+

WO2012007992A1 - Flexible wiring board, dry film for coverlay, and production method for flexible wiring board - Google Patents

Flexible wiring board, dry film for coverlay, and production method for flexible wiring board Download PDF

Info

Publication number
WO2012007992A1
WO2012007992A1 PCT/JP2010/004569 JP2010004569W WO2012007992A1 WO 2012007992 A1 WO2012007992 A1 WO 2012007992A1 JP 2010004569 W JP2010004569 W JP 2010004569W WO 2012007992 A1 WO2012007992 A1 WO 2012007992A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
flexible wiring
coverlay
dry film
film
Prior art date
Application number
PCT/JP2010/004569
Other languages
French (fr)
Japanese (ja)
Inventor
前澤英樹
福川弘
Original Assignee
京セラケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラケミカル株式会社 filed Critical 京セラケミカル株式会社
Priority to CN2010800679864A priority Critical patent/CN102986310A/en
Priority to PCT/JP2010/004569 priority patent/WO2012007992A1/en
Priority to KR1020127031143A priority patent/KR20130037205A/en
Publication of WO2012007992A1 publication Critical patent/WO2012007992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • H05K2201/10136Liquid Crystal display [LCD]

Definitions

  • the present invention relates to a flexible wiring board useful for thinning devices such as a liquid crystal display module and an imaging module, a dry film for coverlay, and a method for manufacturing a flexible wiring board.
  • a liquid crystal display module having a small liquid crystal display panel for example, a TFT liquid crystal display panel, is used as a display unit of a cellular phone or the like.
  • a semiconductor chip constituting a driver for driving each subpixel is mounted on one side of the liquid crystal display panel, and a flexible wiring board is connected for connection with a control unit. It is stored in.
  • the flexible wiring board is bent in the vicinity of the liquid crystal display panel, and is disposed on the back side of the frame with the other end sandwiching the backlight.
  • an imaging module equipped with an imaging device such as a CCD image sensor is housed in a mobile phone or the like as a camera component by bending a flexible wiring board and connecting it to a main board via a connector or the like.
  • ⁇ Flexible wiring boards used in such liquid crystal display modules and imaging modules tend to have a smaller bending radius as the electronic equipment mounted becomes smaller and thinner.
  • a flexible wiring board is covered with a cover lay film in which an adhesive is applied to a polyimide film for the purpose of protecting or insulating a wiring pattern formed on the surface of the substrate.
  • the polyimide film has a high elastic modulus, and therefore, when the flexible wiring board is bent, a repulsive force (hereinafter also referred to as a springback force) is generated on the flexible wiring board, and the liquid crystal display There is a problem that the module and the imaging module are lifted.
  • a repulsive force hereinafter also referred to as a springback force
  • the flexible wiring A method of suppressing the springback force of the plate (for example, see Patent Document 1) and a method of preventing the liquid crystal panel from being lifted by the repulsive force of the flexible wiring board by forming a through hole in a portion where the bending curvature is maximized (See, for example, Patent Document 2).
  • a method is known in which a notched portion is provided in a bent portion of an insulating substrate constituting a flexible wiring board, and a protective resin made of silicone resin or the like is applied to this portion to facilitate bending of the flexible wiring board.
  • a protective resin made of silicone resin or the like is applied to this portion to facilitate bending of the flexible wiring board.
  • Patent Document 3 For example, see Patent Document 3
  • a flexible piece that is convex toward the circuit part side is formed by cutting between the circuit part and the terminal forming part.
  • a method is known in which the bent portion is eliminated by using for connection (see, for example, Patent Document 4).
  • Patent Document 5 From the viewpoint of thinning, it is also known to use a film made of an aramid resin as a coverlay film (see, for example, Patent Document 5).
  • Non-halogen flame retardancy Various methods for imparting non-halogen flame retardancy have been proposed so far.
  • Representative methods include hydrated metal compounds such as aluminum hydroxide and magnesium hydroxide, phosphorus-based flame retardants such as phosphate esters and polyphosphate compounds, and non-halogen-based compounds such as nitrogen-based flame retardants such as melamine compounds.
  • This method uses a flame retardant.
  • flame retardants when these flame retardants are used, it is difficult to achieve both the properties required for the coverlay, such as electrical insulation, solder heat resistance, and bend resistance, and flame retardancy. There were problems such as bleeding out.
  • the flexible wiring board used for a device that may cause a malfunction due to light leakage such as a liquid crystal display module or an imaging module has a low surface reflectance.
  • black ink may be printed on the surface of the polyimide cover lay film, but the spring back force is further increased by this ink layer, and cracking may occur when the ink is folded.
  • liquid crystal display modules and imaging element mounting modules are becoming thinner, and the flexible wiring board used therefor has a small springback force even when the bending radius is reduced, and is excellent in bending resistance. It is demanded.
  • the present invention has been made to solve the above problems, and provides a flexible wiring board having a small springback force, excellent bending resistance, and good flame resistance without using a halogen-based flame retardant.
  • the purpose is to do.
  • this invention aims at providing the manufacturing method of the dry film for coverlays useful for manufacture of such a flexible wiring board, and a flexible wiring board.
  • a flexible wiring board includes a base material made of a polyimide film, a circuit provided on one main surface of the base material, and a coverlay that covers the surface of the circuit,
  • the cover lay is formed of a cover lay dry film and has a thickness of 10 to 50 ⁇ m.
  • a flexible wiring board is provided.
  • A an epoxy resin
  • B an epoxy resin curing agent
  • C a curing accelerator
  • D a synthetic rubber
  • E a phosphazene compound
  • F a polyphosphate
  • a dry film for coverlay comprising a layer made of a non-halogen flame retardant resin composition containing a compound and (G) an inorganic filler as essential components on a support film.
  • a step of forming a circuit on one main surface of a substrate made of a polyimide film, and the coverlay dry film on the surface of the circuit, the non-halogen flame retardant Providing a method for manufacturing a flexible wiring board, comprising: superposing and heating the conductive resin composition layer side toward the circuit side and forming a coverlay by removing the support film Is done.
  • the present invention it is possible to obtain a flexible wiring board having a small springback force, excellent bending resistance, and good flame resistance without using a halogen flame retardant.
  • the obtained flexible wiring board is suitably used for devices that are required to be thin, such as liquid crystal display modules and imaging element modules.
  • FIG. 8 is a cross-sectional view illustrating a manufacturing process of the flexible wiring board following FIG. 7.
  • FIG. 1 It is sectional drawing which shows the manufacturing process of the flexible wiring board following FIG. It is sectional drawing which shows an example of the imaging module using the flexible wiring board of other embodiment. It is sectional drawing which shows an example of the dry film for coverlays. It is a figure which shows the measurement result of the transmittance
  • FIG. 1 is a cross-sectional view showing a first embodiment of the flexible wiring board of the present invention.
  • the flexible wiring board 1 of this embodiment has a flexible wiring board body 2 and a coverlay dry film formed on one main surface of the flexible wiring board body 2 with a thickness of 10 to 50 ⁇ m, preferably 20 to 20 ⁇ m. And a coverlay 3 of 35 ⁇ m.
  • the other main surface of the flexible wiring board body is covered with another cover lay 4 made of a polyimide film, a photosensitive resin, or the like, and a mounting component 5 is mounted (hereinafter referred to as a cover).
  • the lay 3 and the other cover lay 4 are referred to as a first cover lay 3 and a second cover lay 4, respectively).
  • the material which forms the 2nd coverlay 4 is not specifically limited, Like the 1st coverlay 3, you may form with the dry film for coverlays. From the viewpoint of suppressing the springback force and improving the bending resistance, it is preferable to use a photosensitive resin or a dry film for coverlay. As will be described later, the flexible wiring board 1 is used by being bent so that the main surface side on which the first cover lay 3 is formed becomes the inner side.
  • the flexible wiring board body 2 connects, for example, a base material 2a made of a polyimide film, circuits 2b and 2c provided on both main surfaces of the base material 2a, and these circuits 2b and 2c, respectively. It has a through hole 2d and a connection terminal 2e that electrically connects the circuit 2b and the circuit 2c to the liquid crystal display panel.
  • the first coverlay 3 is formed on substantially the entire surface of the flexible wiring board main body 2 except for the end where the connection terminal 2e is provided.
  • the second coverlay 4 is formed so as to cover the circuit 2c excluding, for example, a portion where the mounting component 5 of the flexible wiring board body 2 is mounted.
  • Such a flexible wiring board 1 is electrically connected to a liquid crystal display panel 12 to form a liquid crystal display module 11 as shown in FIGS.
  • the liquid crystal display panel 12 includes a connection terminal 13 and a semiconductor chip 14 on one main surface side.
  • the main surface side on which the first cover lay 3 is formed that is, the main surface side on which the connection terminals 2 e are formed faces the main surface side on which the connection terminals 13 of the liquid crystal display panel 12 are formed.
  • the connection terminals 2e and the connection terminals 13 are electrically connected to each other.
  • the flexible wiring board 1 is folded so as to enclose the liquid crystal display panel 12, that is, the flexible wiring board 1 so that the main surface side on which the first cover lay 3 is formed is inside.
  • the liquid crystal display module 11 is configured by bending and arranging.
  • the first cover lay 3 is formed to a thickness of 10 to 50 ⁇ m using a cover lay dry film, the spring back force is suppressed as compared with the conventional one. It can be easily bent without using protrusions and tape as fixing means, and the problem of the liquid crystal display panel 12 and the liquid crystal display module 11 being lifted can be solved.
  • the flexible wiring board 1 of the present embodiment can be manufactured as follows, for example.
  • a flexible metal-clad plate 42 in which metal foils 41 and 41 such as copper foil are bonded to both main surfaces of a base material 2a made of a polyimide film is prepared.
  • the flexible metal tension plate 42 can be selected and used from a metal tension plate for a two-layer type flexible wiring board and a metal tension plate for a three-layer type flexible wiring board, which are generally marketed as flexible metal tension plates.
  • a metal-clad board for a two-layer type flexible wiring board for example, ESPANEX (trade name, manufactured by Nippon Steel Chemical Co., Ltd.), NEOFLEX (trade name, manufactured by Mitsui Chemicals), UPISEL (trade name, manufactured by Ube Nitto Kasei Co., Ltd.), etc. Is mentioned.
  • the three-layer type flexible wiring board metal tension plate include TLF-521 and TLF-530 (trade name, manufactured by Kyocera Chemical Co., Ltd.). In either case, copper foil is used as the metal foil.
  • these metal foils 41, 41 are etched to form the circuit 2 b and the circuit 2 c to form the flexible wiring board main body 2, and then one of the flexible wiring board main bodies 2 (circuit The coverlay dry film 43 is overlaid and heated and pressed so as to cover the main surface of the 2b formation side.
  • the coverlay dry film 43 includes a support film on one side, and the support film is peeled off in advance during the heating and pressurization. Thereby, the flexible wiring board main body 2 in which the 1st cover lay 3 was formed in one main surface of the flexible wiring board main body 2 as shown in FIG. 7 is obtained.
  • the first coverlay 3 is formed on substantially the entire surface of one side of the flexible wiring board main body 2 excluding the end portion that becomes the connection terminal 2e.
  • a liquid photosensitive resin 44 is applied to substantially the entire surface of the other main surface (circuit 2c forming side) of the flexible wiring board body 2 as shown in FIG.
  • the second coverlay 4 is formed so as to cover the circuit 2c excluding the mounting component mounting portion by developing and post-curing.
  • the flexible wiring 1 in which the first cover lay 3 is formed on one main surface of the flexible wiring board main body 2 and the second cover lay 4 is formed on the other main surface is obtained.
  • the mounting component 5 is mounted on the flexible wiring 1 (FIG. 2).
  • FIG. 10 is a cross-sectional view showing a second embodiment of the flexible wiring board of the present invention. While the first embodiment is a flexible wiring board used in a liquid crystal display module, the flexible wiring board of this embodiment is a flexible wiring board used in an imaging module. FIG. 10 shows the flexible wiring board of this embodiment. The state which connected the wiring board 10 to the imaging module is shown. In addition, in order to avoid overlapping description, description is abbreviate
  • the flexible wiring board 10 of the present embodiment has a thickness of 10-50 ⁇ m, preferably 20-20, formed by a flexible wiring board body 2 and a coverlay dry film on one main surface of the flexible wiring board body 2. And a coverlay 3 of 35 ⁇ m. As shown in FIG. 10, the flexible wiring board 1 is used by being bent so that the main surface side on which the cover lay 3 is formed becomes the outside.
  • the flexible wiring board body 2 includes, for example, a base material 2a made of a polyimide film and a circuit 2b provided on one main surface of the base material 2a.
  • the cover lay 3 is formed on substantially the entire surface of one main surface of the flexible wiring board body 2 except for both ends where the connection terminals 2e and 2e are provided.
  • Such a flexible wiring board 10 is electrically connected to the imaging module main body 15 to form an imaging module 16 as shown in FIG.
  • the imaging module main body 15 includes a lens unit 17 and an imaging element 18.
  • one connection terminal 2e is electrically connected to an imaging board (not shown) on which the imaging element 18 of the imaging module body 15 is mounted, and the other connection terminal 2e is a connector (not shown). Is electrically connected.
  • the imaging module 16 is configured by being bent so that the main surface side on which the cover lay 3 is formed is on the outside.
  • a reinforcing plate 19 for reinforcing the connection with the connector is provided at the end of the main surface opposite to the circuit 2b surface of the substrate 2a on the connector side.
  • the cover lay 3 is formed to a thickness of 10 to 50 ⁇ m using a cover lay dry film, the spring back force can be suppressed as compared with the conventional one. Further, it can be easily bent without using a protrusion or a tape as a fixing means, and the problem of floating of the imaging module 16 can be solved.
  • the flexible wiring board 10 of the present embodiment is, for example, a flexible metal-clad board in which a metal foil such as a copper foil (to be a circuit 2b) is bonded to one side of a base material 2a made of a polyimide film.
  • a metal foil such as a copper foil (to be a circuit 2b) is bonded to one side of a base material 2a made of a polyimide film.
  • the cover foil dry film is overlaid and heated and pressed so as to cover the metal foil.
  • FIG. 11 is a cross-sectional view showing an example of a dry film for a coverlay that is preferably used in the present invention.
  • this coverlay dry film 50 has (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, ( A layer 52 made of a non-halogen flame retardant resin composition containing E) a phosphazene compound, (F) a polyphosphate compound, and (G) an inorganic filler as essential components is provided.
  • the epoxy resin of component (A) is non-halogen and has two or more epoxy groups in one molecule. Any material satisfying such conditions can be used without being limited by the molecular structure, molecular weight and the like. Specific examples include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type resin, cresol novolac type epoxy resin, glycidyl ether type epoxy resin, and alicyclic type. Examples thereof include epoxy resins, heterocyclic epoxy resins, and glycidyl ether-based modified epoxy resins. These can be used alone or in combination of two or more.
  • the (B) component epoxy resin curing agent a phenol resin curing agent, an acid anhydride curing agent, an amine curing agent or the like generally known as an epoxy resin curing agent is used.
  • the phenol resin-based curing agent include novolak type phenol resins such as phenol novolak resin and cresol novolak resin, amino-modified novolak type phenol resin, polyvinyl phenol resin, and phenol aralkyl resin.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydro anhydride Examples thereof include phthalic acid, tetrahydrophthalic anhydride, and nadic anhydride.
  • amine curing agent include diethylenetriamine, triethylenetetramine, tetraethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, isophoronediamine, diaminodiphenylmethane, metaphenylenediamine and the like.
  • organic acid hydrazide, diaminomaleonitrile and derivatives thereof, melamine and derivatives thereof, polyamide resin, amine imide, polyamine salt, and the like are also used. These can be used alone or in combination of two or more.
  • the blending amount of the epoxy resin curing agent of the component (B) is preferably an equivalent ratio of the epoxy resin of the component (A) and the epoxy resin curing agent of the component (B) (for example, in the case of a phenol resin curing agent, the epoxy resin
  • the molar ratio of the epoxy group and the phenolic hydroxyl group of the phenol resin-based curing agent is in the range of 0.7 to 1.3, more preferably in the range of 0.9 to 1.1.
  • the equivalent ratio is more than 1.3, moisture resistance and the like are lowered.
  • epoxy resin curing accelerator those generally known as epoxy resin curing accelerators are used. Specific examples include 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl.
  • the blending amount of the curing accelerator of component (C) is preferably 0.01 with respect to 100 parts by mass of the epoxy resin of component (A) from the viewpoint of the balance between curing acceleration and physical properties of the resin after curing. Is 5 parts by mass, and more preferably 0.3-2 parts by mass.
  • Examples of the synthetic rubber (D) include acrylic rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, butadiene methyl acrylate acrylonitrile rubber, butadiene rubber, carboxyl group-containing acrylonitrile butadiene rubber, vinyl group-containing acrylonitrile butadiene rubber, silicone rubber, urethane. Rubber, polyvinyl butyral, etc. are used. These can be used alone or in combination of two or more.
  • the blending amount of the synthetic rubber of the component (D) is preferably 10 to 30% by mass, more preferably 15 to 25% by mass with respect to the total components (A) to (D). If the blending amount is less than 10% by mass, there is a possibility that sufficient adhesion with a substrate made of a polyimide film may not be obtained. Conversely, if it exceeds 30% by mass, the electrical characteristics and the like deteriorate.
  • the phosphazene compound as the component (E) is used without particular limitation as long as it has substantially no halogen. From the viewpoint of flame retardancy, heat resistance, moisture resistance, chemical resistance, etc., those having a melting point of 80 ° C. or higher are preferred, and those having a melting point of 90 ° C. or higher are more preferred. Specific examples of preferred phosphazene compounds include phosphazene compounds represented by the following general formula (1) or (2).
  • X 1 is a group —N ⁇ P (OPh) 3 or a group —N ⁇ P (O) OPh
  • Ph is a phenyl group
  • m is an integer of 3 to 25
  • n is an integer of 3 to 10,000.
  • the blending amount of the phosphazene compound as the component (E) is preferably 3 to 10 parts by mass, more preferably 5 to 7 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D). . If the blending amount is less than 3 parts by mass, the desired flame retardancy may not be obtained. Conversely, if it exceeds 10 parts by mass, bleeding may occur on the surface of the dry film or coverlay.
