WO2009007369A2 - Kontinuierliches verfahren zur herstellung von nanopartikulären metalloxiden in polyol haltigen lösungsmitteln - Google Patents
Kontinuierliches verfahren zur herstellung von nanopartikulären metalloxiden in polyol haltigen lösungsmitteln Download PDFInfo
- Publication number
- WO2009007369A2 WO2009007369A2 PCT/EP2008/058855 EP2008058855W WO2009007369A2 WO 2009007369 A2 WO2009007369 A2 WO 2009007369A2 EP 2008058855 W EP2008058855 W EP 2008058855W WO 2009007369 A2 WO2009007369 A2 WO 2009007369A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanoparticles
- reaction mixture
- acid
- temperature
- metal oxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/02—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/32—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
- C01F17/235—Cerium oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G29/00—Compounds of bismuth
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
- C01G31/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- the present invention is a continuous process for the production of nanoparticles containing at least one metal oxide, wherein the nanoparticles thus produced are characterized in that they have a narrow particle size distribution and can be prepared in large quantities on an industrial scale.
- Metal oxides find use for a variety of purposes, e.g. as a white pigment, as a catalyst, as a component of antibacterial skin protection creams and as an activator for rubber vulcanization.
- cosmetic sunscreens there are finely divided zinc oxide or titanium dioxide as UV-absorbing pigments.
- Nanoparticles are particles of the order of nanometers. Their size is in the transition region between atomic or monomolecular systems and continuous macroscopic structures. In addition to their usually very large surfaces, nanoparticles are characterized by particular physical and chemical properties, which differ significantly from those of larger particles. For example, nanoparticles often have a lower melting point, absorb light only at shorter wavelengths, and have different mechanical, electrical, and magnetic properties than macroscopic particles of the same material. By using nanoparticles as building blocks, many of these special properties can also be used for macroscopic materials (Winnacker / Kuchler, Chemischetechnik: Processes and Products, (Ed .: R. Dittmayer, W. Keim, G. Kreysa, A.
- nanoparticles refers to particles having a mean diameter of from 1 to 500 nm, determined by means of electron microscopy methods.
- metal oxides for example of zinc oxide
- wet and dry processes The classical method of burning zinc, which is known as a dry process, eg Gmelin Volume 32, 8th Edition, Supplementary Volume p. 772 et seq., Produces aggregated particles with a broad size distribution.
- a dry process eg Gmelin Volume 32, 8th Edition, Supplementary Volume p. 772 et seq.
- dispersions having average particle sizes in the lower nanometer range are not available from such powders due to the shearing forces which can be achieved to a small extent achievable.
- Particularly finely divided zinc oxide is mainly produced wet-chemically by precipitation processes.
- the precipitation in aqueous solution generally yields hydroxide and / or carbonate-containing materials which must be thermally converted to zinc oxide.
- the thermal aftertreatment has a negative effect on fineness, since the particles are subjected to sintering processes which lead to the formation of micrometer-sized aggregates, which can only be broken down to the primary particles by grinding in an incomplete manner.
- JP 2003-342007 A discloses a method for producing crystalline metal oxides having a particle diameter in the nanometer range.
- the metal compounds used can be selected from hydrates or other salts of titanium, silicon, tin and zinc.
- the corresponding precursor compounds are dispersed in a polyol-containing solution and heated by microwave irradiation to a temperature of 140 or 240 0 C.
- the process disclosed in JP 2003-342007 A is carried out batchwise, ie, batchwise. A continuous process for the production of nanoparticles containing at least one metal oxide on an industrial scale and in a consistently high quality is not disclosed in this document.
- US 2006/0222586 A1 discloses a method for producing a zinc oxide nanoparticle sol by neutralizing an inorganic zinc salt with an inorganic base, both of which are dissolved in ethylene glycol. In this method, the precipitated nanoparticles are aged for 1 to 6 hours at 40 to 100 0 C to obtain highly transparent zinc oxide particles.
- DE 103 24 305 A1 discloses a continuous process for the production of zinc oxide particles, in which a methanolic solution containing zinc acetate and potassium hydroxide is heated to a temperature of 40 to 65 ° C., so that the desired zinc oxide nanoparticles precipitate.
- a disadvantage of the discontinuous procedure is that when treating larger reaction volumes, for example on an industrial scale, only low heating or cooling rates are achieved by the large reaction volumes, which in turn leads to relatively large particles and a broad particle size distribution.
- the prior art also discloses a method for producing nanoparticles containing zinc oxide, which is carried out continuously, but is carried out in a solvent having a low boiling point, and thus does not allow high reaction temperatures.
- the object of the present invention is to provide a continuous process for the preparation of nanoscale metal oxides with narrow particle size distribution in large quantities, which is suitable to be used on an industrial scale. Furthermore, it is an object of the present invention to provide a method by which nanoscale metal oxides can be produced in consistent quality.
- step (B) heating the reaction mixture provided in step (A) to a temperature T2 of 130 to 350 0 C, wherein the nanoparticles containing at least one
- step (C) cooling the reaction mixture from step (B) containing the nanoparticles to a temperature T3 of 0 to 70 0 C.
- Step (A) of the process of the invention comprises providing a reaction mixture containing at least one precursor compound of the at least one metal oxide and at least one oxygen source in a solvent containing at least one polyol at a temperature T1 of 0 to 150 ° C.
- nanoparticles containing at least one metal oxide are prepared.
- Suitable metal cations which are present in the nanoparticles produced according to the invention are those of metals of the main groups or subgroups of the Periodic Table of the Chemical Elements, as well as lanthanides and actinides and mixtures thereof.
- the metals are selected from groups 1 to 15 of the Periodic Table of the LUPAC nomenclature chemical elements, as well as the groups of lanthanides and actinides and mixtures thereof.
- the metal present in the nanoparticle according to the invention is selected from the groups 2, 4, 5, 6, 7, 8, 9, 10, 12, 13 and 15 of the Periodic Table of the Elements and the groups of lanthanides and mixtures from that.
- Examples of most preferred metals are selected from the group consisting of nickel, copper, zinc, cadmium, aluminum, gallium, indium, tin, lead, antimony, bismuth, cerium, and mixtures thereof.
- Nanoparticles containing one or more metal oxide are preferably produced by the process according to the invention. It is also possible according to the invention that a metal oxide which contains two or more different metals, for example a mixed oxide, is present in the nanoparticle produced.
- Nanoparticles are cerium, vanadium, bismuth, zinc, copper, nickel and mixtures thereof, for example, a mixture of bismuth and vanadium.
- step (A) of the process according to the invention a reaction mixture containing at least one precursor compound of the at least one metal oxide is provided.
- Suitable precursor compounds of the at least one metal oxide are all compounds known to those skilled in the art, which can be converted into the corresponding oxides by a hydrolysis reaction.
- organic or inorganic salts of those prepared in accordance with the invention Nanoparticles present metal oxides used.
- preferred inorganic metal salts are the salts of the abovementioned metals having an anion selected from the group consisting of halide, sulfate, nitrate and mixtures thereof.
- Examples of preferably used organic metal salts are salts of the abovementioned metals with mono- or polyvalent anions of organic carboxylic acids.
- Suitable anions are derived, for example, from organic monocarboxylic acids such as formic acid (formate), acetic acid (acetate), propionic acid, isobutyric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid and stearic acid, unsaturated fatty acids such as acrylic acid, methacrylic acid, crotonic acid, oleic acid and linolenic acid , saturated polybasic carboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid, suberic acid and ß, ß-dimethylglutaric acid, unsaturated polybasic carboxylic acids such as maleic acid and fumaric acid, saturated alicyclic acids such as cyclohexanecarboxylic acid, aromatic carboxylic acids such as the aromatic monocarboxylic acids, especially phenylacetic acid and toluic acid and unsaturated polybasic carboxylic acids such as phthalic
- Suitable anions are furthermore alcoholates derived from aliphatic or aromatic alcohols having one or more hydroxyl functions by elimination of at least one proton of at least one hydroxyl function.
- alcoholates which can be used according to the invention are methoxide, ethanolate, propoxides such as n-propoxide and isopropoxide, butoxides and others.
- the metal salts used may optionally contain water of crystallization or alcohol molecules.
- Suitable alcohols are selected from the group consisting of methanol, ethanol, propanols such as n-propanol and isopropanol, butanols and mixtures thereof.
- the amount of water of crystallization optionally present in the metal salts depends on the stoichiometry of the compound used specifically, its crystal structure and / or its pretreatment. For example, it is possible to lower the amount of water of crystallization by heating the compounds.
- nitrates, alkoxylates or acetates are used as precursor compounds.
- metal salts are used, selected from the group consisting of Ce (NOs) 3 * 6 H 2 O, VO (OiPr) 3 , Bi (NO 3 ) 3 * 5 H 2 O, the Acetates of zinc, copper or cobalt, CeCl 3 and mixtures thereof.
- nanoparticles which contain the oxides of the abovementioned metals are preferably formed in the process according to the invention.
- the process according to the invention particularly preferably produces metal oxides selected from among
- Reaction conditions such as type of polyol used, precursor compounds and / or reaction time depends.
- step (A) of the process according to the invention a reaction mixture is provided which contains at least one oxygen source in addition to the said at least one precursor compound.
- oxygen source is to be understood as meaning a compound which, in the process according to the invention, can convert the at least one precursor compound of the at least one metal oxide into the corresponding at least one metal oxide.
- oxygen sources selected from compounds selected from the group consisting of water, water of crystallization of the precursor compounds used, bases and mixtures thereof It is also possible according to the invention that the anion of the at least one metal salt, which is used as a precursor compound in step (A) reacted with the solvent of the reaction mixture with elimination of one molecule of water or an OH " -Anion. Examples of such anions are anions of carboxylic acids such as formate, acetate or propionate.
- an OH " -containing compound ie a base
- metal hydroxides for example alkali and / or alkaline earth metal hydroxides, or ammonium hydroxides containing an ammonium cation of the formula NR 4 + , where R is selected independently of one another from the group consisting of hydrogen, linear or branched carbon radicals having 1 to 8 carbon atoms, preferably hydrogen, methyl or ethyl.
- an oxygen source is used in the process according to the invention, selected from water or water of crystallization of the precursor compound used.
- the solvent used in step (A) of the process of the invention contains at least one polyol.
- polyol is understood to mean a compound which has at least two hydroxyl functions
- a single polyol may be present in the reaction mixture, in a further embodiment it is also possible to use a mixture of two or more polyols.
- Suitable polyols are, for example, diols. These are preferably selected from
- Suitable diols are also OH-terminated polyether homopolymers such as polyethylene glycol, polypropylene glycol and polybutylene glycol, binary copolymers such as ethylene glycol / propylene glycol and ethylene glycol / butylene glycol copolymers, straight-chain tertiary copolymers such as ternary ethylene glycol / propylene glycol / ethylene glycol, propylene glycol / Ethylene glycol / propylene glycol and ethylene glycol / butylene glycol / ethylene glycol copolymers.
- Suitable diols are also OH-terminated polyether block copolymers such as binary
- Block copolymers such as polyethylene glycol / polypropylene glycol and polyethylene glycol / polybutylene glycol, straight-chain, ternary block copolymers such as polyethylene glycol / polypropylene glycol / polyethylene glycol, polypropylene glycol / polyethylene glycol / Polypropylene glycol and polyethylene glycol / polybutylene glycol / polyethylene glycol terpolymers.
