+

WO2013165268A1 - Galvanic cell and battery on the basis of an electrically generating material - Google Patents

Galvanic cell and battery on the basis of an electrically generating material Download PDF

Info

Publication number
WO2013165268A1
WO2013165268A1 PCT/RU2012/000350 RU2012000350W WO2013165268A1 WO 2013165268 A1 WO2013165268 A1 WO 2013165268A1 RU 2012000350 W RU2012000350 W RU 2012000350W WO 2013165268 A1 WO2013165268 A1 WO 2013165268A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
generating material
battery
electrical energy
emf
Prior art date
Application number
PCT/RU2012/000350
Other languages
French (fr)
Russian (ru)
Inventor
Владимир Николаевич ПЛАТОНОВ
Александр Иванович ДРАЧЁВ
Original Assignee
Platonov Vladimir Nikolaevich
Drachev Alexander Ivanovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Platonov Vladimir Nikolaevich, Drachev Alexander Ivanovich filed Critical Platonov Vladimir Nikolaevich
Priority to PCT/RU2012/000350 priority Critical patent/WO2013165268A1/en
Priority to RU2014137656/07A priority patent/RU2596214C2/en
Publication of WO2013165268A1 publication Critical patent/WO2013165268A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material

Definitions

  • the invention relates to the field of energy and the production of non-traditional sources of electricity production and can be used to autonomously provide electricity to individual devices, mechanisms and machines, as well as large residential and industrial facilities.
  • Devices are known - solar cells and batteries based on them, which convert the energy of light quanta (photons) into electrical energy.
  • the action of solar cells is based on the use of the phenomenon of the internal photoelectric effect.
  • the first solar cells with a conversion factor of about 6% were developed by G. Pearson, C. Fuller and D. Chapin (USA) in 1953. based on inorganic semiconductors (e.g. Si, AsGa, CdS, etc.).
  • solar cells with conversion coefficients up to 20% are widely used in practice. They are made of single-crystal silicon of both the “p” and “p” type (p-Si and n-Si, respectively). Such elements are made of crystalline and / or amorphous silicon, consisting of three or more heterostructures.
  • the open circuit voltage generated by one element is about 0.6 V at 25 ° C and does not depend on the size of the element.
  • the current generated by the element depends on the intensity of the incident light and the area of the working surface of the element exposed to solar radiation.
  • T N negative temperature coefficient
  • the elements heat up to 60-70 ° C, losing up to 0.1 V.
  • nip or n + -n ⁇ p +
  • the separation of opposite charges occurs at the pi (or p + -p) interfaces and opposite in (or p-p ' ) boundaries, as a result of which , under the influence of sunlight in the photovoltaic cell an emf (voltage) is generated.
  • the main drawback of the listed photovoltaic cells and solar panels based on them is the complete dependence on the intensity solar radiation and the inability to accumulate electricity in low light or complete absence thereof (for example, on cloudy days and at night).
  • these elements and panels require the use of additional optically transparent moisture-proof protective layers of inorganic glass and / or polymers, which eliminate the destructive effect of water.
  • An important point in the operation of solar cells is their temperature regime. When an element is heated by one degree above 25 ° C, it loses 0.002 V in the generated voltage, i.e. 0.4% per hail. On a bright sunny day, the elements are heated to 60-70 ° C, losing up to 0.1V in the emf. This is the reason for the decrease in the efficiency of solar cells, leading to a drop in the EMF and the power generated by the cell.
  • a device is known - an electrochemical cell and a battery operating on the basis of the conversion of chemical energy released in an electrolyte during the oxidation of an aluminum or lithium anode when interacting with hydrogen peroxide or oxygen and OH ions into electrical energy (US Pat. No. 6,573,008 In 1 dated 03.01.2003 and Germany DE 698 30 917 T2 dated 05.24.2006).
  • the cathode has a cylindrical shape and consists of radially oriented carbon fibers fixed to a metal frame. The cathodes and anodes are immersed in a flowing electrolyte of a KOH or NaOH solution with a concentration of from 0.003M to 15M.
  • the electrolyte is changed in the cell, which is provided by a circulation pump.
  • the device uses a series and parallel connection of cathodes and anodes, depending on its required electrical parameters. Taking into account the consumption of reagents, the device is characterized by a specific energy output of 150Wh / kg at a certain load at the rate of 3, ZW / kg. An additional increase in energy density can be achieved. W
  • an increase in the concentration of KOH to 12 M gives an increase in the energy density to about 250 Wh / kg in a balanced system.
  • An electric cell is able to constantly work with a nominal load, provided that the electrolyte is replaced periodically every 1, 5 days and the aluminum anode after 100 hours.
  • the main disadvantage of the battery based on aluminum oxidation is that the formed particles A1 (OH) 3 are deposited on the cathode and reduce the electrical parameters of the device. To reduce the concentration of A1 (OH) 3 in the electrolyte and to maintain stable device parameters, a constant change of electrolyte in the battery is necessary.
  • the closest in technical essence and the achieved result to the claimed invention is a solar panel presented in EP 2 061 089 dated 05/20/2009, having a transparent glass substrate 1.4x 1 .1m and 4mm thick and many photos galvanic cells located on it.
  • Each of the photovoltaic cells includes an optically transparent conductive layer, a photoelectric conversion layer, and a reverse electrode layer, which are formed on the substrate in this order.
  • the photoelectric conversion layer has a flat structure either in the form of a thin silicon film consisting of p-, i-, and ⁇ -type layers, or it enters a more complex tandem system of a solar cell (cell) consisting of many layers of different flat structures.
  • the conversion layer consists of pin heterostructures made on the basis of amorphous silicon.
  • the p-type layer deposited on an optically transparent conductive layer is boron-doped amorphous silicon carbide (SiC) 10–30 nm thick.
  • the i-type layer contains amorphous silicon with a thickness of 250 - 350 nm.
  • the ⁇ -type layer consists of phosphorus-doped microcrystalline silicon with a thickness of 30 - 50 nm.
  • a buffer layer is formed.
  • a metal film consisting of Ag (200–500 nm thick) and anticorrosive Ti (10–20 nm thick) layers deposited in such a way that the silver layer is internal is used as the reverse electrode layer.
  • An intermediate ZnO layer doped with Ga with a thickness of 50-100 nm is used to reduce the contact resistance between the ⁇ layer and the return electrode layer and to improve light reflection.
  • the device described in the patent EP 2 061 089 has all the disadvantages listed above for solar cells and panels, and the method of its manufacture is multi-stage and has separate stages, which are complex CVD and / or laser deposition technologies for each layer individually in sequence defined by the design of the solar panel.
  • the objective of the invention is the creation of a galvanic cell and battery that produce electrical energy for a long time and capable of self-healing of electrical parameters (EMF, short circuit current) without using known charging methods, such as, for example, oxidation of an electrode in an electrolyte - those (for example, an aluminum anode in an alkaline medium in the presence of oxygen or hydrogen peroxide), heating, charging from the electric network, exposure to light (for example, solar energy), e electromagnetic fields, exposure to radioactive radiation ( ⁇ -rays, high-energy particles).
  • EMF electrical parameters
  • the problem is solved by synthesizing an electro-generating material containing carbon structures obtained by thermocatalytic decomposition of volatile hydrocarbons in the temperature range of 600 - 800 ° C on a catalyst based on nickel or nickel-aluminum alloy nanoparticles, or mechanical GMPRI u unuow ..! aluminum.
  • the synthesized electro-generating material is capable of producing electricity when it is doped with molecules of deionized water, and placed between two dissimilar electrodes. When the electrodes are closed, an electric current arises in the circuit, the parameters of which gradually decrease over a long time (more than 2 days). However, the subsequent opening of the circuit leads to the restoration of the electrical parameters of the galvanic cells and the battery within a few minutes.
  • the process of generating current into the external circuit proceeds without using known charging methods.
  • X-ray diffraction analysis, electron microscopy, and X-ray microanalysis showed that the electric-generating material consists mainly of carbon nanoparticles with a size of 50 - 200 nm, having a graphite structure, containing less than 1 at.% Nanoparticles of nickel or nickel and aluminum in their volume .
  • the claimed devices differ from the above devices in that the current generation process proceeds: 1) without using known charging methods, for example, such as: irradiation with light, as in the case of tea solar panels; 2) without the use of alkaline electrolytes in which the oxidation of aluminum proceeds.
  • a sample of the galvanic cell is prepared in the form of a tablet with a diameter of 10 mm, consisting of three layers: the first is an electrode of conductive zinc oxide ZnO (positive electrode), the second (interelectrode) is 20 ml of carbon material doped with 0.03 ml of deionized water, 3rd - aluminum electrode (negative electrode). Sample preparation was carried out by pressing a powder of carbon material between the electrodes.
  • the prepared galvanic cell was stored in a desiccator at a humidity of 100% and was constantly in short circuit mode.
  • the EMF of the element was measured immediately after its manufacture, after storage for a certain time in the short circuit mode and subsequent opening of the circuit and 10 minutes after the circuit was opened. After taking the EMF measurements, the element again shorted out.
  • the operation of the element is presented in the table. During 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 1 mA to 0.23 mA, and the EMF from 0.25 V to 0.09 V. The subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.27V and the short-circuit current to 0.96mA during Yumin.
  • the carbon material and the sample of the power generating element were prepared according to Example 1, but a nickel electrode was used instead of the ZnO electrode.
  • the operation of the element is presented in the table. During the 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 3.05 mA to 1.24 mA, and the EMF from 0.19 V to 0.07 V. The subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.20 V and the short circuit current to ZmA during Yumin.
  • the carbon material and the sample of the power generating element were prepared according to Example 1, and in addition to this, 50 wt.% Titanium oxide powder was added to the carbon material.
  • the carbon material and the sample of the power generating element were prepared according to example 1, but the temperature of the synthesis of the carbon material was 620 ° C.
  • the operation of the element is presented in the table. During 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 1.4 mA to 0.23 mA, and the EMF from 0.02 V to 0.01 V. The subsequent opening of the circuit leads to the generation and restoration of the EMF to 0, 02V and short circuit current - up to 1, 42mA during Yumin.
  • the carbon material was synthesized according to Example 4, and a sample of the power generating element was prepared according to Example 1, and in addition to this, 50 wt.% Titanium oxide powder was added to the carbon material.
  • the operation of the element is presented in the table. During 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 3.55mA to 2.22mA, and the EMF from 0.35V to 0.16V. Subsequent opening of the circuit leads to the generation and restoration of EMF up to 0.37V and short circuit current - up to 3.5mA during Yumin.
  • a sample of the cell is prepared in the form of a tablet according to Example 1.
  • the operation of the cell is presented in the table. Over the course of 6 hours of operation of the cell in the short circuit mode, the short circuit current gradually decreased from 2.98 mA to 1, 73 mA. and ESN - Fri O? 3 R up to 0.1 IB. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.23 V and the short circuit current to 2.96 mA for 10 minutes.
  • the carbon material was synthesized according to Example 6, a sample of the power generating element was prepared according to Example 1. And in addition to this, 50 wt.% Of titanium oxide powder was added to the carbon material.
  • the operation of the element is presented in the table.
  • the short circuit current gradually decreased from 1, 96mA to 1, 23mA, and the EMF from 0.25V to 0. 15V.
  • Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.23 V and the short circuit current to 1, 96 mA for 10 minutes.
  • the carbon material was synthesized according to example 6, a sample of the power generating element was prepared according to example 2.
  • the operation of the element is presented in the table. During 6 hours of operation of the cell in the short circuit mode, the short circuit current gradually decreased from 4.76mA to 2.25mA, and the EMF from 0.46V to 0.23V. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.51 V and the short circuit current to 4.69 mA for 10 minutes.
  • a sample of the cell is prepared in the form of a tablet according to Example 2. The operation of the cell is presented in the table. Within 6 hours of operation of the element in the short circuit mode, the short-circuit current gradually decreased from 5.6 mA to 1, 77 mA, and the EMF from 0.21 V to 0.1 V. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0, 21V and short circuit current - up to 5.6mA for 10 minutes.
  • argon inert atmosphere
  • acetylene hydrocarbon gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)