  • Examples of the (F) component polyphosphate compound include amine salts and ammonium salts of polyphosphoric acid.
  • polyphosphoric acid include linear condensed phosphoric acid represented by the general formula: HO (HPO3) nH (wherein n is an integer of 2 or more) (for example, pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid). , Pentapolyphosphoric acid, etc.), cyclic condensed phosphoric acid (trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, etc.) represented by the general formula: (HPO3) m (where m is an integer of 2 or more), etc. It is done.
  • melamine polyphosphate As the polyphosphate compound of component (F), melamine polyphosphate, melam polyphosphate, and melem polyphosphate are particularly preferable.
  • melam is a 1,3,5-triazine derivative in which one molecule of ammonia is desorbed from two melamine molecules
  • melem is a 1,3,5-triazine derivative in which two molecules of ammonia are desorbed and condensed. It is a triazine derivative.
  • These polyphosphate compounds can be used alone or in combination of two or more.
  • the blending amount of the polyphosphate compound of the component (F) is preferably 5 to 30 parts by weight, more preferably 15 to 25 parts by weight with respect to 100 parts by weight of the total amount of the components (A) to (D). It is. If the blending amount is less than 5 parts by mass, the desired flame retardancy may not be obtained. Conversely, if it exceeds 30 parts by mass, the bending resistance of the dry film or coverlay may be reduced.
  • any conventional filler used in coverlays can be used without any particular limitation.
  • Specific examples include metal hydrates such as aluminum hydroxide and magnesium hydroxide, talc, silica, alumina and the like.
  • These inorganic fillers can be used alone or in combination of two or more. Further, these inorganic fillers preferably have an average particle diameter of 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, from the viewpoint of crack resistance during bending.
  • the average particle diameter of the inorganic filler can be measured using, for example, a laser diffraction / scattering particle size distribution apparatus.
  • the blending amount of the inorganic filler as the component (G) is preferably in the range of 5 to 30% by mass, more preferably in the range of 10 to 20% by mass based on the total solid content in the composition. If the blending amount is less than 5% by mass, sufficient flame retardancy may not be obtained. Conversely, if it exceeds 30% by weight, crack resistance may decrease.
  • the non-halogen flame retardant resin composition contains (H) colorants such as inorganic pigments, organic pigments, organic dyes, etc., for coloring the coverlay. Can be blended.
  • inorganic pigments include carbon black, cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO (indium) Tin oxide) dyes, ATO (antimony tin oxide) dyes, and the like.
  • organic pigments and organic dyes include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, naphthoquinone dyes, pyrylium dyes, and phthalocyanine dyes.
  • Dye Naphthalocyanine dye, Naphlactam dye, Azo dye, Condensed azo dye, Indigo dye, Perinone dye, Perylene dye, Dioxazine dye, Quinacridone dye, Indanthrene blue dye, Isoindolinone Dyes, watching dyes, permanent dyes, quinophthalone dyes, pyrrole dyes, thioindigo dyes, metal complex dyes, dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, Dioqui Jin dyes, naphthol dyes, azomethine dyes, benzimidazolone pigments, pyranthrone pigments and threne pigments, and the like.
  • colorants can be used by appropriately selecting one or more kinds in order to adjust to a target hue.
  • carbon black, etc. for black coloring phthalocyanine dyes, indanthrene blue dyes, etc. for blue coloring, quinacridone dyes, watching dyes, permanent dyes, anthraquinone dyes for red coloring, etc.
  • Perylene dyes, condensed azo dyes, and the like are used.
  • a black pigment as the (H) colorant.
  • preferable black pigments include, for example, carbon black, aniline black, carbon black, titanium black, inorganic pigment hematite, perylene black, or a mixture of two or more thereof. Among these, carbon black, titanium black, or a mixture thereof is more preferable.
  • carbon black furnace black, channel black, acetylene black, etc. can be used.
  • Carbon black having a small primary particle diameter is suitable because it generally has excellent blackness and coloring power.
  • the primary particle diameter is preferably 1 ⁇ m or less, preferably 0.5 ⁇ m or less. Is more preferable.
  • Titanium black is obtained by oxidation of titanium or reduction of titanium dioxide.
  • titanium black is a black pigment containing titanium dioxide and titanium monoxide and / or titanium nitride as constituent components.
  • the blending amount of the colorant as the component (H) is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 3% by mass, based on the total solid content in the composition. If the blending amount is less than 0.1% by mass, a sufficient coloring effect may not be obtained. Conversely, if it exceeds 10% by weight, the adhesion with the flexible wiring board may be reduced.
  • the pigment is disperse
  • the dispersant for example, a silane coupling agent, a titanium coupling agent, a resin into which various functional groups are introduced, or the like is used.
  • a flexible wiring board using a dry film for coverlay using a non-halogen flame retardant resin composition containing a black pigment is used for a liquid crystal display module, an imaging module, etc. where light shielding properties are required.
  • the printing process of the black ink for light shielding after formation can be omitted. As a result, the productivity and environmental compatibility are excellent, and the plate thickness can be reduced, which leads to a reduction in springback force and good bending properties.
  • the non-halogen flame retardant resin composition includes various additives, such as organic fillers, deterioration, as necessary and within the range not impairing the effects of the present invention.
  • An inhibitor or the like can be further blended.
  • a solvent can be added to the non-halogen flame retardant resin composition in order to obtain a viscosity suitable for the processing method.
  • the solvent include alcohol solvents such as methanol, ethanol and isopropanol, ketone solvents such as acetone and methyl ethyl ketone, aromatic hydrocarbon solvents such as benzene, toluene and xylene, 1,4-dioxane and 1,3-dioxane.
  • ether solvents such as propylene glycol monomethyl ether, N-methylpyrrolidone, dimethylformamide and the like. These can be used alone or in combination of two or more.
  • the non-halogen flame retardant resin composition can be prepared by applying a known method.
  • the above components (A) to (G) and various components to be blended as necessary are mixed using a known kneader such as a pot mill, a ball mill, a bead mill, a roll mill, a homogenizer, a super mill, or a reika machine. It can be prepared by kneading at room temperature or under heating.
  • the component insoluble in the solvent, at least the polyphosphate compound of component (F) is to have a particle size of 10 ⁇ m or less by kneading from the viewpoint of preventing a decrease in crack resistance. Is preferred.
  • the dry film for coverlay 50 is obtained by applying the non-halogen flame retardant resin composition, which is adjusted to an appropriate viscosity with a solvent as required, onto the support film 51 by a known method and drying. Specifically, it is applied onto the support film 51 by a known coating method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, or a gravure coating method, followed by drying treatment, and a semi-cured state. Is obtained.
  • a plastic film such as polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, etc., having a release agent layer on one side is used.
  • the thickness of the support film 51 is usually 10 to 50 ⁇ m, preferably 25 to 38 ⁇ m, from the viewpoint of handling properties.
  • the non-halogen flame retardant resin composition is preferably applied so that the thickness after drying is 10 to 50 ⁇ m. More preferably, it is 20 to 35 ⁇ m.
  • the non-halogen flame retardant resin composition coated surface side of the support film 51 may have a surface roughness (Ra: arithmetic average roughness) of 0.3 to 5.0 ⁇ m by surface treatment.
  • the thickness is 0.5 to 3.0 ⁇ m.
  • the surface treatment method for example, methods such as sand blast treatment, chemical mat treatment, kneading mat treatment and the like can be used.
  • the non-halogen flame retardant resin composition is applied onto the support film 51 having a surface roughness (Ra) of 0.3 to 5.0 ⁇ m as described above and a release agent layer provided on the surface, and dried.
  • a coverlay dry film 50 obtained by the treatment a coverlay is formed by a method as described later, and then the support film 51 is peeled off, whereby the surface roughness (Ra) of the support film 51 is increased.
  • a transferred coverlay surface can be obtained.
  • the coverlay having such a roughened surface has a significantly lower light reflectance than a coverlay having a smooth surface (see FIG. 13). . Therefore, the dry film for coverlay 50 having the support film 51 that is black and has a surface roughness (Ra) of 0.3 to 5.0 ⁇ m is very large due to light leakage from a liquid crystal display module, an imaging module, or the like. It is suitable for the use of the flexible wiring board of the affected electronic component module.
  • the reason why the reflectance of light is greatly reduced by roughening is that incident light is absorbed and diffusely reflected on the coverlay surface, and as a result, the amount of light reflected from the coverlay surface and returning to the light receiving portion is small. It is thought that it became. On the other hand, the effect of roughening is hardly observed on the light transmittance (see FIG. 12).
  • the flexible wiring board of the present invention can be manufactured by forming a coverlay using the above-mentioned dry film for coverlay.
  • the above-mentioned coverlay in which a metal foil such as a copper foil is bonded to one side or both sides of a polyimide film with a hot roll to form a circuit, and then a hole is previously drilled in a predetermined place on the circuit forming surface.
  • the dry film is overlaid with the non-halogen flame retardant resin composition layer side facing the circuit forming surface, and by hot pressing, a temperature of 130 to 180 ° C., preferably 150 to 170 ° C., and 5 to 50 MPa, preferably 15 Heat and pressurize at a pressure of ⁇ 35 MPa.
  • a flexible printed wiring board with a reinforcing plate can be produced by a normal method of superposing a reinforcing plate on the flexible wiring board via a thermosetting resin composition and performing heat-press molding.
  • a flexible copper-clad laminate and the like are superimposed on the flexible wiring board of the present invention via a thermosetting resin composition, heated and pressed, formed through-holes, plated through-holes,
  • a multilayer flexible printed wiring board can be manufactured by the usual method of forming a circuit.
  • the resin composition is kneaded with three rolls and prepared so that the particle size of the component insoluble in the solvent is 10 ⁇ m or less, and then this preparation is formed into a single-side matte type 25 ⁇ m thick biaxially oriented polypropylene.
  • Production Example 2 A resin composition was prepared in the same manner as in Production Example 1, except that 65 parts of SPE-100 (trade name, phosphorous content 13%, manufactured by Otsuka Chemical Co., Ltd.) was used as the phenoxyphosphazene oligomer instead of SPB-100 (trade name). Further, using this, a coverlay dry film B having a thickness of 25 ⁇ m was produced.
  • SPE-100 trade name, phosphorous content 13%, manufactured by Otsuka Chemical Co., Ltd.
  • Production Example 3 A resin composition was prepared in the same manner as in Production Example 1 except that the blending amount of PHOSMEL 200 (trade name) of melamine polyphosphate was 200 parts and SPB-100 (trade name) of phenoxyphosphazene oligomer was not blended. Further, using this, a coverlay dry film C having a thickness of 25 ⁇ m was produced.
  • Production Example 4 A resin composition was prepared in the same manner as in Production Example 1 except that 163 parts of MPP-B (trade name, phosphorous content 13%, manufactured by Sanwa Chemical Co., Ltd.) was used as melamine polyphosphate instead of PHOSMEL200 (trade name). Further, using this, a dry film D for coverlay having a thickness of 25 ⁇ m was produced.
  • MPP-B trade name, phosphorous content 13%, manufactured by Sanwa Chemical Co., Ltd.
  • Production Example 5 A resin composition was prepared in the same manner as in Production Example 1, except that the amount of SPB-100 (trade name) of the phenoxyphosphazene oligomer was 200 parts and PHOSMEL 200 (trade name) of melamine polyphosphate was not blended. Further, using this, a coverlay dry film E having a thickness of 25 ⁇ m was produced.
  • Trefan YM17S (trade name)
  • Production Example 7 Polyethylene terephthalate (PET) with a release agent of 38 ⁇ m thickness with a release agent layer provided on one side instead of Trefan YM17S (trade name) which is a biaxially stretched polypropylene film with a thickness of 25 ⁇ m on one side.
  • a dry film G for coverlay having a thickness of 25 ⁇ m was produced.
  • a dry film H for coverlay was prepared by applying the film to a mat (surface treatment) surface of ( ⁇ 1.2 ⁇ m) with a roll coater so that the thickness after drying was 75 ⁇ m, and drying by heating.
  • Table 1 shows the compositions (excluding the solvent) of the resin compositions used in the production of the coverlay dry films of Production Examples 1 to 8.
  • Example 1 A flexible double-sided copper-clad Espanex MB 18-25-18 FRG (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) with a 18 ⁇ m thick copper foil on both sides of a 25 ⁇ m thick polyimide film is used to form circuits on both sides. After that, the coverlay dry film A and the coverlay dry film F previously produced are superimposed on each circuit formation surface (first and second circuit formation surfaces), respectively, and heated at 160 ° C. under pressure. Adhesion was performed by heating and pressing at 4 MPa for 1 hour to produce a flexible wiring board for evaluation.
  • Example 2 A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film B was superposed on one circuit forming surface instead of the coverlay dry film A.
  • Example 3 A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film C was superposed on one circuit formation surface instead of the coverlay dry film A.
  • Example 4 A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film D was superposed on one circuit forming surface instead of the coverlay dry film A.
  • Example 5 A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film E was superposed on one circuit formation surface instead of the coverlay dry film A.
  • Example 6 After using Epanex MB 18-25-18 FRG (trade name), a flexible double-sided copper-clad board, after forming circuits on both sides, overlay the coverlay dry film A on one circuit-forming surface, Adhesion was carried out by heating and pressing at a temperature of 160 ° C. and a pressure of 4 MPa for 1 hour. Next, a photosensitive liquid coverlay KSR-800 (trade name, manufactured by Kyocera Chemical Co., Ltd.) was applied to the other circuit formation surface by screen printing using a 150 mesh polyester screen to a thickness of 20 to 30 ⁇ m, and 80 ° C. A coating film was formed by drying with a hot air dryer for 30 minutes.
  • Epanex MB 18-25-18 FRG trade name
  • a flexible double-sided copper-clad board after forming circuits on both sides, overlay the coverlay dry film A on one circuit-forming surface
  • Adhesion was carried out by heating and pressing at a temperature of 160 ° C. and a pressure of 4 MPa for 1 hour.
  • a negative film of a resist pattern was brought into contact with this coating film and irradiated with ultraviolet rays using an ultraviolet irradiation exposure apparatus (exposure amount: 400 mJ / cm 2 ), and then a 1% sodium carbonate aqueous solution was added at about 0.10 to 0.15 MPa.
  • the film was developed by spraying for 1 minute at a pressure of 1 to dissolve and remove the unexposed portion, and further thermally cured at 150 ° C. for 60 minutes to form a photosensitive resin layer, and a flexible wiring board for evaluation was produced.
  • Example 7 After using Epanex MB 18-25-18 FRG (trade name), a flexible double-sided copper-clad board, after forming circuits on both sides, overlay the coverlay dry film A on one circuit-forming surface, Adhesion was carried out by heating and pressing at a temperature of 160 ° C. and a pressure of 4 MPa for 1 hour. Next, a polyimide film coverlay TFA-560-1215 (trade name, manufactured by Kyocera Chemical Co., Ltd.) was laminated on the other circuit forming surface and integrated to produce a flexible wiring board for evaluation.
  • Epanex MB 18-25-18 FRG trade name
  • Adhesion was carried out by heating and pressing at a temperature of 160 ° C. and a pressure of 4 MPa for 1 hour.
  • a polyimide film coverlay TFA-560-1215 (trade name, manufactured by Kyocera Chemical Co., Ltd.) was laminated on the other circuit forming surface and integrated to produce a flexible wiring board for evaluation.
  • Example 8 A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film G was superposed on one circuit formation surface instead of the coverlay dry film A.
  • Example 9 A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film F was superposed on one circuit formation surface instead of the coverlay dry film A.
  • Comparative Example 1 A flexible wiring board for evaluation was produced in the same manner as in Example 7, except that the coverlay dry film H was superposed on one circuit formation surface instead of the coverlay dry film A.
  • Comparative Example 2 A flexible double-sided copper-clad Espanex MB 18-25-18 FRG (trade name) was used to form circuits on both sides, and polyimide film coverlay TFA-560-1215 (manufactured by Kyocera Chemical Co., Ltd.) Product name) were laminated and integrated to produce a flexible wiring board for evaluation.
  • Comparative Example 3 Except for laminating polyimide film coverlay TFA-560-1215 (trade name) and further printing thermosetting printing ink black ink CCR-1200B (trade name, manufactured by Asahi Kaken Co., Ltd.) to a thickness of 15 ⁇ m, A flexible wiring board for evaluation was produced in the same manner as in Comparative Example 2.
  • Comparative Example 4 A polyimide film coverlay TFA-560-1215 (trade name) is laminated, and a thermosetting printing ink black ink CCR-1200B (trade name, manufactured by Asahi Kaken Co., Ltd.) is further printed to a thickness of 15 ⁇ m.
  • a thermosetting printing ink black ink CCR-1200B trade name, manufactured by Asahi Kaken Co., Ltd.
  • photosensitive liquid cover lay KSR-800 trade name 20 to 20 by screen printing using a 150 mesh polyester screen. The whole surface is applied to a thickness of 30 ⁇ m, dried with a hot air dryer at 80 ° C.
  • Example 1 as an example in which a roughened black coverlay is arranged on the light incident surface side
  • Example 8 as an example in which a smooth black coverlay is arranged
  • a polyimide film coverlay is further arranged Comparative Example 2 was prepared as above, and the results of measuring the transmittance and the reflectance with respect to the incident light are shown in FIGS.
  • the evaluation flexible wiring board was repeatedly bent 180 ° by goby folding, and the number of times until a crack was generated in the coverlay by visual observation and observation with an optical microscope (200 times) was measured.
  • Flame retardancy was measured according to the UL94VTM-0 flame retardancy standard and evaluated according to the following criteria. ⁇ ... Satisfies the UL94VTM-0 standard ⁇ ... Does not meet the UL94VTM-0 standard (sample burns)
  • the flexible wiring board of the present invention is excellent in flexibility and folding resistance, and is particularly suitable for the use of a flexible wiring board that is required to be thin and have low springback properties.
  • SYMBOLS 1, 10 Flexible wiring board, 2 ... Flexible wiring board main body, 2a ... Base material, 2b, 2c ... Circuit, 3 ... (1st) coverlay, 4 ... (2nd) coverlay, 5 ... Mounting components, 11 DESCRIPTION OF SYMBOLS ... Liquid crystal display module, 12 ... Liquid crystal display panel, 16 ... Imaging module, 50 ... Dry film for coverlays, 51 ... Support film, 52 ... Layer which consists of a non-halogen flame-retardant resin composition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Provided is a flexible wiring board having good flame retardant properties without the use of halogenated flame retardants, excellent resistance to bending, and minimal spring-back force. The flexible wiring board (1) is provided with: a substrate (2a) comprising a polyimide film; a circuit (2b) disposed on one main surface of the substrate (2a); and a coverlay (3) that covers the surface of the circuit (2b). The coverlay (3) is formed by a dry film for coverlays, and has a thickness of 10 to 50μm.

