+

WO2012176527A1 - Crystalline solar cell and method for producing crystalline solar cell - Google Patents

Crystalline solar cell and method for producing crystalline solar cell Download PDF

Info

Publication number
WO2012176527A1
WO2012176527A1 PCT/JP2012/059049 JP2012059049W WO2012176527A1 WO 2012176527 A1 WO2012176527 A1 WO 2012176527A1 JP 2012059049 W JP2012059049 W JP 2012059049W WO 2012176527 A1 WO2012176527 A1 WO 2012176527A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation film
etching
etching paste
paste
type
Prior art date
Application number
PCT/JP2012/059049
Other languages
French (fr)
Japanese (ja)
Inventor
誠二 谷川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011136003A external-priority patent/JP5275415B2/en
Priority claimed from JP2011136004A external-priority patent/JP5129369B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280030486.2A priority Critical patent/CN103620793B/en
Publication of WO2012176527A1 publication Critical patent/WO2012176527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/146Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/219Arrangements for electrodes of back-contact photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a crystalline solar battery cell and a method for manufacturing a crystalline solar battery cell.
  • the most manufactured and sold crystalline solar cells have an n-electrode formed on the surface on which sunlight is incident (light-receiving surface) and a p-electrode on the surface opposite to the light-receiving surface (back surface).
  • This is a double-sided electrode type solar cell having a configuration in which is formed.
  • development of a back electrode type solar cell in which an electrode is not formed on the light receiving surface of the crystal solar cell and an n electrode and a p electrode are formed only on the back surface of the crystal solar cell is underway.
  • Patent Document 1 Japanese Patent Publication No. 2010-527147
  • a dielectric layer and a barrier layer are formed in this order on the back surface of the p-type silicon wafer.
  • a double-sided solar cell is described in which a back contact is formed that is electrically connected to the BSF layer on the back through openings provided in the dielectric layer and the barrier layer.
  • the double-sided electrode type solar cell described in Patent Document 1 is manufactured as follows. First, an n-type layer is formed on the surface of a p-type silicon wafer. Next, a dielectric layer and a barrier layer are formed on the p-type silicon wafer. Next, an etching paste is applied on the surface of the barrier layer and heated to form openings in the dielectric layer and the barrier layer.
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-21494
  • an n + -type impurity layer region and a p + -type impurity layer region are formed on the back surface of an n-type silicon substrate.
  • the back electrode type solar cell described in Patent Document 2 is manufactured as follows. First, after forming an n + -type impurity layer region and a p + -type impurity layer region on the back surface of the n-type silicon substrate, a passivation film is formed on the entire back surface of the n-type silicon substrate. Next, an etching paste is applied to a part of the surface of the passivation film, and the passivation film is removed by heating the etching paste. As a result, the n + -type impurity layer region and the p + -type impurity layer region are exposed from the passivation film.
  • a silver paste is applied to the exposed surfaces of the n + -type impurity layer region and the p + -type impurity layer region and fired.
  • an n-type electrode is formed on the n + -type impurity layer region, and a p-type electrode is formed on the p + -type impurity layer region, whereby the back electrode type solar cell described in Patent Document 2 is manufactured. Is done.
  • the above problems are not limited to the back electrode type solar cells, but are also problems of the entire crystal solar cell including the double sided electrode type solar cells.
  • the above problems are not limited to the back electrode type solar cells, but are also problems of the entire crystal solar cell including the double sided electrode type solar cells.
  • an object of the present invention is to provide a crystalline solar battery cell and a method for manufacturing the crystalline solar battery cell that can suppress a decrease in adhesion of the fired electrode even at a low firing temperature. .
  • the present invention relates to a semiconductor substrate, an impurity diffusion region provided on the surface of the semiconductor substrate, a passivation film provided on the surface of the semiconductor substrate, and a protrusion that is a part of the passivation film provided on the impurity diffusion region.
  • a crystal solar battery cell including a recess provided in a portion or a passivation film and an impurity diffusion region and a protrusion, or a fired electrode provided so as to cover the impurity diffusion region and the recess.
  • the thickness of the convex portion is preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the depth of the recess is preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the present invention also includes a step of forming an impurity diffusion region on the surface of the semiconductor substrate, a step of forming a passivation film on the surface of the semiconductor substrate, a step of applying an etching paste on the passivation film, and a recess in the etching paste.
  • a step of etching a step of etching the passivation film using an etching paste in which depressions are formed, so that a convex portion which is a part of the passivation film remains on the impurity diffusion region, and an impurity diffusion region exposed by etching and It is a manufacturing method of a crystalline solar battery cell including the process of apply
  • the step of forming the recess preferably includes a step of heating the etching paste.
  • the etching paste in the step of heating the etching paste, is preferably heated to a temperature lower than the temperature at which the etching paste starts etching the passivation film.
  • the thickness of the recess of the etching paste is preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the thickness of the convex portion that is a part of the passivation film is preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the present invention further includes a step of forming an impurity diffusion region on the surface of the semiconductor substrate, a step of forming a passivation film on the surface of the semiconductor substrate, a step of applying an etching paste on the passivation film, and an etching on the passivation film.
  • An etching step a step of applying a conductive paste on the surface of the impurity diffusion region exposed by etching and a surface of the passivation film including the recess, and a step of forming a sintered electrode by baking the conductive paste.
  • a conductive paste on the surface of the impurity diffusion region exposed by etching and a surface of the passivation film including the recess
  • a step of forming a sintered electrode by baking the conductive paste Including crystalline solar cells It is a production method.
  • the step of separating includes a step of heating the etching paste.
  • the etching paste in the step of heating the etching paste, is preferably heated to a temperature lower than the temperature at which the etching paste starts etching the passivation film.
  • a part of the etching paste is separated from the end of the etching paste by a distance of 10 ⁇ m or more and 100 ⁇ m or less.
  • the depth of the recess of the passivation film is preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the present invention it is possible to provide a crystalline solar cell and a method for manufacturing the crystalline solar cell that can suppress a decrease in adhesion of the sintered electrode even at a low firing temperature.
  • FIG. (A)-(i) is typical sectional drawing illustrating the manufacturing method of the back electrode type photovoltaic cell of Embodiment 1.
  • FIG. (A)-(d) is typical sectional drawing illustrating the formation process of the contact hole shown in FIG.1 (h), and the formation process of the baking electrode shown in FIG.1 (i).
  • FIG. 3 is a schematic plan view of a part of the back surface of the n-type silicon substrate after the contact hole is formed in the first embodiment.
  • FIG. 6 is a schematic plan view of a part of the back surface of an n-type silicon substrate after contact holes are formed in the second embodiment.
  • FIGS. 5A to 5D are schematic cross-sectional views illustrating the contact hole forming step shown in FIG. 1H and the fired electrode forming step shown in FIG.
  • FIG. 10 is a schematic plan view of a part of the back surface of an n-type silicon substrate after contact holes are formed in the third embodiment.
  • FIG. 10 is a schematic plan view of a part of the back surface of an n-type silicon substrate after contact holes are formed in the fourth embodiment.
  • n-type silicon substrate 1 as an example of a semiconductor substrate is performed.
  • the n-type silicon substrate for example, polycrystalline silicon or single-crystal silicon having n-type conductivity can be used.
  • n-type silicon substrate 1 for example, a substrate obtained by removing slice damage caused by slicing a silicon ingot can be used.
  • the removal of the slice damage can be performed, for example, by etching with a mixed acid of a hydrogen fluoride aqueous solution and nitric acid or an alkaline aqueous solution such as a sodium hydroxide aqueous solution.
  • the size and shape of the n-type silicon substrate 1 are not particularly limited, but the thickness of the n-type silicon substrate 1 can be, for example, 100 ⁇ m or more and 300 ⁇ m or less, and the surface shape of the n-type silicon substrate 1 is, for example, one side
  • the length can be a square shape of 100 mm or more and 150 mm or less.
  • n-type silicon substrate 1 is used as an example of a semiconductor substrate.
  • a semiconductor substrate other than n-type silicon substrate 1 may be used, for example, a p-type silicon substrate or the like.
  • a semiconductor substrate having a conductive type may be used.
  • a process of forming a texture mask 2 on the back surface of the n-type silicon substrate 1 is performed.
  • the texture mask 2 for example, a silicon oxide film, a silicon nitride film, a stacked body of a silicon oxide film and a silicon nitride film, or the like can be used.
  • the texture mask 2 can be formed by a method such as a thermal oxidation method, a plasma CVD (Chemical Vapor Deposition) method, or a sputtering method. Moreover, the texture mask 2 can be formed to a thickness of 300 nm or more and 800 nm or less, for example.
  • a step of forming the texture structure 3 on the surface of the n-type silicon substrate 1 is performed.
  • the step of forming the texture structure 3 includes, for example, using the etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or higher and 80 ° C. or lower. This can be done by etching the surface.
  • a process of removing the texture mask 2 on the back surface of the n-type silicon substrate 1 is performed.
  • the step of removing the texture mask 2 can be performed, for example, by immersing the texture mask 2 in a hydrogen fluoride aqueous solution or a phosphoric acid aqueous solution.
  • a step of forming an n-type impurity diffusion region 5 and a p-type impurity diffusion region 6 on the back surface of the n-type silicon substrate 1 is performed.
  • the n-type impurity diffusion region 5 is formed by, for example, vapor phase diffusion using a gas containing an n-type impurity such as phosphorus or coating diffusion in which a solution containing an n-type impurity such as phosphorus is applied and then heated. Can be formed.
  • the p-type impurity diffusion region 6 is formed by, for example, a vapor phase diffusion using a gas containing a p-type impurity such as boron, or a coating diffusion in which a solution containing a p-type impurity such as boron is applied and then heated. Can be formed.
  • the n-type impurity diffusion region 5 and the p-type impurity diffusion region 6 are each formed in a strip shape extending to the front side and / or the back side of the paper surface of FIG.
  • the regions 6 are alternately arranged at predetermined intervals on the back surface of the n-type silicon substrate 1.
  • the n-type impurity diffusion region 5 is not particularly limited as long as it includes an n-type impurity and exhibits n-type conductivity.
  • the p-type impurity diffusion region 6 is not particularly limited as long as it includes a p-type impurity and exhibits p-type conductivity.
  • a step of forming a passivation film 8 on the back surface of the n-type silicon substrate 1 is performed.
  • a silicon oxide film, a silicon nitride film, or a stacked body of a silicon oxide film and a silicon nitride film is formed by a method such as a thermal oxidation method or a plasma CVD method. Can be done.
  • a step of forming an antireflection film 7 on the texture structure 3 of the n-type silicon substrate 1 is performed.
  • the step of forming the antireflection film 7 can be performed by forming a silicon nitride film or the like, for example, by plasma CVD.
  • a process of forming contact holes 9 and contact holes 10 in the passivation film 8 formed on the back surface of the n-type silicon substrate 1 is performed.
  • the contact hole 9 is formed linearly so that the n-type impurity diffusion region 5 is exposed linearly
  • the contact hole 10 is formed linearly so that the p-type impurity diffusion region 6 is exposed linearly.
  • a step of forming the n-type fired electrode 11 on the n-type impurity diffusion region 5 and forming the p-type fired electrode 12 on the p-type impurity diffusion region 6 is performed.
  • the n-type fired electrode 11 is formed so as to be in contact with the n-type impurity diffusion region 5 through the contact hole 9, and the p-type fired electrode 12 is in contact with the p-type impurity diffusion region 6 through the contact hole 10. Formed.
  • the back electrode type solar battery cell of Embodiment 1 is completed.
  • the contact hole forming step shown in FIG. 1 (h) and the fired electrode forming step shown in FIG. 1 (i) are shown in FIGS. It is characterized in that it is performed as shown in the schematic sectional view of 2 (d).
  • a step of applying an etching paste 21 to a location on the surface of the passivation film 8 corresponding to the upper part of the n-type impurity diffusion region 5 is performed.
  • a method such as application by a dispenser, application by inkjet printing, application by screen printing, application by roll coater printing, or application by offset printing can be used.
  • etching paste 21 for example, an etching component capable of etching the passivation film 8 and a component containing water, an organic solvent, a thickener, and the like as components other than the etching component can be used.
  • etching component for example, at least one selected from phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride can be used.
  • organic solvent examples include alcohols such as isopropyl alcohol and diethylene glycol; ethers such as ethylene glycol monobutyl ether and diethylene glycol monobutyl ether; esters such as 2,2-butoxyethyl acetate and propylene carbonate; or N-methyl-2-pyrrolidone What contains at least 1 sort (s), such as ketones, etc. can be used.
  • alcohols such as isopropyl alcohol and diethylene glycol
  • ethers such as ethylene glycol monobutyl ether and diethylene glycol monobutyl ether
  • esters such as 2,2-butoxyethyl acetate and propylene carbonate
  • N-methyl-2-pyrrolidone What contains at least 1 sort (s), such as ketones, etc. can be used.
  • a cellulose derivative such as ethyl cellulose or sodium carboxymethyl hydroxyethyl cellulose
  • a polyamide resin such as nylon 6
  • a polymer containing at least one polymer such as polyvinyl pyrrolidone polymerized with vinyl groups
  • a step of forming a recess 21a in the etching paste 21 is performed.
