value of dielectric loss tangent (tan ⁇ ), which is important for dielectric characteristics, can be reduced. Therefore, the noise of the infrared detection device is greatly suppressed. As a result, the infrared detection ability is improved.
  • the film thickness of the first electrode layer 11 is d L1
  • the refractive index is n L1
  • the film thickness of the detection layer 12 is d P1
  • the refractive index is n P1
  • the wavelength of infrared light to be detected is ⁇ P1 .
  • Ti or TiO 2 or the like is used between the first conductive layer 21 and the second intermediate layer 10.
  • a formed adhesion layer (not shown) may be formed.
  • the infrared detection device 130 of the present embodiment a device such as an infrared sensor having high infrared detection capability can be obtained.
  • first intermediate layer 9 and the second intermediate layer 10 are provided, but the first intermediate layer 9 and the second intermediate layer 10 may be omitted.
  • FIG. 9A is a top view of the infrared detection device 135 according to the third embodiment.
  • 9B is a cross-sectional view taken along line 9B-9B shown in FIG. 9A.
  • 9C is a cross-sectional view taken along line 9C-9C shown in FIG. 9A.
  • 9D is a cross-sectional view taken along line 9D-9D shown in FIG. 9A.
  • the infrared detection device 135 may include the extending portion 11 c of the first electrode layer 11. That is, the first electrode layer 11 may exist under the detection layer 12 whose upper part is covered with the second electrode layer 13.
  • the first conductive layer 21 is formed between the first electrode layer 11 and the second intermediate layer 10 as compared with the infrared detection device 125 of the second embodiment. Is different.
  • the base portion 11a, the main portion 11b, and the extending portion 11c of the first electrode layer 11 may be made of the same material or different materials. 9C and 9D, it is preferable that the first electrode layer 11 is not exposed from the end face of the detection layer 12. Furthermore, it is preferable that the first electrode layer 11 is covered with the detection layer 12. Therefore, it is preferable that the cross-sectional shape in a direction perpendicular to the extending direction of the first electrode layer 11 is a forward tapered shape that spreads from the detection layer 12 toward the second intermediate layer 10.
  • FIG. 10A is a top view of infrared detecting device 140 in the fourth embodiment.
  • FIG. 10B is a cross-sectional view taken along line 10B-10B shown in FIG. 10A.
  • the second conductive layer 22 is formed between the first electrode layer 11 and the detection layer 12 as compared with the infrared detection device 100 of the first embodiment. The point is different.
  • the second conductive layer 22 is preferably made of a material that has a higher electrical conductivity than the first electrode layer 11 and reflects infrared rays.
  • a material containing platinum as a main component is used.
  • the material of the second conductive layer 22 is not limited to platinum, but may be an alloy material such as a platinum-iridium alloy, gold, a gold alloy, or the like.
  • the Pt thin film used for the second conductive layer 22 is a material that is usually easily oriented in the ⁇ 111> direction. Therefore, when the detection layer 12 made of PZT is directly formed thereon, a film preferentially oriented on the PZT (111) plane, which has good lattice matching with the Pt (111) plane, is formed, so that the infrared detection ability is lowered. .
  • a Pt thin film is formed on the first electrode layer 11 made of an LNO thin film having a high degree of orientation in the ⁇ 100> direction. Therefore, the second conductive layer 22 preferentially oriented to the Pt (100) plane and having good lattice matching with the LNO (100) plane can be formed by controlling the sputter deposition conditions. Thereby, the detection layer 12 formed on the second conductive layer 22 becomes a film preferentially oriented on the PZT (001) plane having good lattice matching with the Pt (100) plane, and can realize high infrared detection ability.
  • the electrical conductivity is higher than that of the first electrode layer 11 alone. Therefore, the electrical characteristics of the detection layer 12 can be improved. In particular, the value of dielectric loss tangent (tan ⁇ ), which is important for dielectric characteristics, can be reduced. Therefore, the noise of the infrared detection device is greatly suppressed. As a result, the infrared detection ability is improved.
  • the film thickness of the detection layer 12 is d P2
  • the refractive index is n P2
  • the wavelength of infrared light to be detected is ⁇ P2 .
  • the infrared detection device 140 of the present embodiment a device such as an infrared sensor having high infrared detection capability can be obtained.
  • first intermediate layer 9 and the second intermediate layer 10 are provided.
  • first intermediate layer 9 and the second intermediate layer 10 may be omitted.
  • FIG. 11A is a top view of the infrared detection device 145 according to the fourth embodiment.
  • 11B is a cross-sectional view taken along line 11B-11B shown in FIG. 11A.
  • 11C is a cross-sectional view taken along line 11C-11C shown in FIG. 11A.
  • FIG. 11D is a cross-sectional view taken along line 11D-11D shown in FIG. 11A.
  • the infrared detection device 145 may include the extending portion 11 c of the first electrode layer 11. That is, the first electrode layer 11 may exist under the detection layer 12 whose upper part is covered with the second electrode layer 13.
  • the second conductive layer 22 is formed between the first electrode layer 11 and the detection layer 12 as compared with the infrared detection device 125 according to the second embodiment. The point is different.
  • the base portion 11a, the main portion 11b, and the extending portion 11c of the first electrode layer 11 may be made of the same material or different materials. Further, as shown in FIGS. 11C and 11D, the first electrode layer 11 is preferably not exposed from the end face of the detection layer 12. Furthermore, it is preferable that the first electrode layer 11 is covered with the detection layer 12. Therefore, it is preferable that the cross-sectional shape in a direction perpendicular to the extending direction of the first electrode layer 11 is a forward tapered shape that spreads from the detection layer 12 toward the second intermediate layer 10.
  • the second conductive layer 22 is used as the first electrode pad 4.
  • FIG. 12A is a top view of infrared detecting device 150 in the fifth embodiment.
  • 12B is a cross-sectional view taken along line 12B-12B shown in FIG. 12A.
  • the infrared detection device 150 of the present embodiment is different from the infrared detection device 100 of the first embodiment in that an infrared absorption layer 23 is formed on the detection layer 12 and the second electrode layer 13.
  • the infrared absorption layer 23 is made of a material that has a smaller linear thermal expansion coefficient than the detection layer 12 and absorbs infrared rays.
  • a material mainly containing silicon oxide is used.
  • the material of the infrared absorption layer 23 is not limited to silicon oxide, and may be any material that has a lower linear thermal expansion coefficient than the detection layer 12 and absorbs infrared rays.
  • a silicon oxynitride film (SiON) or a silicon nitride film (SiN) obtained by nitriding silicon oxide may be used.
  • the infrared absorption layer 23 By forming the infrared absorption layer 23, wet etching is performed from the surface of the substrate 8, the recess 7 is formed, and the compressive stress applied to the detection layer 12 when the detection layer 12 is separated from the substrate 8. Release can be suppressed. Since the infrared absorption layer 23 has a smaller linear thermal expansion coefficient than the detection layer 12, the infrared absorption layer 23 is relatively stressed in the tensile direction as compared with the detection layer 12. That is, when the detection layer 12 is separated from the substrate 8, the detection layer 12 receiving the stress in the compressive direction receives a force in the pulling direction in which the stress is released, whereas the infrared ray formed thereon.
  • the absorption layer 23 receives a force in the compression direction that is relatively opposite to that of the detection layer 12. Therefore, release of stress in the detection layer 12 is suppressed. Thereby, the high polarization characteristic of the detection layer 12 is maintained, and the decrease in the Curie point improved by the compressive stress can be suppressed.
  • the infrared ray absorbing layer 23 has an infrared ray absorbing ability, the received infrared ray can be efficiently converted into heat, and a high infrared ray detecting ability can be realized.
  • the second electrode layer 13 is made of a material that reflects infrared rays, for example, gold or platinum, so that infrared rays that have once passed through the infrared absorption layer 23 are also reflected by the second electrode layer 13 and are again infrared. Since it is absorbed by the absorption layer 23, higher infrared absorption ability can be realized. As a result, higher infrared detection capability can be realized.
  • the thickness of d s of the infrared absorbing layer 23, the refractive index n s, the wavelength of the detected infrared as lambda s, preferably satisfy d s is the (Equation 3).
  • m is 0 or a natural number.
  • the incident infrared ray and the infrared ray reflected by the second electrode layer 13 interfere with each other, so that a higher infrared absorption capability can be realized. Therefore, the infrared detection ability is improved.
  • the infrared detection apparatus 150 of the present embodiment a device such as an infrared sensor having high infrared detection capability can be obtained.
  • first intermediate layer 9 and the second intermediate layer 10 are provided, but the first intermediate layer 9 and the second intermediate layer 10 may be omitted.
  • FIG. 13A is a top view of infrared detector 155 in the fifth embodiment.
  • FIG. 13B is a cross-sectional view taken along line 13B-13B shown in FIG. 13A.
  • 13C is a cross-sectional view taken along line 13C-13C shown in FIG. 13A.
  • FIG. 13D is a cross-sectional view taken along line 13D-13D shown in FIG. 13A.
  • the infrared detection device 155 may include the extending portion 11 c of the first electrode layer 11. That is, the first electrode layer 11 may exist under the detection layer 12 whose upper part is covered with the second electrode layer 13.
  • the infrared detection device 155 of the present embodiment is different from the infrared detection device 125 of the second embodiment in that an infrared absorption layer 23 is formed on the detection layer 12 and the second electrode layer 13.
  • the base portion 11a, the main portion 11b, and the extending portion 11c of the first electrode layer 11 may be made of the same material or different materials. Further, as shown in FIGS. 13C and 13D, the first electrode layer 11 is preferably not exposed from the end face of the detection layer 12. Furthermore, it is preferable that the first electrode layer 11 is covered with the detection layer 12. Therefore, it is preferable that the cross-sectional shape in a direction perpendicular to the extending direction of the first electrode layer 11 is a forward tapered shape that spreads from the detection layer 12 toward the second intermediate layer 10.
  • the substrate 8 having a larger linear thermal expansion coefficient than that of the detection layer 12 is used. Therefore, compressive stress can be applied to the detection layer 12 by thermal stress. As a result, high infrared detection capability can be realized.
  • the linear thermal expansion coefficient of the first electrode layer 11 is larger than the linear thermal expansion coefficient of the substrate 8, the stresses of the first electrode layer 11 and the detection layer 12 cancel each other. Therefore, even in an infrared detection device having a structure with high thermal insulation that supports the detection layer 12 with thin legs, warping and destruction of the detection layer 12 can be suppressed. As a result, an infrared detection device having high infrared detection capability can be realized.
  • the infrared detector of this embodiment has high pyroelectric characteristics and high thermal insulation. Therefore, it is possible to realize excellent sensor characteristics with a large infrared detection capability.
  • the infrared detection apparatus of the present embodiment for various electronic devices, it is useful as various sensors such as human sensors and temperature sensors, and power generation devices such as pyroelectric power generation devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 赤外線検出装置は、基板と、熱型光検出素子とを備える。基板は、凹部と、凹部の周囲に位置する枠部とを有する。熱型光検出素子は、脚部と検出部とを有し、凹部上に検出部が位置するように、脚部が枠部上に接続されている。また、熱型光検出素子は、基板上に設けられた第1電極層と、第1電極層上に設けられた検出層と、検出層上に設けられた第2電極層とを有する。第1電極層の線熱膨張係数は、基板の線熱膨張係数より大きく、基板の線熱膨張係数は、検出層の線熱膨張係数より大きい。