Description

フレキシブル配線板、カバーレイ用ドライフィルム、及びフレキシブル配線板の製造方法Flexible wiring board, dry film for coverlay, and method for manufacturing flexible wiring board
 本発明は、液晶表示モジュール、撮像モジュール等のデバイスの薄型化に有用なフレキシブル配線板、カバーレイ用ドライフィルム、及びフレキシブル配線板の製造方法に関する。 The present invention relates to a flexible wiring board useful for thinning devices such as a liquid crystal display module and an imaging module, a dry film for coverlay, and a method for manufacturing a flexible wiring board.
 小型の液晶表示パネル、例えばTFT方式の液晶表示パネルを有する液晶表示モジュールは、携帯電話機等の表示部として使用されている。このような液晶表示モジュールは、液晶表示パネルの一辺にその各サブピクセルを駆動するためのドライバを構成する半導体チップが実装され、さらに制御部との接続のためにフレキシブル配線板が接続されてフレームに収納されている。フレキシブル配線板は、液晶表示パネルの近傍で折り曲げられ、他端がバックライトを挟むようにしてフレームの背面側に配置されている。 A liquid crystal display module having a small liquid crystal display panel, for example, a TFT liquid crystal display panel, is used as a display unit of a cellular phone or the like. In such a liquid crystal display module, a semiconductor chip constituting a driver for driving each subpixel is mounted on one side of the liquid crystal display panel, and a flexible wiring board is connected for connection with a control unit. It is stored in. The flexible wiring board is bent in the vicinity of the liquid crystal display panel, and is disposed on the back side of the frame with the other end sandwiching the backlight.
 同様に、CCDイメージセンサ等の撮像素子を搭載した撮像モジュールがカメラ部品として、フレキシブル配線板を折り曲げて主基板にコネクター等を介して接続して、携帯電話機等に収納されている。 Similarly, an imaging module equipped with an imaging device such as a CCD image sensor is housed in a mobile phone or the like as a camera component by bending a flexible wiring board and connecting it to a main board via a connector or the like.
 このような液晶表示モジュール、撮像モジュールに使用されるフレキシブル配線板は、搭載される電子機器の小型、薄型化に伴い、折り曲げ半径が小さくなる傾向にある。一般に、フレキシブル配線板には、基板表面に形成された配線パターンの保護や絶縁等を目的として、ポリイミドフィルムに接着剤を塗布したカバーレイフィルムによって被覆されている。 ¡Flexible wiring boards used in such liquid crystal display modules and imaging modules tend to have a smaller bending radius as the electronic equipment mounted becomes smaller and thinner. Generally, a flexible wiring board is covered with a cover lay film in which an adhesive is applied to a polyimide film for the purpose of protecting or insulating a wiring pattern formed on the surface of the substrate.
 ところが、ポリイミドフィルムは弾性率が高く、このため、フレキシブル配線板を折り曲げた際、該フレキシブル配線板に外側に膨らもうとする反発力(以下、スプリングバック力とも称する)が発生し、液晶表示モジュールや撮像モジュールが浮き上がるという問題がある。 However, the polyimide film has a high elastic modulus, and therefore, when the flexible wiring board is bent, a repulsive force (hereinafter also referred to as a springback force) is generated on the flexible wiring board, and the liquid crystal display There is a problem that the module and the imaging module are lifted.
 このような問題に対し、例えばフレキシブル配線板を収納するフレームに穴部を設けると共に、フレキシブル配線板に突起部を設け、フレームの穴部にフレキシブル配線板の突起部を挿入することで、フレキシブル配線板のスプリングバック力を抑制する方法(例えば、特許文献1参照)や、折り曲げの曲率が最大となる部分に貫通孔を形成することでフレキシブル配線板の反発力による液晶パネルの浮き上がりを防止する方法(例えば、特許文献2参照)が知られている。 To solve this problem, for example, by providing a hole in the frame that houses the flexible wiring board, providing a protrusion on the flexible wiring board, and inserting the protrusion of the flexible wiring board into the hole of the frame, the flexible wiring A method of suppressing the springback force of the plate (for example, see Patent Document 1) and a method of preventing the liquid crystal panel from being lifted by the repulsive force of the flexible wiring board by forming a through hole in a portion where the bending curvature is maximized (See, for example, Patent Document 2).
 また、例えばフレキシブル配線板を構成する絶縁基板の折り曲げ部に切り欠き部を設け、この部分にシリコーン樹脂等からなる保護用樹脂を塗布することで、フレキシブル配線板の折り曲げを容易とする方法が知られている(例えば、特許文献3参照)。さらに、例えば回路部と端子形成部とが併設されたフレキシブル配線板において、回路部と端子形成部との間に切り込みによって回路部側に凸状となる可撓片を形成し、この可撓片を接続に利用することで、折り曲げ部をなくす方法が知られている(例えば、特許文献4参照)。 In addition, for example, a method is known in which a notched portion is provided in a bent portion of an insulating substrate constituting a flexible wiring board, and a protective resin made of silicone resin or the like is applied to this portion to facilitate bending of the flexible wiring board. (For example, see Patent Document 3). Further, for example, in a flexible wiring board provided with a circuit part and a terminal forming part, a flexible piece that is convex toward the circuit part side is formed by cutting between the circuit part and the terminal forming part. A method is known in which the bent portion is eliminated by using for connection (see, for example, Patent Document 4).
 また、薄肉化の観点から、カバーレイフィルムとして、アラミド樹脂からなるフィルムを用いることも知られている(例えば、特許文献5参照)。 From the viewpoint of thinning, it is also known to use a film made of an aramid resin as a coverlay film (see, for example, Patent Document 5).
 しかしながら、いずれの方法も、ポリイミドフィルムの弾性率の影響を完全には解消できていない。 However, none of the methods can completely eliminate the influence of the elastic modulus of the polyimide film.
 そこで、ポリイミドフィルムを支持基材として有さない接着シートでカバーレイを形成した基板が提案されている(例えば、特許文献6参照。)。しかし、このような支持基材のない、いわゆるドライフィルム型のカバーレイ材を用いたフレキシブルプリント配線板は、耐折性が著しく低下するという問題があった。また、この接着シートでは、難燃性を発現するためにハロゲン化フェノール類をグリシジル化したエポキシ樹脂を使用しており、環境への適合性の点でも課題があった。 Therefore, a substrate in which a cover lay is formed with an adhesive sheet that does not have a polyimide film as a supporting base has been proposed (see, for example, Patent Document 6). However, a flexible printed wiring board using a so-called dry film type coverlay material without such a supporting substrate has a problem that the folding resistance is remarkably lowered. In addition, this adhesive sheet uses an epoxy resin obtained by glycidylation of halogenated phenols in order to exhibit flame retardancy, and there is a problem in terms of environmental compatibility.
 非ハロゲンの難燃性を付与する方法はこれまでにも種々提案されている。その代表的な方法は、水酸化アルミニウム、水酸化マグネシウム等の水和金属化合物、リン酸エステル、ポリ燐酸塩化合物等のリン系難燃剤、メラミン系化合物等の窒素系難燃剤等の非ハロゲン系難燃剤を使用する方法である。しかし、これらの難燃剤を使用した場合、カバーレイに要求される電気絶縁性、はんだ耐熱性、耐折り曲げ性等の特性と、難燃性を両立させることが困難であったり、難燃剤が表面にブリードアウトする等の問題があった。 Various methods for imparting non-halogen flame retardancy have been proposed so far. Representative methods include hydrated metal compounds such as aluminum hydroxide and magnesium hydroxide, phosphorus-based flame retardants such as phosphate esters and polyphosphate compounds, and non-halogen-based compounds such as nitrogen-based flame retardants such as melamine compounds. This method uses a flame retardant. However, when these flame retardants are used, it is difficult to achieve both the properties required for the coverlay, such as electrical insulation, solder heat resistance, and bend resistance, and flame retardancy. There were problems such as bleeding out.
 また、液晶表示モジュールや撮像モジュールのように光の漏洩により不具合の起こるおそれのあるデバイスに使用されるフレキシブル配線板は、表面の反射率が低いことが望まれる。このため、例えばポリイミドカバーレイフィルムの表面に黒色インキを印刷することがあるが、このインキ層によってスプリングバック力がさらに増加し、折り曲げるとクラックが発生するおそれがあった。 Also, it is desirable that the flexible wiring board used for a device that may cause a malfunction due to light leakage such as a liquid crystal display module or an imaging module has a low surface reflectance. For this reason, for example, black ink may be printed on the surface of the polyimide cover lay film, but the spring back force is further increased by this ink layer, and cracking may occur when the ink is folded.
特開2005-338497公報JP 2005-338497 A 特開2008-203445公報JP 2008-203445 A 特開平9-274446号公報JP-A-9-274446 特開2007-12784公報JP 2007-12784 A 特開2005-235587公報Japanese Patent Laid-Open No. 2005-235587 特開2003-133704公報JP 2003-133704 A
 上記したように、液晶表示モジュールや撮像素子搭載モジュールについては薄型化が進んでおり、これに用いられるフレキシブル配線板には折り曲げ半径が小さくされたときでもスプリングバック力が小さく、耐折り曲げ性に優れることが求められている。 As described above, liquid crystal display modules and imaging element mounting modules are becoming thinner, and the flexible wiring board used therefor has a small springback force even when the bending radius is reduced, and is excellent in bending resistance. It is demanded.
 本発明は、上記課題を解決するためにされたものであり、スプリングバック力が小さく、耐折り曲げ性に優れ、ハロゲン系難燃剤を使用せずに良好な難燃性を有するフレキシブル配線板を提供することを目的としている。また、本発明は、そのようなフレキシブル配線板の製造に有用なカバーレイ用ドライフィルム、及びフレキシブル配線板の製造方法を提供することを目的としている。 The present invention has been made to solve the above problems, and provides a flexible wiring board having a small springback force, excellent bending resistance, and good flame resistance without using a halogen-based flame retardant. The purpose is to do. Moreover, this invention aims at providing the manufacturing method of the dry film for coverlays useful for manufacture of such a flexible wiring board, and a flexible wiring board.
 本発明の一態様によれば、フレキシブル配線板は、ポリイミドフィルムからなる基材と、前記基材の一方の主面に設けられた回路と、前記回路の表面を覆うカバーレイとを備え、前記カバーレイは、カバーレイ用ドライフィルムにより形成され、かつ厚さが10~50μmであることを特徴とするフレキシブル配線板が提供される。 According to one aspect of the present invention, a flexible wiring board includes a base material made of a polyimide film, a circuit provided on one main surface of the base material, and a coverlay that covers the surface of the circuit, The cover lay is formed of a cover lay dry film and has a thickness of 10 to 50 μm. A flexible wiring board is provided.
 本発明の他の一態様によれば、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)硬化促進剤、(D)合成ゴム、(E)ホスファゼン化合物、(F)ポリリン酸塩化合物及び(G)無機充填剤を必須成分とする非ハロゲン難燃性樹脂組成物からなる層を、支持フィルム上に備えることを特徴とするカバーレイ用ドライフィルムが提供される。 According to another aspect of the present invention, (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, (E) a phosphazene compound, (F) a polyphosphate Provided is a dry film for coverlay, comprising a layer made of a non-halogen flame retardant resin composition containing a compound and (G) an inorganic filler as essential components on a support film.
 本発明のさらに他の一態様によれば、ポリイミドフィルムからなる基材の一方の主面に回路を形成する工程と、前記回路の表面に、上記カバーレイ用ドライフィルムを、前記非ハロゲン難燃性樹脂組成物層側を前記回路側に向けて重ね合わせ加圧加熱するとともに、前記支持フィルムを除去してカバーレイを形成する工程とを有することを特徴とするフレキシブル配線板の製造方法が提供される。 According to still another aspect of the present invention, a step of forming a circuit on one main surface of a substrate made of a polyimide film, and the coverlay dry film on the surface of the circuit, the non-halogen flame retardant Providing a method for manufacturing a flexible wiring board, comprising: superposing and heating the conductive resin composition layer side toward the circuit side and forming a coverlay by removing the support film Is done.
 本発明によれば、スプリングバック力が小さく、耐折り曲げ性に優れ、ハロゲン系難燃剤を使用せずに良好な難燃性を有するフレキシブル配線板を得ることができる。得られたフレキシブル配線板は、液晶表示モジュールや撮像素モジュール等、薄型化が要求されるデバイスに好適に使用される。 According to the present invention, it is possible to obtain a flexible wiring board having a small springback force, excellent bending resistance, and good flame resistance without using a halogen flame retardant. The obtained flexible wiring board is suitably used for devices that are required to be thin, such as liquid crystal display modules and imaging element modules.
本発明のフレキシブル配線板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the flexible wiring board of this invention. フレキシブル配線板と液晶表示パネルとの接続方法の一例を示す断面図である。It is sectional drawing which shows an example of the connection method of a flexible wiring board and a liquid crystal display panel. 一実施形態のフレキシブル配線板を用いた液晶表示モジュールの一例を示す断面図である。It is sectional drawing which shows an example of the liquid crystal display module using the flexible wiring board of one Embodiment. 一実施形態のフレキシブル配線板の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the flexible wiring board of one Embodiment. 図4に続くフレキシブル配線板の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the flexible wiring board following FIG. 図5に続くフレキシブル配線板の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the flexible wiring board following FIG. 図6に続くフレキシブル配線板の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the flexible wiring board following FIG. 図7に続くフレキシブル配線板の製造工程を示す断面図である。FIG. 8 is a cross-sectional view illustrating a manufacturing process of the flexible wiring board following FIG. 7. 図8に続くフレキシブル配線板の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the flexible wiring board following FIG. 他の実施形態のフレキシブル配線板を用いた撮像モジュールの一例を示す断面図である。It is sectional drawing which shows an example of the imaging module using the flexible wiring board of other embodiment. カバーレイ用ドライフィルムの一例を示す断面図である。It is sectional drawing which shows an example of the dry film for coverlays. 評価用フレキシブル配線板の透過率の測定結果を示す図である。It is a figure which shows the measurement result of the transmittance | permeability of the flexible wiring board for evaluation. 評価用フレキシブル配線板の反射率の測定結果を示す図である。It is a figure which shows the measurement result of the reflectance of the flexible wiring board for evaluation.
 以下、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、本発明のフレキシブル配線板の第1の実施形態を示す断面図である。本実施形態のフレキシブル配線板1は、フレキシブル配線板本体2と、このフレキシブル配線板本体2の一方の主面にカバーレイ用ドライフィルムにより形成された、厚さが10~50μm、好ましくは20~35μmのカバーレイ3とを有している。本実施形態では、さらに、フレキシブル配線板本体の他方の主面に、ポリイミドフィルム、感光性樹脂等からなる他のカバーレイ4が被覆されるとともに、実装部品5が搭載されている(以下、カバーレイ3及び他のカバーレイ4を、それぞれ第1カバーレイ3及び第2カバーレイ4と称する。)。なお、第2カバーレイ4を形成する材料は特に限定されるものではなく、第1カバーレイ3と同様、カバーレイ用ドライフィルムにより形成されていてもよい。スプリングバック力を抑制し、耐折り曲げ性を向上させる観点からは、感光性樹脂またはカバーレイ用ドライフィルムの使用が好ましい。このフレキシブル配線板1は、後述するように、第1カバーレイ3が形成されている主面側が内側となるように折り曲げられて使用されるものである。 FIG. 1 is a cross-sectional view showing a first embodiment of the flexible wiring board of the present invention. The flexible wiring board 1 of this embodiment has a flexible wiring board body 2 and a coverlay dry film formed on one main surface of the flexible wiring board body 2 with a thickness of 10 to 50 μm, preferably 20 to 20 μm. And a coverlay 3 of 35 μm. In the present embodiment, the other main surface of the flexible wiring board body is covered with another cover lay 4 made of a polyimide film, a photosensitive resin, or the like, and a mounting component 5 is mounted (hereinafter referred to as a cover). The lay 3 and the other cover lay 4 are referred to as a first cover lay 3 and a second cover lay 4, respectively). In addition, the material which forms the 2nd coverlay 4 is not specifically limited, Like the 1st coverlay 3, you may form with the dry film for coverlays. From the viewpoint of suppressing the springback force and improving the bending resistance, it is preferable to use a photosensitive resin or a dry film for coverlay. As will be described later, the flexible wiring board 1 is used by being bent so that the main surface side on which the first cover lay 3 is formed becomes the inner side.
 フレキシブル配線板本体2は、例えば、ポリイミドフィルムからなる基材2aと、この基材2aの両主面にそれぞれ設けられた回路2b及び回路2cと、これらの回路2b及び回路2cを相互に接続するスルーホール2dと、これらの回路2b及び回路2cを液晶表示パネルに電気的に接続する接続端子2eとを有している。第1カバーレイ3は、接続端子2eが設けられる端部を除いてフレキシブル配線板本体2の略全面に形成されている。一方、第2カバーレイ4は、例えばフレキシブル配線板本体2の実装部品5が実装される部分を除いた回路2cを覆うように形成されている。 The flexible wiring board body 2 connects, for example, a base material 2a made of a polyimide film, circuits 2b and 2c provided on both main surfaces of the base material 2a, and these circuits 2b and 2c, respectively. It has a through hole 2d and a connection terminal 2e that electrically connects the circuit 2b and the circuit 2c to the liquid crystal display panel. The first coverlay 3 is formed on substantially the entire surface of the flexible wiring board main body 2 except for the end where the connection terminal 2e is provided. On the other hand, the second coverlay 4 is formed so as to cover the circuit 2c excluding, for example, a portion where the mounting component 5 of the flexible wiring board body 2 is mounted.
 このようなフレキシブル配線板1は、例えば図2、3に示すように、液晶表示パネル12に電気的に接続されて液晶表示モジュール11を構成する。例えば図2に示すように、液晶表示パネル12は、一方の主面側に接続端子13や半導体チップ14を有するものである。フレキシブル配線板1は、第1カバーレイ3が形成されている主面側、すなわち接続端子2eが形成されている主面側が液晶表示パネル12の接続端子13が形成されている主面側と対向するように配置され、それぞれの接続端子2e、接続端子13が相互に電気的に接続される。そして、図3に示すように、液晶表示パネル12を包み込むようにしてフレキシブル配線板1を折り曲げることで、すなわち第1カバーレイ3が形成されている主面側が内側となるようにフレキシブル配線板1を折り曲げて配置することで、液晶表示モジュール11が構成される。 Such a flexible wiring board 1 is electrically connected to a liquid crystal display panel 12 to form a liquid crystal display module 11 as shown in FIGS. For example, as shown in FIG. 2, the liquid crystal display panel 12 includes a connection terminal 13 and a semiconductor chip 14 on one main surface side. In the flexible wiring board 1, the main surface side on which the first cover lay 3 is formed, that is, the main surface side on which the connection terminals 2 e are formed faces the main surface side on which the connection terminals 13 of the liquid crystal display panel 12 are formed. The connection terminals 2e and the connection terminals 13 are electrically connected to each other. Then, as shown in FIG. 3, the flexible wiring board 1 is folded so as to enclose the liquid crystal display panel 12, that is, the flexible wiring board 1 so that the main surface side on which the first cover lay 3 is formed is inside. The liquid crystal display module 11 is configured by bending and arranging.
 本実施形態のフレキシブル配線板1によれば、第1カバーレイ3がカバーレイ用ドライフィルムを用いて厚さ10~50μmに形成されているので、従来のものに比べてスプリングバック力を抑制することができ、固定手段としての突起やテープを用いずに容易に折り曲げることができ、また液晶表示パネル12や液晶表示モジュール11の浮き上がりの問題も解消することができる。 According to the flexible wiring board 1 of the present embodiment, since the first cover lay 3 is formed to a thickness of 10 to 50 μm using a cover lay dry film, the spring back force is suppressed as compared with the conventional one. It can be easily bent without using protrusions and tape as fixing means, and the problem of the liquid crystal display panel 12 and the liquid crystal display module 11 being lifted can be solved.
 本実施形態のフレキシブル配線板1は、例えば以下のようにして製造することができる。 The flexible wiring board 1 of the present embodiment can be manufactured as follows, for example.
 まず、図4に示すような、ポリイミドフィルムからなる基材2aの両主面に銅箔等の金属箔41、41を貼り合わせたフレキシブル金属張板42を用意する。フレキシブル金属張板42は、一般にフレキシブル金属張板として市販されている2層タイプフレキシブル配線板用金属張板及び3層タイプフレキシブル配線板用金属張板より選定して使用することができる。2層タイプフレキシブル配線板用金属張板としては、例えばESPANEX(新日鐵化学社製、商品名)、NEOFLEX(三井化学社製、商品名)、UPISEL(宇部日東化成社製、商品名)等が挙げられる。また、3層タイプフレキシブル配線板用金属張板としては、例えばTLF-521、TLF-530(京セラケミカル社製、商品名)等が挙げられる。いずれも金属箔として銅箔が用いられている。 First, as shown in FIG. 4, a flexible metal-clad plate 42 in which metal foils 41 and 41 such as copper foil are bonded to both main surfaces of a base material 2a made of a polyimide film is prepared. The flexible metal tension plate 42 can be selected and used from a metal tension plate for a two-layer type flexible wiring board and a metal tension plate for a three-layer type flexible wiring board, which are generally marketed as flexible metal tension plates. As a metal-clad board for a two-layer type flexible wiring board, for example, ESPANEX (trade name, manufactured by Nippon Steel Chemical Co., Ltd.), NEOFLEX (trade name, manufactured by Mitsui Chemicals), UPISEL (trade name, manufactured by Ube Nitto Kasei Co., Ltd.), etc. Is mentioned. Examples of the three-layer type flexible wiring board metal tension plate include TLF-521 and TLF-530 (trade name, manufactured by Kyocera Chemical Co., Ltd.). In either case, copper foil is used as the metal foil.
