WO2014050316A1 - 液晶表示装置およびその駆動方法 - Google Patents
液晶表示装置およびその駆動方法 Download PDFInfo
- Publication number
- WO2014050316A1 WO2014050316A1 PCT/JP2013/071195 JP2013071195W WO2014050316A1 WO 2014050316 A1 WO2014050316 A1 WO 2014050316A1 JP 2013071195 W JP2013071195 W JP 2013071195W WO 2014050316 A1 WO2014050316 A1 WO 2014050316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refresh
- period
- liquid crystal
- refresh period
- display device
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims description 155
- 230000008859 change Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 8
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 3
- 206010047571 Visual impairment Diseases 0.000 description 24
- 239000003990 capacitor Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 8
- 230000007704 transition Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010041347 Somnambulism Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0407—Resolution change, inclusive of the use of different resolutions for different screen areas
- G09G2340/0435—Change or adaptation of the frame rate of the video stream
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
Definitions
- the present invention relates to a liquid crystal display device and a driving method thereof, and more particularly to a liquid crystal display device that displays an image by pause driving and a driving method thereof.
- a liquid crystal display device mounted on such an electronic device is required to have low power consumption.
- As one driving method for reducing the power consumption of the liquid crystal display device there are a driving period in which scanning lines are scanned to write signal voltages, and a rest period in which writing is suspended while all scanning lines are in a non-scanning state.
- pause driving the operation of the scanning line driving circuit and / or the data signal line driving circuit is paused so that a control signal or the like is not given to the scanning line driving circuit and / or the data signal line driving circuit during the pause period.
- Such pause driving is also called “low frequency driving” or “intermittent driving”.
- Japanese Laid-Open Patent Publication No. 2004-78124 discloses that power consumption during a pause period is reduced by stopping the operation of a clock signal generation circuit that generates a clock signal for taking a data signal into a signal line. is doing.
- the power consumption can be reduced as the number of frames in the sleep period increases. For example, if the refresh rate is 1 Hz, the number of refresh frames is 1 frame and the number of non-refresh frames is 59 frames, so that power consumption can be significantly reduced. However, for the reason described later, there arises a problem that an afterimage is visually recognized in 2 seconds from the start of the first refresh to the end of the third refresh. In this way, if the refresh rate is lowered, the number of times the screen is refreshed per unit time is reduced, so that an afterimage is visually recognized for a long time.
- Each pixel formation portion is provided with a thin film transistor (Thin Film Transistor: hereinafter referred to as “TFT”) functioning as a switching element.
- TFT Thin Film Transistor
- the source terminal of the TFT is electrically connected to the signal line
- the gate terminal is electrically connected to the scanning line
- the drain terminal is electrically connected to the pixel electrode.
- the pixel electrode forms a liquid crystal capacitance with a common electrode provided in common for all pixels.
- This liquid crystal dielectric constant ⁇ has anisotropy, and its value varies depending on the alignment direction of the liquid crystal molecules. Further, since the transmittance of the liquid crystal is controlled by the orientation direction of the liquid crystal molecules, the liquid crystal dielectric constant ⁇ varies depending on the gradation.
- FIG. 14 is an example of a timing chart showing normal driving in a conventional liquid crystal display device.
- a positive voltage and a negative voltage for white display are alternately applied to the liquid crystal capacitance for each scanning period.
- the liquid crystal molecules are aligned so as to approach the direction corresponding to the applied voltage.
- the liquid crystal capacity does not reach the capacity necessary for white display (the dashed line in the figure), and the applied voltage of the liquid crystal capacity does not reach the voltage Va necessary for white display. Therefore, by applying a voltage necessary for white display in the second and subsequent drive frames, the liquid crystal capacity reaches the capacity necessary for white display, and the applied voltage reaches the voltage Va necessary for white display.
- FIG. 15 is an example of a timing chart showing the first pause driving in the conventional liquid crystal display device.
- the scanning period is provided for only one frame period.
- a negative voltage is applied to the liquid crystal capacitor in order to perform white display, and then a rest period occurs.
- the liquid crystal molecules are aligned so as to approach the direction corresponding to the voltage applied during the scanning period.
- the change in the liquid crystal capacitance is delayed compared to the change in the applied voltage.
- the liquid crystal capacity at the end of the writing period cannot reach the capacity necessary for white display (the chain line in the figure).
- the applied voltage does not reach the voltage Va necessary for white display and can only rise to a voltage Vb lower than that.
- the difference between the voltages Va and Vb causes an afterimage to be visually recognized on the screen.
- the present invention provides a liquid crystal display device and a driving method thereof that can prevent afterimages that are visually recognized at the time of pause driving from being displayed at an early stage, and can reduce power consumption during and after the transition to the target refresh rate.
- the purpose is to do.
- a first aspect of the present invention is a liquid crystal display device that performs pause driving at a target refresh rate, A display unit including a plurality of pixel formation units; A drive unit for driving the display unit; A display control unit that controls the drive unit based on data received from the outside, The display control unit is configured to perform non-refreshing until the target refresh rate is reached from a refresh rate at the end of the first refresh period during a pause drive until reaching the target refresh rate, and a refresh rate at the end of the first refresh period. Refreshing is performed separately from the second refresh period in which refresh is performed while increasing the number of frames in the refresh period, and when the refresh rate in the second refresh period reaches the target refresh rate, the second refresh period is terminated. The suspension driving is continued at the target refresh rate.
- the amount of change in the number of non-refresh frames in the second refresh period is greater than the amount of change in the number of non-refresh frames in the first refresh period.
- the number of refreshes performed in the second refresh period is a plurality of times.
- the number of frames in the non-refresh period in the second refresh period is increased in an arithmetic series having a tolerance of 2 or more.
- the number of frames in the non-refresh period in the second refresh period is increased in a geometric series having a common ratio of 2 or more.
- the number of refreshes performed in the second refresh period is one, and the one refresh is performed at a refresh rate equal to the target refresh rate.
- the number of refreshes in the first refresh period is at least twice, and at least one frame of non-refresh frame is provided in a non-refresh period between each refresh.
- the number of non-refresh frames in the first refresh period is increased in an arithmetic series with a tolerance of 1 or more for each non-refresh period.
- a ninth aspect of the present invention in a seventh aspect of the present invention, the number of non-refresh frames in each non-refresh period in the first refresh period is the same.
- the display control unit performs control for AC driving, In all of the first refresh period and the second refresh period, a refresh period in which refresh is performed with a positive polarity and a positive period composed of a non-refresh period immediately after the refresh period, a refresh period in which refresh is performed with a negative polarity, and A negative polarity period composed of a non-refresh period immediately after the refresh period is provided at substantially the same rate.
- the display control unit When the display control unit receives the updated data within the first or second refresh period, the display control unit stops refresh and pause of the refresh, and uses the updated data to perform the first refresh period. A new refresh is performed.
- a twelfth aspect of the present invention is the eleventh aspect of the present invention.
- the data is data that the display control unit receives irregularly from outside.
- a thirteenth aspect of the present invention is the eleventh aspect of the present invention,
- the data is data periodically received from outside at a predetermined cycle.
- the control terminal is connected to the scanning line in the display unit, the first conduction terminal is connected to the signal line in the display unit, and a voltage corresponding to an image to be displayed is to be applied. It includes a thin film transistor in which a second conduction terminal is connected to a pixel electrode in the unit and a channel layer is formed of an oxide semiconductor.
- a fifteenth aspect of the present invention is the fourteenth aspect of the present invention.
- the oxide semiconductor is characterized by being InGaZnOx containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
- a sixteenth aspect of the present invention includes a display unit including a plurality of pixel formation units, a drive unit that drives the display unit, and a display control unit that controls the drive unit based on data received from the outside,
- a driving method of a liquid crystal display device that performs pause driving at a target refresh rate, Performing at least two refreshes during the first refresh period during pause driving until the target refresh rate is reached; Performing a refresh while increasing the number of frames in a non-refresh period until the target refresh rate is reached in a second refresh period after the end of the first refresh period; A step of ending the second refresh period when the refresh rate in the second refresh period reaches the target refresh rate, and continuing the rest driving at the target refresh rate.
- a seventeenth aspect of the present invention is the sixteenth aspect of the present invention.
- the step of performing the refresh in the second refresh period is refreshed so that the amount of change in the number of non-refresh frames in the second refresh period is larger than the amount of change in the number of non-refresh frames in the first refresh period. It is characterized by performing.
- the refresh rate in the second refresh period is changed faster than the refresh rate in the first refresh period.
- the first refresh period for performing the refresh necessary to make the afterimage visually recognized during the pause drive invisible is completed in a short time, and the refresh rate is gradually decreased while the target refresh rate for the pause drive is set. Makes it possible to reach faster.
- the afterimage can be made invisible at an early stage after the first refresh in the first frame.
- the transition to the target refresh rate for pause driving can be made in a short time, the number of refreshes during and after the transition to the target refresh rate can be reduced. Thereby, the power consumption of the liquid crystal display device during this period can be reduced.
- the amount of change in the number of non-refresh frames in the second refresh period is larger than the amount of change in the number of non-refresh frames in the first refresh period. It is possible to shift to the target refresh rate in a short time.
- the third aspect of the present invention by performing the refresh performed a plurality of times in the second refresh period, it is possible to reach the target refresh rate for pause driving in a short time while suppressing the deterioration of the image display quality. it can. As a result, it is possible to reduce the power consumption of the liquid crystal display device from the start of pause driving until the target refresh rate is reached.
- the number of frames for each non-refresh period in the second refresh period can be increased in a differential series having a tolerance of 2 or more, so that the refresh rate is lowered stepwise. Reach faster, target refresh rate. Thereby, it is possible to further reduce the power consumption of the liquid crystal display device from the start of pause driving until the target refresh rate is reached.
- the refresh rate is lowered stepwise. While reaching the target refresh rate faster. As a result, it is possible to further reduce the power consumption of the liquid crystal display device from the start of pause driving until the target refresh rate is reached.
- the refresh rate is suddenly reduced to the target refresh rate for pause driving without changing in steps.
