+

WO2012105513A1 - チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体 - Google Patents

チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体 Download PDF

Info

Publication number
WO2012105513A1
WO2012105513A1 PCT/JP2012/052020 JP2012052020W WO2012105513A1 WO 2012105513 A1 WO2012105513 A1 WO 2012105513A1 JP 2012052020 W JP2012052020 W JP 2012052020W WO 2012105513 A1 WO2012105513 A1 WO 2012105513A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
titania
glass body
sio
silica glass
Prior art date
Application number
PCT/JP2012/052020
Other languages
English (en)
French (fr)
Inventor
順子 宮坂
朝敬 小川
正寛 川岸
高田 雅章
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012555869A priority Critical patent/JPWO2012105513A1/ja
Priority to EP12742292.1A priority patent/EP2671848A1/en
Priority to KR1020137020061A priority patent/KR20140012053A/ko
Publication of WO2012105513A1 publication Critical patent/WO2012105513A1/ja
Priority to US13/955,409 priority patent/US20130316890A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Definitions

  • the present invention is titania (TiO 2) Silica glass containing (hereinafter, in this specification, also referred to as TiO 2 -SiO 2 glass.) And method of manufacturing the body, TiO 2 -SiO 2 glass prepared by this method
  • the present invention relates to a method of manufacturing a TiO 2 —SiO 2 glass body used as an optical system member of a lithography exposure apparatus using EUV light, and a TiO 2 —SiO 2 glass body.
  • the EUV (Extreme Ultra Violet) light in the present invention refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. .
  • an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used.
  • the exposure apparatus is required to form a high-resolution circuit pattern on the wafer surface with a deep focal depth.
  • Short wavelength is being promoted.
  • the exposure light source is further shortened from the conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm) and KrF excimer laser (wavelength 248 nm), and an ArF excimer laser (wavelength 193 nm) is used.
  • an immersion exposure technique and a double exposure technique using an ArF excimer laser are used, which also has a line width of 22 nm. It is considered that only generations can be covered.
  • EUVL EUV lithography
  • TiO 2 —SiO 2 glass is known as an ultra-low thermal expansion material having a smaller coefficient of thermal expansion (CTE) than quartz glass, and has a coefficient of thermal expansion (CTE) depending on the TiO 2 content in the glass. Since it can be controlled, a zero expansion glass having a thermal expansion coefficient close to 0 can be obtained. Therefore, TiO 2 —SiO 2 glass is greatly expected to be used as a material for an optical system member of an EUVL exposure apparatus.
  • CTE coefficient of thermal expansion
  • quartz glass Since it can be controlled, a zero expansion glass having a thermal expansion coefficient close to 0 can be obtained. Therefore, TiO 2 —SiO 2 glass is greatly expected to be used as a material for an optical system member of an EUVL exposure apparatus.
  • an axial layer variation of the TiO 2 / SiO 2 composition ratio occurs in a minute region of 1 ⁇ m to 1 mm, which is about 1 to 200 ⁇ m. It appeared as striped striae on the pitch.
  • the axial direction is the deposition direction of the TiO 2 —SiO 2 glass particles.
  • the striped striae is that the composition ratio of TiO 2 and SiO 2 in the TiO 2 —SiO 2 glass fluctuates in a layered manner in the axial direction, and the refractive index (absolute refractive index) of the glass fluctuates due to this fluctuation. It is thought to occur.
  • a layered variation of the TiO 2 / SiO 2 composition ratio occurred in the glass growth direction, and appeared as stripe striae.
  • TiO 2 —SiO 2 glass When TiO 2 —SiO 2 glass is used as an EUVL optical member, the TiO 2 —SiO 2 glass needs to be polished so that the surface has ultra-high smoothness.
  • TiO 2 -SiO 2 glass the mechanical and chemical properties by TiO 2 / SiO 2 compositional ratio is different, different sites TiO 2 / SiO 2 compositional ratio is not polishing rate constant, after polishing It is difficult to finish so that the glass surface has ultra-high smoothness.
  • “undulation” having a pitch similar to the striae pitch is generated on the glass surface, and ultra-high smoothness is achieved. It was very difficult to get.
  • MSFR mid-spatial frequency roughness
  • a TiO 2 —SiO 2 glass body used as an optical member for EUVL in one plane of the glass body (for example, in a plane perpendicular to the deposition / growth direction of TiO 2 —SiO 2 glass particles) It is important to reduce the fluctuation range (variation) of the coefficient of thermal expansion (CTE) at (1).
  • the CTE, TiO 2 -SiO 2 TiO 2 / SiO 2 compositional ratio in the glass i.e., is correlated with the content of TiO 2, in order to suppress the variation in CTE in the plane, of the TiO 2 content It is necessary to suppress variations.
  • Patent Document 3 assuming that the striae is low, the fluctuation range ( ⁇ n) of the refractive index is 2 ⁇ 10 ⁇ 4 or less in the plane perpendicular to the light incident direction, or the TiO 2 concentration is 1 A TiO 2 —SiO 2 glass body having a mass% or more and a striae pitch of 10 ⁇ m or less is disclosed.
  • the method described in Patent Document 3 is applied to actual production, there is a problem that the yield of a glass base material having a sufficiently low striae level is not high and the yield is low.
  • a conversion site to which silica raw material and titania raw material are supplied includes a furnace having an exhaust vent, and a method of reducing compositional non-uniformity by controlling the flow rate of the exhaust vent is also proposed (for example, a patent) Reference 4).
  • a method of reducing compositional non-uniformity by controlling the flow rate of the exhaust vent is also proposed (for example, a patent) Reference 4).
  • the reaction between the silica raw material and the titania raw material is incomplete, and the reaction rate is considered to change in the exhaust state, so that the TiO 2 content is likely to change due to disturbances such as fluctuations in the exhaust state. There was a problem.
  • the present invention has been made in order to solve the above-described problem, and the variation in the TiO 2 content in the minute region appearing as striae is reduced, and the radial direction in the plane perpendicular to the glass deposition direction is reduced. reduce variations in TiO 2 content in the entire region of also achieved a suitable low thermal expansion characteristics as the EUVL optical member, the TiO 2 -SiO 2 glass body of the ultra-high smoothness after polishing can be achieved, to produce a high yield It aims to provide a method. It is another object of the present invention to provide a method for obtaining a high-quality TiO 2 —SiO 2 glass body in which the TiO 2 content is hardly affected by disturbances such as fluctuations in the exhaust state.
  • the method for producing a TiO 2 —SiO 2 glass body according to the present invention is a method for depositing glass particles to obtain a porous glass body by depositing the TiO 2 —SiO 2 glass particles generated in the flame hydrolysis step on a substrate. It is preferable to further comprise a step and a step of heating the porous glass body to form a transparent glass. Alternatively, it is also preferable to further comprise a step of depositing silica glass fine particles containing the titania produced in the flame hydrolysis step in a refractory container and melting simultaneously with the deposition to form a TiO 2 —SiO 2 glass body. .
  • the amount of reaction heat of oxyhydrogen supplied to the silica precursor is 60 kJ / g or more in the flame hydrolysis step.
  • the silica precursor and the titania precursor are mixed with a multi-tube burner in which a plurality of gas supply nozzles are arranged concentrically. It is preferable to supply from the central nozzle and hydrolyze in the oxyhydrogen flame of the multi-tube burner.
  • the porous glass body obtained in the glass fine particle deposition step preferably has a TiO 2 crystal content of 0.5% by mass or less.
  • the TiO 2 —SiO 2 glass body of the present invention is a TiO 2 —SiO 2 glass body manufactured by the manufacturing method of the present invention, the TiO 2 content is 1 to 12% by mass, and the TiO 2
  • the variation width ( ⁇ TiO 2 ) of the TiO 2 content in a plane perpendicular to the deposition direction of the SiO 2 glass fine particles is 0.15% by mass or less, and the standard deviation at the TiO 2 content level of striae ( ⁇ TiO 2 ) is 0.13% by mass or less.
  • the mass is preferably 10 kg or more.
  • FIG. 1 is a perspective view showing an example of a multi-tube burner used in the method for producing a porous glass body in the present invention.
  • FIG. 2 is a schematic diagram showing the positional relationship between the multiple tube burner and the porous glass body.
  • FIG. 3 is a schematic view showing another aspect of the positional relationship between the multiple tube burner and the porous glass body.
  • FIG. 4 shows a graph used as a calibration curve to calculate the content (mass%) of anatase-type TiO 2 crystals in the porous glass body.
  • FIG. 5 is a diagram showing points at which samples for obtaining ⁇ TiO 2 are taken out.
  • the obtained porous TiO 2 —SiO 2 glass body is heated to a densification temperature or higher under reduced pressure or in a helium atmosphere, and further heated to a temperature higher than the transparent vitrification temperature to obtain a transparent TiO 2 —SiO 2 glass body.
  • the soot method there are an MCVD method, an OVD method, a VAD method, and the like depending on how to make a porous TiO 2 —SiO 2 glass body.
  • the method for producing a TiO 2 —SiO 2 glass body of the present invention by the soot method can include the following steps (a) to (e).
  • a gas stirring mechanism before supplying to the burner.
  • agitation mechanisms There are two types of agitation mechanisms: a mechanism that subdivides and merges gases with components such as a static mixer and a filter, and a mechanism that supplies fine fluctuations by introducing gas into a large space.
  • a mechanism that subdivides and merges gases with components such as a static mixer and a filter
  • a mechanism that supplies fine fluctuations by introducing gas into a large space it is preferable to manufacture a glass body using at least 1 among the said stirring mechanisms, and it is more preferable to use both.
  • the stirring mechanism it is preferable to use both a static mixer and a filter.
  • the glass forming raw material is not particularly limited as long as it can be gasified.
  • Silica precursors include chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 and SiH 3 Cl, fluorides such as SiF 4 , SiHF 3 and SiH 2 F 2 , bromides such as SiBr 4 and SiHBr 3 , SiI A halogenated silicon compound such as iodide such as 4 or R n Si (OR) 4-n (where R is an alkyl group having 1 to 4 carbon atoms, n is an integer of 0 to 3, and a plurality of R may be the same) May be different).
  • titania precursors titanium halide compounds such as TiCl 4 and TiBr 4 , or R n Ti (OR) 4-n (where R is an alkyl group having 1 to 4 carbon atoms, and n is 0 to 3). And a plurality of Rs may be the same or different).
  • silica precursor and titania precursor a compound containing both Si and Ti, such as silicon titanium double alkoxide, can also be used.
  • a seed rod made of quartz glass can be used. Moreover, you may use not only rod shape but a plate-shaped base material.
  • reaction rate (%) of silica precursor is determined by the fluorescent X-ray analysis of the charged composition of the glass raw material and the obtained TiO 2 —SiO 2 glass body. From the TiO 2 content (average TiO 2 content) of the glass body calculated by the following formula from the value of TiO 2 content measured using (XRF), the following formula (2) is used. be able to. It is assumed that TiCl 4 has a higher reaction rate than SiCl 4 and a reaction rate of 100%.
  • the TiO 2 content (average TiO 2 content) of the glass body is the TiO 2 —SiO 2 dense body obtained in the step (c) described later, or the transparent TiO 2 —SiO obtained in the step (d).
  • the TiO 2 content at seven measurement points in the radial direction in the plane perpendicular to the axis was measured by XRF, and the value obtained by weighting the volume with respect to each diameter was determined as the TiO 2 content (average of the glass bodies) TiO 2 content). The calculation formula is shown below.
  • Average TiO 2 content (wt%) ( ⁇ (TiO 2 ) ⁇ r 2 dr) / ( ⁇ r 2 dr)
  • ⁇ (TiO 2 ) ⁇ r 2 dr is an integral value of the product of the measured value of TiO 2 content and r 2 at the seven measurement points. Note that r is a distance from the center in the radial direction in a plane perpendicular to the axis of the obtained TiO 2 —SiO 2 glass body.
  • Examples include (1) promoting gas diffusion, (2) increasing the flame temperature, (3) shortening the distance between the supply gases, and (4) increasing the reaction time.
  • the method of setting the normalized flow velocity center of gravity r ′ in (1) to a value greater than 0.53 and less than 0.58, and the heat of reaction of oxyhydrogen supplied to the silica precursor in (2) is 60 kJ / g or more.
  • a method of increasing the, by using alone or in combination, a silica precursor reaction rate (SiCl 4), reduction of the variation of the TiO 2 content of the above-mentioned microscopic region, the TiO 2 content in the surface It is possible to increase the reaction rate to 80% or more, which can achieve both reductions in variation.
  • FIG. 1 is a perspective view showing an example of a multi-tube burner used for forming a porous TiO 2 —SiO 2 glass body.
  • a multi-tube burner 10 shown in FIG. 1 has a central nozzle 1 at the center thereof, and a triple tube in which a first outer peripheral nozzle 2 and a second outer peripheral nozzle 3 are arranged concentrically with respect to the central nozzle 1. It has a tube structure.
  • a glass forming raw material and a combustion gas for forming an oxyhydrogen flame are respectively supplied from the multi-tube burner.
  • a silica precursor for example, SiCl 4
  • a titania precursor for example, TiCl 4
  • a seal gas between the nozzles through which oxygen and hydrogen flow. That is, a nonflammable gas such as nitrogen (N 2 ) is supplied as a seal gas from the first outer peripheral nozzle 2 between the central nozzle 1 for flowing hydrogen and the second outer peripheral nozzle 3 for flowing oxygen.
  • N 2 nitrogen
  • gas can be supplied in the same way as described above.
  • the silica precursor (SiCl 4 ) and titania precursor (TiCl 4 ) supplied from the central nozzle 1 of the multi-tube burner 10 are hydrolyzed in an oxyhydrogen flame of the multi-tube burner 10 to form TiO 2 —SiO 2 glass fine particles. (Soot) is generated, and the generated TiO 2 —SiO 2 glass fine particles are deposited on the base material and grow to form a porous TiO 2 —SiO 2 glass body.