 次に、図5に示すように、フレキシブル金属張板42にスルーホール2dを形成し、両主面の金属箔41、41を相互に電気的に接続する。 Next, as shown in FIG. 5, through holes 2d are formed in the flexible metal-clad plate 42, and the metal foils 41 and 41 on both main surfaces are electrically connected to each other.
 次に、図6に示すように、これらの金属箔41、41をエッチング処理することにより回路2b、回路2cを形成し、フレキシブル配線板本体2とした後、フレキシブル配線板本体2の一方(回路2b形成側)の主面を覆うように、カバーレイ用ドライフィルム43を重ね合わせて加熱加圧する。なお、カバーレイ用ドライフィルム43は、片面に支持フィルムを備えており、加熱加圧の際には予め支持フィルムは剥がしておく。これにより、図7に示すような、フレキシブル配線板本体2の一方の主面に第1カバーレイ3が形成されたフレキシブル配線板本体2が得られる。第1カバーレイ3は、接続端子2eとなる端部を除いたフレキシブル配線板本体2の一方の面の略全面に形成される。 Next, as shown in FIG. 6, these metal foils 41, 41 are etched to form the circuit 2 b and the circuit 2 c to form the flexible wiring board main body 2, and then one of the flexible wiring board main bodies 2 (circuit The coverlay dry film 43 is overlaid and heated and pressed so as to cover the main surface of the 2b formation side. The coverlay dry film 43 includes a support film on one side, and the support film is peeled off in advance during the heating and pressurization. Thereby, the flexible wiring board main body 2 in which the 1st cover lay 3 was formed in one main surface of the flexible wiring board main body 2 as shown in FIG. 7 is obtained. The first coverlay 3 is formed on substantially the entire surface of one side of the flexible wiring board main body 2 excluding the end portion that becomes the connection terminal 2e.
 なお、カバーレイ用ドライフィルム3を重ね合わせて加圧・加熱する際には、スルーホール2dの深さ方向の半分以上が熱硬化型ドライフィルムカバーレイ3の構成材料で埋められるようにすることが好ましい。このようにすることで、次工程で例えば液状の感光性樹脂を印刷または塗布して第2カバーレイ4を形成する際、この液状の感光性樹脂がスルーホール2dに流れ込む結果、スルーホール2dの角部の第2カバーレイ4の厚さが薄くなるのを抑制することができ、フレキシブル配線板1の絶縁信頼性を向上させることができる。 When the coverlay dry film 3 is overlaid and pressurized and heated, at least half of the through hole 2d in the depth direction is filled with the constituent material of the thermosetting dry film coverlay 3. Is preferred. In this way, when the second cover lay 4 is formed by printing or applying a liquid photosensitive resin, for example, in the next step, the liquid photosensitive resin flows into the through hole 2d. It can suppress that the thickness of the 2nd coverlay 4 of a corner | angular part becomes thin, and can improve the insulation reliability of the flexible wiring board 1. FIG.
 第1カバーレイ3形成後、フレキシブル配線板本体2の他方(回路2c形成側)の主面に、例えば、図8に示すように、液状の感光性樹脂44を略全面に塗布し、選択露光した後、現像、後硬化させることにより、実装部品搭載部を除いた回路2cを覆うように第2カバーレイ4を形成する。これにより、図9に示すような、フレキシブル配線板本体2の一方の主面に第1カバーレイ3が形成され、他方の主面に第2カバーレイ4が形成されたフレキシブル配線1が得られる。この後、フレキシブル配線1に実装部品5が搭載される(図2)。 After the first cover lay 3 is formed, a liquid photosensitive resin 44 is applied to substantially the entire surface of the other main surface (circuit 2c forming side) of the flexible wiring board body 2 as shown in FIG. After that, the second coverlay 4 is formed so as to cover the circuit 2c excluding the mounting component mounting portion by developing and post-curing. As a result, as shown in FIG. 9, the flexible wiring 1 in which the first cover lay 3 is formed on one main surface of the flexible wiring board main body 2 and the second cover lay 4 is formed on the other main surface is obtained. . Thereafter, the mounting component 5 is mounted on the flexible wiring 1 (FIG. 2).
 図10は、本発明のフレキシブル配線板の第2の実施形態を示す断面図である。第1の実施形態が、液晶表示モジュールに用いられるフレキシブル配線板であるのに対し、本実施形態のフレキシブル配線板は撮像モジュールに用いられるフレキシブル配線板であり、図10は、本実施形態のフレキシブル配線板10を撮像モジュールに接続した状態を示している。なお、重複する説明を避けるため、第1の実施の形態と共通する点については説明を省略し、相違点のみ説明する。 FIG. 10 is a cross-sectional view showing a second embodiment of the flexible wiring board of the present invention. While the first embodiment is a flexible wiring board used in a liquid crystal display module, the flexible wiring board of this embodiment is a flexible wiring board used in an imaging module. FIG. 10 shows the flexible wiring board of this embodiment. The state which connected the wiring board 10 to the imaging module is shown. In addition, in order to avoid overlapping description, description is abbreviate | omitted about the point which is common in 1st Embodiment, and only a different point is demonstrated.
 本実施形態のフレキシブル配線板10は、フレキシブル配線板本体2と、このフレキシブル配線板本体2の一方の主面にカバーレイ用ドライフィルムにより形成された、厚さが10~50μm、好ましくは20~35μmのカバーレイ3とを有している。このフレキシブル配線板1は、図10に示すように、カバーレイ3が形成されている主面側が外側となるように折り曲げられて使用されるものである。 The flexible wiring board 10 of the present embodiment has a thickness of 10-50 μm, preferably 20-20, formed by a flexible wiring board body 2 and a coverlay dry film on one main surface of the flexible wiring board body 2. And a coverlay 3 of 35 μm. As shown in FIG. 10, the flexible wiring board 1 is used by being bent so that the main surface side on which the cover lay 3 is formed becomes the outside.
 フレキシブル配線板本体2は、例えば、ポリイミドフィルムからなる基材2aと、この基材2aの一方の主面に設けられた回路2bとを有している。カバーレイ3は、接続端子2e、2eが設けられる両端部を除いてフレキシブル配線板本体2の一方の主面の略全面に形成されている。 The flexible wiring board body 2 includes, for example, a base material 2a made of a polyimide film and a circuit 2b provided on one main surface of the base material 2a. The cover lay 3 is formed on substantially the entire surface of one main surface of the flexible wiring board body 2 except for both ends where the connection terminals 2e and 2e are provided.
 このようなフレキシブル配線板10は、図10に示すように、撮像モジュール本体15に電気的に接続されて撮像モジュール16を構成する。撮像モジュール本体15は、レンズユニット17と撮像素子18とを有するものである。フレキシブル配線板10は、一方の接続端子2eが、撮像モジュール本体15の撮像素子18を搭載している撮像基板(図示なし)に電気的に接続され、他方の接続端子2eがコネクター(図示なし)に電気的に接続される。そして、図10に示すように、カバーレイ3が形成されている主面側が外側となるように折り曲げられて、撮像モジュール16が構成される。なお、基材2aの回路2b面と反対側の主面のコネクター側の端部には、コネクターとの接続を補強するための補強板19が設けられている。 Such a flexible wiring board 10 is electrically connected to the imaging module main body 15 to form an imaging module 16 as shown in FIG. The imaging module main body 15 includes a lens unit 17 and an imaging element 18. In the flexible wiring board 10, one connection terminal 2e is electrically connected to an imaging board (not shown) on which the imaging element 18 of the imaging module body 15 is mounted, and the other connection terminal 2e is a connector (not shown). Is electrically connected. Then, as shown in FIG. 10, the imaging module 16 is configured by being bent so that the main surface side on which the cover lay 3 is formed is on the outside. A reinforcing plate 19 for reinforcing the connection with the connector is provided at the end of the main surface opposite to the circuit 2b surface of the substrate 2a on the connector side.
 本実施形態のフレキシブル配線板10においても、カバーレイ3がカバーレイ用ドライフィルムを用いて厚さ10~50μmに形成されているので、従来のものに比べてスプリングバック力を抑制することができ、固定手段としての突起やテープを用いずに容易に折り曲げることができ、また撮像モジュール16の浮き上がりの問題も解消することができる。 Also in the flexible wiring board 10 of the present embodiment, since the cover lay 3 is formed to a thickness of 10 to 50 μm using a cover lay dry film, the spring back force can be suppressed as compared with the conventional one. Further, it can be easily bent without using a protrusion or a tape as a fixing means, and the problem of floating of the imaging module 16 can be solved.
 図面による説明は省略するが、本実施形態のフレキシブル配線板10は、例えば、ポリイミドフィルムからなる基材2aの片面に銅箔等の金属箔(回路2bとなる)を貼り合わせたフレキシブル金属張板の金属箔を覆うように、第1の実施形態の場合と同様にして、カバーレイ用ドライフィルムを重ね合わせて加熱加圧することにより製造される。 Although not described with reference to the drawings, the flexible wiring board 10 of the present embodiment is, for example, a flexible metal-clad board in which a metal foil such as a copper foil (to be a circuit 2b) is bonded to one side of a base material 2a made of a polyimide film. In the same manner as in the first embodiment, the cover foil dry film is overlaid and heated and pressed so as to cover the metal foil.
 次に、本発明に用いられるカバーレイ用ドライフィルムについて説明する。 Next, the coverlay dry film used in the present invention will be described.
 図11は、本発明に好適に用いられるカバーレイ用ドライフィルムの一例を示す断面図である。 FIG. 11 is a cross-sectional view showing an example of a dry film for a coverlay that is preferably used in the present invention.
 図11に示すように、このカバーレイ用ドライフィルム50は、支持フィルム51上に、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)硬化促進剤、(D)合成ゴム、(E)ホスファゼン化合物、(F)ポリリン酸塩化合物及び(G)無機充填剤を必須成分として含有する非ハロゲン難燃性樹脂組成物からなる層52を設けたものである。 As shown in FIG. 11, this coverlay dry film 50 has (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, ( A layer 52 made of a non-halogen flame retardant resin composition containing E) a phosphazene compound, (F) a polyphosphate compound, and (G) an inorganic filler as essential components is provided.
 (A)成分のエポキシ樹脂は、非ハロゲンであって、1分子中に2個以上のエポキシ基を有するものである。かかる条件を満たすものであれば、分子構造、分子量等に制限されることなく使用される。具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、複素環型エポキシ樹脂、グリシジルエーテル系の変性エポキシ樹脂等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。 The epoxy resin of component (A) is non-halogen and has two or more epoxy groups in one molecule. Any material satisfying such conditions can be used without being limited by the molecular structure, molecular weight and the like. Specific examples include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type resin, cresol novolac type epoxy resin, glycidyl ether type epoxy resin, and alicyclic type. Examples thereof include epoxy resins, heterocyclic epoxy resins, and glycidyl ether-based modified epoxy resins. These can be used alone or in combination of two or more.
 (B)成分のエポキシ樹脂硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているフェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤等が使用される。フェノール樹脂系硬化剤の具体例としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型フェノール樹脂、アミノ変性ノボラック型フェノール樹脂、ポリビニルフェノール樹脂、フェノールアラルキル樹脂等が挙げられる。酸無水物系硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水ナジック酸等が挙げられる。アミン系硬化剤の具体例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、イソフォロンジアミン、ジアミノジフェニルメタン、メタフェニレンジアミン等が挙げられる。その他、有機酸ヒドラジド、ジアミノマレオニトリル及びその誘導体、メラミン及びその誘導体、ポリアミド樹脂、アミンイミド、ポリアミン塩等も使用される。これらは1種を単独で、または2種以上を組み合わせて用いることができる。 As the (B) component epoxy resin curing agent, a phenol resin curing agent, an acid anhydride curing agent, an amine curing agent or the like generally known as an epoxy resin curing agent is used. Specific examples of the phenol resin-based curing agent include novolak type phenol resins such as phenol novolak resin and cresol novolak resin, amino-modified novolak type phenol resin, polyvinyl phenol resin, and phenol aralkyl resin. Specific examples of acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydro anhydride Examples thereof include phthalic acid, tetrahydrophthalic anhydride, and nadic anhydride. Specific examples of the amine curing agent include diethylenetriamine, triethylenetetramine, tetraethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, isophoronediamine, diaminodiphenylmethane, metaphenylenediamine and the like. In addition, organic acid hydrazide, diaminomaleonitrile and derivatives thereof, melamine and derivatives thereof, polyamide resin, amine imide, polyamine salt, and the like are also used. These can be used alone or in combination of two or more.
 この(B)成分のエポキシ樹脂硬化剤の配合量は、好ましくは、(A)成分のエポキシ樹脂と(B)成分のエポキシ樹脂硬化剤の当量比(例えば、フェノール樹脂系硬化剤では、エポキシ樹脂のエポキシ基とフェノール樹脂系硬化剤のフェノール性水酸基のモル比)が、0.7~1.3となる範囲であり、より好ましくは0.9~1.1となる範囲である。当量比が0.7未満では、耐熱性、耐薬品性等が低下し、逆に、1.3を超えると、耐湿性等が低下する。 The blending amount of the epoxy resin curing agent of the component (B) is preferably an equivalent ratio of the epoxy resin of the component (A) and the epoxy resin curing agent of the component (B) (for example, in the case of a phenol resin curing agent, the epoxy resin The molar ratio of the epoxy group and the phenolic hydroxyl group of the phenol resin-based curing agent is in the range of 0.7 to 1.3, more preferably in the range of 0.9 to 1.1. When the equivalence ratio is less than 0.7, heat resistance, chemical resistance, and the like are lowered. Conversely, when the equivalent ratio is more than 1.3, moisture resistance and the like are lowered.
 (C)成分の硬化促進剤としては、一般にエポキシ樹脂の硬化促進剤として知られているものが使用される。具体例としては、例えば、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、4-メチルイミダゾール、4-エチルイミダゾール、2-フェニル-4-ヒドロキシメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2′-メチルイミダゾリル-(1′)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2′-ウンデシルイミダゾリル-(1′)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2′-エチル-4′-メチルイミダゾリル-(1′)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2′-メチルイミダゾリル-(1′)]-エチル-s-トリアジン、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニルイミダゾリン等のイミダゾール類;1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン、5,6-ジブチルアミノ-1,8-ジアザビシクロ[5,4,0]ウンデセン-7等のジアザビシクロ化合物;トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α-メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の三級アミン類;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリ(p‐メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2‐ビス(ジフェニルホスフィノ)エタン、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、トリフェニルホスフィントリフェニルボラン等の有機ホスフィン化合物等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。 As the (C) component curing accelerator, those generally known as epoxy resin curing accelerators are used. Specific examples include 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl. -4-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole 2-undecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyano Tyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ') ] -Ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl- 4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2-phenylimidazole isocyanur Acid adducts, 2-methylimidazole isocyanuric acid adducts, imidazoles such as 2-phenylimidazoline; 1,8-diazabicyclo [5, , 0] undecene-7 (DBU), 1,5-diazabicyclo [4,3,0] nonene, 5,6-dibutylamino-1,8-diazabicyclo [5,4,0] undecene-7 Tertiary amines such as triethylamine, triethylenediamine, benzyldimethylamine, α-methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, 2,4,6-tris (dimethylaminomethyl) phenol; trimethylphosphine, triethylphosphine , Tributylphosphine, triphenylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyldiphenylphosphine, dibutylphenylphosphine, tricyclohexylphosphine, bis (diphenylphosphino Methane, 1,2-bis (diphenylphosphino) ethane, tetraphenyl phosphonium tetraphenyl borate, triphenyl phosphine tetraphenyl borate, organic phosphine compounds such as triphenylphosphine triphenyl borane, and the like. These can be used alone or in combination of two or more.
 この(C)成分の硬化促進剤の配合量は、硬化促進性と硬化後の樹脂の物性のバランス等の点から、(A)成分のエポキシ樹脂100質量部に対し、好ましくは、0.01~5質量部であり、より好ましくは、0.3~2質量部である。 The blending amount of the curing accelerator of component (C) is preferably 0.01 with respect to 100 parts by mass of the epoxy resin of component (A) from the viewpoint of the balance between curing acceleration and physical properties of the resin after curing. Is 5 parts by mass, and more preferably 0.3-2 parts by mass.
 (D)成分の合成ゴムとしては、例えば、アクリルゴム、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、ブタジエンメチルアクリレートアクリロニトリルゴム、ブタジエンゴム、カルボキシル基含有アクリロニトリルブタジエンゴム、ビニル基含有アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、ポリビニルブチラール等が使用される。これらは1種を単独で、または2種以上を組み合わせて用いることができる。 Examples of the synthetic rubber (D) include acrylic rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, butadiene methyl acrylate acrylonitrile rubber, butadiene rubber, carboxyl group-containing acrylonitrile butadiene rubber, vinyl group-containing acrylonitrile butadiene rubber, silicone rubber, urethane. Rubber, polyvinyl butyral, etc. are used. These can be used alone or in combination of two or more.
 この(D)成分の合成ゴムの配合量は、(A)~(D)成分全体に対し、好ましくは10~30質量%、より好ましくは15~25質量%である。配合量が10質量%未満では、ポリイミドフィルムからなる基材との接着力が十分に得られないおそれがあり、逆に、30質量%を超えると、電気的特性等が低下する。 The blending amount of the synthetic rubber of the component (D) is preferably 10 to 30% by mass, more preferably 15 to 25% by mass with respect to the total components (A) to (D). If the blending amount is less than 10% by mass, there is a possibility that sufficient adhesion with a substrate made of a polyimide film may not be obtained. Conversely, if it exceeds 30% by mass, the electrical characteristics and the like deteriorate.
 (E)成分のホスファゼン化合物としては、実質的にハロゲンを有さないものであれば特に制限されることなく使用される。難燃性、耐熱性、耐湿性、耐薬品性等の点からは、融点が80℃以上であるものが好ましく、融点が90℃以上であるものがより好ましい。好ましいホスファゼン化合物の具体例としては、下記一般式(1)または(2)で表わされるホスファゼン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
The phosphazene compound as the component (E) is used without particular limitation as long as it has substantially no halogen. From the viewpoint of flame retardancy, heat resistance, moisture resistance, chemical resistance, etc., those having a melting point of 80 ° C. or higher are preferred, and those having a melting point of 90 ° C. or higher are more preferred. Specific examples of preferred phosphazene compounds include phosphazene compounds represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)及び(2)中、Xは基-N=P(OPh)または基-N=P(O)OPhであり、Yは基-N=P(OPh)または基-N=P(O)(OPh)である。また、Phはフェニル基であり、mは3~25の整数、nは3~10,000の整数である。これらのホスファゼン化合物は1種を単独で、または2種以上を組み合わせて用いることができる。 In formulas (1) and (2), X 1 is a group —N═P (OPh) 3 or a group —N═P (O) OPh, and Y 1 is a group —N═P (OPh) 4 or a group— N = P (O) (OPh) 2 Ph is a phenyl group, m is an integer of 3 to 25, and n is an integer of 3 to 10,000. These phosphazene compounds can be used singly or in combination of two or more.
 この(E)成分のホスファゼン化合物の配合量は、(A)~(D)成分の合計量100質量部に対し、好ましくは3~10質量部であり、より好ましくは5~7質量部である。配合量が3質量部未満では、所期の難燃性が得られないおそれがあり、逆に、10質量部を超えると、ドライフィルムあるいはカバーレイの表面にブリードアウトするおそれがある。 The blending amount of the phosphazene compound as the component (E) is preferably 3 to 10 parts by mass, more preferably 5 to 7 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D). . If the blending amount is less than 3 parts by mass, the desired flame retardancy may not be obtained. Conversely, if it exceeds 10 parts by mass, bleeding may occur on the surface of the dry film or coverlay.
 (F)成分のポリリン酸塩化合物としては、例えば、ポリリン酸のアミン塩、アンモニウム塩等が挙げられる。ポリリン酸としては、例えば、一般式:HO(HPO3)nH(式中、nは2以上の整数である。)で表わされる直鎖状縮合リン酸(例えば、ピロリン酸、トリポリリン酸、テトラポリリン酸、ペンタポリリン酸等)、一般式:(HPO3)m(式中、mは2以上の整数である。)で表わされる環状縮合リン酸(トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸等)等が挙げられる。 Examples of the (F) component polyphosphate compound include amine salts and ammonium salts of polyphosphoric acid. Examples of polyphosphoric acid include linear condensed phosphoric acid represented by the general formula: HO (HPO3) nH (wherein n is an integer of 2 or more) (for example, pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid). , Pentapolyphosphoric acid, etc.), cyclic condensed phosphoric acid (trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, etc.) represented by the general formula: (HPO3) m (where m is an integer of 2 or more), etc. It is done.
