WO2009066599A1 - Aberration measuring method and its device - Google Patents
Aberration measuring method and its device Download PDFInfo
- Publication number
- WO2009066599A1 WO2009066599A1 PCT/JP2008/070626 JP2008070626W WO2009066599A1 WO 2009066599 A1 WO2009066599 A1 WO 2009066599A1 JP 2008070626 W JP2008070626 W JP 2008070626W WO 2009066599 A1 WO2009066599 A1 WO 2009066599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aberration
- spot image
- observation signal
- light
- optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 198
- 230000004075 alteration Effects 0.000 claims abstract description 187
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000004458 analytical method Methods 0.000 claims description 83
- 238000009826 distribution Methods 0.000 claims description 57
- 238000001514 detection method Methods 0.000 claims description 41
- 238000012937 correction Methods 0.000 claims description 31
- 238000005259 measurement Methods 0.000 claims description 20
- 230000035945 sensitivity Effects 0.000 claims description 19
- 238000011156 evaluation Methods 0.000 claims description 13
- 238000000691 measurement method Methods 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 23
- 238000004088 simulation Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 3
- 210000004709 eyebrow Anatomy 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 101001126085 Homo sapiens Piwi-like protein 1 Proteins 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 102100029364 Piwi-like protein 1 Human genes 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0242—Testing optical properties by measuring geometrical properties or aberrations
- G01M11/0257—Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
Definitions
- the present invention relates to an aberration measuring method for measuring an aberration of the optical system from a spot image detected by a photo detector, such as a photo detector or a CCD, in an optical pickup of an optical disk such as a CD or DVD and an imaging optical system. And the device.
- a photo detector such as a photo detector or a CCD
- an electrical evaluation method the electric signal obtained by reproducing the reference disk is measured and analyzed, and the error rate of the electric signal and the amount of jitter are mainly evaluated.
- the cause of the error is in the electric circuit, in the irradiation optical system, in the recording medium, or in the reproduction optical system.
- optical evaluation methods include a method of measuring the intensity distribution of spot images and a wavefront aberration measurement method using an interferometer. These methods have a more detailed It has the advantage that it can be priced and if there is a problem it is easy to identify the cause. However, measurement can not be performed in a short time, the measuring device is expensive, and there are problems with being vulnerable to external disturbances.
- Patent Document 1 discloses a method of measuring the phase distribution of light by a simple method without using an expensive measuring device, but measures the aberration of the laser light detected at the position of the photodiode. There is no disclosure of a specific method to Therefore, there was a problem in measuring the aberration of the return light at the position of the photo detector practically.
- the present invention has been made under the circumstances as described above, and it is an object of the present invention to analyze the aberration of the spot image of the laser beam received by the photodiode and evaluate the spot image of the laser beam at low cost.
- Method and apparatus for aberration measurement that can be performed with various devices, and the measurement time can be shortened. Disclosure of the invention
- the present invention relates to an apparatus for measuring an aberration of a spot image of light received by the light detection element, and the above object of the present invention is to project the spot image formed by the optical system to be measured onto the light detection element.
- Means first moving means for relatively moving the spot image on the light detection element in a direction perpendicular to the optical axis, and A second moving means for moving the position of the spot image projected onto the light detection element relative to the light detection element in the optical axis direction; and an aberration based on an output signal from the light detection element. This is achieved by providing an aberration analysis means to analyze.
- the second moving means controls the spot image and the position of the light detection element to at least two positions, and the first moving means generates an observation signal of the light intensity distribution formed by the spot image.
- the aberration analysis means analyzes the aberration of the optical system for forming the spot image based on the observation signal and the model observation signal, or the second movement means performs the spot image and When the position of the light detection element is controlled to at least two positions, the light detection element is disposed before and after the imaging point of the spot image, or the aberration analysis means And determining an observation signal and a model observation signal of the spot image based on the output signal, and analyzing the aberration of the spot image based on the observation signal and the model observation signal.
- the present invention relates to an aberration measuring method, and the above object of the present invention is to project a spot image formed by an optical system to be measured on a light detecting element, and to position the spot image on the light detecting element. And scan in the vertical direction to obtain the observation signal and the model observation signal, and then the spot image is relatively moved to another position in the optical axis direction to obtain the observation signal and the model observation signal. The above is achieved by analyzing the aberration of the spot image based on the observation signal and the model observation signal.
- the model observation signal By calculating the model observation signal based on the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the light detection element, or the complex amplitude of the spot image of the laser light is expanded by a finite series.
- the intensity distribution of the spot image is given by the square of the absolute value of the complex amplitude, the observation signal and the model observation signal are discretized, and the discretized observation signal and the discretized model observation signal are discretized.
- FIG. 1 is a block diagram showing a first embodiment of an aberration measuring apparatus according to the present invention.
- FIG. 2 is a flowchart showing an operation example of aberration analysis of a spot image in an aberration analysis unit.
- FIG. 3 is a schematic view of a spot image in a focused image and a defocused image of each coefficient.
- FIG. 4 is a block diagram showing a second embodiment of the aberration measuring apparatus according to the present invention.
- FIG. 5 is a block diagram showing a third embodiment of the aberration measuring apparatus according to the present invention.
- FIG. 6 is a block diagram showing a fourth embodiment in which an XY stage is attached to a photo detector.
- FIG. 7 is a block diagram showing a fifth embodiment of the aberration measuring apparatus according to the present invention.
- FIG. 8 is a block diagram showing a sixth embodiment of the aberration measuring apparatus according to the present invention.
- FIG. 9 is a configuration diagram for explaining an optical system aberration of the optical pickup before the objective lens module is attached.
- FIG. 10 is a configuration diagram for explaining an optical system aberration of the optical pickup before the objective lens module is attached.
- FIG. 11 is a configuration diagram showing a configuration example of focus scanning means for measuring the optical system aberration of the optical pickup before the objective lens module is attached.
- FIG. 12 is a configuration diagram showing a configuration example of a focus scanning means for measuring an optical system aberration of the optical pickup before the objective lens module is attached.
- FIG. 13 is a diagram for explaining optical system adjustment of a small camera.
- FIG. 14 is a block diagram showing an example of a configuration in which the present invention is applied to the adjustment of the optical system of a small camera.
- FIG. 15 is a characteristic diagram of the numbers and coefficients of the force coefficients calculated by changing the position of the initial point by the F G S method.
- FIG. 16 is a characteristic diagram showing an ideal window function.
- FIG. 17 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window.
- FIG. 18 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window.
- FIG. 19 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window.
- FIG. 20 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window.
- FIG. 25 is a diagram showing the values of the Zernike coefficients obtained by numerical simulation and the exact values of the Zernike coefficients.
- Figures 26 ( ⁇ ) and ( ⁇ ) show the intensity distribution calculated by performing an inverse analysis from the correct solution of the intensity distribution of the observed signal of the photo detector and the results obtained by numerical simulation.
- light for example, a laser
- a light detection element such as an optical pickup, a photo detector of an imaging optical system, a CCD, or a CMOS device
- a spot image is generated on the light detection element, and the spot image is scanned relatively (XY (horizontal) direction: perpendicular to the optical axis) on the light detection element.
- the spot image of the light detection element is generated by adjustment in the Z (vertical) direction (optical axis direction), and the output signal of the light detection element is input to the aberration analysis unit.
- the aberration analysis unit measures the aberration of the optical system from the spot image and evaluates the light spot image based on the observation signal of the spot image and the model observation signal.
- the observation signal is acquired by relatively XY scanning the spot image of light on the light detection element, and this observation signal is acquired at at least two different focal positions, that is, at two focal positions adjusted in the Z direction. Do.
- the model observed signal is by assuming the aberration It is calculated by convolution of the calculated intensity distribution of the spot image and a function that models the sensitivity distribution of the light receiving window of the light detection element.
- aberration analysis of an optical system that forms a spot image based on an observation signal acquired from an output signal of a light detection element that receives a spot image of light and a model observation signal is described. Is going.
- the model observation signal can be calculated based on the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the light detection element. Therefore, it is necessary to measure and evaluate the aberration of the optical system that forms the spot image using an inexpensive device. Can reduce the measurement time and evaluation time.
- FIG. 1 is a block diagram showing a first embodiment of an aberration measuring apparatus according to the present invention, and shows an optical pickup 1 for performing time recording and reproduction on an optical disk such as a CD or DVD, and a spot image.
- X-Z moving unit 10 for scanning and adjusting focal position
- aberration analysis unit 9 for performing aberration analysis and evaluation of spot image of laser light, and CD or DVD was mounted.
- a transparent correction plate 6 having optical characteristics corresponding to the CD or DVD is inserted at the CD or DVD mounting position of the optical pickup 1.
- the optical pickup 1 comprises a laser diode 2 for irradiating a laser beam 8, a half mirror 3 for reflecting and transmitting the irradiated laser beam 8 A, an optical system 4 for condensing the laser beam 8 B, and a laser beam 8.
- a photo detector 5 is provided which receives the spot image of D, converts it into an electric signal, and outputs an output signal ES.
- the output signal E S from the photo detector 5 is input to the aberration analysis unit 9.
- the XYZ moving unit 10 is a lens 1 1 that receives the laser beam 8 B transmitted through the optical system 4 of the optical pickup 1 and transmitted through the correction plate 6 to be collimated light; To move the flat mirror 12 reflecting the laser beam 8 C in the direction of entry, and the lens 11 or the mirror 12 in the X axis direction, the Y axis direction, and the Z axis direction, respectively. It consists of an XYZ stage 13 and a control unit 14 that controls the XYZ stage 13.
- the X axis, the Y axis, and the Z axis are coordinate axes of the orthogonal coordinate system, and an XY plane is taken parallel to the light receiving window where the photo detector 5 receives the laser light 8D.
- the correction plate 6 to be inserted into the CD or D V D mounting position of the optical pickup 1 will be described.
- the substrates of D V D and C D use polycarbonate resin having a refractive index of about 1.55. Then, the laser light is condensed to one point through this substrate and the recording bit is read out. Therefore, the objective lens to be used is designed to have spherical aberration in advance so that it can be focused to one point through the substrate of a predetermined thickness in consideration of the thickness and refractive index of the disk substrate.
- the correction plate 6 is inserted for the purpose of correcting this spherical aberration. That is, by inserting a transparent plate having the same optical thickness as that of the substrate in order to simulate the substrate at the time of measurement, it is possible to simulate the state in which the optical pickup 1 reads out the focal point inside the disc of the normal DVD.
- the laser beam 8 A emitted from the laser diode 2 of the optical pickup 1 is reflected by the mirror 1, becomes a laser beam 8 B and passes through the optical system 4.
- the laser light 8 B transmitted through the optical system 4 is transmitted through the correction plate 6, passes through the lens 1 1, is reflected by the mirror 12, and the reflected laser light 8 C is output from the XYZ moving unit 10.
- the laser light 8 C travels in the direction opposite to that of the incident laser light 8 B, passes through the correction plate 6 and the optical system 4, and further passes through the half mirror 3 to become laser light 8 D. Ha
- the light is received by the auto detector 5.
- the photo detector 5 converts the received laser light 8 D into an electric signal, and inputs the output signal ES to the aberration analysis unit 9.
- the aberration analysis unit 9 obtains an observation signal p (X, Y) ((X, Y) is a relative position of the spot image) based on the output signal ES from the photo detector 5.
- the observation signal p (X, Y) moves the lens 11 or Z and the mirror 12 in the XY direction by the XYZ stage 13.
- the spot image of the laser beam 8 D received by the photo detector 5 is XY (X) Horizontal) Acquired by scanning in the plane.
- the aberration analysis unit 9 When analyzing the spot image of the laser beam 8D, the aberration analysis unit 9 further calculates a model observation signal P (X, Y).
- the model observation signal P (X, Y) is obtained from the intensity distribution s (x, y) of the spot image and the function W (x, y) that models the sensitivity distribution of the light receiving window of the photo detector 5. The following is calculated by convolution-integral number 1.
- the convolution integral of the above equation 1 can be an integral of the rectangular wave region when the function W (x, y) is constant.
- convolutional integration Fourier-transforms the function W (X, y) that models the sensitivity distribution of the photodiode 5 and the intensity distribution s (x, y) of the spot image, and reverses the product in frequency space It may be Fourier transformed.
- the intensity distribution s of the spot image is given by the following equation 3, where f is the complex amplitude of the spot image of the laser beam 8D.
- the complex amplitude f of the spot image of the laser beam 8 D is represented by the Nipoesernike series given by the following equation 4.
- the spot image of the laser beam 8 D is analyzed by solving the nonlinear least squares problem of the above-mentioned 9 and determining the design variable K.
- the observation signal p can be obtained by moving the lens 11 or Z and the mirror 12 in the Z direction by the XYZ stage 13. It is necessary to acquire (X, Y) for at least two different focal positions of the laser beam 8 and to improve the solution accuracy when analyzing the spot image of the laser beam 8 D
- the nonlinear least squares problem may be solved using Tikonov's method with the following number 10 as the objective function.
- the model observation signal is expanded in the two Poesernike series, but the present invention is not limited thereto, and general finite series expansion such as Fourier series expansion and Lagrange series expansion can be used.
- FIG. 2 is a flow chart showing an example of the aberration analysis of the spot image of laser light 8 D in the aberration analysis unit 9.
- the output signal ES from the photo detector 5 is input to the aberration analysis unit 9 (step S 1).
- the aberration analysis unit 9 obtains an observation signal P (X, Y) from the output signal ES when the spot image of the laser light 8 D is scanned in the XY plane of the photo detector 5 (step S 2).
- FIG. 3 is a schematic view of a spot image in a focused image and a defocused image of each coefficient amn,) 3 mn.
- the solution lacks uniqueness, and correct analysis can not be performed. If it is considered to use two or more spot images by giving up analysis on only one plane, using "focus plane + defocus plane" or positive and negative defocus planes solves this problem. can do. That is, the influence of the expansion coefficients a mn and / 3 mn of the complex amplitude distribution, which is an unknown quantity in the present invention, on the intensity distribution of the spots differs in characteristics depending on the coefficients a mn and ⁇ mn.
- the observation signal p (X, y) is acquired for two or more different focal positions in the Z direction. Although it is at least two or more, the spot image of two is optimal in terms of accuracy and processing speed.
- the aberration analysis unit 9 next calculates a model observation signal P (X, Y) (step S 5).
- a model observation signal P (X, Y) (step S 5).
- the model observation first, it is hypothesized that the Nipoezelnike coefficient ⁇ K ⁇ , which is an aberration assumption, is assumed (step S3), and then the intensity distribution ⁇ s ⁇ of the spot image is calculated according to the equation 7 (step S4).
- step S 5 Calculate the model observation signal ⁇ P ⁇ by Eq. 8 (step S 5).
- the aberration analysis unit 9 minimizes the difference between the observation signal ⁇ p ⁇ and the model observation signal ⁇ P ⁇ based on the obtained observation signal ⁇ p ⁇ and the model observation signal ⁇ p ⁇ (step S6).
- the objective function of the non-linear least squares problem used in performing this minimization is given by the above equation 9 or the above equation 10.
- step S 7 it is judged whether the Nipoesernicke coefficient ⁇ K ⁇ which is a design variable of the nonlinear least squares problem has converged. If it is determined that convergence has not occurred, the intensity distribution ⁇ s ⁇ of the spot image and the model observation signal ⁇ P ⁇ are calculated again based on the Nivosezernike coefficient ⁇ K ⁇ obtained by the minimization, and the observation signal ⁇ Based on p ⁇ and the obtained model observation signal ⁇ P ⁇ And / /, to do.
- the aberration distribution (the declination distribution) is easily determined from the determined two Boeselnike coefficients ⁇ K ⁇ . Can be calculated.
- the calculated aberration distribution is output (step S 8), and the aberration analysis process is completed.
- the aberration distribution can also be expressed as a Zernike coefficient, which is a commonly used aberration index, using a linear least squares problem.
- an optical pickup 1 for recording and reproducing data on an optical disc such as a CD or a DVD, and scanning and adjustment of a spot image are also performed.
- an aberration analysis unit 9 for performing aberration analysis and evaluation of a spot image of a laser beam, and the correction plate 6 is inserted at the CD or DVD mounting position of the optical pickup 1.
- the configuration and operation of the optical pickup 1, the correction plate 6 and the aberration analysis unit in the present embodiment are the same as those in the first embodiment.
- the XYZ moving unit 20 of the second embodiment transmits the optical system 4 of the optical pickup 1 and further receives the laser beam 8 B transmitted through the correction plate 6 and transmits the laser beam 8 B in the direction in which the laser beam 8 B has entered. It consists of a reference spherical surface 2 1 that reflects light 8 C, an XYZ stage 2 2 for moving the reference spherical surface 2 1 in the X and Y directions, and a control unit 2 3 that controls the XYZ stage 2 2 .
- the reference spherical surface 21 is a hemispherical concave mirror whose focal point is at the center of the hemisphere, and has the same function and effect as the lens 11 and the mirror 12 in the first embodiment.
- the laser beam 8 A emitted from the laser diode 2 of the optical pickup 1 is reflected by the half mirror 1 and the laser beam 8 B
- the laser light 8 B passes through the optical system 4 and the correction plate 6 and is received by the reference spherical surface 2 1.