  • the step of forming the recess 21a is not particularly limited, but can be performed, for example, by heating the etching paste 21.
  • the etching paste 21 is heated to a temperature below the temperature at which the etching paste 21 starts etching the passivation film 8.
  • the etching paste 21 can be agglomerated toward the center of the application region of the etching paste 21, so that the recess 21 a where the thickness of the etching paste 21 is locally reduced is formed. It can form suitably.
  • Such a depression 21a can be formed by heating the etching paste 21 to a temperature of 250 ° C. or higher and 400 ° C. or lower, for example.
  • the thickness t of the recess 21a of the etching paste 21 is preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less. In this case, in the process described later, a tendency that a convex part having a suitable height can be formed on the n-type impurity diffusion region 5 is increased.
  • a step of etching the passivation film 8 is performed. Thereby, a contact hole 9 exposing a part of the surface of the n-type impurity diffusion region 5 is formed.
  • the step of etching the passivation film 8 is performed using the etching paste 21 in which the depressions 21 a are formed so that the projections 8 a that are part of the passivation film 8 remain on the n-type impurity diffusion region 5. .
  • Such etching of the passivation film 8 can be performed, for example, by heating the etching paste 21 in which the recess 21 a is formed to a temperature equal to or higher than the temperature at which the etching paste 21 starts etching the passivation film 8.
  • the passivation film 8 can be completely etched in a portion having a predetermined thickness other than the convex portion 8a of the etching paste 21, so that the surface of the n-type impurity diffusion region 5 is exposed.
  • the etching of the passivation film 8 becomes incomplete, and the passivation is formed on the surface of the n-type impurity diffusion region 5.
  • the convex part 8a which is a part of the film 8 remains.
  • the thickness T of the convex portion 8a which is a part of the passivation film 8 is preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness T of the convex portion 8a is 0.03 ⁇ m or more, the contact area of the n-type fired electrode 11 tends to be increased, and the thickness T of the convex portion 8a is 0.5 ⁇ m or less. In such a case, there is a tendency that damage to the convex portion 8a due to the convex portion 8a becoming too high can be more effectively suppressed.
  • FIG. 3 shows a schematic plan view of a part of the back surface of n-type silicon substrate 1 after formation of contact hole 9 in the first embodiment.
  • the surface of the n-type impurity diffusion region 5 is exposed, a convex portion 8 a extending linearly on the surface of the n-type impurity diffusion region 5, and the convex portion 8 a
  • a broken line-like convex portion 8a that extends in parallel with a gap and is partially missing is also exposed.
  • the convex portion 8 a is not limited to the shape shown in FIG. 3, and may be formed on a part of the surface of the n-type impurity diffusion region 5.
  • the step of applying the conductive paste can be performed by applying a conductive paste such as a commercially available silver paste by screen printing or the like.
  • a step of forming the n-type fired electrode 11 by firing the conductive paste is performed.
  • the n-type firing electrode 11 is formed by firing the conductive paste by firing the conductive paste at a firing temperature lower than the firing temperature of the conventional double-sided electrode type solar battery cell (for example, about 400 ° C.). It is done by.
  • the passivation film 8 is etched using the etching paste 21 having the depression 21a which is a locally thin portion, thereby allowing passivation.
  • the convex portion 8 a that is a part of the film 8 is left on the surface of the n-type impurity diffusion region 5.
  • a conductive paste is applied on the surface of the convex portion 8a and the n-type impurity diffusion region 5, and then fired to form the n-type fired electrode 11. Therefore, for the n-type fired electrode 11, the contact area between the n-type impurity diffusion region 5 and the passivation film 8 can be increased by the amount of the surface of the convex portion 8a. Thereby, even when the firing temperature of the conductive paste at the time of forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Separation from the silicon substrate 1 can be effectively prevented.
  • Embodiment 2 the manufacturing method of the back surface electrode type photovoltaic cell of Embodiment 2 which is another example of the manufacturing method of the crystalline solar cell of this invention is demonstrated.
  • the manufacturing method of the back electrode type solar cell of the second embodiment is characterized in that the shapes of the contact hole 9 and the convex portion 8a are different from those of the first embodiment.
  • FIG. 4 shows a schematic plan view of a part of the back surface of the n-type silicon substrate 1 after the formation of the contact hole 9 in the second embodiment.
  • the contact hole 9 is formed in a circular shape, and the convex portion 8a disposed inside the contact hole 9 is also formed in a circular shape.
  • the contact area between the n-type impurity diffusion region 5 and the passivation film 8 is about the surface of the convex portion 8a. Can be increased.
  • Embodiment 2 even when the firing temperature of the conductive paste when forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Peeling of the fired electrode 11 from the n-type silicon substrate 1 can be effectively prevented.
  • the circular contact hole 9 and the convex portion 8a are formed by applying the etching paste 21 on the passivation film 8 and forming a part of the etching paste 21 into a circular recess 21a with a reduced thickness. Can do.
  • Embodiment 3 the manufacturing method of the back surface electrode type photovoltaic cell of Embodiment 3 which is another example of the manufacturing method of the crystalline solar cell of this invention is demonstrated.
  • the contact hole forming step shown in FIG. 1 (h) and the firing electrode forming step shown in FIG. 1 (i) are shown in FIGS. It is characterized in that it is performed as shown in the schematic sectional view of FIG.
  • a step of applying an etching paste 21 to a location on the surface of the passivation film 8 corresponding to the upper part of the n-type impurity diffusion region 5 is performed.
  • a method such as application by a dispenser, application by inkjet printing, application by screen printing, application by roll coater printing, or application by offset printing can be used.
  • etching paste 21 for example, an etching component capable of etching the passivation film 8 and a component containing water, an organic solvent, a thickener, and the like as components other than the etching component can be used.
  • etching component for example, at least one selected from phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride can be used.
  • organic solvent examples include alcohols such as isopropyl alcohol and diethylene glycol; ethers such as ethylene glycol monobutyl ether and diethylene glycol monobutyl ether; esters such as 2,2-butoxyethyl acetate and propylene carbonate; or N-methyl-2-pyrrolidone What contains at least 1 sort (s), such as ketones, etc. can be used.
  • alcohols such as isopropyl alcohol and diethylene glycol
  • ethers such as ethylene glycol monobutyl ether and diethylene glycol monobutyl ether
  • esters such as 2,2-butoxyethyl acetate and propylene carbonate
  • N-methyl-2-pyrrolidone What contains at least 1 sort (s), such as ketones, etc. can be used.
  • a cellulose derivative such as ethyl cellulose or sodium carboxymethyl hydroxyethyl cellulose
  • a polyamide resin such as nylon 6
  • a polymer containing at least one polymer such as polyvinyl pyrrolidone polymerized with vinyl groups
  • a step of scattering a part 21b of the etching paste 21 on at least a part of the peripheral region of the etching paste 21 on the passivation film 8 is performed.
  • the step of scattering the part 21b of the etching paste 21 is not particularly limited, but can be performed by, for example, heating the etching paste 21.
  • the etching paste 21 is heated to a temperature below the temperature at which the etching paste 21 starts etching the passivation film 8.
  • a part 21b of the etching paste 21 becomes at least a part of the peripheral area of the etching paste 21 in the process where the etching paste 21 aggregates in the central part of the application region of the etching paste 21. Scatter.
  • Such scattering of the part 21b of the etching paste 21 can be performed, for example, by heating the etching paste 21 to a temperature of 250 ° C. or higher and 400 ° C. or lower.
  • the peripheral region where the part 21b of the etching paste 21 scatters is not particularly limited as long as it is a region around the etching paste 21, but the part 21b of the etching paste 21 is 10 ⁇ m or more and 100 ⁇ m or less from the end of the etching paste 21. It is preferable to scatter at a position separated by a distance d.
  • a part 21b of the etching paste 21 is scattered at a position separated from the end of the etching paste 21 by a distance d of 10 ⁇ m or more, a recess described later is provided at a position that is not too close to the contact hole 9 in a process described later.
  • the effect of improving the adhesion of the fired electrode due to the formation of the recesses to be described later in the passivation film 8 tends to be more effectively expressed.
  • a part 21b of the etching paste 21 is scattered at a position separated from the end portion of the etching paste 21 by a distance d of 100 ⁇ m or less, it is described later at a position that is not too far from the contact hole 9 in a process described later. Since the recessed part to perform can be formed, it exists in the tendency which can express the adhesive improvement effect of a baking electrode more effectively.
  • a step of etching the passivation film 8 is performed. Thereby, a contact hole 9 exposing a part of the surface of the n-type impurity diffusion region 5 is formed.
  • the passivation film 8 is completely etched in the portion of the passivation film 8 on which the etching paste 21 is placed, and the contact hole 9 is formed.
  • the amount of the etching paste is small and the etching of the passivation film 8 is incomplete, so that only part of the passivation film 8 is removed.
  • the recess 22 is formed.
  • the depth T of the recess 22 which is a part of the passivation film 8 is preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the contact area of the n-type fired electrode 11 tends to be increased, and when the depth T of the recess 22 is 0.5 ⁇ m or less. Tends to more effectively suppress damage to the passivation film 8 due to the recess 22 becoming too deep.
  • FIG. 6 shows a schematic plan view of a part of the back surface of the n-type silicon substrate 1 after the formation of the contact hole 9 in the first embodiment.
  • the surface of the n-type impurity diffusion region 5 is exposed, and the passivation film 8 outside the n-type impurity diffusion region 5 is formed with a recess 22 extending linearly,
  • the passivation film 8 on the opposite side across the recess 22 and the n-type impurity diffusion region 5 is formed with a dashed-line recess 22 extending parallel to the recess 22.
  • the recess 22 is not limited to the shape shown in FIG. 6, and may be formed on a part of the surface of the passivation film 8.
  • the step of applying the conductive paste can be performed by applying a conductive paste such as a commercially available silver paste by screen printing or the like.
  • a step of forming the n-type fired electrode 11 by firing the conductive paste is performed.
  • the n-type firing electrode 11 is formed by firing the conductive paste by firing the conductive paste at a firing temperature lower than the firing temperature of the conventional double-sided electrode type solar battery cell (for example, about 400 ° C.). It is done by.
  • a part 21 b of the etching paste 21 is scattered on the passivation film 8 to etch the passivation film 8.
  • a contact hole 9 is formed in the portion to expose the surface of the n-type impurity diffusion region 5, and a recess 22 is formed in the region of the passivation film 8 outside the n-type impurity diffusion region 5.
  • a conductive paste is applied on the surface of the n-type impurity diffusion region 5 and on the surface of the passivation film 8 including the recesses 22 and then fired to form the n-type fired electrode 11.
  • the contact area between the n-type sintered electrode 11 and the passivation film 8 can be increased by the surface of the recess 22. Therefore, even when the firing temperature of the conductive paste at the time of forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Separation from the silicon substrate 1 can be effectively prevented.
  • the etching paste 21 may be separated from the etching paste 21 by, for example, agglomerating the etching paste 21 so that the part 21b of the etching paste 21 remains by heating or the like.
  • the method for separating the part 21b of the paste 21 is not particularly limited.
  • Embodiment 4 the manufacturing method of the back surface electrode type photovoltaic cell of Embodiment 4 which is another example of the manufacturing method of the crystalline solar cell of this invention is demonstrated.
  • the method for manufacturing a back electrode type solar cell according to the fourth embodiment is characterized in that the shapes of the contact hole 9 and the recess 22 are different from those of the third embodiment.
  • FIG. 7 shows a schematic plan view of a part of the back surface of the n-type silicon substrate 1 after the formation of the contact hole 9 in the fourth embodiment.
  • the contact hole 9 is formed in a circular shape, and the concave portion 22 disposed in the region of the passivation film 8 outside the contact hole 9 is also formed in a circular shape.
  • the contact area of the n-type fired electrode 11 with the passivation film 8 can be increased by the amount of the surface of the recess 22.
  • Embodiment 4 even when the firing temperature of the conductive paste when forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Peeling of the fired electrode 11 from the n-type silicon substrate 1 can be effectively prevented.
  • the circular contact hole 9 and the concave portion 22 respectively apply the etching paste 21 in a circular shape on the passivation film 8, and apply a part 21 b of the etching paste 21 to the peripheral region outside the etching paste 21. It can be formed by scattering into a shape.
  • the present invention can be used for a crystal solar cell and a method for manufacturing the crystal solar cell, and in particular, a crystal solar cell and a crystal solar in which a fired electrode is formed by removing a part of a passivation film with an etching paste It can utilize suitably for the manufacturing method of a battery cell.
  • n-type silicon substrate 1 n-type silicon substrate, 2 texture mask, 3 texture structure, 5 n-type impurity diffusion region, 6 p-type impurity diffusion region, 7 antireflection film, 8 passivation film, 8a convex part, 9,10 contact hole, 11 n-type Firing electrode, 12 p-type firing electrode, 21 etching paste, 21a depression, 21b part of etching paste, 22 recesses.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Provided are a crystalline solar cell equipped with: impurity diffusion regions (5, 6) furnished on the surface of a semiconductor substrate (1); a land portion (8a) which is part of a passivation film (8) furnished over the impurity diffusion regions (5, 6), or a groove portion (22) furnished to the passivation film (8); and baked electrodes (11, 12) furnished so as to cover the impurity diffusion regions (5, 6) and the land portion (8a), or the impurity diffusion regions (5, 6) and the groove portion (22); and a method for producing the same.