 (F)成分のポリリン酸塩化合物としては、なかでも、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸メレムが好ましい。ちなみにメラムは、メラミン2分子からアンモニア1分子が脱離して縮合した1,3,5-トリアジン誘導体であり、メレムは、メラミン2分子からアンモニア2分子が脱離して縮合した1,3,5-トリアジン誘導体である。これらのポリリン酸塩化合物は1種を単独で、または2種以上を組み合わせて用いることができる。 As the polyphosphate compound of component (F), melamine polyphosphate, melam polyphosphate, and melem polyphosphate are particularly preferable. Incidentally, melam is a 1,3,5-triazine derivative in which one molecule of ammonia is desorbed from two melamine molecules, and melem is a 1,3,5-triazine derivative in which two molecules of ammonia are desorbed and condensed. It is a triazine derivative. These polyphosphate compounds can be used alone or in combination of two or more.
 この(F)成分のポリリン酸塩化合物の配合量は、(A)~(D)成分の合計量100質量部に対し、好ましくは5~30質量部であり、より好ましくは15~25質量部である。配合量が5質量部未満では、所期の難燃性が得られないおそれがあり、逆に、30質量部を超えると、ドライフィルムあるいはカバーレイの耐折り曲げ性等が低下するおそれがある。 The blending amount of the polyphosphate compound of the component (F) is preferably 5 to 30 parts by weight, more preferably 15 to 25 parts by weight with respect to 100 parts by weight of the total amount of the components (A) to (D). It is. If the blending amount is less than 5 parts by mass, the desired flame retardancy may not be obtained. Conversely, if it exceeds 30 parts by mass, the bending resistance of the dry film or coverlay may be reduced.
 (G)成分の無機充填剤としては、従来、カバーレイに使用されているものであれば特に制限されることなく使用される。具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、タルク、シリカ、アルミナ等が挙げられる。これらの無機充填剤は、1種を単独で、または2種以上を組み合わせて用いることができる。また、これらの無機充填剤は、折り曲げ時の耐クラック性等の点から、平均粒子径が0.1~10μmであることが好ましく、0.5~5μmであることがより好ましい。無機充填剤の平均粒子径は、例えば、レーザー回折散乱式粒度分布装置を用いて測定することができる。 As the inorganic filler of component (G), any conventional filler used in coverlays can be used without any particular limitation. Specific examples include metal hydrates such as aluminum hydroxide and magnesium hydroxide, talc, silica, alumina and the like. These inorganic fillers can be used alone or in combination of two or more. Further, these inorganic fillers preferably have an average particle diameter of 0.1 to 10 μm, more preferably 0.5 to 5 μm, from the viewpoint of crack resistance during bending. The average particle diameter of the inorganic filler can be measured using, for example, a laser diffraction / scattering particle size distribution apparatus.
 この(G)成分の無機充填剤の配合量は、組成物中の全固形分量を基準として、5~30質量%の範囲が好ましく、10~20質量%の範囲がより好ましい。配合量が5質量%未満では、十分な難燃性が得られないおそれがあり、逆に、30重量%を超えると、耐クラック性が低下するおそれがある。 The blending amount of the inorganic filler as the component (G) is preferably in the range of 5 to 30% by mass, more preferably in the range of 10 to 20% by mass based on the total solid content in the composition. If the blending amount is less than 5% by mass, sufficient flame retardancy may not be obtained. Conversely, if it exceeds 30% by weight, crack resistance may decrease.
 非ハロゲン難燃性樹脂組成物には、上記(A)~(G)成分の他、カバーレイの着色のため(H)着色剤、例えば、無機系顔料、有機系顔料、有機系染料等を配合することができる。 In addition to the above components (A) to (G), the non-halogen flame retardant resin composition contains (H) colorants such as inorganic pigments, organic pigments, organic dyes, etc., for coloring the coverlay. Can be blended.
 無機系顔料としては、例えば、カーボンブラック、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO(インジウムスズオキサイド)系色素、ATO(アンチモンスズオキサイド)系色素等が挙げられる。有機系顔料及び有機系染料としては、例えば、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、インダンスレンブルー系色素、イソインドリノン系色素、ウオッチング系色素、パーマネント系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素、ジチオール金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素、アントラキノン系色素、ジオキサジン系色素、ナフトール系色素、アゾメチン系色素、ベンズイミダゾロン系色素、ピランスロン系色素及びスレン系色素等が挙げられる。 Examples of inorganic pigments include carbon black, cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO (indium) Tin oxide) dyes, ATO (antimony tin oxide) dyes, and the like. Examples of organic pigments and organic dyes include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, naphthoquinone dyes, pyrylium dyes, and phthalocyanine dyes. Dye, Naphthalocyanine dye, Naphlactam dye, Azo dye, Condensed azo dye, Indigo dye, Perinone dye, Perylene dye, Dioxazine dye, Quinacridone dye, Indanthrene blue dye, Isoindolinone Dyes, watching dyes, permanent dyes, quinophthalone dyes, pyrrole dyes, thioindigo dyes, metal complex dyes, dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, Dioqui Jin dyes, naphthol dyes, azomethine dyes, benzimidazolone pigments, pyranthrone pigments and threne pigments, and the like.
 これらの着色剤は、目的とする色相に調整するため1種以上を適宜選択して使用することができる。例えば、黒色着色には、カーボンブラック等、青色着色には、フタロシアニン系色素、インダンスレンブルー系色素等、赤色着色には、キナクリドン系色素、ウオッチング系色素、パーマネント系色素、アンスラキノン系色素、ペリレン系色素、及び縮合アゾ系色素等が使用される。 These colorants can be used by appropriately selecting one or more kinds in order to adjust to a target hue. For example, carbon black, etc. for black coloring, phthalocyanine dyes, indanthrene blue dyes, etc. for blue coloring, quinacridone dyes, watching dyes, permanent dyes, anthraquinone dyes for red coloring, etc. Perylene dyes, condensed azo dyes, and the like are used.
 特に、液晶表示モジュール、撮像モジュール等の遮光性が求められる用途には、(H)着色剤として黒色顔料の使用が好ましい。好ましい黒色顔料の具体例としては、例えば、カーボンブラック、アニリンブラック、カーボンブラック、チタンブラック、無機顔料ヘマタイト、ペリレンブラック、またはこれらの2種以上を混合したものが挙げられる。なかでも、カーボンブラック、チタンブラック、またはこれらの混合物がより好ましい。カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック等を用いることができる。カーボンブラックは、一次粒子径が小さいものが一般に黒度・着色力に優れることから適しており、具体的には、一次粒子径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。ただし、一次粒子径が10nmより小さいと凝集するようになるため、10nm以上であることが好ましい。また、チタンブラックは、チタンの酸化または二酸化チタンの還元により得られるもので、例えば二酸化チタンと一酸化チタン及び/または窒化チタンを構成成分とする黒色顔料である。 In particular, for applications requiring light shielding properties such as liquid crystal display modules and imaging modules, it is preferable to use a black pigment as the (H) colorant. Specific examples of preferable black pigments include, for example, carbon black, aniline black, carbon black, titanium black, inorganic pigment hematite, perylene black, or a mixture of two or more thereof. Among these, carbon black, titanium black, or a mixture thereof is more preferable. As carbon black, furnace black, channel black, acetylene black, etc. can be used. Carbon black having a small primary particle diameter is suitable because it generally has excellent blackness and coloring power. Specifically, the primary particle diameter is preferably 1 μm or less, preferably 0.5 μm or less. Is more preferable. However, if the primary particle diameter is smaller than 10 nm, the particles are aggregated, and therefore it is preferably 10 nm or more. Titanium black is obtained by oxidation of titanium or reduction of titanium dioxide. For example, titanium black is a black pigment containing titanium dioxide and titanium monoxide and / or titanium nitride as constituent components.
 (H)成分の着色剤の配合量は、組成物中の全固形分量を基準として、0.1~10質量%の範囲が好ましく、0.5~3質量%の範囲がより好ましい。配合量が0.1質量%未満では、十分な着色効果が得られないおそれがあり、逆に、10重量%を超えると、フレキシブル配線板との密着力が低下するおそれがある。なお、顔料を配合する場合、顔料は分散剤により分散されていることが好ましい。分散剤としては、例えば、シランカップリング剤、チタンカップリング剤、各種官能基を導入した樹脂等が使用される。 The blending amount of the colorant as the component (H) is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 3% by mass, based on the total solid content in the composition. If the blending amount is less than 0.1% by mass, a sufficient coloring effect may not be obtained. Conversely, if it exceeds 10% by weight, the adhesion with the flexible wiring board may be reduced. In addition, when mix | blending a pigment, it is preferable that the pigment is disperse | distributed with the dispersing agent. As the dispersant, for example, a silane coupling agent, a titanium coupling agent, a resin into which various functional groups are introduced, or the like is used.
 黒色顔料を含有する非ハロゲン難燃性樹脂組成物を用いたカバーレイ用ドライフィルムを使用したフレキシブル配線板は、液晶表示モジュール、撮像モジュール等の遮光性が求められる用途に用いた場合、カバーレイ形成後の遮光用黒色インクの印刷工程を省くことができる。この結果、生産性及び環境適合性に優れたものとなり、また、板厚を薄くすることができることから、スプリングバック力の低減につながり、良好な折り曲げ性が得られる。 A flexible wiring board using a dry film for coverlay using a non-halogen flame retardant resin composition containing a black pigment is used for a liquid crystal display module, an imaging module, etc. where light shielding properties are required. The printing process of the black ink for light shielding after formation can be omitted. As a result, the productivity and environmental compatibility are excellent, and the plate thickness can be reduced, which leads to a reduction in springback force and good bending properties.
 非ハロゲン難燃性樹脂組成物には、上記(A)~(H)成分の他、必要に応じて、かつ本発明の効果を阻害しない範囲で、各種添加材、例えば、有機質充填剤、劣化防止剤等をさらに配合することができる。 In addition to the components (A) to (H) described above, the non-halogen flame retardant resin composition includes various additives, such as organic fillers, deterioration, as necessary and within the range not impairing the effects of the present invention. An inhibitor or the like can be further blended.
 また、非ハロゲン難燃性樹脂組成物には、加工法に適した粘度とするために溶媒を添加することができる。溶媒としては、例えばメタノール、エタノール、イソプロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、1,4-ジオキサン、1,3-ジオキサン、プロピレングリコールモノメチルエーテル等のエーテル系溶媒、N-メチルピロリドン、ジメチルホルムアミド等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。 Further, a solvent can be added to the non-halogen flame retardant resin composition in order to obtain a viscosity suitable for the processing method. Examples of the solvent include alcohol solvents such as methanol, ethanol and isopropanol, ketone solvents such as acetone and methyl ethyl ketone, aromatic hydrocarbon solvents such as benzene, toluene and xylene, 1,4-dioxane and 1,3-dioxane. And ether solvents such as propylene glycol monomethyl ether, N-methylpyrrolidone, dimethylformamide and the like. These can be used alone or in combination of two or more.
 非ハロゲン難燃性樹脂組成物は公知の方法を適用して調製することができる。例えば、上記(A)~(G)成分、及び必要に応じて配合される各種成分を、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、またはライカイ機等の公知の混練機を用いて、室温あるいは加熱下において混練することにより調製することができる。なお、配合成分のうち、溶媒に不溶な成分、少なくとも(F)成分のポリリン酸塩化合物は、耐クラック性の低下を防止する点から、混練によりその粒子径が10μm以下となるようにすることが好ましい。 The non-halogen flame retardant resin composition can be prepared by applying a known method. For example, the above components (A) to (G) and various components to be blended as necessary are mixed using a known kneader such as a pot mill, a ball mill, a bead mill, a roll mill, a homogenizer, a super mill, or a reika machine. It can be prepared by kneading at room temperature or under heating. Among the blended components, the component insoluble in the solvent, at least the polyphosphate compound of component (F), is to have a particle size of 10 μm or less by kneading from the viewpoint of preventing a decrease in crack resistance. Is preferred.
 カバーレイ用ドライフィルム50は、必要に応じて溶媒により適当な粘度に調整した上記非ハロゲン難燃性樹脂組成物を、支持フィルム51上に公知の方法により塗布し、乾燥させることにより得られる。具体的には、支持フィルム51上に、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法により塗布し、乾燥処理し、半硬化状態とすることにより得られる。支持フィルム51としては、片面に離型剤層を設けた、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアリレート、ポリアクリロニトリル等のプラスチックフィルムが使用される。この支持フィルム51の厚みは、ハンドリング性の点から、通常10~50μm、好ましくは25~38μmである。 The dry film for coverlay 50 is obtained by applying the non-halogen flame retardant resin composition, which is adjusted to an appropriate viscosity with a solvent as required, onto the support film 51 by a known method and drying. Specifically, it is applied onto the support film 51 by a known coating method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, or a gravure coating method, followed by drying treatment, and a semi-cured state. Is obtained. As the support film 51, a plastic film such as polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, etc., having a release agent layer on one side is used. The thickness of the support film 51 is usually 10 to 50 μm, preferably 25 to 38 μm, from the viewpoint of handling properties.
 非ハロゲン難燃性樹脂組成物は、乾燥後の厚みが10~50μmとなるように塗布することが好ましい。より好ましくは20~35μmである。 The non-halogen flame retardant resin composition is preferably applied so that the thickness after drying is 10 to 50 μm. More preferably, it is 20 to 35 μm.
 また、支持フィルム51の非ハロゲン難燃性樹脂組成物の塗布面側は、表面処理により、0.3~5.0μmの表面粗さ(Ra:算術平均粗さ)を有するようにすることが好ましく、0.5~3.0μmであるとより好ましい。表面処理方法としては、例えば、サンドブラスト処理、ケミカルマット処理、練り込みマット処理等の方法を用いることができる。 Further, the non-halogen flame retardant resin composition coated surface side of the support film 51 may have a surface roughness (Ra: arithmetic average roughness) of 0.3 to 5.0 μm by surface treatment. Preferably, the thickness is 0.5 to 3.0 μm. As the surface treatment method, for example, methods such as sand blast treatment, chemical mat treatment, kneading mat treatment and the like can be used.
 上記のように表面粗さ(Ra)を0.3~5.0μmとし、その表面に離型剤層を設けた支持フィルム51上に、上記非ハロゲン難燃性樹脂組成物を塗布し、乾燥処理して得られたカバーレイ用ドライフィルム50を用いて、後述するような方法でカバーレイを成形し、その後、支持フィルム51を剥離することによって、支持フィルム51の表面粗さ(Ra)が転写されたカバーレイ表面を得ることができる。 The non-halogen flame retardant resin composition is applied onto the support film 51 having a surface roughness (Ra) of 0.3 to 5.0 μm as described above and a release agent layer provided on the surface, and dried. Using the coverlay dry film 50 obtained by the treatment, a coverlay is formed by a method as described later, and then the support film 51 is peeled off, whereby the surface roughness (Ra) of the support film 51 is increased. A transferred coverlay surface can be obtained.
 後述する実施例からも明らかなように、このように粗面化された表面を有するカバーレイは、平滑な表面を有するカバーレイに比べ、光の反射率が大きく低下する(図13参照。)。したがって、黒色で、表面粗さ(Ra)0.3~5.0μmに粗面化した支持フィルム51を有するカバーレイ用ドライフィルム50は、液晶表示モジュールや撮像モジュール等の光の漏洩により多大な影響を受ける電子部品モジュールのフレキシブル配線板の用途に好適である。なお、粗面化により光の反射率が大きく低下したのは、入射光がカバーレイ表面で吸収及び乱反射し、その結果、カバーレイ表面から反射して受光部に戻ってくる光の量が少なくなったからと考えられる。一方、光の透過率については粗面化の影響はほとんど見られない(図12参照。)。 As will be apparent from the examples described later, the coverlay having such a roughened surface has a significantly lower light reflectance than a coverlay having a smooth surface (see FIG. 13). . Therefore, the dry film for coverlay 50 having the support film 51 that is black and has a surface roughness (Ra) of 0.3 to 5.0 μm is very large due to light leakage from a liquid crystal display module, an imaging module, or the like. It is suitable for the use of the flexible wiring board of the affected electronic component module. The reason why the reflectance of light is greatly reduced by roughening is that incident light is absorbed and diffusely reflected on the coverlay surface, and as a result, the amount of light reflected from the coverlay surface and returning to the light receiving portion is small. It is thought that it became. On the other hand, the effect of roughening is hardly observed on the light transmittance (see FIG. 12).
 本発明のフレキシブル配線板は、上記カバーレイ用ドライフィルムを用いてカバーレイを形成することにより製造することができる。具体的には、例えば、ポリイミドフィルムの片面または両面に銅箔等の金属箔を熱ロールで貼り合わせ、回路形成した後、その回路形成面に、予め所定箇所に穴を明けた上記カバーレイ用ドライフィルムを、非ハロゲン難燃性樹脂組成物層側を回路形成面に向けて重ね合わせ、熱プレスにより、130~180℃、好ましくは150~170℃の温度、及び5~50MPa、好ましくは15~35MPaの圧力で加熱加圧する。これにより、回路上に上記カバーレイ用ドライフィルムからなるカバーレイが形成されたフレキシブル配線板が得られる。 The flexible wiring board of the present invention can be manufactured by forming a coverlay using the above-mentioned dry film for coverlay. Specifically, for example, the above-mentioned coverlay in which a metal foil such as a copper foil is bonded to one side or both sides of a polyimide film with a hot roll to form a circuit, and then a hole is previously drilled in a predetermined place on the circuit forming surface. The dry film is overlaid with the non-halogen flame retardant resin composition layer side facing the circuit forming surface, and by hot pressing, a temperature of 130 to 180 ° C., preferably 150 to 170 ° C., and 5 to 50 MPa, preferably 15 Heat and pressurize at a pressure of ~ 35 MPa. Thereby, the flexible wiring board by which the coverlay which consists of the said dry film for coverlays was formed on the circuit is obtained.
 また、このフレキシブル配線板に熱硬化性樹脂組成物を介して補強板を重ね合わせ、加熱加圧成形するという通常の方法により補強板付きフレキシブルプリント配線板を製造することができる。 In addition, a flexible printed wiring board with a reinforcing plate can be produced by a normal method of superposing a reinforcing plate on the flexible wiring board via a thermosetting resin composition and performing heat-press molding.
 さらに、本発明のフレキシブル配線板に熱硬化性樹脂組成物を介してフレキシブル銅張積層板等を重ね合わせ、加熱加圧成形し、スルーホールを形成し、スルーホールメッキを行った後、所定の回路を形成するという通常の方法により、多層フレキシブルプリント配線板を製造することができる。 Furthermore, a flexible copper-clad laminate and the like are superimposed on the flexible wiring board of the present invention via a thermosetting resin composition, heated and pressed, formed through-holes, plated through-holes, A multilayer flexible printed wiring board can be manufactured by the usual method of forming a circuit.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の記載において、「部」及び「%」は、特に断らない限り、それぞれ「質量部」及び「質量%」を示すものとする。 Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the following description, “parts” and “%” indicate “parts by mass” and “% by mass”, respectively, unless otherwise specified.
 (カバーレイ用ドライフィルムの製造)
製造例1
カルボキシル基含有アクリロニトリルブタジエンゴムとしてニポール1072(日本ゼオン社製 商品名、ニトリル含量27%)200部、ビスフェノールA型エポキシ樹脂としてエピコート1001(油化シェル社製 商品名、エポキシ当量470)320部、クレゾールノボラックエポキシ樹脂としてYDCN-703P(東都化成社製 商品名、エポキシ当量210)147部、フェノールノボラック樹脂としてBRG558(昭和高分子社製 商品名、水酸基価106)146部、フェノキシホスファゼンオリゴマーとしてSPB-100(大塚化学社製 商品名、燐含有率13%)65質量部、ポリリン酸メラミンとしてPHOSMEL200(日産化学社製 商品名、燐含有率12%)163部、劣化防止剤としてアンテージBHT(川口化学工業社製 商品名)1部、水酸化アルミニウムとしてH-42I(昭和電工社製 商品名)100部、黒色顔料としてCAB-LX905(東洋インキ社製 商品名、カーボン含有量5%、平均一次粒子径0.25μm)450部、及び硬化促進剤として2-エチル-4-メチルイミダゾール0.5部からなる混合物に溶媒としてプロピレングリコールモノメチルエーテル(PGM)及びメチルエチルケトン(混合質量比30:70)を加えて固形分40%の樹脂組成物を調製した。
(Manufacture of dry film for coverlay)
Production Example 1
200 parts of Nipol 1072 (trade name, manufactured by Nippon Zeon Co., Ltd., nitrile content 27%) as carboxyl group-containing acrylonitrile butadiene rubber, 320 parts of Epicoat 1001 (trade name, manufactured by Yuka Shell Co., Ltd., epoxy equivalent 470) as bisphenol A type epoxy resin, cresol 147 parts of YDCN-703P (trade name, epoxy equivalent 210, manufactured by Toto Kasei Co., Ltd.) as a novolac epoxy resin, 146 parts of BRG558 (trade name, hydroxyl value 106, manufactured by Showa Polymer Co., Ltd.) as a phenol novolac resin, SPB-100 as a phenoxyphosphazene oligomer (Product name, phosphorus content 13%, manufactured by Otsuka Chemical Co., Ltd.) 65 parts by mass, PHOSMEL200 as a melamine polyphosphate (product name, phosphorus content 12%, manufactured by Nissan Chemical Co., Ltd.) 163 parts, Antage BHT (kawa 1 part by Chemical Industry Co., Ltd.), 100 parts H-42I (trade name by Showa Denko) as aluminum hydroxide, CAB-LX905 (trade name by Toyo Ink Co., Ltd.) as black pigment, 5% carbon content, average primary A mixture of 450 parts of a particle size of 0.25 μm) and 0.5 part of 2-ethyl-4-methylimidazole as a curing accelerator was mixed with propylene glycol monomethyl ether (PGM) and methyl ethyl ketone (mixing mass ratio 30:70) as a solvent. In addition, a resin composition having a solid content of 40% was prepared.