- the laser beam 8B received by the reference spherical surface 21 is reflected by the reference spherical surface 21 to become a laser beam 8C
- the laser beam 8C passes through the correction plate 6 and the optical system 4, and further passes through the half mirror 3.
- the output signal ES of the laser light 8 D received by the photo detector 5 is input to the aberration analysis unit 9.
- the aberration analysis unit 9 acquires the observation signal p (X, Y) of the spot image of the laser light 8 D by scanning the light source with the focal position fixed.
- the observation signal p (X, X at at least two different focal positions of the laser light 8 is obtained.
- the calculation of the model observation signal P (X, Y) is performed in the same manner as in the first embodiment. Then, in the same procedure as shown in Fig. 2, the aberration of the spot image of the laser beam 8D is analyzed based on the observation signal ⁇ p ⁇ and the model observation signal ⁇ P ⁇ .
- the aberration measuring apparatus of the third embodiment comprises an optical pickup 1, a reference light source 30 for irradiating a reference laser beam 33 whose aberration is known, and an XY Z stage 3 1 for moving the reference light source 30 in the XY Z direction. And a correction plate 6 inserted at the CD or DV D mounting position of the optical pickup 1, and an aberration analysis unit 9.
- the reference light source 30 is installed so that the irradiated reference laser light 33 passes through the correction plate 6, the optical system 4 and the half mirror 1 and is received by the photo detector 5.
- the configuration of the optical pickup 1 in the present embodiment is the same as in the first and second embodiments.
- the reference laser beam 33 when performing the aberration measurement, is irradiated from the reference light source 30.
- the irradiated reference laser light 33 is transmitted through the correction plate 6, and further transmitted through the optical system 4 and the half mirror 1 of the optical pickup 1 and received by the photo detector 5.
- the reference laser beam 33 received by the photo detector 5 is converted into an electrical signal, and the output signal ES is input to the aberration analysis unit 9.
- the observation signal p (X, Y) required to analyze the aberration in the aberration analysis unit 9 is moved by the reference light source 30 in the Z direction by the XYZ stage 31 and focused, and then the reference light source 3 By moving 0 in the X and Y directions, horizontal scanning is performed with the focal position of the spot image of the reference laser light 33 fixed, and light is received by the photo detector 5. Also, to perform aberration analysis, the reference light source 30 is moved again in the Z direction by the XY Z stage 31 and the observation signal p (X, Y) differs by at least two or more of the reference laser light 33. Acquire at the focus position.
- the aberration analysis unit 9 acquires the model observation signal P (X, Y) in the same manner as in the first and second embodiments, and based on the observation signal ⁇ p ⁇ and the model observation signal ⁇ p ⁇ , FIG. Perform the aberration analysis in the same procedure as the flowchart.
- the aberration of the reference laser beam 33 may be subtracted from the aberration obtained by the aberration analysis.
- the lens 1 1 and the mirror 12 are moved in the XYZ directions by the XY Z stage 13.
- the reference spherical surface 21 is moved in the XY Z direction by the XY Z stage 20.
- the reference light source 30 is moved in the XY Z direction by the XY Z stage 31. It is done.
- Such an XYZ stage is a Y stage that can move only in the Y direction, and it is possible to move both the lens 11, the mirror 12, the reference spherical surface 21 and the reference light source 30 only in the ⁇ direction.
- the optical system 4 By allowing the optical system 4 to move in the X direction and the ⁇ direction by means of focus tracking correction (not shown), scanning of the spot image of the laser light in the ⁇ plane and the laser light You may move the focus position of the Also, in the manufacturing process of the optical pickup 1, before fixing the position of the photo detector 5, as shown in FIG. 6, the ⁇ stage 15 is attached to the photo detector 5 and the photo detector 5 is mounted. By moving in the ⁇ direction, ⁇ scanning of the spot image of the laser beam may be performed (fourth embodiment). In this case, the eyebrow stages (10, 20, 31) in the first to third embodiments can be moved only in the eyebrow direction. The focal position of the laser light is moved by moving both the reference sphere surface 2 1 and the reference light source 30 in the Z direction.
- the aberration measuring apparatus of this embodiment moves a measured optical pickup 1 for measuring an aberration, a reference optical pickup 41 with known optical characteristics such as aberration, and a reference optical pickup 41 in the XYZ directions.
- the analysis of the spot image of the laser beam 48 received by the XYZ stage 4 6, the control unit 4 7 that controls the XYZ stage 4 6, and the photo detector 5 of the measured light pickup 1 The aberration analysis unit 9 and the correction plate 6 inserted at the CD or DVD mounting position of the measured optical pickup 1 are provided.
- the configuration of the measured optical pickup 1 in the present embodiment is the same as that of the optical pickup 1 in the previous embodiment, and the same reference numerals are given to the respective constituent elements.
- a reference optical pickup 41 comprises a laser diode 42 that emits a reference laser beam 48 whose aberration is known, a half mirror 43 that reflects or transmits the reference laser beam 48, and an optical that collects the reference laser beam.
- the system comprises a system 4 4 and a photo detector 45 for receiving a reference laser beam 4 8.
- the reference laser light 48 When measuring the aberration of the measured optical pickup 1, the reference laser light 48 is irradiated from the laser diode 42 of the reference light pickup 41. The irradiated reference laser light 48 is reflected by the half mirror 43, passes through the optical system 4 4 and the correction plate 6, and enters the measured optical pickup 1. The reference laser light 4 8 is transmitted through the optical system 4 and the half mirror 1 of the light pickup 1 and is received by the photo detector 5. The photo detector 5 converts the received reference laser light 48 into an electrical signal ES, and the electrical signal ES is input to the aberration analysis unit 9.
- the observed signal p (X,; Y) for performing aberration analysis it is necessary to acquire.
- the reference optical pickup 41 is moved in the Z direction by the XYZ stage 46 and focused
- the reference laser light 4 received by the photo detector 5 is moved by moving the reference optical pickup 41 in the XY direction.
- the spot image of 8 is scanned with the focal position of the reference laser beam fixed, and the observation signal p (X, Y) is acquired.
- the observation signal p (for the focal position of at least two or more different reference laser lights 48) Get X, Y).
- the aberration analysis unit 9 calculates the model observation signal P (X, Y) in the same manner as in the first embodiment, and the observation signal ⁇ p ⁇ and the model observation signal ⁇ P in the same procedure as the flowchart of FIG. Analyze the spot image of the reference laser beam 48 based on ⁇ .
- the aberration produced by the optical system 4 etc. of the measured optical pickup 1 can be determined from the aberration obtained by the above-mentioned aberration analysis. It is derived by subtracting the aberration of 1 reference laser light 4 8 and the aberration generated by the optical system 4 4 etc.
- the aberration measuring apparatus moves a measured light pickup 1 for measuring aberration, a reference optical pickup 41 with known optical characteristics such as aberration, and a reference optical pickup 41 in the XYZ directions.
- the control unit 47 that controls the XYZ stage 46, and the photo detector 45 of the reference light pickup 41.
- the aberration analysis unit 9 and the correction plate 6 inserted at the CD or DVD mounting position of the measured optical pickup 1 are provided.
- the configuration of the present embodiment is the same as that of the fifth embodiment except that the aberration analysis unit 9 receives the output signal ES of the photo detector 45 of the reference optical pickup 41.
- the corresponding components are denoted by the same reference numerals.
- the laser light 8 is irradiated from the laser diode 2 of the measured light pick-up 1.
- the irradiated laser light 8 is reflected by the half mirror 13, passes through the optical system 4 and the correction plate 6, and enters the reference optical pickup 41.
- the laser beam 8 passes through the optical system 4 4 of the reference optical pickup 4 1 and the half mirror 4 3 and is received by the photo detector 45.
- the photo detector 45 converts the received laser light 8 into an electrical signal, and inputs the output signal ES to the aberration analysis unit 9.
- the aberration analysis unit 9 needs to acquire an observation signal p (X, Y) for performing the aberration analysis.
- the ray is received by the photo detector 5 by moving the reference optical pickup 41 in the XY direction.
- the spot image of the light 8 is scanned with the focal position of the laser light fixed, and the observation signal P (X, Y) is acquired.
- the observation signal p (X, Y) is acquired from the output signal ES of the laser diode 45.
- the reference optical pickup 41 is moved in the Z direction by the XYZ stage 46, and the observation signal p (X, Y) is acquired with respect to the focal position of at least two different laser beams 8. .
- the aberration analysis unit 9 calculates the model observation signal in the same manner as in the first embodiment, and based on the observation signal ⁇ p ⁇ and the model observation signal ⁇ p ⁇ in the same procedure as the flowchart of FIG.
- the aberration of the spot image of the light 8 is analyzed.
- the aberration produced by the optical system 4 or the like of the measured optical pickup 1 can be derived by subtracting the aberration produced by the optical system 4 4 or the like of the reference optical pickup 4 1 from the aberration obtained by the above-described aberration solution.
- an AS key cell optical element In order to cancel out the influence of the generating optical element, an AS key cell optical element may be provided.
- the AS cancellation optical element corresponds, for example, to one in which the correction plate 6 is inclined. This is because when an inclined parallel plate is inserted into a light collecting or diverging ray, the optical distance in the inclined direction increases, and the optical distance in the direction orthogonal to the inclination is maintained, which causes astigmatism.
- a laser diode is mentioned as an irradiation source of laser light, another laser generating element may be used.
- the aberration measuring method using the aberration measuring apparatus shown in the first to sixth examples may be used as an optical pickup adjustment method for adjusting the aberration of the optical pickup to an optimum aberration.
- the aberration measurement method may be used to adjust the aberration of the optical pickup so as to be optimal in the manufacturing process of the optical pickup.
- the optical pickup may be composed of a collimator lens and an objective lens module. In that case, there is a need to inspect the optical system of the optical pickup before the objective lens module of the optical pickup is mounted. For example, as shown in FIG.
- the optical pickup 1 00 when the optical pickup 1 00 has a collimator lens 1 0 1 and a photo detector 1 0 2 and the objective lens module 1 1 0 is attached later, the optical pickup 1 In the manufacturing process of 0 0, it is required to inspect other optical systems before attaching the objective lens module 1 1 0.
- the collimated light from the focus scanning means 120 is directly irradiated to the optical pickup 100 before the objective lens module 110 is attached, and the photo detector 10 By generating a focal point on the top and XY scanning the focal point, it is possible to measure the aberration of the optical system of the optical pickup 100 before the objective lens module 110 is attached.
- FIGS. 11 and 12 A specific configuration example of the focus scanning means 120 is as shown in FIGS. 11 and 12.
- the focus scanning means 120 is an optical system 1 2.
- a laser light source 12 2 and a stage 1 2 3 for scanning the laser light source 1 2 2 are configured.
- the laser light emitted from the laser light source 12 2 is collimated by the optical system 1 2 1 and incident on the optical pickup 1 0 0 0, and the spot image collected through the collimator lens 1 0 1 is Measured in Fortune mode.
- XY scanning of the spot image on the photo detector 102 can be performed by moving the stage 1 2 3. Further, in the embodiment shown in FIG.
- the focus scanning means 120A is an optical system, a laser light source 124 for irradiating a parallel laser beam, and a stage which can be tilted to scan the laser light source 124. It consists of 1 2 5
- the parallel laser light emitted from the laser light source 124 is incident on the optical pickup 100, and the spot image collected through the collimating lens 101 is focused on the light source. Measured in T.12.
- XY scanning of the spot image on the photo detector 102 can be performed by driving the stage 125. For example, it can be realized by changing the angle by a galvanomier or the like.
- a small camera is mounted in the mobile phone, and the present invention can be applied to the adjustment request for such a small power camera.
- a laser beam 200 from a laser light source is condensed by an optical system 201, and the laser spot is projected on C C D 2 10 as a light detection element. Then, by analyzing the output signal of the CCD 210 obtained by scanning the spot with respect to one pixel 21 of the CCD 210 according to the method of the present invention described above, an optical system 2 0 can be obtained. Aberration of 1 can be identified. It should be noted that one pixel of CCD 210 is in the order of lm, the spot of the laser is also in the order of submicron to micron, and the output from one pixel of CCD 210 integrates a part of the projected spot. The amount will be the same. The amount of movement of the scan is on the order of microns.
- FIG. 14 shows a configuration example of measuring the aberration of the optical system 201 by finely scanning the camera optical system to be measured with the focus scanning means 220 described in the present invention.
- the present invention is applied to the output data from the simulated photo detector for the assumed aberration, the aberration is identified, and the identified aberration is compared with the assumed aberration. The effectiveness of the present invention was verified. Measurement errors are also modeled and added to the simulated data. In the first to sixth embodiments, a plurality of hardware configurations for obtaining measurement data are shown. Since there is no difference in the errors included in the evening, it is verified by this simulation whether aberrations can be identified for all the examples.
- the analysis conditions were as follows.
- the optical pickup is a DVD optical pickup, the wavelength of the laser diode is 650 nm, the numerical aperture NA is 0.6, and the size of the photodiode is 7500 nm 7 It is assumed that 5 0 0 [nm] (discretized into 1 2 5 points X 1 2 5 points).
- the analysis area covers 3 0 0 0 [nm] x 3 0 0 0 [nm] (discretized into 5 1 point X 5 1 point) that can cover approximately the primary ring when reconstructed. When the spot image of the laser light scans, scan is performed from the outside of this area.
- the analysis aims to identify up to the 3rd-order spherical aberration, and makes the number of unknowns 18.
- the BFGS method was used to calculate the coefficients by changing the position of the initial point. As a result, the characteristics as shown in FIG. 15 were obtained, and it could be shown that they were not multimodal. That is, the aberration can be stably identified as the only solution.
- the BFGS method is one of the non-linear optimization methods announced by Broyden, Fletcher, Goldfarb, and Shannon. It is also called the quasi-Newton method. Next, an ideal window function is shown in FIG. In this characteristic chart, the sensitivity of the central part is 100% and the sensitivity of the other parts is shown.
- the respective analysis results are shown in FIG. 18 in the case of FIG. 17 and in FIG. 20 in the case of FIG.
- the identification is stable even if the sensitivity distribution of the photodetection window of the photodiode is depressed at the periphery.
- Fig. 26 ( ⁇ ) shows the correct solution of the intensity distribution of the observed signal of the photodiode
- Fig. 26 ( ⁇ ) is calculated by performing the inverse analysis from the results obtained by the numerical analysis. The intensity distribution is shown.
- the observation signal is output based on the output signal of the photo detector.
- the model observation signal is calculated on the basis of the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the photo detector, and the spot of the laser light received by the photo detector on the basis of the observation signal and the model observation signal. Since the analysis of the aberration of the projection image and the evaluation of the spot image of the laser light are performed, the analysis of the aberration of the spot image of the laser light and the evaluation of the spot image of the laser light can be performed using an inexpensive apparatus. And can reduce the measurement time.
- the present invention is intended to perform aberration measurement, but can also be applied to measurement of optical evaluation amounts such as MTF (Modulation Transfer Function) 2 ⁇ 4 PSF (Point Spread Function), TF (Optical Transfer Function), and the like.
- the present invention is mainly applicable to the optical evaluation of optical pickups such as DVD, but it is further equivalent to one pixel of a CCD for an optical system composed of a lens such as a camera and a CCD. It can also be applied to analyze the aberration of the spot size. That is, if the light sensitivity to one pixel of the CCD is used as a window function, the aberration can be identified by the same method.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 6-2 3 4 3 8 9
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Optical Head (AREA)
Abstract
There is provided an aberration measuring method for evaluating the aberration of a light spot image detected by a photodetector and the light spot image, with an inexpensive instrument and at a high speed. In the method, based on a model observation signal and an observation signal acquired from a scan output signal of the photodetector receiving the light spot image, the aberration of an optical system for forming the light spot image is analyzed from data at at least two locations.
Description
明 細 書 収差測定方法及びその装置 技術分野 Aberration measurement method and apparatus therefor
本発明は、 C Dや D V D等の光ディスクの光ピックアップ及び結像光 学系における、 フォ トディテクタ、 C C D等の光検出素子で検出される スポッ ト像から前記光学系の収差を測定する収差測定方法及びその装置 に関する。 背景技術 The present invention relates to an aberration measuring method for measuring an aberration of the optical system from a spot image detected by a photo detector, such as a photo detector or a CCD, in an optical pickup of an optical disk such as a CD or DVD and an imaging optical system. And the device. Background art
近年、 ネッ トワークの高速化や地上波デジタル放送の開始、 ハードデ ィスクの大容量化などを背景に、 コンテンッ保存用として C Dや D V D 等の光ディスクの需要が拡大すると考えられている。 光ディスクがこの ような需要の拡大に対応していくには、 光ディスクの大容量化が必須で あり、 光ディスクの記録密度を向上させる必要がある。 そのために、 光 ピックァップの高品質化が重要であり、 光ピックアツプの品質評価の高 速化及び高精度化が必要になっている。 In recent years, the demand for optical disks such as CD and D V D for conserving content is expected to expand as the network speeds up, the start of digital terrestrial broadcasting, and the capacity of hard disks increase. In order to respond to the expansion of demand for optical disks, it is essential to increase the capacity of optical disks, and it is necessary to improve the recording density of optical disks. For this purpose, it is important to improve the quality of the optical pick-up, and it is necessary to speed up and improve the quality evaluation of the optical pick-up.