Description

赤外線検出装置
 本技術分野は、赤外線を受光することによる温度上昇に伴い変化する電気的性質を検知する赤外線検出装置に関する。
 従来、非接触で温度を検出するセンサ装置として、赤外線を利用する熱型の赤外線検出装置が提案されている。熱型の赤外線検出装置としては、焦電型検出装置、抵抗ボロメータ型検出装置、サーモパイル型検出装置等がある。焦電型検出装置では、温度変化によって表面に電荷を生じる焦電体材料を利用している。抵抗ボロメータ型検出装置では、温度変化によって抵抗値が変化する抵抗ボロメータ材料を利用している。サーモパイル型検出装置では温度差で熱起電力が生じるゼーベック効果を利用している。
 この中で、焦電型検出装置は微分出力特性を有しており、入射する赤外線量の変化で出力が生じる。したがって、焦電型検出装置は、例えば、人や動物などの熱を発する物体の移動を検知するセンサ等として広く利用されている。
 焦電型検出装置としては、一般的にバルクセラミックスを用いたシングル素子型やデュアル素子型の検出装置が用いられている(例えば、特許文献1)。デュアル素子型検出装置では、2つのシングル素子の受光面電極同士または対向面電極同士を、焦電体基板の温度変化により発生する電荷が逆極性となるように直列接続されている。この構造とすることにより、シングル素子を1つのみを用いた際に生じる外部温度依存性を補正できる。また、出力波形の位相が人体の移動方向によって反転する特徴を利用し、プラス側とマイナス側のどちらの人体検知信号が先に出力されたかによって人体の移動方向の判別が可能となる。
 しかしながら、従来の焦電型検出装置では、人の二次元的な挙動を詳細にセンシングしたり、空間の温度分布を正確にセンシングしたりすることは困難である。
 そこで、シリコン基板上に形成した焦電体薄膜を用いて、半導体微細加工プロセスにより焦電体薄膜をアレイ状に加工して、多画素化することが提案されている(例えば、特許文献2、特許文献3)。
 図14は、従来の焦電型の赤外線検出装置40の断面図である。赤外線検出装置40は、Si基板32の上に、SiO層33、Ti層34、Pt層35、PLZT層36及びIrO層37が順次形成されている。PLZT層36は、(Pb,La)(Zr,Ti)Oで形成されている。Ti層34、Pt層35、PLZT層36及びIrO層37の厚さは、夫々、20nm、100nm、200nm、100nm程度である。
 Ti層34は、下部電極であるPt層35と、Si基板32上のSiO層33とを接着する接着層として設けられている。Ti層34は、実質的には、下部電極としても機能する。PLZT層36は焦電体層であり、例えばゾル-ゲル法、RFスパッタリング法、有機金属CVD(MOCVD)法等により形成されている。そして、IrO層37は上部電極として機能する。IrO層37は、例えば反応性スパッタリング法により形成される。
国際公開第2011/001585号 国際公開第2004/079311号 特表2010-540915号公報
 赤外線検出装置は、基板と、熱型光検出素子とを備える。基板は、凹部と、凹部の周囲に位置する枠部とを有する。熱型光検出素子は、脚部と検出部とを有し、凹部上に検出部が位置するように、脚部が枠部上に接続されている。また、熱型光検出素子は、基板上に設けられた第1電極層と、第1電極層上に設けられた検出層と、検出層上に設けられた第2電極層とを有する。第1電極層の線熱膨張係数は、基板の線熱膨張係数より大きく、基板の線熱膨張係数は、検出層の線熱膨張係数より大きい。
図1Aは、本実施の形態1における赤外線検出装置の上面図である。 図1Bは、図1Aに示す線1B-1Bにおける断面図である。 図2Aは、本実施の形態1における他の赤外線検出装置の上面図である。 図2Bは、図2Aに示す線2B-2Bにおける断面図である。 図3Aは、本実施の形態1におけるさらに他の赤外線検出装置の上面図である。 図3Bは、図3Aに示す線3B-3Bにおける断面図である。 図4は、本実施の形態1における検出層のX線回折パターンを示す図である。 図5は、本実施の形態1における検出層の特性を示す図である。 図6Aは、本実施の形態2における赤外線検出装置の上面図である。 図6Bは、図6Aに示す線6B-6Bにおける断面図である。 図6Cは、図6Aに示す線6C-6Cにおける断面図である。 図6Dは、図6Aに示す線6D-6Dにおける断面図である。 図7は、本実施の形態2における他の赤外線検出装置の断面図である。 図8Aは、本実施の形態3における赤外線検出装置の上面図である。 図8Bは、図8Aに示す線8B-8Bにおける断面図である。 図9Aは、本実施の形態3における他の赤外線検出装置の上面図である。 図9Bは、図9Aに示す線9B-9Bにおける断面図である。 図9Cは、図9Aに示す線9C-9Cにおける断面図である。 図9Dは、図9Aに示す線9D-9Dにおける断面図である。 図10Aは、本実施の形態4における赤外線検出装置の上面図である。 図10Bは、図10Aに示す線10B-10Bにおける赤外線検出装置の断面図である。 図11Aは、本実施の形態4における他の赤外線検出装置の上面図である。 図11Bは、図11Aに示す線11B-11Bにおける断面図である。 図11Cは、図11Aに示す線11C-11Cにおける断面図である。 図11Dは、図11Aに示す線11D-11Dにおける断面図である。 図12Aは、本実施の形態5における赤外線検出装置の上面図である。 図12Bは、図12Aに示す線12B-12Bにおける断面図である。 図13Aは、本実施の形態5における他の赤外線検出装置の上面図である。 図13Bは、図13Aに示す線13B-13Bにおける断面図である。 図13Cは、図13Aに示す線13C-13Cにおける断面図である。 図13Dは、図13Aに示す線13D-13Dにおける断面図である。 図14は、従来の赤外線検出装置の断面図である。
 図14に示した焦電型の赤外線検出装置40は、線熱膨張係数の小さいSi基板32の上方に、線熱膨張係数の大きいPLZT層36を形成している。そのため、Si基板32とPLZT層36との線熱膨張係数の差に起因する応力により、PLZT層36に引張り応力が生じる。その結果、PLZT層36は、分極軸ではない(100)面に優先配向し、焦電特性が低くなる場合がある。
 (実施の形態1)
 図1Aは、本実施の形態1における赤外線検出装置100の上面図である。図1Bは、図1Aに示す線1B-1Bにおける断面図である。図2Aは、本実施の形態1における赤外線検出装置110の上面図である。図2Bは、図2Aに示す線2B-2Bにおける断面図である。図3Aは、本実施の形態1における赤外線検出装置120の上面図である。図3Bは、図3Aに示す線3B-3Bにおける断面図である。
 赤外線検出装置100は、基板8と、熱型光検出素子1とを有する。基板8は、凹部7と、凹部7の周囲に位置する枠部6とを有する。熱型光検出素子1は脚部5と検出部50とを有し、凹部7上に検出部50が位置するように、脚部5が枠部6上に接続されている。脚部5は脚部5Aと脚部5Bで構成されている。熱型光検出素子1は、基板8上および凹部7の上方に設けられた第1の中間層9と、第1の中間層9の上に設けられた第2の中間層10とを有する。さらに、熱型光検出素子1は、第2の中間層10の上に設けられた第1電極層11と、第1電極層11の上に設けられた検出層12と、検出層12の上に設けられた第2電極層13とを有する。
 次に、各構成について詳細に説明する。基板8は、少なくとも一方の主面に凹部7を有する。脚部5A、5Bは、凹部7の上に、凹部7を囲む基板8の主面(枠部6)から延伸している。検出部50は、脚部5A、5Bを介して凹部7の上に懸架、支持されている。凹部7により、熱型光検出素子1は、枠部6に対して熱的な絶縁性が高い構造となっている。なお、凹部7は内部に空隙7Aを有している。凹部7は、熱型光検出素子1を基板8上に脚部5で中空に支持する深さを有するように設ければよい。空隙7Aが、基板8を貫通していてもよく、また図1Bに示すように有底の凹部7が設けられていてもよい。
 検出部50は、第1電極層11の一部である第1の電極パッド4と電気的に接続されている。第1の電極パッド4の下には、基板8の主面から近い順に、第1の中間層9、第2の中間層10が積層されている。第1の電極パッド4においては、第1電極層11の上に検出層12、第2電極層13は形成されていない。
 さらに検出部50は、脚部5の上に形成された電気配線3を介して、第2の電極パッド2と電気的に接続されている。第2の電極パッド2の下は、基板8の主面から近い順に、第1の中間層9、第2の中間層10、検出層12が積層されている。
 基板8は、検出層12よりも線熱膨張係数が大きい。基板8として鉄やクロムを主成分とするフェライト系ステンレス、チタン、アルミニウム、マグネシウム等の金属材料や、ホウケイ酸ガラス等のガラス系材料、酸化マグネシウムやフッ化カルシウム等の単結晶材料、チタニア、ジルコニア等のセラミック系材料等を用いることができる。言いかえれば、基板8として検出層12よりも線熱膨張係数の大きい材料を用いることができる。特に、赤外線を反射する材料を用いた場合は、凹部7に照射された赤外線を、熱型光検出素子1の方向に反射できるので、赤外線検出能が高められる。また金属材料を用いることにより、赤外線を強く反射できる。また金属材料は、シリコン基板より安価である。
 また、基板8の材料として、圧延加工された金属鋼帯(圧延鋼板)を用いても良い。
 基板8は、第1の中間層9、第2の中間層10、第1電極層11よりも厚い。そのため、検出層12の残留応力は、基板8の線熱膨張係数の影響をより大きく受ける。
 第1の中間層9には、シリコン酸化物もしくはシリコン酸化物を含む化合物材料を用いる。例えば、第1の中間層9としてシリコン酸化物や、シリコン酸化物を窒化したシリコン窒化膜(SiON)等を用いることができる。
 第1の中間層9には、基板8に含まれる元素が拡散しているのが好ましい。さらには、第1の中間層9には、基板8に含まれる少なくとも二種類の元素が拡散しているのがより好ましい。これら二種類の元素は基板8側から第1電極層11側に向かってその拡散量(濃度)が傾斜、すなわち減少する。例えばステンレスを基板8として用いる場合、鉄およびクロムが第1の中間層9に拡散する。この場合、拡散係数の大きいクロムの方が拡散係数の小さい鉄よりも、第1の中間層9内に拡散される。すなわち、第1の中間層9内において、基板8に含まれる二種以上の元素の拡散量の勾配が各々異なる。したがって第1の中間層9の内部では、鉄とクロムの拡散量の比率は同じにはならない。その結果、基板8側では鉄の比率が大きいため、線熱膨張係数が大きくなる。そして、基板8側から第1電極層11側に向かうにつれて線熱膨張係数は小さくなる。このようにすることで、基板8と第1の中間層9の線熱膨張係数の差に起因する熱応力による基板8や第1の中間層9の反りを抑制できる。