 上記樹脂組成物を三本ロールにて混練し、溶剤に不溶の成分の粒子径が10μm以下となるように調製した後、この調製物を、片面艶消しタイプの厚さ25μmの二軸延伸ポリプロピレンフイルムであるトレファンYM17S(東レ社製 商品名、表面粗さ(Ra)=0.8~1.2μm)のマット(表面処理)面側に、乾燥後の厚さが25μmとなるようにロールコーターで塗布し、加熱乾燥してカバーレイ用ドライフィルムAを作製した。 The resin composition is kneaded with three rolls and prepared so that the particle size of the component insoluble in the solvent is 10 μm or less, and then this preparation is formed into a single-side matte type 25 μm thick biaxially oriented polypropylene. Roll on the mat (surface treatment) side of the film, Treffan YM17S (trade name, surface roughness (Ra) = 0.8 to 1.2 μm, manufactured by Toray Industries Inc.) so that the thickness after drying is 25 μm It was applied with a coater and dried by heating to prepare a dry film A for coverlay.
 製造例2
フェノキシホスファゼンオリゴマーとしてSPB-100(商品名)に代えてSPE-100(大塚化学社製 商品名、燐含有率13%)65部を用いた以外は製造例1と同様にして樹脂組成物を調製し、さらにこれを用いて厚さ25μmのカバーレイ用ドライフィルムBを作製した。
Production Example 2
A resin composition was prepared in the same manner as in Production Example 1, except that 65 parts of SPE-100 (trade name, phosphorous content 13%, manufactured by Otsuka Chemical Co., Ltd.) was used as the phenoxyphosphazene oligomer instead of SPB-100 (trade name). Further, using this, a coverlay dry film B having a thickness of 25 μm was produced.
 製造例3
ポリリン酸メラミンのPHOSMEL200(商品名)の配合量を200部とし、かつフェノキシホスファゼンオリゴマーのSPB-100(商品名)を未配合とした以外は製造例1と同様にして樹脂組成物を調製し、さらにこれを用いて厚さ25μmのカバーレイ用ドライフィルムCを作製した。
Production Example 3
A resin composition was prepared in the same manner as in Production Example 1 except that the blending amount of PHOSMEL 200 (trade name) of melamine polyphosphate was 200 parts and SPB-100 (trade name) of phenoxyphosphazene oligomer was not blended. Further, using this, a coverlay dry film C having a thickness of 25 μm was produced.
 製造例4
ポリリン酸メラミンとしてPHOSMEL200(商品名)に代えてMPP-B(三和ケミカル社製 商品名、燐含有率13%)163部を用いた以外は製造例1と同様にして樹脂組成物を調製し、さらにこれを用いて厚さ25μmのカバーレイ用ドライフィルムDを作製した。
Production Example 4
A resin composition was prepared in the same manner as in Production Example 1 except that 163 parts of MPP-B (trade name, phosphorous content 13%, manufactured by Sanwa Chemical Co., Ltd.) was used as melamine polyphosphate instead of PHOSMEL200 (trade name). Further, using this, a dry film D for coverlay having a thickness of 25 μm was produced.
 製造例5
フェノキシホスファゼンオリゴマーのSPB-100(商品名)の配合量を200部とし、かつポリリン酸メラミンのPHOSMEL200(商品名)を未配合とした以外は製造例1と同様にして樹脂組成物を調製し、さらにこれを用いて厚さ25μmのカバーレイ用ドライフィルムEを作製した。
Production Example 5
A resin composition was prepared in the same manner as in Production Example 1, except that the amount of SPB-100 (trade name) of the phenoxyphosphazene oligomer was 200 parts and PHOSMEL 200 (trade name) of melamine polyphosphate was not blended. Further, using this, a coverlay dry film E having a thickness of 25 μm was produced.
 製造例6
黒色顔料のCAB-LX905(商品名)を未配合とするとともに、片面艶消しタイプの厚さ25μmの二軸延伸ポリプロピレンフイルムであるトレファンYM17S(商品名)に代えて、片面に離型剤層が設けられた厚さ38μmの離型剤付きポリエチレンテレフタレート(PET)フィルムである38E-CTR2(藤森工業社製 商品名、表面粗さ(Ra)=0.2μm以下)を使用した以外は製造例1と同様にして樹脂組成物を調製し、さらにこれを用いて厚さ25μmのカバーレイ用ドライフィルムFを作製した。
Production Example 6
The black pigment CAB-LX905 (trade name) is not blended, and instead of Trefan YM17S (trade name), a biaxially stretched polypropylene film with a thickness of 25 μm on one side, a release agent layer on one side 38E-CTR2 (trade name, surface roughness (Ra) = 0.2 μm or less, manufactured by Fujimori Kogyo Co., Ltd.) which is a 38 μm thick polyethylene terephthalate (PET) film with a release agent provided with A resin composition was prepared in the same manner as in Example 1, and a coverlay dry film F having a thickness of 25 μm was prepared using the resin composition.
 製造例7
片面艶消しタイプの厚さ25μmの二軸延伸ポリプロピレンフイルムであるトレファンYM17S(商品名)に代えて、片面に離型剤層が設けられた厚さ38μmの離型剤付きポリエチレンテレフタレート(PET)フィルムである38E-CTR2(藤森工業社製 商品名、表面粗さ(Ra)=0.2μm以下)を使用した以外は製造例1と同様にして樹脂組成物を調製し、さらにこれを用いて厚さ25μmのカバーレイ用ドライフィルムGを作製した。
Production Example 7
Polyethylene terephthalate (PET) with a release agent of 38 μm thickness with a release agent layer provided on one side instead of Trefan YM17S (trade name) which is a biaxially stretched polypropylene film with a thickness of 25 μm on one side. A resin composition was prepared in the same manner as in Production Example 1 except that 38E-CTR2 (trade name, manufactured by Fujimori Kogyo Co., Ltd., surface roughness (Ra) = 0.2 μm or less), which was a film, was used. A dry film G for coverlay having a thickness of 25 μm was produced.
 製造例8
製造例1と同様にして調製した樹脂組成物を、片面艶消しタイプの厚さ25μmの二軸延伸ポリプロピレンフイルムであるトレファンYM17S(東レ社製 商品名、表面粗さ(Ra)=0.8~1.2μm)のマット(表面処理)面側に、乾燥後の厚さが75μmとなるようにロールコーターで塗布し、加熱乾燥してカバーレイ用ドライフィルムHを作製した。
Production Example 8
A resin composition prepared in the same manner as in Production Example 1 was added to Trefan YM17S (trade name, surface roughness (Ra) = 0.8, manufactured by Toray Industries, Inc.), which is a one-side matte type biaxially oriented polypropylene film with a thickness of 25 μm. A dry film H for coverlay was prepared by applying the film to a mat (surface treatment) surface of (˜1.2 μm) with a roll coater so that the thickness after drying was 75 μm, and drying by heating.
 上記製造例1~8のカバーレイ用ドライフィルムの製造に用いた樹脂組成物の組成(溶媒を除く)を表1に示す。 Table 1 shows the compositions (excluding the solvent) of the resin compositions used in the production of the coverlay dry films of Production Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1
厚さ25μmのポリイミドフィルムの両面に厚さ18μmの銅箔を設けたフレキシブル両面銅張板のEspanex MB 18-25-18 FRG(新日鉄化学社製、商品名)を用い、その両面に回路を形成した後、各回路形成面(第1及び第2の回路形成面)に先に製造したカバーレイ用ドライフィルムA及びカバーレイ用ドライフィルムFをそれぞれ重ね合わせ、熱プレスにより、温度160℃、圧力4MPaで1時間加熱加圧して接着し、評価用のフレキシブル配線板を作製した。
Example 1
A flexible double-sided copper-clad Espanex MB 18-25-18 FRG (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) with a 18 μm thick copper foil on both sides of a 25 μm thick polyimide film is used to form circuits on both sides. After that, the coverlay dry film A and the coverlay dry film F previously produced are superimposed on each circuit formation surface (first and second circuit formation surfaces), respectively, and heated at 160 ° C. under pressure. Adhesion was performed by heating and pressing at 4 MPa for 1 hour to produce a flexible wiring board for evaluation.
 実施例2
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムBを重ね合わせた以外は、実施例1と同様にして評価用のフレキシブル配線板を作製した。
Example 2
A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film B was superposed on one circuit forming surface instead of the coverlay dry film A.
 実施例3
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムCを重ね合わせた以外は、実施例1と同様にして評価用のフレキシブル配線板を作製した。
Example 3
A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film C was superposed on one circuit formation surface instead of the coverlay dry film A.
 実施例4
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムDを重ね合わせた以外は、実施例1と同様にして評価用のフレキシブル配線板を作製した。
Example 4
A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film D was superposed on one circuit forming surface instead of the coverlay dry film A.
 実施例5
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムEを重ね合わせた以外は、実施例1と同様にして評価用のフレキシブル配線板を作製した。
Example 5
A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film E was superposed on one circuit formation surface instead of the coverlay dry film A.
 実施例6
フレキシブル両面銅張板のEspanex MB 18-25-18 FRG(商品名)を用い、その両面に回路を形成した後、一方の回路形成面にカバーレイ用ドライフィルムAを重ね合わせ、熱プレスにより、温度160℃、圧力4MPaで1時間加熱加圧して接着した。次いで、他方の回路形成面に150メッシュポリエステルスクリーンを用いたスクリーン印刷により感光性液状カバーレイKSR-800(京セラケミカル社製、商品名)を20~30μmの厚さに全面塗布し、80℃の熱風乾燥機で30分間乾燥させて塗膜を形成した。
Example 6
After using Epanex MB 18-25-18 FRG (trade name), a flexible double-sided copper-clad board, after forming circuits on both sides, overlay the coverlay dry film A on one circuit-forming surface, Adhesion was carried out by heating and pressing at a temperature of 160 ° C. and a pressure of 4 MPa for 1 hour. Next, a photosensitive liquid coverlay KSR-800 (trade name, manufactured by Kyocera Chemical Co., Ltd.) was applied to the other circuit formation surface by screen printing using a 150 mesh polyester screen to a thickness of 20 to 30 μm, and 80 ° C. A coating film was formed by drying with a hot air dryer for 30 minutes.
 この塗膜にレジストパターンのネガフィルムを接触させ、紫外線照射露光装置を用いて紫外線を照射した(露光量400mJ/cm)後、1%濃度の炭酸ナトリウム水溶液を約0.10~0.15MPaの圧力で1分間スプレーで現像し、未露光部を溶解除去し、さらに150℃×60分の条件で熱硬化させることによって感光性樹脂層を形成し、評価用のフレキシブル配線板を作製した。 A negative film of a resist pattern was brought into contact with this coating film and irradiated with ultraviolet rays using an ultraviolet irradiation exposure apparatus (exposure amount: 400 mJ / cm 2 ), and then a 1% sodium carbonate aqueous solution was added at about 0.10 to 0.15 MPa. The film was developed by spraying for 1 minute at a pressure of 1 to dissolve and remove the unexposed portion, and further thermally cured at 150 ° C. for 60 minutes to form a photosensitive resin layer, and a flexible wiring board for evaluation was produced.
 実施例7
フレキシブル両面銅張板のEspanex MB 18-25-18 FRG(商品名)を用い、その両面に回路を形成した後、一方の回路形成面にカバーレイ用ドライフィルムAを重ね合わせ、熱プレスにより、温度160℃、圧力4MPaで1時間加熱加圧して接着した。次いで、他方の回路形成面にポリイミドフィルムカバーレイTFA-560-1215(京セラケミカル社製、商品名)を積層し、一体化させて評価用のフレキシブル配線板を作製した。
Example 7
After using Epanex MB 18-25-18 FRG (trade name), a flexible double-sided copper-clad board, after forming circuits on both sides, overlay the coverlay dry film A on one circuit-forming surface, Adhesion was carried out by heating and pressing at a temperature of 160 ° C. and a pressure of 4 MPa for 1 hour. Next, a polyimide film coverlay TFA-560-1215 (trade name, manufactured by Kyocera Chemical Co., Ltd.) was laminated on the other circuit forming surface and integrated to produce a flexible wiring board for evaluation.
 実施例8
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムGを重ね合わせた以外は、実施例1と同様にして評価用のフレキシブル配線板を作製した。
Example 8
A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film G was superposed on one circuit formation surface instead of the coverlay dry film A.
 実施例9
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムFを重ね合わせた以外は、実施例1と同様にして評価用のフレキシブル配線板を作製した。
Example 9
A flexible wiring board for evaluation was produced in the same manner as in Example 1 except that the coverlay dry film F was superposed on one circuit formation surface instead of the coverlay dry film A.
 比較例1
一方の回路形成面にカバーレイ用ドライフィルムAに代えてカバーレイ用ドライフィルムHを重ね合わせた以外は、実施例7と同様にして評価用のフレキシブル配線板を作製した。
Comparative Example 1
A flexible wiring board for evaluation was produced in the same manner as in Example 7, except that the coverlay dry film H was superposed on one circuit formation surface instead of the coverlay dry film A.
 比較例2
フレキシブル両面銅張板のEspanex MB 18-25-18 FRG(商品名)を用い、その両面に回路を形成した後、両回路形成面にポリイミドフィルムカバーレイTFA-560-1215(京セラケミカル社製、商品名)を積層し、一体化させて評価用のフレキシブル配線板を作製した。
Comparative Example 2
A flexible double-sided copper-clad Espanex MB 18-25-18 FRG (trade name) was used to form circuits on both sides, and polyimide film coverlay TFA-560-1215 (manufactured by Kyocera Chemical Co., Ltd.) Product name) were laminated and integrated to produce a flexible wiring board for evaluation.
 比較例3
ポリイミドフィルムカバーレイTFA-560-1215(商品名)を積層した上に、さらに熱硬化型印刷インク黒色インクCCR-1200B(アサヒ化研社製、商品名)を15μm厚さに印刷した以外は、比較例2と同様にして評価用のフレキシブル配線板を作製した。
Comparative Example 3
Except for laminating polyimide film coverlay TFA-560-1215 (trade name) and further printing thermosetting printing ink black ink CCR-1200B (trade name, manufactured by Asahi Kaken Co., Ltd.) to a thickness of 15 μm, A flexible wiring board for evaluation was produced in the same manner as in Comparative Example 2.
 比較例4
ポリイミドフィルムカバーレイTFA-560-1215(商品名)を積層した上に、さらに熱硬化型印刷インク黒色インクCCR-1200B(アサヒ化研社製、商品名)を15μm厚さに印刷するとともに、他方の回路形成面に、ポリイミドフィルムカバーレイTFA-560-1215(商品名)の積層に代えて、150メッシュポリエステルスクリーンを用いたスクリーン印刷により感光性液状カバーレイKSR-800(商品名)を20~30μmの厚さに全面塗布し、80℃の熱風乾燥機で30分間乾燥させて塗膜を形成し、この塗膜にレジストパターンのネガフィルムを接触させ、紫外線照射露光装置を用いて紫外線を照射した(露光量400mJ/cm)後、1%濃度の炭酸ナトリウム水溶液を約0.10~0.15MPaの圧力で1分間スプレーで現像し、未露光部を溶解除去し、さらに150℃×60分の条件で熱硬化させることによって感光性樹脂層を形成した以外は、比較例2と同様にして評価用のフレキシブル配線板を作製した。
Comparative Example 4
A polyimide film coverlay TFA-560-1215 (trade name) is laminated, and a thermosetting printing ink black ink CCR-1200B (trade name, manufactured by Asahi Kaken Co., Ltd.) is further printed to a thickness of 15 μm. Instead of laminating polyimide film cover lay TFA-560-1215 (trade name) on the circuit forming surface, photosensitive liquid cover lay KSR-800 (trade name) 20 to 20 by screen printing using a 150 mesh polyester screen. The whole surface is applied to a thickness of 30 μm, dried with a hot air dryer at 80 ° C. for 30 minutes to form a coating film, a negative film of a resist pattern is brought into contact with this coating film, and ultraviolet irradiation is performed using an ultraviolet irradiation exposure apparatus. the (exposure dose 400 mJ / cm 2) after 1% strength aqueous sodium carbonate about 0.10 ~ 0.15MP Evaluation was conducted in the same manner as in Comparative Example 2 except that the photosensitive resin layer was formed by spray development for 1 minute at a pressure of 150 ° C., dissolving and removing unexposed portions, and further thermosetting at 150 ° C. for 60 minutes. A flexible wiring board was prepared.
 上記実施例及び比較例で得られたフレキシブル配線板について、耐ブリードアウト性、スティフネス性、耐折り曲げ性、MIT耐折性、透過率及び反射率、表面粗さ(Ra)、ガラス基板への実装性、並びに、難燃性を、以下に示す方法及び基準に基づいて評価した。これらの結果を表2に示す。 About flexible wiring boards obtained in the above examples and comparative examples, bleeding out resistance, stiffness resistance, bending resistance, MIT folding resistance, transmittance and reflectance, surface roughness (Ra), mounting on glass substrate And flame retardancy were evaluated based on the following methods and criteria. These results are shown in Table 2.
 また、粗面化した黒色カバーレイを光の入射面側に配した例として実施例1を、また平滑な黒色カバーレイを配した例として実施例8を、さらにポリイミドフィルムカバーレイを配した例として比較例2を、それぞれ準備して、入射光に対する透過率と反射率を測定した結果を図12及び図13に示す。 In addition, Example 1 as an example in which a roughened black coverlay is arranged on the light incident surface side, Example 8 as an example in which a smooth black coverlay is arranged, and an example in which a polyimide film coverlay is further arranged Comparative Example 2 was prepared as above, and the results of measuring the transmittance and the reflectance with respect to the incident light are shown in FIGS.
 [耐ブリードアウト性]
評価用フレキシブル配線板を121℃、85%RHの条件で超加速高温高湿寿命試験(HAST)槽内に100時間晒した後、各配線板の表面を光学顕微鏡(100倍)により観察し、ブリードの発生の有無を調べ、次の基準により評価した。
  ○…ブリードなし、×…ブリード発生
[Bleed-out resistance]
After the flexible wiring board for evaluation was exposed to a super accelerated high temperature and high humidity life test (HAST) bath at 121 ° C. and 85% RH for 100 hours, the surface of each wiring board was observed with an optical microscope (100 times), The presence or absence of bleed was examined and evaluated according to the following criteria.
○… No bleed, ×… Bleed
 [スティフネス性]
評価用フレキシブル配線板から1cm×10cmの大きさの測定試料を切り出し、長さ方向に対して半分に折り返し、端部から5mm内側の上下の間隔を2mmとしたときの反発荷重をプッシュ・プル・ゲージで測定した。
[Stiffness]
Cut out a measurement sample of 1cm x 10cm from the flexible wiring board for evaluation, fold it back in half with respect to the length direction, and push and pull the repulsive load when the vertical distance 5mm inside from the end is 2mm. Measured with a gauge.
 [耐折り曲げ性]
評価用フレキシブル配線板に、ハゼ折りによる180°折り曲げを繰り返し、目視及び光学顕微鏡(200倍)による観察でカバーレイにクラックが発生するまでの回数を測定した。
[Bending resistance]
The evaluation flexible wiring board was repeatedly bent 180 ° by goby folding, and the number of times until a crack was generated in the coverlay by visual observation and observation with an optical microscope (200 times) was measured.
 [MIT耐折性]
JIS C 6471 8.2に準拠し、MIT耐折性試験機により、R(曲率半径)0.38mm、荷重4.9Nで試料が破断するまでの回数を測定し、次の基準により評価した。
 ○…300回以上、△…100回以上300回未満、×…100回未満
[MIT folding resistance]
In accordance with JIS C 6471 8.2, the number of times until the sample broke at an R (curvature radius) of 0.38 mm and a load of 4.9 N was measured by an MIT folding resistance tester and evaluated according to the following criteria.
○ ... 300 times or more, Δ ... 100 times or more and less than 300 times, × ... less than 100 times
 [透過率、反射率]
U-best V-570(JASCO社製)により、500nm(可視光領域)の光の透過率を測定した。また、透過率10%以下のサンプルについて、同様に500nmの光の反射率を測定した。
[Transmissivity, reflectivity]
The light transmittance of 500 nm (visible light region) was measured by U-best V-570 (manufactured by JASCO). Moreover, the reflectance of light of 500 nm was similarly measured about the sample whose transmittance | permeability is 10% or less.
 [表面粗さ(Ra)]
表面粗さ測定機SE-3300(小坂研究所社製)を用い、カバーレイ用ドライフィルムによって形成されたカバーレイの表面粗さ(Ra)を測定した。
[Surface roughness (Ra)]
Using a surface roughness measuring machine SE-3300 (manufactured by Kosaka Laboratories), the surface roughness (Ra) of the coverlay formed by the coverlay dry film was measured.
 [ガラス基板への実装性]
評価用フレキシブル配線板の一端とガラス基板の一辺とを固着し、第1の回路形成面側が内側となるようにして折り曲げ、ガラス基板の背面に両面テープで固着した。このフレキシブル配線板が固着されたガラス基板の表裏を金属板にて固定し、温度サイクル試験(-25℃/125℃、各30分保持)を1000サイクル実施した後、フレキシブル配線板の折り曲げ部を目視で確認し、次の基準により評価した。
 ○…膨らみまたは撓みの発生なし
 ×…膨らみまたは撓みが発生
[Mountability on glass substrate]
One end of the flexible wiring board for evaluation and one side of the glass substrate were fixed, bent so that the first circuit forming surface side was inside, and fixed to the back surface of the glass substrate with double-sided tape. The front and back sides of the glass substrate to which the flexible wiring board is fixed are fixed with metal plates, and a temperature cycle test (−25 ° C./125° C., held for 30 minutes each) is carried out for 1000 cycles. It checked visually and evaluated by the following reference | standard.
○… No bulge or deflection × ×: bulge or deflection occurs
 [難燃性]
UL94VTM-0難燃性規格に準拠して難燃性を測定し、次の基準により評価した。
 ○…UL94VTM-0規格を満足する
 ×…UL94VTM-0規格を満足しない(試料が燃焼)
[Flame retardance]
Flame retardancy was measured according to the UL94VTM-0 flame retardancy standard and evaluated according to the following criteria.
○… Satisfies the UL94VTM-0 standard ×… Does not meet the UL94VTM-0 standard (sample burns)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のフレキシブル配線板は、可撓性、耐折性に優れており、特に薄型化、低スプリングバック性が要求されるフレキシブル配線板の用途に好適である。 The flexible wiring board of the present invention is excellent in flexibility and folding resistance, and is particularly suitable for the use of a flexible wiring board that is required to be thin and have low springback properties.
 1、10…フレキシブル配線板、2…フレキシブル配線板本体、2a…基材、2b、2c…回路、3…(第1)カバーレイ、4…(第2)カバーレイ、5…実装部品、11…液晶表示モジュール、12…液晶表示パネル、16…撮像モジュール、50…カバーレイ用ドライフィルム、51…支持フィルム、52…非ハロゲン難燃性樹脂組成物からなる層。 DESCRIPTION OF SYMBOLS 1, 10 ... Flexible wiring board, 2 ... Flexible wiring board main body, 2a ... Base material, 2b, 2c ... Circuit, 3 ... (1st) coverlay, 4 ... (2nd) coverlay, 5 ... Mounting components, 11 DESCRIPTION OF SYMBOLS ... Liquid crystal display module, 12 ... Liquid crystal display panel, 16 ... Imaging module, 50 ... Dry film for coverlays, 51 ... Support film, 52 ... Layer which consists of a non-halogen flame-retardant resin composition.