光ピックアツプの品質評価方法としては、 電気的評価方法と光学的評 価方法の 2つが挙げられる。 電気的評価方法では、 基準ディスクを再生 させて得られる電気信号を計測して解析し、 電気信号のエラー率ゃジッ 夕一量を主に評価する。 しかし、 この評価方法ではエラーの原因が電気 回路にあるのか、 照射光学系にあるのか、 記録メディアにあるのか、 再 生光学系にあるのか等、 原因の特定ができない。 There are two methods for evaluating the quality of the optical pick-up, an electrical evaluation method and an optical evaluation method. In the electrical evaluation method, the electric signal obtained by reproducing the reference disk is measured and analyzed, and the error rate of the electric signal and the amount of jitter are mainly evaluated. However, with this evaluation method, it can not be specified whether the cause of the error is in the electric circuit, in the irradiation optical system, in the recording medium, or in the reproduction optical system.
また、 光学的評価方法には、 スポッ ト像の強度分布を測定する方法や 干渉計を用いた波面収差測定法がある。 これらの方法は、 より詳細な評
価ができ、 問題がある場合にその原因の特定が容易であるという利点が ある。 しかし、 短時間での測定ができない、 測定装置が高価である、 外 乱に弱いといつた問題がある。 In addition, optical evaluation methods include a method of measuring the intensity distribution of spot images and a wavefront aberration measurement method using an interferometer. These methods have a more detailed It has the advantage that it can be priced and if there is a problem it is easy to identify the cause. However, measurement can not be performed in a short time, the measuring device is expensive, and there are problems with being vulnerable to external disturbances.
上記の問題を解決するために、 高価な測定装置を用いることなく、 簡 便な方法で光の位相分布を測定する方法が、 特開 2 0 0 6 — 2 3 4 3 8 9号公報 (特許文献 1 ) に開示されている。 この光位相分布測定方法で は、 被測定光を光学特性が既知の光学系に入力し、 被測定光の複素振幅 をゼルニケ (Zernike ) 級数で展開し、 ゼルニケ係数を決定するための 非線形最小 2乗問題を解く ことにより、 光位相分布を測定するようにな つている。 In order to solve the above problems, a method of measuring the phase distribution of light by a simple method without using an expensive measuring device is disclosed in Japanese Patent Application Publication No. It is disclosed in the document 1). In this optical phase distribution measurement method, the light to be measured is input to an optical system whose optical characteristics are known, the complex amplitude of the light to be measured is expanded by the Zernike series, and the nonlinear minimum for determining the Zernike coefficient 2 By solving the multiplication problem, it is possible to measure the optical phase distribution.
特許文献 1には、 高価な測定装置を用いることなく、 簡便な方法で光 の位相分布を測定する方法が開示されているが、 フォ トディテク夕の位 置で検出されるレーザ光の収差を測定する具体的な方法は開示されてい ない。 そのため、 フォ トディテクタの位置における戻り光の収差を実用 的に計測するには問題があった。 Patent Document 1 discloses a method of measuring the phase distribution of light by a simple method without using an expensive measuring device, but measures the aberration of the laser light detected at the position of the photodiode. There is no disclosure of a specific method to Therefore, there was a problem in measuring the aberration of the return light at the position of the photo detector practically.
本発明は上述のような事情によりなされたものであり、 本発明の目的 は、 フォ トディテク夕で受光されるレーザ光のスポッ ト像の収差の解析 及びレーザ光のスポッ ト像の評価を、 安価な装置で行うことができ、 測 定時間を短縮することのできる収差測定方法及びその装置を提供するこ とにある。 発明の開示 The present invention has been made under the circumstances as described above, and it is an object of the present invention to analyze the aberration of the spot image of the laser beam received by the photodiode and evaluate the spot image of the laser beam at low cost. Method and apparatus for aberration measurement that can be performed with various devices, and the measurement time can be shortened. Disclosure of the invention
本発明は、 光検出素子で受光される光のスポッ ト像の収差測定装置に 関し、 本発明の上記目的は、 被測定光学系により形成されるスポッ ト像 を光検出素子上に投影する投影手段と、 前記スポッ ト像を前記光検出素 子上で光軸に対して垂直方向に相対的に移動する第 1の移動手段と、 前
記光検出素子上に投影される前記スポッ ト像の位置を光軸方向に前記光 検出素子と相対的に移動する第 2の移動手段と、 前記光検出素子からの 出力信号を基に収差を解析する収差解析手段とを設けることにより達成 される。 The present invention relates to an apparatus for measuring an aberration of a spot image of light received by the light detection element, and the above object of the present invention is to project the spot image formed by the optical system to be measured onto the light detection element. Means, first moving means for relatively moving the spot image on the light detection element in a direction perpendicular to the optical axis, and A second moving means for moving the position of the spot image projected onto the light detection element relative to the light detection element in the optical axis direction; and an aberration based on an output signal from the light detection element. This is achieved by providing an aberration analysis means to analyze.
前記第 2の移動手段により、 前記スポッ ト像と前記光検出素子の位置 を少なくとも 2つの位置に制御し、 前記第 1の移動手段により前記スポ ッ ト像が形成する光強度分布の観測信号を求め、 前記収差解析手段は前 記観測信号とモデル観測信号に基づいて前記スポッ ト像を形成する光学 系の収差の解析を行うことにより、 或いは前記第 2の移動手段により前 記スポッ ト像と前記光検出素子の位置を少なくとも 2つの位置に制御す る際、 前記スポッ ト像の結像点の前後に前記光検出素子が配置されるよ うになつていることにより、 或いは前記収差解析手段は、 前記出力信号 に基づいて前記スポッ ト像の観測信号及びモデル観測信号を求め、 前記 観測信号と前記モデル観測信号に基づいて前記スポッ 卜像の収差の解析 を行うようになっていることにより、 或いは前記モデル観測信号を、 前 記スポッ 卜像の強度分布と前記光検出素子の受光窓の感度分布との畳み 込み積分によって求めることにより、 或いは被測定光学系中にレーザ光 源及び前記光検出素子を有し、 光ディスクにデータの記録及び再生を行 う光ピックアップである光学系において、 前記光ピックアップの前記光 ディスクの載置位置に挿入された補正板と、 前記光ピックアップからの レーザ光を前記補正板を経て入射し、 受光したレーザ光を前記光ピック アップに反射すると共に、 前記レーザ光のスポッ ト像を前記光検出素子 に投影し、 前記第 1の移動手段及び前記第 2の移動手段により前記スポ ッ ト像を走査し、 前記光検出素子からの出力信号で観測信号及びモデル 観測信号を求めて前記スポッ ト像の収差の解析を行う収差解析部とを設 けることにより、 より効果的に達成される。
また、 本発明は収差測定方法に関し、 本発明の上記目的は、 被測定光 学系により形成されるスポッ ト像を光検出素子に投影し、 前記スポッ ト 像を前記光検出素子上で光軸と垂直方向に走査して観測信号とモデル観 測信号とを求め、 その後、 前記スポッ ト像を相対的に前記光軸方向の別 の位置に移動させて前記観測信号及び前記モデル観測信号を求め、 前記 観測信号及び前記モデル観測信号に基づいて前記スポッ 卜像の収差の解 析を行うことにより達成される。 The second moving means controls the spot image and the position of the light detection element to at least two positions, and the first moving means generates an observation signal of the light intensity distribution formed by the spot image. The aberration analysis means analyzes the aberration of the optical system for forming the spot image based on the observation signal and the model observation signal, or the second movement means performs the spot image and When the position of the light detection element is controlled to at least two positions, the light detection element is disposed before and after the imaging point of the spot image, or the aberration analysis means And determining an observation signal and a model observation signal of the spot image based on the output signal, and analyzing the aberration of the spot image based on the observation signal and the model observation signal. Or by determining the model observation signal by convolution integration of the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the light detecting element, or In an optical system having an optical source and the light detection element and being an optical pickup for recording and reproducing data on an optical disc, a correction plate inserted at a mounting position of the optical disc on the optical pickup, and the optical pickup The laser beam from the laser beam is incident through the correction plate, and the received laser beam is reflected to the optical pickup, and a spot image of the laser beam is projected onto the light detection element, and the first moving means and The spot image is scanned by the second moving means, and an observation signal and a model observation signal are obtained from the output signal from the light detection element to obtain the spot. By kicking set and aberration analysis unit for analyzing aberrations of the image it is more effectively achieved. Further, the present invention relates to an aberration measuring method, and the above object of the present invention is to project a spot image formed by an optical system to be measured on a light detecting element, and to position the spot image on the light detecting element. And scan in the vertical direction to obtain the observation signal and the model observation signal, and then the spot image is relatively moved to another position in the optical axis direction to obtain the observation signal and the model observation signal. The above is achieved by analyzing the aberration of the spot image based on the observation signal and the model observation signal.
前記スポッ ト像の強度分布と前記光検出素子の受光窓の感度分布とに 基づいて前記モデル観測信号を計算することにより、 或いは前記レーザ 光のスポッ ト像の複素振幅を有限級数によって展開し、 前記スポッ ト像 の強度分布は前記複素振幅の絶対値の 2乗で与えられ、 前記観測信号及 び前記モデル観測信号を離散化し、 離散化された前記観測信号及び離散 化された前記モデル観測信号に基づいて非線形最小 2乗問題を解くこと によって、 前記レーザ光のスポッ ト像の収差の解析及び前記レーザ光の スポッ ト像の評価を行う'ことにより、 より効果的に達成される。 図面の簡単な説明 By calculating the model observation signal based on the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the light detection element, or the complex amplitude of the spot image of the laser light is expanded by a finite series. The intensity distribution of the spot image is given by the square of the absolute value of the complex amplitude, the observation signal and the model observation signal are discretized, and the discretized observation signal and the discretized model observation signal are discretized. By solving the non-linear least squares problem based on the above, it is more effectively achieved by analyzing the aberration of the spot image of the laser beam and evaluating the spot image of the laser beam. Brief description of the drawings
第 1図は、 本発明に係る収差測定装置の第 1実施例を示すブロック構 成図である。 FIG. 1 is a block diagram showing a first embodiment of an aberration measuring apparatus according to the present invention.
第 2図は、 収差解析部におけるスポッ ト像の収差解析の動作例を示す フローチヤ一トである。 FIG. 2 is a flowchart showing an operation example of aberration analysis of a spot image in an aberration analysis unit.
第 3図は、 各係数のフォーカス像及びデフォーカス像におけるスポッ ト像の模式図である。 FIG. 3 is a schematic view of a spot image in a focused image and a defocused image of each coefficient.
第 4図は、 本発明に係る収差測定装置の第 2実施例を示すブロック構 成図である。 FIG. 4 is a block diagram showing a second embodiment of the aberration measuring apparatus according to the present invention.
第 5図は、 本発明に係る収差測定装置の第 3実施例を示すブロック構
成図である。 FIG. 5 is a block diagram showing a third embodiment of the aberration measuring apparatus according to the present invention. FIG.
第 6図は、 フォ トディテクタに X Yステージを取り付けた第 4実施例 を示すブロック構成図である。 FIG. 6 is a block diagram showing a fourth embodiment in which an XY stage is attached to a photo detector.
第 7図は、 本発明に係る収差測定装置の第 5実施例を示すブロック構 成図である。 FIG. 7 is a block diagram showing a fifth embodiment of the aberration measuring apparatus according to the present invention.
第 8図は、 本発明に係る収差測定装置の第 6実施例を示すブロック構 成図である。 FIG. 8 is a block diagram showing a sixth embodiment of the aberration measuring apparatus according to the present invention.
第 9図は、 対物レンズモジュールを取り付ける前の光ピックアップの 光学系収差を説明するための構成図である。 FIG. 9 is a configuration diagram for explaining an optical system aberration of the optical pickup before the objective lens module is attached.
第 1 0図は、 対物レンズモジュールを取り付ける前の光ピックアップ の光学系収差を説明するための構成図である。 FIG. 10 is a configuration diagram for explaining an optical system aberration of the optical pickup before the objective lens module is attached.
第 1 1図は、 対物レンズモジュールを取り付ける前の光ピックアップ の光学系収差を測定する焦点走査手段の構成例を示す構成図である。 第 1 2図は、 対物レンズモジュールを取り付ける前の光ピックアップ の光学系収差を測定する焦点走査手段の構成例を示す構成図である。 第 1 3図は、 小型カメラの光学系調整を説明するための図である。 第 1 4図は、 小型カメラの光学系調整に本発明を適用する構成例を示 すブロック図である。 FIG. 11 is a configuration diagram showing a configuration example of focus scanning means for measuring the optical system aberration of the optical pickup before the objective lens module is attached. FIG. 12 is a configuration diagram showing a configuration example of a focus scanning means for measuring an optical system aberration of the optical pickup before the objective lens module is attached. FIG. 13 is a diagram for explaining optical system adjustment of a small camera. FIG. 14 is a block diagram showing an example of a configuration in which the present invention is applied to the adjustment of the optical system of a small camera.
第 1 5図は、 F G S法により初期点の位置を変えて計算させたゼル 二力係数の番号と係数の特性図である。 FIG. 15 is a characteristic diagram of the numbers and coefficients of the force coefficients calculated by changing the position of the initial point by the F G S method.
第 1 6図は、 理想的な窓関数を示す特性図である。 FIG. 16 is a characteristic diagram showing an ideal window function.
第 1 7図は、 受光窓の感度分布を説明するための特性図である。 第 1 8図は、 受光窓の感度分布を説明するための特性図である。 第 1 9図は、 受光窓の感度分布を説明するための特性図である。 第 2 0図は、 受光窓の感度分布を説明するための特性図である。 第 2 1図は、 ガウス分布 ( α = 1 0 ) を用いた窓関数の例を示す特性
図である。 FIG. 17 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window. FIG. 18 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window. FIG. 19 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window. FIG. 20 is a characteristic diagram for explaining the sensitivity distribution of the light receiving window. Figure 21 shows the characteristics of an example window function using Gaussian distribution (α = 1 0) FIG.
第 2 2図は、 ガウス分布 ( ひ = 1 0 ) に対する逆解析結果の例を示す 特性図である。 FIG. 22 is a characteristic diagram showing an example of the inverse analysis result for the Gaussian distribution (H = 10).
第 2 3図は、 ガウス分布 ( α = 5 0 ) を用いた窓関数の例を示す特性 図である。 FIG. 23 is a characteristic diagram showing an example of a window function using a Gaussian distribution (α = 50).
第 2 4図は、 ガウス分布 ( ひ = 5 0 ) に対する逆解析結果の例を示す 特性図である。 FIG. 24 is a characteristic diagram showing an example of the inverse analysis result for the Gaussian distribution (ひ = 50).
第 2 5図は、 数値シミュレーションによって得られたゼルニケ係数の 値とゼルニケ係数の厳密値を示す図である。 FIG. 25 is a diagram showing the values of the Zernike coefficients obtained by numerical simulation and the exact values of the Zernike coefficients.
第 2 6図 (Α) 及び (Β) は、 フォ トディテク夕の観測信号の強度分 布の正解と、 数値シミユレーションによって得られた結果から逆解析を 行うことによって計算された強度分布を示す図である。 発明を実施するための最良の形態 Figures 26 (Α) and (Β) show the intensity distribution calculated by performing an inverse analysis from the correct solution of the intensity distribution of the observed signal of the photo detector and the results obtained by numerical simulation. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る収差測定方法及び収差測定装置では、 光ピックアップや 結像光学系のフォ トディテクタ、 C C D、 CMO S素子等の光検出素子 で検出する光 (例えばレーザ) を発生すると共に、 光のスポッ ト像を光 検出素子上に生成し、 スポッ ト像を光検出素子上で相対的に走査 (XY (水平) 方向 : 光軸と垂直方向) する。 光検出素子のスポッ ト像の生成 は、 Z (垂直) 方向 (光軸方向) の調整によって行い、 光検出素子の出 力信号を収差解析部に入力する。 収差解析部は、 スポッ ト像の観測信号 とモデル観測信号とに基づいて、 スポッ ト像から光学系の収差の測定及 び光のスポッ ト像の評価を行う。 観測信号は、 光のスポッ ト像を光検出 素子上で相対的に XY走査させることによって取得され、 この観測信号 を少なくとも 2以上の異なる焦点位置、 つまり Z方向に調整した 2つの 焦点位置で取得する。 モデル観測信号は、 収差を仮定することによって
計算されるスポッ ト像の強度分布と、 光検出素子の受光窓の感度分布を モデル化した関数との畳み込み積分によって計算される。 In the aberration measuring method and the aberration measuring apparatus according to the present invention, light (for example, a laser) to be detected by a light detection element such as an optical pickup, a photo detector of an imaging optical system, a CCD, or a CMOS device is generated. A spot image is generated on the light detection element, and the spot image is scanned relatively (XY (horizontal) direction: perpendicular to the optical axis) on the light detection element. The spot image of the light detection element is generated by adjustment in the Z (vertical) direction (optical axis direction), and the output signal of the light detection element is input to the aberration analysis unit. The aberration analysis unit measures the aberration of the optical system from the spot image and evaluates the light spot image based on the observation signal of the spot image and the model observation signal. The observation signal is acquired by relatively XY scanning the spot image of light on the light detection element, and this observation signal is acquired at at least two different focal positions, that is, at two focal positions adjusted in the Z direction. Do. The model observed signal is by assuming the aberration It is calculated by convolution of the calculated intensity distribution of the spot image and a function that models the sensitivity distribution of the light receiving window of the light detection element.