Description

結晶太陽電池セルおよび結晶太陽電池セルの製造方法Crystal solar cell and method for manufacturing crystal solar cell

 本発明は、結晶太陽電池セルおよび結晶太陽電池セルの製造方法に関する。 The present invention relates to a crystalline solar battery cell and a method for manufacturing a crystalline solar battery cell.

 近年、特に地球環境の保護の観点から、太陽光エネルギを電気エネルギに変換する太陽電池セルは次世代のエネルギ源としての期待が急激に高まっている。太陽電池セルの種類には、化合物半導体を用いたものや有機材料を用いたものなどの様々なものがあるが、現在、シリコン結晶を用いた結晶太陽電池セルが主流となっている。 In recent years, in particular, from the viewpoint of protecting the global environment, solar cells that convert solar energy into electrical energy have been rapidly expected as next-generation energy sources. There are various types of solar cells, such as those using compound semiconductors and those using organic materials, but at present, crystalline solar cells using silicon crystals are the mainstream.

 現在、最も多く製造および販売されている結晶太陽電池セルは、太陽光が入射する側の面(受光面)にn電極が形成されており、受光面と反対側の面(裏面)にp電極が形成された構成の両面電極型太陽電池セルである。また、結晶太陽電池セルの受光面には電極を形成せず結晶太陽電池セルの裏面のみにn電極およびp電極を形成した裏面電極型太陽電池セルの開発も進められている。 Currently, the most manufactured and sold crystalline solar cells have an n-electrode formed on the surface on which sunlight is incident (light-receiving surface) and a p-electrode on the surface opposite to the light-receiving surface (back surface). This is a double-sided electrode type solar cell having a configuration in which is formed. Further, development of a back electrode type solar cell in which an electrode is not formed on the light receiving surface of the crystal solar cell and an n electrode and a p electrode are formed only on the back surface of the crystal solar cell is underway.

 たとえば特許文献1(特表2010-527147号公報)には、p型シリコンウエハの表面上にn型層が形成され、p型シリコンウエハの裏面には誘電体層およびバリア層がこの順に形成され、誘電体層およびバリア層に設けられた開口を通して裏面のBSF層と電気的に接続する裏面コンタクトが形成された両面電極型太陽電池セルが記載されている。 For example, in Patent Document 1 (Japanese Patent Publication No. 2010-527147), an n-type layer is formed on the surface of a p-type silicon wafer, and a dielectric layer and a barrier layer are formed in this order on the back surface of the p-type silicon wafer. In addition, a double-sided solar cell is described in which a back contact is formed that is electrically connected to the BSF layer on the back through openings provided in the dielectric layer and the barrier layer.

 ここで、特許文献1に記載の両面電極型太陽電池セルは、以下のようにして製造される。まず、p型シリコンウエハの表面上にn型層を形成する。次に、p型シリコンウエハに誘電体層およびバリア層を形成する。次に、バリア層の表面上にエッチングペーストを塗布して加熱することによって、誘電体層およびバリア層に開口部を形成する。 Here, the double-sided electrode type solar cell described in Patent Document 1 is manufactured as follows. First, an n-type layer is formed on the surface of a p-type silicon wafer. Next, a dielectric layer and a barrier layer are formed on the p-type silicon wafer. Next, an etching paste is applied on the surface of the barrier layer and heated to form openings in the dielectric layer and the barrier layer.

 その後、p型シリコンウエハの裏面の誘電体層およびバリア層の開口部にアルミニウムペーストを塗布して焼成する。これにより、特許文献1に記載の両面電極型太陽電池セルが製造される。 Thereafter, an aluminum paste is applied to the openings of the dielectric layer and the barrier layer on the back surface of the p-type silicon wafer and baked. Thereby, the double-sided electrode type solar cell described in Patent Document 1 is manufactured.

 また、たとえば特許文献2(特開2009-21494号公報)には、n型シリコン基板の裏面にn+型不純物層領域とp+型不純物層領域とが形成され、n+型不純物層領域上にはn型用電極が形成され、p+型不純物層領域上にはp型用電極が形成された裏面電極型太陽電池セルが記載されている。 Further, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 2009-21494), an n + -type impurity layer region and a p + -type impurity layer region are formed on the back surface of an n-type silicon substrate. Describes a back electrode type solar cell in which an n-type electrode is formed and a p-type electrode is formed on the p + -type impurity layer region.

 ここで、特許文献2に記載の裏面電極型太陽電池セルは、以下のようにして製造される。まず、n型シリコン基板の裏面にn+型不純物層領域とp+型不純物層領域とを形成した後に、n型シリコン基板の裏面全面にパッシベーション膜を形成する。次に、パッシベーション膜の表面の一部にエッチングペーストを塗布し、エッチングペーストを加熱することによってパッシベーション膜を除去する。これにより、パッシベーション膜からn+型不純物層領域およびp+型不純物層領域をそれぞれ露出させる。 Here, the back electrode type solar cell described in Patent Document 2 is manufactured as follows. First, after forming an n + -type impurity layer region and a p + -type impurity layer region on the back surface of the n-type silicon substrate, a passivation film is formed on the entire back surface of the n-type silicon substrate. Next, an etching paste is applied to a part of the surface of the passivation film, and the passivation film is removed by heating the etching paste. As a result, the n + -type impurity layer region and the p + -type impurity layer region are exposed from the passivation film.

 その後、n+型不純物層領域およびp+型不純物層領域の露出面にそれぞれ銀ペーストを塗布して焼成する。これにより、n+型不純物層領域上にn型用電極を形成し、p+型不純物層領域上にp型用電極を形成して、特許文献2に記載の裏面電極型太陽電池セルが製造される。 Thereafter, a silver paste is applied to the exposed surfaces of the n + -type impurity layer region and the p + -type impurity layer region and fired. Thus, an n-type electrode is formed on the n + -type impurity layer region, and a p-type electrode is formed on the p + -type impurity layer region, whereby the back electrode type solar cell described in Patent Document 2 is manufactured. Is done.

特表2010-527147号公報JP 2010-527147 A 特開2009-21494号公報JP 2009-21494 A

 しかしながら、特許文献2に記載の裏面電極型太陽電池セルにおいて、従来の両面電極型太陽電池セルと同様の焼成温度条件(約800℃)で銀ペーストを焼成した場合には、n型シリコン基板の裏面のn+型不純物層領域のn型不純物と、p+型不純物層領域のp型不純物とが互いに他の導電型の領域に拡散して互いに打ち消し合うことによって、n+型不純物層領域およびp+型不純物層領域の不純物濃度が低下し、裏面電極型太陽電池セルの特性が低下するという問題があった。 However, in the back electrode type solar cell described in Patent Document 2, when the silver paste is baked under the same baking temperature condition (about 800 ° C.) as that of the conventional double sided electrode type solar cell, the n-type silicon substrate The n + -type impurity in the n + -type impurity layer region on the back surface and the p-type impurity in the p + -type impurity layer region diffuse to each other and cancel each other, thereby canceling each other. There is a problem that the impurity concentration in the p + -type impurity layer region is lowered, and the characteristics of the back electrode type solar cell are lowered.

 この問題を解消するためには、銀ペーストの焼成温度を低下させる方法、および銀ペーストの焼成時間を短縮する方法などが挙げられるが、これらの方法を用いた場合には、n型シリコン基板と、n型用電極およびp型用電極との密着性が低下して、n型シリコン基板から焼成電極が剥がれてしまうという問題があった。 In order to solve this problem, there are a method of lowering the firing temperature of the silver paste and a method of shortening the firing time of the silver paste. When these methods are used, the n-type silicon substrate and There is a problem that the adhesion between the n-type electrode and the p-type electrode is lowered and the fired electrode is peeled off from the n-type silicon substrate.

 上記のような問題は、裏面電極型太陽電池セルに限られた問題ではなく、両面電極型太陽電池セルを含めた結晶太陽電池セル全体の問題でもある。すなわち、製造コストや環境に配慮した製造エネルギの低減や、基板の薄型化によって影響が大きくなっている加熱された基板の変形による破損の防止などの観点から、焼成電極形成時の焼成温度の低下が求められている。 The above problems are not limited to the back electrode type solar cells, but are also problems of the entire crystal solar cell including the double sided electrode type solar cells. In other words, from the viewpoint of reducing manufacturing energy in consideration of manufacturing cost and environment, and preventing damage due to deformation of a heated substrate, which has been greatly affected by thinning of the substrate, lowering the firing temperature during firing electrode formation Is required.

 上記の事情に鑑みて、本発明の目的は、低い焼成温度においても焼成電極の密着性の低下を抑制することが可能な結晶太陽電池セルおよび結晶太陽電池セルの製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a crystalline solar battery cell and a method for manufacturing the crystalline solar battery cell that can suppress a decrease in adhesion of the fired electrode even at a low firing temperature. .

 本発明は、半導体基板と、半導体基板の表面に設けられた不純物拡散領域と、半導体基板の表面上に設けられたパッシベーション膜と、不純物拡散領域上に設けられたパッシベーション膜の一部である凸部またはパッシベーション膜に設けられた凹部と、不純物拡散領域および凸部、または不純物拡散領域および凹部を覆うようにして設けられた焼成電極とを備えた結晶太陽電池セルである。 The present invention relates to a semiconductor substrate, an impurity diffusion region provided on the surface of the semiconductor substrate, a passivation film provided on the surface of the semiconductor substrate, and a protrusion that is a part of the passivation film provided on the impurity diffusion region. A crystal solar battery cell including a recess provided in a portion or a passivation film and an impurity diffusion region and a protrusion, or a fired electrode provided so as to cover the impurity diffusion region and the recess.

 ここで、本発明の結晶太陽電池セルにおいて、凸部の厚さは、0.03μm以上0.5μm以下であることが好ましい。 Here, in the crystalline solar battery cell of the present invention, the thickness of the convex portion is preferably 0.03 μm or more and 0.5 μm or less.

 また、本発明の結晶太陽電池セルにおいて、凹部の深さは、0.03μm以上0.5μm以下であることが好ましい。 In the crystalline solar battery cell of the present invention, the depth of the recess is preferably 0.03 μm or more and 0.5 μm or less.

 また、本発明は、半導体基板の表面に不純物拡散領域を形成する工程と、半導体基板の表面にパッシベーション膜を形成する工程と、パッシベーション膜上にエッチングペーストを塗布する工程と、エッチングペーストに窪みを形成する工程と、窪みが形成されたエッチングペーストを用いてパッシベーション膜の一部である凸部が不純物拡散領域上に残るようにパッシベーション膜をエッチングする工程と、エッチングによって露出した不純物拡散領域上および凸部上に導電性ペーストを塗布する工程と、導電性ペーストを焼成することによって焼成電極を形成する工程とを含む、結晶太陽電池セルの製造方法である。 The present invention also includes a step of forming an impurity diffusion region on the surface of the semiconductor substrate, a step of forming a passivation film on the surface of the semiconductor substrate, a step of applying an etching paste on the passivation film, and a recess in the etching paste. A step of etching, a step of etching the passivation film using an etching paste in which depressions are formed, so that a convex portion which is a part of the passivation film remains on the impurity diffusion region, and an impurity diffusion region exposed by etching and It is a manufacturing method of a crystalline solar battery cell including the process of apply | coating an electrically conductive paste on a convex part, and the process of forming a baking electrode by baking an electrically conductive paste.

 ここで、本発明の結晶太陽電池セルの製造方法において、窪みを形成する工程は、エッチングペーストを加熱する工程を含むことが好ましい。 Here, in the method for manufacturing a crystalline solar cell according to the present invention, the step of forming the recess preferably includes a step of heating the etching paste.

