+

WO2008035617A1 - Ag ALLOY THIN FILM, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF THE Ag ALLOY THIN FILM - Google Patents

Ag ALLOY THIN FILM, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF THE Ag ALLOY THIN FILM Download PDF

Info

Publication number
WO2008035617A1
WO2008035617A1 PCT/JP2007/067847 JP2007067847W WO2008035617A1 WO 2008035617 A1 WO2008035617 A1 WO 2008035617A1 JP 2007067847 W JP2007067847 W JP 2007067847W WO 2008035617 A1 WO2008035617 A1 WO 2008035617A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
alloy
alloy thin
sulfidation
resistance
Prior art date
Application number
PCT/JP2007/067847
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Sato
Takao Kawanaka
Jun Suzuki
Katsutoshi Takagi
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Publication of WO2008035617A1 publication Critical patent/WO2008035617A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer

Definitions

  • the present invention belongs to a technical field related to an Ag alloy thin film and an Ag alloy sputtering target for forming the Ag alloy thin film, and in particular, an Ag alloy for a reflective film such as a lighting fixture, an automobile headlamp, and a rear lamp.
  • the present invention belongs to a technical field relating to a thin film (Ag alloy reflective film) and an Ag alloy sputtering target for forming the Ag alloy reflective film.
  • A1 As a reflection film for lighting fixtures, a headlight for automobiles, and a reflection lamp for rear lamps, a film in which A1 having a film thickness of about lOOnm is formed on a resin substrate by sputtering is mainly used.
  • A1 is easily corroded by acids and alkalis with poor corrosion resistance and its reflectivity is lowered.
  • a protective coating such as resin is applied on the reflective film of A1. Coats are a factor in increasing costs.
  • Ag has an initial reflectivity of around 97%, which is about 10% higher than the initial reflectivity of A1 of 88%.
  • the Ag thin film was agglomerated when halogen ions and moisture were present in the environment, and the reflectivity decreased due to agglomeration.
  • innumerable white spots and discoloration occur on the surface of the Ag thin film, which causes a problem of deteriorating design and commercial properties.
  • Japanese Patent Laid-Open No. 55-85646 discloses an alloy characterized in that Ag contains a total of 10 to 60 wt% of Pd, Pt, and Au among Pd, Pt, and Au.
  • Japanese Patent No. 47251 discloses an alloy film structure excellent in sulfidation resistance in which Au or an Au alloy is formed in a thickness of 10 to 200 nm on the surface of an Ag-Sn alloy layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-226765
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-15893
  • Patent Document 3 Japanese Patent Laid-Open No. 55-85646
  • Patent Document 4 JP-A-5-47251
  • Patent Document 5 JP-A-2005-48231
  • the present invention has been made paying attention to such a situation, and the purpose thereof is the initial reflectance.
  • the aim is to provide an Ag alloy thin film with an Al content of 88% or more, comparable to that of Al, and excellent in aggregation resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy thin film.
  • the present invention thus completed and capable of achieving the above object relates to an Ag alloy thin film and an Ag alloy sputtering target for forming this Ag alloy reflective film, and claims in the scope of patent claims.
  • the Ag alloy reflective film according to Item 1 (Ag alloy reflective film according to the present invention) and the Ag alloy sputtering target according to Claim 2, which are configured as follows.
  • the Ag alloy thin film according to claim 1 is an Ag alloy thin film containing two or more of Au, Au, Bi, and Sn, and satisfies the following formulas (1) to (3):
  • [Bi] is the Bi content (atomic%)
  • [Au] is the Au content (atomic%)
  • [Sn] is the Sn content (atomic%). It is shown.
  • An Ag alloy sputtering target according to claim 2 is an Ag alloy sputtering target for forming an Ag alloy thin film according to claim 1, and contains two or more of Au, Au, Bi, and Sn, An Ag alloy sputtering target satisfying the following formulas (4) to (6) [second invention].
  • [Bi] represents Bi content (atomic%)
  • [Au] represents Au content (atomic%)
  • [Sn] represents Sn content (atomic%).
  • the invention's effect [0016]
  • the Ag alloy thin film according to the present invention has an initial reflectance of 88% or more, and is excellent in aggregation resistance and sulfidation resistance. For this reason, even if there is no protective coating, it can be used with a force S that can be suitably used as a reflective film.
  • the force S for forming such an Ag alloy reflective film can be achieved. That is, an Ag alloy reflective film is formed using the Ag alloy sputtering target according to the present invention, and this is heat-treated in an inert gas atmosphere at 130 to 200 ° C. to obtain an Ag alloy thin film according to the present invention. be able to.
  • FIG. 1 is a graph showing the relationship between the Au composition and the reflectance before and after the sulfidation test for an Ag—Au alloy thin film.
  • JP-A-55-85646 proposes the addition of Pd, Pt, and Au to improve sulfidation resistance.
  • Pd is reflected when added at 4at% (approximately 4wt%) or more in Ag. Since the rate becomes 88% or less, it is impossible to add even a composition that can prevent the aggregation of Ag! /.
