WO2014045990A1 - SiO2 -TiO2 系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法 - Google Patents
SiO2 -TiO2 系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法 Download PDFInfo
- Publication number
- WO2014045990A1 WO2014045990A1 PCT/JP2013/074643 JP2013074643W WO2014045990A1 WO 2014045990 A1 WO2014045990 A1 WO 2014045990A1 JP 2013074643 W JP2013074643 W JP 2013074643W WO 2014045990 A1 WO2014045990 A1 WO 2014045990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- tio
- sio
- ingot
- ratio
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 198
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 61
- 239000000758 substrate Substances 0.000 title claims description 16
- 229910020442 SiO2—TiO2 Inorganic materials 0.000 title abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 25
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 15
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 14
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 117
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 115
- 238000005520 cutting process Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 5
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims description 3
- 238000005816 glass manufacturing process Methods 0.000 claims description 3
- 239000005049 silicon tetrachloride Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 3
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 2
- 230000007062 hydrolysis Effects 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 42
- 229910003902 SiCl 4 Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000007496 glass forming Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1469—Means for changing or stabilising the shape or form of the shaped article or deposit
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/04—Re-forming tubes or rods
- C03B23/049—Re-forming tubes or rods by pressing
- C03B23/0493—Re-forming tubes or rods by pressing in a longitudinal direction, e.g. for upsetting or extrusion
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/005—Hot-pressing vitrified, non-porous, shaped glass products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/60—Substrates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/40—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
- C03B2201/42—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/80—Feeding the burner or the burner-heated deposition site
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/44—Flat, parallel-faced disc or plate products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/30—Doped silica-based glasses containing metals
- C03C2201/40—Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
- C03C2201/42—Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2203/00—Production processes
- C03C2203/40—Gas-phase processes
- C03C2203/42—Gas-phase processes using silicon halides as starting materials
- C03C2203/44—Gas-phase processes using silicon halides as starting materials chlorine containing
Definitions
- the present invention relates to a method for producing SiO 2 —TiO 2 -based glass applied to optical members such as mirrors and photomasks in optical utilization technology such as photolithography technology.
- an exposure process is performed in which a photomask is irradiated with exposure light and the photosensitive substrate is exposed with exposure light from the photomask.
- a photomask can be obtained by forming a predetermined mask pattern on a photomask substrate.
- the photosensitive substrate has been increased in size, and accordingly, the size of the photomask has also been increased.
- one side exceeds 1.2 m.
- a large photomask is used.
- the photomask substrate used for such a large (large area) photomask is a cylindrical SiO 2 glass ingot synthesized by a vapor phase method such as the direct method as a raw material, and this is press-molded to form a parallel plate. It can manufacture by setting it as a plate-shaped member (for example, refer patent document 1).
- the photomask absorbs part of the energy of the exposure light, and the absorbed energy is converted into heat.
- the photomask is deformed by thermal expansion, but if the thermal expansion coefficient is constant, the absolute value of the deformation is proportional to the size of the photomask. The effect will be noticeable.
- An object of the present invention is to provide a method for producing a SiO 2 —TiO 2 glass applicable to the production of a large photomask substrate and a method for producing a photomask substrate made of the glass.
- a method of manufacturing a SiO 2 -TiO 2 type glass is a method for producing a SiO 2 -TiO 2 glass on the target by the direct method, the acid a silicon compound and a titanium compound
- An ingot growth step for growing a SiO2-TiO2 glass ingot having a predetermined length on a target by supplying the hydrogen flame into a hydrogen flame, and the ingot growth step includes a titanium compound relative to a silicon compound supply amount.
- the amount of increase in the ratio per time when the ratio is gradually increased in the first step is adjusted to 1% by mass or less.
- the ratio at the start of supply of the silicon compound and the titanium compound is set to SiO 2 —TiO 2. it is preferred that TiO 2 concentration system glass is adjusted to be 4 wt% or less.
- the growth surface of the SiO 2 —TiO 2 glass ingot in the first step is preferable to gradually increase the ratio so that the temperature is maintained at a predetermined lower limit temperature or higher.
- the predetermined lower limit temperature is preferably 1600 ° C.
- the silicon compound is preferably silicon tetrachloride.
- the titanium compound is titanium tetrachloride, tetraisopropoxytitanium or tetrakisdimethylaminotitanium. Preferably there is.
- the method for producing a SiO 2 —TiO 2 glass according to any one of the first to ninth aspects preferably includes a preheating step of preheating the target before the ingot growth step.
- a method for producing a SiO 2 —TiO 2 glass according to any one of the first to tenth aspects by supplying only a silicon compound into an oxyhydrogen flame in an ingot growth step. 2 It is preferable to form a glass growth surface and then start supplying the titanium compound.
- a method for producing a photomask substrate is a glass for producing SiO 2 —TiO 2 glass by the method for producing SiO 2 —TiO 2 glass according to any one of the first to eleventh aspects.
- the glass cutting process for cutting out the glass part grown in the second step from the manufacturing process, the SiO 2 —TiO 2 glass produced in the glass manufacturing process, and the glass part cut out in the glass cutting process And a plate member forming step of forming a plate member by heating and pressing.