 また、本発明の結晶太陽電池セルの製造方法においては、エッチングペーストを加熱する工程において、エッチングペーストは、エッチングペーストがパッシベーション膜のエッチングを開始する温度未満の温度に加熱されることが好ましい。 In the method for manufacturing a crystalline solar battery cell according to the present invention, in the step of heating the etching paste, the etching paste is preferably heated to a temperature lower than the temperature at which the etching paste starts etching the passivation film.

 また、本発明の結晶太陽電池セルの製造方法において、エッチングペーストの窪みの厚さは、0.5μm以上1.5μm以下であることが好ましい。 In the method for producing a crystalline solar battery cell according to the present invention, the thickness of the recess of the etching paste is preferably 0.5 μm or more and 1.5 μm or less.

 また、本発明の結晶太陽電池セルの製造方法において、パッシベーション膜の一部である凸部の厚さは、0.03μm以上0.5μm以下であることが好ましい。 In the method for producing a crystalline solar battery cell of the present invention, the thickness of the convex portion that is a part of the passivation film is preferably 0.03 μm or more and 0.5 μm or less.

 さらに、本発明は、半導体基板の表面に不純物拡散領域を形成する工程と、半導体基板の表面にパッシベーション膜を形成する工程と、パッシベーション膜上にエッチングペーストを塗布する工程と、パッシベーション膜上におけるエッチングペーストの周辺領域の少なくとも一部にエッチングペーストの一部を離間させる工程と、エッチングペーストおよび離間させたエッチングペーストの一部を用いてパッシベーション膜の一部に凹部が形成されるようにパッシベーション膜をエッチングする工程と、エッチングによって露出した不純物拡散領域の表面上および凹部を含むパッシベーション膜の表面上に導電性ペーストを塗布する工程と、導電性ペーストを焼成することによって焼成電極を形成する工程とを含む、結晶太陽電池セルの製造方法である。 The present invention further includes a step of forming an impurity diffusion region on the surface of the semiconductor substrate, a step of forming a passivation film on the surface of the semiconductor substrate, a step of applying an etching paste on the passivation film, and an etching on the passivation film. A step of separating a part of the etching paste in at least a part of a peripheral region of the paste, and forming a passivation film so that a recess is formed in a part of the passivation film using the etching paste and a part of the separated etching paste. An etching step, a step of applying a conductive paste on the surface of the impurity diffusion region exposed by etching and a surface of the passivation film including the recess, and a step of forming a sintered electrode by baking the conductive paste. Including crystalline solar cells It is a production method.

 ここで、本発明の結晶太陽電池セルの製造方法において、離間させる工程は、エッチングペーストを加熱する工程を含むことが好ましい。 Here, in the method for manufacturing a crystalline solar battery cell of the present invention, it is preferable that the step of separating includes a step of heating the etching paste.

 また、本発明の結晶太陽電池セルの製造方法においては、エッチングペーストを加熱する工程において、エッチングペーストは、エッチングペーストがパッシベーション膜のエッチングを開始する温度未満の温度に加熱されることが好ましい。 In the method for manufacturing a crystalline solar battery cell according to the present invention, in the step of heating the etching paste, the etching paste is preferably heated to a temperature lower than the temperature at which the etching paste starts etching the passivation film.

 また、本発明の結晶太陽電池セルの製造方法においては、離間させる工程において、エッチングペーストの一部を、エッチングペーストの端部から10μm以上100μm以下の距離だけ離れた位置に離間させることが好ましい。 In the method for manufacturing a crystalline solar cell according to the present invention, it is preferable that in the step of separating, a part of the etching paste is separated from the end of the etching paste by a distance of 10 μm or more and 100 μm or less.

 また、本発明の結晶太陽電池セルの製造方法において、パッシベーション膜の凹部の深さは、0.03μm以上0.5μm以下であることが好ましい。 In the method for producing a crystalline solar battery cell according to the present invention, the depth of the recess of the passivation film is preferably 0.03 μm or more and 0.5 μm or less.

 本発明によれば、低い焼成温度においても焼成電極の密着性の低下を抑制することが可能な結晶太陽電池セルおよび結晶太陽電池セルの製造方法を提供することを提供することができる。 According to the present invention, it is possible to provide a crystalline solar cell and a method for manufacturing the crystalline solar cell that can suppress a decrease in adhesion of the sintered electrode even at a low firing temperature.

(a)~(i)は、実施の形態1の裏面電極型太陽電池セルの製造方法について図解する模式的な断面図である。(A)-(i) is typical sectional drawing illustrating the manufacturing method of the back electrode type photovoltaic cell of Embodiment 1. FIG. (a)~(d)は、図1(h)に示すコンタクトホールの形成工程および図1(i)に示す焼成電極の形成工程について図解する模式的な断面図である。(A)-(d) is typical sectional drawing illustrating the formation process of the contact hole shown in FIG.1 (h), and the formation process of the baking electrode shown in FIG.1 (i). 実施の形態1におけるコンタクトホールの形成後のn型シリコン基板の裏面の一部の模式的な平面図である。FIG. 3 is a schematic plan view of a part of the back surface of the n-type silicon substrate after the contact hole is formed in the first embodiment. 実施の形態2におけるコンタクトホールの形成後のn型シリコン基板の裏面の一部の模式的な平面図である。FIG. 6 is a schematic plan view of a part of the back surface of an n-type silicon substrate after contact holes are formed in the second embodiment. (a)~(d)は、実施の形態3において、図1(h)に示すコンタクトホールの形成工程および図1(i)に示す焼成電極の形成工程について図解する模式的な断面図である。FIGS. 5A to 5D are schematic cross-sectional views illustrating the contact hole forming step shown in FIG. 1H and the fired electrode forming step shown in FIG. . 実施の形態3におけるコンタクトホールの形成後のn型シリコン基板の裏面の一部の模式的な平面図である。FIG. 10 is a schematic plan view of a part of the back surface of an n-type silicon substrate after contact holes are formed in the third embodiment. 実施の形態4におけるコンタクトホールの形成後のn型シリコン基板の裏面の一部の模式的な平面図である。FIG. 10 is a schematic plan view of a part of the back surface of an n-type silicon substrate after contact holes are formed in the fourth embodiment.

 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。また、後述する各工程の前後に他の工程が含まれていてもよい。また、後述する各工程の順序は入れ替わっていてもよく後述する各工程の少なくとも2つの工程が同時に行なわれてもよい。 Hereinafter, embodiments of the present invention will be described. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, other steps may be included before and after each step described later. Moreover, the order of each process mentioned later may be changed, and at least 2 process of each process mentioned later may be performed simultaneously.

 <実施の形態1>
 以下、図1(a)~図1(i)の模式的断面図を参照して、本発明の結晶太陽電池セルの製造方法の一例である実施の形態1の裏面電極型太陽電池セルの製造方法について説明する。
<Embodiment 1>
Hereinafter, with reference to the schematic cross-sectional views of FIG. 1 (a) to FIG. 1 (i), the manufacture of the back electrode type solar cell according to the first embodiment, which is an example of the method for manufacturing the crystalline solar cell of the present invention. A method will be described.

 まず、図1(a)に示すように、半導体基板の一例としてのn型シリコン基板1を準備する工程を行なう。ここで、n型シリコン基板1としては、たとえば、n型の導電性を有する多結晶シリコンまたは単結晶シリコンなどを用いることができる。 First, as shown in FIG. 1A, a step of preparing an n-type silicon substrate 1 as an example of a semiconductor substrate is performed. Here, as the n-type silicon substrate 1, for example, polycrystalline silicon or single-crystal silicon having n-type conductivity can be used.

 また、n型シリコン基板1としては、たとえばシリコンインゴットをスライスすることにより生じたスライスダメージを除去したものなどを用いることができる。ここで、スライスダメージの除去は、たとえば、フッ化水素水溶液と硝酸との混酸または水酸化ナトリウム水溶液などのアルカリ水溶液などでエッチングをすることなどにより行なうことができる。 Further, as the n-type silicon substrate 1, for example, a substrate obtained by removing slice damage caused by slicing a silicon ingot can be used. Here, the removal of the slice damage can be performed, for example, by etching with a mixed acid of a hydrogen fluoride aqueous solution and nitric acid or an alkaline aqueous solution such as a sodium hydroxide aqueous solution.

 また、n型シリコン基板1の大きさおよび形状は特に限定されないが、n型シリコン基板1の厚さはたとえば100μm以上300μm以下とすることができ、n型シリコン基板1の表面形状はたとえば1辺の長さが100mm以上150mm以下の四角形状とすることができる。 The size and shape of the n-type silicon substrate 1 are not particularly limited, but the thickness of the n-type silicon substrate 1 can be, for example, 100 μm or more and 300 μm or less, and the surface shape of the n-type silicon substrate 1 is, for example, one side The length can be a square shape of 100 mm or more and 150 mm or less.

 なお、本実施の形態においては、半導体基板の一例としてn型シリコン基板1を用いる場合について説明するが、n型シリコン基板1以外の半導体基板を用いてもよく、たとえばp型シリコン基板などのp型の導電型を有する半導体基板を用いてもよい。 In the present embodiment, the case where n-type silicon substrate 1 is used as an example of a semiconductor substrate will be described. However, a semiconductor substrate other than n-type silicon substrate 1 may be used, for example, a p-type silicon substrate or the like. A semiconductor substrate having a conductive type may be used.

 次に、図1(b)に示すように、n型シリコン基板1の裏面にテクスチャマスク2を形成する工程を行なう。ここで、テクスチャマスク2としては、たとえば、酸化シリコン膜、窒化シリコン膜、酸化シリコン膜と窒化シリコン膜との積層体などを用いることができる。 Next, as shown in FIG. 1B, a process of forming a texture mask 2 on the back surface of the n-type silicon substrate 1 is performed. Here, as the texture mask 2, for example, a silicon oxide film, a silicon nitride film, a stacked body of a silicon oxide film and a silicon nitride film, or the like can be used.

 テクスチャマスク2は、たとえば、熱酸化法、プラズマCVD(Chemical Vapor Deposition)法またはスパッタリング法などの方法によって形成することができる。また、テクスチャマスク2は、たとえば300nm以上800nm以下の厚さに形成することができる。 The texture mask 2 can be formed by a method such as a thermal oxidation method, a plasma CVD (Chemical Vapor Deposition) method, or a sputtering method. Moreover, the texture mask 2 can be formed to a thickness of 300 nm or more and 800 nm or less, for example.

 次に、図1(c)に示すように、n型シリコン基板1の表面にテクスチャ構造3を形成する工程を行なう。テクスチャ構造3を形成する工程は、たとえば、水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加した液を70℃以上80℃以下に加熱したエッチング液を用いてn型シリコン基板1の表面をエッチングすることにより行なうことができる。 Next, as shown in FIG. 1C, a step of forming the texture structure 3 on the surface of the n-type silicon substrate 1 is performed. The step of forming the texture structure 3 includes, for example, using the etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or higher and 80 ° C. or lower. This can be done by etching the surface.

 次に、図1(d)に示すように、n型シリコン基板1の裏面のテクスチャマスク2を除去する工程を行なう。テクスチャマスク2を除去する工程は、たとえば、フッ化水素水溶液またはリン酸水溶液にテクスチャマスク2を浸漬することにより行なうことができる。 Next, as shown in FIG. 1D, a process of removing the texture mask 2 on the back surface of the n-type silicon substrate 1 is performed. The step of removing the texture mask 2 can be performed, for example, by immersing the texture mask 2 in a hydrogen fluoride aqueous solution or a phosphoric acid aqueous solution.

 次に、図1(e)に示すように、n型シリコン基板1の裏面に、n型不純物拡散領域5およびp型不純物拡散領域6をそれぞれ形成する工程を行なう。 Next, as shown in FIG. 1E, a step of forming an n-type impurity diffusion region 5 and a p-type impurity diffusion region 6 on the back surface of the n-type silicon substrate 1 is performed.

 ここで、n型不純物拡散領域5は、たとえば、リンなどのn型不純物を含むガスを用いた気相拡散、またはリンなどのn型不純物を含む溶液を塗布した後に加熱する塗布拡散などの方法により形成することができる。 Here, the n-type impurity diffusion region 5 is formed by, for example, vapor phase diffusion using a gas containing an n-type impurity such as phosphorus or coating diffusion in which a solution containing an n-type impurity such as phosphorus is applied and then heated. Can be formed.