Abstract

The invention relates to the field of power engineering and the production of non-traditional sources for the generation of electrical energy and can be used for the autonomous provision of electrical energy both to separate equipment, mechanisms and machines and to large-scale residential and industrial facilities. The galvanic cell consists of two electrodes and an interelectrode layer, wherein the positive electrode is formed from zinc or nickel oxide, and the negative electrode is formed from aluminium, and the interelectrode layer used is an electrically generating material, which comprises carbon structures and is produced by the procedure of thermocatalytic decomposition of volatile hydrocarbons in a temperature range of 600-800°C on a catalyst on the basis of nickel nanoparticles or nickel-aluminium alloys or a mechanical mixture of nickel and aluminium nanoparticles, wherein the electrically generating material is capable of generating electrical energy when doped with deionized water molecules and in the event of chain splitting. The battery consists of two or more galvanic cells, as described above. The technical result consists in producing a galvanic cell and a battery which generate electrical energy over a long period of time and are capable of self-restoration of electrical parameters (emf, short-circuit current) without the use of known charging methods, such as, for example: oxidation of the electrode in an electrolyte, heating, charging from an electric grid, irradiation with light, exposure to electromagnetic fields, and exposure to radioactive radiation.

Description

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ И БАТАРЕЯ НА ОСНОВЕ ЭЛЕКТРОГЕНЕРИРУЩЕГО МАТЕРИАЛА  GALVANIC ELEMENT AND BATTERY BASED ON ELECTRICITY MATERIAL
Изобретение относится к области энергетики и производства нетра- диционных источников производства электроэнергии и может быть ис- пользовано для автономного обеспечения электроэнергией как отдельных приборов, механизмов и машин, так и крупных жилых и производственных объектов. The invention relates to the field of energy and the production of non-traditional sources of electricity production and can be used to autonomously provide electricity to individual devices, mechanisms and machines, as well as large residential and industrial facilities.
Известны устройства - солнечные элементы и батареи на их основе, преобразующие энергию квантов света (фотонов) в электрическую энер- гию. Действие солнечных элементов основано на использовании явления внутреннего фотоэффекта. Первые солнечные элементы с коэффициентом преобразования около 6% были разработаны Г. Пирсоном, К. Фуллером и Д. Чапиным (США) в 1953г. на основе неорганических полупроводников (например, Si, AsGa, CdS и т.д.).  Devices are known - solar cells and batteries based on them, which convert the energy of light quanta (photons) into electrical energy. The action of solar cells is based on the use of the phenomenon of the internal photoelectric effect. The first solar cells with a conversion factor of about 6% were developed by G. Pearson, C. Fuller and D. Chapin (USA) in 1953. based on inorganic semiconductors (e.g. Si, AsGa, CdS, etc.).
В настоящее время на практике широко используются солнечные элементы с коэффициентами преобразования до 20%, изготавливаемые из монокристаллического кремния как "р", так и "п" типа (p-Si и n-Si соответ- ственно). Такие элементы изготовлены из кристаллического и/или аморф- ного кремния, состоящего из трех и более гетероструктур. Напряжение хо- лостого хода, генерируемое одним элементом, составляет около 0.6В при 25 °С и не зависит от размеров элемента. Генерируемый элементом ток, за- висит от интенсивности падающего света и площади рабочей поверхности элемента, открытой солнечному излучению. При нагреве солнечного эле- мента генерируемое им напряжение уменьшается, характеризуясь отрица- тельным температурным коэффициентом (Т Н) около -0.002В/град. В яр- кий солнечный день элементы нагреваются до 60-70°С, теряя до 0.1 В. Currently, solar cells with conversion coefficients up to 20% are widely used in practice. They are made of single-crystal silicon of both the “p” and “p” type (p-Si and n-Si, respectively). Such elements are made of crystalline and / or amorphous silicon, consisting of three or more heterostructures. The open circuit voltage generated by one element is about 0.6 V at 25 ° C and does not depend on the size of the element. The current generated by the element depends on the intensity of the incident light and the area of the working surface of the element exposed to solar radiation. When the solar cell is heated, the voltage generated by it decreases, characterized by a negative temperature coefficient (T N) of about -0.002V / deg. On a bright sunny day, the elements heat up to 60-70 ° C, losing up to 0.1 V.
Таким образом, для увеличения тока необходимо увеличивать пло- щадь рабочей поверхности солнечных элементов или собирать параллель- но соединенные отдельные элементы в модули, расположенные в одной плоскости, а для увеличения напряжения элементы или модули собирать в батарею с последовательным соединением между собой. Номинальная мощность одного модуля составляет порядка 100Вт/м" ( 10мВт/см~). Thus, to increase the current, it is necessary to increase the area of the working surface of solar cells or assemble parallel connected individual elements into modules located in the same plane, and to increase the voltage, cells or modules must be assembled into a battery with a series connection between each other. The rated power of one module is about 100W / m " (10mW / cm ~ ).
Известны панели солнечных батарей и способы их изготовления (па- тент Европы ЕР 2 061 089 от 20.05.2009г. и США US 2009/0084433 от 2.04.2009г.), в которых в качестве фотогальванического элемента, генери- рующего ток после воздействия квантов солнечного излучения, использу- ются гетероструктуры на основе кристаллического и/или аморфного крем- ния. В данных патентах фотогальванический элемент устроен таким обра- зом, что солнечное излучение проходит через полупроводник с большой шириной запрещенной зоны, прозрачный во всем оптическом диапазоне, и тонкий слой легированного кремния. Далее излучение попадает в конвер- сионный слой, который представляет из себя слой кремния i- или п- или р-типа. В конверсионном слое происходит полное поглощение квантов света и генерация электронно-дырочных пар. На границах раздела n~i (или п -п) и противоположных границах i-p (или п-р+) в случае использования кремниевых гетероструктур n-i-p (или п+-п~р+) происходит разделение противоположных зарядов. В случае использования кремниевых гетерост- руктур p-i-n (или р+-р-п+) разделение противоположных зарядов проис- ходит на границах раздела p-i (или р+-р) и противоположных границах i-n (или р-п ' ), в результате чего, под воздействием солнечных лучей в фо- тогальваническом элементе генерируется ЭДС (напряжение). Solar panels and methods for their manufacture are known (European patent EP 2 061 089 dated 05/20/2009 and US 2009/0084433 dated 2.04.2009), in which, as a photovoltaic cell, it generates current after exposure to solar quanta radiation, heterostructures based on crystalline and / or amorphous silicon are used. In these patents, the photovoltaic cell is arranged in such a way that solar radiation passes through a semiconductor with a large band gap, transparent in the entire optical range, and a thin layer of doped silicon. Then, the radiation enters the conversion layer, which is an i- or p- or p-type silicon layer. In the conversion layer, there is a complete absorption of light quanta and the generation of electron-hole pairs. At the interfaces n ~ i (or n-n) and opposite ip (or n-p + ) boundaries, in the case of using silicon heterostructures nip (or n + -n ~ p + ), the opposite charges are separated. In the case of using silicon pin (or p + -p-p + ) heterostructures, the separation of opposite charges occurs at the pi (or p + -p) interfaces and opposite in (or p-p ' ) boundaries, as a result of which , under the influence of sunlight in the photovoltaic cell an emf (voltage) is generated.