  • Au is added in the case of an Ag alloy thin film formed by sputtering with Au added, as shown in Fig.
  • Bi and Au have an effect of suppressing aggregation due to halogen ions, as in the prior art.
  • this Ag alloy thin film may contain (A) Bi and Sn but not Au, and (B) may contain two or more of Au, Bi and Sn.
  • the effect of improving the aggregation resistance due to the inclusion of Au hereinafter referred to as the effect of improving the resistance to aggregation of Au
  • the resistance to sulfidation by heat treatment at 130 to 200 ° C in an inert gas atmosphere of the Au-containing material Effect hereinafter referred to as the effect of improving the sulfidation resistance of Au + heat treatment
  • the effect of improving the aggregation resistance of Au the effect of improving the sulfidation resistance of Au + heat treatment, and the improvement of sulfidation resistance by heat treatment at 130 to 200 ° C in an inert gas atmosphere of Sn-containing material
  • the effect (hereinafter referred to as the effect of improving the sulfidation resistance of the Sn + heat treatment and the repellency) is obtained, and the flocculation resistance and the sulfidation resistance are excellent.
  • the amount of the additive element (two or more of Au, Au, Bi, Sn) satisfies the above formulas (1) to (3). It is necessary to add.
  • the Ag alloy thin film according to the present invention is an Ag alloy thin film containing two or more of Au, Au, Bi, and Sn, and satisfies the above formulas (1) to (3)
  • the Ag alloy thin film is characterized by being heat-treated in an inert gas atmosphere at 130 to 200 ° C. Therefore, this Ag alloy thin film has an initial reflectance of 88% or more, and is excellent in aggregation resistance and sulfation resistance. For this reason, even if there is no protective coat, it can be suitably used as a reflective film.
  • the Ag alloy thin film containing two or more of Au, Au, Bi, and Sn is an Ag alloy thin film containing Au or an Ag alloy thin film containing two or more of Au, Bi, and Sn.
  • the temperature of the inert gas atmosphere: 130 200 ° C (that is, the temperature of the heat treatment in the inert gas atmosphere: 130 200 ° C) is that this temperature is higher than 130 ° C. If it is low, the effect of improving the sulfidation resistance of the Au + heat treatment and the effect of improving the sulfidation resistance of the Sn + heat treatment cannot be achieved, and if it is higher than 200 ° C, heat aggregation occurs during the heat treatment. This is because the reflectance is less than 88%.
  • the heat treatment temperature is 130 ° C. and the heat treatment temperature is low, it is preferable to lengthen the heat treatment time. For example, it may be 12 hours or longer at 130 ° C and 1 hour or longer at 150 ° C. If it is 200 ° C, it should be heat-treated for 10 minutes or longer.
  • the atmosphere of the heat treatment is an inert gas atmosphere.
  • other atmospheres for example, air, oxygen atmosphere, vacuum atmosphere
  • the inert gas is a rare gas such as nitrogen gas or argon gas.
  • the inert gas atmosphere is, for example, a nitrogen gas atmosphere, an argon gas atmosphere, or a mixed gas atmosphere of nitrogen gas and argon gas.
  • the vacuum atmosphere is not an inert gas atmosphere.
  • the thickness of the Ag alloy thin film according to the present invention is desirably 100 or more. This is because when the film thickness is less than 100 nm, visible light is not completely reflected and a transmission component is generated. More preferably, it is 120 nm or more, and further preferably 150 nm or more.
  • the composition of the sputtering target for producing the Ag alloy thin film according to the present invention may be the same as the film composition except for Bi. This is because a film having the same composition (content) as Sn is formed for Sn and Au. On the other hand, Bi has a lower composition in the film than the composition (content) in the target. This is thought to be because Bi re-evaporates from the film during film formation. For this reason, it is necessary to make the Bi composition in the target higher than the Bi composition in the film.
  • the yield of Bi in the film varies depending on the deposition conditions and deposition equipment S, and the Bi composition in the target is It is desirable that it is at least twice the composition in the film. Therefore, the composition of the sputtering target for producing the Ag alloy thin film according to the present invention should satisfy the above formulas (4) to (6).
  • the sputtering target for forming an Ag alloy thin film according to the present invention contains two or more of Au, Au, Bi, Sn and the above formulas (4) to (6)
  • a sputtering target made of an Ag alloy (Ag alloy sputtering target) characterized by satisfying According to this Ag alloy sputtering target, it is possible to form an Ag alloy thin film according to the present invention. That is, an Ag alloy thin film according to the present invention is obtained by forming an Ag alloy reflective film using this Ag alloy sputtering target and heat-treating it in an inert gas atmosphere at 130 to 200 ° C. Can do.
  • Ag alloy sputtering targets having various compositions were used as the sputtering target.
  • Deposition conditions are: substrate temperature: room temperature, Ar gas pressure:;! ⁇ 133-0.399? &), The distance between electrodes: 550101, and the deposition rate: 7-8 nm / s. Ultimate vacuum before film formation was less than 1 X 10- 5 torr (1.33 X 10- 3 Pa).
  • the visible light reflectance was measured by the method of JIS 3106.