- FIG. 1 is a configuration diagram of a glass manufacturing apparatus according to Embodiment 1 of the present invention.
- the glass manufacturing apparatus 100 includes a furnace frame 101, a furnace wall 102 made of a refractory, and a hearth 103 on which the furnace frame 101 and the furnace wall 102 are disposed.
- the burner 104, the support member 105, and the target member 106 are configured.
- the furnace wall 102 is disposed inside the furnace frame 101. Insertion openings 101a and 102a for inserting the burner 104 are provided in the upper part of the furnace frame 101 and the furnace wall 102, respectively. Further, observation ports 101b and 102b for observing the growth surface 110a of the glass ingot 110 are provided on the sides of the furnace frame 101 and the furnace wall 102, respectively, and a transparent glass window 108 is provided in the observation port 101b. It has been.
- a radiation thermometer 109 is arranged outside the furnace frame 101 so that the temperature of the growth surface 110a of the glass ingot 110 can be measured through the observation ports 101b and 102b.
- An exhaust port 102c is provided on the side of the furnace wall 102, and chlorine gas generated as a by-product of the glass generation reaction, glass fine particles not deposited on the growth surface 110a, and the like are exhausted from the exhaust port 102c. . Chlorine gas, glass particulates, and the like discharged from the exhaust port 102c are guided to the exhaust pipe 107 and discharged to the outside through a scrubber (not shown).
- a target member 106 for growing the glass ingot 110 on the upper surface thereof and a support member 105 for supporting the lower surface of the target member 106 are disposed.
- the support member 105 includes a disk-shaped portion 105a and a rod-shaped portion 105b, and is configured to be able to arbitrarily rotate, swing, and move up and down by a driving device (not shown) connected to one end of the rod-shaped portion 105b.
- the target member 106 has a disk shape having substantially the same diameter as the disk-shaped portion 105 a of the support member 105, and is disposed at a position facing the burner 104.
- the manufacture of the SiO 2 —TiO 2 glass in Embodiment 1 is performed according to the following procedure.
- the target member 106 is rotated at a predetermined speed via the support member 105 by the driving device.
- the process proceeds to a preheating step, and after introducing oxygen gas and hydrogen gas at a predetermined flow rate into the burner 104 to form an oxyhydrogen flame, the distance between the burner 104 and the target member 106 is kept constant.
- the target member 106 is heated by the oxyhydrogen flame.
- the temperature of the target member 106 is monitored by the radiation thermometer 109. When the temperature reaches a preset temperature, the process proceeds to an ingot growth process.
- the temperature of the growth surface, the glass generation rate, etc. vary depending on the amount of glass raw material gas and combustion gas supplied to the burner, so that glass with a constant composition is deposited stably at a constant rate. Therefore, it is necessary to finely adjust the balance of these entire manufacturing parameters to find the optimum value. Therefore, when SiO 2 glass is doped with TiO 2 to produce SiO 2 —TiO 2 glass, the SiO 2 precursor (silicon compound) supplied to the burner is based on the conventional SiO 2 glass production conditions. It is easiest for those skilled in the art to manufacture a part of) with a precursor of TiO 2 (titanium compound) and other conditions as before.
- ingot growth starts only by replacing a part of the SiO 2 precursor with a TiO 2 precursor while maintaining the production conditions of the conventional SiO 2 glass. Soon after, local protrusions were formed on the growth surface, and the phenomenon that the degree of unevenness increased with time by selectively growing the protrusions was observed. If the unevenness of the growth surface becomes severe, the ingot cannot be steadily grown any more, so that it is impossible to manufacture a large ingot under such manufacturing conditions.
- the present inventors have made various studies in order to solve the above problem, and have solved the problem by using the following manufacturing conditions in the ingot growth process.
- the precursor of SiO 2 is supplied into the oxyhydrogen flame for a predetermined time to form the SiO 2 glass growth surface. That is, a precursor of SiO 2 is supplied to the burner 104 at a predetermined flow rate and hydrolyzed in an oxyhydrogen flame to generate glass fine particles. The fine glass particles generated in this manner are deposited on the target member 106, and at the same time, they are melted and vitrified by a flame to form quartz glass.
- supply of the precursor of TiO 2 is started. That is, a SiO 2 precursor and a TiO 2 precursor are simultaneously supplied to the burner 104 at a predetermined flow rate, and are hydrolyzed in an oxyhydrogen flame to generate glass particles. The glass fine particles generated in this manner are deposited on the target member 106, and at the same time, are melted and vitrified by a flame to form SiO 2 —TiO 2 glass.
- the distance between the growth surface 110a of the glass ingot 110 and the burner 104 is kept constant by pulling down the target member 106 at a speed equivalent to the deposition speed of the glass fine particles.
- the glass ingot 110 is grown until the desired length is reached.
- the ratio of the supply amount of the TiO 2 precursor to the supply amount of the SiO 2 precursor is set so that the temperature of the growth surface 110a of the glass ingot 110 is maintained in the range of 1600 ° C. to 1800 ° C.