- the target refresh rate can be reached in the shortest time, and the number of refreshes during and after the transition to the target refresh rate can be reduced.
- the power consumption of the liquid crystal display device during this period can be significantly reduced.
- the refresh is performed at least twice during the first refresh period, it is possible to make the afterimage invisible during the rest drive.
- at least one frame of non-refresh frame is provided in a non-refresh period between each refresh. Thereby, it is possible to realize an effective pause drive corresponding to each of data input from the outside at various frequencies.
- the eighth aspect of the present invention since the number of non-refresh frames in the non-refresh period in the first refresh period is increased in an arithmetic series with a tolerance of 1, the first refresh period is completed in a short time. be able to. Thereby, it is possible to make it impossible to visually recognize the afterimage at the time of pause driving.
- the first refresh period is the same as in the seventh aspect of the present invention. Can be completed in a short time. Thereby, it is possible to make it impossible to visually recognize the afterimage at the time of pause driving.
- a refresh period in which the refresh is performed with a positive polarity and a non-refresh period immediately after the refresh period, and a refresh with a negative polarity The liquid crystal layer is AC-driven with a good polarity balance by setting the refresh period for performing the above and the negative polarity period composed of the non-refresh period immediately after the refresh period to substantially the same ratio. Thereby, deterioration of the liquid crystal layer can be suppressed.
- the eleventh aspect of the present invention when updated data is received within the first or second refresh period, refresh is performed from the first refresh period using the updated data.
- the screen of the display unit is immediately refreshed, and the updated image can be displayed.
- the same effect as the first aspect of the present invention is achieved by performing refresh using data received irregularly from outside.
- the same effect as the first aspect of the present invention is achieved by performing refresh using data periodically received from outside at a predetermined cycle.
- a thin film transistor in which a channel layer is formed of an oxide semiconductor is used as the thin film transistor in the pixel formation portion.
- leakage current is reduced, so that the voltage written in the pixel formation portion can be held at a sufficient level for a long time.
- the change in display luminance is further reduced, and the deterioration in display quality can be further suppressed.
- the effect of the fourteenth aspect of the present invention can be reliably achieved by using InGaZnOx as the oxide semiconductor forming the channel layer.
- FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration of a display control circuit corresponding to video mode RAM through, included in the liquid crystal display device shown in FIG. 1.
- FIG. 2 is a block diagram showing a configuration of a display control circuit corresponding to video mode RAM capture included in the liquid crystal display device shown in FIG. 1.
- FIG. 2 is a block diagram showing a configuration of a display control circuit corresponding to a command mode RAM write included in the liquid crystal display device shown in FIG. 1. It is a figure for demonstrating an example of operation
- FIG. 1 is a diagram for explaining a refresh operation of the liquid crystal display device when the image data is updated at 30 Hz
- FIG. 2 is a refresh operation of the liquid crystal display device when the image data is updated at 20 Hz. It is a figure for demonstrating operation
- the display control circuit uses the updated image data for the first refresh in the first frame in order to make the afterimage due to the anisotropy of the liquid crystal dielectric constant invisible. It is preferable to perform a total of three refreshes by performing refresh in the second and third frames using the same image data. Therefore, the second refresh is performed using the second frame that is scheduled to pause the refresh. However, if the third refresh is performed in the third frame, updated image data is transmitted from the host.
- the display control circuit performs the first refresh using the updated image data without performing the third refresh in the third frame, and further performs the second refresh in the fourth frame using the same image data. Perform a refresh. However, if the third refresh is performed in the fifth frame, further updated image data is transmitted from the host. For this reason, the display control circuit performs the first refresh using the updated image data without performing the third refresh in the fifth frame, and performs the second refresh using the same image data in the sixth frame. Refresh.
- refresh is performed using image data transmitted from the host in odd-numbered frames, and refresh is performed using the same image data as the previous odd-numbered frame in even-numbered frames.
- the image data is updated every other frame, the refreshed image is displayed on the display unit of the liquid crystal display device. That is, although the host is operating at 30 Hz, the liquid crystal display device is operating at 60 Hz. Therefore, this driving method cannot reduce the power consumption of the liquid crystal display device.
- the image data is updated every two frames.
- the display control circuit receives such image data, the display control circuit performs the first refresh in the first frame using the updated image data in order to make the afterimage caused by the anisotropy of the liquid crystal dielectric constant invisible.
- the second and third refreshes are performed using the same image data.
- the second and third refreshes are performed using the second and third frames, respectively, for which the refresh was scheduled to be paused.
- the display control circuit When the third refresh is finished, updated image data is sent from the host. Therefore, the display control circuit performs the first refresh in the fourth frame using the updated image data, and then performs the second and third refreshes using the same image data. The second and third refreshes are performed using the fifth and sixth frames, respectively, for which the refresh was scheduled to be paused.
- the first refresh is performed, and then the second and third refreshes are performed.
- the third refresh is completed, the updated image data is transmitted from the host, so the refresh is performed three times using the updated image data.
- the image data is updated every two frames, the refreshed image is displayed on the display unit of the liquid crystal display device. That is, although the host is operating at 20 Hz, the liquid crystal display device is operating at 60 Hz. Therefore, this driving method cannot reduce the power consumption of the liquid crystal display device.
- the afterimage caused by the anisotropy of the liquid crystal dielectric constant is reduced or made invisible by performing refresh twice or three times.
- the power consumption of the liquid crystal display device cannot be reduced.
- a second refresh period is provided in which the refresh rate is lowered stepwise in order to reduce the change in display luminance.
- FIG. 3 shows the operation of the liquid crystal display device until the target refresh rate of 1 Hz is reached while increasing the number of frames by 1 frame for each refresh pause period when the image data is updated. It is a figure for demonstrating.
- the updated image data shown in FIG. 3 is transmitted irregularly from the host, unlike the case of the first basic study.
- the liquid crystal display device has transmitted the newly updated image data from the start of refreshing at a refresh rate of 30 Hz until it reaches 1 Hz, which is the target refresh rate for pause driving.
- an auto-refresh function is provided in which the refresh that has been performed so far is stopped, and the refresh rate is restarted from a refresh of 30 Hz using newly updated image data.
- the updated image data is transmitted twice.
- a case where refresh is performed using the image data transmitted first is omitted, and the updated image data is transmitted for the second time.
- a description will be given from the point of starting refreshing again at a refresh rate of 30 Hz using the obtained image data.
- a frame that is refreshed for the first time using the image data transmitted for the second time is referred to as a first frame, and subsequent frames are referred to as a second frame and a third frame in this order.
- the liquid crystal display device When receiving the updated image data, the liquid crystal display device performs the first refresh using the image updated in the first frame and pauses the refresh in the second frame.
- the second refresh is performed in the third frame, and the refresh is paused in the fourth and fifth frames.
- the third refresh is performed in the sixth frame, and the refresh is paused in the third to ninth frames.
- a non-refresh period is provided and the number of non-refresh frames is repeatedly increased by one frame, and refresh is performed until the number of frames in the non-refresh period reaches 59 frames.
- the refresh rate reaches 1 Hz, which is the target refresh rate for pause driving.
- pause driving is performed to repeat refreshing at 1 Hz until new image data is transmitted from the host.
- the liquid crystal molecules can be aligned in a direction corresponding to the applied voltage by a total of three refreshes performed in the first, third, and sixth frames, respectively. It can be made impossible.
- This period from the first to the sixth frame is referred to as a first refresh period.
- the refresh is performed every time while increasing the non-refresh frames in the non-refresh period one frame at a time.
- the period from the seventh frame until the refresh rate reaches 1 Hz which is the target refresh rate is referred to as a second refresh period.
- the second frame period in the present specification refers to increasing the number of non-refresh frames from the non-refresh frame next to the refresh frame at the end of the first refresh period until the target refresh rate is reached. This is the period during which refresh is performed.
- one frame period is 16.67 msec in a general liquid crystal display device having a refresh rate of 60 Hz
- the period from the start of refresh in the first frame until the target refresh rate of 1 Hz is reached.
- a period from when refresh is performed in the first frame until the refresh rate reaches 1 Hz is defined as a first refresh period for making afterimages invisible during sleep driving, It can be seen that it is necessary to divide the refresh rate stepwise into the second refresh period for relaxing the change in display luminance and to refresh at the refresh rate corresponding to each period.
- FIG. 4 is a block diagram showing a configuration of the liquid crystal display device 2 according to the first embodiment of the present invention.
- the liquid crystal display device 2 includes a liquid crystal display panel 10 and a backlight unit 30.
- the liquid crystal display panel 10 is provided with an FPC (Flexible Printed Circuit) 20 for connection to the outside.
- FPC Flexible Printed Circuit
- a display unit 100, a display control circuit 200, a signal line driving circuit 300, and a scanning line driving circuit 400 are provided on the liquid crystal display panel 10.
- a display unit 100, a display control circuit 200, a signal line driving circuit 300, and a scanning line driving circuit 400 are provided on the liquid crystal display panel 10.
- both or one of the signal line driver circuit 300 and the scan line driver circuit 400 may be provided in the display control circuit 200.
- both or one of the signal line driver circuit 300 and the scan line driver circuit 400 may be formed integrally with the display unit 100.
- a host 1 (system) mainly composed of a CPU is provided outside the liquid crystal display device 2.
- the display unit 100 includes a plurality (m) of signal lines SL1 to SLm, a plurality (n) of scanning lines GL1 to GLn, the m signal lines SL1 to SLm, and the n scanning lines GL1.
- a plurality of (m ⁇ n) pixel forming portions 110 provided corresponding to each of the intersections with GLn are formed.
- the m signal lines SL1 to SLm are not distinguished, these are simply referred to as “signal lines SL”
- the n scanning lines GL1 to GLn are not distinguished, these are simply referred to as “scanning lines GL”.
- the m ⁇ n pixel forming portions 110 are formed in a matrix.
- each pixel forming unit 110 a gate terminal as a control terminal is connected to the scanning line GL passing through the corresponding intersection, and a source terminal as a first conduction terminal is connected to the signal line SL passing through the intersection.