 また、p型不純物拡散領域6は、たとえば、ボロンなどのp型不純物を含むガスを用いた気相拡散、またはボロンなどのp型不純物を含む溶液を塗布した後に加熱する塗布拡散などの方法により形成することができる。 The p-type impurity diffusion region 6 is formed by, for example, a vapor phase diffusion using a gas containing a p-type impurity such as boron, or a coating diffusion in which a solution containing a p-type impurity such as boron is applied and then heated. Can be formed.

 n型不純物拡散領域5およびp型不純物拡散領域6はそれぞれ図1(e)の紙面の表面側および/または裏面側に伸びる帯状に形成されており、n型不純物拡散領域5とp型不純物拡散領域6とはn型シリコン基板1の裏面において交互に所定の間隔をあけて配置されている。 The n-type impurity diffusion region 5 and the p-type impurity diffusion region 6 are each formed in a strip shape extending to the front side and / or the back side of the paper surface of FIG. The regions 6 are alternately arranged at predetermined intervals on the back surface of the n-type silicon substrate 1.

 n型不純物拡散領域5はn型不純物を含み、n型の導電型を示す領域であれば特に限定されない。また、p型不純物拡散領域6はp型不純物を含み、p型の導電型を示す領域であれば特に限定されない。 The n-type impurity diffusion region 5 is not particularly limited as long as it includes an n-type impurity and exhibits n-type conductivity. The p-type impurity diffusion region 6 is not particularly limited as long as it includes a p-type impurity and exhibits p-type conductivity.

 次に、図1(f)に示すように、n型シリコン基板1の裏面にパッシベーション膜8を形成する工程を行なう。ここで、パッシベーション膜8を形成する工程は、たとえば、熱酸化法またはプラズマCVD法などの方法により、酸化シリコン膜、窒化シリコン膜、または酸化シリコン膜と窒化シリコン膜との積層体などを形成することによって行なうことができる。 Next, as shown in FIG. 1F, a step of forming a passivation film 8 on the back surface of the n-type silicon substrate 1 is performed. Here, in the step of forming the passivation film 8, for example, a silicon oxide film, a silicon nitride film, or a stacked body of a silicon oxide film and a silicon nitride film is formed by a method such as a thermal oxidation method or a plasma CVD method. Can be done.

 次に、図1(g)に示すように、n型シリコン基板1のテクスチャ構造3上に、反射防止膜7を形成する工程を行なう。ここで、反射防止膜7を形成する工程は、たとえばプラズマCVD法により、窒化シリコン膜などを形成することにより行なうことができる。 Next, as shown in FIG. 1G, a step of forming an antireflection film 7 on the texture structure 3 of the n-type silicon substrate 1 is performed. Here, the step of forming the antireflection film 7 can be performed by forming a silicon nitride film or the like, for example, by plasma CVD.

 次に、図1(h)に示すように、n型シリコン基板1の裏面上に形成されたパッシベーション膜8にコンタクトホール9およびコンタクトホール10を形成する工程を行なう。ここで、コンタクトホール9はn型不純物拡散領域5が直線状に露出するように直線状に形成され、コンタクトホール10はp型不純物拡散領域6が直線状に露出するように直線状に形成される。 Next, as shown in FIG. 1 (h), a process of forming contact holes 9 and contact holes 10 in the passivation film 8 formed on the back surface of the n-type silicon substrate 1 is performed. Here, the contact hole 9 is formed linearly so that the n-type impurity diffusion region 5 is exposed linearly, and the contact hole 10 is formed linearly so that the p-type impurity diffusion region 6 is exposed linearly. The

 次に、図1(i)に示すように、n型不純物拡散領域5上にn型用焼成電極11を形成するとともにp型不純物拡散領域6上にp型用焼成電極12を形成する工程を行なう。ここで、n型用焼成電極11は、コンタクトホール9を通してn型不純物拡散領域5に接するようにして形成され、p型用焼成電極12は、コンタクトホール10を通してp型不純物拡散領域6に接するようにして形成される。以上により、実施の形態1の裏面電極型太陽電池セルが完成する。 Next, as shown in FIG. 1 (i), a step of forming the n-type fired electrode 11 on the n-type impurity diffusion region 5 and forming the p-type fired electrode 12 on the p-type impurity diffusion region 6 is performed. Do. Here, the n-type fired electrode 11 is formed so as to be in contact with the n-type impurity diffusion region 5 through the contact hole 9, and the p-type fired electrode 12 is in contact with the p-type impurity diffusion region 6 through the contact hole 10. Formed. Thus, the back electrode type solar battery cell of Embodiment 1 is completed.

 実施の形態1の裏面電極型太陽電池セルの製造方法においては、図1(h)に示すコンタクトホールの形成工程および図1(i)に示す焼成電極の形成工程が図2(a)~図2(d)の模式的断面図に示すようにして行なわれることに特徴がある。 In the method of manufacturing the back electrode type solar cell of the first embodiment, the contact hole forming step shown in FIG. 1 (h) and the fired electrode forming step shown in FIG. 1 (i) are shown in FIGS. It is characterized in that it is performed as shown in the schematic sectional view of 2 (d).

 すなわち、まず、図2(a)に示すように、n型不純物拡散領域5の上方に対応するパッシベーション膜8の表面上の箇所にエッチングペースト21を塗布する工程を行なう。エッチングペースト21を塗布する工程は、たとえば、ディスペンサによる塗布、インクジェット印刷による塗布、スクリーン印刷による塗布、ロールコータ印刷による塗布、またはオフセット印刷による塗布などの方法を用いることができる。 That is, first, as shown in FIG. 2A, a step of applying an etching paste 21 to a location on the surface of the passivation film 8 corresponding to the upper part of the n-type impurity diffusion region 5 is performed. For the step of applying the etching paste 21, for example, a method such as application by a dispenser, application by inkjet printing, application by screen printing, application by roll coater printing, or application by offset printing can be used.

 ここで、エッチングペースト21としては、たとえば、パッシベーション膜8をエッチングすることが可能なエッチング成分と、エッチング成分以外の成分として、水、有機溶媒および増粘剤などを含むものを用いることができる。 Here, as the etching paste 21, for example, an etching component capable of etching the passivation film 8 and a component containing water, an organic solvent, a thickener, and the like as components other than the etching component can be used.

 エッチング成分としては、たとえば、リン酸、フッ化水素、フッ化アンモニウム、およびフッ化水素アンモニウムから選択された少なくとも1種などを用いることができる。 As the etching component, for example, at least one selected from phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride can be used.

 また、有機溶媒としては、たとえばイソプロピルアルコール、ジエチレングリコールなどのアルコール;エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルなどのエーテル;2,2-ブトキシエチルアセテート、プロピレンカーボネートなどのエステル;またはN-メチル-2-ピロリドンなどのケトンなどの少なくとも1種を含むものを用いることができる。 Examples of the organic solvent include alcohols such as isopropyl alcohol and diethylene glycol; ethers such as ethylene glycol monobutyl ether and diethylene glycol monobutyl ether; esters such as 2,2-butoxyethyl acetate and propylene carbonate; or N-methyl-2-pyrrolidone What contains at least 1 sort (s), such as ketones, etc. can be used.

 また、増粘剤としては、たとえばエチルセルロースやナトリウムカルボキシメチルヒドロキシエチルセルロースなどのセルロース誘導体;ナイロン6などのポリアミド樹脂;またはポリビニルピロリドンなどのビニル基が重合したポリマーなどの少なくとも1種を含むものを用いることができる。 Further, as the thickener, for example, a cellulose derivative such as ethyl cellulose or sodium carboxymethyl hydroxyethyl cellulose; a polyamide resin such as nylon 6; or a polymer containing at least one polymer such as polyvinyl pyrrolidone polymerized with vinyl groups is used. Can do.

 次に、図2(b)に示すように、エッチングペースト21に窪み21aを形成する工程を行なう。窪み21aを形成する工程は特に限定されないが、たとえばエッチングペースト21を加熱することなどにより行なうことができる。 Next, as shown in FIG. 2B, a step of forming a recess 21a in the etching paste 21 is performed. The step of forming the recess 21a is not particularly limited, but can be performed, for example, by heating the etching paste 21.

 ここで、エッチングペースト21は、エッチングペースト21がパッシベーション膜8のエッチングを開始する温度未満の温度に加熱されることが好ましい。このようにエッチングペースト21を加熱することによって、エッチングペースト21の塗布領域の中央部に向かってエッチングペースト21を凝集させることができるため、エッチングペースト21の厚さが局所的に薄くなる窪み21aを好適に形成することができる。 Here, it is preferable that the etching paste 21 is heated to a temperature below the temperature at which the etching paste 21 starts etching the passivation film 8. By heating the etching paste 21 in this way, the etching paste 21 can be agglomerated toward the center of the application region of the etching paste 21, so that the recess 21 a where the thickness of the etching paste 21 is locally reduced is formed. It can form suitably.

 このような窪み21aは、たとえば250℃以上400℃以下の温度にエッチングペースト21を加熱することなどによって形成することができる。 Such a depression 21a can be formed by heating the etching paste 21 to a temperature of 250 ° C. or higher and 400 ° C. or lower, for example.

 エッチングペースト21の窪み21aの厚さtは、0.5μm以上1.5μm以下であることが好ましい。この場合には、後述する工程において、n型不純物拡散領域5上に好適な高さの凸部を形成することができる傾向が大きくなる。 The thickness t of the recess 21a of the etching paste 21 is preferably 0.5 μm or more and 1.5 μm or less. In this case, in the process described later, a tendency that a convex part having a suitable height can be formed on the n-type impurity diffusion region 5 is increased.

 次に、図2(c)に示すように、パッシベーション膜8をエッチングする工程を行なう。これにより、n型不純物拡散領域5の表面の一部を露出させるコンタクトホール9が形成される。 Next, as shown in FIG. 2C, a step of etching the passivation film 8 is performed. Thereby, a contact hole 9 exposing a part of the surface of the n-type impurity diffusion region 5 is formed.

 ここで、パッシベーション膜8をエッチングする工程は、窪み21aが形成されたエッチングペースト21を用いてパッシベーション膜8の一部である凸部8aがn型不純物拡散領域5上に残るようにして行なわれる。 Here, the step of etching the passivation film 8 is performed using the etching paste 21 in which the depressions 21 a are formed so that the projections 8 a that are part of the passivation film 8 remain on the n-type impurity diffusion region 5. .

 このようなパッシベーション膜8のエッチングは、たとえば、窪み21aが形成されたエッチングペースト21をエッチングペースト21がパッシベーション膜8のエッチングを開始する温度以上の温度に加熱することなどによって行なうことができる。これにより、エッチングペースト21の凸部8a以外の所定の厚さを有する部分においてはパッシベーション膜8を完全にエッチングすることができるため、n型不純物拡散領域5の表面が露出する。一方、エッチングペースト21の窪み21aにおいてはエッチングペースト21のその他の部分よりも厚さが薄く形成されているため、パッシベーション膜8のエッチングが不完全となり、n型不純物拡散領域5の表面上にパッシベーション膜8の一部である凸部8aが残ることになる。 Such etching of the passivation film 8 can be performed, for example, by heating the etching paste 21 in which the recess 21 a is formed to a temperature equal to or higher than the temperature at which the etching paste 21 starts etching the passivation film 8. As a result, the passivation film 8 can be completely etched in a portion having a predetermined thickness other than the convex portion 8a of the etching paste 21, so that the surface of the n-type impurity diffusion region 5 is exposed. On the other hand, since the thickness of the recess 21 a of the etching paste 21 is thinner than the other portions of the etching paste 21, the etching of the passivation film 8 becomes incomplete, and the passivation is formed on the surface of the n-type impurity diffusion region 5. The convex part 8a which is a part of the film 8 remains.

 ここで、パッシベーション膜8の一部である凸部8aの厚さTは、0.03μm以上0.5μm以下であることが好ましい。凸部8aの厚さTが0.03μm以上である場合にはn型用焼成電極11の接触面積を増大させることができる傾向にあり、凸部8aの厚さTが0.5μm以下である場合には凸部8aが高くなりすぎることによる凸部8aの破損をより有効に抑制することができる傾向にある。 Here, the thickness T of the convex portion 8a which is a part of the passivation film 8 is preferably 0.03 μm or more and 0.5 μm or less. When the thickness T of the convex portion 8a is 0.03 μm or more, the contact area of the n-type fired electrode 11 tends to be increased, and the thickness T of the convex portion 8a is 0.5 μm or less. In such a case, there is a tendency that damage to the convex portion 8a due to the convex portion 8a becoming too high can be more effectively suppressed.

 図3に、実施の形態1におけるコンタクトホール9の形成後のn型シリコン基板1の裏面の一部の模式的な平面図を示す。ここで、コンタクトホール9からは、n型不純物拡散領域5の表面が露出しているとともに、n型不純物拡散領域5の表面上に直線状に伸びる凸部8aと、その凸部8aと所定の間隔を空けて平行に伸長し、その一部が欠落している破線状の凸部8aも露出している。 FIG. 3 shows a schematic plan view of a part of the back surface of n-type silicon substrate 1 after formation of contact hole 9 in the first embodiment. Here, from the contact hole 9, the surface of the n-type impurity diffusion region 5 is exposed, a convex portion 8 a extending linearly on the surface of the n-type impurity diffusion region 5, and the convex portion 8 a A broken line-like convex portion 8a that extends in parallel with a gap and is partially missing is also exposed.