Главный недостаток перечисленных фотогальванических элементов и солнечных панелей на их основе - полная зависимость от интенсивности солнечного излучения и невозможность накапливать электроэнергию при слабом освещении или полном отсутствии такового (например, в пасмур- ные дни и ночное время суток). Кроме того, эти элементы и панели требу- ют использования дополнительных оптически-прозрачных влагонепрони- цаемых защитных слоев из неорганического стекла и/или полимеров, ко- торые устраняют разрушающее воздействие воды. Важным моментом ра- боты солнечных элементов является их температурный режим. При нагре- ве элемента на один градус свыше 25°С он теряет в генерируемого напря- жении 0,002 В, т.е. 0,4 % на 1град. В яркий солнечный день элементы на- греваются до 60-70°С, теряя в ЭДС до 0,1В. Это является причиной сниже- ния КПД солнечных элементов, приводя к падению ЭДС и мощности, ге- нерируемой элементом. The main drawback of the listed photovoltaic cells and solar panels based on them is the complete dependence on the intensity solar radiation and the inability to accumulate electricity in low light or complete absence thereof (for example, on cloudy days and at night). In addition, these elements and panels require the use of additional optically transparent moisture-proof protective layers of inorganic glass and / or polymers, which eliminate the destructive effect of water. An important point in the operation of solar cells is their temperature regime. When an element is heated by one degree above 25 ° C, it loses 0.002 V in the generated voltage, i.e. 0.4% per hail. On a bright sunny day, the elements are heated to 60-70 ° C, losing up to 0.1V in the emf. This is the reason for the decrease in the efficiency of solar cells, leading to a drop in the EMF and the power generated by the cell.
Известно устройство - электрохимическая ячейка и батарея, рабо- тающие на основе преобразования химической энергии, выделяющейся в электролите при окислении алюминиевого или литиевого анода при взаи- модействии с пероксидом водорода или кислородом и ОН ионами, в элек- трическую (патент США US 6 573 008 В 1 от 03.01.2003 и Германии DE 698 30 917 Т2 от 24.05.2006). Катод имеет цилиндрическую форму и состоит из радиально ориентированных углеродных волокон, закрепленных на метал- лическом каркасе. Катоды и аноды погружены в проточный электролит раствора КОН или NaOH с концентрацией от 0,003М до 15М. Для сниже- ния концентрации А1(ОН)3, как продукта окисления, в электролите и под- держания непрерывной работы устройства организуют смену электролита в ячейке, обеспечивающуюся циркуляционным насосом. В устройстве ис- пользуется последовательное и параллельное соединение катодов и ано- дов, в зависимости от его необходимых электрических параметров. С уче- том расхода реагентов устройство характеризуется вырабатываемой удельной энергией 150Втч/кг на определенной нагрузке из расчета 3,ЗВт/кг. Дополнительное увеличение плотности энергии может быть дос- W A device is known - an electrochemical cell and a battery operating on the basis of the conversion of chemical energy released in an electrolyte during the oxidation of an aluminum or lithium anode when interacting with hydrogen peroxide or oxygen and OH ions into electrical energy (US Pat. No. 6,573,008 In 1 dated 03.01.2003 and Germany DE 698 30 917 T2 dated 05.24.2006). The cathode has a cylindrical shape and consists of radially oriented carbon fibers fixed to a metal frame. The cathodes and anodes are immersed in a flowing electrolyte of a KOH or NaOH solution with a concentration of from 0.003M to 15M. To reduce the concentration of A1 (OH) 3 as an oxidation product in the electrolyte and to maintain continuous operation of the device, the electrolyte is changed in the cell, which is provided by a circulation pump. The device uses a series and parallel connection of cathodes and anodes, depending on its required electrical parameters. Taking into account the consumption of reagents, the device is characterized by a specific energy output of 150Wh / kg at a certain load at the rate of 3, ZW / kg. An additional increase in energy density can be achieved. W
4  four
тигнуто путем увеличения концентрации в электролите. Так, увеличение концентрации КОН до 12 М, дает рост плотности энергии примерно до 250 Втч/кг в сбалансированной системе. Электрическая ячейка способна постоянно работать с номинальной нагрузкой при условии периодической замены электролита через каждые 1 ,5 дня и алюминиевого анода через 100 часов. dashed by increasing the concentration in the electrolyte. Thus, an increase in the concentration of KOH to 12 M gives an increase in the energy density to about 250 Wh / kg in a balanced system. An electric cell is able to constantly work with a nominal load, provided that the electrolyte is replaced periodically every 1, 5 days and the aluminum anode after 100 hours.
Основным недостатком батареи на основе окисления алюминия яв- ляется то, что образующиеся частицы А1(ОН)3 осаждаются на катоде и снижают электрические параметры устройства. Для снижения концентра- ции А1(ОН)3 в электролите и поддержания стабильных параметров устрой- ства необходима постоянная смена электролита в батарее. The main disadvantage of the battery based on aluminum oxidation is that the formed particles A1 (OH) 3 are deposited on the cathode and reduce the electrical parameters of the device. To reduce the concentration of A1 (OH) 3 in the electrolyte and to maintain stable device parameters, a constant change of electrolyte in the battery is necessary.
Наиболее близкой по технической сущности и достигаемому резуль- тату к заявляемому изобретению является панель солнечной батареи, представленная в патенте ЕР 2 061 089 от 20.05.2009г., имеющая прозрач- ную подложку из стекла размерами 1.4x 1 .1м и толщиной 4мм и множество фото гальванических элементов, расположенных на ней. Каждый из фото- гальванических элементов включает оптически-прозрачный проводящий слой, фотоэлектрический конверсионный слой и обратный электродный слой, которые формируются на подложке в указанном порядке. Фотоэлек- трический конверсионный слой имеет плоскую структуру или в виде тон- кой кремниевой пленки, состоящей из слоев р-, i- и η-типа, или входит в более сложную систему-"тандем" солнечного элемента (ячейки), состоя- щую из множества слоев различных плоских структур. Согласно прототи- пу конверсионный слой состоит из гетероструктур p-i-n, изготовленных на основе аморфного кремния. Слой р-типа, нанесенный на оптически- прозрачный проводящий слой, представляет собой допированный бором аморфный карбид кремния (SiC) толщиной 10 - 30 нм. В состав слоя i-типа входит аморфный кремний толщиной 250 - 350 нм. Слой η-типа состоит из допированного фосфором микрокристаллического кремния толщиной 30 - 50 нм. Для улучшения граничных свойств между слоями р- и i-типа фор- мируют буферный слой. В качестве обратного электродного слоя исполь- зуется металлическая пленка, состоящая из слоев Ag (толщиной 200 - 500 нм) и антикоррозионного Ti (толщиной 10 - 20 нм), нанесенных таким об- разом, чтобы серебряный слой был внутренним. Для сокращения контакт- ного сопротивления между η-слоем и обратным электродным слоем и улучшения отражения света используется промежуточный слой ZnO, до- пированный Ga, толщиной 50 - 100 нм. The closest in technical essence and the achieved result to the claimed invention is a solar panel presented in EP 2 061 089 dated 05/20/2009, having a transparent