  • the sulfide test was performed by immersing the thin film (Ag alloy thin film, Ag thin film) in 0.01 M Na S aqueous solution for 30 minutes and then measuring the visible light reflectance of the thin film.
  • the above thin film is placed in a constant temperature and humidity test bath at 60 ° C and 90RH%, and after 500 hours, the surface of the thin film is visually observed and the number of white spots (aggregation points) on the thin film surface is measured. It was done by doing.
  • Table 2 shows the number of white spots generated after the agglomeration test (constant temperature and humidity test). Measurement results of reflectance before sulfidation test, heat treatment in each atmosphere, sulfidation test result (reflectance after sulfidation test), and agglomeration test result [white after agglomeration test (constant temperature and humidity test) The number of points generated] is shown in Tables 3-6. In Tables! To 6, the number 1 indicates the results for the Ag thin film that is not the Ag alloy thin film.
  • the Ag alloy thin film (not heat-treated) after film formation has improved sulfidation resistance due to the addition of Au and Sn compared to the Ag thin film, but it is not sulfurized.
  • the reflectivity has decreased to less than 88% (sulfuration resistance is not sufficient).
  • those with numbers 2, 10, and 14 with an Au content of less than 1. Oat% have not sufficiently suppressed the occurrence of white spots (coagulation resistance is not sufficient).
  • the numbers 10 and 14 have a reflectance of less than 88% after the heat treatment and before the sulfidation test. Other than this, the reflectivity decreased to less than 88% by the sulfidation test, and the sulfidation resistance was poor.
  • an Ag alloy sputtering target having the composition shown in Table 7 was used as the sputtering target.
  • those with numbers 15, 16, and 19 do not satisfy equation (5) (1.0 ⁇ 5 [Bi] + [Au]), and those with number 17 have equations (6).
  • (2.0 ⁇ [Sn] + 2 [Au] 4 ) is not satisfied, and the one with number 22 satisfies equation (4) (2.64 [Bi] + 0.15 [Au] + 1.14 [Sn] ⁇ 8.7)
  • Other targets (numbers 18, 20, 21, 23, 24) satisfy the formulas (4) to (6). ing.
  • Table 8 shows the composition of the Ag alloy thin film thus formed.
  • the numbers in Table 8 indicate that deposition was performed using targets with the same target number. That is, the Ag alloy thin films of numbers 15 to 24 in Table 8 were formed using the targets of numbers 15 to 24 in Table 7. From Table 7 and Table 8, it can be seen that the content of Au and Sn in the film is equal to the content of Au and Sn in the target, and the Bi content in the film is almost 50% of the Bi content in the target. .
  • the Bi content was quantitatively analyzed using ICP-mass spectrometry (SPQ-8000 manufactured by Seiko Instruments Inc.).
  • Tables 10 to 13 show the reflectivity before the sulfidation test, the reflectivity after the sulfidation test, and the number of white spots after the agglomeration test (constant temperature and humidity test) for those after heat treatment in each atmosphere.
  • the Ag alloy thin films heat-treated in a nitrogen atmosphere and the Ag alloy thin films heat-treated in an argon atmosphere have improved resistance to sulfidation with numbers 15, 16, and 19.
  • white dots are generated because Equation (2) is not satisfied.
  • No. 17 does not satisfy the formula (3), and therefore has insufficient sulfidation resistance.
  • those with numbers 18, 20, 21, 23, and 24 maintained a reflectance of 88% or more after the sulfidation test, did not generate white spots, and were resistant to sulfidation and aggregation. It has excellent characteristics.
  • the Ag alloy thin films heat-treated in an oxygen gas atmosphere have a reflectance of 88% after heat treatment and before the sulfidation test. Is below. Numbers 16, 19, 23, and 24 have a force S that the reflectivity after heat treatment and before the sulfidation test is 88% or more, and the reflectivity has decreased to less than 88% after the sulfidation test, and are inferior in sulfidation resistance.
  • the Ag alloy thin film heat-treated in a vacuum atmosphere had a reflectivity decreased to less than 88% by the sulfidation test, and was inferior in sulfidation resistance. Even when the composition of the Ag alloy thin film satisfies the formulas (1) to (3)! /, It may not be possible to obtain excellent performance by heat treatment in an oxygen gas atmosphere or under vacuum. Recognize.
  • an Ag-2.0at% Sn-1.5at% Au alloy thin film with a thickness of lOOnm is formed on a glass substrate (Counging # 1737) with a diameter of 2 inches (5.08cm) and a thickness of 0.7mm. did.
  • the film forming conditions were as follows: substrate temperature: room temperature, Ar gas pressure:;! To 3 mtorr (0.133 to 0.3 99 Pa), distance between electrodes: 55 mm, film forming speed: 7 to 8 nm / s. Ultimate vacuum before film formation was less than 1 X 10- 5 torr (1.33 X 10- 3 Pa). Eight 8-2. ( ⁇ % 5.-1.5 & 1% eight 11 Go gold reflectance of the thin film immediately after the film formation was 94.3%.