 なお、凸部8aは、図3に示す形状に限定されるものではなく、n型不純物拡散領域5の表面上の一部に形成されていればよい。 Note that the convex portion 8 a is not limited to the shape shown in FIG. 3, and may be formed on a part of the surface of the n-type impurity diffusion region 5.

 次に、エッチングによって露出したn型不純物拡散領域5上および凸部8a上に導電性ペーストを塗布する工程を行なう。ここで、導電性ペーストを塗布する工程は、たとえば市販の銀ペーストなどの導電性を有するペーストをスクリーン印刷などによって塗布することにより行なうことができる。 Next, a process of applying a conductive paste on the n-type impurity diffusion region 5 and the protrusion 8a exposed by etching is performed. Here, the step of applying the conductive paste can be performed by applying a conductive paste such as a commercially available silver paste by screen printing or the like.

 次に、図2(d)に示すように、導電性ペーストを焼成することによってn型用焼成電極11を形成する工程を行なう。ここで、導電性ペーストの焼成によるn型用焼成電極11の形成は、従来の両面電極型太陽電池セルの焼成温度よりも低温(たとえば400℃程度)の焼成温度で導電性ペーストを焼成することにより行なわれる。 Next, as shown in FIG. 2D, a step of forming the n-type fired electrode 11 by firing the conductive paste is performed. Here, the n-type firing electrode 11 is formed by firing the conductive paste by firing the conductive paste at a firing temperature lower than the firing temperature of the conventional double-sided electrode type solar battery cell (for example, about 400 ° C.). It is done by.

 このように、実施の形態1の裏面電極型太陽電池の製造方法においては、局所的に厚さの薄い部分である窪み21aを有するエッチングペースト21を用いてパッシベーション膜8をエッチングすることによって、パッシベーション膜8の一部である凸部8aをn型不純物拡散領域5の表面上に残す。そして、凸部8aおよびn型不純物拡散領域5の表面上に導電性ペーストを塗布して、その後焼成することによってn型用焼成電極11を形成している。そのため、n型用焼成電極11については、凸部8aの表面の分だけn型不純物拡散領域5およびパッシベーション膜8との接触面積を増大させることができる。これにより、n型用焼成電極11の形成時の導電性ペーストの焼成温度が低い場合でも、n型用焼成電極11の密着性を向上させることができることから、n型用焼成電極11のn型シリコン基板1からの剥離を有効に防止することができる。 Thus, in the manufacturing method of the back electrode type solar cell of Embodiment 1, the passivation film 8 is etched using the etching paste 21 having the depression 21a which is a locally thin portion, thereby allowing passivation. The convex portion 8 a that is a part of the film 8 is left on the surface of the n-type impurity diffusion region 5. Then, a conductive paste is applied on the surface of the convex portion 8a and the n-type impurity diffusion region 5, and then fired to form the n-type fired electrode 11. Therefore, for the n-type fired electrode 11, the contact area between the n-type impurity diffusion region 5 and the passivation film 8 can be increased by the amount of the surface of the convex portion 8a. Thereby, even when the firing temperature of the conductive paste at the time of forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Separation from the silicon substrate 1 can be effectively prevented.

 なお、図2(a)~図2(d)においては、コンタクトホール9およびn型用焼成電極11を形成する場合について説明したが、コンタクトホール10およびp型用焼成電極12の形成も同様にして行なうことができるのは言うまでもない。 2A to 2D, the case where the contact hole 9 and the n-type fired electrode 11 are formed has been described. However, the contact hole 10 and the p-type fired electrode 12 are formed in the same manner. Needless to say, this can be done.

 また、上記においては、裏面電極型太陽電池セルを製造する場合について説明したが、本発明は、裏面電極型太陽電池セル以外の両面電極型太陽電池セルなどの他の結晶太陽電池セルにも適用できることは言うまでもない。 Moreover, in the above, although the case where a back electrode type photovoltaic cell was manufactured was demonstrated, this invention is applied also to other crystal solar cells, such as a double-sided electrode type solar cell other than a back electrode type solar cell. Needless to say, you can.

 <実施の形態2>
 以下、本発明の結晶太陽電池セルの製造方法の他の一例である実施の形態2の裏面電極型太陽電池セルの製造方法について説明する。実施の形態2の裏面電極型太陽電池セルの製造方法においては、コンタクトホール9および凸部8aの形状がそれぞれ実施の形態1と異なっている点に特徴がある。
<Embodiment 2>
Hereinafter, the manufacturing method of the back surface electrode type photovoltaic cell of Embodiment 2 which is another example of the manufacturing method of the crystalline solar cell of this invention is demonstrated. The manufacturing method of the back electrode type solar cell of the second embodiment is characterized in that the shapes of the contact hole 9 and the convex portion 8a are different from those of the first embodiment.

 図4に、実施の形態2におけるコンタクトホール9の形成後のn型シリコン基板1の裏面の一部の模式的な平面図を示す。ここで、コンタクトホール9は円形状に形成されており、コンタクトホール9の内側に配置された凸部8aも円形状に形成されている。 FIG. 4 shows a schematic plan view of a part of the back surface of the n-type silicon substrate 1 after the formation of the contact hole 9 in the second embodiment. Here, the contact hole 9 is formed in a circular shape, and the convex portion 8a disposed inside the contact hole 9 is also formed in a circular shape.

 このように、コンタクトホール9および凸部8aを形成した場合にも、n型用焼成電極11については、凸部8aの表面の分だけn型不純物拡散領域5およびパッシベーション膜8との接触面積を増大させることができる。 Thus, even when the contact hole 9 and the convex portion 8a are formed, the contact area between the n-type impurity diffusion region 5 and the passivation film 8 is about the surface of the convex portion 8a. Can be increased.

 したがって、実施の形態2においても、n型用焼成電極11の形成時の導電性ペーストの焼成温度が低い場合でも、n型用焼成電極11の密着性を向上させることができることから、n型用焼成電極11のn型シリコン基板1からの剥離を有効に防止することができる。 Therefore, also in Embodiment 2, even when the firing temperature of the conductive paste when forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Peeling of the fired electrode 11 from the n-type silicon substrate 1 can be effectively prevented.

 なお、円形状のコンタクトホール9および凸部8aは、パッシベーション膜8上にエッチングペースト21を塗布し、エッチングペースト21の一部を円形状に厚さを薄くした窪み21aとすることによって形成することができる。 The circular contact hole 9 and the convex portion 8a are formed by applying the etching paste 21 on the passivation film 8 and forming a part of the etching paste 21 into a circular recess 21a with a reduced thickness. Can do.

 本実施の形態における上記以外の説明は、実施の形態1と同様であるため、その説明については省略する。 Since the description other than the above in the present embodiment is the same as that in the first embodiment, the description thereof is omitted.

 <実施の形態3>
 以下、本発明の結晶太陽電池セルの製造方法の他の一例である実施の形態3の裏面電極型太陽電池セルの製造方法について説明する。実施の形態3の裏面電極型太陽電池セルの製造方法においては、図1(h)に示すコンタクトホールの形成工程および図1(i)に示す焼成電極の形成工程が図5(a)~図5(d)の模式的断面図に示すようにして行なわれることに特徴がある。
<Embodiment 3>
Hereinafter, the manufacturing method of the back surface electrode type photovoltaic cell of Embodiment 3 which is another example of the manufacturing method of the crystalline solar cell of this invention is demonstrated. In the method of manufacturing the back electrode type solar cell according to the third embodiment, the contact hole forming step shown in FIG. 1 (h) and the firing electrode forming step shown in FIG. 1 (i) are shown in FIGS. It is characterized in that it is performed as shown in the schematic sectional view of FIG.

 すなわち、まず、図5(a)に示すように、n型不純物拡散領域5の上方に対応するパッシベーション膜8の表面上の箇所にエッチングペースト21を塗布する工程を行なう。エッチングペースト21を塗布する工程は、たとえば、ディスペンサによる塗布、インクジェット印刷による塗布、スクリーン印刷による塗布、ロールコータ印刷による塗布、またはオフセット印刷による塗布などの方法を用いることができる。 That is, first, as shown in FIG. 5A, a step of applying an etching paste 21 to a location on the surface of the passivation film 8 corresponding to the upper part of the n-type impurity diffusion region 5 is performed. For the step of applying the etching paste 21, for example, a method such as application by a dispenser, application by inkjet printing, application by screen printing, application by roll coater printing, or application by offset printing can be used.

 ここで、エッチングペースト21としては、たとえば、パッシベーション膜8をエッチングすることが可能なエッチング成分と、エッチング成分以外の成分として、水、有機溶媒および増粘剤などを含むものを用いることができる。 Here, as the etching paste 21, for example, an etching component capable of etching the passivation film 8 and a component containing water, an organic solvent, a thickener, and the like as components other than the etching component can be used.

 エッチング成分としては、たとえば、リン酸、フッ化水素、フッ化アンモニウム、およびフッ化水素アンモニウムから選択された少なくとも1種などを用いることができる。 As the etching component, for example, at least one selected from phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride can be used.

 また、有機溶媒としては、たとえばイソプロピルアルコール、ジエチレングリコールなどのアルコール;エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルなどのエーテル;2,2-ブトキシエチルアセテート、プロピレンカーボネートなどのエステル;またはN-メチル-2-ピロリドンなどのケトンなどの少なくとも1種を含むものを用いることができる。 Examples of the organic solvent include alcohols such as isopropyl alcohol and diethylene glycol; ethers such as ethylene glycol monobutyl ether and diethylene glycol monobutyl ether; esters such as 2,2-butoxyethyl acetate and propylene carbonate; or N-methyl-2-pyrrolidone What contains at least 1 sort (s), such as ketones, etc. can be used.

 また、増粘剤としては、たとえばエチルセルロースやナトリウムカルボキシメチルヒドロキシエチルセルロースなどのセルロース誘導体;ナイロン6などのポリアミド樹脂;またはポリビニルピロリドンなどのビニル基が重合したポリマーなどの少なくとも1種を含むものを用いることができる。 Further, as the thickener, for example, a cellulose derivative such as ethyl cellulose or sodium carboxymethyl hydroxyethyl cellulose; a polyamide resin such as nylon 6; or a polymer containing at least one polymer such as polyvinyl pyrrolidone polymerized with vinyl groups is used. Can do.

 次に、図5(b)に示すように、パッシベーション膜8上におけるエッチングペースト21の周辺領域の少なくとも一部にエッチングペースト21の一部21bを飛散させる工程を行なう。エッチングペースト21の一部21bを飛散させる工程は特に限定されないが、たとえばエッチングペースト21を加熱することなどにより行なうことができる。 Next, as shown in FIG. 5B, a step of scattering a part 21b of the etching paste 21 on at least a part of the peripheral region of the etching paste 21 on the passivation film 8 is performed. The step of scattering the part 21b of the etching paste 21 is not particularly limited, but can be performed by, for example, heating the etching paste 21.

 ここで、エッチングペースト21は、エッチングペースト21がパッシベーション膜8のエッチングを開始する温度未満の温度に加熱されることが好ましい。このようにエッチングペースト21を加熱することによって、エッチングペースト21の塗布領域の中央部にエッチングペースト21が凝集する過程において、エッチングペースト21の一部21bがエッチングペースト21の周辺領域の少なくとも一部に飛散する。 Here, it is preferable that the etching paste 21 is heated to a temperature below the temperature at which the etching paste 21 starts etching the passivation film 8. By heating the etching paste 21 in this way, a part 21b of the etching paste 21 becomes at least a part of the peripheral area of the etching paste 21 in the process where the etching paste 21 aggregates in the central part of the application region of the etching paste 21. Scatter.

 このようなエッチングペースト21の一部21bの飛散は、たとえば250℃以上400℃以下の温度にエッチングペースト21を加熱することなどによって行なうことができる。 Such scattering of the part 21b of the etching paste 21 can be performed, for example, by heating the etching paste 21 to a temperature of 250 ° C. or higher and 400 ° C. or lower.