このように、 本発明では、 光のスポッ ト像を受光する光検出素子の出 力信号から取得される観測信号と、 モデル観測信号とに基づいてスポッ ト像を形成させる光学系の収差解析を行っている。 モデル観測信号は、 スポッ ト像の強度分布と光検出素子の受光窓の感度分布に基づいて計算 できるため、 スポッ ト像を形成させる光学系の収差の測定及び評価を安 価な装置で行うことができ、 測定時間や評価時間を短くすることができ る。 As described above, in the present invention, aberration analysis of an optical system that forms a spot image based on an observation signal acquired from an output signal of a light detection element that receives a spot image of light and a model observation signal is described. Is going. The model observation signal can be calculated based on the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the light detection element. Therefore, it is necessary to measure and evaluate the aberration of the optical system that forms the spot image using an inexpensive device. Can reduce the measurement time and evaluation time.
以下に本発明の詳細を、 図面を参照して説明する。 The details of the present invention will be described below with reference to the drawings.
第 1図は本発明に係る収差測定装置の第 1実施例を示すブロック構成 図であり、 C Dや D V D等の光ディスクにデ一夕の記録及び再生を行う ための光ピックアップ 1 と、 スポッ ト像の走査及び焦点位置の調整を行 うための X Y Z移動部 1 0と、 収差解析及びレーザ光のスポッ ト像の評 価を行う収差解析部 9とを具備し、 C D又は D V Dが載置された状態で 光ピックアップ 1 の収差測定を行うため、 光ピックアップ 1の C D又は D V Dの載置位置に、 C D又は D V Dに対応する光学特性を有する透明 な補正板 6が挿入されている。 FIG. 1 is a block diagram showing a first embodiment of an aberration measuring apparatus according to the present invention, and shows an optical pickup 1 for performing time recording and reproduction on an optical disk such as a CD or DVD, and a spot image. X-Z moving unit 10 for scanning and adjusting focal position, and aberration analysis unit 9 for performing aberration analysis and evaluation of spot image of laser light, and CD or DVD was mounted. In order to measure the aberration of the optical pickup 1 in the state, a transparent correction plate 6 having optical characteristics corresponding to the CD or DVD is inserted at the CD or DVD mounting position of the optical pickup 1.
光ピックアップ 1は、 レーザ光 8を照射するレーザダイォ一ド 2と、 照射されたレーザ光 8 Aを反射及び透過するハーフミラー 3と、 レーザ 光 8 Bを集光する光学系 4と、 レーザ光 8 Dのスポッ ト像を受光して電 気信号に変換して出力信号 E Sを出力するフォ トディテクタ 5とを具備 している。 フォ トディテクタ 5からの出力信号 E Sは収差解析部 9に入 力される。 The optical pickup 1 comprises a laser diode 2 for irradiating a laser beam 8, a half mirror 3 for reflecting and transmitting the irradiated laser beam 8 A, an optical system 4 for condensing the laser beam 8 B, and a laser beam 8. A photo detector 5 is provided which receives the spot image of D, converts it into an electric signal, and outputs an output signal ES. The output signal E S from the photo detector 5 is input to the aberration analysis unit 9.
また、 X Y Z移動部 1 0は、 光ピックァップ 1の光学系 4を透過して 補正板 6を透過したレーザ光 8 Bを受光して平行光とするレンズ 1 1 と、
進入してきた方向にレーザ光 8 Cを反射する平板形のミラー 1 2と、 レ ンズ 1 1又は 及びミラー 1 2を X軸方向、 Y軸方向及び Z軸方向にそ れぞれ移動するための X Y Zテ一ジ 1 3と、 X Y Zステージ 1 3を制御 する制御部 1 4とで構成される。 X軸、 Y軸及び Z軸は直交座標系の座 標軸であり、 フォ トディテクタ 5がレーザ光 8 Dを受光する受光窓に平 行に X Y平面がとられる。 X Y Zステージ 1 3は、 レンズ 1 1又は/及 びミラ一 1 2を移動させる際に、 レンズ 1 1のみを移動させてミラ一 1 2を固定しておくか、 レンズ 1 1及びミラ一 1 2を一括して移動させる ことができる。 The XYZ moving unit 10 is a lens 1 1 that receives the laser beam 8 B transmitted through the optical system 4 of the optical pickup 1 and transmitted through the correction plate 6 to be collimated light; To move the flat mirror 12 reflecting the laser beam 8 C in the direction of entry, and the lens 11 or the mirror 12 in the X axis direction, the Y axis direction, and the Z axis direction, respectively. It consists of an XYZ stage 13 and a control unit 14 that controls the XYZ stage 13. The X axis, the Y axis, and the Z axis are coordinate axes of the orthogonal coordinate system, and an XY plane is taken parallel to the light receiving window where the photo detector 5 receives the laser light 8D. When moving the lens 1 1 and / or the mirror 1 2, only the lens 1 1 is moved to fix the mirror 1 2, or the lens 1 1 and the mirror 1 2 are moved. Can be moved collectively.
ここで、 光ピックアップ 1の C D又は D V Dの載置位置に挿入する補 正板 6について説明する。 D V Dや C Dの基板は、 屈折率が約 1 . 5 5 のポリカーボネート樹脂を使用している。 そして、 この基板を通してレ 一ザ光を 1点に集光させ、 記録ピッ トを読み出す。 そのため、 使用する 対物レンズはディスク基板の厚みと屈折率を考慮し、 所定の厚さの基板 を通して 1点に集光できるように予め球面収差を有するように設計され ている。 補正板 6はこの球面収差を補正する目的で挿入する。 即ち、 測 定時において基板を模擬するために、 基板と同じ光学厚みを有する透明 板を挿入することにより、 通常 DVD のディスク内部にある焦点を光ピ ックアップ 1で読み出す状態を模擬することができる。 Here, the correction plate 6 to be inserted into the CD or D V D mounting position of the optical pickup 1 will be described. The substrates of D V D and C D use polycarbonate resin having a refractive index of about 1.55. Then, the laser light is condensed to one point through this substrate and the recording bit is read out. Therefore, the objective lens to be used is designed to have spherical aberration in advance so that it can be focused to one point through the substrate of a predetermined thickness in consideration of the thickness and refractive index of the disk substrate. The correction plate 6 is inserted for the purpose of correcting this spherical aberration. That is, by inserting a transparent plate having the same optical thickness as that of the substrate in order to simulate the substrate at the time of measurement, it is possible to simulate the state in which the optical pickup 1 reads out the focal point inside the disc of the normal DVD.
このような構成において、 光ピックアップ 1のレーザダイオード 2か ら照射されたレーザ光 8 Aはハ一フミラ一 3で反射され、 レーザ光 8 B となって光学系 4を透過する。 光学系 4を透過したレーザ光 8 Bは補正 板 6を透過し、 レンズ 1 1 を経てミラー 1 2で反射され、 反射レーザ光 8 Cが X Y Z移動部 1 0から出力される。 レーザ光 8 Cは、 入射された レーザ光 8 Bと逆向きの進路を進み、 補正板 6及び光学系 4を透過し、 更にハーフミラー 3を透過してレーザ光 8 Dとなり、 レーザ光 8 Dはフ
オ トディテクタ 5で受光される。 フォ トディテクタ 5は受光したレーザ 光 8 Dを電気信号に変換し、 その出力信号 E Sを収差解析部 9に入力す る。 In such a configuration, the laser beam 8 A emitted from the laser diode 2 of the optical pickup 1 is reflected by the mirror 1, becomes a laser beam 8 B and passes through the optical system 4. The laser light 8 B transmitted through the optical system 4 is transmitted through the correction plate 6, passes through the lens 1 1, is reflected by the mirror 12, and the reflected laser light 8 C is output from the XYZ moving unit 10. The laser light 8 C travels in the direction opposite to that of the incident laser light 8 B, passes through the correction plate 6 and the optical system 4, and further passes through the half mirror 3 to become laser light 8 D. Ha The light is received by the auto detector 5. The photo detector 5 converts the received laser light 8 D into an electric signal, and inputs the output signal ES to the aberration analysis unit 9.
収差解析部 9は、フォ トディテクタ 5からの出力信号 E Sに基づいて、 観測信号 p (X, Y) ( (X, Y) はスポッ ト像の相対位置) を取得する。 観測信号 p (X, Y) は、 X Y Zステージ 1 3によりレンズ 1 1又は Z 及びミラー 1 2を XY方向に移動させ、 フォ トディテクタ 5で受光され るレーザ光 8 Dのスポッ ト像を XY (水平) 面内で走査することによつ て取得される。 The aberration analysis unit 9 obtains an observation signal p (X, Y) ((X, Y) is a relative position of the spot image) based on the output signal ES from the photo detector 5. The observation signal p (X, Y) moves the lens 11 or Z and the mirror 12 in the XY direction by the XYZ stage 13. The spot image of the laser beam 8 D received by the photo detector 5 is XY (X) Horizontal) Acquired by scanning in the plane.
収差解析部 9はレーザ光 8 Dのスポッ ト像を解析する際、 更にモデル 観測信号 P (X, Y) を計算する。 モデル観測信号 P (X, Y) は、 ス ポッ ト像の強度分布 s (x, y ) と、 フォ トディテクタ 5の受光窓の感 度分布をモデル化した関数 W (x, y ) とから、 下記数 1の畳み込み-積 分によって計算される。 When analyzing the spot image of the laser beam 8D, the aberration analysis unit 9 further calculates a model observation signal P (X, Y). The model observation signal P (X, Y) is obtained from the intensity distribution s (x, y) of the spot image and the function W (x, y) that models the sensitivity distribution of the light receiving window of the photo detector 5. The following is calculated by convolution-integral number 1.
[数 1】
上記数 1の畳み込み積分は、 関数 W (x, y ) が一定のときは矩形波領 域の積分にすることができる。 また、 畳み込み積分は、 フォ トディテク 夕 5の感度分布をモデル化した関数 W ( X , y ) 及びスポッ ト像の強度 分布 s (x, y ) をフーリエ変換し、 周波数空間で積をとつて逆フーリ ェ変換しても良い。 [Number 1] The convolution integral of the above equation 1 can be an integral of the rectangular wave region when the function W (x, y) is constant. In addition, convolutional integration Fourier-transforms the function W (X, y) that models the sensitivity distribution of the photodiode 5 and the intensity distribution s (x, y) of the spot image, and reverses the product in frequency space It may be Fourier transformed.
上記数 1 を離散化すると、 下記数 2が得られる。 When the above equation 1 is discretized, the following equation 2 is obtained.
[数 2] [Number 2]
{ P } = [W] { s }
上記数 2の行列 [W]は、フオ トディテクタ 5の受光窓の感度分布 W( X, y ) を離散化し、 それぞれの成分を相対位置を考慮して行列 [W] の成 分にマッピングして構成される。 {P} = [W] {s} The matrix [W] of the above equation 2 discretizes the sensitivity distribution W (X, y) of the light receiving window of the photo detector 5, maps each component to the component of the matrix [W] in consideration of the relative position, Is configured.
スポッ ト像の強度分布 sは、 レーザ光 8 Dのスポッ ト像の複素振幅を f とすると、 下記数 3で与えられる。 The intensity distribution s of the spot image is given by the following equation 3, where f is the complex amplitude of the spot image of the laser beam 8D.
[数 3 ] [Number 3]
s = I f I 2 本発明では、 レーザ光 8 Dのスポッ ト像の複素振幅 f を、 下記数 4で与 えられるニポエーゼルニケ級数で表す。 s = I f I 2 In the present invention, the complex amplitude f of the spot image of the laser beam 8 D is represented by the Nipoesernike series given by the following equation 4.
[数 4】 f{r,e)^ {K„)D„{r,e) ただし、 Kはニボエーゼルニケの係数であり、 Dは二ポェ—ゼ ルニケの基底関数であり、 ( r, Θ ) は極座標を表す。 上記数 4を離散化すると、 下記数 5となる。 [Equation 4] f {r, e) ^ {K „) D„ {r, e) where K is the coefficient of Nyboesernike and D is the basis function of the two-poeze ernike, (r, Θ) Represents polar coordinates. When the above equation 4 is discretized, the following equation 5 is obtained.
[数 5 ] [Number 5]
{ f } = [D] { K} 上記数 3を離散化した式は下記数 6であり、 数 6に上記数 5を代入する と下記数 7になる。 {f} = [D] {K} The equation obtained by discretizing equation 3 is equation 6 below. Substituting equation 5 into equation 6 results in equation 7 below.
[数 6 ] [Number 6]
{ s } = I { f } I 2 {s} = I {f} I 2
[数 7 ] [Number 7]
{ s } = I [D] { K } I 2
上記数 7と上記数 2から、 下記数 8が導かれる {s} = I [D] {K} I 2 The following number 8 is derived from the above number 7 and the above number 2
[数 8] [Number 8]
{ P } = [W] I [D] {K} I 2 ニポエーゼルニケ係数 Kを仮定してモデル観測信号 { P } = [W] I [D] {Κ} I 2を計算し、 観測信号 { p } とモデル観測信号 { P } に基づい て、 下記数 9を目的関数とする非線形最小 2乗問題を解く。 {P} = [W] I [D] {K} I 2 Nipoezernike coefficient Assuming that K, model observed signal {P} = [W] I [D] {Κ} I 2 is calculated and observed signal {p Solve the nonlinear least-squares problem with the following number 9 as the objective function based on} and the model observation signal {P}.
[数 9] mm [Number 9] mm
上記数 9の非線形最小 2乗問題を解いて、 設計変数 Kを決定することに よって、 レーザ光 8 Dのスポッ ト像を解析する。 The spot image of the laser beam 8 D is analyzed by solving the nonlinear least squares problem of the above-mentioned 9 and determining the design variable K.
なお、 上記数 9の非線形最小 2乗問題を解いて設計変数 Kを決定する ためには、 X Y Zステージ 1 3によってレンズ 1 1又は Z及びミラー 1 2を Z方向に移動させることによって、 観測信号 p (X, Y) を少なく とも 2以上の異なるレーザ光 8の焦点位置に対して取得する必要がある, また、 レーザ光 8 Dのスポッ ト像を解析する際、 解の精度を向上させる ために、 下記数 1 0を目的関数とするチコノフの手法を用いた非線形最 小 2乗問題を解くようにしても良い。 In order to solve the non-linear least-squares problem of the above equation 9 and to determine the design variable K, the observation signal p can be obtained by moving the lens 11 or Z and the mirror 12 in the Z direction by the XYZ stage 13. It is necessary to acquire (X, Y) for at least two different focal positions of the laser beam 8 and to improve the solution accuracy when analyzing the spot image of the laser beam 8 D The nonlinear least squares problem may be solved using Tikonov's method with the following number 10 as the objective function.
[数 1 0] [Number 1 0]
W- [ ]| [ ] }|2 +HIWI2 → min ただし、 Wは重み値である。
なお、 チコノフの手法を用いた非線形最小 2乗問題の目的関数は、 数 1 0に限定されるものではない。 また、 上述では、 モデル観測信号を二 ポエーゼルニケ級数で展開しているが、 本発明はそれに限定されるもの ではなく、 フーリエ級数展開、 ラグランジュ級数展開など一般の有限級 数展開を用いることができる。 W-[] | []} | 2 + HIWI 2 → min where W is a weight value. Note that the objective function of the nonlinear least squares problem using Tikonov's method is not limited to the number 10. Further, in the above description, the model observation signal is expanded in the two Poesernike series, but the present invention is not limited thereto, and general finite series expansion such as Fourier series expansion and Lagrange series expansion can be used.
第 2図は、 収差解析部 9におけるレーザ光 8 Dのスポッ ト像の収差解 析例を示すフローチヤ一卜である。 FIG. 2 is a flow chart showing an example of the aberration analysis of the spot image of laser light 8 D in the aberration analysis unit 9.
先ず、 フォ トディテクタ 5からの出力信号 E Sが収差解析部 9に入力 される(ステップ S 1 )。収差解析部 9は、レーザ光 8 Dのスポッ ト像を、 フォ トディテクタ 5の X Y面内で走査したときの出力信号 E Sによって、 観測信号 P ( X, Y) を得る (ステップ S 2 )。 なお、 本発明に係る収差 解析部 Siにおける収差解析では、 2以上の異なる Z方向の焦点位置に対 して観測信号 P ( x , y ) を取得する必要がある。 その理由を、 第 3図 を参照して以下に説明する。 First, the output signal ES from the photo detector 5 is input to the aberration analysis unit 9 (step S 1). The aberration analysis unit 9 obtains an observation signal P (X, Y) from the output signal ES when the spot image of the laser light 8 D is scanned in the XY plane of the photo detector 5 (step S 2). In the aberration analysis in the aberration analysis unit Si according to the present invention, it is necessary to acquire the observation signal P (x, y) with respect to two or more different focus positions in the Z direction. The reason is described below with reference to FIG.