  • the Ag alloy thin film (Ag-2.0at% Sn-1.5at% Au alloy thin film) thus formed is 100 in an argon gas atmosphere.
  • a sulfidation test for evaluating sulfidation resistance and an agglomeration test for evaluating flocculation resistance were performed. The results are shown in Table 14.
  • the Ag alloy thin film according to the present invention has an initial reflectivity of 88% or more, and is excellent in aggregation resistance and sulfidation resistance. It can be suitably used as a reflective film for automobile headlamps and rear lamps, and is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Disclosed are: an Ag alloy thin film having an initial reflectivity of 88% or more which is comparable to that of Al and having excellent aggregation resistance and sulfur resistance; and an Ag alloy sputtering target for forming the Ag alloy thin film. Specifically disclosed are: [1] an Ag alloy thin film which contains Au or at least two members selected from Au, Bi and Sn, which satisfies the requirements represented by the following formulae (1) to (3): (1) 5.28[Bi]+0.15[Au]+1.14[Sn]≤8.7; (2) 1.0≤10[Bi]+[Au]; and (3) 2.0≤[Sn]+2[Au]4, and which is treated with heat in an inert gas atmosphere at 130 to 200˚C; and [2] an Ag alloy sputtering target for forming the Ag alloy thin film, which contains Au or at least two members selected from Au, Bi and Sn, and which satisfies the requirements represented by the following formulae (4) to (6): (4) 2.64[Bi]+0.15[Au]+1.14[Sn]≤8.7; (5) 1.0≤5[Bi]+[Au]; and (6) 2.0≤[Sn]+2[Au]4 (provided that the variables [Bi], [Au] and [Sn] in the formulae represent the contents (at%) of Bi, Au and Sn, respectively).

Description

明 細 書  Specification
Ag合金薄膜およびこの Ag合金薄膜の形成用の Ag合金スパッタリングタ 一ケット  Ag alloy thin film and Ag alloy sputtering ticket for forming this Ag alloy thin film
技術分野  Technical field
[0001] 本発明は、 Ag合金薄膜およびこの Ag合金薄膜の形成用の Ag合金スパッタリング ターゲットに関する技術分野に属し、特には、照明器具や自動車のヘッドランプ、リア ランプ等の反射膜用の Ag合金薄膜 (Ag合金反射膜)およびこの Ag合金反射膜形成 用の Ag合金スパッタリングターゲットに関する技術分野に属するものである。  [0001] The present invention belongs to a technical field related to an Ag alloy thin film and an Ag alloy sputtering target for forming the Ag alloy thin film, and in particular, an Ag alloy for a reflective film such as a lighting fixture, an automobile headlamp, and a rear lamp. The present invention belongs to a technical field relating to a thin film (Ag alloy reflective film) and an Ag alloy sputtering target for forming the Ag alloy reflective film.
背景技術  Background art
[0002] 照明器具用反射膜や自動車ヘッドランプ、リアランプ用の反射膜としては、膜厚約 lOOnmの A1を樹脂基板上にスパッタリングにより成膜したものが主に用いられている 。しかしながら、 A1は耐食性に乏しぐ酸やアルカリにより容易に腐食され反射率が低 下するため、これを防止するために A1の反射膜上には樹脂等の保護コートが施され ており、この保護コートがコストアップ要因となっている。  [0002] As a reflection film for lighting fixtures, a headlight for automobiles, and a reflection lamp for rear lamps, a film in which A1 having a film thickness of about lOOnm is formed on a resin substrate by sputtering is mainly used. However, A1 is easily corroded by acids and alkalis with poor corrosion resistance and its reflectivity is lowered. To prevent this, a protective coating such as resin is applied on the reflective film of A1. Coats are a factor in increasing costs.
[0003] 一方、 Agは初期反射率が 97%前後であり、 A1の初期反射率 88%に比べると 10% 程度高いため、反射特性としては申し分なぐまた、耐食性にも優れているため、反 射膜として保護コート無しでの使用が期待されたが、環境にハロゲンイオンと水分が 存在すると Ag薄膜は凝集を生じ、凝集により反射率が低下するという問題があった。 しかも、凝集が生じると Ag薄膜表面に無数の白点や変色が生じるため、意匠性、商 品性を低下させるという問題があった。  [0003] On the other hand, Ag has an initial reflectivity of around 97%, which is about 10% higher than the initial reflectivity of A1 of 88%. Although it was expected to be used without a protective coating as a spray film, there was a problem that the Ag thin film was agglomerated when halogen ions and moisture were present in the environment, and the reflectivity decreased due to agglomeration. Moreover, when aggregation occurs, innumerable white spots and discoloration occur on the surface of the Ag thin film, which causes a problem of deteriorating design and commercial properties.
[0004] また、 Agは環境のィォゥ成分と反応して容易に硫化し、黒く変色するため、反射率 が低下するという問題があった。  [0004] Further, Ag reacts with the environmental blue component and easily sulfidizes and discolors black, so that there is a problem that the reflectance is lowered.