 また、エッチングペースト21の一部21bが飛散する周辺領域はエッチングペースト21の周囲の領域であれば特に限定されないが、エッチングペースト21の一部21bはエッチングペースト21の端部から10μm以上100μm以下の距離dだけ離れた位置に飛散することが好ましい。エッチングペースト21の端部から10μm以上の距離dだけ離れた位置にエッチングペースト21の一部21bを飛散させた場合には、後述する工程において、コンタクトホール9に近くなりすぎない位置に後述する凹部を形成することができるため、パッシベーション膜8に後述する凹部を形成したことによる焼成電極の密着性の向上効果をより効果的に発現させることができる傾向にある。また、エッチングペースト21の端部から100μm以下の距離dだけ離れた位置にエッチングペースト21の一部21bを飛散させた場合には、後述する工程において、コンタクトホール9に遠くなりすぎない位置に後述する凹部を形成することができるため、焼成電極の密着性の向上効果をより効果的に発現させることができる傾向にある。 The peripheral region where the part 21b of the etching paste 21 scatters is not particularly limited as long as it is a region around the etching paste 21, but the part 21b of the etching paste 21 is 10 μm or more and 100 μm or less from the end of the etching paste 21. It is preferable to scatter at a position separated by a distance d. When a part 21b of the etching paste 21 is scattered at a position separated from the end of the etching paste 21 by a distance d of 10 μm or more, a recess described later is provided at a position that is not too close to the contact hole 9 in a process described later. Therefore, the effect of improving the adhesion of the fired electrode due to the formation of the recesses to be described later in the passivation film 8 tends to be more effectively expressed. Further, when a part 21b of the etching paste 21 is scattered at a position separated from the end portion of the etching paste 21 by a distance d of 100 μm or less, it is described later at a position that is not too far from the contact hole 9 in a process described later. Since the recessed part to perform can be formed, it exists in the tendency which can express the adhesive improvement effect of a baking electrode more effectively.

 次に、図5(c)に示すように、パッシベーション膜8をエッチングする工程を行なう。これにより、n型不純物拡散領域5の表面の一部を露出させるコンタクトホール9が形成される。 Next, as shown in FIG. 5C, a step of etching the passivation film 8 is performed. Thereby, a contact hole 9 exposing a part of the surface of the n-type impurity diffusion region 5 is formed.

 ここで、パッシベーション膜8をエッチングする工程においては、エッチングペースト21が設置されたパッシベーション膜8の部分においてはパッシベーション膜8が完全にエッチングされてコンタクトホール9が形成される。一方、飛散したエッチングペースト21の一部21bが設置されたパッシベーション膜8の部分においては、エッチングペースト量が少なく、パッシベーション膜8のエッチングが不完全となるため、パッシベーション膜8の一部のみが除去されて凹部22が形成される。 Here, in the step of etching the passivation film 8, the passivation film 8 is completely etched in the portion of the passivation film 8 on which the etching paste 21 is placed, and the contact hole 9 is formed. On the other hand, in the portion of the passivation film 8 where the part 21b of the scattered etching paste 21 is disposed, the amount of the etching paste is small and the etching of the passivation film 8 is incomplete, so that only part of the passivation film 8 is removed. Thus, the recess 22 is formed.

 パッシベーション膜8の一部である凹部22の深さTは、0.03μm以上0.5μm以下であることが好ましい。凹部22の深さTが0.03μm以上である場合にはn型用焼成電極11の接触面積を増大させることができる傾向にあり、凹部22の深さTが0.5μm以下である場合には凹部22が深くなりすぎることによるパッシベーション膜8の破損をより有効に抑制することができる傾向にある。 The depth T of the recess 22 which is a part of the passivation film 8 is preferably 0.03 μm or more and 0.5 μm or less. When the depth T of the recess 22 is 0.03 μm or more, the contact area of the n-type fired electrode 11 tends to be increased, and when the depth T of the recess 22 is 0.5 μm or less. Tends to more effectively suppress damage to the passivation film 8 due to the recess 22 becoming too deep.

 図6に、実施の形態1におけるコンタクトホール9の形成後のn型シリコン基板1の裏面の一部の模式的な平面図を示す。ここで、コンタクトホール9からは、n型不純物拡散領域5の表面が露出しているとともに、n型不純物拡散領域5の外側のパッシベーション膜8には直線状に伸びる凹部22が形成されており、その凹部22とn型不純物拡散領域5を挟んで反対側のパッシベーション膜8には、その凹部22と平行に伸長する破線状の凹部22が形成されている。 FIG. 6 shows a schematic plan view of a part of the back surface of the n-type silicon substrate 1 after the formation of the contact hole 9 in the first embodiment. Here, from the contact hole 9, the surface of the n-type impurity diffusion region 5 is exposed, and the passivation film 8 outside the n-type impurity diffusion region 5 is formed with a recess 22 extending linearly, The passivation film 8 on the opposite side across the recess 22 and the n-type impurity diffusion region 5 is formed with a dashed-line recess 22 extending parallel to the recess 22.

 なお、凹部22は、図6に示す形状に限定されるものではなく、パッシベーション膜8の表面の一部に形成されていればよい。 Note that the recess 22 is not limited to the shape shown in FIG. 6, and may be formed on a part of the surface of the passivation film 8.

 次に、エッチングによって露出したn型不純物拡散領域5の表面上および凹部22を含むパッシベーション膜8の表面上に導電性ペーストを塗布する工程を行なう。ここで、導電性ペーストを塗布する工程は、たとえば市販の銀ペーストなどの導電性を有するペーストをスクリーン印刷などによって塗布することにより行なうことができる。 Next, a process of applying a conductive paste on the surface of the n-type impurity diffusion region 5 exposed by etching and on the surface of the passivation film 8 including the recess 22 is performed. Here, the step of applying the conductive paste can be performed by applying a conductive paste such as a commercially available silver paste by screen printing or the like.

 次に、図5(d)に示すように、導電性ペーストを焼成することによってn型用焼成電極11を形成する工程を行なう。ここで、導電性ペーストの焼成によるn型用焼成電極11の形成は、従来の両面電極型太陽電池セルの焼成温度よりも低温(たとえば400℃程度)の焼成温度で導電性ペーストを焼成することにより行なわれる。 Next, as shown in FIG. 5D, a step of forming the n-type fired electrode 11 by firing the conductive paste is performed. Here, the n-type firing electrode 11 is formed by firing the conductive paste by firing the conductive paste at a firing temperature lower than the firing temperature of the conventional double-sided electrode type solar battery cell (for example, about 400 ° C.). It is done by.

 このように、実施の形態1の裏面電極型太陽電池の製造方法においては、パッシベーション膜8上にエッチングペースト21の一部21bを飛散させてパッシベーション膜8をエッチングすることによって、パッシベーション膜8の一部にコンタクトホール9を形成してn型不純物拡散領域5の表面を露出させるとともに、n型不純物拡散領域5の外側のパッシベーション膜8の領域に凹部22を形成する。そして、n型不純物拡散領域5の表面上および凹部22を含むパッシベーション膜8の表面上に導電性ペーストを塗布して、その後焼成することによってn型用焼成電極11を形成している。そのため、n型用焼成電極11については、凹部22の表面の分だけパッシベーション膜8との接触面積を増大させることができる。これにより、n型用焼成電極11の形成時の導電性ペーストの焼成温度が低い場合でも、n型用焼成電極11の密着性を向上させることができることから、n型用焼成電極11のn型シリコン基板1からの剥離を有効に防止することができる。 As described above, in the method of manufacturing the back electrode type solar cell according to the first embodiment, a part 21 b of the etching paste 21 is scattered on the passivation film 8 to etch the passivation film 8. A contact hole 9 is formed in the portion to expose the surface of the n-type impurity diffusion region 5, and a recess 22 is formed in the region of the passivation film 8 outside the n-type impurity diffusion region 5. Then, a conductive paste is applied on the surface of the n-type impurity diffusion region 5 and on the surface of the passivation film 8 including the recesses 22 and then fired to form the n-type fired electrode 11. Therefore, the contact area between the n-type sintered electrode 11 and the passivation film 8 can be increased by the surface of the recess 22. Thereby, even when the firing temperature of the conductive paste at the time of forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Separation from the silicon substrate 1 can be effectively prevented.

 なお、図5(a)~図5(d)においては、コンタクトホール9およびn型用焼成電極11を形成する場合について説明したが、コンタクトホール10およびp型用焼成電極12の形成も同様にして行なうことができるのは言うまでもない。 5A to 5D, the case where the contact hole 9 and the n-type fired electrode 11 are formed has been described. However, the contact hole 10 and the p-type fired electrode 12 are formed in the same manner. Needless to say, this can be done.

 また、上記においては、エッチングペースト21の一部21bを飛散させることによって、エッチングペースト21の一部21bをエッチングペースト21から離間させる場合について説明したが、これ以外にも、たとえば、エッチングペースト21を加熱すること等によってエッチングペースト21の一部21bが残るようにエッチングペースト21を凝集させること等によっても、エッチングペースト21の一部21bをエッチングペースト21から離間させてもよく、エッチングペースト21からエッチングペースト21の一部21bを離間する方法については特に限定されない。 In the above description, the case where the portion 21b of the etching paste 21 is separated from the etching paste 21 by scattering the portion 21b of the etching paste 21 has been described. The etching paste 21 may be separated from the etching paste 21 by, for example, agglomerating the etching paste 21 so that the part 21b of the etching paste 21 remains by heating or the like. The method for separating the part 21b of the paste 21 is not particularly limited.

 また、上記においては、裏面電極型太陽電池セルを製造する場合について説明したが、本発明は、裏面電極型太陽電池セル以外の両面電極型太陽電池セルなどの他の結晶太陽電池セルにも適用できることは言うまでもない。 Moreover, in the above, although the case where a back electrode type photovoltaic cell was manufactured was demonstrated, this invention is applied also to other crystal solar cells, such as a double-sided electrode type solar cell other than a back electrode type solar cell. Needless to say, you can.

 本実施の形態における上記以外の説明は、実施の形態1および2と同様であるため、その説明については省略する。 Since the description other than the above in the present embodiment is the same as that in the first and second embodiments, the description thereof is omitted.

 <実施の形態4>
 以下、本発明の結晶太陽電池セルの製造方法の他の一例である実施の形態4の裏面電極型太陽電池セルの製造方法について説明する。実施の形態4の裏面電極型太陽電池セルの製造方法においては、コンタクトホール9および凹部22の形状がそれぞれ実施の形態3と異なっている点に特徴がある。
<Embodiment 4>
Hereinafter, the manufacturing method of the back surface electrode type photovoltaic cell of Embodiment 4 which is another example of the manufacturing method of the crystalline solar cell of this invention is demonstrated. The method for manufacturing a back electrode type solar cell according to the fourth embodiment is characterized in that the shapes of the contact hole 9 and the recess 22 are different from those of the third embodiment.

 図7に、実施の形態4におけるコンタクトホール9の形成後のn型シリコン基板1の裏面の一部の模式的な平面図を示す。ここで、コンタクトホール9は円形状に形成されており、コンタクトホール9の外側のパッシベーション膜8の領域に配置された凹部22も円形状に形成されている。 FIG. 7 shows a schematic plan view of a part of the back surface of the n-type silicon substrate 1 after the formation of the contact hole 9 in the fourth embodiment. Here, the contact hole 9 is formed in a circular shape, and the concave portion 22 disposed in the region of the passivation film 8 outside the contact hole 9 is also formed in a circular shape.

 このように、コンタクトホール9および凹部22を形成した場合にも、n型用焼成電極11については、凹部22の表面の分だけパッシベーション膜8との接触面積を増大させることができる。 Thus, even when the contact hole 9 and the recess 22 are formed, the contact area of the n-type fired electrode 11 with the passivation film 8 can be increased by the amount of the surface of the recess 22.

 したがって、実施の形態4においても、n型用焼成電極11の形成時の導電性ペーストの焼成温度が低い場合でも、n型用焼成電極11の密着性を向上させることができることから、n型用焼成電極11のn型シリコン基板1からの剥離を有効に防止することができる。 Therefore, also in Embodiment 4, even when the firing temperature of the conductive paste when forming the n-type fired electrode 11 is low, the adhesion of the n-type fired electrode 11 can be improved. Peeling of the fired electrode 11 from the n-type silicon substrate 1 can be effectively prevented.

 なお、円形状のコンタクトホール9および凹部22は、それぞれ、パッシベーション膜8上にエッチングペースト21を円形状に塗布するとともに、そのエッチングペースト21の外側の周辺領域にエッチングペースト21の一部21bを円形状に飛散させることによって形成することができる。 In addition, the circular contact hole 9 and the concave portion 22 respectively apply the etching paste 21 in a circular shape on the passivation film 8, and apply a part 21 b of the etching paste 21 to the peripheral region outside the etching paste 21. It can be formed by scattering into a shape.

 本実施の形態における上記以外の説明は、実施の形態1~3と同様であるため、その説明については省略する。 Since the description other than the above in the present embodiment is the same as that in the first to third embodiments, the description thereof is omitted.

 以上のように本発明の実施の形態について説明を行なったが、上述の各実施の形態の構成を適宜組み合わせることも当初から予定している。 As described above, the embodiments of the present invention have been described, but it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments.