 なお、第1の中間層9に拡散する元素として、鉄、クロム以外の元素を用いる場合は、線熱膨張係数と拡散係数を考慮して材料を選択すればよい。線熱膨張係数が大きくて拡散しやすい元素と、線熱膨張係数が小さくかつ拡散しにくい元素を組み合わせるのが好ましい。
 第2の中間層10には、ハフニウム酸化物を主成分とする材料を用いている。第2の中間層10の線熱膨張係数は、第1の中間層9の線熱膨張係数よりも大きく、検出層12の線熱膨張係数よりも小さい。第1の中間層9の上に、検出層12を直接形成した場合は、線熱膨張係数の差により、選択する材料によっては、検出層12にクラックや剥離が生じる場合がある。クラックや剥離を抑制するために、第1の中間層9と検出層12との間に第2の中間層10を形成するのが好ましい。なお、第1電極層11が形成される箇所においては、第1の中間層9と第1電極層11との間に第2の中間層10を形成するのが好ましい。
 なお、第2の中間層10の材料は、ハフニウム酸化物に限るものではない。線熱膨張係数が第1の中間層9よりも大きく、検出層12よりも小さい材料であれば良く、例えば、チタン酸化物やアルミニウム酸化物等を用いても良い。
 なお、第1の中間層9、第2の中間層10は必須の構成要素ではなく、図2A、図2Bに示すように、第1の中間層9と第2の中間層10を設けなくてもよい。また、図3A、図3Bに示すように、第2の中間層10を設けず、第1の中間層9だけでも良い。
 図2A、2B、3A、3Bに示すような形態でも、図1A、1Bと同様に、検出層12より基板8の線熱膨張係数を大きくすることで、検出層12に圧縮応力を印加できる。また第1電極層11の線熱膨張係数を基板8よりも大きくすることで、空隙7Aを形成して検出層12と第1電極層11の残留応力が開放される際、応力の開放方向が逆向きとなり、応力がキャンセルされる。したがって、検出層12の反りや破壊を抑制できる。
 さらに、第1の中間層9を設けることにより、配向性の高い第1電極層11を形成でき、検出層12の配向性をより高めることができる。また第2の中間層10を設けることにより、第1の中間層9と検出層12との間の線熱膨張係数の差を緩やかに変化させることができ、基板8の反りをより低減できる。
 第1電極層11はニッケル酸ランタン(LaNiO、以降「LNO」と記す)で形成されている。LNOはR-3cの空間群を持ち、菱面体に歪んだペロブスカイト型構造(菱面体晶系:a=0.5461nm(a=a)、α=60°、擬立方晶系:a=0.384nm)を有する。LNOは、1×10-3(Ω・cm、300K)の抵抗率を有し、金属的電気伝導性を有する酸化物である。しかも、温度を変化させても金属と絶縁体間の転移が起こらない。
 第1電極層11の線熱膨張係数は、基板8の線熱膨張係数より大きい。また、検出層12の線熱膨張係数は、基板8の線熱膨張係数より小さい。これにより、第1電極層11は、成膜時に基板8から受ける熱応力は引張り方向となり、検出層12は、成膜時に基板8から受ける熱応力は圧縮方向となる。したがって、第1電極層11の残留応力と、検出層12の残留応力は、それぞれをキャンセルする方向となる。そのために、基板8の表面に凹部7を形成し、残留応力が開放される際に、熱型光検出素子1および脚部5の反りやクラックによる破壊を抑制できる。その結果、高い熱絶縁性を有する赤外線検出装置が得られる。
 検出層12は、チタン酸鉛を含むペロブスカイト構造を有し、菱面体晶系または正方晶系の(001)面配向のチタン酸ジルコン酸鉛(PZT)で形成されていることが望ましい。PZTの組成は、正方晶系の組成Zr/Ti=30/70付近が望ましいが、正方晶系と菱面体晶系との相境界(モルフォトロピック相境界)付近の組成(Zr/Ti=53/47)や、PbTiOを用いてもよく、Zr/Ti=0/100~70/30であればよい。また、検出層12の構成材料は、PZTにLa、Ca、Sr、Nb、Mg、Mn、Zn、Al等の添加物を少なくとも1つ含有したもの等、PZTを主成分とするペロブスカイト型酸化物強誘電体であってもよい。すなわち、PMN-PT(Pb(Mg1/3Nb2/3)O-PbTiO)やPZN-PT(Pb(Zn1/3Nb2/3)O-PbTiO)であってもよい。また、検出層12は、(Na,K)NbO等の鉛非含有の酸化物強誘電体材料でも良い。
 本実施の形態で用いた正方晶系のPZTは、バルクセラミックスの値でa=b=0.4036nm、c=0.4146nmの格子定数を有する材料である。したがって、a=0.384nmの格子定数を有する擬立方晶構造のLNOは、PZTの(001)面および(100)面との格子マッチングが良好である。すなわち、第1電極層11は、検出層12との格子マッチングが良好である。
 格子マッチングとは、2つの材料の格子の整合性のことをいう。一般に、ある種の結晶面が表面に露出している場合、その結晶格子と、その上に成膜する膜の結晶格子とがマッチングしようとする力が働き、界面でエピタキシャルな結晶核を形成しやすい。
 なお、検出層12の(001)面および(100)面と第1電極層11の主配向面との格子定数のずれ(格子不整合度)が絶対値でおおよそ10%以内であれば、検出層12の(001)面もしくは(100)面のいずれかの面の配向性を高くできる。すなわち、第1電極層11の主配向面の格子定数と検出層12の主配向面の格子定数との差の検出層12の主配向面の格子定数に対する比率が±10%以内であることが好ましい。
 表1は、第1電極層11に種々の材料を用いた場合の、第1電極層11の優先配向面および格子定数と、検出層12の優先配向面および検出層12の(001)面および(100)面と第1電極層11の主配向面との格子定数のずれ(格子不整合度)を示している。
 格子不整合度は、第1電極層11の格子定数を基準に、検出層12に用いたPZT薄膜のc面の格子定数のずれを%表示で表している。この結果からも、格子マッチングの良好な第1電極層11を用いることで、検出層12の優先配向面を(001)/(100)面とすることができることがわかる。
Figure JPOXMLDOC01-appb-T000001
 なお、格子マッチングによる配向制御において、(001)面もしくは(100)面のいずれかに選択的に配向した検出層12の膜を作製することは困難である。ただし、後述する検出層12の形成工程において、検出層12に圧縮方向の応力を印加することにより、検出層12を(001)面に選択的に配向できる。
 後述する製造方法により、LNOは、種々の基材の上に(100)面に優先配向する。したがって、LNOは、第1電極層11としての働きだけではなく、検出層12の配向制御層としての機能も有する。このことから(100)面に配向したLNOの表面(格子定数:0.384nm)と格子マッチングのよい、PZT(格子定数:a=0.4036nm、c=0.4146nm)の(001)面または(100)面が選択的に生成できる。
 なお、本実施の形態においては、第1電極層11としてLNOを用いたが、ニッケル酸ランタン中のニッケルの一部を他の金属で置換した材料を用いてもよい。例えば鉄で置換したLaNiO-LaFeO系材料、アルミニウムで置換したLaNiO-LaAlO系材料、マンガンで置換したLaNiO-LaMnO系材料、コバルトで置換したLaNiO-LaCoO系材料等を用いてもよい。また、必要に応じて、二種以上の金属で置換した材料を用いてもよい。
 さらに、第1電極層11として、導電性酸化物結晶体を用いてもよい。例えば擬立方晶系の、(100)面に優先配向したルテニウム酸ストロンチウム、ランタン-ストロンチウム-コバルト酸化物、ランタン-ストロンチウム-マンガン酸化物等を主成分とするペロブスカイト型酸化物を用いてもよい。言い換えれば、コバルト酸ランタンストロンチウム((La,Sr)CoO)、マンガン酸ランタンストロンチウム((La,Sr)MnO)などを主成分とするペロブスカイト型酸化物を用いることができる。これらの材料を用いた場合も、第1電極層11の格子定数に対し、検出層12のc面の格子定数のずれは10%以内にできる。そのため、検出層12の(001)面および(100)面の配向性が高まる。
 第2電極層13は、ニッケルとクロムを主体とする合金で形成され、導電性を有するとともに、金属系材料の中では、高い赤外線吸収能を有する。第2電極層13の厚みは20nm程度である。第2電極層13の材料はニッケルとクロムの合金に限らず、導電性を有し、かつ赤外線吸収能を有する材料であればよい。例えば、チタンやチタン合金の他、酸化イリジウム、酸化ルテニウム等の貴金属酸化物や、ニッケル酸ランタンや酸化ルテニウム、ルテニウム酸ストロンチウム等の導電性酸化物を用いても良い。また、白金や金の結晶粒径を制御して、赤外線吸収能を付与した、いわゆる、白金黒膜、金黒膜と呼ばれるような、金属黒膜を用いても良い。
 なお、前述のように、基板8の線熱膨張係数は、検出層12の線熱膨張係数よりも大きい。後述する検出層12の成膜過程において、成膜時にアニール工程が必要となるが、PZTは高温で結晶化再配列することから、室温までの冷却時に、基板8との線熱膨張係数の差により応力が残留する。例えば、基板8としてSUS430を用いた場合、SUS430の線熱膨張係数が10.5ppm/Kであるのに対して、PZTの線熱膨張係数は7.9ppm/Kである。このように、SUS430の線熱膨張係数がPZTより大きい。そのため、PZTには圧縮方向の応力が印加される。これにより、検出層12は分極軸方向であるc軸方向に高い選択配向性を有する。なお、SUS430とは、国際規格ISO15510において、ISOナンバー4016-430-00-I、記号X6Cr17に相当し、鉄を主成分とし、クロムを16重量%以上、18重量%以下含む材料である。
 検出層12の赤外線検出能は、その焦電係数に比例することが知られており、焦電係数は結晶の分極軸方向に配向した膜で高い値を示すことが知られている。上述のように、検出層12は線熱膨張係数の大きい基板8上に形成され、成膜過程で膜に熱応力による圧縮応力が印加されている。その結果、分極軸であるc軸方向に配向していることから、高い赤外線検出能を有する。
 加えて、基板8からの熱応力により、検出層12に圧縮応力を印加することで、検出層12のキュリー点を向上できる。例えば、検出層12をSi基板上に形成した場合、キュリー点は320℃程度である。これに対して、検出層12をSUS430基板上に形成した場合、キュリー点は380℃程度となり、キュリー点は大幅に向上する。このように、検出層12のキュリー点を大幅に向上することで、高い耐熱性と、熱に対する高い信頼性を実現できる。そのため、表面実装等に必須の鉛フリー半田を用いたリフロー工程にも対応できる。