[0005] このように、 Agは耐食性には優れるものの、凝集や硫化の問題があるために、 A1と 同様に表面に環境を遮断する保護コートを必要とし、 Aはりも価格が高い分、力、えつ てコスト高となってしまうという問題があった。このため、耐凝集性に優れ、かつ耐硫 化性に優れ、保護コートが不要な Ag合金薄膜が望まれていた。  [0005] As described above, although Ag has excellent corrosion resistance, it has a problem of aggregation and sulfidation. Therefore, like A1, it requires a protective coat that blocks the environment on the surface. There was a problem of high costs. For this reason, an Ag alloy thin film that is excellent in cohesion resistance, excellent in sulfation resistance, and does not require a protective coating has been desired.
[0006] このような Ag膜の耐凝集性を改善する技術として様々な技術が提案されて!/、る。例 えば、特開 2001— 226765号公報には、 Agに Au及び Ruを 0.1〜3.0wt%添加し、さら に Cu,Ti,Cr,Ta,Ni,Mo,Alの内少なくとも 1種類以上の元素を 0.1〜3.0\^%添加してなる Ag合金材料が提案されている。また、特開 2005— 15893号公報には、 Biを含有す る Ag合金の表面および/または該 Ag合金薄膜上の他層との界面に Bi層または/お よび Bi酸化物層が形成された構造を有する Ag合金反射膜が提案されている。 [0006] Various techniques have been proposed to improve the aggregation resistance of such an Ag film! Example For example, in Japanese Patent Laid-Open No. 2001-226765, 0.1 to 3.0 wt% of Au and Ru are added to Ag, and at least one element of Cu, Ti, Cr, Ta, Ni, Mo, and Al is added. Ag alloy materials with 0.1-3.0 \ ^% added have been proposed. JP 2005-15893 discloses that a Bi layer and / or a Bi oxide layer is formed on the surface of an Ag alloy containing Bi and / or an interface with another layer on the Ag alloy thin film. An Ag alloy reflective film having a structure has been proposed.
[0007] これらの技術によれば、 Agの凝集は抑えられるものの、硫化の抑制に関しては十 分な効果が得られず、保護コート無しで反射膜として使用するには不十分である。  [0007] According to these techniques, although aggregation of Ag can be suppressed, a sufficient effect cannot be obtained with respect to suppression of sulfidation, and it is insufficient for use as a reflection film without a protective coating.
[0008] 一方、耐硫化性につ!/、ては、 Agは電気接点材料や装飾膜として使用されるため、 この分野で合金化や多層膜化などにより様々な改善がなされている。例えば、特開 昭 55— 85646号公報では、 Agに Pd、 Pt、 Auの内 2種類以上を合計 10〜60wt%含有 することを特徴とする合金が開示されており、また、特開平 5— 47251号公報には、 A g-Sn合金層の表面に Auまたは Au合金を 10〜200nmの厚さで形成する耐硫化性に優 れた合金膜構造が開示されている。これらの合金または合金膜は、耐硫化性につい ては優れた特性を示す力 S、前者については、添加量が少ないと硫化による反射率低 下を十分に抑えることができず、また、添加量が多いと硫化による反射率低下は抑制 される力 反射膜の色が黄色くなつたり、反射率が A1よりも低くなり初期の反射特性 が悪くなるという問題があった。また、特開 2005— 48231号公報では、 Ag-Bト Sn合 金や Ag-Bi-Au合金膜等の記載がある。これらの合金は耐凝集性ゃ耐硫化性を改善 はしているものの、実施例にもあるように耐硫化試験では反射率が 10%以上低下し ており、照明器具や自動車用の反射膜として用いるには特性が不十分である。 特許文献 1 :特開 2001— 226765号公報  [0008] On the other hand, since Ag is used as an electrical contact material or a decorative film, various improvements have been made in this field by alloying or multilayering. For example, Japanese Patent Laid-Open No. 55-85646 discloses an alloy characterized in that Ag contains a total of 10 to 60 wt% of Pd, Pt, and Au among Pd, Pt, and Au. Japanese Patent No. 47251 discloses an alloy film structure excellent in sulfidation resistance in which Au or an Au alloy is formed in a thickness of 10 to 200 nm on the surface of an Ag-Sn alloy layer. These alloys or alloy films have excellent resistance to sulfidation S, and for the former, if the amount added is too small, the decrease in reflectance due to sulfidation cannot be sufficiently suppressed. When there is a large amount, the reflectivity drop due to sulfidation is suppressed. There are problems that the color of the reflective film turns yellow or the reflectivity is lower than A1 and the initial reflection characteristics deteriorate. Japanese Patent Application Laid-Open No. 2005-48231 describes an Ag—B to Sn alloy, an Ag—Bi—Au alloy film, and the like. Although these alloys have improved cohesion resistance and sulfidation resistance, as shown in the examples, the reflectance decreased by 10% or more in the sulfidation resistance test, and as a reflective film for lighting fixtures and automobiles. The properties are insufficient for use. Patent Document 1: Japanese Patent Laid-Open No. 2001-226765
特許文献 2:特開 2005— 15893号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-15893
特許文献 3 :特開昭 55— 85646号公報  Patent Document 3: Japanese Patent Laid-Open No. 55-85646
特許文献 4:特開平 5— 47251号公報  Patent Document 4: JP-A-5-47251
特許文献 5 :特開 2005— 48231号公報  Patent Document 5: JP-A-2005-48231
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明はこのような事情に着目してなされたものであって、その目的は、初期反射率 が Al並の 88%以上であり、かつ、耐凝集性及び耐硫化性に優れた Ag合金薄膜およ びこの Ag合金薄膜の形成用の Ag合金スパッタリングターゲットを提供しょうとするもの である。 [0009] The present invention has been made paying attention to such a situation, and the purpose thereof is the initial reflectance. The aim is to provide an Ag alloy thin film with an Al content of 88% or more, comparable to that of Al, and excellent in aggregation resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy thin film.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成する に至った。本発明によれば上記目的を達成することができる。 [0010] As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.