- a liquid crystal capacitor Ccl formed by the pixel electrode 112 and the common electrode 113 constitutes a pixel capacitor.
- the pixel capacitor is generally constituted by a liquid crystal capacitor Ccl and an auxiliary capacitor.
- the description will be made assuming that the pixel capacitor is composed of only the liquid crystal capacitor Ccl.
- the TFT 111 for example, a TFT using an oxide semiconductor for a channel layer (hereinafter referred to as “oxide TFT”) is used. More specifically, the channel layer of the TFT 12 is formed of InGaZnOx containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
- IGZO-TFT a TFT using InGaZnOx as a channel layer.
- the IGZO-TFT has an extremely small off-leakage current compared to a silicon-based TFT using polycrystalline silicon, amorphous silicon, or the like as a channel layer.
- oxide semiconductors other than InGaZnOx for example, indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead ( A similar effect can be obtained even when an oxide semiconductor containing at least one of Pb) is used for the channel layer.
- an oxide TFT is used as the TFT 111, and a silicon TFT such as polycrystalline silicon or amorphous silicon may be used instead.
- the display control circuit 200 is typically realized by an LSI (Large Scale Integration).
- the display control circuit 200 receives data DAT including image data from the host 1 via the FPC 20, and generates and outputs a signal line control signal SCT, a scanning line control signal GCT, and a common potential Vcom in response thereto. .
- the signal line control signal SCT is given to the signal line driving circuit 300.
- the scanning line control signal GCT is supplied to the scanning line driving circuit 400.
- the common potential Vcom is supplied to the common electrode 113.
- transmission / reception of data DAT between the host 1 and the display control circuit 200 is performed through an interface compliant with the DSI (Display Serial Interface) standard proposed by MIPI (Mobile Industry Processor Interface) Alliance. Is called.
- DSI Display Serial Interface
- MIPI Mobile Industry Processor Interface
- the signal line driving circuit 300 generates and outputs a driving image signal to be applied to the signal line SL in accordance with the signal line control signal SCT.
- the signal line control signal SCT includes, for example, a digital image signal corresponding to RGB data RGBD, a source start pulse signal, a source clock signal, and a latch strobe signal.
- the signal line driver circuit 300 operates a shift register, a sampling latch circuit, and the like (not shown) therein according to the source start pulse signal, the source clock signal, and the latch strobe signal, and the digital line obtained based on the digital image signal
- a driving image signal is generated by converting the signal into an analog signal by a DA converter circuit (not shown).
- the scanning line driving circuit 400 repeats the application of the active scanning signal to the scanning line GL in a predetermined cycle in accordance with the scanning line control signal GCT.
- the scanning line control signal GCT includes, for example, a gate clock signal and a gate start pulse signal.
- the scanning line driving circuit 400 operates a shift register (not shown) and the like to generate a scanning signal.
- the backlight unit 30 is provided on the back side of the liquid crystal display panel 10 and irradiates the back light of the liquid crystal display panel 10 with backlight light.
- the backlight unit 30 typically includes a plurality of LEDs (Light Emitting Diode).
- the backlight unit 30 may be controlled by the display control circuit 200, or may be controlled by other methods.
- the backlight unit 30 does not need to be provided.
- the driving image signal is applied to the signal line SL
- the scanning signal is applied to the scanning line GL
- the backlight unit 30 is driven, so that it corresponds to the image data transmitted from the host 1.
- the screen is displayed on the display unit 100 of the liquid crystal display panel 10.
- the configuration of the display control circuit 200 will be described in three modes.
- a video mode is used and no RAM (Random Access Memory) is provided.
- video mode RAM through a mode in which a video mode is used and a RAM is provided.
- video mode RAM capture a mode in which a command mode is used and a RAM is provided.
- this third mode is referred to as “command mode RAM write”. Since the present invention is not limited to an interface conforming to the DSI standard, the configuration of the display control circuit 200 is not limited to these three types of modes.
- FIG. 5 is a block diagram showing a configuration of a display control circuit 200 (hereinafter referred to as “video mode RAM through display control circuit 200”) corresponding to the video mode RAM through, which is included in the liquid crystal display device 2 shown in FIG. is there.
- the display control circuit 200 includes an interface unit 210, a command register 220, an NVM (Non-volatile memory) 221, a timing generator 230, an OSC (Oscillator) 231, a latch circuit 240, A built-in power supply circuit 250, a signal line control signal output unit 260, and a scanning line control signal output unit 270 are provided.
- the interface unit 210 includes a DSI receiving unit 211. Note that as described above, both or one of the signal line driver circuit 300 and the scan line driver circuit 400 may be provided in the display control circuit 200.
- the DSI receiving unit 211 in the interface unit 210 conforms to the DSI standard.
- the data DAT in the video mode includes RGB data RGBD that is image data, a vertical synchronization signal VSYNC that is a synchronization signal, a horizontal synchronization signal HSYNC, a data enable signal DE, a clock signal CLK, and command data CM.
- the command data CM includes data related to various controls.
- the DSI receiving unit 211 When receiving the data DAT from the host 1, the DSI receiving unit 211 transmits the RGB data RGBDin included in the data DAT to the latch circuit 240, and the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, the data enable signal DE, and the clock signal CLK is transmitted to the timing generator 230, and command data CM is transmitted to the command register 220.
- the command data CM may be transmitted from the host 1 to the command register 220 via an interface compliant with the I 2 C (Inter Integrated Circuit) standard or SPI (Serial Peripheral Interface) standard.
- the interface unit 210 includes a receiving unit compliant with the I 2 C standard or the SPI standard.
- the command register 220 holds command data CM.
- the NVM 221 holds setting data SET for various controls.
- the command register 220 reads the setting data SET held in the NVM 221.
- the setting data SET can be updated according to the command data CM transmitted from the host 1.
- Each data indicating the timing of performing refresh in the first and second refresh periods is included in the setting data SET and stored in two registers 222 and 223 provided in the command register 220, respectively.
- the command register 220 generates a timing control signal TS for refreshing the screen of the display unit 100 based on the data stored in the registers 222 and 223 in the first and second refresh periods, and generates the timing control signal TS.
- the voltage setting signal VS is transmitted to the built-in power supply circuit 250.
- the timing generator 230 is based on the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, the data enable signal DE, the clock signal CLK, the timing control signal TS, and the built-in clock signal ICK generated by the OSC 231. Control signals for controlling the signal line control signal output unit 260 and the scanning line control signal output unit 270 are transmitted.
- the timing generator 230 performs timing control with respect to the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, the data enable signal DE, and the clock signal CLK in order to request the host 1 to transmit the data DAT when refreshing.
- a request signal REQ generated based on the signal TS and the internal clock signal ICK generated by the OSC 231 is transmitted to the host 1. Note that the OSC 231 is not essential in the video mode RAM through display control circuit 200.
- the host 1 When the host 1 receives the request signal REQ, the host 1 transmits data DAT to the display control circuit 200. In this way, when refreshing is performed in the first and second refresh periods, necessary data DAT is transmitted from the host 1 in response to the request signal REQ, and screen refresh is performed based on the transmitted data DAT. Is done.
- the latch circuit 240 Based on the control of the timing generator 230, the latch circuit 240 outputs not only the RGB data RGBDout included in the updated data DAT but also the RGB data RGBDout included in the data DAT transmitted based on the request signal REQ for one line. Each is transmitted to the signal line control signal output unit 260. In this way, by displaying the same image as the image currently displayed on the display unit 100, the screen can be refreshed at a necessary timing.
- the built-in power supply circuit 250 uses a power supply voltage supplied from the host 1 and a voltage setting signal VS supplied from the command register 220 to be used by the signal line control signal output unit 260 and the scanning line control signal output unit 270. And generates and outputs a common potential Vcom.
- the signal line control signal output unit 260 generates the signal line control signal SCT based on the RGB data RGBDout from the latch circuit 240, the control signal from the timing generator 230, and the power supply voltage from the built-in power supply circuit 250. Is transmitted to the signal line driver circuit 300.
- the scanning line control signal output unit 270 generates the scanning line control signal GCT based on the control signal from the timing generator 230 and the power supply voltage from the built-in power supply circuit 250, and transmits this to the scanning line drive circuit 400.
- FIG. 6 is a block diagram showing a configuration of a display control circuit 200 (hereinafter referred to as “video mode RAM capture display control circuit 200”) corresponding to video mode RAM capture included in the liquid crystal display device 2 shown in FIG. is there. As shown in FIG. 6, the video mode RAM capture display control circuit 200 is obtained by adding a frame memory (RAM) 280 to the video mode RAM through display control circuit 200 described above.
- a display control circuit 200 hereinafter referred to as “video mode RAM capture display control circuit 200”
- the video mode RAM capture display control circuit 200 is obtained by adding a frame memory (RAM) 280 to the video mode RAM through display control circuit 200 described above.
- RAM frame memory
- the RGB data RGBDin is directly transmitted from the DSI receiving unit 211 to the latch circuit 240.
- the RGB data RGBDin transmitted from the DSI receiver 211 is held in the frame memory 280.
- the RGB data RGBDm held in the frame memory 280 is read to the latch circuit 240 in accordance with the control signal generated by the timing generator 230.
- the timing generator 230 transmits a vertical synchronization output signal VSOUT to the host 1.
- the vertical synchronization output signal VSOUT is a signal that controls the transmission timing of the data DAT from the host 1 so that the writing timing of the RGB data RGBDin to the frame memory 280 and the reading timing of the RGB data RGBDm from the frame memory 280 do not overlap.
- Other configurations and operations of the display control circuit 200 for video mode RAM capture are the same as those in the display control circuit 200 for video mode RAM through, and a description thereof will be omitted.
- the OSC 231 is not essential in the display control circuit 200 for video mode RAM capture.
- the timing generator 230 when the timing generator 230 receives the timing control signal TS for refreshing the screen of the display unit 100 from the command register 220, the timing generator 230 transmits the control signal to the frame memory 280. As a result, the RGB data RGBDm held in the frame memory 280 is read to the latch circuit 240 in accordance with the control signal received from the timing generator 230.