Claims (13)

  1.  ポリイミドフィルムからなる基材と、前記基材の一方の主面に設けられた回路と、前記回路の表面を覆うカバーレイとを備え、
     前記カバーレイは、カバーレイ用ドライフィルムにより形成され、かつ厚さが10~50μmであることを特徴とするフレキシブル配線板。
    A substrate made of a polyimide film, a circuit provided on one main surface of the substrate, and a coverlay covering the surface of the circuit,
    The flexible printed circuit board, wherein the coverlay is formed of a dry film for coverlay and has a thickness of 10 to 50 μm.
  2.  前記カバーレイ用ドライフィルムが、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)硬化促進剤、(D)合成ゴム、(E)ホスファゼン化合物、(F)ポリリン酸塩化合物及び(G)無機充填剤を必須成分とする非ハロゲン難燃性樹脂組成物からなることを特徴とする請求項1記載のフレキシブル配線板。 The coverlay dry film comprises (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, (E) a phosphazene compound, (F) a polyphosphate compound, and ( The flexible wiring board according to claim 1, comprising G) a non-halogen flame-retardant resin composition containing an inorganic filler as an essential component.
  3.  前記(A)~(D)成分全体に対し、前記(D)成分が10~30質量%含まれることを特徴とする請求項2記載のフレキシブル配線板。 3. The flexible wiring board according to claim 2, wherein the component (D) is contained in an amount of 10 to 30% by mass with respect to the entire components (A) to (D).
  4.  前記(A)~(D)成分の合計量100質量部に対して、前記(E)成分を3~10質量部含有することを特徴とする請求項2または3記載のフレキシブル配線板。 4. The flexible wiring board according to claim 2, wherein the component (E) is contained in an amount of 3 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D).
  5.  前記(A)~(D)成分の合計量100質量部に対して、前記(F)成分を、5~30質量部含有することを特徴とする請求項2乃至4のいずれか1項記載のフレキシブル配線板。 The component (F) is contained in an amount of 5 to 30 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D). Flexible wiring board.
  6.  前記(E)成分が、下記一般式(1)または(2)で表わされるホスファゼン化合物を含むことを特徴とする請求項2乃至5のいずれか1項記載のフレキシブル配線板。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Phはフェニル基を示し、mは3~25の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xは基-N=P(OPh)または基-N=P(O)OPh)を示し、Yは基-N=P(OPh)または基-N=P(O)(OPh)を示し(ここで、Phはフェニル基を示す)、Phはフェニル基を示し、nは3~10,000の整数を示す。)
    The flexible wiring board according to claim 2, wherein the component (E) includes a phosphazene compound represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Ph represents a phenyl group, and m represents an integer of 3 to 25.)
    Figure JPOXMLDOC01-appb-C000004
    Wherein X 1 represents a group —N═P (OPh) 3 or a group —N═P (O) OPh, and Y 1 represents a group —N═P (OPh) 4 or a group —N═P (O ) (OPh) 2 (where Ph represents a phenyl group), Ph represents a phenyl group, and n represents an integer of 3 to 10,000. )
  7.  前記(F)成分が、ポリリン酸メラミン、ポリリン酸メラム及びポリリン酸メレムからなる群より選ばれる少なくとも1種を含むことを特徴とする請求項2乃至6のいずれか1項記載のフレキシブル配線板。 The flexible wiring board according to any one of claims 2 to 6, wherein the component (F) includes at least one selected from the group consisting of melamine polyphosphate, melam polyphosphate, and melem polyphosphate.
  8.  前記非ハロゲン難燃性樹脂組成物が、(H)着色剤をさらに含有することを特徴とする請求項2乃至7のいずれか1項記載のフレキシブル配線板。 The flexible wiring board according to any one of claims 2 to 7, wherein the non-halogen flame retardant resin composition further contains (H) a colorant.
  9.  前記(H)成分が、一次粒子径0.01~1μmのカーボンブラックであることを特徴とする請求項2乃至8のいずれか1項記載のフレキシブル配線板。 The flexible wiring board according to any one of claims 2 to 8, wherein the component (H) is carbon black having a primary particle diameter of 0.01 to 1 µm.
  10.  前記カバーレイは、0.3~5.0μmの表面粗さ(Ra)を有することを特徴とする請求項1乃至9のいずれか1項記載のフレキシブル配線板。 10. The flexible wiring board according to claim 1, wherein the coverlay has a surface roughness (Ra) of 0.3 to 5.0 μm.
  11.  (A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)硬化促進剤、(D)合成ゴム、(E)ホスファゼン化合物、(F)ポリリン酸塩化合物及び(G)無機充填剤を必須成分とする非ハロゲン難燃性樹脂組成物からなる層を、支持フィルム上に備えることを特徴とするカバーレイ用ドライフィルム。 (A) epoxy resin, (B) epoxy resin curing agent, (C) curing accelerator, (D) synthetic rubber, (E) phosphazene compound, (F) polyphosphate compound and (G) inorganic filler as essential components A dry film for coverlays comprising a layer comprising a non-halogen flame retardant resin composition as defined above on a support film.
  12.  前記支持フィルムは0.3~5.0μmの表面粗さ(Ra)を有する表面を有し、この表面に前記非ハロゲン難燃性樹脂組成物からなる層を備えることを特徴とする請求項11記載のカバーレイ用ドライフィルム。 12. The support film has a surface having a surface roughness (Ra) of 0.3 to 5.0 μm, and a layer made of the non-halogen flame retardant resin composition is provided on the surface. The dry film for coverlay as described.
  13.  ポリイミドフィルムからなる基材の一方の主面に回路を形成する工程と、
     前記回路の表面に、請求項11または12記載のカバーレイ用ドライフィルムを、前記非ハロゲン難燃性樹脂組成物層側を前記回路側に向けて重ね合わせ加圧加熱するとともに、前記支持フィルムを除去してカバーレイを形成する工程と
     を有することを特徴とするフレキシブル配線板の製造方法。
    Forming a circuit on one main surface of the substrate made of polyimide film;
    The coverlay dry film according to claim 11 or 12 is superimposed and heated on the surface of the circuit with the non-halogen flame-retardant resin composition layer side facing the circuit side, and the support film is And a step of forming a coverlay to remove the flexible wiring board.
PCT/JP2010/004569 2010-07-14 2010-07-14 Flexible wiring board, dry film for coverlay, and production method for flexible wiring board WO2012007992A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800679864A CN102986310A (en) 2010-07-14 2010-07-14 Flexible wiring board, dry film for coverlay, and production method for flexible wiring board
PCT/JP2010/004569 WO2012007992A1 (en) 2010-07-14 2010-07-14 Flexible wiring board, dry film for coverlay, and production method for flexible wiring board
KR1020127031143A KR20130037205A (en) 2010-07-14 2010-07-14 Flexible wiring board, dry film for coverlay, and production method for flexible wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004569 WO2012007992A1 (en) 2010-07-14 2010-07-14 Flexible wiring board, dry film for coverlay, and production method for flexible wiring board