  • FIG. 2 is a schematic diagram showing this procedure, and shows the positional relationship between the multi-tube burner 10 and the porous glass body.
  • TiO 2 —SiO 2 glass particles are deposited on a substrate 20 to form a porous glass body 30.
  • the tip of the oxyhydrogen flame 40 of the multi-tube burner 10 is in contact with the glass particulate deposition surface (the surface of the porous glass body 30 in the drawing).
  • the substrate 20 is rotated as shown in FIG. 2 when the porous glass body 30 is manufactured.
  • the multi-tube burner 10 is installed immediately below the base material 20, but as shown in FIG. 3, the oxyhydrogen flame 40 of the multi-tube burner 10 is applied to the base material 20 from an oblique direction. You can also
  • Flow rate centroid r c of all of the gas supplied from the multi-tube burner 10 can be obtained by the following equation (3).
  • r c ⁇ u ⁇ rdS / ⁇ udS (3)
  • u is a gas flow velocity (m / sec) in each radial portion of the multi-tube burner 10
  • r is a radial distance (mm) from the center of the burner of the portion.
  • ⁇ u ⁇ rdS is an integral value in the cross-sectional area direction of the multi-tube burner 10 of the product of u and r.
  • SudS is an integral value in the cross-sectional area direction of the u multiple tube burner, and corresponds to the flow rate of the introduced gas.
  • the flow velocity center of gravity normalized by the radius R (hereinafter referred to as the normalized flow velocity center of gravity) r ′ is more than 0.53 and less than 0.58 (0.53 ⁇ r ′ ⁇ It is preferable to produce a porous glass body by performing flame hydrolysis under the gas supply conditions of 0.58).
  • the diffusion effect of the gas supplied from the multi-tube burner 10 becomes strong, so that the glass fine particles carried by the gas are also affected by this. Therefore, since the ratio of the generated glass particles deposited on the base material 20 decreases, it takes a long time to grow the porous glass body 30, which is not realistic. Also, since the oxyhydrogen flame itself diffuses into an unstable shape, the porous glass body 30 tends to collapse on the outer periphery when an attempt is made to produce a large porous glass body 30.
  • the outer peripheral collapse means that the outer peripheral portion is peeled off and collapsed leaving the central portion (core) of the porous glass body 30.
  • the temperature of the flame can be increased by increasing the reaction heat amount of oxyhydrogen supplied to the silica precursor to 60 kJ / g or more (per 1 g of the glass raw material), whereby the reaction of SiCl 4 The rate can be increased to 80% or more.
  • the amount of reaction heat is preferably 100 kJ / g or less due to equipment limitations.
  • the present inventors may have a part of TiO 2 as crystals in the porous TiO 2 —SiO 2 glass body obtained in the step (a), and the content of the TiO 2 crystals is It has been found that there is a correlation with the degree of variation in the TiO 2 content in the microregions that appear as striae.
  • the presence of the TiO 2 crystal increases the variation of the TiO 2 content in the microregions that appear as striae, so the content of the TiO 2 crystal is preferably 0.5% by mass or less.
  • the content (% by mass) of TiO 2 crystals in the porous TiO 2 —SiO 2 glass body can be determined using a calibration curve prepared by the following method.
  • the TiO 2 —SiO 2 dense body obtained in the step (b) is heated to the transparent vitrification temperature to obtain a transparent TiO 2 —SiO 2 glass body.
  • the transparent vitrification temperature is usually from 1350 to 1800 ° C., particularly preferably from 1400 to 1750 ° C.
  • the transparent vitrification temperature refers to a temperature at which crystals cannot be confirmed with an optical microscope and a transparent glass is obtained.
  • the atmosphere for transparent vitrification is preferably an atmosphere of 100% inert gas such as helium or argon, or an atmosphere containing the inert gas as a main component.
  • the pressure may be reduced pressure or normal pressure. In the case of reduced pressure, 1 ⁇ 10 4 Pa or less is preferable.
  • the transparent TiO 2 —SiO 2 glass body obtained in the step (c) is heated to a temperature equal to or higher than the softening point to be molded into a desired shape to obtain a molded TiO 2 —SiO 2 glass body.
  • the molding temperature is preferably 1500 to 1800 ° C. Below 1500 ° C., the viscosity of the TiO 2 —SiO 2 glass is high, so that substantially no self-weight deformation occurs, and the growth of cristobalite which is the crystalline phase of SiO 2 or the growth of rutile or anatase which is the crystalline phase of TiO 2 Occurs, so-called devitrification occurs. Above 1800 ° C., SiO 2 sublimation cannot be ignored.
  • the (c) transparent vitrification step and (d) molding step can be performed continuously or simultaneously.
  • an annealing process in a known manner. For example, after holding at a temperature of 600 to 1200 ° C. for 1 hour or more, an annealing process is performed to lower the temperature to 900 to 700 ° C. or less at an average temperature reduction rate of 10 ° C./hr or less, and the virtual temperature of the TiO 2 —SiO 2 glass body is reduced. Control.
  • the formed TiO 2 —SiO 2 glass body having a temperature of 1200 ° C. or higher obtained in the step (d) is annealed to a temperature of 900 to 700 ° C.
  • the TiO 2 —SiO 2 glass body thus obtained may have a large mass (mass of one lot produced in one operation) of 10 kg or more.
  • the TiO 2 —SiO 2 glass body preferably has no inclusion.
  • Inclusion is a foreign matter or bubble present in the glass, and may be caused by mixing or crystal precipitation in the glass production process.
  • the obtained TiO 2 —SiO 2 glass body has a small variation in the TiO 2 content in the microregions appearing as striae, and is perpendicular to the axial direction (the deposition direction of the TiO 2 —SiO 2 glass fine particles).
  • the variation in the TiO 2 content in the plane is small.
  • the standard deviation ( ⁇ TiO 2 ) of the TiO 2 content in the microscopic area measured by the following method is 0.13% by mass or less, and the TiO 2 content is in the plane perpendicular to the axial direction.
  • the difference ( ⁇ TiO 2 ) between the maximum value and the minimum value is 0.15% by mass or less.
  • This sample is set in an accelerated electron beam irradiation analyzer (EPMA) (JXA8900 manufactured by JEOL), and the contents (mass%) of TiO 2 and SiO 2 are measured from the characteristic X-ray spectra of Ti and Si.
  • the measurement range is a range of 1000 ⁇ m perpendicular to the striae direction, the electron beam irradiation conditions are an acceleration voltage of 25 kV, a current of 30 nA, and a position resolution of 5 ⁇ m.
  • the fluctuation range (variation) of the measured value of the TiO 2 content thus obtained is obtained as the standard deviation ⁇ TiO 2 in the sample. As shown in FIG.
  • the value of MSFR used when investigating a correlation measured the surface shape of the area
  • a 2.5 ⁇ objective lens was used for the measurement.
  • the measured surface shape was divided for each 2 ⁇ 2 mm square area, and the rms value was calculated as the smoothness.
  • data processing was performed using a bandpass filter having a wavelength of 1 ⁇ m to 1 mm, and swell components having wavelengths other than the same wavelength range were removed.
  • a TiO 2 —SiO 2 glass body having a standard deviation ( ⁇ TiO 2 ) of TiO 2 content in a microscopic area of 0.13% by mass or less obtained by the production method of the present invention is polished, an index representing smoothness on the polished surface
  • the value of MSFR having a waviness pitch in the range of 1 ⁇ m to 1 mm is expected to be 10 nm or less.
  • the surface smoothness (rms) of the optical system member of the EUVL exposure apparatus using a TiO 2 —SiO 2 glass body is preferably 10 nm or less, more preferably 8 nm or less, and further preferably 6 nm or less. Therefore, by using the TiO 2 —SiO 2 glass body obtained by the production method of the present invention, an ultra-high smooth surface suitable as an EUVL optical member can be obtained.
  • the TiO 2 —SiO 2 glass body obtained by the production method of the present invention has a variation in TiO 2 content ( ⁇ TiO 2 ) in a plane perpendicular to the axis of 0.15% by mass or less.
  • the variation is extremely small ( ⁇ 6 ppb / ° C. or less), and it is suitable as an EUVL optical member.
  • the calibration curve representing the relationship between the TiO 2 content and the CTE indicates that the TiO 2 —SiO 2 glass body of the present invention
  • the variation in CTE is determined from the variation in TiO 2 content ( ⁇ TiO 2 ) (0.15% by mass or less)
  • it is ⁇ 6 ppb / ° C. or less at room temperature. Therefore, the TiO 2 —SiO 2 glass body of the present invention can have a CTE variation of, for example, ⁇ 6 ppb / ° C. or less at room temperature, and is suitable for an EUVL optical member.
  • Example 1 TiCl 4 and SiCl 4 , which are raw materials for forming TiO 2 —SiO 2 glass, were gasified, mixed, and then hydrolyzed (flame hydrolysis) in an oxyhydrogen flame. Then, the obtained TiO 2 —SiO 2 glass fine particles were deposited and grown on a quartz seed rod rotating at a rotation speed of 25 rpm to form a porous TiO 2 —SiO 2 glass body (step (a)). ).
  • a multi-tube burner is used for flame hydrolysis, TiCl 4 , SiCl 4 and hydrogen (H 2 ) are supplied to the central nozzle, and hydrogen (H 2 ) and oxygen (O 2 ) are supplied to the plurality of outer peripheral nozzles. 2 ) or nitrogen (N 2 ) was supplied.
  • the supply amount ratio of TiCl 4 and SiCl 4 per minute TiCl 4 supply amount [g / min] / SiCl 4 supply amount [g / min] was supplied to 0.050.
  • the gas conditions are adjusted such that the reaction heat of oxyhydrogen (H 2 ⁇ O 2 ) supplied to SiCl 4 is 68 kJ / g and the normalized flow velocity center of gravity r ′ of the multi-tube burner is 0.556. Flame hydrolysis was performed at Note that the reaction heat, poured the hydrogen (H 2) is calculated assuming that all combustion reaction.
  • the obtained porous TiO 2 —SiO 2 glass body was difficult to handle as it was, it was kept in the atmosphere at 1200 ° C. for 6 hours while being deposited on the substrate, and then removed from the seed rod.
  • the obtained porous TiO 2 —SiO 2 glass body had a diameter of 250 mm and a mass of 17 kg.
  • the TiO 2 —SiO 2 dense body thus obtained was heated to 1700 ° C. in an argon atmosphere using a carbon furnace to obtain a transparent TiO 2 —SiO 2 glass body (step (c)).
  • the molded TiO 2 —SiO 2 glass body obtained by molding is annealed at 1100 ° C. for 10 hours, cooled to 500 ° C. at a rate of 3 ° C./hr, and then allowed to cool in the atmosphere.
  • a TiO 2 —SiO 2 glass body was obtained (step (e)).
  • the same method was further repeated 9 times to obtain a total of 10 TiO 2 —SiO 2 glass bodies.
  • the obtained glass body had a diameter of about 250 mm and a mass of 17 to 20 kg.
  • the value of ⁇ TiO 2 of these 10 glass bodies was measured. Table 2 shows the number of these average values, the number of ⁇ TiO 2 that was 0.2 (wt%) or less and the ratio, and the number and ratio of 0.15 (wt%) or less. Furthermore, the value of ⁇ TiO 2 was measured, and the number of these average values and the number of ⁇ TiO 2 values of 0.13 (wt%) or less is shown in Table 2.
  • ⁇ TiO 2 and ⁇ TiO 2 were measured according to the measurement methods described above.
  • Example 2 In the step (a), TiO 2 ⁇ is the same as in Example 1 except that the gas conditions are adjusted so that the amount of heat supplied to SiCl 4 is 69 kJ / g and the normalized flow velocity center of gravity is 0.568. A SiO 2 glass body was obtained. The results of measuring the reaction rate, the amount of heat, the center of gravity of the flow velocity, and the amount of TiO 2 crystal as in Example 1 are shown in Table 1. Next, the same method was further repeated nine times to obtain a total of 10 TiO 2 —SiO 2 glass bodies. The obtained glass body had a diameter of about 250 mm and a mass of 17 to 20 kg. The results of measuring ⁇ TiO 2 and ⁇ TiO 2 as in Example 1 are shown in Table 2.
  • the supply amount ratio (TiCl 4 supply amount [g / min] / SiCl 4 supply amount [g / min]) per minute of TiCl 4 and SiCl 4 is 0.049.
  • a 2- SiO 2 glass body was obtained.
  • the results of measuring the reaction rate, the amount of heat, the center of flow velocity, and the amount of TiO 2 crystal as in Example 1 are shown in Table 1.
  • the same method was further repeated nine times to obtain a total of 10 TiO 2 —SiO 2 glass bodies.
  • the obtained glass body had a diameter of about 250 mm and a mass of 17 to 20 kg.
  • the results of measuring ⁇ TiO 2 and ⁇ TiO 2 as in Example 1 are shown in Table 2.
  • the supply amount ratio (TiCl 4 supply amount [g / min] / SiCl 4 supply amount [g / min]) per minute between TiCl 4 and SiCl 4 is set to 0.042.
  • the flame hydrolysis is performed under gas conditions adjusted so that the amount of heat supplied to SiCl 4 is 34 kJ / g and the normalized flow velocity center of gravity is 0.526, TiO 2 ⁇ A SiO 2 glass body was obtained.
  • the results of measuring the reaction rate, the amount of heat, the center of flow velocity, and the amount of TiO 2 crystal as in Example 1 are shown in Table 1.
  • the same method was further repeated nine times to obtain a total of 10 TiO 2 —SiO 2 glass bodies.
  • the obtained glass body had a diameter of about 250 mm and a mass of 17 to 20 kg.
  • the results of measuring ⁇ TiO 2 and ⁇ TiO 2 as in Example 1 are shown in Table 2.
  • the amount of heat supplied to SiCl 4 as the silica precursor is 60 kJ / g or more, and the flow velocity center of gravity normalized by the radius of the multi-tube burner exceeds 0.53, 0.58
  • Examples 1 and 2 in which flame hydrolysis was performed under a gas condition adjusted to be less than that and the reaction rate of SiCl 4 was increased to 80% or more in the obtained TiO 2 —SiO 2 glass body, A glass body having a standard deviation ( ⁇ TiO 2 ) of TiO 2 content of 0.13% by mass or less and a variation ( ⁇ TiO 2 ) of TiO 2 content in the surface inner diameter direction perpendicular to the axis of 0.15% by mass or less.
  • the TiO 2 —SiO 2 glass bodies obtained in Examples 1 and 2 can realize ultrahigh smoothness with an MSFR of 10 nm or less by polishing, and have extremely small CTE variation (for example, room temperature). Therefore, it can be suitably used as an EUVL optical member.
  • Comparative Example 2 the variation in the TiO 2 content in the surface inner diameter direction perpendicular to the axis is better than that in Comparative Example 1, but the variation in the TiO 2 content in the minute region is large. .
  • Comparative Examples 1 and 2 it is impossible to stably obtain a TiO 2 —SiO 2 glass body suitable as an EUVL optical member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 本発明は、シリカ(SiO)前駆体とチタニア(TiO)前駆体をそれぞれ酸水素火炎に供給し、該火炎中で加水分解反応させてチタニアを含有するシリカガラス微粒子を生成する火炎加水分解工程を有し、前記火炎加水分解工程において、前記シリカ前駆体の加水分解反応の反応率を80%以上とする、チタニアを含有するシリカガラス体の製造方法に関する。