- the glass ingot 110 is gradually increased by pulling up in stages (first step). This is because if the temperature of the growth surface 110a is less than 1600 ° C., the viscosity of the growth surface 110a is lowered and the fluidity is lost, and there is a possibility that a local protrusion is formed on the growth surface 110a. This is because if the temperature of the growth surface 110a exceeds 1800 ° C., the volatilization of the glass ingot 110 becomes significant and the deposition efficiency is lowered, so that the glass ingot 110 cannot be efficiently grown.
- an increase amount per one time is gradually increased stepwise raising the ratio of the supply amount of the TiO 2 precursor to the feed amount of the SiO 2 precursor, increasing the ratio
- the amount of increase in the TiO 2 concentration of the SiO 2 —TiO 2 glass is adjusted to 1% by mass or less. Also, increasing the amount of TiO 2 concentration per 1cm long glass ingot 110 is adjusted to be below 1 wt%.
- a gas containing a silicon compound such as silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 ), monosilane (SiH 4 ), octamethylcyclotetrasiloxane (OMCTS), or the like is used.
- the precursor of TiO 2 includes titanium compounds such as titanium tetrachloride (TiCl 4 ), tetraisopropoxy titanium (Ti (Oi—C 3 H 7 ) 4 ), and tetrakisdimethylamino titanium (TDMAT). Gas can be used.
- the ingot growth step at the start the supply of the SiO 2 precursor and TiO 2 precursor, of TiO 2 to the feed amount of the SiO 2 precursor precursor supply amount of the The ratio is adjusted so that the TiO 2 concentration of the SiO 2 —TiO 2 glass is 4% by mass or less, and thereafter, the temperature of the growth surface 110a of the glass ingot 110 is maintained within the range of 1600 ° C. to 1800 ° C. as it will be, and the ratio of the supply amount of the TiO 2 precursor to the feed amount of the SiO 2 precursor to increase gradually with the growth of the glass ingot 110.
- SiO 2 —TiO 2 glass having a desired length without causing local protrusions on the growth surface 110 a of the glass ingot 110.
- the reason can be estimated as follows. That is, in the formation reaction of SiO 2 —TiO 2 glass, the hydrolysis reaction of the precursor of SiO 2 and the precursor of TiO 2 is both exothermic reaction. towards the heating value of the second precursor is less than the heating value of the SiO 2 precursor. Therefore, the larger the ratio of the supply amount of the TiO 2 precursor to the heating amount of the SiO 2 precursor, it acts to reduce the temperature of the growth surface 110a of the glass ingot 110. On the other hand, as the glass ingot 110 grows, the volume for storing heat increases, so as long as an appropriate amount of heat is supplied, the larger the volume of the glass ingot 110, the higher the ability to suppress the temperature drop of the growth surface 110a. .
- the temperature of the growth surface 110a of the glass ingot 110 rapidly decreases, and the temperature increase of the growth surface 110a is sufficiently reduced by the effect of increasing the volume of the glass ingot 110. It cannot be suppressed. As a result, the temperature of the growth surface 110a of the glass ingot 110 falls below a predetermined lower limit temperature (1600 ° C.), so that the viscosity of the glass ingot 110 increases and a local convex portion is generated on the growth surface 110a.
- the temperature of the growth surface 110a of the glass ingot 110 does not rapidly decrease, and the glass ingot 110 The glass ingot 110 can be grown while obtaining the heat storage effect due to the increase in volume.
- the temperature of the growth surface 110a of the glass ingot 110 can be maintained at a predetermined lower limit temperature (1600 ° C.) or higher, a desired convexity is not generated on the growth surface 110a of the glass ingot 110. It is considered possible to produce a length of SiO 2 —TiO 2 glass.
- the target member 106 since the target member 106 is heated in the preheating step, a sufficient amount of heat is stored in the target member 106 before the glass ingot 110 is synthesized. Therefore, it is possible to further suppress the temperature drop of the growth surface 110a of the glass ingot 110 in the ingot growth process. Therefore, the shape of the growth surface 110a of the glass ingot 110 can be stably maintained for a long time, and a longer glass ingot 110 can be manufactured. If the diameters are the same, a glass ingot 110 having a larger mass can be manufactured. become.
- the SiO 2 precursor is supplied into the oxyhydrogen flame to form the SiO 2 glass growth surface.
- both the target member 106 and the SiO 2 glass layer formed thereon function as a target, the heat capacity of the target is increased compared to the case where only the target member 106 is used, and the glass is used for a longer time. It becomes possible to maintain the temperature of the growth surface 110a of the ingot 110.
- the difference in thermal expansion coefficient between the SiO 2 glass and the low thermal expansion glass possible internal stress when the synthesized cooling resulting in low thermal expansion glass cracks occurred There is sex.
- the mixing amount of the dope species titanium compound
- the thermal expansion coefficient gradually changes accordingly. The possibility that this SiO 2 —TiO 2 glass will break is extremely low.
- FIG. 2 is a configuration example of a glass forming apparatus used in a method for manufacturing a photomask substrate.
- a glass forming apparatus 200 shown in FIG. 2 includes a metal vacuum chamber 201, a heat insulating material 202 provided over the entire inner wall, a carbon heater 203 provided on a side wall portion of the heat insulating material 202, and a vacuum.
- a glass molding die 204 made of carbon disposed in the center of the chamber 201 and a cylinder rod 209 disposed in contact with the upper surface of the glass molding die 204 are configured.