[0011] このようにして完成され上記目的を達成することができた本発明は、 Ag合金薄膜お よびこの Ag合金反射膜の形成用の Ag合金スパッタリングターゲットに係わり、特許請 求の範囲の請求項 1記載の Ag合金反射膜 (本発明に係る Ag合金反射膜)、請求項 2 記載の Ag合金スパッタリングターゲットであり、それは次のような構成としたものである The present invention thus completed and capable of achieving the above object relates to an Ag alloy thin film and an Ag alloy sputtering target for forming this Ag alloy reflective film, and claims in the scope of patent claims. The Ag alloy reflective film according to Item 1 (Ag alloy reflective film according to the present invention) and the Ag alloy sputtering target according to Claim 2, which are configured as follows.
Yes
[0012] 即ち、請求項 1記載の Ag合金薄膜は、 Auまたは Au、 Bi、 Snの 2種以上を含有する A g合金薄膜であって、下記式 (1)〜(3)を満足すると共に、 130〜200°Cの不活性ガス雰 囲気中で熱処理されていることを特徴とする Ag合金薄膜である〔第 1発明〕。但し、下 記式 (1)〜(3)において、 [Bi]は Bi含有量 (原子%)、 [Au]は Au含有量 (原子%)、 [Sn] は Sn含有量 (原子%)を示すものである。  That is, the Ag alloy thin film according to claim 1 is an Ag alloy thin film containing two or more of Au, Au, Bi, and Sn, and satisfies the following formulas (1) to (3): An Ag alloy thin film characterized by being heat-treated in an inert gas atmosphere at 130 to 200 ° C. [first invention]. However, in the following formulas (1) to (3), [Bi] is the Bi content (atomic%), [Au] is the Au content (atomic%), and [Sn] is the Sn content (atomic%). It is shown.
[0013] 5.28[Bi] + 0.15[Au] + 1.14[Sn]≤8.7 式 (1)  [0013] 5.28 [Bi] + 0.15 [Au] + 1.14 [Sn] ≤8.7 Equation (1)
1.0≤10[Bi] + [Au] 式 (2)  1.0≤10 [Bi] + [Au] Equation (2)
2.0≤[Sn] + 2[Au]4 式 (3) 2.0≤ [Sn] + 2 [Au] 4 formulas (3)
[0014] 請求項 2記載の Ag合金スパッタリングターゲットは、請求項 1記載の Ag合金薄膜の 形成用の Ag合金スパッタリングターゲットであって、 Auまたは Au、 Bi、 Snの 2種以上を 含有すると共に、下記式 (4)〜(6)を満足することを特徴とする Ag合金スパッタリングタ 一ゲットである〔第 2発明〕。但し、下記式 (4)〜(6)において、 [Bi]は Bi含有量 (原子%) 、 [Au]は Au含有量 (原子%)、 [Sn]は Sn含有量 (原子%)を示すものである。  [0014] An Ag alloy sputtering target according to claim 2 is an Ag alloy sputtering target for forming an Ag alloy thin film according to claim 1, and contains two or more of Au, Au, Bi, and Sn, An Ag alloy sputtering target satisfying the following formulas (4) to (6) [second invention]. However, in the following formulas (4) to (6), [Bi] represents Bi content (atomic%), [Au] represents Au content (atomic%), and [Sn] represents Sn content (atomic%). Is.
[0015] 2.64[Bi] + 0.15[Au] + 1.14[Sn]≤8.7 式 (4)  [0015] 2.64 [Bi] + 0.15 [Au] + 1.14 [Sn] ≤8.7 Equation (4)
1.0≤5[Bi] + [Au] 式 (5)  1.0≤5 [Bi] + [Au] Equation (5)
2.0≤[Sn] + 2[Au]4 式 (6) 2.0≤ [Sn] + 2 [Au] 4 formulas (6)
発明の効果 [0016] 本発明に係る Ag合金薄膜は、初期反射率が 88%以上であり、かつ、耐凝集性及 び耐硫化性に優れている。このため、保護コートが無くても反射膜として好適に用い ること力 Sでさる。 The invention's effect [0016] The Ag alloy thin film according to the present invention has an initial reflectance of 88% or more, and is excellent in aggregation resistance and sulfidation resistance. For this reason, even if there is no protective coating, it can be used with a force S that can be suitably used as a reflective film.