- Particularly preferred polyhydric alcohols are those with 10 or fewer carbon atoms. Of these, preference is given to those alcohols which are in the liquid state at 25 ° C. and 1013 mbar and have such low viscosity that they can be used as the sole dissolving and dispersing medium as part of the reaction mixture without the aid of a further liquid phase.
- polyhydric alcohols examples include ethylene glycol, diethylene glycol, 1, 2-propanediol, 1, 3-propanediol, 1, 2-butanediol, 1, 3-butanediol, 1, 4-butanediol, 2,3-butanediol, pentanediol, hexanediol and octanediol wherein ethylene glycol (1, 2-ethanediol) and 1, 2-propanediol are particularly preferred.
- the solvent used according to the invention may contain further organic solvents, which are preferably selected from the group consisting of amines, e.g. n-butylamine, tert-butylamine, n-
- Pentylamine n-hexylamine, n-heptylamine, n-octylamine, n-dodecylamine, benzylamine,
- Tolylphosphonic acid 4-methoxyphenylphosphonic acid, polymers, e.g. Polyethylene glycols, polyvinylpyrrolidones, polyacrylates, polyvinyl ethers, polyvinyl acetates.
- polymers e.g. Polyethylene glycols, polyvinylpyrrolidones, polyacrylates, polyvinyl ethers, polyvinyl acetates.
- the solvent used is a polyol selected from the abovementioned group, which has no further solvents. If water is used as the oxygen source in step (A), a mixture of polyol with the appropriate amount of water can be used as the solvent.
- step (A) of the process according to the invention the reaction mixture at a temperature T1 of 0 to 150 0 C, preferably 15 to 125 0 C, most preferably provided at room temperature or a temperature of 80 to 125 0 C.
- the temperature T1 present in step (A) of the process according to the invention depends on the solubility of the at least one precursor compound used.
- the temperature T1 should be selected so that the precursor compound is only dissolved and is not completely or partially converted into an oxide. If this is readily soluble in the solvent used, then step (A) is very particularly preferably carried out at a temperature of 15 to 40 ° C. If the provisional ferric compound is not dissolved at T1, it may be ground before step (A) to provide a finely divided suspension in step (A).
- T1 is chosen to be just below the reaction temperature of the precursor compound in the metal oxide to reduce the residence time in step (B). Is used in step (A) of the inventive method used precursor compound in the solvent at room temperature sparingly soluble, as step (A) in a particularly preferred further embodiment at a temperature T1 is performed of 80 to 125 0 C.
- step (A) of the process according to the invention is approximate shape in a preferred execution the at least one metal salt in a concentration of 0.01 to 1 mol * I acting as a precursor compound "1, more preferably 0.05 to 0.5 mol * I" 1 , used.
- step (A) of the process of the invention the at least one oxygen source in a preferred embodiment in a concentration of 0.01 to 5 mol * r 1 , more preferably 0.05 to 3 mol * 1 " , most preferably 0 , 0.05 to 2.5 mol * I "1 used.
- concentration data refer to the entire reaction mixture.
- Step (A) of the process according to the invention can generally be carried out at any pressure at which the reaction mixture is liquid under the present temperatures. In a preferred embodiment, step (A) of the process according to the invention is carried out at a pressure of 1 mbar to 100 bar, more preferably 200 mbar to 50 bar, most preferably 0.8 bar to 30 bar.
- Step (A) of the process according to the invention can be carried out in any reactor known to those skilled in the art which is suitable for mixing the said components. Since the process according to the invention is a continuous process, in a preferred embodiment the reactor has corresponding devices in order to be able to continuously feed starting compounds and solvents. Suitable reactors are known to the person skilled in the art.
- the mixing of the reaction mixture in step (A) of the process according to the invention is carried out by devices known to the person skilled in the art. Preferably, the provision of the reaction mixture in step (A) of the process according to the invention is carried out so that a homogeneous mixture is obtained.
- step (A) the abovementioned components are mixed with one another, for example at room temperature, and tempered to a temperature of 50 to 125 0 C.
- This Tempering step within step (A) of the method according to the invention is carried out in particular when the at least one precursor compound of the at least one metal oxide used in step (A) in the solvent used is not completely soluble at room temperature. This tempering is preferably carried out until the at least one precursor compound is completely dissolved in the solvent used.
- step (A) of the process according to the invention it is of particular advantage if all components are completely dissolved in the reaction mixture provided in step (A) of the process according to the invention.
- the optional temperature control of the reaction mixture in step (A) of the process according to the invention can be carried out by all methods known to the person skilled in the art, for example by electric heating, heating with a heated medium in a heat exchanger and / or microwaves.
- the optional tempering in step (A) is effected by microwave radiation.
- microwaves in the frequency range from 0.2 GHz to 100 GHz can be used for this dielectric radiation.
- frequencies of 0.915, 2.45 and 5.8 GHz are available, with 2.45 GHz being particularly preferred.
- Radiation source for dielectric radiation is the magnetron, which can be irradiated simultaneously with several magnetrons. Care must be taken to ensure that the field distribution during irradiation is as homogeneous as possible in order to obtain a uniform heating of the reaction mixture.
- two solutions are provided, one solution comprising the at least one precursor compound of the at least one metal oxide in a solvent containing at least one polyol and the second solution containing at least one oxygen source in the same or another Solvent contains.
- Both solutions are heated in this preferred embodiment, independently of each other to a temperature of preferably 50 to 125 0 C, more preferably 80 to 125 0 C.
- the skilled person is known to suitable methods and devices.
- the hot solutions are then mixed together, forming a solution in a preferred embodiment. If, after combining the two original solutions, a suspension is formed, mixing in a preferred embodiment should take place as rapidly as possible, in a particularly preferred embodiment the addition takes place within 1 minute, very preferably within 30 seconds, particularly preferably within 10 seconds.
- Step (B) of the process according to the invention comprises heating the reaction mixture provided in step (A) to a temperature T2 of 130 to 350 ° C., the nanoparticles containing at least one metal oxide being obtained.
- the reaction mixture provided in step (A) is heated to a temperature T2 of 130 to 350 ° C., preferably 130 to 220 ° C., particularly preferably 130 to 200 ° C.
- step (A) reaction mixture particularly fast on the reaction temperature in
- Step (B) is heated so that nanoparticles are generated, which are characterized by a particularly small and particularly uniform particle size.
- the heating in step (B) takes place at a heating rate of at least 20 K * min -1 , more preferably at least 50 K * min -1 , very particularly preferably at least 100 K * min -1 .
- step (B) is preferably carried out such that the reaction mixture according to step (A) of the method according to the invention is provided in a corresponding container, and by means of a suitable pump, for example a diaphragm pump, rotary piston pump, rotary vane pump , Gear pump or HPLC pump in a suitable for continuous process reactor, such as a tubular reactor is conveyed.
- a suitable pump for example a diaphragm pump, rotary piston pump, rotary vane pump , Gear pump or HPLC pump in a suitable for continuous process reactor, such as a tubular reactor is conveyed.
- This tubular reactor is preferably heated to a certain distance by means of a heater to the present in step (B) temperature T2 of 130 to 350 0 C.
- This heating can be carried out by all methods known to the person skilled in the art, heating by microwave radiation preferably takes place.
- step (B) of the method according to the invention is preferably carried out to consist of a material which weakly or not interferes with the microwaves, ie with a penetration depth of> 100 cm , preferably> 500 cm, more preferably> 1000 cm, in each case at 2.45 GHz.
- suitable materials are borosilicate glass, quartz, plastics such as polyethylenes, polytetrafluoroethylene, ceramics based on silicate raw materials, on oxidic raw materials, eg Al 2 O 3 or on non-oxidic raw materials.
- the process according to the invention can be carried out in all devices known to the person skilled in the art, for example in a tubular reactor.
- the preferably used tubular reactor can be installed in any spatial orientation so that the reaction mixture flows horizontally, vertically or diagonally.
- the residence time of the reaction mixture in the reactor is as uniform as possible, so as to broaden the particle size distribution and to worsen the quality features attributable to a uniform residence time. avoid. Therefore, in a preferred embodiment, the reactor is designed to avoid partial stagnation of the reaction mixture flow and / or unfavorably uneven distribution of residence times.
- the shape of the tube of the tube reactor preferably used in cross-section is not subject to any restrictions.
- the cross-section is circular or concentric annular to avoid inconsistent flow, stagnation, turbulence or inconsistent heating of the reaction mixture.
- the cross-sectional area of the tube reactor preferably used is not excessively large, to ensure that the flowing reaction mixture is heated as uniformly as possible.
- the diameter of the tube reactor which is preferably used is chosen such that, in combination with the flow rate of the reaction mixture in step (B) of the process according to the invention, a residence time of the reaction mixture in the hot zone results, which ensures that as complete a conversion as possible, for example, at least 90%, preferably at least 95%, takes place.
- the diameter of the tube reactor is preferably 0.01 cm to 10 cm, particularly preferably 0.1 cm to 5 cm.
- the residence time of the reaction mixture in the reaction zone according to step (B) of the process according to the invention is preferably ⁇ 30 minutes, more preferably ⁇ 15 minutes, most preferably ⁇ 5 minutes.
- step (B) a static mixer is used in step (B), i.
- devices known to those skilled in the art, for example baffles are incorporated, which mix the flowing reaction mixture during the flow.
- the heating in step (B) of the method according to the invention is carried out by microwave radiation.
- microwaves in the frequency range from 0.2 GHz to 100 GHz can be used for this dielectric radiation.
- frequencies of 0.915, 2.45 and 5.8 GHz are available, with 2.45 GHz being particularly preferred.
- Radiation source for dielectric radiation is the magnetron, which can be irradiated simultaneously with several magnetrons. It must be ensured that the field distribution during irradiation is as homogeneous as possible in order to ensure a uniform heating the reaction mixture and thus to obtain a uniform particle size distribution.
- step (B) of the process according to the invention the at least one metal oxide in the form of nanoparticles is obtained from the at least one precursor compound used in step (A) and the at least one oxygen source by the thermal energy introduced. These nanoparticles are present after carrying out step (B) as a suspension in the solvent used in step (A).
- Step (C) of the process according to the invention comprises cooling the reaction mixture from step (B) containing the nanoparticles at a temperature T3 of 0 to 70 ° C.
- the reaction mixture obtained is then cooled to the abovementioned temperature at step (B) by means known to those skilled in the art for cooling a liquid reaction mixture.
- a liquid reaction mixture In a preferred embodiment is cooled to a temperature T3 of 10 to 35 0 C, most preferably cooled to room temperature.
- T3 in step (C) of the process of the invention is generally chosen so that the solvent used in steps (A) and (B) is not frozen.
- step (C) is also carried out in a tube reactor, for example a heat exchanger. It is also possible according to the invention that several heat exchangers are connected in series.
- the cooling in step (C) of the process according to the invention is particularly rapid.
- the cooling in step (C) preferably takes place at a cooling rate of at least 20 K * min -1 , particularly preferably at least 50 K * min -1 , very particularly preferably 100 K * min -1 To obtain nanoparticles with a particularly uniform particle size distribution and smaller particle sizes than in a method in which is cooled at a lower cooling rate.