glass substrate 1.4x 1 .1m and 4mm thick and many photos galvanic cells located on it. Each of the photovoltaic cells includes an optically transparent conductive layer, a photoelectric conversion layer, and a reverse electrode layer, which are formed on the substrate in this order. The photoelectric conversion layer has a flat structure either in the form of a thin silicon film consisting of p-, i-, and η-type layers, or it enters a more complex tandem system of a solar cell (cell) consisting of many layers of different flat structures. According to the prototype, the conversion layer consists of pin heterostructures made on the basis of amorphous silicon. The p-type layer deposited on an optically transparent conductive layer is boron-doped amorphous silicon carbide (SiC) 10–30 nm thick. The i-type layer contains amorphous silicon with a thickness of 250 - 350 nm. The η-type layer consists of phosphorus-doped microcrystalline silicon with a thickness of 30 - 50 nm. To improve the boundary properties between the p- and i-type layers, a buffer layer is formed. A metal film consisting of Ag (200–500 nm thick) and anticorrosive Ti (10–20 nm thick) layers deposited in such a way that the silver layer is internal is used as the reverse electrode layer. An intermediate ZnO layer doped with Ga with a thickness of 50-100 nm is used to reduce the contact resistance between the η layer and the return electrode layer and to improve light reflection.
Устройство, описанное в патенте ЕР 2 061 089, обладает всеми пере- численными выше для солнечных элементов и панелей недостатками, а способ его изготовления является многостадийным и имеющим отдельные стадии, представляющие собой сложные технологии CVD и/или лазерного нанесения каждого слоя в отдельности в последовательности, определен- ной конструкцией солнечной панели.  The device described in the patent EP 2 061 089 has all the disadvantages listed above for solar cells and panels, and the method of its manufacture is multi-stage and has separate stages, which are complex CVD and / or laser deposition technologies for each layer individually in sequence defined by the design of the solar panel.
Задачей заявляемого изобретения является создание гальванического элемента и батареи, производящих электрическую энергию в течение дли- тельного времени и способных к самовосстановлению электрических па- раметров (ЭДС, ток короткого замыкания) без использования известных способов зарядки, например, таких, как: окисление электрода в электроли- те (например, алюминиевого анода в щелочной среде в присутствии ки- слорода или пероксида водорода), нагрев, зарядка от электрической сети, облучение светом (например, солнечная энергия), воздействие электромаг- нитными полями, воздействие радиоактивным излучением (γ-лучи, высо- коэнергетические частицы).  The objective of the invention is the creation of a galvanic cell and battery that produce electrical energy for a long time and capable of self-healing of electrical parameters (EMF, short circuit current) without using known charging methods, such as, for example, oxidation of an electrode in an electrolyte - those (for example, an aluminum anode in an alkaline medium in the presence of oxygen or hydrogen peroxide), heating, charging from the electric network, exposure to light (for example, solar energy), e electromagnetic fields, exposure to radioactive radiation (γ-rays, high-energy particles).
Задача решается тем, что синтезирован электрогенерирующий мате- риал, содержащий углеродные структуры, полученный методом термока- талитического разложения летучих углеводородов в температурном интер- вале 600 - 800°С на катализаторе на основе наночастиц никеля или никель- алюминиевых сплавов, или механической ГМРРИ u unuow,.!, алюминия. Синтезированный электрогенерирующий материал способен производить электроэнергию при его допировании молекулами деионизи- рованной воды, и помещении между двумя разнородными электродами. При замыкании электродов в цепи возникает электрический ток, парамет- ры которого постепенно уменьшаются в течение длительного времени (бо- лее 2сут). Однако последующее размыкание цепи приводит к восстановле- нию электрических параметров гальванических элементов и батареи в те- чение нескольких минут. При этом процесс генерации тока во внешнюю цепь протекает без использования известных способов подзарядки. Рент- геноструктурный анализ, электронная микроскопия и рентгеновский мик- роанализ показали, что электрогенерирующий материал состоит в основ- ном из углеродных наночастиц размером 50 - 200 нм, имеющих структуру графита, содержащих в своем объеме менее 1 ат.% наночастиц никеля или никеля и алюминия. The problem is solved by synthesizing an electro-generating material containing carbon structures obtained by thermocatalytic decomposition of volatile hydrocarbons in the temperature range of 600 - 800 ° C on a catalyst based on nickel or nickel-aluminum alloy nanoparticles, or mechanical GMPRI u unuow ..! aluminum. The synthesized electro-generating material is capable of producing electricity when it is doped with molecules of deionized water, and placed between two dissimilar electrodes. When the electrodes are closed, an electric current arises in the circuit, the parameters of which gradually decrease over a long time (more than 2 days). However, the subsequent opening of the circuit leads to the restoration of the electrical parameters of the galvanic cells and the battery within a few minutes. In this case, the process of generating current into the external circuit proceeds without using known charging methods. X-ray diffraction analysis, electron microscopy, and X-ray microanalysis showed that the electric-generating material consists mainly of carbon nanoparticles with a size of 50 - 200 nm, having a graphite structure, containing less than 1 at.% Nanoparticles of nickel or nickel and aluminum in their volume .
Заявленные устройства (гальванический элемент и батарея на основе двух и более элементов) отличаются от перечисленных выше устройств тем, что процесс генерации тока протекает: 1) без использования извест- ных способов зарядки, например, таких, как: облучение светом, как в слу- чае солнечной батареи; 2) без использования электролитов щелочных рас- творов, в которых протекает окисление алюминия.  The claimed devices (a galvanic cell and a battery based on two or more cells) differ from the above devices in that the current generation process proceeds: 1) without using known charging methods, for example, such as: irradiation with light, as in the case of tea solar panels; 2) without the use of alkaline electrolytes in which the oxidation of aluminum proceeds.
Таким образом, достигается принципиально новый технический ре- зультат, заключающийся в том, что заявляемые устройства (гальваниче- ский элемент и батарея) для восстановления своих электрических парамет- ров не требуют использования известных способов зарядки, например, та- ких, как: химическое окисление, нагрев, зарядка от электрической сети, облучение светом (например, солнечная энергия), воздействие электромаг- нитными полями, воздействие радиоактивным излучением (γ-лучи, высо- коэнергетические частицы). На фиг.1 представлена электронная микрофотография (увеличение х40000) электрогенерирующего материала, синтезированного термоката- литическим методом при температуре 720°С в атмосфере аргона и ацети- лена в соотношении аргон/ацетилен = 1 / 10 на катализаторе, представляю- щем порошок никеля. Thus, a fundamentally new technical result is achieved, namely, that the inventive devices (galvanic cell and battery) do not require the use of known charging methods to restore their electrical parameters, for example, such as chemical oxidation , heating, charging from the electric network, exposure to light (for example, solar energy), exposure to electromagnetic fields, exposure to radioactive radiation (γ-rays, high-energy particles). Figure 1 shows an electron micrograph (magnification x40000) of an electro-generating material synthesized by the thermocatalytic method at a temperature of 720 ° C in an atmosphere of argon and acetylene in the ratio argon / acetylene = 1/10 on a catalyst representing nickel powder.