- the frame memory 280 can hold RGB data RGBDmo. Therefore, when refreshing the screen, it is not necessary to transmit data DAT from the host 1 to the display control circuit 200, and the timing generator 230 transmits a control signal to the frame memory 280 in accordance with the refresh timing. In this way, by displaying the same image as the image currently displayed on the display unit 100, the screen can be refreshed at a necessary timing.
- FIG. 7 is a block diagram showing a configuration of a display control circuit 200 (hereinafter referred to as “command mode RAM light display control circuit 200”) corresponding to the command mode RAM write included in the liquid crystal display device 2 shown in FIG. is there.
- the command mode RAM write display control circuit 200 has the same configuration as the above-described video mode RAM capture display control circuit 200, but the type of data included in the data DAT is different.
- the data DAT in the command mode includes command data CM, and does not include RGB data RGBDin, vertical synchronization signal VSYNC, horizontal synchronization signal HSYNC, data enable signal DE, and clock signal CLK.
- the command data CM in the command mode includes data relating to images and data relating to various timings.
- the command register 220 transmits a RAM write signal RGBDmi corresponding to data related to an image in the command data CM to the frame memory 280.
- the RAM write signal RGBDmi corresponds to the RGB data RGBDin.
- the timing generator 230 does not receive the vertical synchronization signal VSYNC and the horizontal synchronization signal HSYNC, the internal vertical synchronization signal IVSYNC and the internal horizontal synchronization signal corresponding to the internal clock signal ICK and the timing control signal TS based on the built-in clock signal ICK and the timing control signal TS.
- IHSYNC is generated internally.
- the timing generator 230 controls the latch circuit 240, the signal line control signal output unit 260, and the scanning line control signal output unit 270 based on the internal vertical synchronization signal IVSYNC and the internal horizontal synchronization signal IHSYNC. Further, the timing generator 230 transmits a transmission control signal TE corresponding to the vertical synchronization output signal VSOUT to the host 1.
- the operations of the command register 220, the timing generator 230, and the frame memory 280 when refreshing the screen are the same as the operations of the display control circuit 200 of the video mode RAM capture, and the description thereof is omitted.
- the pause driving means that when the image data (RGB data RGBD) updated from the host 1 is given, the screen refresh is paused after a frame for refreshing the screen (hereinafter referred to as “refresh frame”).
- This is a driving in which frames (hereinafter referred to as “non-refresh frames”) are provided and these refresh frames and non-refresh frames are alternately repeated by a predetermined number of frames.
- the target refresh rate to be reached at the time of pause driving is described as about 1 Hz.
- the present invention is not limited to this and may be, for example, 0.5 Hz or 2 Hz.
- RGB data RGBDin and RGB data RGBDmi shown in FIGS. 5 to 7 may be collectively referred to as RGB data RGBD.
- a driving image signal is supplied from the signal line driving circuit 300 to the signal lines SL1 to SLm in response to a signal line control signal SCT including a digital image signal corresponding to RGB data RGBD, and for the scanning line.
- the scanning lines GL1 to GLn are sequentially selected by the scanning line driving circuit 400 in accordance with the control signal GCT.
- the TFT 111 corresponding to the selected scanning line GL is turned on, and the voltage of the driving image signal is written into the liquid crystal capacitor Ccl. In this way, the screen is refreshed. Thereafter, the TFT 111 is turned off, and the voltage written in the liquid crystal capacitor Ccl is held until the next screen refresh.
- the above-mentioned screen refresh is suspended. More specifically, since the supply of the scanning line control signal GCT to the scanning line driving circuit 400 is stopped or the scanning line control signal GCT becomes a fixed potential, the operation of the scanning line driving circuit 400 is stopped. The scanning lines GL1 to GLn are not scanned. As a result, the driving image signal is not written in the liquid crystal capacitor Ccl in the non-refresh frame. However, since the driving image signal written immediately before is held in the liquid crystal capacitor Ccl, the screen refreshed in the immediately preceding refresh frame is continuously displayed. Further, in the non-refresh frame, the operation of the signal line driver circuit 300 is stopped, for example, by stopping the supply of the signal line control signal SCT to the signal line driver circuit 300. In this manner, in the non-refresh frame, the scan line driver circuit 400 and the signal line driver circuit 300 stop operating, so that power consumption can be reduced. Note that the signal line driver circuit 300 may be operated.
- the same RGB data RGBD is converted into the same RGB data RGBD.
- Refresh for writing the voltage of the corresponding driving image signal into the liquid crystal capacitor Ccl is performed three times. Thereby, the direction of the liquid crystal molecules can be aligned in a direction corresponding to the applied voltage.
- the liquid crystal display device 2 is described as performing refresh three times when the updated RGB data RGBD is transmitted from the host 1, but may be performed twice or four times or more.
- the register 222 provided in the command register 220 stores the number of refresh frames and non-refresh frames in the first refresh period.
- the register 223 stores the number of refresh frames and non-refresh frames in the second refresh period. Accordingly, when generating the timing control signal TS for refreshing the screen of the display unit 100 in the first refresh period, the command register 220 stores the number of frames of refresh frames and non-refresh frames in the first refresh period.
- the timing control signal TS generated by using the data read from is transmitted to the timing generator 230.
- the data read from the register 223 storing the number of refresh frames and non-refresh frames in the second refresh period is used.
- the generated timing control signal TS is transmitted to the timing generator 230.
- FIG. 8 is a diagram for explaining the operation of the liquid crystal display device 2 according to the present embodiment.
- the liquid crystal display device 2 is a display device having an auto refresh function. For this reason, as shown in FIG. 8, if the updated image data is transmitted from the host 1, even if the refresh in the second refresh period is performed while repeating refresh and non-refresh, the host 1 If the newly updated image data is transmitted from, the refresh that has been performed so far is stopped, and the refresh is performed again from the first refresh period. In the present embodiment, it is assumed that the updated image data is irregularly transmitted from the host 1.
- a frame refreshed using newly updated image data is defined as a first frame, and the first refresh period starts when the newly updated image data is transmitted.
- first refresh is performed in the first frame, and refresh is paused for one frame in the second frame.
- the second refresh is performed using the same image data as the image data used in the first refresh, and the refresh is paused in the fourth and fifth frames.
- the third refresh is performed using the same image data as the image data used in the first refresh.
- the total of three refreshes so far aligns the liquid crystal molecules in the direction corresponding to the applied voltage, so that no afterimage is visually recognized in the rest drive thereafter. Note that by providing at least one frame of non-refresh frame between refreshes in the first refresh period, effective pauses corresponding to each of image data of various frequencies input from the outside are provided. Driving can be realized.
- the next refresh period starts.
- Refresh is paused in four frames from the seventh frame to the tenth frame.
- the fourth refresh is performed in the 11th frame
- the refresh is paused in 6 frames from the 12th frame to the 17th frame
- the refresh is performed in the 18th frame.
- the number of non-refresh frames is sequentially increased by 2 until the number of non-refresh frames reaches 58.
- the number of refresh frames is 1 and the number of non-refresh frames is 58, and the refresh rate in this case is 1.02 Hz.
- This refresh rate is close to 1 Hz, which is the target refresh rate for pause driving, but has not yet reached 1 Hz.
- the refresh rate in order to set the refresh rate to 1 Hz, the number of refresh frames is set to 1 and the number of non-refresh frames is set to 59. As a result, the refresh rate becomes 1 Hz, and when the refresh immediately thereafter ends, the second refresh period ends. Thereafter, the image displayed on the display unit 100 is refreshed at 1 Hz by repeating refreshing at 1 Hz until updated image data is transmitted from the host 1.
- the time from the first refresh in the first frame to the arrival of the target refresh rate of 1 Hz for the pause drive is about 14 seconds, which is about 28 required for the second basic study. Compared to seconds, it was able to be significantly shortened. Note that, by shortening the time, a change in display luminance is increased, so that the display quality is somewhat degraded. However, this is not a degradation that causes a problem in viewing.
- the refresh rate during refresh in the second refresh period is made faster than the refresh rate during refresh in the first refresh period.
- the first refresh period for performing the three refreshes necessary to make the afterimage visible at the time of refreshing invisible is completed in a short time, and the refresh rate is gradually lowered while the second refresh period is decreased.
- To 1 Hz, which is the target refresh rate for pause driving is reached faster.
- the liquid crystal display device 2 can make the afterimage invisible during the first refresh period.
- it is possible to reach the target refresh rate of 1 Hz that is the pause drive in a short time it is possible to reduce power consumption during and after the transition to the target refresh rate.
- the second refresh period is switched to the first refresh period, and refreshing is performed again from the first refresh period.
- the image data is updated, the screen of the display unit 100 is also immediately refreshed, and the updated image can be displayed on the display unit 100.
- the non-refresh frame is increased by a difference series by two frames until the refresh rate in the second refresh period reaches about 1 Hz, which is the target refresh rate for pause driving.
- the number of frames to be increased step by step is not limited to two frames, and for example, as shown in FIG. 9, the number of frames in the non-refresh period may be increased by a difference series by five frames.
- the number of non-refresh frames is sequentially increased by 5 frames until the number of non-refresh frames reaches 57 frames.
- the number of refresh frames is 1 and the number of non-refresh frames is 57, and the refresh rate in this case is 1.03 Hz.
- This refresh rate is close to 1 Hz, which is the target refresh rate for pause driving, but has not yet reached 1 Hz. Therefore, in order to set the refresh rate to 1 Hz, the number of refresh frames is set to 1 and the number of non-refresh frames is set to 59. As a result, the refresh rate becomes 1 Hz, and when the refresh immediately thereafter ends, the second refresh period ends. As a result, the time from the first refresh in the first frame until the refresh rate reaches the target refresh rate of 1 Hz is about 7 seconds, which is further shortened. Thereby, the power consumption of the liquid crystal display device 2 until the refresh rate reaches the target refresh rate can be further reduced.
- the number of non-refresh frames until the refresh rate in the second refresh period reaches 1 Hz may be increased geometrically.