- the glass mold 204 is composed of a bottom portion 212 including a base plate 205 and a bottom plate 206, a side plate 207, and a top plate 208.
- the bottom plate 206, the side plate 207, and the top plate 208 are hollow portions having a rectangular cross section. 210 is formed.
- SiO 2 —TiO 2 glass is manufactured according to the first embodiment of the present invention.
- the process proceeds to a glass cutting step, and the glass portion grown in the second step (the portion without the TiO 2 concentration gradation) is cut out from the SiO 2 —TiO 2 glass. That is, the glass portion grown in the first step has a gradation of TiO 2 concentration and is not suitable as a material for the photomask substrate, and therefore is removed from the SiO 2 —TiO 2 glass. Furthermore, if necessary, the upper and lower surfaces and side outer peripheral surfaces of the glass portion grown in the second step are appropriately removed to make the glass portion cylindrical.
- the process proceeds to the plate-like member forming step, and the glass portion that is grown in the second step and formed into a columnar shape is used as a base material. Form.
- the glass portion 211 is accommodated in the hollow portion 210 of the molding apparatus 200, and the vacuum chamber 201 is evacuated and then filled with an inert gas.
- an inert gas nitrogen gas, argon gas, helium gas, or the like can be used.
- the heating temperature may be a temperature at which the glass portion 211 can be deformed into a desired shape.
- the heating temperature can be set to a temperature higher than the crystallization temperature of the glass portion 211 and lower than the softening point.
- the glass portion 211 may be held at a predetermined temperature for a certain period of time in order to make the internal temperature more uniform.
- the top plate 208 is pressed by the cylinder rod 209 and lowered to the bottom plate 206 side, and pressure-molded until the glass portion 211 has a desired thickness, cooled, and then the plate The glass member molded into a shape is taken out from the mold 204.
- the member made of SiO 2 —TiO 2 glass thus manufactured is subjected to slicing processing and grinding processing to obtain a predetermined size, chamfering processing to make the end surface into an R shape, and polishing processing to smooth the surface.
- slicing processing and grinding processing to obtain a predetermined size
- chamfering processing to make the end surface into an R shape
- polishing processing to smooth the surface.
- the manufacturing method of the first embodiment of the present invention since a large SiO 2 —TiO 2 glass is formed into a plate member as a base material, an unprecedented large area plate member can be manufactured.
- This can be used to manufacture a photomask having a large area and a low coefficient of thermal expansion. More specifically, for example, it is possible to manufacture a photomask for a liquid crystal panel of the eighth generation or later in which one side exceeds 1.2 m and in which thermal expansion due to exposure light irradiation is suppressed. .
- the ingot growth process gradually by raising the ratio of the supply amount of the TiO 2 precursor to the feed amount of the SiO 2 precursor stepwise with the growing of the glass ingot 110
- the ratio may be increased in a linear function or a quadratic function with respect to time.
- SiO 2 —TiO 2 glass was manufactured by the manufacturing method of the first embodiment. Further, the SiCl 4 as a precursor of SiO 2, was used TiCl 4 as a precursor of TiO 2. In addition, this invention is not limited to an Example. ⁇ Example 1> The experiment was performed under the conditions shown in the column “Example 1” in Table 1.
- a SiO 2 glass having a diameter of 350 mm and a thickness of 120 mm was prepared as a target.
- Oxygen gas was ejected from the burner at a rate of 315 slm and hydrogen gas at a rate of 775 slm to form an oxyhydrogen flame, and the target was heated with the oxyhydrogen flame for 4 hours.
- an SiO 2 glass growth surface having a diameter of 300 mm was formed on the target while supplying SiCl 4 at a rate of 30 g / min over 113 hours.
- the temperature of the growth surface was 1750 ° C.
- SiCl 4 was changed to 15 g / min, and TiCl 4 was mixed at a rate of 0.1 g / min so that the fluctuation amount of TiCl 4 per cm was 1% by mass or less in terms of TiO 2 doping concentration.
- SiO 2 —TiO 2 glass could be continuously grown without causing local protrusions on the growth surface, and when an ingot having a diameter of 350 mm and a length of 500 mm could be produced, SiO 2 —TiO 2 was produced. The production of 2 series glass was finished.
- Example 1 As apparent from Table 1, in Example 1, the TiO 2 concentration was 0.8% by mass (that is, 4% by mass or less) at the start of the supply of TiCl 4 . Further, the amount of change in the TiO 2 concentration between the steps was 0.7 to 0.8% by mass (that is, 1% by mass or less). Further, the amount of increase in the TiO 2 concentration per 1 cm length of the glass ingot was 0.12 to 0.8% by mass (that is, 1% by mass or less). Therefore, a glass ingot could be manufactured while maintaining the growth surface. ⁇ Comparative Example 1> The experiment was performed under the conditions shown in the column “Comparative Example 1” in Table 1.
- a SiO 2 glass having a diameter of 350 mm and a thickness of 120 mm was prepared as a target.
- Oxygen gas was ejected from the burner at a rate of 347 slm and hydrogen gas was jetted at a rate of 930 slm to form an oxyhydrogen flame, and the target was heated with the oxyhydrogen flame for 4 hours.