 脚部5Aは、第1の中間層9と、第1の中間層9の上に形成された第2の中間層10と、第2の中間層10の上に形成された検出層12と、検出層12の上に第2電極層13とを有している。脚部5Bは、第1の中間層9と、第1の中間層9の上に形成された第2の中間層10と、第2の中間層10の上に形成された第1電極層11と、第1電極層11の上に形成された検出層12とを有している。検出部50は、第1の中間層9と、第1の中間層9の上に形成された第2の中間層10と、第2の中間層10の上に形成された第1電極層11と、第1電極層11の上に形成された検出層12と、検出層12の上に第2電極層13とを有している。
 次に、本実施の形態による赤外線検出装置100の製造方法について説明する。シリコン酸化物前駆体溶液を凹部7を形成する前の平板状の基板8の主面にスピンコート法により塗布し、シリコン酸化物前駆体膜を形成する。以降、塗布した膜のうち、結晶化していない状態のものを前駆体膜と称する。ここで、シリコン酸化物前駆体溶液としては、テトラエトキシシラン(TEOS、Si(OC)を主成分とする溶液を用いている。しかし、メチルトリエトキシシラン(MTES、CHSi(OC)やペルヒドロポリシラザン(PHPS、SiHNH)等を主成分とする前駆体溶液を用いてもよい。
 次に、100℃以上、300℃以下で乾燥を行い、その後、温度を上げて加熱することにより、残留有機物を熱分解し、前駆体膜を緻密化する。シリコン酸化物前駆体溶液を基板8の上に塗布してから前駆体膜を緻密化するまでの一連の操作を、前駆体膜が所望の膜厚になるまで複数回繰り返すことにより、第1の中間層9を形成する。
 なお、加熱する際に、基板8の構成元素である鉄、クロムが第1の中間層9に拡散する。鉄とクロムの線熱膨張係数は、第1の中間層9の構成材料であるシリコン酸化物の線熱膨張係数よりも大きい。すなわち、鉄とクロムが拡散した領域の線熱膨張係数は、シリコン酸化物単体の線熱膨張係数よりも大きい。第1の中間層9における鉄とクロムの拡散量は、基板8側から第1電極層11の方向に向かうにつれて小さくなる。さらに、拡散係数の大きいクロムの方が拡散係数の小さい鉄よりも、第1の中間層9内に拡散される。そのため、第1の中間層9において、基板8側から第1電極層11側に傾斜的に線熱膨張係数が小さくなる。
 なお、本実施の形態では第1の中間層9であるシリコン酸化物層をCSD法により形成している。しかし、第1の中間層9の作製方法はCSD法に限定されない。シリコン酸化物の前駆体膜を基板8上に形成し、加熱によりシリコン酸化物の緻密化を行う方法であればよい。
 第1の中間層9の膜厚は、300nm以上、950nm以下の範囲であることが望ましい。膜厚が300nmより小さい場合は、基板8の構成元素である鉄とクロムの両方が、第1の中間層9の全体に拡散し、第1電極層11にまで達してしまう可能性がある。鉄やクロムが第1電極層11に拡散すると、LNOの結晶性が低下する。膜厚が950nmより大きい場合は、第1の中間層9にクラック等が生じる可能性がある。
 次に、ハフニウム酸化物前駆体溶液を第1の中間層9の上にスピンコート法により塗布し、ハフニウム酸化物前駆体膜を形成する。ハフニウム酸化物前駆体溶液は、ハフニウムアルコキシドを主成分とする溶液を用いている。ハフニウムアルコキシドとしては、ハフニウムテトラメトキシド(Hf(OCH)、ハフニウムテトライソプロポキシド(Hf(OCH(CH)等が用いられる。
 次に、100℃以上、300℃以下で乾燥を行い、その後、温度を上げて加熱する。これにより、残留有機物を熱分解し、膜が緻密化される。ハフニウム酸化物前駆体溶液を基板8上に塗布してから緻密化までの一連の操作を、前駆体膜が所望の膜厚になるまで複数回繰り返すことにより、第2の中間層10を形成する。
 次に、第1電極層11を形成するためのLNO前駆体溶液を、上述した第1の中間層9の上に塗布する。
 LNO前駆体溶液の原料としては、硝酸ランタン六水和物(La(NO・6HO)、酢酸ニッケル四水和物((CHCOO)Ni・4HO)を用い、溶媒として2-メトキシエタノールと2-アミノエタノールを用いている。
 次に、基板8の一面に塗布したLNO前駆体溶液を100℃以上、300℃以下で乾燥を行い、その後温度を上げて熱処理し、残留有機成分を熱分解する。LNO前駆体溶液を、第1の中間層9の上に塗布してから熱分解するまでの一連の操作を、LNO前駆体が所望の厚みになるまで複数回繰り返す。そしてLNO前駆体膜が所望の厚みになった時点で、急速加熱炉(Rapid Thermal Annealing、以降「RTA炉」と記す)を用いて急速加熱し、LNOを生成させるとともに結晶化させる。結晶化の条件は、第1の中間層9や第2の中間層10の緻密化処理、およびLNO前駆体溶液の熱処理よりさらに温度を上げて600℃以上で数分間加熱する。昇温速度は毎分100℃以上、300℃以下である。
 以上の手順で第1電極層11を形成することにより、(100)面方向に配向したLNOが作製できる。第1電極層11を所望の膜厚にするために、複数回の塗布から熱分解を繰り返した後に一括して結晶化を行う替わりに、毎回塗布から結晶化までの工程を繰り返しても良い。
 第1電極層11を形成後、フォトリソグラフィとエッチングのプロセスにより、第1電極層11を加工する。第1電極層11の上にレジスト(図示せず)を成膜し、所定のパターンを形成したクロムマスクなどを用いて、レジストに紫外線を露光する。その後、現像液を用いてレジストの未露光部分を除去して、レジストのパターンを形成した後に、ドライエッチングにより第1電極層11をパターニングする。なお、第1電極層11のパターニングにはドライエッチング以外に、ウェットエッチング等の種々の方法を用いることができる。
 次に、検出層12の製造方法について説明する。まず、PZT前駆体溶液を調製し、調製したPZT前駆体溶液を第1電極層11上に、塗布する。
 PZT前駆体溶液は、原料として、酢酸鉛(II)三水和物(Pb(OCOCH・3HO)、チタンイソプロポキシド(Ti(OCH(CH)、ジルコニウムノルマルプロポキシド(Zr(OCHCHCH)を用いる。これらにエタノールを加えて溶解し、還流することで、PZT前駆体溶液を調製する。Ti/Zr比はmol比でTi/Zr=70/30としている。
 なお、塗布方法として、本実施の形態ではスピンコート法を用いたが、ディップコート法、スプレーコート法等の種々の塗布方法を用いることができる。
 塗布が完了すると、PZT前駆体溶液は、溶媒の蒸発と加水分解により、湿潤したPZT前駆体膜を形成する。このPZT前駆体膜に含まれる水分、残留溶媒を取り除くために、乾燥炉で乾燥する。次に、乾燥炉よりさらに温度を上げた電気炉で仮焼成を行う。本実施の形態では、PZT前駆体溶液の塗布から仮焼成工程までを数回繰り返して、PZT前駆体膜を形成している。その後、PZT前駆体膜を結晶化させるために、PZT前駆体膜を、RTA炉を用いて、急速に加熱する。結晶化のための加熱条件は仮焼成よりも更に温度を上げて600℃以上数分程度とし、昇温速度は毎分100℃以上、300℃以下としている。
 上記の工程で形成された検出層12の厚みは50nm以上、400nm以下程度である。それ以上の厚みが必要な場合には、本工程を複数回繰り返す。なお所望の厚みを得るために、PZT前駆体溶液を塗布してPZT前駆体膜を形成し、乾燥する工程を複数回繰り返し、所望の厚みにPZT前駆体膜を形成した後に一括して結晶化工程を行っても良い。
 図4は検出層12の結晶性を、X線回折法を用いて評価した結果である。説明を容易にするため、主な強度のピークのみを示している。図4より、検出層12(PZT薄膜)は、(001)面に優先配向していることがわかる。
 また、本実施の形態により作製した検出層12の特性(P-Eヒステリシスループ)を測定した結果を図5に示す。検出層12の特性は角型性の良好なループを示しており、残留分極値Pも大きいことがわかる。検出層12の焦電係数は、温度による残留分極値Pの変化から求められる係数である。焦電係数を大きくするためには、分極値が大きいことが重要となる。検出層12を用いた赤外線検出装置100は、従来と比較して大きな赤外線検出能を実現できる。
 上記の製造方法により形成した検出層12の上に、真空蒸着法等の成膜方法により、ニッケルとクロムを主体とする材料からなる第2電極層13を形成する。
 第2電極層13の成膜において、蒸着法のような、残留応力の少ない成膜方法を用いることにより、残留応力による脚部5の破壊を抑制できる。また、スパッタ法を用いる場合でも、基板へのバイアス印加等を行うことで残留応力を制御することにより、応力による脚部5の破壊を抑制できる。
 以上のようにして、凹部7を形成していない基板8の上に、基板8の主面側から順に、第1の中間層9、第2の中間層10、第1電極層11、検出層12、第2電極層13を形成した積層膜を作製する。
 次に、ドライエッチングによるパターニングで、第2電極層13および第2の電極パッド2を形成する。その後、ドライエッチングによるパターニングで、検出層12、第1電極層11、第2の中間層10、第1の中間層9を順次、加工する。加工プロセスは、第1電極層11の加工プロセスと同様のため、ここでは詳細な説明を省略する。
 その後、上面視で基板8の表面が露出した部分から、ウェットエッチングを行うことにより、凹部7を形成する。ウェットエッチングは、熱型光検出素子1および脚部5に形成された第1の中間層9の裏面が、基板8の表面から離間するまで行う。これにより、赤外線検出装置100の熱絶縁性が向上する。
 また、本実施の形態によれば、第1の中間層9、第2の中間層10、第1電極層11および検出層12はCSD法により作製している。そのため、スパッタ法等の気相成長法で必要となる真空プロセスが不要であり、コストを低減できる。さらに第1電極層11に用いるLNOは、本実施の形態の製造方法により形成することで、(100)面に自己配向させることができる。そのため、配向方向は基板8の材料には依存しにくい。したがって、基板8の材料が制限されにくい。
 例えば、基板8にステンレス材等の赤外線を反射する金属材料を用いることで、熱型光検出素子1を透過してきた赤外線を反射し、再度、熱型光検出素子1に赤外線を入射させることができる。そのため、入射赤外線の熱への変換量を大きくすることができ、赤外線検出能を高めることができる。さらに、シリコン基板と比較してステンレス材料は非常に安価であり、基板コストを安価にできる。
 基板8をエッチングする際にウェットエッチングを用いていることから、基板8の表面から等方的にエッチングが進行する。したがって、凹部7の加工形状は断面方向から見ると図1Bに示すように、円弧状となる。そのため、熱型光検出素子1を透過した赤外線に対して、エッチングされた底面が凹面鏡のように作用し、第2電極層13の上方からだけでなく、裏面側である第1の中間層9の下方からも効率よく熱型光検出素子1に集光できる。