Description

チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体
 本発明は、チタニア(TiO)を含有するシリカガラス(以下、本明細書では、TiO-SiOガラスとも記す。)体の製造方法と、この方法により製造されるTiO-SiOガラス体に係り、特に、EUV光を用いるリソグラフィの露光装置の光学系部材として用いられるTiO-SiOガラス体の製造方法、およびTiO-SiOガラス体に関する。なお、本発明でいうEUV(Extreme Ultra Violet)光とは、軟X線領域または真空紫外域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。
 従来から、光リソグラフィ技術においては、ウェハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウェハ面上に結像させることが求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)からさらに短波長化が進み、ArFエキシマレーザ(波長193nm)が用いられている。また、回路パターンの線幅が65nm以下となる次世代の集積回路に対応するため、ArFエキシマレーザを用いた液浸露光技術や二重露光技術が用いられているが、これも線幅が22nm世代までしかカバーできないと見られている。
 このような流れにあって、露光光源としてEUV光のうちで代表的には波長13nmの光を用いたリソグラフィ技術が、回路パターンの線幅が22nm以降の世代にわたって適用可能と見られて注目されている。このようなEUVリソグラフィ(以下、「EUVL」と略する。)の像形成原理は、投影光学系を用いてマスクパターンを転写する点では、従来のフォトリソグラフィーと同じである。しかし、EUV光のエネルギー領域では光を透過する材料がないため、屈折光学系は用いることができず、光学系はすべて反射光学系となる。
 EUVL用露光装置の光学系部材(以下、EUVL用光学部材というときがある。)はフォトマスクやミラーであるが、これらは(1)基材、(2)基材上に形成された反射多層膜、(3)反射多層膜上に形成された吸収体層、から基本的に構成される。反射多層膜としては、Mo層とSi層とを交互に積層させたMo/Si多層膜が検討され、吸収体層には、成膜材料としてTaやCrが検討されている。基材としては、EUV光照射の下においても歪みが生じないように、低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラス等が検討されている。
 TiO-SiOガラスは、石英ガラスよりも小さい熱膨張係数(Coefficient of Thermal Expansion;CTE)を有する超低熱膨張材料として知られ、またガラス中のTiO含有量によって熱膨張係数(CTE)を制御できるため、熱膨張係数が0に近いゼロ膨張ガラスを得ることができる。したがって、TiO-SiOガラスは、EUVL用露光装置の光学系部材に用いる材料として、大いに使用が期待されている。
 従来からのTiO-SiOガラスの作製方法としては、以下に示す方法が挙げられる。まず、シリカ前駆体とチタニア前駆体をそれぞれ蒸気形態に転化させ、これらを混合する。この蒸気形態となった混合物を、バーナーに導入し熱分解(火炎加水分解)することでTiO-SiOガラス粒子とする。そして、このTiO-SiOガラス粒子を、耐火性容器中に堆積させ、堆積と同時に溶融してTiO-SiOガラスとする方法(直接法)が挙げられる(例えば、特許文献1参照。)。また、特許文献2には、TiO-SiO多孔質ガラス体を形成し、ガラス体にした後マスク基板を得る方法が開示されている。
 しかし、これらの方法で作製されるTiO-SiOガラスには、1μm~1mmの微小領域でTiO/SiO組成比の軸方向の層状変動が発生しており、これが1~200μm程度のピッチでの縞状の脈理として現れていた。ここで、軸方向とは、TiO-SiOガラス微粒子の堆積方向とする。以下の記載においても同様である。前記縞状の脈理は、TiO-SiOガラス中のTiOとSiOとの組成比が軸方向に層状に変動し、この変動によりガラスの屈折率(絶対屈折率)が変動するために生じるものと考えられている。
 また、前記直接法においても、ガラスの成長方向にTiO/SiO組成比の層状変動が発生し、縞状の脈理として現れていた。
 TiO-SiOガラスをEUVL用光学部材として用いる場合、TiO-SiOガラスは表面が超高平滑性を有するように研磨される必要がある。しかし、TiO-SiOガラスは、TiO/SiO組成比によって機械的および化学的物性が異なるため、TiO/SiO組成比の異なる部位は研磨レートが一定とならず、研磨後のガラス表面が超高平滑性を有するように仕上げることが困難である。すなわち、10~200μmピッチで縞状の脈理を有するTiO-SiOガラスを研磨すると、ガラス表面に、脈理ピッチと同程度のピッチをもつ「うねり」が発生し、超高平滑性を得ることが非常に困難であった。
 近年、EUVL用光学部材に対する極めて重要な要求特性として、1μm~1mmのうねりのピッチをもつ中間空間周波数粗さ(Mid-Spatial Frequency Roughness;MSFR)の低減があるが、従来の製造方法で得られるTiO-SiOガラスを研磨した場合には、前記の理由により、研磨面に脈理ピッチと同程度のピッチをもつ「うねり」が生じるため、MSFRを低減することが困難であった。
 さらに、EUVL用光学部材として使用されるTiO-SiOガラス体においては、該ガラス体の一つの面内(例えば、TiO-SiOガラス微粒子の堆積・成長方向に対して垂直な面内)での熱膨張係数(CTE)の変動幅(ばらつき)を小さくすることが重要である。CTEは、TiO-SiOガラス中のTiO/SiO組成比、すなわちTiOの含有量と相関しているので、前記面内でのCTEのばらつきを抑えるには、TiO含有量のばらつきを抑える必要がある。
 このように、TiO-SiOガラス体においては、脈理として現れる微小領域でのTiO含有量のばらつきを小さくすることに加えて、前記面内でのTiO含有量のばらつきを小さくすることが求められているが、従来の製造方法では、TiO含有量の微小領域における均一性と、部材のガラス堆積方向に垂直な面内の径方向全域におけるマクロ的な均一性とはトレードオフの関係にあり、両方ともを満足させるものを安定的に生産することは難しかった
 さらに、特許文献3には、脈理を低くしたものとして、屈折率の変動幅(Δn)が光の入射方向に垂直な面において2×10-4以下であるか、またはTiO濃度が1質量%以上であり、かつ脈理ピッチが10μm以下であるTiO-SiOガラス体が開示されている。しかし、特許文献3に記載された方法を実際の生産に適用した場合、脈理レベルが十分に低いガラス母材が得られる率は高くなく、歩留まりが低くなるという問題があった。
 また、シリカ原料とチタニア原料が供給される転化サイトが排気ベントを有する炉を含み、排気ベントの流量を制御することにより組成上の不均一性を低減する方法も提示されている(例えば、特許文献4参照。)。しかし、この方法では、シリカ原料とチタニア原料の反応が未完結であり、反応率が排気の状態で変化すると考えられることから、TiO含有量が排気状態の変動等の外乱により変化しやすいという問題があった。
日本国特許第4108926号公報(WO1999/015468) 米国特許出願公開第2002/157421号 日本国特開2004-315351号公報(WO2004/089838) 日本国特表2005-519349号公報(WO2003/077038)
 本発明は、上記課題を解決するためになされたものであって、脈理として現れる微小領域のTiO含有量のばらつきが低減されているうえに、ガラス堆積方向に垂直な面内の径方向の全域におけるTiO含有量のばらつきの低減も達成され、EUVL光学部材として好適な低熱膨張特性と、研磨後の超高平滑性を達成できるTiO-SiOガラス体を、高い歩留まりで製造する方法を提供することを目的とする。また、TiO含有量が排気状態の変動等の外乱により影響を受けにくい、高品質のTiO-SiOガラス体を得る方法を提供することを目的とする。
 本発明は、シリカ前駆体とチタニア前駆体をそれぞれ酸水素火炎に供給し、該火炎中で加水分解反応させてTiO-SiOガラス微粒子を生成する火炎加水分解工程を有し、前記火炎加水分解工程において、前記シリカ前駆体の加水分解反応の反応率を80%以上とする、TiO-SiOガラス体の製造方法を提供する。
 本発明のTiO-SiOガラス体の製造方法は、前記火炎加水分解工程で生成された前記TiO-SiOガラス微粒子を、基材上に堆積させて多孔質ガラス体を得るガラス微粒子堆積工程と、前記多孔質ガラス体を加熱して透明ガラス化する工程をさらに備えることが好ましい。或いは、前記火炎加水分解工程で生成された前記チタニアを含有するシリカガラス微粒子を耐火性容器中に堆積させ、堆積と同時に溶融してTiO-SiOガラス体とする工程をさらに備えることも好ましい。
 本発明のTiO-SiOガラス体の製造方法では、前記火炎加水分解工程において、前記シリカ前駆体に供給される酸水素の反応熱量が60kJ/g以上であることが好ましい。
 また、本発明のTiO-SiOガラス体の製造方法では、前記火炎加水分解工程において、前記シリカ前駆体およびチタニア前駆体を、複数のガス供給ノズルが同心円状に配置された多重管バーナーの中央ノズルから供給し、該多重管バーナーの酸水素火炎中で加水分解することが好ましい。そして、前記多重管バーナーの半径方向の各部位におけるガスの流速をu(m/sec)、当該部位の前記バーナーの中心からの半径方向の距離をr(mm)、前記多重管バーナーの半径をR(mm)としたとき、式(1)で表される、前記多重管バーナーから供給される全てのガスの流速重心の規格値r´が、0.53<r´<0.58を満たす条件で前記火炎加水分解を行うことが好ましい。
 r´=(∫u×rdS/∫udS)/R    ………(1)
(式(1)において、∫u×rdSは、前記多重管バーナーの断面積方向における前記uとrとの積の積分値であり、∫udSは、前記多重管バーナーの断面積方向における前記uの積分値である。)
 さらに、本発明のTiO-SiOガラス体の製造方法において、前記ガラス微粒子堆積工程で得られる前記多孔質ガラス体は、TiO結晶の含有量が0.5質量%以下であることが好ましい。