- step (C) of the process according to the invention a suspension of the nanoparticles formed in step (B) from the at least one precursor compound and the at least one metal oxide in the solvent used in step (A) is cooled to a temperature T3 of 0 to 70 ° C. ,
- the reagents can also be added already in step (A) of the method according to the invention.
- Suitable reagents are, for example, phosphonic acids or salts / esters of phosphonic acids R-PO (OH) 2 , see WO 2006/124670, sulfonic acids or salts / esters of sulfonic acids R-SO 2 (OH), see DE 10 2005 047 807 A1, Organosilanes, see WO 2005/071002, DE 10 2005 010 320 A1, organic acids, see WO 2004/052327, polyacrylates, see EP 1 630 136 A1, amphiphilic molecules, see De 10 2004 009 287 A1, polyethylene glycols, polyvinylpyrrolidone, fatty acids, Alkylamines, alkanethiols and others. The content of said documents is hereby expressly incorporated into the present application.
- nanoparticles prepared in step (B) of the process according to the invention can be isolated by all methods known to the person skilled in the art from the suspension obtained in step (C) of the process according to the invention.
- step (C) is followed by step (D):
- step (C) of the process according to the invention it is possible for step (C) of the process according to the invention to be followed by a step (D) which comprises concentrating the mixture obtained in step (C).
- concentration in step (D) can be carried out by methods known to the person skilled in the art, for example filtration, such as nano-, ultra-, microfiltration and / or centrifugation, for example ultracentrifugation.
- step (D) according to the invention is then preferably used when the process is carried out in high dilution, which takes place, for example, when small particles are to be obtained.
- the method according to the invention comprises a step (E):
- step (E) separating the nanoparticles present in the reaction mixture from step (C) or (D) by filtration, for example nano-, ultra-, microfiltration and / or centrifugation, for example ultracentrifugation. It is possible according to the invention that step (E) is followed directly by step (C). In another embodiment, step (C) is followed by step (D), followed by step (E).
- the residue obtained from the filtration or centrifugation in step (E) is washed with a suitable solvent, for example water or organic solvents such as ethanol, isopropanol or mixtures thereof and again filtered or centrifuged. Washing can also be carried out by means of a membrane process such as nano, ultra, micro or crossflow filtration. This washing process can be repeated until a desired degree of purity is reached.
- a suitable solvent for example water or organic solvents such as ethanol, isopropanol or mixtures thereof.
- the resulting filter cake or Zentrifugier Wegstand can be dried in a conventional manner, for example in a drying oven at temperatures of 40 to 100 0 C, preferably 50 to 70 0 C under atmospheric pressure to constant weight.
- steps (A), (B), (C) and optionally (D) and (E) are carried out independently of one another in a possible embodiment under an inert protective gas atmosphere.
- steps (A), (B), (C) and optionally (D) and (E) are not carried out independently of one another in an inert atmosphere, for example in air. All combinations of steps in inert and non-inert atmosphere steps are possible.
- Suitable inert gases are noble gases, for example helium or argon, nitrogen or mixtures thereof.
- the nanoparticles obtained by the continuous process according to the invention have an average particle size of about 10 to 100 nm, preferably 20 to 80 nm, in each case determined by dynamic light scattering (DLS) (on suspensions) and scanning electron microscopy (SEM) (on powders ).
- DLS dynamic light scattering
- SEM scanning electron microscopy
- Nanoparticles by a particularly narrow particle size distribution are in the size range described by the average particle size ⁇ 15% of this average particle size.
- Another advantage of the method according to the invention is that the nanoparticles produced therewith are present without agglomerates. This can be demonstrated by the fact that both the determination of the particle size by dynamic light scattering, as well as the determination of the particle size by scanning electron microscopic investigations give the same value for the particle size.
- the process of the invention is further illustrated by the following examples.
- Solution 1 contains 108.5 g (0.25 mol) of Ce (NO 3) 3 * 6 H 2 O (Fa. Aldrich) in 1000 ml of DEG.
- Solution 2 contains 90.6 g (0.5 mol) of [Me 4 N] OH * 5 H 2 O (Aldrich) in 400 ml of DEG.
- Solution 2 is placed in a glass reactor and heated to 120 0 C. In the stirred solution 2 which is also heated to 120 0 C Solution 1 is abruptly ben zugege- under nitrogen stream. This forms a white suspension in the glass reactor.
- a suspension stream of 50 ml / min is pumped out of the suspension obtained via a riser pipe by means of a gear pump (Gather, type d / GFK / LAB22-120PP) and into a microwave (Ethos 1800, Fa MLS) to 170 0 C heated heat exchanger.
- the heat exchanger has a volume of 300 ml.
- the heat exchanger is preheated to the desired temperature with pure DEG before use.
- the suspension flows through a second and third heat exchanger in succession, in which the suspension is cooled to room temperature within one minute.
- the resulting product is centrifuged and washed three times by repeated centrifugation and resuspension with ethanol and then dried in air at 70 0 C.
- X-ray diffraction of the obtained powder shows exclusively the diffraction reflections of ceria.
- Dynamic light scattering (DLS) and scanning electron microscopy (SEM) provide a mean particle size of about 40 nm.
- the suspension flows through a second and third heat exchanger, in which the suspension within a Minute is cooled to room temperature.
- the result is a black precipitate of VO x .
- the product is washed three times by repeated centrifugation and resuspension with ethanol and then dried in air at 70 0 C.
- DLS and REM provide an average particle size of about 30 nm.
- the heat exchanger has a volume of 300 ml.
- the heat exchanger is preheated to the desired temperature with pure DEG before use. Thereafter, the suspension flows through a second and third heat exchanger in succession, in which the suspension is cooled to room temperature within one minute. The result is yellow BiVO x .
- the resulting product is washed three times by repeated centrifugation and resuspension with ethanol and then dried in air.
- DLS and REM provide an average particle size of about 50 nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Die vorliegende Erfindung betrifft ein kontinuierliches Verfahren zur Herstellung von Nanopartikeln enthaltend wenigstens ein Metalloxid, umfassend die Schritte: a. Bereitstellen einer Reaktionsmischung enthaltend wenigstes eine Vorläuferverbindung des wenigstens einen Metalloxids und wenigstens eine Sauerstoffquelle in einem Lösungsmittel, welches wenigstens ein Polyol enthält, bei einer Temperatur von T1 0 bis 150 °C, b. Aufheizen der in Schritt (A) bereitgestellten Reaktionsmischung auf eine Temperatur T2 von 130 bis 350 °C, wobei die Nanopartikel enthaltend wenigstens ein Metalloxid erhalten werden und c. Abkühlen der Reaktionsmischung aus Schritt (B) enthaltend die Nanopartikel auf eine Temperatur T3 von 0 bis 70 °C.
Description
Kontinuierliches Verfahren zur Herstellung von nanopartikulären Metalloxiden in Polyol haltigen Lösungsmitteln
Beschreibung
Gegenstand der vorliegenden Erfindung ist ein kontinuierliches Verfahren zur Herstellung von Nanopartikeln enthaltend wenigstens ein Metalloxid, wobei sich die so hergestellten Nanopartikel dadurch auszeichnen, dass sie eine enge Teilchengrößenverteilung aufweisen und in großen Mengen im industriellen Maßstab hergestellt werden können.
Metalloxide finden für vielfältige Zwecke Verwendung, so z.B. als Weißpigment, als Katalysator, als Bestandteil antibakterieller Hautschutzsalben und als Aktivator für die Kautschukvulkanisation. In kosmetischen Sonnenschutzmitteln findet man feinteiliges Zinkoxid oder Titandioxid als UV-absorbierende Pigmente.
Als Nanopartikel werden Teilchen in der Größenordnung von Nanometern bezeichnet. Sie liegen mit ihrer Größe im Übergangsbereich zwischen atomaren bzw. monomolekularen Systemen und kontinuierlichen makroskopischen Strukturen. Neben ihren meist sehr großen Oberflächen zeichnen sich Nanopartikel durch besondere physikalische und chemische Eigenschaften aus, welche sich deutlich von denen größerer Teilchen unterscheiden. So haben Nanopartikel oft einen tieferen Schmelzpunkt, absorbieren Licht erst bei kürzeren Wellenlängen und haben andere mechanische, elektrische und magnetische Eigenschaften als makroskopische Partikel desselben Materials. Durch Verwendung von Nanopartikeln als Bausteine lassen sich viele dieser besonderen Eigenschaften auch für makroskopische Materialien nutzen (Winnacker/Küchler, Chemische Technik: Prozesse und Produkte, (Hrsg.: R. Dittmayer, W. Keim, G. Krey- sa, A. Oberholz), Band 2: Neue Technologien, Kapitel 9, Wiley-VCH Verlag 2004). Mit dem Begriff „Nanopartikel" werden im Rahmen der vorliegenden Erfindung Partikel mit einem mittleren Durchmesser von 1 bis 500 nm, bestimmt mittels elektronenmikroskopischer Methoden, bezeichnet.
Verfahren zur Herstellung von Nanopartikeln, enthaltend wenigstens ein Metalloxid, sind aus dem Stand der Technik bereits bekannt.
Bekannt ist die Herstellung von Metalloxiden, beispielsweise von Zinkoxid, durch nasse und trockene Verfahren. Die klassische Methode der Verbrennung von Zink, die als trockenes Verfahren bekannt ist, z.B. Gmelin Band 32, 8. Auflage, Ergänzungsband S. 772 ff., erzeugt aggregierte Partikel mit einer breiten Größenverteilung. Zwar ist es grundsätzlich möglich, durch Mahlverfahren Teilchengrößen im Submikrometerbereich herzustellen, doch aufgrund der zu geringen erzielbaren Scherkräfte sind aus solchen Pulvern Dispersionen mit mittleren Teilchengrößen im unteren Nanometerbereich nicht
erzielbar. Besonders feinteiliges Zinkoxid wird vor allem nasschemisch durch Fällungsprozesse hergestellt. Die Fällung in wässriger Lösung liefert in der Regel hydroxid- und/oder carbonathaltige Materialien, die thermisch zu Zinkoxid umgesetzt werden müssen. Die thermische Nachbehandlung wirkt sich dabei auf die Feinteiligkeit negativ aus, da die Partikel dabei Sinterprozessen unterworfen sind, die zur Bildung mikrometergroßer Aggregate führen, die durch Mahlung nur unvollständig auf die Primärpartikel herunter gebrochen werden können.
JP 2003-342007 A offenbart ein Verfahren zur Herstellung von kristallinen Metalloxiden mit einem Partikeldurchmesser im Nanometerbereich. Die eingesetzten Metallverbindungen können ausgewählt sein aus Hydraten oder anderen Salzen von Titan, Silizium, Zinn und Zink. Dazu werden die entsprechenden Vorläuferverbindungen in einer Polyol-haltigen Lösung dispergiert und durch Mikrowellen-Bestrahlung auf eine Temperatur von 140 bzw. 240 0C erhitzt. Das in JP 2003-342007 A offenbarte Verfahren wird batchweise, d.h. diskontinuierlich, durchgeführt. Ein kontinuierliches Verfahren zur Herstellung von Nanopartikeln enthaltend wenigstens ein Metalloxid im industriellen Maßstab und in gleich bleibend hoher Qualität wird in dieser Schrift nicht offenbart.