 さらに、基板8のステンレス材として、圧延加工されたステンレス鋼帯(圧延鋼板)を用い、このステンレス鋼帯が検出層12を構成する材料の直径よりも小さい直径の金属粒(金属組織)の集合体で構成されていることが好ましい。このような材料を基板8に用いることで、ウェットエッチングのエッチング液が、金属粒(金属組織)の粒界から浸透する。その結果、図1Bの断面図に示す検出層12の下の位置において、この断面に垂直な方向からの基板8のエッチングが促進される。そのため、基板8のエッチング加工の速度を上げることが可能となり、赤外線検出装置の製造工程を短縮できる。
 なお、基板8にステンレス材を用いた場合、エッチング液に塩化鉄溶液や混酸溶液等を用いることができる。
 また、基板8をエッチングする際に、基板8の表面の露出部が少ない場合には、熱型光検出素子1の内部に、第1の中間層9、第2の中間層10、第1電極層11、検出層12および第2電極層13を貫通するように形成したエッチングホール(図示せず)を形成しても良い。これにより、熱型光検出素子1の内部からもウェットエッチングを行うことが可能となり、エッチング時間が短縮される。
 なお、本実施の形態の第1電極層11および検出層12の結晶化工程に用いる加熱炉としては、RTA炉に限るものではなく、電気炉、ホットプレート、IH加熱炉、レーザアニール等を用いても良い。
 (実施の形態2)
 図6Aは、本実施の形態2における赤外線検出装置125の上面図である。図6Bは、図6Aに示す線6B-6Bにおける断面図である。図6Cは、図6Aに示す線6C-6Cにおける断面図である。図6Dは、図6Aに示す線6D-6Dにおける断面図である。図6Bに示すように、上部に第2電極層13が形成されていない検出層12の下に形成されている第1電極層11を、第1電極層11の基部11aとする。また、上部全てが第2電極層13で覆われた検出層12の下に形成されている第1電極層11を、第1電極層11の主部11bとする。また、上部の一部が第2電極層13で覆われた検出層12の下に形成されている第1電極層11を、第1電極層11の延伸部11cとする。
 本実施の形態の赤外線検出装置125は、実施の形態1の赤外線検出装置100と比較して、第1電極層11の延伸部11cが存在する点が異なる。すなわち、本実施の形態では、上部の一部が第2電極層13で覆われた検出層12の下にも第1電極層11が存在する。なお、実施の形態1と同様の構成を有するものについては、同一の番号を記してその説明を省略する。また、本実施の形態の製造方法は、実施の形態1と同様である。
 図6Cに示すように、第1電極層11の主部11bの幅は、検出層12の幅よりも狭い方が好ましい。また、図6Dに示すように、第1電極層11の基部11aの幅は、検出層12の幅よりも狭い方が好ましい。また、第1電極層11の延伸部11cも同様である。すなわち、第1電極層11の幅は、検出層12の幅よりも狭い方が好ましい。言い換えれば、第1電極層11の幅方向において、第1電極層11が、検出層12で覆われている。すなわち、第1電極層11は検出層12で覆われている箇所を有する。第1電極層11は、電気信号が引き出される箇所である第1の電極パッド4以外は、検出層12で覆われていることが好ましい。ここで、幅とは、図6Aにおける線6C-6Cの方向、すなわち線6D-6Dの方向である。第1電極層11は、検出層12の端面から露出していない方が好ましい。凹部7は、塩化鉄や混酸により基板8を溶解する工程(ウェットエッチングなど)により形成される。一方、第1電極層11に用いる、LNO等の導電性酸化物材料は、酸により溶解する。そのため、検出層12の端面に、第1電極層11が露出していると、塩化鉄や混酸により基板8を溶解する際に、第1電極層11も溶解してしまう場合がある。したがって、第1電極層11の幅を、検出層12の幅より狭くし、熱型光検出素子1の端面に、第1電極層11が露出しないようにする方が好ましい。これにより、第1電極層11の溶解を抑制できる。その結果、赤外線検出能の高い赤外線検出装置125が得られる。
 言い換えれば、第1電極層11は、検出層12で覆われている方が好ましい。第1電極層11が第2の中間層10と接する面以外を、検出層12で覆うことにより、第1電極層11を、熱型光検出素子1の端面に露出しないようにするのが好ましい。そのために、第1電極層11の延出方向に対して垂直な方向の断面形状を、検出層12から第2の中間層10に向けて広がる順テーパ形状とするのが好ましい。第1電極層11の断面形状を順テーパ形状とすることにより、第1電極層11の上にPZT薄膜の前駆体溶液をスピンコートする際に、テーパ面に沿って溶液が塗布される。そのために、第1電極層11を、検出層12で確実に覆うことができる。ドライエッチングの条件を変えることなどにより、第1電極層11を順テーパ形状にできる。
 基板8の枠部6おける第2電極層13の下方において、第1電極層11が形成されている形成領域と、第1電極層11が形成されていない非形成領域とが存在している。第2の電極パッド2の下層は、第1電極層11の延伸部11cが形成されていない非形成領域とすることが好ましい。この非形成領域において第2の中間層10と検出層12の延伸部12cとが接合する。これにより、第2の電極パッド2を形成した部分でキャパシタ構造が形成されることを抑制することができる。上記の構造にすることにより、寄生容量が生じないため、赤外線検出装置125の感度が向上する。
 なお、脚部5Aにおいて、第1電極層11の延伸部11cと第2電極層13が、基板8の垂直断面において、同一平面上に並ばないようにするのが好ましい。すなわち、第1電極層11の延伸部11cと第2電極層13が上面視においてずれていることが好ましい。こうすることにより、配線間の寄生容量を低減でき、赤外線検出装置125のセンサ感度をさらに高められる。
 また、第1電極層11の延伸部11cを第2電極層13の幅よりも狭くすることで、第2電極層13との間に生じる寄生容量を低減できる。その結果、赤外線検出装置125のセンサ感度が向上する。
 なお、第1電極層11の基部11a、主部11b、延伸部11cは、基板8より線熱膨張係数が大きければ異なる材料により形成しても良い。ただし、第1電極層11の基部11a、主部11b、延伸部11cを同じ材料で形成することにより、一括成形でき、生産性が高められる。同じ材料を用いることで、第1電極層11のすべての箇所での線熱膨張係数は、基板8の線熱膨張係数より大きくなる。これにより、第1電極層11は、すべての箇所で成膜時に基板8から受ける熱応力は引張り方向となり、検出層12の延伸部11cは、成膜時に基板8から受ける熱応力は圧縮方向となる。したがって、第1電極層11の残留応力と、検出層12の残留応力は、それぞれをキャンセルする方向となる。そのため、基板8の表面に凹部7を形成し、残留応力が開放される際においても、脚部5A、5Bの反りやクラックによる破壊を抑制できる。その結果、高い熱絶縁性を有する赤外線検出装置を実現できる。
 また、上部に第2電極層13が形成されていない検出層12を、検出層12の基部12aとする。また、上部全てが第2電極層13で覆われた検出層12を、検出層12の主部12bとする。また、上部の一部が第2電極層13で覆われた検出層12を、検出層12の延伸部12cとする。検出層12の基部12a、主部12b、延伸部12cは、基板8よりも線熱膨張係数が小さければ異なる材料で形成しても良い。ただし、基部12a、主部12b、延伸部12cを同じ材料で形成することにより、一括成形でき、生産性が高まる。また、検出層12の延伸部12cに、検出層12の主部12bよりも比誘電率の小さい材料を用いることで、脚部5Aにおいて、第1電極層11の延伸部11cと第2電極層13との間の寄生容量を低減できる。その結果、赤外線検出装置のセンサ感度が高まる。例えば、検出層12の主部12bとして、チタン酸ジルコン酸鉛(PZT)を用い、検出層12の延伸部12cとして、アルミナ酸化物、チタン酸化物、ジルコニウム酸化物、ハフニウム酸化物等を用いるのが好ましい。
 図7は、本実施の形態2における赤外線検出装置127の断面図である。図7に示すように、第2の中間層10は、設けなくても良い。
 (実施の形態3)
 以下、本実施の形態における赤外線検出装置130に関して、図面を用いて説明する。なお、実施の形態1、2と同様の構成を有するものについては、同一の番号を記してその説明を省略する。
 図8Aは、本実施の形態3における赤外線検出装置130の上面図である。図8Bは、図8Aに示す線8B-8Bにおける断面図である。 本実施の形態の赤外線検出装置130は、実施の形態1の赤外線検出装置100と比較して、第1電極層11と第2の中間層10との間に、第1の電導層21が形成されている点が異なる。
 第1の電導層21は、第1電極層11よりも電気伝導率が高く、赤外線を反射する材料が望ましい。本実施の形態では白金(Pt)を主成分とする材料を用いている。なお、第1の電導層21の材料は白金に限るものではなく、白金-イリジウム合金等の合金材料や、金、金合金等でもよい。
 第1の電導層21に用いるPt薄膜は、通常<111>方向に配向しやすい材料である。したがって、この上に直接PZTからなる検出層12を形成すると、Pt(111)面と格子マッチングの良好な、PZT(111)面に優先配向した膜が形成される。そのため、赤外線の検出能が低下する。しかし、本実施の形態においては、第1の電導層21の上に第1電極層11としてのLNO薄膜を形成しているので、Pt(111)面の上方でもLNO(100)面に優先配向した膜を作製できる。したがって、第1電極層11の上の検出層12もPZT(100)面に優先配向した膜となり、高い赤外線検出能が実現できる。
 また、第1の電導層21を形成することで、第1電極層11だけの場合と比較して、電気伝導度が高くなるため、検出層12の電気特性が向上する。特に、誘電体特性で重要な誘電正接(tanδ)の値を小さくできる。そのために、赤外線検出装置のノイズが大幅に抑制される。その結果、赤外線検出能が向上する。
 また、第1電極層11の膜厚をdL1、屈折率をnL1、検出層12の膜厚をdP1、屈折率をnP1、検出対象の赤外線の波長をλP1とする。そして、dL1とdP1が以下の(式1)を満たすことにより、入射した赤外線と、第1の電導層21で反射した赤外線が干渉して、より高い赤外線吸収能を実現できる。そのために、赤外線検出能が向上する。
Figure JPOXMLDOC01-appb-M000001
 なお、第1の電導層21と第2の中間層10との密着性を向上するために、第1の電導層21と第2の中間層10との間に、TiあるいはTiO等などにより形成された密着層(図示せず)を形成しても良い。
 本実施の形態の赤外線検出装置130を用いることで、高い赤外線検出能を有する赤外線センサ等のデバイスが得られる。
 なお、本実施の形態では、第1の中間層9、第2の中間層10を設けたが、第1の中間層9、第2の中間層10は省略してもよい。