- the number of frames in the non-refresh period may be increased in order as 2 1 , 2 2 , 2 3 .
- the number of non-refresh frames is sequentially increased by a power of 2 until the number of non-refresh frames reaches 32 frames. 1 frame the number of frames of the refresh frame, if the number of frames Non refresh frame 2 4 frames or 32 frames, the refresh rate becomes 1.82Hz, pause the drive still higher than the target refresh rate.
- the refresh rate becomes 0.92 Hz, and conversely, it becomes lower than the target refresh rate. Therefore, in order to set the next refresh rate of 1.82 Hz to the target refresh rate, the number of refresh frames is set to 1 and the number of non-refresh frames is set to 59. As a result, the refresh rate becomes 1 Hz, which is the target refresh rate. Further, when the refresh immediately thereafter ends, the second refresh period ends. As a result, the time from the first refresh in the first frame until the refresh rate reaches the target refresh rate of 1 Hz is about 2 seconds, which is further shortened. Thereby, the power consumption of the liquid crystal display device 2 until the refresh rate reaches the target refresh rate for pause driving can be further reduced.
- the number of non-refresh frames that increase stepwise during the non-refresh period in order to slow the refresh rate stepwise is not limited to the above numerical values, and can be set as appropriate.
- the set value is held in registers 222 and 223 provided in the command register 220 of the display control circuit 200, and is used when the timing control signal TS is generated.
- the second refresh period is too long, the time required to reach the target refresh rate of 1 Hz becomes longer, so that the power consumption of the liquid crystal display device 2 until the target refresh rate is reached increases.
- the second refresh period is shortened too much, the change in display luminance becomes large, and the display quality deteriorates. Therefore, in order to achieve both reduction in power consumption and prevention of display quality deterioration, it is necessary to appropriately adjust the refresh rate in the second refresh period.
- the number of frames was 1 and 2, respectively.
- the number of non-refresh frames in the first refresh period is not limited to this, and may be different values such as 1 frame and 3 frames, or may be the same value such as 1 frame and 1 frame.
- the refresh rate is 30 Hz. In this case, the change in the refresh rate is assumed to be “zero”.
- an afterimage that is visually recognized at the time of refreshing is not visually recognized at an early stage, it is preferable to shorten the first refresh period.
- image data of various refresh rates can be received from the outside.
- FIG. 11 is a diagram for explaining the operation of the liquid crystal display device 2 according to the second embodiment of the present invention. Since this embodiment is the same as the first embodiment except for the operation, a block diagram showing the configuration of the liquid crystal display device 2 and the configuration of the display control circuit 200 included in the liquid crystal display device 2 and those Description is omitted.
- a first refresh period for making an afterimage invisible during refresh and a second refresh period for changing display luminance in stages are provided.
- the first refresh period is the same as in the first embodiment, but the second refresh period is very short.
- the first refresh period first, the first refresh is performed in the first frame, and the refresh is paused in the second frame.
- the second refresh is performed using the same image data as in the first, and the refresh is paused in the fourth and fifth frames.
- the third refresh is performed using the same image data as the first time.
- the refresh rate in the second refresh period suddenly becomes the same refresh rate as 1 Hz, which is the target refresh rate for pause driving. Thereafter, the image displayed on the display unit 100 is repeatedly updated at a refresh rate of 1 Hz until newly updated image data is transmitted from the host 1.
- the number of non-refresh frames in the first refresh period is not limited to the case described above, as in the case of the first embodiment.
- the refresh is performed three times using the updated image data transmitted from the host 1 in the first refresh period.
- the refresh rate is suddenly set to 1 Hz without changing stepwise, so that it is possible to reach the target refresh rate of 1 Hz for the pause drive in the shortest time.
- the time from the start of the first refresh in the first frame until the target refresh rate of about 1 Hz is reached is significantly reduced to 1 second.
- the power consumption of the liquid crystal display device 2 until the target refresh rate is reached can be significantly reduced.
- FIG. 12 is a diagram for explaining the operation of the liquid crystal display device 2 according to the third embodiment of the present invention. Since this embodiment is the same as the first embodiment except for the operation, a block diagram showing the configuration of the liquid crystal display device 2 and the configuration of the display control circuit 200 included in the liquid crystal display device 2 and those Description is omitted.
- polarity inversion driving (AC driving) is performed in order to suppress deterioration of the liquid crystal layer.
- the polarity of the voltage applied at the time of refreshing performed in the relevant frame is shown below each refresh frame and non-refresh frame shown in FIG. Specifically, “+” indicates that the polarity of the voltage applied to the pixel electrode 112 is positive, and the polarity of the voltage applied to the common electrode 113 is negative. “ ⁇ ” Indicates that the polarity of the voltage applied to the pixel electrode 112 is negative, and the polarity of the voltage applied to the common electrode 113 is positive.
- a refresh frame that performs refresh with a positive voltage is referred to as a “positive refresh frame”
- a refresh frame that performs refresh with a negative voltage is referred to as a “negative refresh frame”.
- the number of non-refresh frames is increased by one frame for each non-refresh period.
- the number of non-refresh frames is increased by 5 for each non-refresh period until the refresh rate reaches 1.02 Hz, which is the target refresh rate for pause driving.
- Both refresh and non-refresh are positive, and the refresh rate is 1.03 Hz.
- the number of positive frames (positive refresh frame and subsequent non-refresh frame) from the first refresh and subsequent non-refresh to the 13th refresh and subsequent non-refresh is 187.
- the number of negative frames (negative refresh frames and subsequent non-refresh frames) from the second refresh and subsequent non-refresh to the twelfth refresh and subsequent non-refresh is 181. In this way, refresh is performed so that the number of positive frames and the number of negative frames are approximately the same.
- the updated image data is transmitted from the host 1 immediately after the 13th refresh and the subsequent non-refresh in 57 frames, so if the refresh performed using the updated image data is completed, The second refresh period ends and the process proceeds to the first refresh period.
- the arrangement in which the number of frames of the positive frame and the number of frames of the negative frame shown in FIG. 12 are approximately the same is an example, and the present invention is not limited to this. However, it is preferable to avoid continuously performing refresh of the same polarity as much as possible. Further, it is preferable that the difference between the number of frames of the positive frame and the number of frames of the negative frame is as small as possible.
- the drop in the applied voltage of the liquid crystal capacitor Ccl due to the leakage current of the TFT 111 varies depending on the length of the rest period, that is, the refresh rate, and the drop in the applied voltage increases as the refresh rate is slower. Therefore, in order to reduce non-uniformity in the voltage applied to the liquid crystal capacitor Ccl due to different refresh rates, data of the common potential Vcom that is optimal as one of the setting data SET is previously stored in, for example, the NVM 221 for each refresh rate. .
- the command register 220 If the command register 220 generates a voltage setting signal VS corresponding to the data of the optimum common potential Vcom according to the refresh rate and transmits it to the built-in power supply circuit 250, the built-in power supply circuit 250 outputs the optimum common potential Vcom. .
- the optimum common potential Vcom can be applied to the common electrode 113 for each refresh rate.
- the data of the optimal common potential Vcom may be given from the host 1 to the command register 220 as part of the command data CM.
- the same effects as those of the first embodiment are achieved, and further, the refresh period in which the refresh is performed with positive polarity and the non-refresh period immediately after the refresh period throughout the first and second refresh periods.
- the voltage in a specific direction is applied to the liquid crystal layer by setting the positive polarity period composed of the negative polarity period composed of the negative polarity refresh period and the non-refresh period immediately after the refresh period to substantially the same ratio. The time will not be long. In this way, by driving the liquid crystal layer with alternating current so that the polarity balance is improved, deterioration of the liquid crystal layer can be suppressed.
- FIG. 13 is a diagram for explaining the operation of the liquid crystal display device 2 according to the fourth embodiment of the present invention. Since the present embodiment is the same as the first embodiment except for the operation, a block diagram showing the configuration of the liquid crystal display device 2 and the configuration of the display control circuit 200 included in the liquid crystal display device, and their descriptions. Is omitted.
- the updated image data is irregularly transmitted from the host 1 to the liquid crystal display device 2.
- the updated image data may be periodically transmitted from the host 1 at a predetermined cycle. Therefore, in this embodiment, as shown in FIG. 13, for example, updated image data is periodically transmitted every second.
- the first refresh period the first refresh is first performed in the first frame, and the refresh is suspended in the second frame.
- the second refresh is performed using the same image data as that used in the first refresh, and the refresh is paused in the fourth and fifth frames.
- the third refresh is performed in the sixth frame.
- the second refresh period starts.
- the refresh is paused in 4 frames from the 7th to the 10th frames, and the fourth refresh is performed in the 11th frame.
- the refresh is paused at 4 frames from the 12th frame to the 15th frame, and the fifth refresh is performed at the 16th frame.
- the refresh is paused at 6 frames from the 17th frame to the 22nd frame, and the sixth refresh is performed at the 23rd frame.
- the refresh and the refresh pause are repeated, the tenth refresh is performed in the 56th frame, and the refresh is paused in the 4th frame from the 57th frame to the 60th frame.
- one frame period is 16.67 msec, it is 1 second from the first frame to the 60th frame. Therefore, newly updated image data is transmitted from the host 1 at the 61st frame. Therefore, the liquid crystal display device 2 stops the refresh pause scheduled in the 61st frame, and refreshes using the newly updated image data in the same manner as in the first to 60th frames. I do. Thus, since the updated image data is transmitted from the host 1 every second, the refresh pause scheduled in the 61st frame of the second refresh period is stopped each time, and the first The refresh is repeated in the same manner as in the case from the frame to the 60th frame.
- the updated image data is transmitted from the host 1 every second.
- the interval at which the updated image data is transmitted from the host 1 may be longer or shorter than 1 second.
- the refresh rate in the first and second refresh periods may be changed as appropriate in the same manner as in the first to third embodiments.
- the first refresh is performed three times necessary to make the afterimage at the time of refreshing invisible.
- the refresh period can be completed in a short time and the refresh rate can be lowered stepwise.