Publications (1)

Publication Number Publication Date
WO2012007992A1 true WO2012007992A1 (en) 2012-01-19

Family

ID=45469020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004569 WO2012007992A1 (en) 2010-07-14 2010-07-14 Flexible wiring board, dry film for coverlay, and production method for flexible wiring board

Country Status (3)

Country Link
KR (1) KR20130037205A (en)
CN (1) CN102986310A (en)
WO (1) WO2012007992A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333466B (en) * 2013-06-20 2015-08-26 天津凯华绝缘材料股份有限公司 A kind of High-flexibility epoxy resin and synthetic method thereof with inierpeneirating network structure
JP6361102B2 (en) * 2013-09-04 2018-07-25 三菱電機株式会社 Semiconductor device and flexible circuit board
KR20160110861A (en) * 2015-03-13 2016-09-22 삼성디스플레이 주식회사 Flexible circuit substrate and display device including the same
CN105992467B (en) * 2016-07-01 2019-03-05 广东三泰迈高光电科技有限公司 A kind of blank pressing technology of flexible circuit board
CN106102335B (en) * 2016-07-01 2018-12-28 广东三泰迈高光电科技有限公司 A kind of spray-bonding craft of flexible circuit board
CN106195695B (en) * 2016-07-01 2019-03-05 广东三泰迈高光电科技有限公司 A kind of production technology of flexible LED lamp bar
CN108806509B (en) * 2018-05-31 2022-01-25 昆山国显光电有限公司 Flexible substrate, packaging connecting piece and display screen

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447614A (en) * 1990-06-13 1992-02-17 Shin Etsu Chem Co Ltd Cover layer film and manufacture thereof
JP2002012792A (en) * 1999-08-23 2002-01-15 Mitsubishi Chemicals Corp Carbon black
JP2003334907A (en) * 2002-05-20 2003-11-25 Sumitomo Bakelite Co Ltd Releasable multi-layer film and cover lay molding method
JP2004059777A (en) * 2002-07-30 2004-02-26 Kyocera Chemical Corp Flame retardant adhesive composition, flexible copper-clad laminate and related products
JP2004075748A (en) * 2002-08-12 2004-03-11 Kyocera Chemical Corp Flame-retardant adhesive composition, flexible copper-clad board, coverlay and adhesive film
JP2004331783A (en) * 2003-05-07 2004-11-25 Kyocera Chemical Corp Flame retardant adhesive composition, flexible copper-clad laminate, coverlay and adhesive film
JP2004331787A (en) * 2003-05-07 2004-11-25 Kyocera Chemical Corp Flame-retardant adhesive composition, flexible copper-clad laminated board, coverlay and adhesive film
JP2005236273A (en) * 2004-01-20 2005-09-02 Showa Denko Kk Flame-retardant composition for solder resist, hardening method and use thereof
JP2007002170A (en) * 2005-06-27 2007-01-11 Kyocera Chemical Corp Epoxy resin composition, copper clad laminate board, adhesive film, cover lay, and printed wiring board
WO2007063580A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Works, Ltd. Halogen-free epoxy resin composition, cover lay film, bonding sheet, prepreg, laminated sheet for printed wiring board
JP2008266531A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Halogen-free epoxy resin composition, cover-lay film, bonding sheet, prepreg and laminated sheet for printed wiring board
WO2008136096A1 (en) * 2007-04-24 2008-11-13 Panasonic Electric Works Co., Ltd. Halogen-free epoxy resin composition, coverlay film, bonding sheet, prepreg and printed wiring board laminate
JP2008285632A (en) * 2007-05-21 2008-11-27 Mikuni Color Ltd High jetness carbon black dispersion, process for producing the same, and coating material composition using the high jetness carbon black dispersion
JP2009251480A (en) * 2008-04-10 2009-10-29 Kyocera Chemical Corp Photosensitive heat-curable resin composition and flexible printed wiring board
JP2009275121A (en) * 2008-05-15 2009-11-26 Mitsubishi Engineering Plastics Corp Flame retardant polyamide resin composition excellent in electric safety

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447614A (en) * 1990-06-13 1992-02-17 Shin Etsu Chem Co Ltd Cover layer film and manufacture thereof
JP2002012792A (en) * 1999-08-23 2002-01-15 Mitsubishi Chemicals Corp Carbon black
JP2003334907A (en) * 2002-05-20 2003-11-25 Sumitomo Bakelite Co Ltd Releasable multi-layer film and cover lay molding method
JP2004059777A (en) * 2002-07-30 2004-02-26 Kyocera Chemical Corp Flame retardant adhesive composition, flexible copper-clad laminate and related products
JP2004075748A (en) * 2002-08-12 2004-03-11 Kyocera Chemical Corp Flame-retardant adhesive composition, flexible copper-clad board, coverlay and adhesive film
JP2004331783A (en) * 2003-05-07 2004-11-25 Kyocera Chemical Corp Flame retardant adhesive composition, flexible copper-clad laminate, coverlay and adhesive film
JP2004331787A (en) * 2003-05-07 2004-11-25 Kyocera Chemical Corp Flame-retardant adhesive composition, flexible copper-clad laminated board, coverlay and adhesive film
JP2005236273A (en) * 2004-01-20 2005-09-02 Showa Denko Kk Flame-retardant composition for solder resist, hardening method and use thereof
JP2007002170A (en) * 2005-06-27 2007-01-11 Kyocera Chemical Corp Epoxy resin composition, copper clad laminate board, adhesive film, cover lay, and printed wiring board
WO2007063580A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Works, Ltd. Halogen-free epoxy resin composition, cover lay film, bonding sheet, prepreg, laminated sheet for printed wiring board
JP2008266531A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Halogen-free epoxy resin composition, cover-lay film, bonding sheet, prepreg and laminated sheet for printed wiring board
WO2008136096A1 (en) * 2007-04-24 2008-11-13 Panasonic Electric Works Co., Ltd. Halogen-free epoxy resin composition, coverlay film, bonding sheet, prepreg and printed wiring board laminate
JP2008285632A (en) * 2007-05-21 2008-11-27 Mikuni Color Ltd High jetness carbon black dispersion, process for producing the same, and coating material composition using the high jetness carbon black dispersion
JP2009251480A (en) * 2008-04-10 2009-10-29 Kyocera Chemical Corp Photosensitive heat-curable resin composition and flexible printed wiring board
JP2009275121A (en) * 2008-05-15 2009-11-26 Mitsubishi Engineering Plastics Corp Flame retardant polyamide resin composition excellent in electric safety

Also Published As

Publication number Publication date
KR20130037205A (en) 2013-04-15
CN102986310A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
JP2011233883A (en) Dry film for coverlay, coverlay, flexible printed wiring board and method for manufacturing flexible printed wiring board
WO2012007992A1 (en) Flexible wiring board, dry film for coverlay, and production method for flexible wiring board
JP6123152B2 (en) Resin composition
CN104842609B (en) Resin sheet with supporter
TWI699399B (en) Resin composition
TWI726988B (en) Resin sheet with support
US12227631B2 (en) Cured product and production method of same, and resin sheet and resin composition
CN104244603B (en) Method for manufacturing component-embedded wiring substrate and semiconductor device
JP7210901B2 (en) Resin composition layer
TW201800257A (en) Support body-attached resin sheet
JP2017059779A (en) Method for manufacturing printed wiring board
JP2022179517A (en) resin composition
TW202235531A (en) resin composition
TW201925333A (en) Resin composition layer applied to a printed wiring board and a semiconductor device
KR20090078051A (en) Adhesive composition for halogen-free coverlay film and coverlay film having same
JP2007211143A (en) Resin composition, cover-lay film and metal-clad laminate
JP2017036423A (en) Thermosetting resin composition
KR102259485B1 (en) Manufacturing method for circuit board
JP5098432B2 (en) Metal foil with adhesive layer, metal-clad laminate and printed wiring board using the same
JP2008195846A (en) Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
JP2022151212A (en) Method for manufacturing printed wiring board
JP2010165848A (en) Coated flexible wiring board, liquid crystal display module, and method of manufacturing coated flexible wiring board
JP2008144087A (en) Resin composition, insulating material with support substrate, and metal-clad laminate board for flexible printed circuit board
JP2012043833A (en) Light-blocking coverlay film and resin composition
JP2005238617A (en) Metal clad laminated sheet and printed wiring board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067986.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127031143

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载