 本発明のTiO-SiOガラス体は、前記本発明の製造方法により製造されるTiO-SiOガラス体であり、前記TiO含有量が1~12質量%であり、かつ前記TiO-SiOガラス微粒子の堆積方向に対して垂直な面内における前記TiO含有量の変動幅(ΔTiO)が0.15質量%以下であり、脈理のTiO含有量レベルでの標準偏差(σTiO)が0.13質量%以下である。
 本発明のTiO-SiOガラス体においては、質量が10kg以上であることが好ましい。
 本発明によれば、脈理として現れる微小領域のTiO含有量の変動幅(ばらつき)が低減されているうえに、径方向の全域におけるTiO含有量の変動幅(ばらつき)も低減され、EUVL用光学部材として好適な低い熱膨張特性と研磨後の超高平滑性を達成できるTiO-SiOガラス体を、安定的に高い歩留まりで得ることができる。また、シリカ前駆体とチタニア前駆体との反応率が高く製造効率が高いうえに、TiO含有量等が排気状態の変動のような外乱による影響を受けにくいという利点もある。
図1は、本発明において、多孔質ガラス体の製造方法に用いる多重管バーナーの一例を示す斜視図である。 図2は、多重管バーナーと多孔質ガラス体との位置関係を示す模式図である。 図3は、多重管バーナーと多孔質ガラス体との位置関係の別の態様を示す模式図である。 図4は、多孔質ガラス体中のアナターゼ型のTiO結晶の含有量(質量%)を算出するために検量線として使用するグラフを示す。 図5は、σTiOを求めるためのサンプルを取り出す点を示す図である。
 以下、本発明の実施の形態について説明するが、本発明はこれに限定されるものではない。
 本発明のTiO-SiOガラス体の製造方法は、シリカ前駆体とチタニア前駆体を酸水素火炎に供給し、この酸水素火炎中で加水分解反応させてTiO-SiOガラス微粒子を生成する火炎加水分解工程を有する。本発明の製造方法としては、以下に示す方法が挙げられる。すなわち、スート法により、前記火炎加水分解工程で得られるTiO-SiOガラス微粒子(スート)を基材上に堆積、成長させて、多孔質TiO-SiOガラス体を得た後、得られた多孔質TiO-SiOガラス体を減圧下あるいはヘリウム雰囲気で緻密化温度以上に加熱し、さらに透明ガラス化温度以上に加熱して透明TiO-SiOガラス体を得る方法である。スート法は、多孔質TiO-SiOガラス体の作り方により、MCVD法、OVD法、VAD法などがある。
 また、前記シリカ前駆体とチタニア前駆体を1800~2000℃の酸水素火炎中で加水分解・酸化させることでTiO-SiOガラス微粒子を生成し、このTiO-SiOガラス粒子を耐火性容器中などに堆積させ、堆積と同時に溶融してTiO-SiOガラス体とする方法(直接法)も、本発明の製造方法に含まれる。
 以下、スート法による多孔質TiO-SiOガラス体の形成工程を含む本発明の実施形態について説明する。スート法による本発明のTiO-SiOガラス体の製造方法は、以下に示す(a)~(e)の各工程を含むことができる。
(a)火炎加水分解およびガラス微粒子(スート)堆積工程
 ガラス形成原料であるシリカ前駆体およびチタニア前駆体をいずれも蒸気形態に転化(ガス化)し、これらを混合して酸水素火炎に供給し、この火炎中で加水分解してTiO-SiOガラス微粒子(スート)を形成する。
 ガス化したシリカ前駆体とチタニア前駆体を均一に供給するために、バーナーに供給する前にガスの撹拌機構を設けることが好ましい。撹拌機構としては、スタティックミキサーやフィルター等の部品でガスを細分化して合流させる機構と、大きな空間にガスを導入することで細かい変動をならして供給する機構の2種類が考えられる。本発明では、上記撹拌機構のうちで少なくとも1つを用いてガラス体を製造することが好ましく、両方を用いることがより好ましい。また、撹拌機構のうち、スタティックミキサーとフィルターの両方を用いることが好ましい。
 次いで、軸方向の周りに所定の速度で回転する種棒を基材として用い、この基材に、前記火炎加水分解工程で生成するTiO-SiOガラス微粒子を堆積、成長させて、多孔質TiO-SiOガラス体を形成する。なお、軸方向は、TiO-SiOガラス微粒子の堆積方向であり、後述する図2および図3において矢印で示す。
 ガラス形成原料としては、ガス化が可能な原料であれば特に限定されない。シリカ前駆体としては、SiCl、SiHCl、SiHCl、SiHCl等の塩化物、SiF、SiHF、SiH等のフッ化物、SiBr、SiHBr等の臭化物、SiI等のヨウ化物といったハロゲン化ケイ素化合物、またはRSi(OR)4-n(ここで、Rは炭素数1~4のアルキル基、nは0~3の整数、複数のRは同一でも異なっても良い)で示されるアルコキシシランが挙げられる。また、チタニア前駆体としては、TiCl、TiBr等のハロゲン化チタン化合物、またはRTi(OR)4-n(ここで、Rは炭素数1~4のアルキル基、nは0~3の整数、複数のRは同一でも異なっても良い)で示されるアルコキシチタンが挙げられる。シリカ前駆体およびチタニア前駆体として、シリコンチタンダブルアルコキシドのような、SiとTiを共に含む化合物を使用することもできる。基材としては、石英ガラス製の種棒を使用することができる。また、棒状に限らず板状の基材を使用してもよい。
 本発明者らは、(a)工程の火炎加水分解工程でのシリカ前駆体(例えばSiCl)の反応率(%)と、得られるTiO-SiOガラス体において、脈理として現れる微小領域のTiO含有量の変動幅(ばらつき)、およびガラス微粒子(スート)の成長軸に垂直な面内のTiO含有量のばらつき(変動幅)との関係について詳細な検討を行った結果、シリカ前駆体の反応率が高くなるほど、TiO-SiOガラス体における脈理として現れる微小領域のTiO含有量のばらつきが小さくなり、かつ前記面内のTiO含有量のばらつきも小さくなることを見出した。本発明の製造方法においては、火炎加水分解工程でのシリカ前駆体の反応率を80%以上に高めることが好ましく、90%以上に高めることが特に好ましい。
<シリカ前駆体の反応率(%)の算出方法>
 例えばシリカ前駆体としてSiClを、チタニア前駆体としてTiClをそれぞれ使用した場合のシリカ前駆体の反応率は、ガラス原料の仕込み組成と得られるTiO-SiOガラス体について、蛍光X線分析(XRF)を用いて測定されたTiO含有量の値から下記計算式で算出されるガラス体のTiO含有量(平均TiO含有量)より、以下の式(2)を用いて算出することができる。なお、TiClはSiClに比べて反応速度が速く、反応率が100%であると仮定している。また、ガラス体のTiO含有量(平均TiO含有量)は、後述する(c)工程で得られたTiO-SiO緻密体、あるいは(d)工程で得られた透明TiO-SiOガラス体について、軸に垂直な面内で径方向に7つの測定点におけるTiO含有量をXRFにより測定し、それぞれの径に対する体積を重みがけした値をガラス体のTiO含有量(平均TiO含有量)とした。計算式を以下に示す。
 平均TiO含有量(wt%)=(∫(TiO)×rdr)/(∫rdr)
 上式において、∫(TiO)×rdrは、前記7つの測定点におけるTiO含有量の測定値とrとの積の積分値である。なお、rは、得られたTiO-SiOガラス体の軸に垂直な面内の径方向における中心からの距離である。
Figure JPOXMLDOC01-appb-M000001
 シリカ前駆体(SiCl)の反応率を高める方法としては、
(1)ガスの拡散を促進する
(2)火炎の温度を上げる
(3)供給ガス間の距離を短くする
(4)反応時間を長くする
等の方法が挙げられる。
 これらのうちで、
 (1)ガスの拡散を促進する具体的な方法としては、後述する規格化した流速重心を外側にする(r´の値を0.53超、0.58未満にする)方法等が挙げられる。
 (2)火炎の温度を上げる具体的な方法としては、シリカ前駆体に供給される酸水素の反応熱量を60kJ/g(ガラス原料1g当たり)以上に増大させる方法、等が挙げられる。なお、酸水素の反応熱は、熱化学方程式:H(g)+1/2O(g)=HO(g)+249kJを用いて計算される。
 (3)供給ガス間の距離を短くする具体的な方法としては、ガラス原料を供給する管径を小さくする方法、または、複数の細管を円筒管が取り囲む構造を持つバーナーを用い、複数の細管から原料と水素ガスを供給し、それを取り囲む円筒管から酸素を供給する方法、等が挙げられる。
 (4)反応時間を長くする具体的な方法としては、バーナーと堆積面との距離を長くする方法、あるいは流速を遅くする方法、等が挙げられる。
 これらの方法を単独で、または組み合わせて用いることができる。
 特に、(1)の規格化流速重心r´の値を0.53超、0.58未満にする方法と、(2)のシリカ前駆体に供給される酸水素の反応熱量を60kJ/g以上に増大させる方法を、単独でまたは組み合わせて用いることで、シリカ前駆体(SiCl)の反応率を、前記した微小領域のTiO含有量のばらつきの低減と、面内のTiO含有量のばらつきの低減をともに達成することができる反応率である80%以上に高めることができる。
 以下、図面を参照して、多重管バーナーを用いて多孔質TiO-SiOガラス体を形成する方法について説明する。
 図1は、多孔質TiO-SiOガラス体の形成に用いる多重管バーナーの一例を示す斜視図である。図1に示す多重管バーナー10は、その中心部に中央ノズル1を有し、その中央ノズル1に対して同心円状に第1の外周ノズル2、および第2の外周ノズル3が配置された三重管構造を有する。
 多重管バーナーを用いてスート法により多孔質ガラス体を形成する場合、ガラス形成原料と、酸水素火炎を形成するための燃焼ガスが、それぞれ多重管バーナーから供給される。図1に示す多重管バーナー10では、シリカ前駆体(例えばSiCl)およびチタニア前駆体(例えばTiCl)が、中央ノズル1から供給される。
 酸水素火炎を形成するための燃焼ガスである酸素(O)および水素(H)は、両者を同一のノズル(この場合中央ノズル1)から供給すると、中央ノズル1から逆火が発生したり、あるいは中央ノズル1の直近で燃焼反応が起こり、中央ノズル1を損傷させるおそれがあるため、酸素と水素のうちの一方(例えば水素)を中央ノズル1から供給し、他方(例えば酸素)を多重管バーナー10の第2の外周ノズル3から供給する。
 多重管バーナー10のエッジ(端部)を酸水素火炎から保護する観点から、酸素と水素を流すそれぞれのノズルの間には、シールガスを供給することが好ましい。すなわち、水素を流す中央ノズル1と酸素を流す第2の外周ノズル3との間にある第1の外周ノズル2から、シールガスとして窒素(N)のような不燃性のガスを供給する。
 四重管以上の構造の多重管バーナーを使用する場合も、上記と同様の考え方でガスを供給することができる。