- an SiO 2 glass growth surface having a diameter of 300 mm was formed on the target over 40 hours while supplying SiCl 4 at a rate of 30 g / min.
- the temperature of the growth surface was 1745 ° C.
- TiCl 4 and 30 g / min SiCl 4 were mixed so that the TiO 2 concentration in the glass was 4.6% by mass.
- TiCl 4 it was considered that local protrusions were formed on the growth surface due to the temperature drop of the growth surface. Therefore, a measure was taken to increase the amount of oxyhydrogen gas during TiCl 4 mixing and to supply heat.
- local protrusions were formed on the growth surface after 30 hours, and the SiO 2 —TiO 2 glass could not be continuously grown.
- Comparative Example 1 As is clear from Table 1, the TiO 2 concentration was 4.6% by mass (that is, a value greater than 4% by mass) at the start of the supply of TiCl 4 . Therefore, the growth surface could not be maintained stably.
- Comparative Example 2 The experiment was performed under the conditions shown in the column “Comparative Example 2” in Table 1.
- a SiO 2 glass having a diameter of 350 mm and a thickness of 120 mm was prepared as a target.
- Oxygen gas was ejected from the burner at a rate of 377 slm and hydrogen gas at a rate of 930 slm to form an oxyhydrogen flame, and the target was heated with the oxyhydrogen flame for 4 hours.
- an SiO 2 glass growth surface having a diameter of 300 mm was formed on the target over 1 hour while supplying SiCl 4 at a rate of 30 g / min. The temperature of the growth surface was 1700 ° C.
- the amount of SiCl 4 was reduced, and 10 g / min SiCl 4 and 0.4 g / min TiCl 4 were mixed so that the TiO 2 concentration in the glass was 4.6% by mass.
- the supply amount of SiCl 4 by 10 g / min per hour, increasing the supply amount of TiCl 4 by 0.4 g / min, 30 g /
- the supply amounts of SiCl 4 of min and TiCl 4 of 1.2 g / min are used, local protrusions are formed on the growth surface after 20 hours, and SiO 2 —TiO 2 glass is continuously grown further. I could not.
- the flow rate of the oxyhydrogen gas was kept constant under the above conditions.
- a SiO 2 glass having a diameter of 350 mm and a thickness of 120 mm was prepared as a target.
- Oxygen gas was ejected from the burner at a rate of 335 slm and hydrogen gas at a rate of 830 slm to form an oxyhydrogen flame, and the target was heated with the oxyhydrogen flame for 4 hours.
- an SiO 2 glass growth surface having a diameter of 300 mm was produced on the target while supplying SiCl 4 at a rate of 40 g / min.
- the temperature of the growth surface was 1550 ° C.
- the supply rate of SiCl 4 was set to 20 g / min.
- the total amount of oxyhydrogen gas was increased by 30 slm, and TiCl 4 was mixed at 0.2 g / min.
- the amount of oxyhydrogen gas was increased by 105 slm so that the amount of heat was not insufficient.
- the supply amount of TiCl 4 was set to 0.4 g / min, and at the same time, the oxyhydrogen gas was further increased by 34 slm.
- local protrusions were formed on the growth surface after 30 hours, and the SiO 2 —TiO 2 glass could not be continuously grown.
- a SiO 2 glass having a diameter of 350 mm and a thickness of 120 mm was prepared as a target.
- Oxygen gas was ejected from the burner at a rate of 306 slm and hydrogen gas at a rate of 760 slm to form an oxyhydrogen flame, and the target was heated with the oxyhydrogen flame for 4 hours.
- an SiO 2 glass growth surface having a diameter of 300 mm was formed on the target over 24 hours while supplying SiCl 4 at a rate of 30 g / min.
- the temperature of the growth surface was 1750 ° C.