第 3図は、 各係数 a m n、 )3 m nのフォーカス像とデフォーカス像に おけるスポッ ト像の模式図である。 本発明において, スポッ ト像 1面の みを用いて収差解析を行う場合は、 解の唯一性を欠いてしまい、 正しい 解析を行うことができない。 1面のみで解析することを諦めて、 2枚以 上のスポッ ト像を用いることを考えた場合、 "フォーカス面 +デフォー カス面" 若しくは正負のデフォーカス面を用いれば、 この問題点を解決 することができる。 即ち、 本発明で未知量としている複素振幅分布の展 開係数 a mn、 /3 mn のスポッ トの強度分布への影響は、 係数 a mn、 β mnによって特徴が異なる。 第 3図の上部に示す n = 3、 m = l( 3次コマ 収差) の例のような m が奇数の場合を考える。 フォーカス面にのみ注目 すると, 実部の係数である)3 mn フォーカス面に対する感度が同じであ るため、 この正負を判別することができない(例えば第 3図中の" ex.1")。
一方, デフォーカス面の片面のみに注目すると、 第 3図中の "ex.2" の ように正負の判別ができるようになる。 しかし、 今度はそれが実部の係 数 )3 mnの影響なのか、虚部の係数 amnの影響なのかの判別ができなく なる(例えば第 3図中の "ex.3" )。 また、 第 3図の下部に示す n = 2、 m = 2(3次非点収差) の例のような m が偶数の場合、 スポッ ト像への影響 は m が奇数であった場合と比べて、 amn、 )3 mnの影響が反対となる。 この場合も m が奇数の場合と同様な理由で、 スポッ 卜像が 1面のみで は値の正負、 amn、 j3 mnの影響の区別がつかなくなる。 このような理 由により、 スポッ ト像 1面のみでは正しい解析を行うことができない。 そのため、 本発明では 2以上の異なる Z方向の焦点位置に対して観測信 号 p ( X , y ) を取得するようにしている。 少なくとも 2面以上である が、 精度や処理速度等の点から、 2面のスポッ ト像が最適である。 FIG. 3 is a schematic view of a spot image in a focused image and a defocused image of each coefficient amn,) 3 mn. In the present invention, when aberration analysis is performed using only one spot image, the solution lacks uniqueness, and correct analysis can not be performed. If it is considered to use two or more spot images by giving up analysis on only one plane, using "focus plane + defocus plane" or positive and negative defocus planes solves this problem. can do. That is, the influence of the expansion coefficients a mn and / 3 mn of the complex amplitude distribution, which is an unknown quantity in the present invention, on the intensity distribution of the spots differs in characteristics depending on the coefficients a mn and β mn. Consider the case where m is an odd number as in the example of n = 3 and m = l (third coma) shown at the top of Fig.3. Focusing only on the focus plane, the sensitivity to the 3 mn focus plane, which is the coefficient of the real part, is the same, so this positive / negative can not be determined (eg, "ex. 1" in Fig. 3). On the other hand, if we focus on only one side of the defocus plane, it will be possible to discriminate between positive and negative, as in "ex. 2" in Fig. 3. However, this time it becomes impossible to determine whether it is the effect of the real part coefficient) 3 mn or the effect of the coefficient amn of the imaginary part (for example, "ex. 3" in Fig. 3). Also, when m is even as in the example of n = 2 and m = 2 (third-order astigmatism) shown in the lower part of Fig. 3, the effect on the spot image is compared to when m is an odd number. Therefore, the influence of am n ,) 3 mn is opposite. Also in this case, for the same reason as m is odd, the effect of positive / negative, amn, and j3 mn values can not be distinguished if there is only one spot image. For this reason, it is impossible to analyze correctly with only one spot image. Therefore, in the present invention, the observation signal p (X, y) is acquired for two or more different focal positions in the Z direction. Although it is at least two or more, the spot image of two is optimal in terms of accuracy and processing speed.
収差解析部 9は、 次にモデル観測信号 P (X, Y) を計算する (ステ ップ S 5 )。 モデル観測は、 先ず収差の仮定であるニポエーゼルニケ係数 { K } の仮定を行い (ステップ S 3 )、 次に前記数 7によってスポッ ト像 の強度分布 { s } を計算し (ステップ S 4)、 前記数 8によってモデル観 測信号 { P } を計算する (ステップ S 5 )。 The aberration analysis unit 9 next calculates a model observation signal P (X, Y) (step S 5). In the model observation, first, it is hypothesized that the Nipoezelnike coefficient {K}, which is an aberration assumption, is assumed (step S3), and then the intensity distribution {s} of the spot image is calculated according to the equation 7 (step S4). Calculate the model observation signal {P} by Eq. 8 (step S 5).
収差解析部 9は、 得られた観測信号 { p } とモデル観測信号 { P } に 基づいて、 観測信号 { p } とモデル観測信号 { P } の差の最小化を行う (ステップ S 6 )。この最小化を行う際に用いる非線形最小 2乗問題の目 的関数は、 上記数 9又は上記数 1 0で与えられる。 The aberration analysis unit 9 minimizes the difference between the observation signal {p} and the model observation signal {P} based on the obtained observation signal {p} and the model observation signal {p} (step S6). The objective function of the non-linear least squares problem used in performing this minimization is given by the above equation 9 or the above equation 10.
次に、 非線形最小 2乗問題の設計変数であるニポエーゼルニケ係数 { K} が収束したか否かの判定を行う (ステップ S 7 )。 収束していない と判定された場合、 最小化によって得られたニボエーゼルニケ係数 {K} に基づいて、 再度スポッ ト像の強度分布 { s } 及びモデル観測信号 { P } の計算を行い、 観測信号 { p } と得られたモデル観測信号 { P } に基づ
いて最 /』、化を行う。 Next, it is judged whether the Nipoesernicke coefficient {K} which is a design variable of the nonlinear least squares problem has converged (step S 7). If it is determined that convergence has not occurred, the intensity distribution {s} of the spot image and the model observation signal {P} are calculated again based on the Nivosezernike coefficient {K} obtained by the minimization, and the observation signal { Based on p} and the obtained model observation signal {P} And / /, to do.
上記ステップ S 7において、 非線形最小 2乗問題の設計変数である二 ポエーゼルニケ係数 { K } が収束したと判定された場合、 決定された二 ボエーゼルニケ係数 { K } から容易に収差分布 (偏角分布) を計算する ことができる。 計算された収差分布を出力し (ステップ S 8 )、 収差解析 の工程が終了する。 なお、 収差分布は線形最小 2乗問題を用いて、 よく 用いられる収差指標であるゼルニケ係数として表すこともできる。 If it is determined in step S7 that the two Poeselnike coefficients {K}, which are design variables of the nonlinear least squares problem, have converged, the aberration distribution (the declination distribution) is easily determined from the determined two Boeselnike coefficients {K}. Can be calculated. The calculated aberration distribution is output (step S 8), and the aberration analysis process is completed. The aberration distribution can also be expressed as a Zernike coefficient, which is a commonly used aberration index, using a linear least squares problem.
次に、 本発明に係る収差測定装置の第 2実施例を第 4図に示して説明 する。 Next, a second embodiment of the aberration measuring apparatus according to the present invention will be described with reference to FIG.
第 2実施例も第 1実施例と同様に、 C Dや D V D等の光ディスクにデ 一夕の記録及び再生を行うための光ピックアップ 1 と、 スポッ ト像の走 査及び焦点位置の調整を行うための X Y Z移動部 2 0と、 収差解析及び レーザ光のスポッ ト像の評価を行う収差解析部 9とを具備し、 光ピック アップ 1の C D又は D V Dの載置位置に補正板 6が挿入されている。 本 実施例における光ピックアップ 1、 補正板 6及び収差解析部の構成、 動 作は、 第 1実施例のものと同じである。 In the second embodiment, as in the first embodiment, an optical pickup 1 for recording and reproducing data on an optical disc such as a CD or a DVD, and scanning and adjustment of a spot image are also performed. And an aberration analysis unit 9 for performing aberration analysis and evaluation of a spot image of a laser beam, and the correction plate 6 is inserted at the CD or DVD mounting position of the optical pickup 1. There is. The configuration and operation of the optical pickup 1, the correction plate 6 and the aberration analysis unit in the present embodiment are the same as those in the first embodiment.
第 2実施例の X Y Z移動部 2 0は、 光ピックアップ 1の光学系 4を透 過し、 更に補正板 6を透過したレーザ光 8 Bを受光し、 レーザ光 8 Bが 進入してきた方向にレーザ光 8 Cを反射する参照球面 2 1 と、 参照球面 2 1を X Y方向及び Z方向に移動するための X Y Zステージ 2 2と、 X Y Zステージ 2 2を制御する制御部 2 3とで構成されている。 参照球面 2 1は半球形状の凹面鏡で、焦点が半球の中心になるようになつており、 第 1実施例におけるレンズ 1 1及びミラ一 1 2と同一の作用効果を有す る。 The XYZ moving unit 20 of the second embodiment transmits the optical system 4 of the optical pickup 1 and further receives the laser beam 8 B transmitted through the correction plate 6 and transmits the laser beam 8 B in the direction in which the laser beam 8 B has entered. It consists of a reference spherical surface 2 1 that reflects light 8 C, an XYZ stage 2 2 for moving the reference spherical surface 2 1 in the X and Y directions, and a control unit 2 3 that controls the XYZ stage 2 2 . The reference spherical surface 21 is a hemispherical concave mirror whose focal point is at the center of the hemisphere, and has the same function and effect as the lens 11 and the mirror 12 in the first embodiment.
このような構成において、 光ピックアップ 1のレーザダイオード 2か ら照射されたレーザ光 8 Aはハーフミラ一 3で反射されてレーザ光 8 B
となり、 レーザ光 8 Bは光学系 4及び補正板 6を透過して参照球面 2 1 で受光される。 参照球面 2 1で受光されたレーザ光 8 Bは、 参照球面 2 1で反射されてレーザ光 8 Cとなり、 レーザ光 8 Cは補正板 6及び光学 系 4を透過し、 更にハーフミラー 3を透過してレーザ光 8 Dとなってフ オ トディテクタ 5で受光される。 フォ トディテクタ 5に受光されたレ一 ザ光 8 Dの出力信号 E Sは収差解析部 9に入力される。 In such a configuration, the laser beam 8 A emitted from the laser diode 2 of the optical pickup 1 is reflected by the half mirror 1 and the laser beam 8 B The laser light 8 B passes through the optical system 4 and the correction plate 6 and is received by the reference spherical surface 2 1. The laser beam 8B received by the reference spherical surface 21 is reflected by the reference spherical surface 21 to become a laser beam 8C, the laser beam 8C passes through the correction plate 6 and the optical system 4, and further passes through the half mirror 3. Then, it becomes laser light 8 D and is received by the photodetector 5. The output signal ES of the laser light 8 D received by the photo detector 5 is input to the aberration analysis unit 9.
XY Zステージ 2 2で参照球面 2 1を Z方向に移動させて焦点を合わ せた後、 参照球面 2 1を XY方向に移動させ、 フォ トディテクタに受光 されるレーザ光 8 Dのスポッ ト像を、 焦点位置を固定した状態で走査さ せることによって、 収差解析部 9はレーザ光 8 Dのスポッ ト像の観測信 号 p (X, Y) を取得する。 また、 収差解析を行うために、 XY Zステ —ジ 2 2によって参照球面 2 1を Z方向に再度移動させることによって、 レーザ光 8の少なくとも 2つ以上の異なる焦点位置で観測信号 p (X, Y) を取得する。 After focusing and moving the reference spherical surface 2 1 in the Z direction with the XY Z stage 2 2, move the reference spherical surface 2 1 in the XY direction and a spot image of the laser beam 8 D received by the photo detector. The aberration analysis unit 9 acquires the observation signal p (X, Y) of the spot image of the laser light 8 D by scanning the light source with the focal position fixed. In addition, by moving the reference spherical surface 21 again in the Z direction by the XY Z stage 22 in order to carry out the aberration analysis, the observation signal p (X, X at at least two different focal positions of the laser light 8 is obtained. Get Y)
モデル観測信号 P (X, Y)の計算は第 1実施例と同一の方法で行う。 そして、 第 2図に示される手順と同じ手順で、 観測信号 { p } とモデル 観測信号 { P } に基づいて、 レーザ光 8 Dのスポッ ト像の収差の解析を 行う。 The calculation of the model observation signal P (X, Y) is performed in the same manner as in the first embodiment. Then, in the same procedure as shown in Fig. 2, the aberration of the spot image of the laser beam 8D is analyzed based on the observation signal {p} and the model observation signal {P}.
次に、 本発明に係る収差測定装置の第 3実施例を第 5図に示して説明 する。 Next, a third embodiment of the aberration measuring apparatus according to the present invention will be described with reference to FIG.
第 3実施例の収差測定装置は、 光ピックアップ 1 と、 収差が既知の基 準レーザ光 3 3を照射する基準光源 3 0と、 基準光源 3 0を XY Z方向 に移動させる XY Zステージ 3 1 と、 光ピックアップ 1の CD又は DV Dの載置位置に挿入された補正板 6と、収差解析部 9とを具備している。 基準光源 3 0は、 照射した基準レーザ光 3 3が補正板 6、 光学系 4及び ハーフミラ一 3を透過してフォ トディテクタ 5で受光されるように設置
する。 なお、 本実施例における光ピックアップ 1の構成は、 第 1及び第 2実施例と同一である。 The aberration measuring apparatus of the third embodiment comprises an optical pickup 1, a reference light source 30 for irradiating a reference laser beam 33 whose aberration is known, and an XY Z stage 3 1 for moving the reference light source 30 in the XY Z direction. And a correction plate 6 inserted at the CD or DV D mounting position of the optical pickup 1, and an aberration analysis unit 9. The reference light source 30 is installed so that the irradiated reference laser light 33 passes through the correction plate 6, the optical system 4 and the half mirror 1 and is received by the photo detector 5. Do. The configuration of the optical pickup 1 in the present embodiment is the same as in the first and second embodiments.
本実施例では収差測定を行う際、 基準光源 3 0から基準レーザ光 3 3 を照射する。 照射された基準レーザ光 3 3は補正板 6を透過し、 更に光 ピックアップ 1の光学系 4及びハーフミラ一 3を透過してフオ トディテ クタ 5で受光される。 フォ トディテクタ 5で受光された基準レーザ光 3 3は電気信号に変換され、 その出力信号 E Sが収差解析部 9に入力され る。 In the present embodiment, when performing the aberration measurement, the reference laser beam 33 is irradiated from the reference light source 30. The irradiated reference laser light 33 is transmitted through the correction plate 6, and further transmitted through the optical system 4 and the half mirror 1 of the optical pickup 1 and received by the photo detector 5. The reference laser beam 33 received by the photo detector 5 is converted into an electrical signal, and the output signal ES is input to the aberration analysis unit 9.
収差解析部 9で収差を解析するために必要となる観測信号 p (X, Y) は、 X Y Zステージ 3 1で基準光源 3 0を Z方向に移動させて焦点を合 わせた後、 基準光源 3 0を XY方向に移動させることによって、 基準レ 一ザ光 3 3のスポッ 卜像の焦点位置を固定した状態で水平走査し、 フォ トディテクタ 5で受光することによって取得される。 また、 収差解析を 行うには、 XY Zステージ 3 1によって基準光源 3 0を再度 Z方向に移 動させ、 観測信号 p (X, Y) を基準レーザ光 3 3の少なくとも 2っ以 上の異なる焦点位置で取得する。 The observation signal p (X, Y) required to analyze the aberration in the aberration analysis unit 9 is moved by the reference light source 30 in the Z direction by the XYZ stage 31 and focused, and then the reference light source 3 By moving 0 in the X and Y directions, horizontal scanning is performed with the focal position of the spot image of the reference laser light 33 fixed, and light is received by the photo detector 5. Also, to perform aberration analysis, the reference light source 30 is moved again in the Z direction by the XY Z stage 31 and the observation signal p (X, Y) differs by at least two or more of the reference laser light 33. Acquire at the focus position.
収差解析部 9は、 第 1及び第 2実施例と同じ方法でモデル観測信号 P (X, Y) を取得し、 観測信号 { p } とモデル観測信号 { P } に基づい て、 第 2図のフローチャートと同じ手順で収差解析を行う。 この収差解 析によって得られた収差から、 光ピックアップ 1の光学系 4等によって 生じる収差を導くには、 収差解析によって得られた収差から基準レーザ 光 3 3の収差を差し引いて使用すれば良い。 The aberration analysis unit 9 acquires the model observation signal P (X, Y) in the same manner as in the first and second embodiments, and based on the observation signal {p} and the model observation signal {p}, FIG. Perform the aberration analysis in the same procedure as the flowchart. In order to derive an aberration caused by the optical system 4 or the like of the optical pickup 1 from the aberration obtained by the aberration analysis, the aberration of the reference laser beam 33 may be subtracted from the aberration obtained by the aberration analysis.