 多重管バーナー10の中央ノズル1から供給されたシリカ前駆体(SiCl)およびチタニア前駆体(TiCl)は、多重管バーナー10の酸水素火炎中で加水分解してTiO-SiOガラス微粒子(スート)を生成し、生成したTiO-SiOガラス微粒子が基材に堆積し成長することによって多孔質TiO-SiOガラス体が形成される。
 図2は、この手順を示す模式図であり、多重管バーナー10と多孔質ガラス体との位置関係を示している。図2において、基材20上にはTiO-SiOガラス微粒子が堆積して多孔質ガラス体30を形成している。多重管バーナー10の酸水素火炎40の先端は、ガラス微粒子の堆積面(図面上は多孔質ガラス体30の表面)に接している。ガラス微粒子を基材20上に均等に堆積させるため、多孔質ガラス体30の製造時、基材20は図2に示すように回転させる。なお、図2では、基材20の直下に多重管バーナー10が設置されているが、図3に示すように、基材20に対して斜め方向から多重管バーナー10の酸水素火炎40を当てることもできる。
 本発明の製造方法では、多孔質TiO-SiOガラス体の製造工程において、多重管バーナー10から供給される全てのガスの流速重心の該バーナーの半径R(mm)で規格化された値r´が、以下に述べる特定の条件を満たすように調整することが好ましい。
<流速重心の算出方法>
 多重管バーナー10から供給される全てのガスの流速重心rは、下記式(3)によって求めることができる。
 r=∫u×rdS/∫udS   …………(3)
 ここで、uは、多重管バーナー10の半径方向の各部位におけるガスの流速(m/sec)であり、rは当該部位の該バーナーの中心からの半径方向の距離(mm)である。∫u×rdSは、前記uとrとの積の多重管バーナー10の断面積方向における積分値である。また、∫udSは前記uの多重管バーナーの断面積方向における積分値であり、投入したガスの流量に相当する。
 ただし、上記式(3)によって得られる流速重心rによる影響は、多重管バーナー10の半径Rによって変わってくるため、流速重心rを多重管バーナー10の半径Rで規格化した値(rをRで割った値)r´を、本発明の製造方法では流速重心として用いる。
 本発明の製造方法では、このような半径Rで規格化した流速重心(以下、規格化流速重心と示す。)r´が、0.53超かつ0.58未満(0.53<r´<0.58)となるガス供給条件で火炎加水分解を行い、多孔質ガラス体を製造することが好ましい。
 規格化流速重心r´が0.58以上である場合には、多重管バーナー10から供給されるガスの拡散効果が強くなるので、ガスによって運ばれるガラス微粒子もこの影響を受ける。そのため、生成したガラス微粒子のうち、基材20上に堆積するものの割合が低下するため、多孔質ガラス体30を成長させるのに長時間を要し、現実的ではない。また、酸水素火炎そのものも拡散して不安定な形状になるので、大型の多孔質ガラス体30を製造しようとした場合、多孔質ガラス体30が外周崩壊しやすくなる。ここで、外周崩壊とは、多孔質ガラス体30の中心部(芯)を残して外周部が剥がれて崩壊することをいう。
 一方、規格化流速重心r´が0.53以下である場合には、多重管バーナー10から供給されるガスの拡散が不十分となるため、酸素および水素の混合による燃焼が効果的に進まず、SiClの反応率を80%以上に高めることが困難になる。
 また、このとき、シリカ前駆体に供給される酸水素の反応熱量を60kJ/g(ガラス原料1g当たり)以上に増大させることにより、火炎の温度を上げることができ、これにより、SiClの反応率を80%以上に高めることができる。ここで、酸水素の反応熱は、熱化学方程式H(g)+1/2O(g)=HO(g)+249kJを用いて計算される。反応熱量の上限は特にないが、設備上の制約からの100kJ/g以下が好ましい。
 また、本発明者らは、(a)工程で得られる多孔質TiO-SiOガラス体中には、TiOが一部結晶として存在することがあり、そのTiO結晶の含有量が、脈理として現れる微小領域のTiO含有量のばらつきの程度と相関関係があることを見出した。TiO結晶の存在は、脈理として現れる微小領域のTiO含有量のばらつきを増大させるので、TiO結晶の含有量は0.5質量%以下とすることが好ましい。多孔質TiO-SiOガラス体におけるTiO結晶の含有量(質量%)は、以下の方法で作成した検量線を用いて求めることができる。
<TiO結晶の含有量(質量%)の算出方法>
 結晶系がアナターゼ型のTiO結晶の粉末とSiOガラス粉末とを、質量比で(1:99)、(3:97)、(5:95)となるようにそれぞれ秤量し、メノウ乳鉢でそれぞれ混合した。次いでそれぞれの混合粉末のX線回折(XRD)を測定し、2θ=25.3°付近に現れるアナターゼのピーク面積をそれぞれ算出した。
 こうして測定されたそれぞれのアナターゼのピーク面積を、各混合粉末中のTiO結晶の含有量(質量%)に対してプロットしたところ、図4に示すグラフが得られた。図4に示すように、TiO結晶の含有量(質量%)とアナターゼのピーク面積とは強い相関を示すので、この検量線を用いて、アナターゼのピーク面積から、多孔質TiO-SiOガラス体に含まれるTiO結晶の含有量(質量%)を算出することができる。
(b)緻密化工程
 (a)工程で得られた多孔質TiO-SiOガラス体を、減圧下あるいはヘリウム雰囲気で緻密化温度まで昇温し、TiO-SiO緻密体を得る。緻密化温度は、通常は1250~1550℃であり、特に1300~1500℃であることが好ましい。なお、本明細書において緻密化温度とは、光学顕微鏡で空隙が確認できなくなるまで多孔質ガラス体を緻密化できる温度をいう。
(c)透明ガラス化工程
 (b)工程で得られたTiO-SiO緻密体を、透明ガラス化温度まで昇温し、透明TiO-SiOガラス体を得る。透明ガラス化温度は、通常は1350~1800℃であり、特に1400~1750℃であることが好ましい。なお、本明細書において透明ガラス化温度とは、光学顕微鏡で結晶が確認できなくなり、透明なガラスが得られる温度をいう。
 透明ガラス化の雰囲気としては、ヘリウムやアルゴン等の不活性ガス100%の雰囲気、または前記不活性ガスを主成分とする雰囲気であることが好ましい。圧力については、減圧または常圧であればよい。減圧の場合は1×10Pa以下が好ましい。
(d)成形工程
 (c)工程で得られた透明TiO-SiOガラス体を、軟化点以上の温度に加熱して所望の形状に成形し、成形TiO-SiOガラス体を得る。成形加工の温度としては、1500~1800℃が好ましい。1500℃未満では、TiO-SiOガラスの粘度が高いため、実質的に自重変形が行われず、またSiOの結晶相であるクリストバライトの成長またはTiOの結晶相であるルチルもしくはアナターゼの成長が起こり、いわゆる失透が生じる。1800℃以上では、SiOの昇華が無視できなくなる。なお、前記(c)透明ガラス化工程と(d)成形工程を連続的に、あるいは同時に行うこともできる。
(e)アニール工程
 (d)工程で得られた成形TiO-SiOガラス体に対して、公知の方法でアニール工程を行うことができる。例えば、600~1200℃の温度で1時間以上保持した後、10℃/hr以下の平均降温速度で900~700℃以下まで降温するアニール処理を行い、TiO-SiOガラス体の仮想温度を制御する。あるいは、(d)工程で得られた1200℃以上の成形TiO-SiOガラス体を、900~700℃以下まで60℃/hr以下の平均降温速度で降温するアニール処理を行い、TiO-SiOガラス体の仮想温度を制御する。900~700℃以下まで降温した後は放冷できる。アニール処理の雰囲気は、ヘリウム、アルゴン、窒素等の不活性ガス100%の雰囲気、これらの不活性ガスを主成分とする雰囲気、または空気雰囲気とし、圧力は減圧または常圧が好ましい。
 こうして得られるTiO-SiOガラス体は、質量(1回の作業で製造される1ロットの質量)が10kg以上と大型のものであってよい。そして、該TiO-SiOガラス体は、インクルージョンがないことが好ましい。インクルージョンとは、ガラス中に存在する異物や泡などであり、ガラス作製工程の混入や結晶析出によって生じるおそれがある。異物や泡などのインクルージョンを排除するには、上記製造工程において、特に(a)工程で混入を抑制することが必要であり、さらに工程(b)~(d)の温度条件を正確にコントロールすることが必要である。
 また、得られるTiO-SiOガラス体におけるTiOの含有量は1~12質量%であることが好ましい。TiOの含有量が1質量%未満であるとゼロ膨張にならないおそれがあり、12質量%を超えると熱膨張係数が負となる可能性がある。TiO含有量は、より好ましくは5~9質量%である。
 さらに、得られるTiO-SiOガラス体は、脈理として現れる微小領域のTiO含有量のばらつきが小さいうえに、軸方向(TiO-SiOガラス微粒子の堆積方向)に対して垂直な面内におけるTiO含有量のばらつきが小さくなっている。具体的には、以下の方法で測定される微小領域のTiO含有量の標準偏差(σTiO)が0.13質量%以下であり、かつ軸方向に対して垂直な面内におけるTiO含有量の最大値と最小値との差(ΔTiO)が0.15質量%以下である。
<σTiO(質量%)の測定方法>
 最終的に得られたTiO-SiOガラス体における微小領域のTiO含有量の標準偏差(σTiO)は、以下の手順で求めることができる。
 透明ガラス化工程((c)工程)後のTiO-SiOガラス体から、15mm×15mm×3mmの大きさのサンプルを、15mm×15mm面が、TiO-SiO微粒子の堆積方向に平行になるように(断面が脈理を有する面となるように)切り出し、脈理を有する15mm×15mm面(以下、脈理面と示す。)の厚さが0.1~3mmになるまで鏡面研磨した後、脈理面にカーボンスパッタコーティングを施す。このサンプルを、加速電子線照射分析装置(EPMA)(JEOL製 JXA8900)にセットし、TiおよびSiの特性X線スペクトルからTiOおよびSiOの含有量(質量%)を測定する。測定範囲は脈理方向に対して垂直に1000μmの範囲とし、電子線の照射条件は、加速電圧25kV、電流30nAとし、位置分解能は5μmとする。こうして得られたTiO含有量の測定値の変動幅(ばらつき)を、該サンプルにおける標準偏差σTiOとして求める。図5に示すように、TiO-SiOガラス体Gにおいて、径方向の中心(P1)、中心と端部の中間点(P2)および端部(P3)の3点においてサンプルを取り出し、それぞれのサンプルにおける標準偏差σTiO~σTiOの平均値を、σTiOとする。