На фиг.2 представлена электронная микрофотография (увеличение х40000) электрогенерирующего материала, синтезированного термоката- литическим методом при температуре 720°С в атмосфере аргона и ацети- лена в соотношении аргон/ацетилен = 1/10 на катализаторе, представляю- щем механическую смесь нанопорошков никеля и алюминия в соотноше- нии Ni/Al = 4/\ .  Figure 2 presents an electron micrograph (magnification x40000) of an electrically generating material synthesized by the thermocatalytic method at a temperature of 720 ° C in an atmosphere of argon and acetylene in the ratio argon / acetylene = 1/10 on a catalyst representing a mechanical mixture of nickel nanopowders and aluminum in the ratio Ni / Al = 4 / \.
Изобретение может быть проиллюстрировано следующими приме- рами: The invention can be illustrated by the following examples:
Пример 1.  Example 1
Углеродный материал синтезирован термокаталитическим методом при температуре 720°С в атмосфере инертного (аргон) и углеводородного газа (ацетилен) в соотношении аргон/ацетилен = 1/10 на катализаторе, со- держащем частицы никеля Рэнея (никель-алюминиевый сплав).  The carbon material was synthesized by the thermocatalytic method at a temperature of 720 ° C in an atmosphere of inert (argon) and hydrocarbon gas (acetylene) in the ratio argon / acetylene = 1/10 on a catalyst containing Raney nickel particles (nickel-aluminum alloy).
Образец гальванического элемента приготовлен в виде таблетки диаметром 10мм, состоящей из трех слоев: 1 -ый - электрод из проводяще- го оксида цинка ZnO (положительный электрод), 2-ой (межэлектродный) - 20млг углеродного материала, допированного 0,03млг деионизированной водой, 3-ий - алюминиевый электрод (отрицательный электрод). Приго- товление образца проводилось путем прессования порошка углеродного материала между электродами. Приготовленный гальванический элемент хранился в эксикаторе при влажности 100% и постоянно находился в ре- жиме короткого замыкания. Измерения ЭДС элемента проводились сразу после его изготовления, после хранения определенное время в режиме короткого замыкания и по- следующего размыкания цепи и через 10 мин после размыкания цепи. По- сле проведения измерений ЭДС элемент снова замыкался накоротко. A sample of the galvanic cell is prepared in the form of a tablet with a diameter of 10 mm, consisting of three layers: the first is an electrode of conductive zinc oxide ZnO (positive electrode), the second (interelectrode) is 20 ml of carbon material doped with 0.03 ml of deionized water, 3rd - aluminum electrode (negative electrode). Sample preparation was carried out by pressing a powder of carbon material between the electrodes. The prepared galvanic cell was stored in a desiccator at a humidity of 100% and was constantly in short circuit mode. The EMF of the element was measured immediately after its manufacture, after storage for a certain time in the short circuit mode and subsequent opening of the circuit and 10 minutes after the circuit was opened. After taking the EMF measurements, the element again shorted out.
Работа элемента представлена в таблице. В течение 6ч работы эле- мента в режиме короткого замыкания ток короткого замыкания постепен- но уменьшался от 1 мА до 0.23мА, а ЭДС - от 0.25В до 0.09В. Последую- щее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,27В и тока короткого замыкания до 0,96мА в течение Юмин.  The operation of the element is presented in the table. During 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 1 mA to 0.23 mA, and the EMF from 0.25 V to 0.09 V. The subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.27V and the short-circuit current to 0.96mA during Yumin.
Пример 2. Example 2
Углеродный материал и образец электрогенерирующего элемента приготовлены согласно примеру 1 , но вместо электрода из ZnO использо- вали никелевый электрод.  The carbon material and the sample of the power generating element were prepared according to Example 1, but a nickel electrode was used instead of the ZnO electrode.
Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого замыкания посте- пенно уменьшался от 3 ,05мА до 1 ,42мА, а ЭДС - от 0.19В до 0.07В. По- следующее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,20В и тока короткого замыкания - до ЗмА в течение Юмин.  The operation of the element is presented in the table. During the 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 3.05 mA to 1.24 mA, and the EMF from 0.19 V to 0.07 V. The subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.20 V and the short circuit current to ZmA during Yumin.
Пример 3. Example 3
Углеродный материал и образец электрогенерирующего элемента приготовлены согласно примеру 1 , и в дополнение к этому в углеродный материал добавлено 50 вес.% порошка оксида титана.  The carbon material and the sample of the power generating element were prepared according to Example 1, and in addition to this, 50 wt.% Titanium oxide powder was added to the carbon material.
Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого замыкания посте- пенно уменьшался от 3,71 мА до 2,ЗЗмА, а ЭДС - от 0.61 В до 0.22В. После- дующее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,6В и тока короткого замыкания до 3,68мА в течение Юмин. Пример 4. The operation of the element is presented in the table. Over the course of 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 3.71 mA to 2, ZZmA, and the EMF from 0.61 V to 0.22 V. Subsequent opening of the circuit leads to the generation and restoration of EMF up to 0.6 V and short-circuit current up to 3.68 mA for Yumin. Example 4
Углеродный материал и образец электрогенерирующего элемента приготовлены согласно примеру 1 , но температура синтеза углеродного материала составила 620°С .  The carbon material and the sample of the power generating element were prepared according to example 1, but the temperature of the synthesis of the carbon material was 620 ° C.
Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого замыкания посте- пенно уменьшался от 1 ,4мА до 0,23мА, а ЭДС - от 0.02В до 0.01 В. После- дующее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,02В и тока короткого замыкания - до 1 ,42мА в течение Юмин.  The operation of the element is presented in the table. During 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 1.4 mA to 0.23 mA, and the EMF from 0.02 V to 0.01 V. The subsequent opening of the circuit leads to the generation and restoration of the EMF to 0, 02V and short circuit current - up to 1, 42mA during Yumin.
Пример 5. Example 5
Углеродный материал синтезирован согласно примеру 4, а образец электрогенерирующего элемента приготовлен согласно примеру 1 и в до- полнение к этому в углеродный материал добавлено 50 вес.% порошка ок- сида титана.  The carbon material was synthesized according to Example 4, and a sample of the power generating element was prepared according to Example 1, and in addition to this, 50 wt.% Titanium oxide powder was added to the carbon material.
Работа элемента представлена в таблице. В течение 6ч работы эле- мента в режиме короткого замыкания ток короткого замыкания постепен- но уменьшался от 3,55мА до 2,22мА, а ЭДС - от 0.35В до 0.16В. После- дующее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,37В и тока короткого замыкания - до 3,5мА в течение Юмин.  The operation of the element is presented in the table. During 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 3.55mA to 2.22mA, and the EMF from 0.35V to 0.16V. Subsequent opening of the circuit leads to the generation and restoration of EMF up to 0.37V and short circuit current - up to 3.5mA during Yumin.