ところで、 第 1実施例では、 XY Zステージ 1 3によってレンズ 1 1 及びミラー 1 2を X Y Z方向に移動させ、 第 2実施では、 XY Zステー ジ 2 0によって参照球面 2 1を XY Z方向に移動させ、第 3実施例では、 XY Zステージ 3 1によって基準光源 3 0を XY Z方向に移動させるよ
うにしている。 このような X Y Zステージを Y方向にのみ移動できる Y ステージにし、 レンズ 1 1及びミラ一 1 2、 参照球面 2 1、 基準光源 3 0をいずれも Υ方向にのみ移動できるようにし、 光ピックアップ 1の光 学系 4をフォーカストラッキング補正用ァクチユエ一夕 (図示せず) に よって X方向及び Ζ方向に移動できるようにすることによって、 レーザ 光のスポッ ト像の Χ Υ面内での走査及びレーザ光の焦点位置の移動を行 うようにしても良い。 また、 光ピックアップ 1の製造過程において、 フ オ トディテクタ 5の位置を固定する前の段階では、 第 6図に示すように フォ トディテクタ 5に Χ Υステージ 1 5を取り付け、 フォ トディテクタ 5を Χ Υ方向に移動させることによって、 レーザ光のスポッ ト像の Χ Υ 走査を行うようにしても良い (第 4実施例)。 この場合、 第 1実施例〜第 3実施例における Χ Υ Ζステージ ( 1 0、 2 0、 3 1 ) は Ζ方向にのみ 移動できる Ζステージ 1 0 Αにし、 レンズ 1 1及びミラ一 1 2、 参照球 面 2 1、 基準光源 3 0をいずれも Z方向に移動させることによって、 レ 一ザ光の焦点位置を移動する。 By the way, in the first embodiment, the lens 1 1 and the mirror 12 are moved in the XYZ directions by the XY Z stage 13. In the second embodiment, the reference spherical surface 21 is moved in the XY Z direction by the XY Z stage 20. In the third embodiment, the reference light source 30 is moved in the XY Z direction by the XY Z stage 31. It is done. Such an XYZ stage is a Y stage that can move only in the Y direction, and it is possible to move both the lens 11, the mirror 12, the reference spherical surface 21 and the reference light source 30 only in the Υ direction. By allowing the optical system 4 to move in the X direction and the Ζ direction by means of focus tracking correction (not shown), scanning of the spot image of the laser light in the Υ plane and the laser light You may move the focus position of the Also, in the manufacturing process of the optical pickup 1, before fixing the position of the photo detector 5, as shown in FIG. 6, the Χ stage 15 is attached to the photo detector 5 and the photo detector 5 is mounted. By moving in the Χ direction, Χ scanning of the spot image of the laser beam may be performed (fourth embodiment). In this case, the eyebrow stages (10, 20, 31) in the first to third embodiments can be moved only in the eyebrow direction. The focal position of the laser light is moved by moving both the reference sphere surface 2 1 and the reference light source 30 in the Z direction.
次に、 本発明に係る収差測定装置の第 5実施例を第 7図に示して説明 する。 Next, a fifth embodiment of the aberration measuring apparatus according to the present invention will be described with reference to FIG.
本実施例の収差測定装置は、 収差を測定するための被測定光ピックァ ップ 1 と、 収差等の光学特性が既知の基準光ピックアップ 4 1 と、 基準 光ピックアップ 4 1 を X Y Z方向に移動するための X Y Zステージ 4 6 と、 X Y Zステージ 4 6を制御する制御部 4 7と、 被測定光ピックアツ プ 1のフォ トディテクタ 5に受光されるレーザ光 4 8のスポッ ト像の収 差を解析する収差解析部 9と、 被測定光ピックアップ 1の C D又は D V Dの載置位置に挿入された補正板 6とを具備している。 なお、 本実施例 における被測定光ピックアップ 1の構成は、 前記実施例の光ピックアツ プ 1 と同じであり、 各構成要素には同一の符号を付してある。
基準光ピックアップ 4 1は、 収差が既知の基準レーザ光 4 8を照射す るレーザダイオード 4 2と、 基準レーザ光 4 8を反射又は透過するハー フミラー 4 3と、 基準レーザ光を集光する光学系 4 4と、 基準レーザ光 4 8を受光するフォ トディテクタ 4 5とで構成されている。 The aberration measuring apparatus of this embodiment moves a measured optical pickup 1 for measuring an aberration, a reference optical pickup 41 with known optical characteristics such as aberration, and a reference optical pickup 41 in the XYZ directions. The analysis of the spot image of the laser beam 48 received by the XYZ stage 4 6, the control unit 4 7 that controls the XYZ stage 4 6, and the photo detector 5 of the measured light pickup 1 The aberration analysis unit 9 and the correction plate 6 inserted at the CD or DVD mounting position of the measured optical pickup 1 are provided. The configuration of the measured optical pickup 1 in the present embodiment is the same as that of the optical pickup 1 in the previous embodiment, and the same reference numerals are given to the respective constituent elements. A reference optical pickup 41 comprises a laser diode 42 that emits a reference laser beam 48 whose aberration is known, a half mirror 43 that reflects or transmits the reference laser beam 48, and an optical that collects the reference laser beam. The system comprises a system 4 4 and a photo detector 45 for receiving a reference laser beam 4 8.
被測定光ピックアップ 1の収差を測定する際には、 基準光ピックアツ プ 4 1のレーザダイォード 4 2から基準レーザ光 4 8を照射する。 照射 された基準レーザ光 4 8はハーフミラ一4 3で反射され、 光学系 4 4及 び補正板 6を透過して、 被測定光ピックアップ 1に進入する。 基準レー ザ光 4 8は、 光ピックァップ 1の光学系 4及びハーフミラ一 3を透過し て、 フォ トディテクタ 5に受光される。 フォ トディテクタ 5は受光され た基準レーザ光 4 8を電気信号 E Sに変換し、 電気信号 E Sは収差解析 部 9に入力される。 When measuring the aberration of the measured optical pickup 1, the reference laser light 48 is irradiated from the laser diode 42 of the reference light pickup 41. The irradiated reference laser light 48 is reflected by the half mirror 43, passes through the optical system 4 4 and the correction plate 6, and enters the measured optical pickup 1. The reference laser light 4 8 is transmitted through the optical system 4 and the half mirror 1 of the light pickup 1 and is received by the photo detector 5. The photo detector 5 converts the received reference laser light 48 into an electrical signal ES, and the electrical signal ES is input to the aberration analysis unit 9.
収差解析部 9は、 収差解析を行うための観測信号 p ( X ,; Y ) を取得 する必要がある。 先ず X Y Zステージ 4 6で基準光ピックアップ 4 1を Z方向に移動させて焦点を合わせた後、 基準光ピックアップ 4 1を X Y 方向に移動させることによって、 フォ トディテクタ 5で受光される基準 レーザ光 4 8のスポッ ト像を、 基準レーザ光の焦点位置を固定した状態 で走査し、 観測信号 p ( X , Y ) を取得する。 収差解析を行うために、 X Y Zステージ 4 6によつて基準光ピックァップ 4 1を Z方向に再度移 動させることによって、 少なくとも 2以上の異なる基準レーザ光 4 8の 焦点位置に対して観測信号 p ( X , Y ) を取得する。 Aberration analyzing unit 9, the observed signal p (X,; Y) for performing aberration analysis it is necessary to acquire. First, after the reference optical pickup 41 is moved in the Z direction by the XYZ stage 46 and focused, the reference laser light 4 received by the photo detector 5 is moved by moving the reference optical pickup 41 in the XY direction. The spot image of 8 is scanned with the focal position of the reference laser beam fixed, and the observation signal p (X, Y) is acquired. By moving the reference light pick-up 41 again in the Z direction by means of the XYZ stage 46 in order to carry out the aberration analysis, the observation signal p (for the focal position of at least two or more different reference laser lights 48) Get X, Y).
収差解析部 9は、 第 1実施例と同一の方法でモデル観測信号 P ( X , Y ) を計算し、 第 2図のフローチャートと同一の手順で、 観測信号 { p } とモデル観測信号 { P } に基づいて基準レーザ光 4 8のスポッ ト像の収 差を解析する。 被測定光ピックアップ 1の光学系 4等によって生じる収 差は、 上記収差解析によって得られた収差から、 基準光ピックアップ 4
1の基準レーザ光 4 8の収差と光学系 4 4等によって生じる収差を差し 引く ことによって導かれる。 The aberration analysis unit 9 calculates the model observation signal P (X, Y) in the same manner as in the first embodiment, and the observation signal {p} and the model observation signal {P in the same procedure as the flowchart of FIG. Analyze the spot image of the reference laser beam 48 based on}. The aberration produced by the optical system 4 etc. of the measured optical pickup 1 can be determined from the aberration obtained by the above-mentioned aberration analysis. It is derived by subtracting the aberration of 1 reference laser light 4 8 and the aberration generated by the optical system 4 4 etc.
次に、 本発明に係る収差測定装置の第 6実施例を第 8図に示して説明 する。 Next, a sixth embodiment of the aberration measuring apparatus according to the present invention will be described with reference to FIG.
第 6実施例の収差測定装置は、 収差を測定するための被測定光ピック アップ 1 と、 収差等の光学特性が既知の基準光ピックアップ 4 1 と、 基 準光ピックアップ 4 1を X Y Z方向に移動するための X Y Zステージ 4 6と、 X Y Zステージ 4 6を制御する制御部 4 7と、 基準光ピックアツ プ 4 1のフォ トディテクタ 4 5で受光されるレーザ光 8のスポッ ト像の 収差を解析する収差解析部 9と、 被測定光ピックアップ 1の C D又は D V Dの載置位置に挿入された補正板 6とを具備している。 本実施形態の 構成は、 収差解析部 9が基準光ピックアップ 4 1のフォ トディテクタ 4 5の出力信号 E Sを入力するようになっている点を除いて、 第 5実施例 の構成と同一であり、対応する各構成要素には同一の符号を付してある。 本実施例では被測定光ピックアップ 1の収差を測定する際、 被測定光 ピックァップ 1のレーザダイォード 2からレーザ光 8を照射する。 照射 されたレーザ光 8はハーフミラ一 3で反射され、 光学系 4及び補正板 6 を透過し、 基準光ピックアップ 4 1に進入する。 更にレーザ光 8は、 基 準光ピックアップ 4 1の光学系 4 4及びハーフミラー 4 3を透過してフ オ トディテクタ 4 5で受光される。 フォ トディテクタ 4 5は受光された レーザ光 8を電気信号に変換し、 その出力信号 E Sを収差解析部 9に入 力する。 The aberration measuring apparatus according to the sixth embodiment moves a measured light pickup 1 for measuring aberration, a reference optical pickup 41 with known optical characteristics such as aberration, and a reference optical pickup 41 in the XYZ directions. To analyze the aberration of the spot image of the laser beam 8 received by the XYZ stage 46, the control unit 47 that controls the XYZ stage 46, and the photo detector 45 of the reference light pickup 41. The aberration analysis unit 9 and the correction plate 6 inserted at the CD or DVD mounting position of the measured optical pickup 1 are provided. The configuration of the present embodiment is the same as that of the fifth embodiment except that the aberration analysis unit 9 receives the output signal ES of the photo detector 45 of the reference optical pickup 41. The corresponding components are denoted by the same reference numerals. In the present embodiment, when the aberration of the measured optical pickup 1 is measured, the laser light 8 is irradiated from the laser diode 2 of the measured light pick-up 1. The irradiated laser light 8 is reflected by the half mirror 13, passes through the optical system 4 and the correction plate 6, and enters the reference optical pickup 41. Further, the laser beam 8 passes through the optical system 4 4 of the reference optical pickup 4 1 and the half mirror 4 3 and is received by the photo detector 45. The photo detector 45 converts the received laser light 8 into an electrical signal, and inputs the output signal ES to the aberration analysis unit 9.
収差解析部 9は、 収差解析を行うための観測信号 p ( X , Y ) を取得 する必要がある。 先ず X Y Zステージ 4 6で基準光ピックアップ 4 1 を Z方向に移動させて焦点を合わせた後、 基準光ピックアップ 4 1を X Y 方向に移動させることによって、 フォ トディテクタ 5で受光されるレー
ザ光 8のスポッ ト像を、 レーザ光の焦点位置を固定した状態で走査し、 観測信号 P ( X , Y ) を取得する。 レーザダイオード 4 5の出力信号 E Sから観測信号 p ( X , Y ) を取得する。 収差解析を行うために、 X Y Zステージ 4 6によって基準光ピックアップ 4 1を Z方向に移動させ、 少なく とも 2以上の異なるレーザ光 8の焦点位置に対して観測信号 p ( X , Y ) を取得する。 The aberration analysis unit 9 needs to acquire an observation signal p (X, Y) for performing the aberration analysis. First, after the reference optical pickup 4 1 is moved in the Z direction by the XYZ stage 46 and focused, the ray is received by the photo detector 5 by moving the reference optical pickup 41 in the XY direction. The spot image of the light 8 is scanned with the focal position of the laser light fixed, and the observation signal P (X, Y) is acquired. The observation signal p (X, Y) is acquired from the output signal ES of the laser diode 45. In order to perform aberration analysis, the reference optical pickup 41 is moved in the Z direction by the XYZ stage 46, and the observation signal p (X, Y) is acquired with respect to the focal position of at least two different laser beams 8. .
収差解析部 9は第 1実施例と同一の方法でモデル観測信号を計算し、 第 2図のフローチャートと同一の手順で観測信号 { p } とモデル観測信 号 { P } に基づいて、 レ一ザ光 8のスポッ ト像の収差の解析を行う。 被 測定光ピックアップ 1の光学系 4等によって生じる収差は、 上記収差解 祈によって得られた収差から、 基準光ピックアップ 4 1の光学系 4 4等 によって生じる収差を差し引くことによって導く ことができる。 The aberration analysis unit 9 calculates the model observation signal in the same manner as in the first embodiment, and based on the observation signal {p} and the model observation signal {p} in the same procedure as the flowchart of FIG. The aberration of the spot image of the light 8 is analyzed. The aberration produced by the optical system 4 or the like of the measured optical pickup 1 can be derived by subtracting the aberration produced by the optical system 4 4 or the like of the reference optical pickup 4 1 from the aberration obtained by the above-described aberration solution.
第 1実施例〜第 6実施例までの、 光ピックアップ 1又は被測定光ピッ' ク ア ッ プ 1 、 基準光ピッ ク ア ッ プ 4 1 内に挿入されている A S ( astigmatism; 非点収差) 発生光学素子の影響を打ち消すために、 A Sキヤンセル光学素子を設けるようにしても良い。 A Sキャンセル光学 素子は、 例えば補正板 6を傾けたものが対応する。 傾けた平行平板を集 光又は広がる光線に挿入すると、 傾けた方向の光学距離が増加し、 傾き と直交する方向の光学距離は維持されるため、 非点収差を生じるからで ある。また、レーザ光の照射源としてレーザダイォードを挙げているが、 他のレーザ発生素子であっても良い。 Optical pickup 1 or measured optical pickup 1 and reference optical pickup 4 1 in the first to sixth examples, AS (astigmatism) In order to cancel out the influence of the generating optical element, an AS key cell optical element may be provided. The AS cancellation optical element corresponds, for example, to one in which the correction plate 6 is inclined. This is because when an inclined parallel plate is inserted into a light collecting or diverging ray, the optical distance in the inclined direction increases, and the optical distance in the direction orthogonal to the inclination is maintained, which causes astigmatism. In addition, although a laser diode is mentioned as an irradiation source of laser light, another laser generating element may be used.
第 1実施例〜第 6実施例に示される収差測定装置を用いた収差測定方 法は、 光ピックアツプの収差を最適な収差に調整する光ピックアツプ調 整方法として利用しても良い。 また、 収差測定方法を、 光ピックアップ の製造過程において、 光ピックアップの収差が最適になるように調整す るために利用しても良い。
ここにおいて、 光ピックアップがコリメ一夕レンズ及び対物レンズモ ジュールで構成されている場合がある。 その場合、 光ピックアップの対 物レンズモジュールが装着される前に、 光ピックアップの光学系を検査 する要求がある。 例えば第 9図に示すように、 光ピックアップ 1 0 0が コリメ一夕レンズ 1 0 1及びフォ トディテクタ 1 0 2を具備し、 対物レ ンズモジュール 1 1 0を後で取り付ける場合.、 光ピックアップ 1 0 0の 製造過程では対物レンズモジュール 1 1 0を取り付ける前にそれ以外の 光学系を検査する要求がある。 このような場合、 第 1 0図に示すように 焦点走査手段 1 2 0からの平行光を直接対物レンズモジュール 1 1 0を 取り付ける前の光ピックアップ 1 0 0に照射し、 フォ トディテクタ 1 0 2上に焦点を生成し、 その焦点を X Y走査すれば、 対物レンズモジュ一 ル 1 1 0を取り付ける前の光ピックアップ 1 0 0の光学系の収差を測定 することができる。 The aberration measuring method using the aberration measuring apparatus shown in the first to sixth examples may be used as an optical pickup adjustment method for adjusting the aberration of the optical pickup to an optimum aberration. In addition, the aberration measurement method may be used to adjust the aberration of the optical pickup so as to be optimal in the manufacturing process of the optical pickup. In this case, the optical pickup may be composed of a collimator lens and an objective lens module. In that case, there is a need to inspect the optical system of the optical pickup before the objective lens module of the optical pickup is mounted. For example, as shown in FIG. 9, when the optical pickup 1 00 has a collimator lens 1 0 1 and a photo detector 1 0 2 and the objective lens module 1 1 0 is attached later, the optical pickup 1 In the manufacturing process of 0 0, it is required to inspect other optical systems before attaching the objective lens module 1 1 0. In such a case, as shown in FIG. 10, the collimated light from the focus scanning means 120 is directly irradiated to the optical pickup 100 before the objective lens module 110 is attached, and the photo detector 10 By generating a focal point on the top and XY scanning the focal point, it is possible to measure the aberration of the optical system of the optical pickup 100 before the objective lens module 110 is attached.