<ΔTiO(質量%)の測定方法>
 透明ガラス化工程((c)工程)後のTiO-SiOガラス体を、軸に垂直な面内の中心を通る一つの径方向に9均等に分割し、その最外周の2点を除く7点でTiO含有量をXRFにより測定し、これらの測定値の最大値と最小値との差をΔTiOとして求める。
 前記透明ガラス化工程((c)工程)後のTiO-SiOガラス体における脈理の標準偏差(σTiO)と、アニール工程((e)工程)後鏡面研磨した際のガラス表面のMSFRには相関関係がある。したがって、(c)工程後の脈理のσTiOを測定することで、鏡面研磨後のガラス表面のMSFRを予想することができる。
 なお、相関を調べる際に使用したMSFRの値は、鏡面研磨したガラス表面に対し、非接触表面形状測定器(Zygo社 NewView5032)により、光学部材として使用する領域の表面形状を測定したものである。測定には2.5倍の対物レンズを用いた。測定した表面形状は、2×2mm正方形領域ごとにそれぞれ分割し、rms値を算出して平滑度とした。また、rms値算出の際には、波長1μm~1mmのバンドパスフィルターを用いてデータ処理し、同波長域以外の波長をもつうねり成分は除去した。
 本発明の製造方法により得られた微小領域のTiO含有量の標準偏差(σTiO)が0.13質量%以下のTiO-SiOガラス体を研磨すると、研磨面において平滑性をあらわす指標である1μm~1mmの範囲内にうねりのピッチをもつMSFRの値は、10nm以下となることが予想される。TiO-SiOガラス体を用いたEUVL用露光装置の光学系部材の表面平滑度(rms)は10nm以下であることが好ましく、より好ましくは8nm以下、さらに好ましくは6nm以下である。したがって、本発明の製造方法により得られたTiO-SiOガラス体を用いることで、EUVL用光学部材として好適する超高平滑な表面を得ることができる。
 また、本発明の製造方法により得られたTiO-SiOガラス体は、軸に垂直な面内におけるTiO含有量のばらつき(ΔTiO)が0.15質量%以下であるので、CTEのばらつきが極めて小さく(±6ppb/℃以下)、EUVL用光学部材として好適する。すなわち、TiO-SiOガラス体のTiO含有量とCTEとは相関関係を有するので、TiO含有量とCTEとの関係を表わす検量線により、本発明のTiO-SiOガラス体におけるTiO含有量のばらつき(ΔTiO)(0.15質量%以下)からCTEのばらつきを求めると、室温で±6ppb/℃以下となる。したがって、本発明のTiO-SiOガラス体は、CTEのばらつきを例えば室温で±6ppb/℃以下とすることができ、EUVL用光学部材に好適である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されない。
実施例1
 TiO-SiOガラスの形成原料であるTiClとSiClを、それぞれガス化させた後に混合し、酸水素火炎中で加水分解(火炎加水分解)させた。そして、得られたTiO-SiOガラス微粒子を、25rpmの回転速度で回転する石英製の種棒に堆積・成長させて、多孔質TiO-SiOガラス体を形成した((a)工程)。
 ここで、火炎加水分解には、多重管バーナーを使用し、中央ノズルにTiClとSiClと水素(H)を供給し、複数の外周ノズルには、水素(H)、酸素(O)または、窒素(N)をそれぞれ供給した。TiClとSiClの1分間当たりの供給量比(TiClの供給量[g/min]/SiClの供給量[g/min])が0.050となるように供給した。そして、SiClに対して供給される酸水素(H・O)の反応熱量が68kJ/g、多重管バーナーの規格化した流速重心r´が0.556となるよう調節されたガス条件で火炎加水分解を行った。なお、反応熱量については、投入した水素(H)が全て燃焼反応したと仮定して計算している。
 得られた多孔質TiO-SiOガラス体は、そのままではハンドリングしにくいので、基材に堆積させたままの状態で、大気中1200℃で6時間保持した後、種棒から外した。得られた多孔質TiO-SiOガラス体は、直径250mm、質量17kgであった。
 次いで、多孔質TiO-SiOガラス体を雰囲気制御可能な電気炉内に設置し、室温で10Pa以下まで減圧した後、その減圧を保ったまま1360℃まで昇温し、この温度で2時間保持してTiO-SiO緻密体を得た((b)工程)。
 こうして得られたTiO-SiO緻密体を、カーボン炉を用いてアルゴン雰囲気で1700℃に加熱し、透明TiO-SiOガラス体を得た((c)工程)。
 さらに、成形して得られた成形TiO-SiOガラス体に、1100℃で10時間保持するアニール処理を行い、3℃/hrの速度で500℃まで降温した後大気中で放冷し、TiO-SiOガラス体を得た((e)工程)。
 (a)工程におけるシリカ前駆体(SiCl)の反応率、SiClに供給される熱量、多重管バーナーの半径で規格化した流速重心、(a)工程で得られた多孔質TiO-SiOガラス体中のTiO結晶量、(c)工程で得られた透明TiO-SiOガラス体における平均TiO含有量、多孔質体合成の可否を表1に示す。TiO結晶量、平均TiO含有量の測定は、それぞれ前述の測定方法に従って行った。
 また、同様の方法をさらに9回繰り返し、合計で10本のTiO-SiOガラス体を得た。得られたガラス体は、直径約250mmで、質量は17~20kgであった。これら10本のガラス体のΔTiOの値を測定した。これらの平均値、ΔTiOの値が0.2(wt%)以下となった個数とその割合、0.15(wt%)以下となった個数とその割合を表2に示す。さらに、σTiOの値を測定し、これらの平均値とσTiOの値が0.13(wt%)以下となった個数を表2に示す。ΔTiOおよびσTiOの測定は、それぞれ前述の測定方法に従って行った。
実施例2
 (a)工程において、SiClに供給される熱量が69kJ/g、規格化した流速重心が0.568となるよう調節されたガス条件とする以外は実施例1と同様にして、TiO-SiOガラス体を得た。実施例1と同様に、反応率、熱量、流速重心、TiO結晶量を測定した結果を表1に示す。次に、同様の方法をさらに9回繰り返し、合計で10本のTiO-SiOガラス体を得た。得られたガラス体は、直径約250mmで、質量は17~20kgであった。実施例1と同様に、ΔTiOおよびσTiOの測定を行った結果を、表2に示す。
比較例1
 (a)工程において、TiClとSiClの1分間当たりの供給量比(TiClの供給量[g/min]/SiClの供給量[g/min])が0.049となるように供給し、SiClに供給される熱量が33kJ/g、規格化した流速重心が0.526となるよう調節されたガス条件で火炎加水分解を行う以外は、実施例1と同様にして、TiO-SiOガラス体を得た。実施例1と同様に、反応率、熱量、流速重心、TiO結晶量を測定した結果を、表1に示す。次に、同様の方法をさらに9回繰り返し、合計で10本のTiO-SiOガラス体を得た。得られたガラス体は、直径約250mmで、質量は17~20kgであった。実施例1と同様に、ΔTiOおよびσTiOの測定を行った結果を、表2に示す。
比較例2
 (a)工程において、TiClとSiClの1分間当たりの供給量比(TiClの供給量[g/min]/SiClの供給量[g/min])が0.042となるようにし、SiClに供給される熱量が34kJ/g、規格化した流速重心が0.526となるよう調節されたガス条件で火炎加水分解を行う以外は、実施例1と同様にして、TiO-SiOガラス体を得た。実施例1と同様に、反応率、熱量、流速重心、TiO結晶量を測定した結果を、表1に示す。次に、同様の方法をさらに9回繰り返し、合計で10本のTiO-SiOガラス体を得た。得られたガラス体は、直径約250mmで、質量は17~20kgであった。実施例1と同様に、ΔTiOおよびσTiOの測定を行った結果を、表2に示す。
比較例3
 (a)工程において、SiClに供給される熱量が68kJ/g、規格化した流速重心が0.602となるよう調節されたガス条件で火炎加水分解を行う以外は、実施例1と同様にして合成を行ったが、途中で崩壊して多孔質TiO-SiOガラス体は得られなかった。これは、流速重心が外側になり拡散が促進された結果、火炎の乱れを生じさせ、外周の比較的弱い部分を破壊したためと考えられる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1および表2からわかるように、シリカ前駆体であるSiClに供給される熱量が60kJ/g以上であり、多重管バーナーの半径で規格化した流速重心が0.53超、0.58未満となるよう調節されたガス条件で火炎加水分解を行い、SiClの反応率を80%以上に高めた実施例1および2では、得られたTiO-SiOガラス体において、微小領域のTiO含有量の標準偏差(σTiO)が0.13質量%以下であり、軸に垂直な面内径方向のTiO含有量のばらつき(ΔTiO)が0.15質量%以下であるガラス体を安定的に得ることができる。したがって、実施例1および2で得られたTiO-SiOガラス体は、研磨によりMSFRが10nm以下と超高平滑性を実現することが可能であり、かつCTEのばらつきが極めて小さく(例えば室温で±6ppb/℃以下)なるので、EUVL用光学部材として好適に使用することができる。
 これに対して、SiClの反応率が80%より低い比較例1および2では、微小領域でのTiO含有量の均一性と、部材の面内径方向のTiO含有量の均一性の両者が同時に達成されたTiO-SiOガラス体を安定的に得ることができない。すなわち、比較例1では、微小領域でのTiO含有量の均一性は比較的良好であるが、軸に垂直な面内径方向のTiO含有量のばらつきが大きいTiO-SiOガラス体が得られ、比較例2では、軸に垂直な面内径方向のTiO含有量のばらつきは比較例1に比較すれば良好であるが、微小領域でのTiO含有量のばらつきが大きくなっている。このように、比較例1および2では、いずれもEUVL用光学部材として適したTiO-SiOガラス体を安定的に得ることができない。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2011年1月31日出願の日本特許出願2011-018802に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、EUVL用露光装置の光学系部材として好適に使用できるTiO-SiOガラス体を得ることができる。
1…中央ノズル、2…第1の外周ノズル、3…第2の外周ノズル、10…多重管バーナー、20…基材、30…多孔質ガラス体、40…酸水素火炎。