D. Jezequel, J. Guenot, N. Jouini and F. Fievet, Materials Science Forum 1994, 152 bis 153, 339 bis 342 offenbaren ein Verfahren zur Herstellung von monodispersem Zinkoxid mit Partikelgrößen im Sub-Mikrometerbereich. Dazu wird Zinkacetat-Dihydrat in Diethylenglykol aufgelöst und auf 180 0C erhitzt, wobei Zinkoxid ausfällt. Dieses Dokument offenbart auch, dass Heizraten von 6 0C * min"1 bzw. 14 0C * min"1 einen positiven Einfluss auf die Teilchengröße der hergestellten Nanopartikel haben. Die Herstel- lung der Nanopartikel gemäß diesem Dokument erfolgt im Labormaßstab und wird diskontinuierlich durchgeführt.
D. Yamamoto, Y. Wada und S. Yanagida, Proceedings of the World Congress on Mic- rowave and Radiofrequency Applications, September 22 bis 26, 2002, Sidney, Austra- Na, offenbaren ein Verfahren zur Herstellung von TiC>2- oder ZnO-Nanopartikeln mit Teilchengrößen von <10 nm aus entsprechenden Vorläuferverbindungen durch Auflösen dieser Verbindungen in Alkandiolen bei 240 0C. Das genannte Dokument offenbart ein diskontinuierliches Verfahren, wobei die Reaktionslösung mit Heizraten von 3 bis 14 0C * min"1 aufgeheizt wird. Auch dieses Verfahren wird im Labormaßstab von ca. 50 ml und diskontinuierlich durchgeführt.
US 2006/0222586 A1 offenbart ein Verfahren zur Herstellung eines Zinkoxid- Nanopartikel-Sols durch Neutralisierung eines anorganischen Zinksalzes mit einer anorganischen Base, wobei beide in Ethylenglykol gelöst sind. Bei diesem Verfahren werden die gefällten Nanopartikel für 1 bis 6 Stunden bei 40 bis 100 0C gealtert, um hoch transparente Zinkoxid-Teilchen zu erhalten.
DE 103 24 305 A1 offenbart ein kontinuierliches Verfahren zur Herstellung von Zinkoxid-Partikeln, bei dem eine methanolische Lösung enthaltend Zinkacetat und Kaliumhydroxid auf eine Temperatur von 40 bis 65 0C temperiert wird, so dass die gewünsch- ten Zinkoxidnanopartikel ausfallen.
Die im Stand der Technik offenbarten Verfahren zur Herstellung von Nanopartikeln werden diskontinuierlich durchgeführt. Nachteilig an der diskontinuierlichen Fahrweise ist, dass bei Behandlung von größeren Reaktionsvolumina, beispielsweise im indus- triellen Maßstab, durch die großen Reaktionsvolumina nur niedrige Heiz- bzw. Abkühlraten erzielt werden, was wiederum zu relativ großen Teilchen und einer breiten Teilchengrößenverteilung führt.
Aus dem Stand der Technik ist auch ein Verfahren zur Herstellung von Nanopartikeln enthaltend Zinkoxid bekannt, welches kontinuierlich durchgeführt wird, jedoch wird es in einem Lösungsmittel durchgeführt, welches einen niedrigen Siedepunkt aufweist, und somit keine hohen Reaktionstemperaturen zulässt.
Aufgabe der vorliegenden Erfindung ist es, ein kontinuierliches Verfahren zur Herstel- lung von nanoskaligen Metalloxiden mit enger Teilchengrößenverteilung in großen Mengen bereitzustellen, welches geeignet ist, im industriellen Maßstab verwendet zu werden. Des Weiteren ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, durch das nanoskalige Metalloxide in gleich bleibender Qualität hergestellt werden können.
Diese Aufgaben werden gelöst durch ein kontinuierliches Verfahren zur Herstellung von Nanopartikeln enthaltend wenigstens ein Metalloxid umfassend die Schritte:
(A) Bereitstellen einer Reaktionsmischung enthaltend wenigstens eine Vorläuferver- bindung des wenigstens einen Metalloxids und wenigstens eine Sauerstoffquelle in einem Lösungsmitteln, welches wenigstens ein Polyol enthält, bei einer Temperatur T1 von 0 bis 150 0C,
(B) Aufheizen der in Schritt (A) bereitgestellten Reaktionsmischung auf eine Tempe- ratur T2 von 130 bis 350 0C, wobei die Nanopartikel enthaltend wenigstens ein
Metalloxid erhalten werden und
(C) Abkühlen der Reaktionsmischung aus Schritt (B) enthaltend die Nanopartikel auf eine Temperatur T3 von 0 bis 70 0C.
Die einzelnen Schritte des erfindungsgemäßen kontinuierlichen Verfahrens werden im
Folgenden näher erläutert:
Schritt (A):
Schritt (A) des erfindungsgemäßen Verfahrens umfasst das Bereitstellen einer Reaktionsmischung enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids und wenigstens eine Sauerstoffquelle in einem Lösungsmittel, welches wenigstens ein Polyol enthält, bei einer Temperatur T1 von 0 bis 150 0C.
In dem erfindungsgemäßen Verfahren werden Nanopartikel enthaltend wenigstens ein Metalloxid hergestellt.
Geeignete Metallkationen, welche in den erfindungsgemäß hergestellten Nanopartikeln vorliegen, sind die von Metallen der Haupt- oder Nebengruppen des Periodensystems der chemischen Elemente, sowie Lanthanoide und Actinoide und Mischungen davon. In einer bevorzugten Ausführungsform sind die Metalle ausgewählt aus den Gruppen 1 bis 15 des Periodensystems der chemischen Elemente nach lUPAC-Nomenklatur, sowie der Gruppen der Lanthanoide und Actinoide und Mischungen davon. In einer besonders bevorzugten Ausführungsform ist das in dem erfindungsgemäß hergestellten Nanopartikel vorliegende Metall ausgewählt aus den Gruppen 2, 4, 5, 6, 7, 8, 9, 10, 12, 13 und 15 des Periodensystems der Elemente und der Gruppen der Lanthanoide und Mischungen davon. Beispiele für ganz besonders bevorzugte Metalle sind ausgewählt aus der Gruppe bestehend aus Nickel, Kupfer, Zink, Cadmium, Aluminium, Gallium, Indium, Zinn, Blei, Antimon, Bismut, Cer und Mischungen davon.
Mit dem erfindungsgemäßen Verfahren ist es möglich, Nanopartikel herzustellen, die ein oder mehrer Metalloxid(e) enthalten. Bevorzugt werden durch das erfindungsgemäße Verfahren Nanopartikel hergestellt, die ein oder zwei verschiedene Metalloxide enthalten. Es ist erfindungsgemäß auch möglich, dass in dem hergestellten Nanopartikel ein Metalloxid vorliegt, welches zwei oder mehr verschiedene Metalle enthält, beispielsweise ein Mischoxid.
Ganz besonders bevorzugte Metallkationen, die in den erfindungsgemäß hergestellten
Nanopartikeln vorliegen, sind Cer, Vanadium, Bismut, Zink, Kupfer, Nickel und Mischungen davon, beispielsweise eine Mischung von Bismut und Vanadium. In Schritt (A) des erfindungsgemäßen Verfahrens wird eine Reaktionsmischung enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids bereitgestellt.
Geeignete Vorläuferverbindungen des wenigstens einen Metalloxids sind alle dem Fachmann bekannten Verbindungen, die durch eine Hydrolyse-Reaktion in die entsprechenden Oxide überführt werden können. In einer bevorzugten Ausführungsform werden organische oder anorganische Salze der in den erfindungsgemäß hergestellten
Nanopartikeln vorliegenden Metalloxiden eingesetzt. Beispiele für bevorzugt eingesetzte anorganische Metallsalze sind die Salze der oben genannten Metalle mit einem Ani- on ausgewählt aus der Gruppe bestehend aus Halogenid, Sulfat, Nitrat und Mischungen davon. Beispiele für bevorzugt eingesetzte organische Metallsalze sind Salze der oben genannten Metalle mit ein- oder mehrwertigen Anionen organischer Carbonsäuren.
Geeignete Anionen stammen beispielsweise von organischen Monocarbonsäuren, wie Ameisensäure (Formiat), Essigsäure (Acetat), Propionsäure, Isobuttersäure, Capron- säure, Caprylsäure, Laurinsäure, Myristinsäure, Palmitinsäure und Stearinsäure, ungesättigten Fettsäuren, wie Acrylsäure, Methacrylsäure, Crotonsäure, Oleinsäure und Linolensäure, gesättigten polybasischen Carbonsäuren, wie Oxalsäure, Malonsäure, Bernsteinsäure, Adipinsäure, Suberinsäure und ß,ß-Dimethylglutarsäure, ungesättigten polybasischen Carbonsäuren, wie Maleinsäure und Fumarsäure, gesättigten alicycli- sehen Säuren, wie Cyclohexancarbonsäure, aromatischen Carbonsäuren, wie den aromatischen Monocarbonsäuren, insbesondere Phenylessigsäure und Toluolsäure und ungesättigten polybasischen Carbonsäuren, wie Phthalsäure, Isophthalsäure, Te- rephthalsäure, Pyromellit- und Trimellitsäure, Verbindungen mit funktionellen Gruppen, wie OH-Gruppen, Aminogruppen, Nitrogruppen, Alkoxygruppen, Sulfongruppen, Cya- nogruppen und Halogenatomen im Molekül neben einer Carboxylgruppe, wie Trifluo- ressigsäure, Orthochlorbenzoesäure, Orthonitrebenzoesäure, Anthranilsäure, para- Aminobenzoesäure, para-Chloro-benzoesäure, Toluolsäure, Milchsäure, Salicylsäure, sowie Polymere enthaltend mindestens eine der vorgenannten ungesättigten Säuren als polymerisierbare Verbindung, wie Acrylsäurehomopolymere und Acryl- säure/Methylmethacrylatcopolymere.
Geeignete Anionen sind des Weiteren Alkoholate, die von aliphatischen oder aromatischen Alkoholen mit einer oder mehreren Hydroxyfunktionen durch Abspaltung wenigstens eines Protons wenigstens einer Hydroxyfunktion stammen. Beispiele für erfin- dungsgemäß einsetzbare Alkoholate sind Methanolat, Ethanolat, Propoxide wie n-Propoxid und iso-Propoxid, Butoxide und andere.
Die eingesetzten Metallsalze können optional Kristallwasser oder Alkoholmoleküle enthalten. Geeignete Alkohole sind ausgewählt aus der Gruppe bestehend aus Methanol, Ethanol, Propanole wie n-Propanol und iso-Propanol, Butanole und Mischungen davon. Die Menge an gegebenenfalls in den Metallsalzen vorliegendem Kristallwasser richtet sich nach der Stöchiometrie der spezifisch eingesetzten Verbindung, ihrer Kristallstruktur und/oder ihrer Vorbehandlung. Es ist beispielsweise möglich, durch Erhitzen der Verbindungen die Menge an vorhandenem Kristallwasser zu senken.