具体的な焦点走査手段 1 2 0の構成例は第 1 1図及び第 1 2図に示す ようになつており、 第 1 1図の例では、 焦点走査手段 1 2 0が、 光学系 1 2 1 と、 レーザ光源 1 2 2と、 レーザ光源 1 2 2を走査するためのス テージ 1 2 3とで構成されている。 レーザ光源 1 2 2から照射されたレ 一ザ光は光学系 1 2 1で平行光にされて光ピックアップ 1 0 0に入射さ れ、 コリメータレンズ 1 0 1を経て集光されたスポッ ト像がフォ 卜ディ テク夕 1 0 2で測定される。 フォ トディテクタ 1 0 2上のスポッ ト像の X Y走査は、ステージ 1 2 3を移動することによって行うことができる。 また、 第 1 2図に示す実施例では、 焦点走査手段 1 2 0 Aが、 光学系 平行レーザ光を照射するレーザ光源 1 2 4と、 レーザ光源 1 2 4を走査 するために傾斜可能なステージ 1 2 5とで構成されている。 レーザ光源 1 2 4から照射された平行なレーザ光は光ピックアップ 1 0 0に入射さ れ、 コリメ一夕レンズ 1 0 1を経て集光されたスポッ ト像がフォ トディ
テク夕.1 0 2で測定される。 フォ トディテクタ 1 0 2上のスポッ ト像の X Y走査は、 ステージ 1 2 5の駆動によって行うことができる。 例えば ガルバノミラ一などによって角度を変化させて実現することができる。 また、 携帯電話では小型カメラが搭載されており、 このような小型力 メラについての調整の要求にも本発明は適用できる。 携帯電話用カメラ の光学系は薄型化、 高画質化、 高解像度化の要求があり、 製造時におけ るレンズの傾きなどの検査、 調整に収差測定の需要がある。 A specific configuration example of the focus scanning means 120 is as shown in FIGS. 11 and 12. In the example of FIG. 11 1, the focus scanning means 120 is an optical system 1 2. A laser light source 12 2 and a stage 1 2 3 for scanning the laser light source 1 2 2 are configured. The laser light emitted from the laser light source 12 2 is collimated by the optical system 1 2 1 and incident on the optical pickup 1 0 0 0, and the spot image collected through the collimator lens 1 0 1 is Measured in Fortune mode. XY scanning of the spot image on the photo detector 102 can be performed by moving the stage 1 2 3. Further, in the embodiment shown in FIG. 12, the focus scanning means 120A is an optical system, a laser light source 124 for irradiating a parallel laser beam, and a stage which can be tilted to scan the laser light source 124. It consists of 1 2 5 The parallel laser light emitted from the laser light source 124 is incident on the optical pickup 100, and the spot image collected through the collimating lens 101 is focused on the light source. Measured in T.12. XY scanning of the spot image on the photo detector 102 can be performed by driving the stage 125. For example, it can be realized by changing the angle by a galvanomier or the like. In addition, a small camera is mounted in the mobile phone, and the present invention can be applied to the adjustment request for such a small power camera. There is a demand for thinner, higher image quality, and higher resolution in the optical system of cameras for mobile phones, and there is a demand for aberration measurement for inspection and adjustment of lens tilt etc. during manufacturing.
第 1 3図に示すように、 レーザ光源からのレーザ光 2 0 0を光学系 2 0 1で集光し、 そのレーザスポッ トを光検出素子としての C C D 2 1 0 に投影する。 そして、 C C D 2 1 0の 1 ピクセル 2 1 1に対してスポッ トを走査することにより得た C C D 2 1 0の出力信号を、 上述した本発 明の手法で解析することにより、 光学系 2 0 1の収差を同定することが できる。 なお、 C C D 2 1 0の 1 ピクセルは l mオーダであり、 レー ザのスポッ トもサブミクロンからミクロンオーダとなり、 C C D 2 1 0 の 1 ピクセルからの出力は、 投影されたスポッ トの一部を積分した量に なる。 走査の移動量はミクロンオーダである。 As shown in FIG. 13, a laser beam 200 from a laser light source is condensed by an optical system 201, and the laser spot is projected on C C D 2 10 as a light detection element. Then, by analyzing the output signal of the CCD 210 obtained by scanning the spot with respect to one pixel 21 of the CCD 210 according to the method of the present invention described above, an optical system 2 0 can be obtained. Aberration of 1 can be identified. It should be noted that one pixel of CCD 210 is in the order of lm, the spot of the laser is also in the order of submicron to micron, and the output from one pixel of CCD 210 integrates a part of the projected spot. The amount will be the same. The amount of movement of the scan is on the order of microns.
第 1 4図は測定対象のカメラ光学系を本発明で説明した焦点走査手段 2 2 0で微小走査し、 光学系 2 0 1の収差を測定する構成例を示してい る。 FIG. 14 shows a configuration example of measuring the aberration of the optical system 201 by finely scanning the camera optical system to be measured with the focus scanning means 220 described in the present invention.
本発明の有効性を確認すために、 数値シミュレーションで光ピックァ ップの収差の解析を行った実証例を示す。 即ち、 予め仮定レた収差に対 して模擬的に生成したフォ トディテクタからの出力データに対して本発 明を適用し、 収差を同定し、 同定した収差と予め仮定した収差とを比較 して本発明の有効性を検証した。 なお、 模擬的に生成したデータには、 計測誤差もモデル化して加えている。 上記第 1〜第 6実施例には計測デ —夕を得るための複数のハードウェアー構成を示しているが、 計測デ一
夕に含まれる誤差には差異がないので、 本シミュレーションにより全て の実施例に対して収差が同定できるかを検証したことになる。 In order to confirm the effectiveness of the present invention, a demonstration example in which analysis of the aberration of the optical pickup is performed by numerical simulation will be shown. That is, the present invention is applied to the output data from the simulated photo detector for the assumed aberration, the aberration is identified, and the identified aberration is compared with the assumed aberration. The effectiveness of the present invention was verified. Measurement errors are also modeled and added to the simulated data. In the first to sixth embodiments, a plurality of hardware configurations for obtaining measurement data are shown. Since there is no difference in the errors included in the evening, it is verified by this simulation whether aberrations can be identified for all the examples.
解析条件は以下のようにした。 光ピックアップは D V Dの光ピックァ ップとし、レ一ザダイオードの波長を 6 5 0 [nm]、開口数を NA= 0. 6、 フォ トディテク夕の大きさを 7 5 0 0 [ n m] X 7 5 0 0 [ n m] ( 1 2 5点 X 1 2 5点に離散化) とする。 解析領域は再構成したときに 1次リングを凡そカバーできる 3 0 0 0 [ n m] X 3 0 0 0 [ n m] ( 5 1点 X 5 1点に離散化) を対象とし、 フォ トディテク夕上をレーザ光の スポッ ト像が走査する際に、 走査をこの領域の外側から行うとする。 解 折に用いるレーザダイォードは理想的なもの(G(u,ゆ) =1)とし、 観測デー 夕はフォーカス面から 5 0 0 [ nm] 及び 1 0 0 0 [ nm] 離れたもの とする。 解析では 3次球面収差までを同定することを目的とし、 未知数 を 1 8個にする。 The analysis conditions were as follows. The optical pickup is a DVD optical pickup, the wavelength of the laser diode is 650 nm, the numerical aperture NA is 0.6, and the size of the photodiode is 7500 nm 7 It is assumed that 5 0 0 [nm] (discretized into 1 2 5 points X 1 2 5 points). The analysis area covers 3 0 0 0 [nm] x 3 0 0 0 [nm] (discretized into 5 1 point X 5 1 point) that can cover approximately the primary ring when reconstructed. When the spot image of the laser light scans, scan is performed from the outside of this area. The laser diode used for analysis is ideal (G (u, ゆ) = 1), and the observation data shall be separated from the focus plane by 5 0 0 [nm] and 1 0 0 0 [nm] . The analysis aims to identify up to the 3rd-order spherical aberration, and makes the number of unknowns 18.
数値シミユレ一ションが多峰性でないことを確かめる方法として B F G S法を用い、 初期点の位置を変えて係数を計算させた。 その結果、 第 1 5図に示すような特性が得られ、 多峰性でないことを示すことができ た。つまり、収差を唯一解として安定に同定することできる。なお、 BFGS 法は、 Broyden, Fletcher, Goldfarb, Shannon の 4人によって発表さ れた非線形最適化手法の 1つで、 準ニュートン法とも呼ばれている。 次に、 理想的な窓関数を第 1 6図に示す。 この特性図は、 中心部分の 感度を 1 0 0 %とし、 他の部分の感度を表している。 ここで用いている 窓関数は一辺 1 2 5、 高さ h = 1 2 5 / 2 xの正四角錐を高さ "1" の 位置で切り取つたものを使用した。 上式の X = 4の場合が第 1 7図、 X = 1 6の場合が第 1 9図のような受光窓の感度分布になり、 これらを用 いて逆解析を行った。 ここで、 それぞれの解析結果は、 第 1 7図の場合 は第 1 8図であり、 第 1 9図の場合は第 2 0図である。 以上のように、
フォ トディテク夕の受光窓の感度分布が周辺部で落ち込んでいても、 同 定が安定に行われることが確認できる。 As a method to confirm that the numerical simulation is not multimodal, the BFGS method was used to calculate the coefficients by changing the position of the initial point. As a result, the characteristics as shown in FIG. 15 were obtained, and it could be shown that they were not multimodal. That is, the aberration can be stably identified as the only solution. The BFGS method is one of the non-linear optimization methods announced by Broyden, Fletcher, Goldfarb, and Shannon. It is also called the quasi-Newton method. Next, an ideal window function is shown in FIG. In this characteristic chart, the sensitivity of the central part is 100% and the sensitivity of the other parts is shown. The window function used here is a square pyramid with sides of 1 2 5 and height h = 1 2 5/2 x cut out at the position of height "1". The case of X = 4 in the above equation is shown in Figure 17 and the case of X = 16 is the sensitivity distribution of the light receiving window as shown in Figure 19, and reverse analysis was performed using these. Here, the respective analysis results are shown in FIG. 18 in the case of FIG. 17 and in FIG. 20 in the case of FIG. As above, It can be confirmed that the identification is stable even if the sensitivity distribution of the photodetection window of the photodiode is depressed at the periphery.
また、 本シミュレーションでは高周波成分を遮断するために、 窓関数 にガウス分布を利用した。 これにより、 走査する際に一番重要と思われ る高周波成分を遮断した場合の口バスト性について考えることができる。 今回ガウス分布に用いた式は、 下記数 1 1である。 Also, in this simulation, a Gaussian distribution was used as the window function to block high frequency components. In this way, it is possible to think of the browsability when the high frequency component considered to be most important in scanning is cut off. The equation used for the Gaussian distribution this time is:
[数 1 1 ] [Number 1 1]
1 - ζχ α ( 6η ここで、 第 2 1図は α = 1 0のガウス分布を用いた窓関数であり、 第 2 3図は α = 5 0のときのガウス分布を用いた窓関数である。 また、 第 2 2図はひ = 1 0のときのガウス分布に対する逆解析結果を示し、 第 2 4 図は α = 5 0のときのガウス分布に対する逆解析結果を示している。 以 上より、 本発明は仮に窓関数がなまった形状の場合でも、 安定に同定を 行うことができる。 1-α α ( 6こ こ Here, Fig. 2 1 is a window function using a Gaussian distribution of α = 10, Fig. 2 3 is a window function using a Gaussian distribution at α = 5 0 Also, Fig. 22 shows the result of inverse analysis for the Gaussian distribution when = = 10, and Fig. 24 shows the result of inverse analysis for the Gaussian distribution when 0 = 50. Thus, according to the present invention, even in the case where the window function is dulled, identification can be stably performed.
解析により得られたゼルニケ係数の値とゼルニケ係数の厳密値を第 2 5図に示す。 また、 第 2 6図 (Α ) はフォ トディテク夕の観測信号の強 度分布の正解を示し、 第 2 6図 (Β ) は数値解析によって得られた結果 から逆解析を行うことによって計算された強度分布を示している。 これ らの結果は、 本発明による収差測定方法によって十分な精度で収差解析 を行うことができることを示している。 The values of the Zernike coefficients obtained by analysis and the exact values of the Zernike coefficients are shown in FIG. Also, Fig. 26 (Α) shows the correct solution of the intensity distribution of the observed signal of the photodiode, and Fig. 26 (Β) is calculated by performing the inverse analysis from the results obtained by the numerical analysis. The intensity distribution is shown. These results show that the aberration measurement method according to the present invention can perform aberration analysis with sufficient accuracy.
以上、 本発明の実施形態について具体的に説明したが、 本発明はこれ に限定されるものではなく、 その趣旨を逸脱しない範囲で適宜変更可能 である。 As mentioned above, although the embodiment of the present invention was concretely explained, the present invention is not limited to this and can be suitably changed in the range which does not deviate from the meaning.
本発明によれば、 フォ トディテクタの出力信号に基づいて観測信号を
取得し、 スポッ ト像の強度分布とフォ トディテクタの受光窓の感度分布 に基づいてモデル観測信号を計算し、 観測信号とモデル観測信号に基づ いてフォ トディテクタで受光されるレーザ光のスポッ ト像の収差の解析 及びレーザ光のスポッ ト像の評価を行っているので、 レーザ光のスポッ ト像の収差の解析及びレーザ光のスポッ ト像の評価を、 安価な装置で行 うことができ、 測定時間を短縮することができる。 According to the present invention, the observation signal is output based on the output signal of the photo detector. The model observation signal is calculated on the basis of the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the photo detector, and the spot of the laser light received by the photo detector on the basis of the observation signal and the model observation signal. Since the analysis of the aberration of the projection image and the evaluation of the spot image of the laser light are performed, the analysis of the aberration of the spot image of the laser light and the evaluation of the spot image of the laser light can be performed using an inexpensive apparatus. And can reduce the measurement time.
本発明は収差測定を行うためのものであるが、 M T F (Modulation Transfer Function) ¾ P S F (Point Spread Function) , リ T F (Optical Transfer Function)などの光学評価量の測定にも応用できる。 また、 本 発明は主に D V Dなどの光ピックアツプュニッ 卜の光学評価に応用でき るが、更にカメラなどのレンズ、 C C Dから構成される光学系に対して、 C C Dの 1 ピクセルと同程度のサイズのスポッ 卜の収差を解析するため にも応用できる。 即ち、 C C Dの 1 ピクセルに対する光の感度を窓関数 として用いれば、 同様の手法で収差を同定することができる。 The present invention is intended to perform aberration measurement, but can also be applied to measurement of optical evaluation amounts such as MTF (Modulation Transfer Function) 2⁄4 PSF (Point Spread Function), TF (Optical Transfer Function), and the like. In addition, the present invention is mainly applicable to the optical evaluation of optical pickups such as DVD, but it is further equivalent to one pixel of a CCD for an optical system composed of a lens such as a camera and a CCD. It can also be applied to analyze the aberration of the spot size. That is, if the light sensitivity to one pixel of the CCD is used as a window function, the aberration can be identified by the same method.
<特許文献 > <Patent Document>
特許文献 1 : 特開 2 0 0 6— 2 3 4 3 8 9号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2 0 6-2 3 4 3 8 9
Claims
1 . 被測定光学系により形成されるスポッ ト像を光検出素子上に投影す る投影手段と、 前記スポッ ト像を前記光検出素子上で光軸に対して垂直 方向に相対的に移動する第 1の移動手段と、 前記光検出素子上に投影さ れる前記スポッ 卜像の位置を光軸方向に前記光検出素子と相対的に移動 する第 2の移動手段と、 前記光検出素子からの出力信号を基に収差を解 析する収差解析手段とを具備したことを特徴とする収差測定装置。 1. Projection means for projecting a spot image formed by the optical system to be measured onto the light detection element, and the spot image is relatively moved on the light detection element in the direction perpendicular to the optical axis. First moving means, second moving means for moving the position of the spot image projected on the light detecting element relative to the light detecting element in the optical axis direction, and the light from the light detecting element An aberration measurement apparatus comprising: an aberration analysis unit that analyzes an aberration based on an output signal.
2 . 前記第 2の移動手段により、 前記スポッ ト像と前記光検出素子の位 置を少なくとも 2つの位置に制御し、 前記第 1の移動手段により前記ス ポッ 卜像が形成する光強度分布の観測信号を求め、 前記収差解析手段は 前記観測信号とモデル観測信号に基づいて前記スポッ ト像を形成する光 学系の収差の解析を行う請求の範囲第 1項に記載の収差測定装置。 2. The second moving means controls the spot image and the position of the light detecting element to at least two positions, and the first moving means forms a light intensity distribution formed by the spout image. The aberration measuring apparatus according to claim 1, wherein an observation signal is obtained, and the aberration analysis means analyzes an aberration of an optical system forming the spot image based on the observation signal and a model observation signal.