Пример 6. Example 6
Углеродный материал синтезирован термокаталитическим методом при температуре 720°С в атмосфере инертного (аргон) и углеводородного газа (ацетилен) в соотношении аргон/ацетилен = 1/10 на катализаторе, представляющем механическую смесь нанопорошков никеля и алюминия.  The carbon material was synthesized by the thermocatalytic method at a temperature of 720 ° C in an atmosphere of inert (argon) and hydrocarbon gas (acetylene) in the ratio argon / acetylene = 1/10 on the catalyst, which is a mechanical mixture of nickel and aluminum nanopowders.
Образец гальванического элемента приготовлен в виде таблетки со- гласно примеру 1. Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого за- мыкания постепенно уменьшался от 2,98мА до 1 ,73мА. а ЭЯС - пт О ?3 R до 0.1 IB. Последующее размыкание цепи приводит к генерации и восста- новлению ЭДС до 0,23В и тока короткого замыкания - до 2,96мА в течение 10 мин. A sample of the cell is prepared in the form of a tablet according to Example 1. The operation of the cell is presented in the table. Over the course of 6 hours of operation of the cell in the short circuit mode, the short circuit current gradually decreased from 2.98 mA to 1, 73 mA. and ESN - Fri O? 3 R up to 0.1 IB. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.23 V and the short circuit current to 2.96 mA for 10 minutes.
Пример 7. Example 7
Углеродный материал синтезирован по примеру 6, образец электро- генерирующего элемента приготовлен согласно примеру 1. и в дополнение к этому в углеродный материал добавлено 50 вес.% порошка оксида тита- на.  The carbon material was synthesized according to Example 6, a sample of the power generating element was prepared according to Example 1. And in addition to this, 50 wt.% Of titanium oxide powder was added to the carbon material.
Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого замыкания посте- пенно уменьшался от 1 ,96мА до 1 ,23мА, а ЭДС - от 0.25В до 0. 15В. После- дующее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,23В и тока короткого замыкания - до 1 ,96мА в течение 10 мин.  The operation of the element is presented in the table. Within 6 hours of operation of the element in the short circuit mode, the short circuit current gradually decreased from 1, 96mA to 1, 23mA, and the EMF from 0.25V to 0. 15V. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.23 V and the short circuit current to 1, 96 mA for 10 minutes.
Пример 8. Example 8
Углеродный материал синтезирован по примеру 6, образец электро- генерирующего элемента приготовлен согласно примеру 2.  The carbon material was synthesized according to example 6, a sample of the power generating element was prepared according to example 2.
Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого замыкания посте- пенно уменьшался от 4,76мА до 2,25мА, а ЭДС от 0.46В до 0.23В. После- дующее размыкание цепи приводит к генерации и восстановлению ЭДС до 0,51 В и тока короткого замыкания - до 4,69мА в течение 10 мин.  The operation of the element is presented in the table. During 6 hours of operation of the cell in the short circuit mode, the short circuit current gradually decreased from 4.76mA to 2.25mA, and the EMF from 0.46V to 0.23V. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0.51 V and the short circuit current to 4.69 mA for 10 minutes.
Пример 9. Example 9
Углеродный материал синтезирован термокаталитическим методом при температуре 720°С в атмосфере инертного (аргон) и углеводородного газа (ацетилен) в соотношении аргон/ацетилен = 1 /10 на катализаторе, представляющем порошок никеля. Образец гальванического элемента приготовлен в виде таблетки со- гласно примеру 2. Работа элемента представлена в таблице. В течение 6 часов работы элемента в режиме короткого замыкания ток короткого за- мыкания постепенно уменьшался от 5,6мА до 1 ,77мА, а ЭДС - от 0.21 В до 0.1 В. Последующее размыкание цепи приводит к генерации и восстанов- лению ЭДС до 0,21В и тока короткого замыкания - до 5,6мА в течение 1 0 мин. The carbon material was synthesized by the thermocatalytic method at a temperature of 720 ° C in an atmosphere of inert (argon) and hydrocarbon gas (acetylene) in the ratio argon / acetylene = 1/10 on the catalyst, which is nickel powder. A sample of the cell is prepared in the form of a tablet according to Example 2. The operation of the cell is presented in the table. Within 6 hours of operation of the element in the short circuit mode, the short-circuit current gradually decreased from 5.6 mA to 1, 77 mA, and the EMF from 0.21 V to 0.1 V. Subsequent opening of the circuit leads to the generation and restoration of the EMF to 0, 21V and short circuit current - up to 5.6mA for 10 minutes.
Пример 10. Example 10
Углеродный материал синтезирован термокаталитическим методом при температуре 720°С в атмосфере инертного (аргон) и углеводородного газа (ацетилен) в соотношении аргон/ацетилен = 1/10 на катализаторе, со- держащем частицы никеля Рэнея. Затем в углеродный материал добавлено 50 вес.% порошка оксида титана.  The carbon material was synthesized by the thermocatalytic method at a temperature of 720 ° C in an inert atmosphere (argon) and hydrocarbon gas (acetylene) in the ratio argon / acetylene = 1/10 on a catalyst containing Raney nickel particles. Then, 50 wt.% Titanium oxide powder is added to the carbon material.
Было приготовлено 10 образцов гальванического элемента в виде таблеток диаметром 30 мм, состоящих из трех слоев: 1 -ый - никелевый электрод, 2-ой - 20 млг углеродного материала, допированного 0,04 млг деионизированной воды, 3-ий - алюминиевый электрод.  10 samples of a galvanic cell were prepared in the form of tablets with a diameter of 30 mm, consisting of three layers: the first was a nickel electrode, the second was 20 ml of carbon material doped with 0.04 ml of deionized water, and the third was an aluminum electrode.
На основе изготовленных образцов гальванических элементов была изготовлена батарея, в которой все образцы были собраны последователь- но между собой в стопку. В стопке алюминиевый электрод каждого после- дующего элемента соприкасался с никелевым электродом предыдущего.  On the basis of the fabricated samples of the galvanic cells, a battery was made in which all the samples were collected sequentially between each other in a stack. In the stack, the aluminum electrode of each subsequent element was in contact with the nickel electrode of the previous one.
В течение 6 часов работы батареи в режиме короткого замыкания ток короткого замыкания постепенно уменьшался от 29мА до 1 6мА, а ЭДС - от 6, 1 В до 2,2В. Последующее размыкание цепи приводит к генера- ции и восстановлению ЭДС до 6, 1 В и тока короткого замыкания до - 30 А в течение Юмин. Таблица. Токи короткого замыкания (1К) и ЭДС (U) образцов гальваниче- ских элементов, приготовленных по примерам 1 -7, сразу после изготовле- ния, после длительной работы в режиме короткого замыкания (timi=0) и че- рез 10мин после размыкания цепи (1изм=10мин). Over the course of 6 hours of battery operation in short circuit mode, the short circuit current gradually decreased from 29mA to 1 6mA, and the EMF from 6, 1V to 2.2V. Subsequent opening of the circuit leads to the generation and restoration of EMF up to 6, 1 V and short-circuit current up to - 30 A during Yumin. Table. Short-circuit currents (1 K ) and EMF (U) of samples of galvanic cells prepared according to examples 1-7, immediately after manufacturing, after long-term operation in the short-circuit mode (t imi = 0) and after 10 min after open circuit (1 ISM = 10min).
Figure imgf000014_0001
Figure imgf000014_0001