In einer ganz besonders bevorzugten Ausführungsform werden Nitrate, Alkoxylate oder Acetate als Vorläuferverbindungen eingesetzt.
In einer insbesondere bevorzugten Ausführungsform des erfindungsgemäßen Verfah- rens werden Metallsalze eingesetzt, ausgewählt aus der Gruppe bestehend aus Ce(NOs)3 * 6 H2O, VO(OiPr)3, Bi(NO3)3 * 5 H2O, den Acetaten von Zink, Kupfer oder Cobalt, CeCI3 und Mischungen davon.
Somit werden in dem erfindungsgemäßen Verfahren bevorzugt Nanopartikel gebildet, die die Oxide der oben genannten Metalle enthalten. Besonders bevorzugt werden durch das erfindungsgemäße Verfahren Metalloxide hergestellt, ausgewählt aus der
Gruppe bestehend aus ZnO, CeOx (1 ,5 < x < 2), VOx (1 ,5 < x < 2,5), BiVOx (1 ,5 < x <
3,0), TiO2, CuOx (O < x < 1 ), CoOx (O < x <1 ), NiOx (O < x < 1 ), wobei x jeweils von den
Reaktionsbedingungen wie Art des eingesetzten Polyols, Vorläuferverbindungen und/oder Reaktionszeit, abhängt.
In Schritt (A) des erfindungsgemäßen Verfahrens wird eine Reaktionsmischung bereitgestellt, die neben der genannten wenigstens einen Vorläuferverbindung wenigstens eine Sauerstoffquelle enthält.
Im Rahmen der vorliegenden Erfindung ist unter dem Begriff „Sauerstoffquelle" eine Verbindung zu verstehen, welche in dem erfindungsgemäßen Verfahren die wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids in das entsprechende wenigstens eine Metalloxid überführen kann. In einer bevorzugten Ausfüh- rungsform sind die in Schritt (A) eingesetzten Sauerstoffquellen ausgewählt aus Verbindungen ausgewählt aus der Gruppe bestehend aus Wasser, Kristallwasser der eingesetzten Vorläuferverbindungen, Basen und Mischungen davon. Es ist erfindungsgemäß auch möglich, dass das Anion des wenigstens einen Metallsalzes, welche als Vorläuferverbindung in Schritt (A) eingesetzt wird, mit dem Lösungsmittel der Reakti- onsmischung unter Abspaltung von einem Molekül Wasser oder einem OH"-Anion reagiert. Beispiele für derartige Anionen sind Anionen von Carbonsäuren wie beispielsweise Formiat, Acetat oder Propionat. Diese Anionen können mit den in dem Lösungsmittel enthaltenden Polyolen, siehe weiter unten, reagieren. Bei dieser Reaktion an der Hydroxy-Funktionalität des wenigstens einen Polyols wird unter Abspaltung eines H2O-Moleküls einer Esterfunktion aufgebaut. Das daraus erhaltene OH"-Anion kann dann als Sauerstoffquelle in der erfindungsgemäßen Reaktion fungieren.
In einer weiteren bevorzugten Ausführungsform wird in Schritt (A) der Reaktionsmischung eine OH"-enthaltende Verbindung, d.h. eine Base, zugesetzt. Beispiele für solche Verbindungen sind Metallhydroxide, beispielsweise Alkali- und/oder Erdalkalimetallhydroxide, oder Ammoniumhydroxide, enthaltend ein Ammoniumkation der Formel NR4 +, wobei R unabhängig von einander ausgewählt ist aus der Gruppe be-
stehend aus Wasserstoff, linearen oder verzweigten Kohlenstoffresten mit 1 bis 8 Kohlenstoffatomen, bevorzugt Wasserstoff, Methyl oder Ethyl.
In einer bevorzugten Ausführungsform wird in dem erfindungsgemäßen Verfahren eine Sauerstoffquelle eingesetzt, ausgewählt aus Wasser oder Kristallwasser der eingesetzten Vorläuferverbindung.
Das in Schritt (A) des erfindungsgemäßen Verfahrens verwendete Lösungsmittel enthält wenigstens ein Polyol. In dem erfindungsgemäßen Verfahren können im Allgemei- nen alle Polyole eingesetzt werden, welche unter den gegebenen Reaktionsbedingungen flüssig sind. Unter „Polyol" wird erfindungsgemäß eine Verbindung verstanden, welche wenigstens zwei Hydroxy-Funktionen aufweist. Erfindungsgemäß kann in der Reaktionsmischung ein einzelnes Polyol vorliegen, in einer weiteren Ausführungsform kann auch eine Mischung von zwei oder mehreren Polyolen eingesetzt werden.
Geeignete Polyole sind beispielsweise Diole. Diese sind bevorzugt ausgewählt aus
1 ,2-Ethandiol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,3-Butandiol, 2,3- Butandiol, 1 ,4-Butandiol, But-2-en-1 ,4-diol, 1 ,2-Pentandiol, 1 ,5-Pentandiol, 2,4- Pentandiol, 2-Methyl-2,4-pentandiol, 1 ,2-Hexandiol, 1 ,6-Hexandiol, 2,5-Hexandiol, 2,4- Heptandiol, 2-Ethyl-1 ,3-hexandiol, Octandiol, 1 ,10-Decandiol, 1 ,2-Dodecandiol, 1 ,12- Dodecandiol, Neopentylglykol, 3-Methylpentan-1 ,5-diol, 2,5-Dimethyl-1 ,3-hexandiol, 2,2,4-Trimethyl-1 ,3-pentandiol, 1 ,2-Cyclohexandiol, 1 ,4-Cyclohexandiol, 1 ,4- Bis(hydroxymethyl)cyclohexan, Hydroxypivalinsäure-neopentylglykolmonoester, 2,2- Bis(4-hydroxyphenyl)-propan, 2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethylengly- kol, Dipropylenglykol, Triethylenglykol, Tetraethylenglykol, Tripropylenglykol, Tetrapro- pylenglykol, 3-Thio-pentan-1 ,5-diol, Polyethylenglykole, Polypropylenglykole und PoIy- tetrahydrofurane mit Molekulargewichten von jeweils 200 bis 10000, Diole auf Basis von Blockcopolymerisaten aus Ethylenoxid oder Propylenoxid oder Copolymerisaten, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten.
Geeignete Diole sind auch OH-terminierte Polyether-Homopolymere wie Polyethylen- glykol, Polypropylenglykol und Polybutylenglykol, binäre Copolymere wie Ethylengly- kol/Propylenglykol- und Ethylenglykol/Butylenglykol-Copolymere, geradkettige tertiäre Copolymere wie ternäre Ethylenglykol/Propylenglykol/Ethylenglykol-, Propylengly- kol/Ethylenglykol/Propylenglykol- und Ethylenglykol/Butylenglykol/Ethylenglykol- Copolymere.
Geeignete Diole sind auch OH-terminierte Polyether-Blockcopolymere wie binäre
Blockcopolymere wie Polyethylenglykol/Polypropylenglykol und Polyethylenglykol/ Polybutylenglycol, geradkettige, ternäre Blockcopolymere wie Polyethylengly- kol/Polypropylenglykol/Polyethylenglykol, Polypropylenglykol/Polyethylenglycol/
Polypropylenglykol und Polyethylenglykol/Polybutylenglycol/Polyethylenglykol- Terpolymere.
Besonders bevorzugte mehrwertige Alkohole sind solche mit 10 oder weniger Kohlen- stoffatomen. Von diesen werden solche Alkohole bevorzugt, die bei 25 0C und 1013 mbar im flüssigen Zustand vorliegen und eine so niedrige Viskosität aufweisen, dass sie ohne Zuhilfenahme einer weiteren flüssigen Phase als alleiniges Lösungsund Dispergiermedium als Teil der Reaktionsmischung verwendet werden können. Beispiele solcher mehrwertigen Alkohole sind Ethylenglykol, Diethylenglykol, 1 ,2- Propandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, 2,3-Butandiol, Pentandiol, Hexandiol und Octandiol, wobei Ethylenglykol (1 ,2-Ethandiol) und 1 ,2- Propandiol besonders bevorzugt sind.
Das erfindungsgemäß eingesetzte Lösungsmittel kann in einer weiteren Ausführungs- form weitere organische Lösungsmittel enthalten, welche bevorzugt ausgewählt sind aus der Gruppe bestehend aus Aminen, z.B. n-Butylamin, tert-Butylamin, n-
Pentylamin, n-Hexylamin, n-Heptylamin, n-Octylamin, n-Dodecylamin, Benzylamin,
Pyridin, 4-Dimethylaminopyridin, Thiolen, z.B. 1-Butanthiol, tert-Butanthiol, 1-
Pentanthiol, 1-Hexanthiol, 1-Heptanthiol, 1-Octanthiol, tert-Octanthiol, 1-Dodekanthiol, Benzylthiol, Phosphonsäuren, z.B. n-Butylphosphonsäure, tert-Butyl-phosphonsäure, n-Pentylphosphonsäure, n-Hexylphosphonsäure, n-Heptylphosphon-säure, n-
Octylphosphonsäure, n-Decylphosphonsäure, n-Dodecylphosphonsäure, 3-
Aminopropylphosphonsäure, 4-Aminobutylphosphonsäure, Phenylphosphonsäure, p-
Tolylphosphonsäure, 4-Methoxyphenylphosphonsäure, Polymeren, z.B. Polyethylen- glykole, Polyvinylpyrrolidone, Polyacrylate, Polyvinylether, Polyvinylacetate.
In einer bevorzugten Ausführungsform wird als Lösungsmittel ein Polyol ausgewählt aus der oben genannten Gruppe, eingesetzt, welches keine weiteren Lösungsmittel aufweist. Wird als Sauerstoffquelle in Schritt (A) Wasser verwendet, so kann als Lö- sungsmittel eine Mischung aus Polyol mit der entsprechenden Menge Wasser eingesetzt werden.
In Schritt (A) des erfindungsgemäßen Verfahrens wird die Reaktionsmischung bei einer Temperatur T1 von 0 bis 150 0C, bevorzugt 15 bis 125 0C, ganz besonders bevorzugt bei Raumtemperatur oder einer Temperatur von 80 bis 125 0C bereitgestellt.
Die in Schritt (A) des erfindungsgemäßen Verfahrens vorliegende Temperatur T1 ist abhängig von der Löslichkeit der eingesetzten wenigstens einen Vorläuferverbindung. Bevorzugt soll die Temperatur T1 so ausgewählt werden, dass die Vorläuferverbindung nur aufgelöst wird und nicht vollständig oder teilweise in ein Oxid überführt wird. Ist diese in dem eingesetzten Lösungsmittel leicht löslich, so wird Schritt (A) ganz besonders bevorzugt bei einer Temperatur von 15 bis 40 0C durchgeführt. Wird die Vorläu-
ferverbindung bei T1 nicht gelöst, so kann sie vor dem Schritt (A) gemahlen werden, um eine feinteilige Suspension in Schritt (A) bereitzustellen. In bevorzugter Form ist T1 knapp unter der Umsetzungstemperatur der Vorläuferverbindung in das Metalloxid gewählt, um die Verweilzeit in Schritt (B) zu reduzieren. Ist die in Schritt (A) des erfin- dungsgemäßen Verfahrens eingesetzte Vorläuferverbindung in dem Lösungsmittel bei Raumtemperatur schwer löslich, so wird Schritt (A) in einer besonders bevorzugten weiteren Ausführungsform bei einer Temperatur T1 von 80 bis 125 0C durchgeführt.