3 . 前記第 2の移動手段により前記スポッ ト像と前記光検出素子の位置 を少なくとも 2つの位置に制御する際、 前記スポッ ト像の結像点の前後 に前記光検出素子が配置されるようになっている請求の範囲第 2項に記 載の収差測定装置。 3. When the position of the spot image and the light detection element is controlled to at least two positions by the second moving unit, the light detection element is disposed before and after the imaging point of the spot image. The aberration measurement apparatus according to claim 2, wherein
4 . 前記収差解析手段は、 前記出力信号に基づいて前記スポッ ト像の観 測信号及びモデル観測信号を求め、 前記観測信号と前記モデル観測信号 に基づいて前記スポッ ト像の収差の解析を行うようになっている請求の 範囲第 1項に記載の収差測定装置。 4. The aberration analysis means determines an observation signal and a model observation signal of the spot image based on the output signal, and analyzes an aberration of the spot image based on the observation signal and the model observation signal. The aberration measurement device according to claim 1 which is configured as described above.
5 . 前記モデル観測信号を、 前記スポッ ト像の強度分布と前記光検出素
子の受光窓の感度分布との畳み込み積分によって求める請求の範囲第 2 項に記載の収差測定装置。 5. The model observation signal, the intensity distribution of the spot image and the light detection element The aberration measuring apparatus according to claim 2, which is obtained by convolution integral with the sensitivity distribution of the light receiving window of the child.
6 . 被測定光学系中にレーザ光源及び前記光検出素子を有し、 光デイス クにデ一夕の記録及び再生を行う光ピックアップである光学系において、 前記光ピックアップの前記光デイスクの載置位置に挿入された補正板と、 前記光ピックアツプからのレーザ光を前記補正板を経て入射し、 受光し たレーザ光を前記光ピックアツプに反射すると共に、 前記レーザ光のス ポッ ト像を前記光検出素子に投影し、 前記第 1の移動手段及び前記第 2 の移動手段により前記スポッ ト像を走査し、 前記光検出素子からの出力 信号で観測信号及びモデル観測信号を求めて前記スポッ ト像の収差の解 析を行う収差解析部とを具備した請求の範囲第 2項に記載の収差測定装 置。 6. In an optical system having an optical pickup which has a laser light source and the light detection element in an optical system to be measured and which performs recording and reproduction on an optical disc, mounting of the optical disc of the optical pickup A correction plate inserted at a position, laser light from the light pickup is incident through the correction plate, and the received laser light is reflected to the light pickup, and a spot image of the laser light is the light The spot image is scanned by the first moving means and the second moving means, and an observation signal and a model observation signal are obtained from the output signal from the light detection element to obtain the spot image. The aberration measurement apparatus according to claim 2, further comprising: an aberration analysis unit that analyzes the aberration of the lens.
7 . 前記第 2の移動機構が、 前記レーザ光を平行光にするレンズと、 前 記レンズの透過レーザ光を反射するミラーと、 前記レンズ及びミラーを 水平方向及び垂直方向に移動させるステージと、 前記ステージを制御す る制御部とで構成されている請求の範囲第 6項に記載の収差測定装置。 7. The second moving mechanism includes: a lens for converting the laser light into parallel light; a mirror for reflecting the transmitted laser light of the lens; a stage for moving the lens and the mirror in the horizontal direction and the vertical direction; 7. The aberration measuring apparatus according to claim 6, further comprising: a control unit that controls the stage.
8 . 前記第 2の移動機構が、 前記レーザ光を受光して反射する参照球面 ミラーと、 前記参照球面ミラーを水平方向及び垂直方向に移動させるス テージと、 前記ステージを制御する制御部とで構成されている請求の範 囲第 6項に記載の収差測定装置。 8. A reference spherical mirror for receiving and reflecting the laser light, a stage for moving the reference spherical mirror in the horizontal direction and the vertical direction, and a control unit for controlling the stage. The aberration measurement device according to claim 6, which is configured.
9 . 前記被測定光学系中に光検出素子を有し、 光ディスクにデータの記 録及び再生を行う光ピックアップと、 前記光ピックアツプの前記光ディ
スクの載置位置に挿入された補正板と、 収差が既知の基準レーザ光を照 射する基準光源と、 前記基準光源を水平方向及び垂直方向に移動させる ステージと、 前記ステージを制御する制御部と、 前記光検出素子からの 出力信号で観測信号及びモデル観測信号を求めて前記スポッ 卜像の収差 の解析を行う収差解析部とを具備した請求の範囲第 2項に記載の収差測 定装置。 9. An optical pickup having a light detection element in the optical system to be measured, and performing recording and reproduction of data on an optical disc, and the optical disc of the optical pickup. A correction plate inserted at the mounting position of the disk, a reference light source for irradiating a reference laser beam whose aberration is known, a stage for moving the reference light source horizontally and vertically, and a control unit for controlling the stage The aberration measuring apparatus according to claim 2, further comprising: an aberration analysis unit configured to obtain an observation signal and a model observation signal from an output signal from the light detection element and analyze the aberration of the spot image. .
1 0 . 被測定光学系中にレーザ光源及び光検出素子を有し、 光ディスク にデータの記録及び再生を行う光ピックアップと、 前記光ピックアップ の前記光ディスクの載置位置に挿入された補正板と、 前記光ピックアツ プからのレーザ光を前記補正板を経て入射し、 受光したレーザ光を前記 光ピックアップに反射すると共に、 前記レーザ光のスポッ ト像の焦点位 置の移動を行う第 1移動手段と、 前記光検出素子を水平に移動させる第 2移動手段と、 前記光検出素子からの出力信号で観測信号及びモデル観 測信号を求めて前記スポッ 卜像の収差の解析を行う収差解析部とを具備 した請求の範囲第 2項に記載の収差測定装置。 An optical pickup having a laser light source and a light detection element in an optical system to be measured and performing data recording and reproduction on an optical disc, a correction plate inserted at a mounting position of the optical disc on the optical pickup, First moving means for receiving a laser beam from the optical pickup through the correction plate, reflecting the received laser beam to the optical pickup, and moving a focal position of a spot image of the laser beam; A second moving means for moving the light detection element horizontally, and an aberration analysis unit for analyzing an aberration of the spot image by obtaining an observation signal and a model observation signal from an output signal from the light detection element. The aberration measurement device according to claim 2 provided.
1 1 . 光検出素子を有し、 光ディスクにデータの記録及び再生を行うと 共に、 収差を測定するための被測定光ピックアップと、 レーザ光源を有 し、 光学特性が既知の基準光ピックアップと、 前記光ディスクの載置位 置に挿入された補正板と、 前記基準光ピックアツプからのレーザ光を前 記補正板を経て入射し、 前記光検出素子からの出力信号で観測信号及び モデル観測信号を求めて前記スポッ 卜像の収差の解析を行う収差解析部 と、 前記基準光ピックアツプを水平方向及び垂直方向に移動するステー ジと、 前記ステージを制御する制御部とを具備したこと請求の範囲第 2 項に記載の収差測定装置。
1 1. A light detection element for recording and reproducing data on an optical disk, an optical pickup to be measured for measuring aberration, a laser light source, and a reference optical pickup having known optical characteristics, A correction plate inserted into the mounting position of the optical disc, and laser light from the reference light pickup passes through the correction plate to be incident, and an observation signal and a model observation signal are obtained from an output signal from the light detection element. An aberration analysis unit that analyzes the aberration of the spot image, a stage that moves the reference light pickup in the horizontal direction and the vertical direction, and a control unit that controls the stage. The aberration measurement device according to Item.
1 2 . レーザ光源を有し、 光ディスクにデータの記録及び再生を行うと 共に、 収差を測定するための被測定光ピックアップと、 光検出素子を有 し、 光学特性が既知の基準光ピックアップと、 前記光ディスクの載置位 置に挿入された補正板と、 前記被測定光ピックアップからのレーザ光を 前記補正板を経て入射し、 前記光検出素子からの出力信号で観測信号及 びモデル観測信号を求めて前記スポッ ト像の収差の解析を行う収差解析 部と、 前記基準光ピックアツプを水平方向及び垂直方向に移動するステ —ジと、 前記ステージを制御する制御部とを具備した請求の範囲第 2項 に記載の収差測定装置。 1 2. A laser light source, an optical pickup to be measured for measuring aberration while recording and reproducing data on an optical disc, a reference optical pickup having an optical detection element and having known optical characteristics, A correction plate inserted into the mounting position of the optical disc, laser light from the optical pickup to be measured is incident through the correction plate, and an observation signal and a model observation signal are output from an output signal from the light detection element. An aberration analysis unit for performing analysis of the aberration of the spot image, a stage for moving the reference light pickup in the horizontal direction and the vertical direction, and a control unit for controlling the stage; The aberration measurement device according to item 2.
1 3 .被測定光学系により形成されるスポッ ト像を光検出素子に投影し、 前記スポッ ト像を前記光検出素子上で光軸と垂直方向に走査して観測信 号とモデル観測信号とを求め、 その後、 前記スポッ ト像を相対的に前記 光軸方向の別の位置に移動させて前記観測信号及び前記モデル観測信号 を求め、 前記観測信号及び前記モデル観測信号に基づいて前記スポッ ト 像の収差の解析を行うことを特徴とする収差測定方法。 The spot image formed by the optical system to be measured is projected on a light detection element, and the spot image is scanned on the light detection element in the direction perpendicular to the optical axis to obtain an observation signal and a model observation signal. After that, the spot image is relatively moved to another position in the optical axis direction to obtain the observation signal and the model observation signal, and the spot is determined based on the observation signal and the model observation signal. An aberration measurement method comprising analyzing an aberration of an image.
1 4 . 前記スポッ ト像の強度分布と前記光検出素子の受光窓の感度分布 とに基づいて前記モデル観測信号を計算する請求の範囲第 1 3項に記載 の収差測定方法。 14. The aberration measuring method according to claim 13, wherein the model observation signal is calculated based on the intensity distribution of the spot image and the sensitivity distribution of the light receiving window of the light detecting element.
1 5 .前記レーザ光のスポッ ト像の複素振幅を有限級数によって展開し、 前記スポッ ト像の強度分布は前記複素振幅の絶対値の 2乗で与えられ、 前記観測信号及び前記モデル観測信号を離散化し、 離散化された前記観 測信号及び離散化された前記モデル観測信号に基づいて非線形最小 2乗
問題を解く ことによって、 前記レーザ光のスポッ ト像の収差の解析及び 前記レーザ光のスポッ ト像の評価を行う請求の範囲第 1 3項に記載の収 差測定方法。
The complex amplitude of the spot image of the laser light is expanded by a finite series, and the intensity distribution of the spot image is given by the square of the absolute value of the complex amplitude, and the observation signal and the model observation signal are Nonlinear least squares based on the discretized and discretized observation signal and the discretized model observed signal The method according to claim 13, wherein the analysis of the aberration of the spot image of the laser beam and the evaluation of the spot image of the laser beam are performed by solving the problem.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009542529A JPWO2009066599A1 (en) | 2007-11-21 | 2008-11-06 | Aberration measuring method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007302211 | 2007-11-21 | ||
JP2007-302211 | 2007-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009066599A1 true WO2009066599A1 (en) | 2009-05-28 |
Family
ID=40667423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/070626 WO2009066599A1 (en) | 2007-11-21 | 2008-11-06 | Aberration measuring method and its device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2009066599A1 (en) |
TW (1) | TW200935414A (en) |
WO (1) | WO2009066599A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2339317A3 (en) * | 2009-12-23 | 2011-07-20 | Foxsemicon Integrated Technology, Inc. | Method and System for Evaluating Light Uniformity Through an Optical Lens |
CN108776005A (en) * | 2018-09-05 | 2018-11-09 | 武汉华工激光工程有限责任公司 | A kind of optical element aberration detecting and system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04113243A (en) * | 1990-09-03 | 1992-04-14 | Toshiba Corp | Apparatus for inspecting lens |
JPH05110880A (en) * | 1991-10-18 | 1993-04-30 | Fujitsu Ltd | Color reader |
JP2001050862A (en) * | 1999-08-05 | 2001-02-23 | Olympus Optical Co Ltd | Measuring apparatus for aberration of optical-pickup objective lens |
WO2005038885A1 (en) * | 2003-10-16 | 2005-04-28 | Nikon Corporation | Optical characteristics measuring device and optical characteristics measuring method, exposure system and exposure method, and device production method |
JP2006108618A (en) * | 2004-09-09 | 2006-04-20 | Nikon Corp | Measuring method for optical property of optical system, optical property measuring device, exposure device and manufacturing method therefor |
JP2006308556A (en) * | 2005-03-31 | 2006-11-09 | Dainippon Screen Mfg Co Ltd | Unevenness inspection device and unevenness inspection method |
WO2008072709A1 (en) * | 2006-12-14 | 2008-06-19 | Panasonic Corporation | Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element |
-
2008
- 2008-11-06 WO PCT/JP2008/070626 patent/WO2009066599A1/en active Application Filing
- 2008-11-06 JP JP2009542529A patent/JPWO2009066599A1/en active Pending
- 2008-11-07 TW TW97143022A patent/TW200935414A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04113243A (en) * | 1990-09-03 | 1992-04-14 | Toshiba Corp | Apparatus for inspecting lens |
JPH05110880A (en) * | 1991-10-18 | 1993-04-30 | Fujitsu Ltd | Color reader |
JP2001050862A (en) * | 1999-08-05 | 2001-02-23 | Olympus Optical Co Ltd | Measuring apparatus for aberration of optical-pickup objective lens |
WO2005038885A1 (en) * | 2003-10-16 | 2005-04-28 | Nikon Corporation | Optical characteristics measuring device and optical characteristics measuring method, exposure system and exposure method, and device production method |
JP2006108618A (en) * | 2004-09-09 | 2006-04-20 | Nikon Corp | Measuring method for optical property of optical system, optical property measuring device, exposure device and manufacturing method therefor |
JP2006308556A (en) * | 2005-03-31 | 2006-11-09 | Dainippon Screen Mfg Co Ltd | Unevenness inspection device and unevenness inspection method |
WO2008072709A1 (en) * | 2006-12-14 | 2008-06-19 | Panasonic Corporation | Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element |
Non-Patent Citations (4)
Title |
---|
MASASHI UESHIMA ET AL., TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 72, no. 717, 25 May 2006 (2006-05-25), pages 82 - 87 * |
MASASHI UESHIMA ET AL.: "Japan Society of Mechanical Engineers, Computational Mechanics Conference, 19th", 2 November 2006, pages: 417 - 418 * |
MASASHI UESHIMA ET AL.: "Japan Society of Mechanical Engineers, Computational Mechanics Conference, 20th", 25 November 2007, pages: 453 - 454 * |
YASUTAKA NISHII ET AL.: "Japan Society of Mechanical Engineers, Computational Mechanics Conference, 20th", 25 November 2007, pages: 443 - 444 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2339317A3 (en) * | 2009-12-23 | 2011-07-20 | Foxsemicon Integrated Technology, Inc. | Method and System for Evaluating Light Uniformity Through an Optical Lens |
CN102109413B (en) * | 2009-12-23 | 2012-06-13 | 富士迈半导体精密工业(上海)有限公司 | Uniformity measuring system and method |
CN108776005A (en) * | 2018-09-05 | 2018-11-09 | 武汉华工激光工程有限责任公司 | A kind of optical element aberration detecting and system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009066599A1 (en) | 2011-04-07 |
TW200935414A (en) | 2009-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100390519C (en) | Lens evaluation method and device, optical unit and lens adjustment method and device | |
KR100500065B1 (en) | Optical disc apparatus | |
WO2009066599A1 (en) | Aberration measuring method and its device | |
US7613083B2 (en) | Optical scanning device | |
CN109195735A (en) | Optical drift corrects system and method | |
JP3441670B2 (en) | Lens inspection system and lens inspection device | |
JP2004177334A (en) | Position adjustment method for multiple-stage lens, lens assembly device, and lens inspection device | |
JP2720749B2 (en) | Light spot distortion measurement adjustment device | |
US5392115A (en) | Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal | |
JP2003177292A (en) | Lens adjusting device and method | |
JP2000113494A (en) | Aberration generating device, optical pickup, information reproducing device, and information recording device | |
CN112697397B (en) | A DMD stray light detection device and detection method | |
JP4468394B2 (en) | Optical information processing apparatus and optical information processing method | |
JP3547626B2 (en) | Optical pickup, information reproducing device and information recording device | |
JP2010049766A (en) | Method and device for measuring inclination of objective lens for optical pickup | |
JP2009110639A (en) | Wavefront aberration inspection device, optical pickup assembly adjustment device, lens evaluation device, lens assembly device, objective lens actuator assembly adjustment device, optical pickup, optical disk drive, and optical information recording / reproducing device | |
JPH0850731A (en) | Optical disk apparatus | |
KR100609160B1 (en) | Lens adjusting device and method of optical pickup device | |
CN1534640A (en) | Testing method, regulating method and testing apparatus for astigmatism of light picking device | |
JP4656880B2 (en) | Optical pickup outgoing light measuring device and adjustment method | |
KR100570859B1 (en) | How to adjust spherical aberration in assembly process of optical pickup device | |
JPH0968477A (en) | Convenient method for detecting wave aberration | |
JP2004303403A (en) | Optical head device and optical information-reproducing device | |
KR100607937B1 (en) | Optical disc tilt correction device and optical pickup device employing same | |
JPH06162530A (en) | Optical pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08853010 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009542529 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08853010 Country of ref document: EP Kind code of ref document: A1 |