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1 . Гальванический элемент, состоящий из двух электродов и межэ- лектродного слоя, отличающийся тем, что положительный электрод вы- полнен из оксида цинка или никеля, отрицательный электрод - из алюми- ния, а в качестве межэлектродного слоя используется электрогенерирую- щий материал, содержащий углеродные структуры, полученный методом термокаталитического разложения летучих углеводородов в температур- ном интервале 600 - 800 °С на катализаторе на основе наночастиц никеля или никель-алюминиевых сплавов или механической смеси наночастиц никеля и алюминия, при этом электрогенерирующий материал допирован молекулами деионизированной воды.  one . A galvanic cell consisting of two electrodes and an interelectrode layer, characterized in that the positive electrode is made of zinc oxide or nickel, the negative electrode is made of aluminum, and an electro-generating material containing carbon structures is used as the interelectrode layer obtained by thermocatalytic decomposition of volatile hydrocarbons in the temperature range of 600 - 800 ° C on a catalyst based on nickel nanoparticles or nickel-aluminum alloys or a mechanical mixture of nickel nanoparticles and aluminum, while the electricity generating material is doped with molecules of deionized water.
2. Гальванический элемент по п. 1 , отличающийся тем, что электро- генерирующий материал содержит 50 вес.% порошка оксида титана.  2. The galvanic cell according to claim 1, characterized in that the power generating material contains 50 wt.% Titanium oxide powder.
3. Батарея, состоящая из двух или более гальванических элементов, выполненных по п. 1 или п. 2.  3. A battery consisting of two or more galvanic cells made according to claim 1 or claim 2.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) SUBSTITUTE SHEET (RULE 26)
PCT/RU2012/000350 2012-05-03 2012-05-03 Galvanic cell and battery on the basis of an electrically generating material WO2013165268A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/RU2012/000350 WO2013165268A1 (en) 2012-05-03 2012-05-03 Galvanic cell and battery on the basis of an electrically generating material
RU2014137656/07A RU2596214C2 (en) 2012-05-03 2012-05-03 Galvanic element and battery based on power-generating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000350 WO2013165268A1 (en) 2012-05-03 2012-05-03 Galvanic cell and battery on the basis of an electrically generating material