In Schritt (A) des erfindungsgemäßen Verfahrens wird in einer bevorzugten Ausfüh- rungsform das als Vorläuferverbindung fungierende wenigstens eine Metallsalz in einer Konzentration von 0,01 bis 1 mol * I"1, besonders bevorzugt 0,05 bis 0,5 mol * I"1 , eingesetzt.
In Schritt (A) des erfindungsgemäßen Verfahrens wird die wenigstens eine Sauerstoff- quelle in einer bevorzugten Ausführungsform in einer Konzentration von 0,01 bis 5 mol * r1, besonders bevorzugt 0,05 bis 3 mol * I"1, ganz besonders bevorzugt 0,05 bis 2,5 mol * I"1 eingesetzt. Diese Konzentrationsangaben beziehen sich jeweils auf die gesamte Reaktionsmischung. Schritt (A) des erfindungsgemäßen Verfahrens kann im Allgemeinen bei jedem Druck durchgeführt werden, bei dem die Reaktionsmischung unter den vorliegenden Temperaturen flüssig ist. In einer bevorzugten Ausführungsform wird Schritt (A) des erfindungsgemäßen Verfahrens bei einem Druck von 1 mbar bis 100 bar, besonders bevorzugt 200 mbar bis 50 bar, ganz besonders bevorzugt 0,8 bar bis 30 bar durchgeführt.
Schritt (A) des erfindungsgemäßen Verfahrens kann in jedem dem Fachmann bekannten Reaktor durchgeführt werden, der dazu geeignet ist, die genannten Komponenten zu vermischen. Da es sich bei dem erfindungsgemäßen Verfahren um ein kontinuierliches Verfahren handelt, besitzt der Reaktor in einer bevorzugten Ausführungsform entsprechende Vorrichtungen, um kontinuierlich Ausgangsverbindungen und Lösungsmittel nachführen zu können. Geeignete Reaktoren sind dem Fachmann bekannt. Die Durchmischung der Reaktionsmischung in Schritt (A) des erfindungsgemäßen Verfahrens erfolgt durch dem Fachmann bekannte Vorrichtungen. Bevorzugt erfolgt das Bereitstellen der Reaktionsmischung in Schritt (A) des erfindungsgemäßen Verfahrens so, dass eine homogene Mischung erhalten wird. Im Rahmen der vorliegenden Erfindung bedeutet „homogen", dass innerhalb der Mischung keine Dichte- und/oder keine Konzentrations-Unterschiede vorliegen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden in Schritt (A) die oben genannten Komponenten miteinander vermischt, beispielsweise bei Raumtemperatur, und auf eine Temperatur von 50 bis 125 0C temperiert. Dieser
Temperierungsschritt innerhalb von Schritt (A) des erfindungsgemäßen Verfahrens wird insbesondere dann durchgeführt, wenn die in Schritt (A) eingesetzte wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids in dem eingesetzten Lösungsmittel nicht vollständig bei Raumtemperatur löslich ist. Dieses Temperieren wird bevorzugt solange durchgeführt, bis die wenigstens eine Vorläuferverbindung vollständig in dem eingesetzten Lösungsmittel gelöst ist. Es ist erfindungsgemäß von besonderem Vorteil, wenn in der in Schritt (A) des erfindungsgemäßen Verfahrens bereitgestellten Reaktionsmischung alle Komponenten vollständig gelöst vorliegen. Das optional durchzuführende Temperieren der Reaktionsmischung in Schritt (A) des erfindungs- gemäßen Verfahrens kann durch alle dem Fachmann bekannte Verfahren erfolgen, beispielsweise durch elektrische Heizung, Heizen mit einem erhitzten Medium in einem Wärmetauscher und/oder Mikrowellen. In einer bevorzugten Ausführungsform erfolgt das optionale Temperieren in Schritt (A) durch Mikrowellen-Strahlung. Bei dieser dielektrischen Strahlung kann grundsätzlich mit Mikrowellen im Frequenzbereich von 0,2 GHz bis 100 GHz gearbeitet werden. Für die industrielle Praxis stehen Frequenzen von 0,915, 2,45 und 5,8 GHz zur Verfügung, wobei 2,45 GHz besonders bevorzugt sind.
Strahlungsquelle für dielektrische Strahlung ist das Magnetron, wobei auch mit mehreren Magnetronen gleichzeitig bestrahlt werden kann. Es ist darauf zu achten, dass bei der Bestrahlung die Feldverteilung möglichst homogen ist, um eine gleichmäßige Erhitzung der Reaktionsmischung zu erhalten.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden zwei Lösungen bereitgestellt, wobei die eine Lösung die wenigstens eine Vor- läuferverbindung des wenigstens einen Metalloxids in einem Lösungsmittel, welches wenigsten ein Polyol enthält, und die zweite Lösung die wenigstens eine Sauerstoffquelle im gleichen oder einem anderen Lösungsmittel enthält. Beide Lösungen werden in dieser bevorzugten Ausführungsform unabhängig von einander auf eine Temperatur von bevorzugt 50 bis 125 0C, besonders bevorzugt 80 bis 125 0C erhitzt. Dem Fach- mann sind dazu geeignete Verfahren und Vorrichtungen bekannt. Die heißen Lösungen werden dann mit einander vermischt, wobei sich in einer bevorzugten Ausführungsform eine Lösung bildet. Falls nach der Vereinigung der beiden ursprünglichen Lösungen eine Suspension entsteht, soll das Vermischen in einer bevorzugten Ausführungsform möglichst schnell erfolgen, in einer besonders bevorzugten Ausführungs- form erfolgt die Zugabe innerhalb von 1 Minute, ganz besonders bevorzugt innerhalb von 30 Sekunden, insbesondere bevorzugt innerhalb von 10 Sekunden.
Schritt (B):
Schritt (B) des erfindungsgemäßen Verfahrens umfasst das Aufheizen der in Schritt (A) bereitgestellten Reaktionsmischung auf eine Temperatur T2 von 130 bis 350 0C, wobei die Nanopartikel enthaltend wenigstens ein Metalloxid erhalten werden. In Schritt (B) wird die in Schritt (A) bereitgestellte Reaktionsmischung auf einer Temperatur T2 von 130 bis 350 0C, bevorzugt 130 bis 220 0C, besonders bevorzugt 130 bis 200 0C aufgeheizt.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass die in Schritt (A) bereitgestellte Reaktionsmischung besonders schnell auf die Reaktionstemperatur in
Schritt (B) aufgeheizt wird, so dass Nanopartikel erzeugt werden, welche sich durch eine besonders kleine und besonders einheitliche Teilchengröße auszeichnen. In einer bevorzugten Ausführungsform erfolgt das Aufheizen in Schritt (B) mit einer Heizrate von wenigstens 20 K * min"1, besonders bevorzugt wenigstens 50 K * min"1, ganz be- sonders bevorzugt wenigstens 100 K * min"1.
In dem erfindungsgemäßen Verfahren wird Schritt (B) bevorzugt so durchgeführt, dass in einem entsprechenden Behälter die Reaktionsmischung gemäß Schritt (A) des erfindungsgemäßen Verfahrens bereitgestellt wird, und mittels einer geeigneten Pumpe, beispielsweise einer Membran-Pumpe, Drehkolben-Pumpe, Drehschieber-Pumpe, Zahnradpumpe oder HPLC-Pumpe in einen für kontinuierliche Verfahren geeigneten Reaktor, beispielsweise einen Rohrreaktor, befördert wird. Dieser Rohrreaktor wird bevorzugt auf einer bestimmten Strecke mittels einer Heizung auf die in Schritt (B) vorliegende Temperatur T2 von 130 bis 350 0C aufgeheizt. Dieses Aufheizen kann durch alle dem Fachmann bekannte Verfahren erfolgen, bevorzugt erfolgt das Aufheizen durch Mikrowellen-Strahlung. Bei der Verwendung von Mikrowellen ist es erfindungsgemäß bevorzugt, dass der Rohrreaktor, in dem Schritt (B) des erfindungsgemäßen Verfahrens bevorzugt durchgeführt wird, aus einem Material besteht, welches schwach oder gar nicht mit den Mikrowellen interferiert, d.h. mit einer Eindringtiefe von > 100 cm, bevorzugt > 500 cm, besonders bevorzugt > 1000 cm, jeweils bei 2,45 GHz. Beispiele geeigneter Materialien sind Borosilikatglas, Quartz, Kunststoffe wie Polyethy- len, Polytetrafluorethylen, Keramiken basierend auf Silicat-Rohstoffen, auf oxidischen Rohstoffen, z.B. AI2O3 oder auf nichtoxidischen Rohstoffen.
Das erfindungsgemäße Verfahren kann in allen dem Fachmann bekannten Vorrichtungen durchgeführt werden, beispielsweise in einem Rohrreaktor. Der bevorzugt verwendete Rohrreaktor kann in jeder räumlichen Ausrichtung installiert werden, so dass die Reaktionsmischung horizontal, vertikal oder diagonal fließt. Des Weiteren ist es vorteilhaft, wenn die Verweilzeit der Reaktionsmischung im Reaktor möglichst einheitlich ist, um so eine Verbreiterung der Teilchengrößenverteilung und eine Verschlechterung der Qualitätsmerkmale, die auf eine einheitliche Verweilzeit zurückzuführen sind, zu ver-
meiden. Daher ist der Reaktor in einer bevorzugten Ausführungsform so konstruiert, dass eine teilweise Stagnation des Flusses der Reaktionsmischung und/oder eine unvorteilhaft ungleichmäßige Verteilung der Verweilzeiten vermieden werden.
Die Form des Rohres des bevorzugt eingesetzten Rohrreaktors im Querschnitt unterliegt keinen Beschränkungen. In einer bevorzugten Ausführungsform ist der Querschnitt kreisförmig oder konzentrisch annular, um einen uneinheitlichen Fluss, Stagnationen, Turbulenzen oder uneinheitliches Erhitzen der Reaktionsmischung zu vermeiden.
Es ist erfindungsgemäß notwendig, dass die Querschnittsfläche des bevorzugt verwendeten Rohrreaktors nicht übermäßig groß ist, um sicher zu stellen, dass die strömende Reaktionsmischung möglichst gleichmäßig erhitzt wird. Des Weiteren wird der Durchmesser des bevorzugt eingesetzten Rohrreaktors so gewählt, dass sich in Kom- bination mit der Fließgeschwindigkeit der Reaktionsmischung in Schritt (B) des erfindungsgemäßen Verfahrens eine Verweilzeit der Reaktionsmischung in der heißen Zone ergibt, die gewährleistet, dass ein möglichst vollständiger Umsatz, beispielsweise mindestens 90%, bevorzugt mindestens 95%, erfolgt. Der Durchmesser des Rohrreaktors beträgt dabei bevorzugt 0,01 cm bis 10 cm, besonders bevorzugt 0,1 cm bis 5 cm.
Die Verweilzeit der Reaktionsmischung in der Reaktionszone gemäß Schritt (B) des erfindungsgemäßen Verfahrens beträgt bevorzugt < 30 Minuten, besonders bevorzugt < 15 Minuten, ganz besonders bevorzugt < 5 Minuten.