 図9Aは、本実施の形態3における赤外線検出装置135の上面図である。図9Bは、図9Aに示す線9B-9Bにおける断面図である。図9Cは、図9Aに示す線9C-9Cにおける断面図である。図9Dは、図9Aに示す線9D-9Dにおける断面図である。図9Bに示すように、赤外線検出装置135は、第1電極層11の延伸部11cを有していてもよい。すなわち、上部の一部が第2電極層13で覆われた検出層12の下に、第1電極層11が存在していてもよい。本実施の形態の赤外線検出装置135は、実施の形態2の赤外線検出装置125と比較して、第1電極層11と第2の中間層10との間に、第1の電導層21が形成されている点が異なる。
 第1電極層11の基部11a、主部11b、延伸部11cは、同じ材料でもよく、異なる材料でもよい。また、図9C、図9Dに示すように、第1電極層11は、検出層12の端面から露出していない方が好ましい。さらに、第1電極層11は検出層12で覆われている方が好ましい。そのために、第1電極層11の延出方向に対して垂直な方向の断面形状が、検出層12から第2の中間層10に向けて広がる順テーパ形状であるのが好ましい。
 (実施の形態4)
 以下、本実施の形態における赤外線検出装置140に関して、図面を用いて説明する。なお、実施の形態1、2と同様の構成を有するものについては、同一の番号を記してその説明を省略する。
 図10Aは、本実施の形態4における赤外線検出装置140の上面図である。図10Bは、図10Aに示す線10B-10Bにおける断面図である。
 本実施の形態の赤外線検出装置140は、実施の形態1の赤外線検出装置100と比較して、第1電極層11と検出層12との間に、第2の電導層22が形成されている点が異なる。
 第2の電導層22は、第1電極層11よりも電気伝導率が高く、赤外線を反射する材料が望ましい。本実施の形態では白金を主成分とする材料を用いている。なお、第2の電導層22の材料は白金に限るものではなく、白金-イリジウム合金等の合金材料や、金、金合金等でもよい。
 第2の電導層22に用いるPt薄膜は、通常<111>方向に配向しやすい材料である。したがって、この上に直接PZTからなる検出層12を形成すると、Pt(111)面と格子マッチングの良好な、PZT(111)面に優先配向した膜が形成されるため、赤外線検出能が低下する。
 一方、本実施の形態においては、<100>方向に高い配向度を有するLNO薄膜からなる第1電極層11の上に、Pt薄膜を作製している。そのために、スパッタ成膜条件をコントロールすることで、LNO(100)面と格子マッチングの良好な、Pt(100)面に優先配向した第2の電導層22を形成できる。これにより、第2の電導層22の上に形成した検出層12は、Pt(100)面と格子マッチングが良好なPZT(001)面に優先配向した膜となり、高い赤外線検出能を実現できる。
 第2の電導層22を形成することで、第1電極層11だけの場合と比較して、電気伝導度が高くなる。そのため、検出層12の電気特性を向上できる。特に、誘電体特性で重要な誘電正接(tanδ)の値を小さくできる。そのために、赤外線検出装置のノイズが大幅に抑制される。その結果、赤外線検出能が向上する。
 また、検出層12の膜厚をdP2、屈折率をnP2、検出対象の赤外線の波長をλP2とする。dP2が以下の(式2)を満たすことにより、入射した赤外線と、第2の電導層22で反射した赤外線が干渉して、より高い赤外線吸収能を実現できる。そのために、より高い赤外線検出能を実現できる。
Figure JPOXMLDOC01-appb-M000002
 本実施の形態の赤外線検出装置140を用いることで、高い赤外線検出能を有する赤外線センサ等のデバイスが得られる。
 なお、本実施の形態では、第1の中間層9、第2の中間層10を設けたが、第1の中間層9、第2の中間層10は、省略してもよい。
 図11Aは、本実施の形態4における赤外線検出装置145の上面図である。図11Bは、図11Aに示す線11B-11Bにおける断面図である。図11Cは、図11Aに示す線11C-11Cにおける断面図である。図11Dは、図11Aに示す線11D-11Dにおける断面図である。図11Bに示すように、赤外線検出装置145は、第1電極層11の延伸部11cを有していてもよい。すなわち、上部の一部が第2電極層13で覆われた検出層12の下に、第1電極層11が存在していてもよい。本実施の形態の赤外線検出装置145は、実施の形態2の赤外線検出装置125と比較して、第1電極層11と検出層12との間に、第2の電導層22が形成されている点が異なる。
 第1電極層11の基部11a、主部11b、延伸部11cは、同じ材料でもよく、異なる材料でもよい。また、図11C、図11Dに示すように、第1電極層11は、検出層12の端面から露出していない方が好ましい。さらに、第1電極層11は検出層12で覆われている方が好ましい。そのために、第1電極層11の延出方向に対して垂直な方向の断面形状が、検出層12から第2の中間層10に向けて広がる順テーパ形状であるのが好ましい。
 なお、本実施の形態4では、第2の電導層22を第1の電極パッド4として用いている。
 (実施の形態5)
 以下、本実施の形態5における赤外線検出装置150に関して、図面を用いて説明する。なお、実施の形態1、2と同様の構成を有するものについては、同一の番号を記してその説明を省略する。
 図12Aは、本実施の形態5における赤外線検出装置150の上面図である。図12Bは、図12Aに示す線12B-12Bにおける断面図である。
 本実施の形態の赤外線検出装置150は、実施の形態1の赤外線検出装置100と比較して検出層12および第2電極層13の上に赤外線吸収層23が形成されている点が異なる。
 赤外線吸収層23は、検出層12よりも線熱膨張係数が小さく、赤外線を吸収する材料で構成することが望ましい。本実施の形態ではシリコン酸化物を主成分とする材料を用いている。なお、赤外線吸収層23の材料はシリコン酸化物に限るものではなく、検出層12よりも線熱膨張係数が低く、赤外線を吸収する材料であれば良い。例えば、シリコン酸化物を窒化したシリコン酸窒化膜(SiON)やシリコン窒化膜(SiN)等でもよい。
 赤外線吸収層23を形成することで、基板8の表面からウェットエッチングを行い、凹部7が形成されて、検出層12が基板8から離間される際に、検出層12に印加された圧縮応力の解放を抑制できる。赤外線吸収層23は、検出層12よりも線熱膨張係数が小さいことから、赤外線吸収層23は検出層12と比較して、相対的に引っ張り方向の応力を受けている。すなわち、検出層12が基板8から離間する際に、圧縮方向の応力を受けている検出層12が、応力が解放される引っ張り方向の力を受けるのに対して、その上に形成された赤外線吸収層23は、検出層12と比較して相対的に逆方向の圧縮方向の力を受ける。そのために、検出層12の応力の解放が抑制される。これにより、検出層12の高い分極特性が維持されると共に、圧縮応力により向上したキュリー点の低下も抑制できる。
 さらに、赤外線吸収層23は赤外線吸収能を有することから、受光した赤外線を効率よく熱に変換することができ、高い赤外線検出能を実現できる。さらに、第2電極層13を、赤外線を反射する材料、例えば、金や白金とすることで、一旦、赤外線吸収層23を透過した赤外線も、第2電極層13で反射して、再度、赤外線吸収層23で吸収されることから、より高い赤外線吸収能を実現することができる。その結果、より高い赤外線検出能を実現できる。
 また、赤外線吸収層23の膜厚をd、屈折率をn、検出対象の赤外線の波長をλとして、dが(式3)を満たすことが好ましい。ここでmは0または自然数である。この場合、入射した赤外線と、第2電極層13で反射した赤外線が干渉して、より高い赤外線吸収能を実現できる。そのため、赤外線検出能が向上する。
Figure JPOXMLDOC01-appb-M000003
 本実施の形態の赤外線検出装置150を用いることで、高い赤外線検出能を有する赤外線センサ等のデバイスが得られる。
 なお、本実施の形態では、第1の中間層9、第2の中間層10を設けたが、第1の中間層9、第2の中間層10は省略してもよい。
 図13Aは、本実施の形態5における赤外線検出装置155の上面図である。図13Bは、図13Aに示す線13B-13Bにおける断面図である。図13Cは、図13Aに示す線13C-13Cにおける断面図である。図13Dは、図13Aに示す線13D-13Dにおける断面図である。図13Bに示すように、赤外線検出装置155は、第1電極層11の延伸部11cを有していてもよい。すなわち、上部の一部が第2電極層13で覆われた検出層12の下に、第1電極層11が存在していてもよい。本実施の形態の赤外線検出装置155は、実施の形態2の赤外線検出装置125と比較して、検出層12および第2電極層13の上に赤外線吸収層23が形成されている点が異なる。
 第1電極層11の基部11a、主部11b、延伸部11cは、同じ材料でもよく、異なる材料でもよい。また、図13C、図13Dに示すように、第1電極層11は、検出層12の端面から露出していない方が好ましい。さらに、第1電極層11は検出層12で覆われている方が好ましい。そのために、第1電極層11の延出方向に対して垂直な方向の断面形状が、検出層12から第2の中間層10に向けて広がる順テーパ形状であるのが好ましい。
 以上のように本実施の形態によれば、検出層12よりも線熱膨張係数の大きい基板8を用いている。そのため、熱応力により検出層12に圧縮応力を印加することができる。その結果、高い赤外線検出能を実現できる。
 さらに、第1電極層11の線熱膨張係数が、基板8の線熱膨張係数より大きいので、第1電極層11と検出層12の応力がキャンセルし合う。したがって検出層12を細い脚部で支える熱絶縁性が高い構造の赤外線検出装置においても、検出層12の反りや破壊を抑制することができる。その結果、高い赤外線検出能を有する赤外線検出装置を実現できる。
 本実施の形態の赤外線検出装置は、焦電特性が高く、熱絶縁性が高い。そのため、赤外線検出能の大きい優れたセンサ特性を実現できる。本実施の形態の赤外線検出装置を各種電子機器に用いることにより、人感センサや温度センサ等の各種センサ、焦電発電デバイス等の発電デバイスとして有用である。
 1 熱型光検出素子
 2 第2の電極パッド
 3 電気配線
 4 第1の電極パッド
 5,5A,5B 脚部
 6 枠部
 7 凹部
 7A 空隙
 8 基板
 9 第1の中間層
 10 第2の中間層
 11 第1電極層
 11a,12a 基部
 11b,12b 主部
 11c,12c 延伸部
 12 検出層
 13 第2電極層
 21 第1の電導層
 22 第2の電導層
 23 赤外線吸収層
 50 検出部
 100,110,120,125,127,130,135,140,145,150,155 赤外線検出装置