- the liquid crystal display device 2 can have the same effect as the case of the first embodiment.
- the present invention can be applied to a liquid crystal display device that displays an image by pause driving.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Liquid Crystal (AREA)
Abstract
Description
Clc=ε×S/d
この液晶誘電率εには異方性があり、液晶分子の配向方向によってその値が異なる。また液晶の透過率は液晶分子の配向方向によって制御されるため、階調によって液晶誘電率εが異なることになる。
複数の画素形成部を含む表示部と、
前記表示部を駆動する駆動部と、
外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、
前記表示制御部は、目標リフレッシュレートに到達するまでの休止駆動時に、リフレッシュを少なくとも2回行う第1リフレッシュ期間と、前記第1リフレッシュ期間の終了時のリフレッシュレートから前記目標リフレッシュレートになるまでノンリフレッシュ期間のフレーム数を増やしながらリフレッシュを行う第2リフレッシュ期間とに分けてリフレッシュを行い、前記第2リフレッシュ期間におけるリフレッシュレートが前記目標リフレッシュレートに到達したときに前記第2リフレッシュ期間を終了して、前記目標リフレッシュレートで休止駆動を継続することを特徴とする。
前記第2リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量が、前記第1リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量よりも大きいことを特徴とする。
前記第2リフレッシュ期間に行うリフレッシュの回数を複数回とすることを特徴とする。
前記第2リフレッシュ期間における前記ノンリフレッシュ期間のフレーム数を、公差が2以上の等差級数的に増やすことを特徴とする。
前記第2リフレッシュ期間における前記ノンリフレッシュ期間のフレーム数を、公比が2以上の等比級数的に増やすことを特徴とする。
前記第2リフレッシュ期間に行うリフレッシュの回数を1回とし、前記1回のリフレッシュは前記目標リフレッシュレートと等しいリフレッシュレートで行うことを特徴とする。
前記第1リフレッシュ期間のリフレッシュの回数を少なくとも2回とし、各リフレッシュとリフレッシュとの間のノンリフレッシュ期間に少なくとも1フレームのノンリフレッシュフレームが設けられていることを特徴とする。
前記第1リフレッシュ期間におけるノンリフレッシュフレームのフレーム数を、ノンリフレッシュ期間ごとに公差が1以上の等差級数的に増やすことを特徴とする。
前記第1リフレッシュ期間における各ノンリフレッシュ期間のノンリフレッシュフレームのフレーム数は同じであることを特徴とする。
前記表示制御部は、交流駆動のための制御を行い、
前記第1リフレッシュ期間および前記第2リフレッシュ期間の全期間において、正極性でリフレッシュを行うリフレッシュ期間および当該リフレッシュ期間の直後のノンリフレッシュ期間からなる正極性期間と、負極性でリフレッシュを行うリフレッシュ期間および当該リフレッシュ期間の直後のノンリフレッシュ期間からなる負極性期間とを略同じ割合で設けることを特徴とする。
前記表示制御部は、前記第1または前記第2リフレッシュ期間内に、更新された前記データを受け取ったとき、リフレッシュおよびリフレッシュの休止を中止し、更新された前記データを用いて前記第1リフレッシュ期間から新たにリフレッシュを行うことを特徴とする。
前記データは、前記表示制御部が外部から不定期に受け取るデータであることを特徴とする。
前記データは、外部から所定の周期で定期的に受け取るデータであることを特徴とする。
前記画素形成部は、前記表示部内の走査線に制御端子が接続され、前記表示部内の信号線に第1導通端子が接続され、表示すべき画像に応じた電圧が印加されるべき、前記表示部内の画素電極に第2導通端子が接続され、酸化物半導体によりチャネル層が形成された薄膜トランジスタを含むことを特徴とする。
前記酸化物半導体は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)および酸素(О)を主成分とするInGaZnOxであることを特徴とする。
目標リフレッシュレートに到達するまでの休止駆動時の第1リフレッシュ期間に、リフレッシュを少なくとも2回行うステップと、
前記第1リフレッシュ期間の終了後の第2リフレッシュ期間に、前記目標リフレッシュレートになるまでノンリフレッシュ期間のフレーム数を増やしながらリフレッシュを行うステップと、
前記第2リフレッシュ期間におけるリフレッシュレートが前記目標リフレッシュレートに到達したときに前記第2リフレッシュ期間を終了して、前記目標リフレッシュレートで休止駆動を継続するステップとを備えることを特徴とする。
前記第2リフレッシュ期間におけるリフレッシュを行うステップは、前記第2リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量が前記第1リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量よりも大きくなるようにリフレッシュを行うことを特徴とする。
<1.1 第1の基礎検討>
図1は、画像データが30Hzで更新されているときの液晶表示装置のリフレッシュ動作を説明するための図であり、図2は、画像データが20Hzで更新されているときの液晶表示装置のリフレッシュ動作を説明するための図である。なお、後述する各図における各矩形ボックスは1フレームを示し、リフレッシュを行うリフレッシュフレームには「R」を付し、リフレッシュを休止するノンリフレッシュフレームには「N」を付している。
液晶容量に充電された電荷は、TFTを介して時間の経過と共にリーク電流として漏れ、これに伴い液晶容量の電圧が低下する。例えば、リフレッシュレートが60Hzである場合には、液晶容量が電圧を保持すべき期間が相対的に短いので、リーク電流は少なく電圧の低下は小さい。しかし、リフレッシュレートが1Hzである場合には、液晶容量が電圧を保持すべき期間が相対的に長いので、リーク電流は多くなり電圧の低下は大きくなる。このため、リフレッシュレートが60Hzである場合と1Hzである場合とでは、本来同じであるべき液晶容量の電圧が異なるようになる。例えばリフレッシュレートを60Hzから1Hzに切り替えれば、同じ画像を表示する場合であっても、その表示輝度が大きく変化し、表示品位が低下する。そこで、残像を視認できなくするためのリフレッシュ期間である第1リフレッシュ期間の終了後に、表示輝度の変化を緩和するために、リフレッシュレートを段階的に低くする第2リフレッシュ期間を設けた。そして、第2リフレッシュ期間において、リフレッシュレートが休止駆動の目標リフレッシュレートに到達すると、第2リフレッシュ期間を終了し、目標リフレッシュレートで休止駆動を行う。
<2.1 液晶表示装置の構成および動作概要>
図4は、本発明の第1の実施形態に係る液晶表示装置2の構成を示すブロック図である。図4に示すように、液晶表示装置2は、液晶表示パネル10、およびバックライトユニット30を備えている。液晶表示パネル10には、外部との接続用のFPC(Flexible Printed Circuit)20が設けられている。また、液晶表示パネル10上には、表示部100、表示制御回路200、信号線駆動回路300、および走査線駆動回路400が設けられている。なお、信号線駆動回路300および走査線駆動回路400の双方またはいずれか一方は表示制御回路200内に設けられていても良い。また、信号線駆動回路300および走査線駆動回路400の双方またはいずれか一方は表示部100と一体的に形成されていても良い。液晶表示装置2の外部には、主としてCPUにより構成されるホスト1(システム)が設けられている。
次に、表示制御回路200の構成を、3つの態様に分けて説明する。第1の態様は、ビデオモードを用い、かつRAM(Random Access Memory)を設けない態様である。以下では、このような第1の態様のことを「ビデオモードRAMスルー」という。第2の態様は、ビデオモードを用い、かつRAMを設ける態様である。以下では、このような第2の態様のことを「ビデオモードRAMキャプチャー」という。第3の態様は、コマンドモードを用い、かつRAMを設ける態様である。以下では、このような第3の態様のことを「コマンドモードRAMライト」という。なお、本発明はDSI規格に準拠したインターフェースに限定されるものではないので、表示制御回路200の構成は、これら3種類の態様に限定されるものではない。
図5は、図4に示す液晶表示装置2に含まれる、ビデオモードRAMスルーに対応した表示制御回路200(以下「ビデオモードRAMスルーの表示制御回路200」という。)の構成を示すブロック図である。図5に示すように、表示制御回路200は、インターフェース部210、コマンドレジスタ220、NVM(Non-volatile memory:不揮発性メモリ)221、タイミングジェネレータ230、OSC(Oscillator:発振器)231、ラッチ回路240、内蔵電源回路250、信号線用制御信号出力部260、および、走査線用制御信号出力部270を備えている。インターフェース部210にはDSI受信部211が含まれている。なお、上述のように、信号線駆動回路300および走査線駆動回路400の双方またはいずれか一方が表示制御回路200内に設けられていても良い。
図6は、図4に示す液晶表示装置2に含まれる、ビデオモードRAMキャプチャーに対応した表示制御回路200(以下「ビデオモードRAMキャプチャーの表示制御回路200」という。)の構成を示すブロック図である。ビデオモードRAMキャプチャーの表示制御回路200は、図6に示すように、上述のビデオモードRAMスルーの表示制御回路200にフレームメモリ(RAM)280を追加したものである。
図7は、図4に示す液晶表示装置2に含まれる、コマンドモードRAMライトに対応した表示制御回路200(以下「コマンドモードRAMライトの表示制御回路200」という。)の構成を示すブロック図である。コマンドモードRAMライトの表示制御回路200は、図7に示すように、上述のデオモードRAMキャプチャーの表示制御回路200と同様の構成であるが、データDATに含まれるデータの種類が異なる。
本明細書において休止駆動とは、ホスト1から更新された画像データ(RGBデータRGBD)が与えられたとき、画面をリフレッシュするフレーム(以下「リフレッシュフレーム」という)の後に、画面のリフレッシュを休止するフレーム(以下「ノンリフレッシュフレーム」という)を設け、これらのリフレッシュフレームとノンリフレッシュフレームをそれぞれ所定のフレーム数ずつ交互に繰り返す駆動をいう。なお、本明細書では、休止駆動時の到達すべき目標リフレッシュレートを約1Hzとして説明するが、これに限定されることなく、例えば0.5Hzや2Hzなどであってもよい。なお、図5~図7に示すRGBデータRGBDinおよびRGBデータRGBDmiをまとめてRGBデータRGBDと記載することもある。
図8は、本実施形態に係る液晶表示装置2の動作を説明するための図である。液晶表示装置2はオートリフレッシュ機能を備えた表示装置である。このため、図8に示すように、更新された画像データがホスト1から送信されてくれば、リフレッシュとノンリフレッシュを繰り返しながら第2リフレッシュ期間のリフレッシュを行っているときであっても、ホスト1から新たに更新された画像データが送信されてくれば、今まで行っていたリフレッシュを中止し、再び第1リフレッシュ期間からリフレッシュから行う。また、本実施形態では、更新された画像データはホスト1から不定期に送信されてくるとする。