[0017] 本発明に係る Ag合金スパッタリングターゲットによれば、かかる Ag合金反射膜を形 成すること力 Sできる。即ち、本発明に係る Ag合金スパッタリングターゲットを用いて Ag 合金反射膜を形成し、これを 130〜200°Cの不活性ガス雰囲気中で熱処理することに より、本発明に係る Ag合金薄膜を得ることができる。  [0017] According to the Ag alloy sputtering target of the present invention, the force S for forming such an Ag alloy reflective film can be achieved. That is, an Ag alloy reflective film is formed using the Ag alloy sputtering target according to the present invention, and this is heat-treated in an inert gas atmosphere at 130 to 200 ° C. to obtain an Ag alloy thin film according to the present invention. be able to.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 l]Ag-Au合金薄膜についての Au組成と硫化試験前後の反射率との関係を示す 図である。  [0018] FIG. 1 is a graph showing the relationship between the Au composition and the reflectance before and after the sulfidation test for an Ag—Au alloy thin film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] Agの凝集抑制については、これまでに開示されている Auや Biの添加で十分な効果 が得られているが、問題は耐硫化性の改善である。例えば、特開昭 55— 85646号 公報では Pd, Pt, Auを添加して耐硫化性を改善することが提案されている力 例えば Pdは Ag中に 4at% (略 4wt%)以上添加すると反射率が 88%以下となってしまうため、 Agの凝集抑制効果が得られる組成まで添加することができな!/、。また、 Auを添加した スパッタリング法で成膜した Ag合金薄膜の場合は、図 1に示すように、 0.01Mの Na S 水溶液に 30分浸漬する硫化試験では、純 Agに比べると Auを添加することにより確か に硫化が低減されて反射率の低下が改善されるが、 88%以上の反射率を維持する ためには約 30at% (略 44wt%)添加しなければならず、多量の Auを必要とするため 高価になってしまう。また、特開平 2005— 48231号公報に開示の Ag-Bト Sn合金や Ag-Bi-Au合金は、 Biの効果で耐凝集性は優れるものの、耐硫化性については、 Sn や Auの添加量が少ないために効果はあるものの十分ではなぐ 88%以上の反射率 を維持することができない。  [0019] Regarding the suppression of Ag aggregation, sufficient effects have been obtained by the addition of Au and Bi disclosed so far, but the problem is the improvement of sulfidation resistance. For example, JP-A-55-85646 proposes the addition of Pd, Pt, and Au to improve sulfidation resistance. For example, Pd is reflected when added at 4at% (approximately 4wt%) or more in Ag. Since the rate becomes 88% or less, it is impossible to add even a composition that can prevent the aggregation of Ag! /. In addition, in the case of an Ag alloy thin film formed by sputtering with Au added, as shown in Fig. 1, in the sulfidation test immersed in 0.01M Na S aqueous solution for 30 minutes, Au is added compared to pure Ag. This will certainly reduce sulfidation and improve the decrease in reflectivity, but in order to maintain a reflectivity of 88% or higher, it is necessary to add approximately 30 at% (approximately 44 wt%), and a large amount of Au is added. It becomes expensive because it is necessary. In addition, Ag-B to Sn alloy and Ag-Bi-Au alloy disclosed in Japanese Patent Application Laid-Open No. 2005-48231 are excellent in aggregation resistance due to the effect of Bi. This is effective because it is small, but it cannot maintain a reflectance of 88% or more.
[0020] そこで、本発明者らは鋭意検討した結果、 Au、 Snの 1種以上を含有する Ag合金薄 膜を不活性ガス雰囲気中で 130〜200°Cで加熱処理することにより、耐硫化性が大幅 に向上することを見出した。  [0020] Therefore, as a result of intensive studies, the inventors of the present invention have found that an Ag alloy thin film containing one or more of Au and Sn is heat-treated at 130 to 200 ° C in an inert gas atmosphere, thereby being resistant to sulfidation. We found that the performance is greatly improved.
[0021] この耐硫化性向上の理由は、はっきりとはわからないが、 Snを含有する場合は、上 記加熱処理により、 Ag合金薄膜の表面の Sn濃度が膜中の Snの平均濃度よりも高くな つており、これ力 Sバリアとなってィォゥの侵入が抑制されたものと考えられる。一方、 A uを含有する場合は、上記加熱処理によって Ag合金薄膜の表面での Auの濃化等の Auの組成に変化は見られず、 Snを含有する場合とは異なるメカニズムによりィォゥの 侵入が抑えられて!/、ると考えられる。 [0021] The reason for this improvement in sulfidation resistance is not clear, but when Sn is contained, As a result of the heat treatment, the Sn concentration on the surface of the Ag alloy thin film is higher than the average concentration of Sn in the film. On the other hand, when Au is contained, there is no change in the Au composition such as Au concentration on the surface of the Ag alloy thin film due to the above heat treatment. Is thought to be suppressed! /.