Publications (1)

Publication Number Publication Date
WO2013165268A1 true WO2013165268A1 (en) 2013-11-07

Family

ID=49514574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000350 WO2013165268A1 (en) 2012-05-03 2012-05-03 Galvanic cell and battery on the basis of an electrically generating material

Country Status (2)

Country Link
RU (1) RU2596214C2 (en)
WO (1) WO2013165268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027664A1 (en) * 2021-08-23 2023-03-02 Erciyes Universitesi A next generation carbon-based electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078315A1 (en) * 2003-03-26 2009-03-26 Sony Corporation Electrode, method of making same, photoelectric transfer element, method of manufacturing same, electronic device and method of manufacturing same
WO2010091352A2 (en) * 2009-02-09 2010-08-12 Applied Materials, Inc. Mesoporous carbon material for energy storage
RU2419907C1 (en) * 2010-04-23 2011-05-27 ЮГ Инвестмент Лтд. Multiple-element electrochemical capacitor and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840792B (en) * 2009-03-16 2011-11-09 清华大学 Hybrid super capacitor and manufacture method thereof
KR101069480B1 (en) * 2010-01-04 2011-09-30 인하대학교 산학협력단 Method for manufacturing metal oxalate nanostructure for super capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078315A1 (en) * 2003-03-26 2009-03-26 Sony Corporation Electrode, method of making same, photoelectric transfer element, method of manufacturing same, electronic device and method of manufacturing same
WO2010091352A2 (en) * 2009-02-09 2010-08-12 Applied Materials, Inc. Mesoporous carbon material for energy storage
RU2419907C1 (en) * 2010-04-23 2011-05-27 ЮГ Инвестмент Лтд. Multiple-element electrochemical capacitor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027664A1 (en) * 2021-08-23 2023-03-02 Erciyes Universitesi A next generation carbon-based electrode

Also Published As

Publication number Publication date
RU2596214C2 (en) 2016-09-10
RU2014137656A (en) 2016-05-20

Similar Documents

Publication Publication Date Title
Yun et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells
CN1849413B (en) Photoelectrochemical device and electrode
Ganesh Solar fuels vis-a-vis electricity generation from sunlight: the current state-of-the-art (a review)
JP6333235B2 (en) Photoelectrochemical cell, photo-driven generation system and generation method of hydrogen and oxygen using the photoelectrochemical cell, and method for producing the photoelectrochemical cell
CN111188058B (en) System for producing hydrogen by full-film silicon semiconductor double-electrode unbiased photoelectrocatalysis full-decomposition of water and application thereof
US8821700B2 (en) Photoelectrochemical cell and energy system using same
AU2014246142B2 (en) Gas production apparatus
JP2006508253A (en) Integrated photoelectrochemistry with liquid electrolyte and its system
US20120216854A1 (en) Surface-Passivated Regenerative Photovoltaic and Hybrid Regenerative Photovoltaic/Photosynthetic Electrochemical Cell
CN114207187B (en) Radiation assisted electrolyzer unit and stack
JP2013253294A (en) Water electrolysis apparatus
Li et al. Enabling solar hydrogen production over selenium: surface state passivation and cocatalyst decoration
CN111334812B (en) Amorphous silicon thin film photoelectrode based on hydrated iron oxyhydroxide and preparation method thereof
RU2596214C2 (en) Galvanic element and battery based on power-generating material
US20170077572A1 (en) Hybrid system for storing solar energy as heat and electricity
Filiz et al. Solar–Hydrogen Coupling Hybrid Systems for Green Energy
Azarm Different Generations Of Solar Cells and Mechanisms of Their Performance
Bazli et al. A review on bimetallic composites and compounds for solar cell applications
Gramaccioni et al. Thin film multi-junction solar cell for water photoelectrolysis
Shanmugam et al. A study on modern innovations in nano technology for harvesting solar energy and energy storage
Mohamed Nanotechnology in Green Energy Generation
Fiechter Photoelectrochemical Water Decomposition
Klein et al. Fundamentals of solar energy
Trivinho-Strixino et al. 7 Anodic Active Layers Oxides-for based Energy Production, Conversion, and Storage
CN119765989A (en) Method for interface water photovoltaic power generation and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014137656

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875863

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载