Es ist erfindungsgemäß von Vorteil, wenn in dem Bereich des Reaktors, in dem die Umsetzung der wenigstens einen Vorläuferverbindung zu dem wenigstens einen Metalloxid erfolgt, eine möglichst gute Durchmischung stattfindet. Diese Durchmischung kann durch alle dem Fachmann bekannten Verfahren erfolgen. In einer bevorzugten Ausführungsform wird in Schritt (B) ein statischer Mischer eingesetzt, d.h. in dem be- vorzugt eingesetzten Rohrreaktor sind dem Fachmann bekannte Vorrichtungen, beispielsweise Leitbleche, eingebaut, die die strömende Reaktionsmischung während des Strömens durchmischen.
In einer bevorzugten Ausführungsform erfolgt das Aufheizen in Schritt (B) des erfin- dungsgemäßen Verfahrens durch Mikrowellen-Strahlung. Bei dieser dielektrischen Strahlung kann grundsätzlich mit Mikrowellen im Frequenzbereich von 0,2 GHz bis 100 GHz gearbeitet werden. Für die industrielle Praxis stehen Frequenzen von 0,915, 2,45 und 5,8 GHz zur Verfügung, wobei 2,45 GHz besonders bevorzugt sind. Strahlungsquelle für dielektrische Strahlung ist das Magnetron, wobei auch mit mehreren Magnetronen gleichzeitig bestrahlt werden kann. Es ist darauf zu achten, dass bei der Bestrahlung die Feldverteilung möglichst homogen ist, um eine gleichmäßige Er-
hitzung der Reaktionsmischung und damit eine gleichmäßige Teilchengrößenverteilung zu erhalten.
In Schritt (B) des erfindungsgemäßen Verfahrens wird aus der in Schritt (A) eingesetz- ten wenigstens einen Vorläuferverbindung und der wenigstens einen Sauerstoffquelle durch die eingebrachte thermische Energie das wenigstens eine Metalloxid in Form von Nanopartikeln erhalten. Diese Nanopartikel liegen nach Durchführen von Schritt (B) als Suspension in dem in Schritt (A) eingesetzten Lösungsmittel vor.
Schritt (C):
Schritt (C) des erfindungsgemäßen Verfahrens umfasst das Abkühlen der Reaktionsmischung aus Schritt (B) enthaltend die Nanopartikel auf einer Temperatur T3 von 0 bis 70 0C.
In einer bevorzugten Ausführungsform des erfindungsgemäßen kontinuierlichen Verfahrens wird an Schritt (B) anschließend die erhaltene Reaktionsmischung durch dem Fachmann bekannte Vorrichtungen zur Abkühlung einer flüssigen Reaktionsmischung auf die oben genannte Temperatur abgekühlt. In einer bevorzugten Ausführungsform wird auf eine Temperatur T3 von 10 bis 35 0C, ganz besonders bevorzugt auf Raumtemperatur abgekühlt. T3 in Schritt (C) des erfindunsgemäßen Verfahrens ist im Allgemeinen so gewählt, dass das in den Schritten (A) und (B) verwendete Lösungsmittel nicht eingefroren wird. In einer weiteren bevorzugten Ausführungsform wird Schritt (C) auch in einem Rohrreaktor, beispielsweise einem Wärmetauscher, durchgeführt. Es ist erfindungsgemäß auch möglich, dass mehrere Wärmetauscher hintereinander geschaltet werden.
Erfindungsgemäß ist es bevorzugt, dass das Abkühlen in Schritt (C) des erfindungsgemäßen Verfahrens besonders schnell geschieht. Bevorzugt erfolgt das Abkühlen in Schritt (C) mit einer Kühlrate von wenigstens 20 K * min"1, besonders bevorzugt wenigstens 50 K * min"1, ganz besonders bevorzugt 100 K * min"1. Durch dieses besonders schnelle Abkühlen ist es erfindungsgemäß möglich, Nanopartikel mit besonders einheitlicher Teilchengrößenverteilung und kleineren Teilchengrößen als bei einem Verfahren, in dem mit einer geringeren Kühlrate abgekühlt wird, zu erhalten.
In Schritt (C) des erfindungsgemäßen Verfahrens wird eine auf eine Temperatur T3 von 0 bis 70 0C abgekühlte Suspension der in Schritt (B) aus der wenigstens einen Vorläuferverbindung und dem wenigstens einen Metalloxid gebildeten Nanopartikel in dem in Schritt (A) eingesetzten Lösungsmittel erhalten.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die
Nanopartikel in oder nach Schritt (B) und/oder in oder nach Schritt (C) funktionalisiert.
Die Reagenzien können auch bereits in Schritt (A) des erfindungsgemäßen Verfahrens zugegeben werden.
Verfahren und Reagenzien, um Nanopartikel, die durch das erfindungsgemäße Ver- fahren erhalten werden, während der Synthese, bevorzugt an deren Oberfläche, zu funktionalisieren, sind dem Fachmann bekannt.
Geeignete Reagenzien sind beispielsweise Phosphonsäuren bzw. Salze/Ester von Phosphonsäuren R-PO(OH)2, siehe WO 2006/124670, Sulfonsäuren bzw. Salze/Ester von Sulphonsäuren R-SO2(OH), siehe DE 10 2005 047 807 A1 , Organosilane, siehe WO 2005/071002, DE 10 2005 010 320 A1 , Organische Säuren, siehe WO 2004/052327, Polyacrylate, siehe EP 1 630 136 A1 , amphiphile Moleküle, siehe De 10 2004 009 287 A1 , Polyethylenglykole, Polyvinylpyrrolidon, Fettsäuren, Alkylami- ne, Alkanthiole und andere. Der Inhalt der genannten Dokumente wird hiermit aus- drücklich in die vorliegende Anmeldung aufgenommen.
Im Allgemeinen können die in Schritt (B) des erfindungsgemäßen Verfahrens hergestellten Nanopartikel durch alle dem Fachmann bekannte Verfahren aus der in Schritt (C) des erfindungsgemäßen Verfahrens erhaltenen Suspension isoliert werden.
In einer möglichen Ausführungsform schließt sich an Schritt (C) Schritt (D) an:
(D) Aufkonzentrieren der Reaktionsmischung aus Schritt (C).
Erfindungsgemäß ist es möglich, dass sich an Schritt (C) des erfindunsgemäßen Verfahrens ein Schritt (D) anschließt, der ein Aufkonzentrieren der in Schritt (C) erhaltenen Mischung umfasst. Das Aufkonzentrieren in Schritt (D) kann durch dem Fachmann bekannte Verfahren, beispielsweise Filtration, wie Nano-, Ultra-, Mikrofiltration und/oder Zentrifugation, beispielsweise Ultrazentrifugation, erfolgen.
Ein Schritt (D) wird erfindungsgemäß dann bevorzugt eingesetzt, wenn das Verfahren in hoher Verdünnung durchgeführt wird, was beispielsweise dann erfolgt, wenn kleine Teilchen erhalten werden sollen. In einer weiteren bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren einen Schritt (E):
(E) Abtrennen der in der Reaktionsmischung aus Schritt (C) oder (D) vorliegenden Nanopartikel durch Filtration, beispielsweise Nano-, Ultra-, Mikrofiltration und/oder Zentrifugation, beispielsweise Ultrazentrifugation.
Es ist erfindungsgemäß möglich, dass sich Schritt (E) direkt an Schritt (C) anschließt. In einer weiteren Ausführungsform schließt sich an Schritt (C) zunächst Schritt (D) an, und daran anschließend Schritt (E) an.
In einer bevorzugten Ausführungsform wird der aus der Filtration oder Zentrifugation in Schritt (E) erhaltene Rückstand mit einem geeigneten Lösungsmittel, beispielsweise Wasser oder organische Lösungsmittel wie Ethanol, iso-Propanol oder Mischungen davon, gewaschen und erneut filtriert oder zentrifugiert. Ein Waschen kann auch mit- tels eines Membranverfahrens wie Nano-, Ultra-, Mikro- oder Crossflowfiltration erfolgen. Dieser Waschvorgang kann so oft wiederholt werden, bis ein gewünschter Reinheitsgrad erreicht ist.
Der so erhaltene Filterkuchen bzw. Zentrifugierrückstand kann in an sich bekannter Weise getrocknet werden, beispielsweise im Trockenschrank bei Temperaturen von 40 bis 100 0C, bevorzugt 50 bis 70 0C unter Normaldruck bis zur Gewichtskonstanz.
Die Schritte (A), (B), (C) und gegebenenfalls (D) und (E) werden unabhängig von einander in einer möglichen Ausführungsform unter einer inerten Schutzgasatmosphäre durchgeführt. In einer weiteren möglichen Ausführungsform werden die Schritte (A), (B), (C) und gegebenenfalls (D) und (E) unabhängig von einander nicht in inerter Atmosphäre durchgeführt, beispielsweise in Luft. Alle Kombinationen von Schritten in inerter und Schritten nicht in inerter Atmosphäre sind möglich. Geeignete inerte Gase sind Edelgase, beispielsweise Helium oder Argon, Stickstoff oder Mischungen davon.
Die durch das erfindungsgemäße kontinuierliche Verfahren erhaltenen Nanopartikel weisen eine mittlere Teilchengröße von ca. 10 bis 100 nm, bevorzugt 20 bis 80 nm auf, jeweils ermittelt durch dynamische Lichtstreuung (DLS) (an Suspensionen) und raster- elektronenmikroskopische Untersuchungen (REM) (an Pulvern).
Des Weiteren zeichnen sich die durch das erfindungsgemäße Verfahren hergestellten
Nanopartikel durch eine besonders enge Teilchengrößenverteilung aus. In einer bevorzugten Ausführungsform liegen wenigstens 90% der erhaltenen Teilchengrößen in einem Größenbereich, der durch die durchschnittliche Teilchengröße ±15% dieser durchschnittlichen Teilchengröße beschrieben wird.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die damit hergestellten Nanopartikel agglomeratfrei vorliegen. Dies kann dadurch gezeigt werden, dass sowohl die Bestimmung der Teilchengröße durch dynamische Lichtstreuung, als auch die Bestimmung der Teilchengröße durch rasterelektronenmikroskopische Untersuchungen den gleichen Wert für die Teilchengröße ergeben.
Das erfindungsgemäße Verfahren wird durch die folgenden Beispiele näher erläutert.