Claims (9)

  1.  シリカ(SiO)前駆体とチタニア(TiO)前駆体を酸水素火炎に供給し、該火炎中で加水分解反応させてチタニアを含有するシリカガラス微粒子を生成する火炎加水分解工程、及び
     前記火炎加水分解工程で生成された前記チタニアを含有するシリカガラス微粒子を堆積させるガラス微粒子堆積工程を有し、
     前記火炎加水分解工程において、前記シリカ前駆体の加水分解反応の反応率を80%以上とする、チタニアを含有するシリカガラス体の製造方法。
  2.  前記ガラス微粒子堆積工程が、前記火炎加水分解工程で生成された前記チタニアを含有するシリカガラス微粒子を、基材上に堆積させて多孔質ガラス体を得る工程であり、
     前記製造方法が前記多孔質ガラス体を加熱して透明ガラス化する工程をさらに備える、
    請求項1に記載のチタニアを含有するシリカガラス体の製造方法。
  3.  前記ガラス微粒子堆積工程が、前記火炎加水分解工程で生成された前記チタニアを含有するシリカガラス微粒子を、耐火性容器中に堆積させ、堆積と同時に溶融してチタニアを含有するシリカガラス体とする工程である、
    請求項1に記載のチタニアを含有するシリカガラス体の製造方法。
  4.  前記火炎加水分解工程において、前記シリカ前駆体に供給される酸水素の反応熱量が60kJ/g以上である、請求項1~3のいずれか1項に記載のチタニアを含有するシリカガラス体の製造方法。
  5.  前記火炎加水分解工程において、前記シリカ前駆体およびチタニア前駆体を、複数のガス供給ノズルが同心円状に配置された多重管バーナーの中央ノズルから供給し、該多重管バーナーの酸水素火炎中で加水分解する、請求項1~4のいずれか1項に記載のチタニアを含有するシリカガラス体の製造方法。
  6.  前記多重管バーナーの半径方向の各部位におけるガスの流速をu(m/sec)、当該部位の前記バーナーの中心からの半径方向の距離をr(mm)、前記多重管バーナーの半径をR(mm)としたとき、
     式(1)で表される、前記多重管バーナーから供給される全てのガスの流速重心の規格値r´が、0.53<r´<0.58を満たす条件で前記火炎加水分解を行う、請求項5に記載のチタニアを含有するシリカガラス体の製造方法。
     r´=(∫u×rdS/∫udS)/R     ………(1)
    (式(1)において、∫u×rdSは、前記多重管バーナーの断面積方向における前記uとrとの積の積分値であり、∫udSは、前記多重管バーナーの断面積方向における前記uの積分値である。)
  7.  前記ガラス微粒子堆積工程で得られる前記多孔質ガラス体は、チタニア結晶の含有量が0.5質量%以下である、請求項2に記載のチタニアを含有するシリカガラス体の製造方法。
  8.  請求項1~7のいずれか1項に記載の製造方法により製造されるチタニアを含有するシリカガラス体であり、前記チタニア含有量が1~12質量%であり、かつ前記チタニアを含有するシリカガラス微粒子の堆積方向に対して垂直な面内における前記チタニア含有量の変動幅(ΔTiO)が0.15質量%以下であり、微小領域のチタニア含有量の標準偏差(σTiO)が0.13質量%以下である、チタニアを含有するシリカガラス体。
  9.  質量が10kg以上である請求項8に記載のチタニアを含有するシリカガラス体。
PCT/JP2012/052020 2011-01-31 2012-01-30 チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体 WO2012105513A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012555869A JPWO2012105513A1 (ja) 2011-01-31 2012-01-30 チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体
EP12742292.1A EP2671848A1 (en) 2011-01-31 2012-01-30 Method for producing silica glass body containing titania, and silica glass body containing titania
KR1020137020061A KR20140012053A (ko) 2011-01-31 2012-01-30 티타니아를 함유하는 실리카 유리체의 제조 방법 및 티타니아를 함유하는 실리카 유리체
US13/955,409 US20130316890A1 (en) 2011-01-31 2013-07-31 Method for producing silica glass body containing titania, and silica glass body containing titania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-018802 2011-01-31
JP2011018802 2011-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/955,409 Continuation US20130316890A1 (en) 2011-01-31 2013-07-31 Method for producing silica glass body containing titania, and silica glass body containing titania