Claims (19)

  1. 凹部と、前記凹部の周囲に位置する枠部とを有する基板と、
    脚部と検出部とを有し、前記凹部上に前記検出部が位置するように、前記脚部が前記枠部上に接続されるとともに、前記基板上に設けられた第1電極層と、前記第1電極層上に設けられた検出層と、前記検出層上に設けられた第2電極層とを有する熱型光検出素子と、を備え、
    前記第1電極層の線熱膨張係数は、前記基板の線熱膨張係数より大きく、
    前記基板の線熱膨張係数は、前記検出層の線熱膨張係数より大きい
    赤外線検出装置。
  2. 前記基板と、前記第1電極層の間の少なくとも一部に第1の中間層をさらに備えた
    請求項1に記載の赤外線検出装置。
  3. 前記第1の中間層には、前記基板に含まれる元素が拡散している
    請求項2に記載の赤外線検出装置。
  4. 前記第1の中間層の前記基板側の線熱膨張係数が、前記第1電極層側の線熱膨張係数より大きい
    請求項2に記載の赤外線検出装置。
  5. 前記第1の中間層の主成分は、シリコン酸化物である
    請求項2に記載の赤外線検出装置。
  6. 前記第1電極層の幅方向において、前記第1電極層は、前記検出層で覆われている箇所を有する
    請求項2に記載の赤外線検出装置。
  7. 前記第1電極層の延出方向に対して垂直な方向の断面が、前記検出層から前記基板に向けて広がる順テーパ形状である
    請求項2に記載の赤外線検出装置。
  8. 前記第1の中間層と前記検出層との間に第2の中間層をさらに備え、
    前記第2の中間層の線熱膨張係数は、前記第1の中間層の線熱膨張係数より大きく、前記検出層の線熱膨張係数より小さい
    請求項2に記載の赤外線検出装置。
  9. 前記第2の中間層は、チタン酸化物もしくはハフニウム酸化物を含む材料で形成されている
    請求項8に記載の赤外線検出装置。
  10. 前記基板の前記枠部における前記第2電極層の下方において、前記第1電極層が形成されている領域と、前記第1電極層が形成されていない領域とが存在する
    請求項2に記載の赤外線検出装置。
  11. 前記第1電極層の一部と前記検出層の一部が、前記第1の中間層の上に形成されている
    請求項2に記載の赤外線検出装置。
  12. 前記第1電極層と、前記基板の間に、前記第1電極層よりも電気伝導率が高い第1の電導層をさらに備える
    請求項1に記載の赤外線検出装置。
  13. 前記第1電極層と前記検出層との間に、前記第1電極層よりも電気伝導率が高い第2の電導層をさらに備える
    請求項1に記載の赤外線検出装置。
  14. 前記第2の電導層が、(100)面を主配向面とする白金を含む材料で形成されている
    請求項13に記載の赤外線検出装置。
  15. 前記検出層の、前記第1電極層と反対側の面に、前記検出層より線膨張係数が小さい赤外線吸収層が形成されている
    請求項1に記載の赤外線検出装置。
  16. 前記基板は、金属材料で形成されている
    請求項1に記載の赤外線検出装置。
  17. 前記凹部が赤外線を反射する材料で形成されている
    請求項1に記載の赤外線検出装置。
  18. 前記基板がフェライト系ステンレス材料で形成されており、
    前記第1電極層が、ニッケル酸ランタン、コバルト酸ランタンストロンチウム、マンガン酸ランタンストロンチウムのうちのいずれかを主成分とするペロブスカイト構造を有する導電性酸化物材料で形成されており、
    前記検出層が、チタン酸鉛を含むペロブスカイト構造を有する焦電性を示す材料で形成されている
    請求項1に記載の赤外線検出装置。
  19. 前記第1電極層の一部と前記検出層の一部が、前記基板上に形成されている
    請求項1に記載の赤外線検出装置。
PCT/JP2013/006479 2012-11-26 2013-11-01 赤外線検出装置 WO2014080577A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014548437A JPWO2014080577A1 (ja) 2012-11-26 2013-11-01 赤外線検出装置
US14/646,835 US20150292949A1 (en) 2012-11-26 2013-11-01 Infrared detecting device
EP13856270.7A EP2924402A4 (en) 2012-11-26 2013-11-01 INFRARED DETECTION DEVICE
CN201380061498.6A CN104823030A (zh) 2012-11-26 2013-11-01 红外线检测装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012257048 2012-11-26
JP2012-257048 2012-11-26
JP2013-163011 2013-08-06
JP2013163011 2013-08-06