- the supply amount of SiCl 4 was set to 15 g / min, and 0.25 g / min of TiCl 4 was supplied. Thereafter, while maintaining the supply amount of SiCl 4 at 15 g / min, TiCl 4 was supplied at a rate of 0.4 g / min after 24 hours, and after 73 hours, TiCl 4 was supplied at a rate of 0.5 g / min. . However, after 30 hours, local protrusions were formed on the growth surface, and the SiO 2 —TiO 2 glass could not be continuously grown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
本発明の第2の態様によると、第1の態様のSiO2 -TiO2系ガラスの製造方法において、第1の工程における、比率を徐々に増加させる際の1回当たりの比率の増加量を、比率を増加させたときのSiO2 -TiO2系ガラスのTiO2濃度の増加量が1質量%以下となるように調整することが好ましい。
本発明の第3の態様によると、第1または2の態様のSiO2 -TiO2系ガラスの製造方法において、第1の工程における、SiO2 -TiO2系ガラスインゴットの長さ1cmあたりのTiO2濃度の増加量が1質量%以下になるように比率を徐々に増加させることが好ましい。
本発明の第4の態様によると、第1乃至3のいずれかの態様のSiO2 -TiO2系ガラスの製造方法において、ケイ素化合物およびチタン化合物の供給開始時における比率を、SiO2 -TiO2系ガラスのTiO2濃度が4質量%以下となるように調整することが好ましい。
本発明の第5の態様によると、第1乃至4のいずれかの態様のSiO2 -TiO2系ガラスの製造方法において、第1の工程における、SiO2 -TiO2系ガラスインゴットの成長面の温度が所定の下限温度以上に維持されるように、比率を徐々に増加させることが好ましい。
本発明の第6の態様によると、第5の態様のSiO2 -TiO2系ガラスの製造方法において、所定の下限温度が1600℃であることが好ましい。
本発明の第7の態様によると、第1乃至6のいずれかの態様のSiO2 -TiO2系ガラスの製造方法において、第1の工程における比率を段階的に増加させることが好ましい。
本発明の第8の態様によると、第1乃至7のいずれかの態様のSiO2 -TiO2系ガラスの製造方法において、ケイ素化合物は、四塩化ケイ素であることが好ましい。
本発明の第9の態様によると、第1乃至8のいずれかの態様のSiO2 -TiO2系ガラスの製造方法において、チタン化合物は、四塩化チタン、テトライソプロポキシチタンまたはテトラキスジメチルアミノチタンであることが好ましい。
本発明の第10の態様によると、第1乃至9のいずれかの態様のSiO2 -TiO2系ガラスの製造方法において、インゴット成長工程の前にターゲットを予め加熱する予熱工程を含むことが好ましい。
本発明の第11の態様によると、第1乃至10のいずれかの態様のSiO2 -TiO2系ガラスの製造方法は、インゴット成長工程において、酸水素火炎中にケイ素化合物のみを供給してSiO2ガラス成長面を形成し、その後、チタン化合物の供給を開始することが好ましい。
本発明の第12の態様によると、フォトマスク基板の製造方法は、第1乃至11のいずれかの態様のSiO2 -TiO2系ガラスの製造方法によりSiO2 -TiO2系ガラスを製造するガラス製造工程と、このガラス製造工程で製造したSiO2 -TiO2系ガラスから、第2の工程で成長させたガラス部分を切り出すガラス切出工程と、このガラス切出工程で切り出したガラス部分を母材とし、加熱加圧成形して板状部材を形成する板状部材形成工程と、を有する。
[発明の実施の形態1]
図1は本発明の実施の形態1に係るガラス製造装置の構成図である。
炉壁102の側部には排気口102cが設けられており、ガラス生成反応の副生成物として発生する塩素ガスや、成長面110aに堆積しなかったガラス微粒子などが排気口102cから排出される。排気口102cから排出された塩素ガスやガラス微粒子などは、排気管107に導かれ、スクラバー(図示せず)を通して外部へ放出される。
[発明のその他の実施の形態]
なお、上述した実施の形態1では、インゴット成長工程において、SiO2 の前駆体の供給量に対するTiO2 の前駆体の供給量の比率をガラスインゴット110の成長に伴って段階的に引き上げることによって徐々に増加させる場合について説明した。しかし、この比率を徐々に増加させる際には、この比率を必ずしも段階的に引き上げる必要はない。例えば、この比率を時間に対して1次関数的または2次関数的に増加させるようにしても構わない。
<実施例1>
表1の「実施例1」の欄に示す条件で実験を行った。
<比較例1>
表1の「比較例1」の欄に示す条件で実験を行った。
<比較例2>
表1の「比較例2」の欄に示す条件で実験を行った。
<比較例3>
表1の「比較例3」の欄に示す条件で実験を行った。
<比較例4>
表1の「比較例4」の欄に示す条件で実験を行った。
日本国特許出願2012年第204377号(2012年9月18日出願)
101……炉枠
102……炉壁
103……炉床
104……バーナー
105……支持部材
106……ターゲット部材
107……排気管
108……透明ガラス窓
109……放射温度計
110……ガラスインゴット
110a……成長面
200……ガラス成形装置
201……真空チャンバ
202……断熱材
203……カーボンヒーター
204……ガラス成形型
205……台板
206……底板
207……側板
208……天板
209……シリンダロッド
210……中空部
211……ガラス部分
212……底部
Claims (12)
- 直接法によりターゲット上にSiO2 -TiO2 系ガラスを製造する方法であって、
ケイ素化合物およびチタン化合物を酸水素火炎中に供給して火炎加水分解することにより、前記ターゲット上に所定の長さのSiO2 -TiO2 系ガラスインゴットを成長させるインゴット成長工程を含み、
前記インゴット成長工程は、前記ケイ素化合物の供給量に対する前記チタン化合物の供給量の比率を所定の値に達するまで前記SiO2 -TiO2 系ガラスインゴットの成長に伴って徐々に増加させる第1の工程と、前記第1の工程において前記比率が前記所定の値に達した後、前記比率を所定の範囲内に保持しながら前記SiO2 -TiO2 系ガラスインゴットを成長させる第2の工程と、を有するSiO2 -TiO2 系ガラスの製造方法。 - 前記第1の工程において、前記比率を徐々に増加させる際の1回当たりの前記比率の増加量を、前記比率を増加させたときの前記SiO2 -TiO2 系ガラスのTiO2 濃度の増加量が1質量%以下となるように調整する請求項1に記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記第1の工程において、前記SiO2 -TiO2 系ガラスインゴットの長さ1cmあたりのTiO2 濃度の増加量が1質量%以下になるように前記比率を徐々に増加させる請求項1または2に記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記ケイ素化合物および前記チタン化合物の供給開始時における前記比率を、前記SiO2 -TiO2 系ガラスのTiO2 濃度が4質量%以下となるように調整する請求項1乃至3のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記第1の工程において、前記SiO2 -TiO2 系ガラスインゴットの成長面の温度が所定の下限温度以上に維持されるように、前記比率を徐々に増加させる請求項1乃至4のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記所定の下限温度が1600℃である請求項5に記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記第1の工程において、前記比率を段階的に増加させる請求項1乃至6のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記ケイ素化合物は、四塩化ケイ素である請求項1乃至7のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記チタン化合物は、四塩化チタン、テトライソプロポキシチタンまたはテトラキスジメチルアミノチタンである請求項1乃至8のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記インゴット成長工程の前に前記ターゲットを予め加熱する予熱工程を含む請求項1乃至9のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 前記インゴット成長工程において、前記酸水素火炎中にケイ素化合物のみを供給してSiO2 ガラス成長面を形成し、その後、前記チタン化合物の供給を開始する請求項1乃至10のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法。
- 請求項1乃至11のいずれかに記載のSiO2 -TiO2 系ガラスの製造方法によりSiO2 -TiO2 系ガラスを製造するガラス製造工程と、
このガラス製造工程で製造した前記SiO2 -TiO2 系ガラスから、前記第2の工程で成長させたガラス部分を切り出すガラス切出工程と、
このガラス切出工程で切り出した前記ガラス部分を母材とし、加熱加圧成形して板状部材を形成する板状部材形成工程と、
を有するフォトマスク基板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014536794A JP6131957B2 (ja) | 2012-09-18 | 2013-09-12 | SiO2−TiO2系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法 |
KR1020157006675A KR20150058211A (ko) | 2012-09-18 | 2013-09-12 | SiO₂―TiO₂계 유리의 제조 방법 및 그 유리로 이루어지는 포토마스크 기판의 제조 방법 |
CN201380048244.0A CN104703929B (zh) | 2012-09-18 | 2013-09-12 | SiO2‑TiO2系玻璃的制造方法和由该玻璃构成的光掩模基板的制造方法 |
US14/660,561 US10093572B2 (en) | 2012-09-18 | 2015-03-17 | Manufacturing method for SiO2-TiO2 based glass and manufacturing method for photomask substrate made of SiO2-TiO2 based glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-204377 | 2012-09-18 | ||
JP2012204377 | 2012-09-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/660,561 Continuation US10093572B2 (en) | 2012-09-18 | 2015-03-17 | Manufacturing method for SiO2-TiO2 based glass and manufacturing method for photomask substrate made of SiO2-TiO2 based glass |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045990A1 true WO2014045990A1 (ja) | 2014-03-27 |
Family
ID=50341304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074643 WO2014045990A1 (ja) | 2012-09-18 | 2013-09-12 | SiO2 -TiO2 系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10093572B2 (ja) |
JP (1) | JP6131957B2 (ja) |
KR (1) | KR20150058211A (ja) |
CN (1) | CN104703929B (ja) |
TW (1) | TWI600629B (ja) |
WO (1) | WO2014045990A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505750A (ja) * | 2014-01-31 | 2017-02-23 | コーニング インコーポレイテッド | 組成変化によるTzc勾配を有する低膨張シリカ−チタニア物品 |
KR20220162970A (ko) * | 2021-06-02 | 2022-12-09 | 한국세라믹기술원 | 내플라즈마 특성이 우수한 석영유리 및 그 제조방법 |
KR20220162981A (ko) * | 2021-06-02 | 2022-12-09 | 한국세라믹기술원 | 플라즈마내식성이 우수한 석영유리 및 그 제조방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150031424A (ko) * | 2012-06-27 | 2015-03-24 | 가부시키가이샤 니콘 | SiO2-TiO2 계 유리의 제조 방법, SiO2-TiO2 계 유리로 이루어지는 판상 부재의 제조 방법, 제조 장치 및 SiO2-TiO2 계 유리의 제조 장치 |
CN109867788A (zh) * | 2019-03-18 | 2019-06-11 | 台州学院 | 一种有机硅-二氧化钛复合材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151386A (ja) * | 2009-12-25 | 2011-08-04 | Asahi Glass Co Ltd | Euvl光学部材用基材 |
JP2012072053A (ja) * | 2010-09-02 | 2012-04-12 | Shin-Etsu Chemical Co Ltd | チタニアドープ石英ガラス及びその製造方法 |
WO2012105513A1 (ja) * | 2011-01-31 | 2012-08-09 | 旭硝子株式会社 | チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5180411A (en) * | 1989-12-22 | 1993-01-19 | Corning Incorporated | Optical waveguide fiber with titania-silica outer cladding and method of manufacturing |
JP3064857B2 (ja) * | 1995-03-28 | 2000-07-12 | 株式会社ニコン | 光リソグラフィー用光学部材および合成石英ガラスの製造方法 |
US6649268B1 (en) * | 1999-03-10 | 2003-11-18 | Nikon Corporation | Optical member made of silica glass, method for manufacturing silica glass, and reduction projection exposure apparatus using the optical member |