Publications (1)

Publication Number Publication Date
WO2012105513A1 true WO2012105513A1 (ja) 2012-08-09

Family

ID=46602727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052020 WO2012105513A1 (ja) 2011-01-31 2012-01-30 チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体

Country Status (5)

Country Link
US (1) US20130316890A1 (ja)
EP (1) EP2671848A1 (ja)
JP (1) JPWO2012105513A1 (ja)
KR (1) KR20140012053A (ja)
WO (1) WO2012105513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045990A1 (ja) * 2012-09-18 2014-03-27 株式会社ニコン SiO2 -TiO2 系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174535A (ja) * 1983-03-22 1984-10-03 Shin Etsu Chem Co Ltd 光伝送用石英母材の製造方法
WO1999015468A1 (en) 1997-09-24 1999-04-01 Corning Incorporated FUSED SiO2-TiO2 GLASS METHOD
US20020157421A1 (en) 2001-04-27 2002-10-31 Ackerman Bradford G. Method for producing titania-doped fused silica glass
WO2003077038A2 (en) 2002-03-05 2003-09-18 Corning Incorporated Reduced striae extreme ultraviolegt lithographic elements, a method of manufacturing the same and a method of measuring striae
WO2004089838A1 (en) 2003-04-03 2004-10-21 Asahi Glass Company Limited Silica glass containing tio2 and optical material for euv lithography
JP2008115054A (ja) * 2006-11-07 2008-05-22 Covalent Materials Corp チタニア−シリカガラスの製造方法
JP2010163345A (ja) * 2008-02-26 2010-07-29 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2011018802A (ja) 2009-07-09 2011-01-27 Disco Abrasive Syst Ltd 研削装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202141B2 (ja) * 2008-07-07 2013-06-05 信越化学工業株式会社 チタニアドープ石英ガラス部材及びその製造方法
US8735308B2 (en) * 2009-01-13 2014-05-27 Asahi Glass Company, Limited Optical member comprising TiO2-containing silica glass
JP5549525B2 (ja) * 2009-11-16 2014-07-16 信越化学工業株式会社 硫黄を共添加したチタニアドープ石英ガラス部材の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174535A (ja) * 1983-03-22 1984-10-03 Shin Etsu Chem Co Ltd 光伝送用石英母材の製造方法
WO1999015468A1 (en) 1997-09-24 1999-04-01 Corning Incorporated FUSED SiO2-TiO2 GLASS METHOD
JP4108926B2 (ja) 1997-09-24 2008-06-25 コーニング インコーポレイテッド 溶融SiO2−TiO2ガラスの製造法
US20020157421A1 (en) 2001-04-27 2002-10-31 Ackerman Bradford G. Method for producing titania-doped fused silica glass
WO2003077038A2 (en) 2002-03-05 2003-09-18 Corning Incorporated Reduced striae extreme ultraviolegt lithographic elements, a method of manufacturing the same and a method of measuring striae
JP2005519349A (ja) 2002-03-05 2005-06-30 コーニング インコーポレイテッド 低ストリエーション極紫外光光学素子
WO2004089838A1 (en) 2003-04-03 2004-10-21 Asahi Glass Company Limited Silica glass containing tio2 and optical material for euv lithography
JP2004315351A (ja) 2003-04-03 2004-11-11 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2008115054A (ja) * 2006-11-07 2008-05-22 Covalent Materials Corp チタニア−シリカガラスの製造方法
JP2010163345A (ja) * 2008-02-26 2010-07-29 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2011018802A (ja) 2009-07-09 2011-01-27 Disco Abrasive Syst Ltd 研削装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045990A1 (ja) * 2012-09-18 2014-03-27 株式会社ニコン SiO2 -TiO2 系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法
JPWO2014045990A1 (ja) * 2012-09-18 2016-08-18 株式会社ニコン SiO2−TiO2系ガラスの製造方法および該ガラスからなるフォトマスク基板の製造方法
US10093572B2 (en) 2012-09-18 2018-10-09 Nikon Corporation Manufacturing method for SiO2-TiO2 based glass and manufacturing method for photomask substrate made of SiO2-TiO2 based glass

Also Published As

Publication number Publication date
KR20140012053A (ko) 2014-01-29
EP2671848A1 (en) 2013-12-11
JPWO2012105513A1 (ja) 2014-07-03
US20130316890A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5367204B2 (ja) TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP4792705B2 (ja) TiO2を含有するシリカガラスおよびその製造法
EP1795506B2 (en) Titania-doped quartz glass and making method, euv lithographic member and photomask substrate
JP5365247B2 (ja) TiO2を含有するシリカガラスおよびそれを用いたリソグラフィ用光学部材
JP5644058B2 (ja) TiO2を含有するシリカガラス
JP2005104820A (ja) TiO2を含有するシリカガラスおよびその製造方法
JP5365248B2 (ja) TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
KR20100116639A (ko) TiO₂ 함유 실리카 유리, 고에너지 밀도를 사용한 EUV 리소그래피용 광학 부재 및 특수 온도 제어된 TiO₂ 함유 실리카 유리의 제조 방법
WO2011068064A1 (ja) TiO2を含有するシリカガラス
JP2010064950A (ja) TiO2を含有するシリカガラス
TW201022167A (en) Process for production of synthetic quartz glass
JP5578167B2 (ja) 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材
JP5716730B2 (ja) TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
WO2004092082A1 (ja) SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラス及び露光装置
WO2012105513A1 (ja) チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体
JP2011121857A (ja) 硫黄を共添加したチタニアドープ石英ガラス部材及びその製造方法
JP2019172563A (ja) TiO2を含有するシリカガラスの製造方法
JP5391923B2 (ja) 多孔質ガラス体の製造方法
JP5733350B2 (ja) TiO2を含有するシリカガラスおよびその製造法
JP5287271B2 (ja) TiO2を含有するシリカガラスの成型方法およびそれによって成型されたEUVリソグラフィ用光学部材
JP5402975B2 (ja) TiO2を含有するシリカガラスおよびその製造法
JP2011178624A (ja) TiO2を含有するシリカガラス体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555869

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137020061

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012742292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载