 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

 本発明は、結晶太陽電池セルおよび結晶太陽電池セルの製造方法に利用することができ、特に、エッチングペーストによってパッシベーション膜の一部を除去して焼成電極が形成される結晶太陽電池セルおよび結晶太陽電池セルの製造方法に好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a crystal solar cell and a method for manufacturing the crystal solar cell, and in particular, a crystal solar cell and a crystal solar in which a fired electrode is formed by removing a part of a passivation film with an etching paste It can utilize suitably for the manufacturing method of a battery cell.

 1 n型シリコン基板、2 テクスチャマスク、3 テクスチャ構造、5 n型不純物拡散領域、6 p型不純物拡散領域、7 反射防止膜、8 パッシベーション膜、8a 凸部、9,10 コンタクトホール、11 n型用焼成電極、12 p型用焼成電極、21 エッチングペースト、21a 窪み、21b エッチングペーストの一部、22 凹部。 1 n-type silicon substrate, 2 texture mask, 3 texture structure, 5 n-type impurity diffusion region, 6 p-type impurity diffusion region, 7 antireflection film, 8 passivation film, 8a convex part, 9,10 contact hole, 11 n-type Firing electrode, 12 p-type firing electrode, 21 etching paste, 21a depression, 21b part of etching paste, 22 recesses.

Claims (13)

 半導体基板(1)と、
 前記半導体基板(1)の表面に設けられた不純物拡散領域(5,6)と、
 前記半導体基板(1)の表面上に設けられたパッシベーション膜(8)と、
 前記不純物拡散領域(5,6)上に設けられた前記パッシベーション膜(8)の一部である凸部(8a)または前記パッシベーション膜(8)に設けられた凹部(22)と、
 前記不純物拡散領域(5,6)および前記凸部(8a)、または前記不純物拡散領域(5,6)および前記凹部(22)を覆うようにして設けられた焼成電極(11,12)とを備えた、結晶太陽電池セル。
A semiconductor substrate (1);
Impurity diffusion regions (5, 6) provided on the surface of the semiconductor substrate (1);
A passivation film (8) provided on the surface of the semiconductor substrate (1);
A convex portion (8a) which is a part of the passivation film (8) provided on the impurity diffusion region (5, 6) or a concave portion (22) provided in the passivation film (8);
A fired electrode (11, 12) provided so as to cover the impurity diffusion region (5, 6) and the convex portion (8a) or the impurity diffusion region (5, 6) and the concave portion (22). A crystalline solar cell provided.
 前記凸部(8a)の厚さは、0.03μm以上0.5μm以下である、請求項1に記載の結晶太陽電池セル。 The thickness of the said convex part (8a) is a crystal solar cell of Claim 1 which are 0.03 micrometer or more and 0.5 micrometer or less.  前記凹部(22)の深さは、0.03μm以上0.5μm以下である、請求項1に記載の結晶太陽電池セル。 The crystal solar cell according to claim 1, wherein the depth of the recess (22) is 0.03 µm or more and 0.5 µm or less.  半導体基板(1)の表面に不純物拡散領域(5,6)を形成する工程と、
 前記半導体基板(1)の表面にパッシベーション膜(8)を形成する工程と、
 前記パッシベーション膜(8)上にエッチングペースト(21)を塗布する工程と、
 前記エッチングペースト(21)に窪み(21a)を形成する工程と、
 前記窪み(21a)が形成された前記エッチングペースト(21)を用いて前記パッシベーション膜(8)の一部である凸部(8a)が前記不純物拡散領域(5,6)上に残るように前記パッシベーション膜(8)をエッチングする工程と、
 前記エッチングによって露出した前記不純物拡散領域(5,6)上および前記凸部(8a)上に導電性ペーストを塗布する工程と、
 前記導電性ペーストを焼成することによって焼成電極(11,12)を形成する工程とを含む、結晶太陽電池セルの製造方法。
Forming an impurity diffusion region (5, 6) on the surface of the semiconductor substrate (1);
Forming a passivation film (8) on the surface of the semiconductor substrate (1);
Applying an etching paste (21) on the passivation film (8);
Forming a recess (21a) in the etching paste (21);
The protrusion (8a) which is a part of the passivation film (8) is left on the impurity diffusion region (5, 6) by using the etching paste (21) in which the recess (21a) is formed. Etching the passivation film (8);
Applying a conductive paste on the impurity diffusion regions (5, 6) and the protrusions (8a) exposed by the etching;
Forming a fired electrode (11, 12) by firing the conductive paste.
 前記窪み(21a)を形成する工程は、前記エッチングペースト(21)を加熱する工程を含む、請求項4に記載の結晶太陽電池セルの製造方法。 The method for manufacturing a crystalline solar cell according to claim 4, wherein the step of forming the recess (21a) includes a step of heating the etching paste (21).  前記エッチングペースト(21)を加熱する工程において、前記エッチングペースト(21)は、前記エッチングペースト(21)が前記パッシベーション膜(8)のエッチングを開始する温度未満の温度に加熱される、請求項5に記載の結晶太陽電池セルの製造方法。 In the step of heating the etching paste (21), the etching paste (21) is heated to a temperature below a temperature at which the etching paste (21) starts etching the passivation film (8). The manufacturing method of the crystalline solar cell as described in 1 ..  前記エッチングペースト(21)の前記窪み(21a)の厚さは、0.5μm以上1.5μm以下である、請求項4から6のいずれかに記載の結晶太陽電池セルの製造方法。 The method of manufacturing a crystalline solar cell according to any one of claims 4 to 6, wherein the thickness of the recess (21a) of the etching paste (21) is 0.5 µm or more and 1.5 µm or less.  前記パッシベーション膜(8)の一部である前記凸部(8a)の厚さは、0.03μm以上0.5μm以下である、請求項4から7のいずれかに記載の結晶太陽電池セルの製造方法。 The production of the crystalline solar battery cell according to any one of claims 4 to 7, wherein a thickness of the convex portion (8a) which is a part of the passivation film (8) is 0.03 µm or more and 0.5 µm or less. Method.  半導体基板(1)の表面に不純物拡散領域(5,6)を形成する工程と、
 前記半導体基板(1)の前記表面にパッシベーション膜(8)を形成する工程と、
 前記パッシベーション膜(8)上にエッチングペースト(21)を塗布する工程と、
 前記パッシベーション膜(8)上における前記エッチングペースト(21)の周辺領域の少なくとも一部に前記エッチングペースト(21)の一部を離間させる工程と、
 前記エッチングペースト(21)および前記離間させた前記エッチングペースト(21)の一部を用いて前記パッシベーション膜(8)の一部に凹部(22)が形成されるように前記パッシベーション膜(8)をエッチングする工程と、
 前記エッチングによって露出した前記不純物拡散領域(5,6)の表面上および前記凹部(22)を含む前記パッシベーション膜(8)の表面上に導電性ペーストを塗布する工程と、
 前記導電性ペーストを焼成することによって焼成電極(11,12)を形成する工程とを含む、結晶太陽電池セルの製造方法。
Forming an impurity diffusion region (5, 6) on the surface of the semiconductor substrate (1);
Forming a passivation film (8) on the surface of the semiconductor substrate (1);
Applying an etching paste (21) on the passivation film (8);
Separating a part of the etching paste (21) into at least a part of a peripheral region of the etching paste (21) on the passivation film (8);
The passivation film (8) is formed so that a recess (22) is formed in a part of the passivation film (8) by using the etching paste (21) and a part of the separated etching paste (21). Etching process;
Applying a conductive paste on the surface of the impurity diffusion region (5, 6) exposed by the etching and on the surface of the passivation film (8) including the recess (22);
Forming a fired electrode (11, 12) by firing the conductive paste.
 前記離間させる工程は、前記エッチングペースト(21)を加熱する工程を含む、請求項9に記載の結晶太陽電池セルの製造方法。 The method of manufacturing a crystalline solar battery cell according to claim 9, wherein the step of separating includes a step of heating the etching paste (21).  前記エッチングペースト(21)を加熱する工程において、前記エッチングペースト(21)は、前記エッチングペースト(21)が前記パッシベーション膜(8)のエッチングを開始する温度未満の温度に加熱される、請求項10に記載の結晶太陽電池セルの製造方法。 11. In the step of heating the etching paste (21), the etching paste (21) is heated to a temperature below a temperature at which the etching paste (21) starts etching the passivation film (8). The manufacturing method of the crystalline solar cell as described in 1 ..  前記離間させる工程において、前記エッチングペースト(21)の一部を、前記エッチングペースト(21)の端部から10μm以上100μm以下の距離だけ離れた位置に離間させる、請求項9から11のいずれかに記載の結晶太陽電池セルの製造方法。 12. The method according to claim 9, wherein in the step of separating, a part of the etching paste (21) is separated to a position separated from an end of the etching paste (21) by a distance of 10 μm or more and 100 μm or less. The manufacturing method of the crystalline solar cell as described.  前記パッシベーション膜(8)の前記凹部(22)の深さは、0.03μm以上0.5μm以下である、請求項9から12のいずれかに記載の結晶太陽電池セルの製造方法。 The depth of the said recessed part (22) of the said passivation film (8) is 0.03 micrometer or more and 0.5 micrometer or less, The manufacturing method of the crystalline photovoltaic cell in any one of Claim 9-12.
PCT/JP2012/059049 2011-06-20 2012-04-03 Crystalline solar cell and method for producing crystalline solar cell WO2012176527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280030486.2A CN103620793B (en) 2011-06-20 2012-04-03 The manufacture method of crystalline solar cells unit and crystalline solar cells unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-136004 2011-06-20
JP2011-136003 2011-06-20
JP2011136003A JP5275415B2 (en) 2011-06-20 2011-06-20 Crystal solar cell and method for manufacturing crystal solar cell
JP2011136004A JP5129369B2 (en) 2011-06-20 2011-06-20 Crystal solar cell and method for manufacturing crystal solar cell

Publications (1)

Publication Number Publication Date
WO2012176527A1 true WO2012176527A1 (en) 2012-12-27

Family

ID=47422374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059049 WO2012176527A1 (en) 2011-06-20 2012-04-03 Crystalline solar cell and method for producing crystalline solar cell

Country Status (2)

Country Link
CN (1) CN103620793B (en)
WO (1) WO2012176527A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267610A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Solar cell
JP2007088254A (en) * 2005-09-22 2007-04-05 Sharp Corp Manufacturing method of back junction solar cell
JP2009021494A (en) * 2007-07-13 2009-01-29 Sharp Corp Manufacturing method of solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499035C (en) * 2003-10-03 2009-06-10 株式会社半导体能源研究所 Method for manufacturing semiconductor device
JP5646950B2 (en) * 2009-11-06 2014-12-24 東京応化工業株式会社 Mask material composition and method for forming impurity diffusion layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267610A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Solar cell
JP2007088254A (en) * 2005-09-22 2007-04-05 Sharp Corp Manufacturing method of back junction solar cell
JP2009021494A (en) * 2007-07-13 2009-01-29 Sharp Corp Manufacturing method of solar cell

Also Published As

Publication number Publication date
CN103620793B (en) 2016-04-27
CN103620793A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP6701295B2 (en) Method of manufacturing solar cell
TWI545793B (en) Thin twin crystal solar cell and manufacturing method thereof
JP5215330B2 (en) Manufacturing method of back electrode type solar cell, back electrode type solar cell and back electrode type solar cell module
JP2014060430A (en) Method of manufacturing solar cell utilizing pinhole-free mask layer by direct pattern
CN103858239A (en) All-black-contact solar cell and fabrication method
US9685581B2 (en) Manufacturing method of solar cell
JP2010161310A (en) Backside electrode type solar cell and method of manufacturing the same
TWI538244B (en) Method for manufacturing solar cells
US8865510B2 (en) Method of manufacturing solar cell
TWI568004B (en) Emitter penetrating solar cell and preparation method thereof
WO2012176839A1 (en) Method for manufacturing rear face electrode type solar battery
JP2014112600A (en) Method for manufacturing back-electrode-type solar cell and back-electrode-type solar cell
JP2007103572A (en) Method of forming embedded electrode of solar battery, and manufacturing method of solar battery
JP2011233656A (en) Manufacturing method of semiconductor device
JPWO2018021546A1 (en) Solar cell element and method of manufacturing the same
JP5275415B2 (en) Crystal solar cell and method for manufacturing crystal solar cell
JP5129369B2 (en) Crystal solar cell and method for manufacturing crystal solar cell
CN104347751B (en) The preparation method of solar cell
JP5781488B2 (en) Crystal solar cell and method for manufacturing crystal solar cell
JP5677404B2 (en) Crystal solar cells
WO2012176527A1 (en) Crystalline solar cell and method for producing crystalline solar cell
JP5452535B2 (en) Manufacturing method of solar cell
JP2007266649A (en) Method for manufacturing solar cell element
JP2015167260A (en) Back surface electrode type solar battery and manufacturing method for the same
JP2006294696A (en) Method of manufacturing solar cell, and silicon substrate for solar cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280030486.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802851

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载