Ausführungsbeispiele:
Beispiel 1
Polyol vermittelte Herstellung von Nanopartikeln aus CeOx mit x = 1 ,5 bis 2,0. Es werden zunächst zwei Diethylenglykol-Lösungen hergestellt. Lösung 1 enthält 108,5 g (0,25 mol) Ce(NO3)3 * 6 H2O (Fa. Aldrich) in 1000 ml DEG. Lösung 2 enthält 90,6 g (0,5 mol) [Me4N]OH * 5 H2O (Fa. Aldrich) in 400 ml DEG. Lösung 2 wird in einem Glasreaktor vorgelegt und auf 120 0C aufgeheizt. In die gerührte Lösung 2 wird unter Stickstoff-Strom schlagartig die ebenfalls auf 120 0C erhitzte Lösung 1 zugege- ben. Dabei bildet sich im Glasreaktor eine weiße Suspension. Sofort nach der Zugabe von Lösung 1 wird aus der erhaltenen Suspension über ein Steigrohr mittels einer Zahnradpumpe (Fa. Gather, Typ d/GFK/LAB22-120PP) ein Suspensionsstrom von 50 ml/min abgepumpt und in einen mittels Mikrowellen (Ethos 1800, Fa. MLS) auf 170 0C erhitzten Wärmetauscher überführt. Der Wärmetauscher hat ein Volumen von 300 ml. Der Wärmetauscher wird vor dem Einsatz auf die gewünschte Temperatur mit reinem DEG vorgeheizt. Danach durchströmt die Suspension nacheinander einen zweiten und dritten Wärmetauscher, in denen die Suspension innerhalb einer Minute auf Raumtemperatur abgekühlt wird. Das erhaltene Produkt wird zentrifugiert und dreimal durch wiederholtes Zentrifugieren und Resuspendieren mit Ethanol gewaschen und anschließend bei 70 0C an der Luft getrocknet.
Röntgenbeugung des erhaltenen Pulvers zeigt ausschließlich die Beugungsreflexe von Cerdioxid. Dynamische Lichtstreuung (DLS) und rasterelektronenmikroskopische Untersuchung (REM) liefern eine mittlere Teilchengröße von ca. 40 nm.
Beispiel 2
Polyol-vermittelte Darstellung von Nanopartikeln aus VOx
In einen Glasreaktor werden 1000 ml DEG und 40 ml deionisiertes Wasser vorgelegt. Unter stetigem Rühren und Stickstoff werden 48,8 g (0,2 mol) VO(OiPr)3 (Fa. Aldrich) schlagartig zugegeben. Die Reaktionslösung wird anschließend über ein Steigrohr mittels Zahnradpumpe (Fa. Gather, Typ d/GFK/LAB22-120PP) mit einer Stromrate von 50 ml/min abgepumpt und in einen mittels Mikrowellen (Ethos 1800, Fa. MLS) auf 180 0C erhitzten Wärmetauscher überführt. Der Wärmetauscher hat ein Volumen von 300 ml. Der Wärmetauscher wird vor dem Einsatz auf die gewünschte Temperatur mit reinem DEG vorgeheizt. Danach durchströmt die Suspension nacheinander einen zweiten und dritten Wärmetauscher, in denen die Suspension innerhalb von einer
Minute auf Raumtemperatur abgekühlt wird. Es entsteht ein schwarzer Niederschlag von VOx. Das Produkt wird dreimal durch wiederholtes Zentrifugieren und Resuspendieren mit Ethanol gewaschen und anschließend bei 70 0C an der Luft getrocknet. DLS und REM liefern eine mittlere Teilchengröße von ca. 30 nm.
Beispiel 3
Polyol-vermittelte Herstellung von Nanopartikeln aus BiVOx In einem Glasreaktor werden eine Lösung von 19,4 g (0,04 mol) Bi(NOs)3 * 5 H2O (Fa. Aldrich) in 1000 ml DEG vorgelegt. Unter stetigem Rühren und Stickstoff werden 9,8 g (0,04 mol) VO(OiPr)3 (Fa. Aldrich) und 4 ml deionisiertes H2O zugegeben. Die Reaktionslösung wird anschließend über ein Steigrohr mittels Zahnradpumpe (Fa. Gather, Typ d/GFK/LAB22-120PP) mit einer Stromrate von 50 ml/min abgepumpt und in ein mittels Mikrowellen (Ethos 1800, Fa. MLS) auf 135 0C erhitzten Wärmetauscher überführt. Der Wärmetauscher hat ein Volumen von 300 ml. Der Wärmetauscher wird vor dem Einsatz auf die gewünschte Temperatur mit reinem DEG vorgeheizt. Danach durchströmt die Suspension nacheinander einen zweiten und dritten Wärmetauscher, in denen die Suspension innerhalb von einer Minute auf Raumtemperatur abgekühlt wird. Es entsteht gelbes BiVOx. Das erhaltene Produkt wird dreimal durch wiederholtes Zentrifugieren und Resuspendieren mit Ethanol gewaschen und anschließend an der Luft getrocknet.
DLS und REM liefern eine mittlere Teilchengröße von ca. 50 nm.
Claims
1. Kontinuierliches Verfahren zur Herstellung von Nanopartikeln enthaltend wenigs- tens ein Metalloxid, umfassend die Schritte:
(A) Bereitstellen einer Reaktionsmischung enthaltend wenigstes eine Vorläuferverbindung des wenigstens einen Metalloxids und wenigstens eine Sauerstoffquelle in einem Lösungsmittel, welches wenigstens ein Polyol enthält, bei einer Temperatur von T1 0 bis 150 0C,
(B) Aufheizen der in Schritt (A) bereitgestellten Reaktionsmischung auf eine Temperatur T2 von 130 bis 350 0C, wobei die Nanopartikel enthaltend wenigstens ein Metalloxid erhalten werden und
(C) Abkühlen der Reaktionsmischung aus Schritt (B) enthaltend die Nanoparti- kel auf eine Temperatur T3 von 0 bis 70 0C.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass sich an Schritt (C) Schritt (D) anschließt:
(D) Aufkonzentrieren der Reaktionsmischung aus Schritt (C).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich an Schritt (C) oder (D) Schritt (E) anschließt:
(E) Abtrennen der in der Reaktionsmischung aus Schritt (C) oder (D) vorliegenden Nanopartikel durch Filtration und/oder Zentrifugation.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Nanopartikel in oder nach Schritt (B) und/oder in oder nach Schritt (C) funktiona- lisiert werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Aufheizen in Schritt (B) durch Mikrowellen-Strahlung erfolgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Sauerstoffquelle ausgewählt ist aus Wasser oder Kristallwasser der eingesetzten Vorläuferverbindungen.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Aufheizen in Schritt (B) mit einer Heizrate von wenigstens 20 K * min"1 erfolgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Aufheizen in Schritt (B) mit einer Heizrate von wenigstens 50 K * min"1 erfolgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das
Abkühlen in Schritt (C) mit einer Kühlrate von wenigstens 20 K * min"1 erfolgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Abkühlen in Schritt (C) mit einer Kühlrate von wenigstens 50 K * min"1 erfolgt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07112293 | 2007-07-11 | ||
EP07112293.1 | 2007-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009007369A2 true WO2009007369A2 (de) | 2009-01-15 |
WO2009007369A3 WO2009007369A3 (de) | 2009-03-19 |
Family
ID=39930386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/058855 WO2009007369A2 (de) | 2007-07-11 | 2008-07-08 | Kontinuierliches verfahren zur herstellung von nanopartikulären metalloxiden in polyol haltigen lösungsmitteln |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009007369A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115448354A (zh) * | 2022-09-16 | 2022-12-09 | 包头稀土研究院 | 二氧化铈颗粒及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2821357B2 (ja) * | 1994-02-22 | 1998-11-05 | 株式会社日本触媒 | 酸化亜鉛微粒子の製法 |
DE10297544B4 (de) * | 2001-12-18 | 2015-10-29 | Asahi Kasei Kabushiki Kaisha | Verfahren zur Herstellung eines Metall-Dünnfilms |
JP3612546B2 (ja) * | 2002-05-27 | 2005-01-19 | 関西ティー・エル・オー株式会社 | 金属酸化物微粒子を製造する方法 |
DE102004048230A1 (de) * | 2004-10-04 | 2006-04-06 | Institut für Neue Materialien Gemeinnützige GmbH | Verfahren zur Herstellung von Nanopartikeln mit maßgeschneiderter Oberflächenchemie und entsprechenden Kolloiden |
-
2008
- 2008-07-08 WO PCT/EP2008/058855 patent/WO2009007369A2/de active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115448354A (zh) * | 2022-09-16 | 2022-12-09 | 包头稀土研究院 | 二氧化铈颗粒及其制备方法 |
CN115448354B (zh) * | 2022-09-16 | 2023-10-31 | 包头稀土研究院 | 二氧化铈颗粒及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2009007369A3 (de) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2079664A2 (de) | Verfahren zur herstellung oberflächenmodifizierter nanopartikulärer metalloxide, metallhydroxide und/oder metalloxidhydroxide | |
EP2367762B1 (de) | Nanopartikuläre titandioxid-partikel mit kristallinem kern, einer schale aus einem metalloxid und einer aussenhaut, die organische gruppen trägt, sowie verfahren zu deren herstellung | |
DE69415957T2 (de) | Metalloxidpulver und verfahren zu dessen herstellung | |
JP2024020224A (ja) | マイクロ波プラズマ処理を使用した多相複合材料の製造方法 | |
US20080305025A1 (en) | Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby | |
DE102006027915B4 (de) | Verfahren zur Herstellung von Mg(OH)2-Nanopartikeln | |
DE60303717T2 (de) | Verfahren zur Herstellung hoch-kristallisierter Oxidpulver | |
WO2007036475A1 (de) | Verfahren zur herstellung oberflächenmodifizierter nanopartikulärer metalloxide, metallhydroxide und/oder metalloxidhydroxide | |
EP1907323B1 (de) | Verfahren zur herstellung von nanopartikeln aus aluminiumoxid und oxiden von elementen der i. und ii. hauptgruppe des periodensystems | |
WO2008116790A1 (de) | Verfahren zur herstellung oberflächenmodifizierter nanopartikulärer metalloxide, metallhydroxide und/oder metalloxidhydroxide | |
DE102006032590A1 (de) | Hydrothermales Verfahren zur Herstellung von nano- bis mikroskaligen Partikeln | |
US20080311031A1 (en) | Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby | |
DE112010002196T5 (de) | Titanoxidkristall vom rutil-typ und filter im mittlereninfparotbereich zur verwendung desselben | |
DE60300173T2 (de) | Verfahren zur Herstellung von kristallinem Mischoxidpulver | |
DE102008035524A1 (de) | Zinkoxid-Partikel, Zinkoxid-Pulver und Verwendung dieser | |
DE102009009182A1 (de) | Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung | |
DE10394356B4 (de) | Synthese von ultrafeinen Titandioxidpartikeln in Rutil-Phase bei geringer Temperatur | |
WO2009007369A2 (de) | Kontinuierliches verfahren zur herstellung von nanopartikulären metalloxiden in polyol haltigen lösungsmitteln | |
WO2009013187A1 (de) | Mikrowellen-induziertes verfahren zur herstellung von nanopartikulären metalloxiden | |
DE602005000423T2 (de) | Wasserfreies Zinkantimonat-Sol und Verfahren zu seiner Herstellung | |
JP7116473B2 (ja) | バナジウム酸化物のリボン状ナノ構造体及びその製造方法、バナジウム酸化物の薄片状ナノ構造体を含む水溶液の製造方法、並びにバナジウム酸化物ナノ粒子の製造方法 | |
DE102006020515A1 (de) | Nanopartikel aus Aluminiumoxid und Oxiden von Elementen der I. und II. Hauptgruppe des Periodensystems sowie deren Herstellung | |
WO2011157494A1 (de) | Zirkondioxid-aluminiumoxid-kompositpulver und verfahren zu dessen herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08785972 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08785972 Country of ref document: EP Kind code of ref document: A2 |