JP2002053330A (ja) | 2000-08-10 | 2002-02-19 | Nikon Corp | 合成石英ガラスの成形方法及び合成石英ガラス |
JP2003149479A (ja) * | 2001-11-14 | 2003-05-21 | Hitachi Cable Ltd | 石英系ガラス光導波路及びそれを用いた光モジュール |
EP2247546B1 (en) * | 2008-02-26 | 2016-02-24 | Asahi Glass Company, Limited | Tio2-containing silica glass and optical member for euv lithography using high energy densities as well as special temperature controlled process for its manufacture |
-
2013
- 2013-09-12 KR KR1020157006675A patent/KR20150058211A/ko not_active Ceased
- 2013-09-12 JP JP2014536794A patent/JP6131957B2/ja active Active
- 2013-09-12 CN CN201380048244.0A patent/CN104703929B/zh active Active
- 2013-09-12 WO PCT/JP2013/074643 patent/WO2014045990A1/ja active Application Filing
- 2013-09-16 TW TW102133474A patent/TWI600629B/zh active
-
2015
- 2015-03-17 US US14/660,561 patent/US10093572B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151386A (ja) * | 2009-12-25 | 2011-08-04 | Asahi Glass Co Ltd | Euvl光学部材用基材 |
JP2012072053A (ja) * | 2010-09-02 | 2012-04-12 | Shin-Etsu Chemical Co Ltd | チタニアドープ石英ガラス及びその製造方法 |
WO2012105513A1 (ja) * | 2011-01-31 | 2012-08-09 | 旭硝子株式会社 | チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505750A (ja) * | 2014-01-31 | 2017-02-23 | コーニング インコーポレイテッド | 組成変化によるTzc勾配を有する低膨張シリカ−チタニア物品 |
KR20220162970A (ko) * | 2021-06-02 | 2022-12-09 | 한국세라믹기술원 | 내플라즈마 특성이 우수한 석영유리 및 그 제조방법 |
KR20220162981A (ko) * | 2021-06-02 | 2022-12-09 | 한국세라믹기술원 | 플라즈마내식성이 우수한 석영유리 및 그 제조방법 |
KR102539330B1 (ko) * | 2021-06-02 | 2023-06-01 | 한국세라믹기술원 | 플라즈마내식성이 우수한 석영유리 및 그 제조방법 |
KR102539319B1 (ko) | 2021-06-02 | 2023-06-01 | 한국세라믹기술원 | 내플라즈마 특성이 우수한 석영유리 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
US20150183677A1 (en) | 2015-07-02 |
US10093572B2 (en) | 2018-10-09 |
CN104703929A (zh) | 2015-06-10 |
TWI600629B (zh) | 2017-10-01 |
TW201420532A (zh) | 2014-06-01 |
JP6131957B2 (ja) | 2017-05-24 |
KR20150058211A (ko) | 2015-05-28 |
JPWO2014045990A1 (ja) | 2016-08-18 |
CN104703929B (zh) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6131957B2 (ja) | SiO2−TiO2系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法 | |
JP5737070B2 (ja) | チタニアドープ石英ガラス及びその製造方法 | |
KR20100005679A (ko) | 티타니아 도핑 석영 유리 부재 및 그의 제조 방법 | |
JP7195441B2 (ja) | 低ヒドロキシ基高純度石英ガラスの調製方法 | |
JP2011132086A (ja) | チタニアドープ石英ガラス及びその製造方法 | |
JP2011201771A5 (ja) | 合成石英ガラスの製造方法 | |
JP2862001B2 (ja) | 石英ガラス光学部材の製造方法 | |
TW201022167A (en) | Process for production of synthetic quartz glass | |
JPH07300324A (ja) | 耐熱性合成石英ガラスの製造方法 | |
CN101426740A (zh) | 在合成玻璃质二氧化硅中的大制品的制造 | |
CN105579410B (zh) | 在euv照射下没有膨胀的用于euv光刻的反射镜毛坯 | |
US10266443B2 (en) | Device for manufacturing SiO2-TiO2 based glass | |
JP5287574B2 (ja) | 合成石英ガラスの熱処理方法 | |
JP2011121857A (ja) | 硫黄を共添加したチタニアドープ石英ガラス部材及びその製造方法 | |
JPH05178632A (ja) | 光学用高耐熱性石英ガラスとその製造方法 | |
JP5418428B2 (ja) | 合成石英ガラスブロックの熱処理方法 | |
CN118206273A (zh) | 一种石英玻璃及其制备方法和应用 | |
Yoshinari et al. | Device for manufacturing SiO 2-TiO 2 based glass | |
JP2814805B2 (ja) | ポリシリコンtft式lcd用石英ガラス基板 | |
JPH05139776A (ja) | ポリシリコンtft方式lcd用石英ガラス基板 | |
JP2014111530A (ja) | チタニアドープ石英ガラスの製造方法 | |
JP2014091645A (ja) | 合成石英ガラススート体の製造方法及び透明合成石英ガラスインゴットの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13838523 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536794 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157006675 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13838523 Country of ref document: EP Kind code of ref document: A1 |