本実施形態によれば、第2リフレッシュ期間におけるリフレッシュ時のリフレッシュレートを、第1リフレッシュ期間におけるリフレッシュ時のリフレッシュレートよりも速くする。これにより、リフレッシュ時に視認される残像を見えなくするために必要な3回のリフレッシュを行う第1リフレッシュ期間を短時間で終了し、かつ、リフレッシュレートを段階的に低くしつつ、第2リフレッシュ期間に休止駆動の目標リフレッシュレートである1Hzにより速く到達する。その結果、液晶表示装置2は、第1リフレッシュ期間に残像を視認できなくすることができる。また、休止駆動の目標リフレッシュレートである1Hzに短時間で到達することができるので、目標リフレッシュレートへの移行中および移行後の消費電力を低減することができる。
上記実施形態では、第2リフレッシュ期間におけるリフレッシュレートが休止駆動の目標リフレッシュレートである約1Hzに到達するまで、ノンリフレッシュフレームを2フレームずつ等差級数的に増加させた。しかし、段階的に増加させるフレーム数は、2フレームずつに限定されず、例えば図9に示すように、ノンリフレッシュ期間のフレーム数を5フレームずつ等差級数的に増加させても良い。この場合、ノンリフレッシュフレームのフレーム数が57フレームになるまで、ノンリフレッシュフレームのフレーム数を5フレームずつ順に増やしていく。その結果、リフレッシュフレームのフレーム数が1フレーム、ノンリフレッシュフレームのフレーム数が57フレームになり、この場合のリフレッシュレートは1.03Hzである。このリフレッシュレートは休止駆動の目標リフレッシュレートである1Hzに近いが、まだ1Hzにはなっていない。そこで、次にリフレッシュレートを1Hzにするために、リフレッシュフレームのフレーム数を1フレーム、ノンリフレッシュフレームのフレーム数を59フレームにする。これによりリフレッシュレートが1Hzになり、さらにその直後のリフレッシュが終了すれば、第2リフレッシュ期間が終了する。その結果、第1フレームにおいて1回目のリフレッシュを行ってからリフレッシュレートが目標リフレッシュレートである1Hzに到達するまでの時間は約7秒となり、さらに短縮される。これにより、リフレッシュレートが目標リフレッシュレートに到達するまでの液晶表示装置2の消費電力をより低減することができる。
図11は、本発明の第2の実施形態に係る液晶表示装置2の動作を説明するための図である。なお、本実施形態は、動作を除き上記第1の実施形態と同様であるので、液晶表示装置2の構成および液晶表示装置2に含まれる表示制御回路200の構成をそれぞれ示すブロック図およびそれらの説明を省略する。
上記第1の実施形態では、リフレッシュ時に残像を視認できなくするための第1リフレッシュ期間と、表示輝度を段階的に変化させるための第2リフレッシュ期間とが設けられていた。本実施形態では、図11に示すように、第1リフレッシュ期間は第1の実施形態の場合と同じであるが、第2リフレッシュ期間が非常に短くなっている。
本実施形態によれば、第1リフレッシュ期間において、ホスト1から送信されてきた更新された画像データを用いてリフレッシュが3回行われる。これにより、液晶誘電率の異方性に起因する残像をその後のリフレッシュ時に視認できなくすることができる。また、第2リフレッシュ期間において、リフレッシュレートを、段階的に変化させることなくいきなり1Hzにするので、休止駆動の目標リフレッシュレートである1Hzに最短の時間で到達することができる。この場合には、第1フレームにおいて1回目のリフレッシュを開始してから目標リフレッシュレートである約1Hzに到達するまでの時間は1秒と大幅に短縮される。これにより、目標リフレッシュレートに到達するまでの液晶表示装置2の消費電力を大幅に低減することができる。
図12は、本発明の第3の実施形態に係る液晶表示装置2の動作を説明するための図である。なお、本実施形態は、動作を除き上記第1の実施形態と同様であるので、液晶表示装置2の構成および液晶表示装置2に含まれる表示制御回路200の構成をそれぞれ示すブロック図およびそれらの説明を省略する。
第1および第2リフレッシュ期間の全体を通じて、液晶容量Cclの印加電圧の正極性と負極性のバランスを考慮しない場合には、液晶層に特定方向の電圧が印加される時間が長くなり、液晶層の劣化が進みやすくなる。そこで、本実施形態では、リフレッシュ時の残像を視認できなくし、表示輝度を段階的に変化させると共に、さらに液晶層の劣化を抑制する。
本実施形態によれば、第1の実施形態の場合と同様の効果を奏し、さらに第1および第2リフレッシュ期間の全体を通じて、正極性でリフレッシュを行うリフレッシュ期間およびリフレッシュ期間の直後のノンリフレッシュ期間からなる正極性期間と、負極性でリフレッシュを行うリフレッシュ期間およびリフレッシュ期間の直後のノンリフレッシュ期間からなる負極性期間とを略同じ割合にすることにより、特定方向の電圧が液晶層に印加される時間が長くなることはない。このように、極性バランスが良くなるように液晶層を交流駆動することにより、液晶層の劣化を抑制することができる。
図13は、本発明の第4の実施形態に係る液晶表示装置2の動作を説明するための図である。なお、本実施形態は、動作を除き上記第1の実施形態と同様であるので、液晶表示装置2の構成および液晶表示装置に含まれる表示制御回路200の構成をそれぞれ示すブロック図およびそれらの説明を省略する。
上記第1から第3の実施形態では、更新された画像データは、ホスト1から液晶表示装置2に不定期に送信されてくるとした。しかし、更新された画像データは、ホスト1から所定の周期で定期的に送信されてきても良い。そこで、本実施形態では、図13に示すように、例えば更新された画像データは1秒ごとに定期的に送信されてくる。第1リフレッシュ期間には、まず第1フレームで1回目のリフレッシュを行い、第2フレームでリフレッシュを休止する。次に、第3フレームで、1回目のリフレッシュ時に用いた画像データと同じ画像データを用いて2回目のリフレッシュを行い、第4および第5フレームでリフレッシュを休止する。そして、第6フレームで、3回目のリフレッシュを行う。3回目のリフレッシュが終了すると第2リフレッシュ期間に移行する。
本実施形態によれば、ホスト1から所定の周期で定期的に更新された画像が送信されてくる場合でも、リフレッシュ時の残像を視認できなくするために必要な3回のリフレッシュを行う第1リフレッシュ期間を短時間で終了し、かつ、リフレッシュレートを段階的に低くすることができる。これにより、液晶表示装置2は、第1の実施形態の場合と同じ効果を奏することができる。
上記各実施形態および変形例では、1フレームごとに極性を反転させる場合について記載したが、極性反転のさせ方はこれに限定されず、例えば2フレームごと、3フレームごとに極性を反転さてもよい。
2…液晶表示装置
100…表示部
110…画素形成部
111…TFT(薄膜トランジスタ)
200…表示制御回路
220…コマンドレジスタ
230…タイミングジェネレータ
240…ラッチ回路
280…フレームメモリ(RAM)
300…信号線駆動回路
400…走査線駆動回路
SL…信号線
GL…走査線
Claims (17)
- 目標リフレッシュレートで休止駆動を行う液晶表示装置であって、
複数の画素形成部を含む表示部と、
前記表示部を駆動する駆動部と、
外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、
前記表示制御部は、目標リフレッシュレートに到達するまでの休止駆動時に、リフレッシュを少なくとも2回行う第1リフレッシュ期間と、前記第1リフレッシュ期間の終了時のリフレッシュレートから前記目標リフレッシュレートになるまでノンリフレッシュ期間のフレーム数を増やしながらリフレッシュを行う第2リフレッシュ期間とに分けてリフレッシュを行い、前記第2リフレッシュ期間におけるリフレッシュレートが前記目標リフレッシュレートに到達したときに前記第2リフレッシュ期間を終了して、前記目標リフレッシュレートで休止駆動を継続することを特徴とする、液晶表示装置。 - 前記第2リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量が、前記第1リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量よりも大きいことを特徴とする、請求項1に記載の液晶表示装置。
- 前記第2リフレッシュ期間に行うリフレッシュの回数を複数回とすることを特徴とする、請求項2に記載の液晶表示装置。
- 前記第2リフレッシュ期間における前記ノンリフレッシュ期間のフレーム数を、公差が2以上の等差級数的に増やすことを特徴とする、請求項3に記載の液晶表示装置。
- 前記第2リフレッシュ期間における前記ノンリフレッシュ期間のフレーム数を、公比が2以上の等比級数的に増やすことを特徴とする、請求項3に記載の液晶表示装置。
- 前記第2リフレッシュ期間に行うリフレッシュの回数を1回とし、前記1回のリフレッシュは前記目標リフレッシュレートと等しいリフレッシュレートで行うことを特徴とする、請求項2に記載の液晶表示装置。
- 前記第1リフレッシュ期間のリフレッシュの回数を少なくとも2回とし、各リフレッシュとリフレッシュとの間のノンリフレッシュ期間に少なくとも1フレームのノンリフレッシュフレームが設けられていることを特徴とする、請求項1に記載の液晶表示装置。
- 前記第1リフレッシュ期間におけるノンリフレッシュフレームのフレーム数を、ノンリフレッシュ期間ごとに公差が1以上の等差級数的に増やすことを特徴とする、請求項7に記載の液晶表示装置。
- 前記第1リフレッシュ期間における各ノンリフレッシュ期間のノンリフレッシュフレームのフレーム数は同じであることを特徴とする、請求項7に記載の液晶表示装置。
- 前記表示制御部は、交流駆動のための制御を行い、
前記第1リフレッシュ期間および前記第2リフレッシュ期間の全期間において、正極性でリフレッシュを行うリフレッシュ期間および当該リフレッシュ期間の直後のノンリフレッシュ期間からなる正極性期間と、負極性でリフレッシュを行うリフレッシュ期間および当該リフレッシュ期間の直後のノンリフレッシュ期間からなる負極性期間とを略同じ割合で設けることを特徴とする、請求項1に記載の液晶表示装置。 - 前記表示制御部は、前記第1または前記第2リフレッシュ期間内に、更新された前記データを受け取ったとき、リフレッシュおよびリフレッシュの休止を中止し、更新された前記データを用いて前記第1リフレッシュ期間から新たにリフレッシュを行うことを特徴とする、請求項1に記載の液晶表示装置。
- 前記データは、前記表示制御部が外部から不定期に受け取るデータであることを特徴とする、請求項11に記載の液晶表示装置。
- 前記データは、外部から所定の周期で定期的に受け取るデータであることを特徴とする、請求項11に記載の液晶表示装置。
- 前記画素形成部は、前記表示部内の走査線に制御端子が接続され、前記表示部内の信号線に第1導通端子が接続され、表示すべき画像に応じた電圧が印加されるべき、前記表示部内の画素電極に第2導通端子が接続され、酸化物半導体によりチャネル層が形成された薄膜トランジスタを含むことを特徴とする、請求項1に記載の液晶表示装置。
- 前記酸化物半導体は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)および酸素(О)を主成分とするInGaZnOxであることを特徴とする、請求項14に記載の液晶表示装置。
- 複数の画素形成部を含む表示部と、前記表示部を駆動する駆動部と、外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、目標リフレッシュレートで休止駆動を行う液晶表示装置の駆動方法であって、
目標リフレッシュレートに到達するまでの休止駆動時の第1リフレッシュ期間に、リフレッシュを少なくとも2回行うステップと、
前記第1リフレッシュ期間の終了後の第2リフレッシュ期間に、前記目標リフレッシュレートになるまでノンリフレッシュ期間のフレーム数を増やしながらリフレッシュを行うステップと、
前記第2リフレッシュ期間におけるリフレッシュレートが前記目標リフレッシュレートに到達したときに前記第2リフレッシュ期間を終了して、前記目標リフレッシュレートで休止駆動を継続するステップとを備えることを特徴とする、液晶表示装置の駆動方法。 - 前記第2リフレッシュ期間におけるリフレッシュを行うステップは、前記第2リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量が前記第1リフレッシュ期間におけるノンリフレッシュフレームのフレーム数の変化量よりも大きくなるようにリフレッシュを行うことを特徴とする、請求項16に記載の液晶表示装置の駆動方法。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014538260A JP6153530B2 (ja) | 2012-09-28 | 2013-08-06 | 液晶表示装置およびその駆動方法 |