Publications (1)

Publication Number Publication Date
WO2014080577A1 true WO2014080577A1 (ja) 2014-05-30

Family

ID=50775774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006479 WO2014080577A1 (ja) 2012-11-26 2013-11-01 赤外線検出装置

Country Status (5)

Country Link
US (1) US20150292949A1 (ja)
EP (1) EP2924402A4 (ja)
JP (1) JPWO2014080577A1 (ja)
CN (1) CN104823030A (ja)
WO (1) WO2014080577A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205913A (ja) * 2015-04-20 2016-12-08 セイコーエプソン株式会社 赤外センサー、赤外センサーの製造方法および電子機器
WO2019208340A1 (ja) * 2018-04-26 2019-10-31 株式会社村田製作所 キャパシタおよびHfO2膜の製造方法
US20230038800A1 (en) * 2021-08-04 2023-02-09 Denso Corporation State detection sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121819B2 (ja) * 2013-07-04 2017-04-26 株式会社東芝 半導体装置および誘電体膜
CN106356416B (zh) * 2016-11-28 2018-02-06 中国电子科技集团公司第十三研究所 高速光电探测器芯片的制作方法
JP6998144B2 (ja) * 2017-07-12 2022-01-18 リンナイ株式会社 フレームロッド
CN110514306A (zh) * 2019-09-06 2019-11-29 云南电网有限责任公司电力科学研究院 基于热释电传感器的高压开关柜温度监测方法及系统
CN111403587B (zh) * 2020-02-27 2023-05-26 河北大学 一种基于钌酸锶薄膜的光、热探测器及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234159A (ja) * 1994-02-23 1995-09-05 Matsushita Electric Works Ltd 赤外線検出素子の製造方法
JPH0878735A (ja) * 1994-09-01 1996-03-22 Matsushita Electric Ind Co Ltd 強誘電体薄膜装置
JP2001033307A (ja) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd 赤外線検出素子およびその製造方法
WO2004051760A1 (ja) * 2002-12-05 2004-06-17 Matsushita Electric Industrial Co., Ltd. 焦電体素子及びその製造方法並びに赤外線センサ
WO2004079311A1 (ja) 2003-03-07 2004-09-16 Fujitsu Limited 電磁放射線センサ及びその製造方法
JP2007228190A (ja) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd バルク弾性波共振素子及び該製造方法並びにフィルタ回路
JP2009255529A (ja) * 2008-03-27 2009-11-05 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びにアクチュエータ
JP2010540915A (ja) 2007-09-28 2010-12-24 ピレオス エルテーデー 高分解能で熱放射を検出するための装置、この装置を製造する方法
WO2011001585A1 (ja) 2009-07-03 2011-01-06 株式会社村田製作所 赤外線検知装置及び非接触式入力装置
WO2012144185A1 (ja) * 2011-04-21 2012-10-26 パナソニック株式会社 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469301B1 (en) * 1999-05-14 2002-10-22 Nikon Corporation Radiation detectors including thermal-type displaceable element with increased responsiveness
US6239432B1 (en) * 1999-05-21 2001-05-29 Hetron IR radiation sensing with SIC
FR2826725B1 (fr) * 2001-06-28 2004-02-27 Commissariat Energie Atomique Microbolometres resistants aux temperatures de scenes elevees.
US7122797B2 (en) * 2002-09-09 2006-10-17 Sensors Unlimited, Inc. Method for making an infrared detector and infrared detector
JP4528720B2 (ja) * 2005-12-28 2010-08-18 株式会社東芝 赤外線検出素子およびその製造方法と赤外線カメラ
JP5649954B2 (ja) * 2007-04-02 2015-01-07 メルク パテント ゲーエムベーハー 光起電力セルとして構成される物品
JP2009068863A (ja) * 2007-09-10 2009-04-02 Toshiba Corp 赤外線検出素子及びそれを用いた赤外線イメージセンサ
US8178779B2 (en) * 2007-11-02 2012-05-15 Konarka Technologies, Inc. Organic photovoltaic cells
WO2009137141A2 (en) * 2008-02-21 2009-11-12 Konarka Technologies, Inc. Tandem photovoltaic cells
WO2010047049A1 (ja) * 2008-10-24 2010-04-29 パナソニック株式会社 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
US8440972B2 (en) * 2009-08-25 2013-05-14 Raytheon Company Radiation detector with microstructured silicon
JP5750827B2 (ja) * 2010-01-26 2015-07-22 セイコーエプソン株式会社 熱型光検出器の製造方法
WO2011096042A1 (ja) * 2010-02-02 2011-08-11 株式会社 東芝 赤外線撮像素子及びその製造方法
EP2363887A1 (en) * 2010-03-02 2011-09-07 SensoNor Technologies AS Focal plane array and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234159A (ja) * 1994-02-23 1995-09-05 Matsushita Electric Works Ltd 赤外線検出素子の製造方法
JPH0878735A (ja) * 1994-09-01 1996-03-22 Matsushita Electric Ind Co Ltd 強誘電体薄膜装置
JP2001033307A (ja) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd 赤外線検出素子およびその製造方法
WO2004051760A1 (ja) * 2002-12-05 2004-06-17 Matsushita Electric Industrial Co., Ltd. 焦電体素子及びその製造方法並びに赤外線センサ
WO2004079311A1 (ja) 2003-03-07 2004-09-16 Fujitsu Limited 電磁放射線センサ及びその製造方法
JP2007228190A (ja) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd バルク弾性波共振素子及び該製造方法並びにフィルタ回路
JP2010540915A (ja) 2007-09-28 2010-12-24 ピレオス エルテーデー 高分解能で熱放射を検出するための装置、この装置を製造する方法
JP2009255529A (ja) * 2008-03-27 2009-11-05 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びにアクチュエータ
WO2011001585A1 (ja) 2009-07-03 2011-01-06 株式会社村田製作所 赤外線検知装置及び非接触式入力装置
WO2012144185A1 (ja) * 2011-04-21 2012-10-26 パナソニック株式会社 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924402A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205913A (ja) * 2015-04-20 2016-12-08 セイコーエプソン株式会社 赤外センサー、赤外センサーの製造方法および電子機器
WO2019208340A1 (ja) * 2018-04-26 2019-10-31 株式会社村田製作所 キャパシタおよびHfO2膜の製造方法
US20230038800A1 (en) * 2021-08-04 2023-02-09 Denso Corporation State detection sensor

Also Published As

Publication number Publication date
EP2924402A4 (en) 2016-01-06
US20150292949A1 (en) 2015-10-15
EP2924402A1 (en) 2015-09-30
CN104823030A (zh) 2015-08-05
JPWO2014080577A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2014080577A1 (ja) 赤外線検出装置
WO1999009383A1 (en) Thermal infrared detector
WO2015072095A1 (ja) 赤外線検出素子、及び赤外線検出装置、圧電体素子
JP5966157B2 (ja) 赤外線検出装置
US20130320481A1 (en) High Density Pyroelectric Thin Film Infrared Sensor Array and Method of Manufacture Thereof
JPH11344377A (ja) 赤外線検知素子およびその製造方法
JP5909656B2 (ja) 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子
CN103117287B (zh) 非制冷薄膜型红外焦平面阵列探测器结构及其制备方法
US11158780B2 (en) Thermal pattern sensor with pyroelectric capacitor
WO2018168151A1 (ja) 焦電センサ
JP4205674B2 (ja) 電磁放射線センサ及びその製造方法
JP2016186425A (ja) 赤外線検出装置
JP5419139B2 (ja) 半導体集積装置およびその作製方法
Wang et al. Infrared optical properties of ferroelectric 0.5 BaZr0. 2Ti0. 8O3–0.5 Ba0. 7Ca0. 3TiO3 thin films
US9035253B2 (en) Infrared sensor element
JP6413070B2 (ja) 赤外線検出素子、及び赤外線検出装置
KR100305671B1 (ko) 적외선 감지장치 및 그의 제조방법
JP2002008905A (ja) 感温抵抗材料とその製造方法及び感温抵抗材料を用いた赤外線センサ
JPH07286897A (ja) 焦電型赤外線素子およびその製造方法
Liu et al. Pyroelectric properties of Pb (Zr, Ti) O3 and Pb (Zr, Ti) O3/PbTiO3 multilayered thin films
JP2016119328A (ja) 焦電体、焦電素子、焦電素子の製造方法、熱電変換素子、熱電変換素子の製造方法、熱型光検出器、熱型光検出器の製造方法および電子機器
Okuyama et al. Infrared and ultrasonic sensors using ferroelectric thin films
JP2016111081A (ja) 焦電体、焦電素子、焦電素子の製造方法、熱電変換素子、熱電変換素子の製造方法、熱型光検出器、熱型光検出器の製造方法および電子機器
US20160131530A1 (en) Pyroelectric body, pyroelectric element, production method for pyroelectric element, thermoelectric conversion element, production method for thermoelectric conversion element, thermal photodetector, production method for thermal photodetector, and electronic apparatus
JP6413281B2 (ja) ボロメータ方式の赤外線センサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548437

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14646835

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013856270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013856270

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载