| CN201380050244.4A CN104662597B (zh) | 2012-09-28 | 2013-08-06 | 液晶显示装置及其驱动方法 |
| US14/431,822 US9761201B2 (en) | 2012-09-28 | 2013-08-06 | Liquid-crystal display device and drive method thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012217380 | 2012-09-28 | ||
| JP2012-217380 | 2012-09-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014050316A1 true WO2014050316A1 (ja) | 2014-04-03 |
Family
ID=50387730
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2013/071195 WO2014050316A1 (ja) | 2012-09-28 | 2013-08-06 | 液晶表示装置およびその駆動方法 |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP6153530B2 (ja) |
| CN (1) | CN104662597B (ja) |
| WO (1) | WO2014050316A1 (ja) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014171323A1 (ja) * | 2013-04-18 | 2014-10-23 | シャープ株式会社 | 制御装置、表示装置および制御方法 |
| KR20160060332A (ko) * | 2014-11-20 | 2016-05-30 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 구동방법 |
| CN111726477A (zh) * | 2020-06-30 | 2020-09-29 | 中航华东光电有限公司 | 特殊应用环境下的ips屏残影消除方法 |
| CN114078455A (zh) * | 2020-08-20 | 2022-02-22 | 夏普株式会社 | 显示装置 |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102559088B1 (ko) * | 2018-08-07 | 2023-07-24 | 엘지디스플레이 주식회사 | 액정 표시장치와 그 구동방법 |
| TWI713409B (zh) * | 2018-12-01 | 2020-12-11 | 米彩股份有限公司 | 用於led的驅動電路 |
| JP7386688B2 (ja) * | 2019-12-13 | 2023-11-27 | シャープ株式会社 | 表示制御装置、表示装置、表示制御装置の制御プログラムおよび制御方法 |
| CN117377996A (zh) * | 2022-03-30 | 2024-01-09 | 京东方科技集团股份有限公司 | 显示装置及其驱动方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002182619A (ja) * | 2000-10-05 | 2002-06-26 | Sharp Corp | 表示装置の駆動方法およびそれを用いた表示装置 |
| JP2002207462A (ja) * | 2001-01-11 | 2002-07-26 | Toshiba Corp | 液晶表示素子の駆動方法 |
| JP2003316324A (ja) * | 2002-04-19 | 2003-11-07 | Sharp Corp | 液晶表示装置 |
| JP2009229961A (ja) * | 2008-03-25 | 2009-10-08 | Seiko Epson Corp | 液晶表示制御装置及び電子機器 |
| JP2010145810A (ja) * | 2008-12-19 | 2010-07-01 | Eastman Kodak Co | 表示装置 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3842030B2 (ja) * | 2000-10-06 | 2006-11-08 | シャープ株式会社 | アクティブマトリクス型表示装置およびその駆動方法 |
| JP3730159B2 (ja) * | 2001-01-12 | 2005-12-21 | シャープ株式会社 | 表示装置の駆動方法および表示装置 |
| GB2378343B (en) * | 2001-08-03 | 2004-05-19 | Sendo Int Ltd | Image refresh in a display |
| JP4190862B2 (ja) * | 2001-12-18 | 2008-12-03 | シャープ株式会社 | 表示装置およびその駆動方法 |
| JP4638117B2 (ja) * | 2002-08-22 | 2011-02-23 | シャープ株式会社 | 表示装置およびその駆動方法 |
| CN102750932B (zh) * | 2006-07-31 | 2014-12-03 | 夏普株式会社 | 显示控制器、显示装置、显示系统以及显示装置的控制方法 |
| CN103348405B (zh) * | 2011-02-10 | 2015-11-25 | 夏普株式会社 | 显示装置及驱动方法 |
| CN104094345B (zh) * | 2012-02-02 | 2017-02-22 | 夏普株式会社 | 显示装置及其驱动方法 |
-
2013
- 2013-08-06 CN CN201380050244.4A patent/CN104662597B/zh active Active
- 2013-08-06 JP JP2014538260A patent/JP6153530B2/ja active Active
- 2013-08-06 WO PCT/JP2013/071195 patent/WO2014050316A1/ja active Application Filing
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002182619A (ja) * | 2000-10-05 | 2002-06-26 | Sharp Corp | 表示装置の駆動方法およびそれを用いた表示装置 |
| JP2002207462A (ja) * | 2001-01-11 | 2002-07-26 | Toshiba Corp | 液晶表示素子の駆動方法 |
| JP2003316324A (ja) * | 2002-04-19 | 2003-11-07 | Sharp Corp | 液晶表示装置 |
| JP2009229961A (ja) * | 2008-03-25 | 2009-10-08 | Seiko Epson Corp | 液晶表示制御装置及び電子機器 |
| JP2010145810A (ja) * | 2008-12-19 | 2010-07-01 | Eastman Kodak Co | 表示装置 |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014171323A1 (ja) * | 2013-04-18 | 2014-10-23 | シャープ株式会社 | 制御装置、表示装置および制御方法 |
| US10043464B2 (en) | 2013-04-18 | 2018-08-07 | Sharp Kabushiki Kaisha | Control device, display device, and control method |
| KR20160060332A (ko) * | 2014-11-20 | 2016-05-30 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 구동방법 |
| KR102277937B1 (ko) | 2014-11-20 | 2021-07-14 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 구동방법 |
| CN111726477A (zh) * | 2020-06-30 | 2020-09-29 | 中航华东光电有限公司 | 特殊应用环境下的ips屏残影消除方法 |
| CN114078455A (zh) * | 2020-08-20 | 2022-02-22 | 夏普株式会社 | 显示装置 |
| CN114078455B (zh) * | 2020-08-20 | 2023-12-29 | 夏普株式会社 | 显示装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2014050316A1 (ja) | 2016-08-22 |
| CN104662597B (zh) | 2017-09-05 |
| JP6153530B2 (ja) | 2017-06-28 |
| CN104662597A (zh) | 2015-05-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5885760B2 (ja) | 表示装置およびその駆動方法 | |
| JP6099659B2 (ja) | 液晶表示装置およびその駆動方法 | |
| JP6153530B2 (ja) | 液晶表示装置およびその駆動方法 | |
| US9761201B2 (en) | Liquid-crystal display device and drive method thereof | |
| JP5781215B2 (ja) | 表示装置、それを備える電子機器、および表示装置の駆動方法 | |
| CN104838440B (zh) | 液晶显示装置及其驱动方法 | |
| US20150228239A1 (en) | Display device and method of driving the same | |
| US9412317B2 (en) | Display device and method of driving the same | |
| TWI537926B (zh) | 顯示裝置及其驅動方法 | |
| US9349335B2 (en) | Display device, electronic device comprising same, and drive method for display device | |
| WO2013121957A1 (ja) | 表示パネルの駆動装置、それを備える表示装置、および表示パネルの駆動方法 | |
| WO2013024776A1 (ja) | 表示装置およびその駆動方法 | |
| JP2006126346A (ja) | 液晶表示装置及びその駆動方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13841268 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2014538260 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14431822 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 13841268 Country of ref document: EP Kind code of ref document: A1 |