[0022] Biと Auは従来技術にもあるように、ハロゲンイオンによる凝集を抑える効果がある。 [0022] Bi and Au have an effect of suppressing aggregation due to halogen ions, as in the prior art.
[0023] 従って、 Auまたは Au、 Bi、 Snの 2種以上を含有する Ag合金薄膜を 130〜200°Cの不 活性ガス雰囲気中で加熱処理すると、耐凝集性および耐硫化性に優れたものとなる[0023] Therefore, when an Ag alloy thin film containing two or more of Au, Au, Bi, and Sn is heat-treated in an inert gas atmosphere at 130 to 200 ° C, it has excellent agglomeration resistance and sulfidation resistance. Become
Yes
[0024] 即ち、この Ag合金薄膜は、 (A) Bi、 Snを含有せず、 Auを含有する場合と、(B) Au、 Bi 、 Snの 2種以上を含有する場合とがあり、前者 (A)の場合は、 Au含有による耐凝集性 向上効果 (以下、 Auの耐凝集性向上効果という)と、 Au含有材の不活性ガス雰囲気 中での 130〜200°C加熱処理による耐硫化性向上効果(以下、 Au +熱処理の耐硫化 性向上効果という)とを奏し、耐凝集性および耐硫化性に優れたものとなる。  That is, this Ag alloy thin film may contain (A) Bi and Sn but not Au, and (B) may contain two or more of Au, Bi and Sn. In the case of (A), the effect of improving the aggregation resistance due to the inclusion of Au (hereinafter referred to as the effect of improving the resistance to aggregation of Au) and the resistance to sulfidation by heat treatment at 130 to 200 ° C in an inert gas atmosphere of the Au-containing material Effect (hereinafter referred to as the effect of improving the sulfidation resistance of Au + heat treatment), and has excellent agglomeration resistance and sulfidation resistance.
[0025] 後者 (B)の場合は、 (1) Snを含有せず、 Au、 Biを含有する場合と、(2) Biを含有せず、 Au、 Snを含有する場合と、 (3) Auを含有せず、 Bi、 Snを含有する場合と、(4) Au、 Bi、 S nを含有する場合とがある。この中、(1)の場合は、 Auの耐凝集性向上効果と、 Bi含有 による耐凝集性向上効果(以下、 Biの耐凝集性向上効果という)と、 Au +熱処理の耐 硫化性向上効果とを奏し、耐凝集性および耐硫化性に優れたものとなる。(2)の場合 は、 Auの耐凝集性向上効果と、 Au +熱処理の耐硫化性向上効果と、 Sn含有材の不 活性ガス雰囲気中での 130〜200°C加熱処理による耐硫化性向上効果(以下、 Sn + 熱処理の耐硫化性向上効果とレ、う)とを奏し、耐凝集性および耐硫化性に優れたも のとなる。(3)の場合は、 Biの耐凝集性向上効果と、 Sn +熱処理の耐硫化性向上効果 とを奏し、耐凝集性および耐硫化性に優れたものとなる。(4)の場合は、 Auの耐凝集 性向上効果と、 Biの耐凝集性向上効果と、 Au +熱処理の耐硫化性向上効果と、 Sn +熱処理の耐硫化性向上効果とを奏し、耐凝集性および耐硫化性に優れたものとな  [0025] In the case of the latter (B), (1) the case of not containing Sn, and containing Au and Bi, and (2) the case of not containing Bi, and containing Au and Sn, and (3) There are cases in which Au is not contained and Bi and Sn are contained, and (4) Au, Bi and Sn are contained. Among these, in the case of (1), the effect of improving the aggregation resistance of Au, the effect of improving the aggregation resistance due to the inclusion of Bi (hereinafter referred to as the effect of improving the aggregation resistance of Bi), and the effect of improving the sulfidation resistance of Au + heat treatment And has excellent resistance to aggregation and sulfidation. In the case of (2), the effect of improving the aggregation resistance of Au, the effect of improving the sulfidation resistance of Au + heat treatment, and the improvement of sulfidation resistance by heat treatment at 130 to 200 ° C in an inert gas atmosphere of Sn-containing material The effect (hereinafter referred to as the effect of improving the sulfidation resistance of the Sn + heat treatment and the repellency) is obtained, and the flocculation resistance and the sulfidation resistance are excellent. In the case of (3), the effect of improving the aggregation resistance of Bi and the effect of improving the sulfidation resistance of Sn + heat treatment are exhibited, and the aggregation resistance and sulfidation resistance are excellent. In the case of (4), the effect of improving the aggregation resistance of Au, the effect of improving the aggregation resistance of Bi, the effect of improving the sulfidation resistance of Au + heat treatment, and the effect of improving the sulfidation resistance of Sn + heat treatment are exhibited. Excellent cohesion and sulfidation resistance
[0026] このとき、添加元素(Auまたは Au、 Bi、 Snの 2種以上)の量は、前記式 (1)〜(3)を満 足することが必要である。 [0026] At this time, the amount of the additive element (two or more of Au, Au, Bi, Sn) satisfies the above formulas (1) to (3). It is necessary to add.
[0027] 即ち、 Auの耐凝集性向上効果および/または Biの耐凝集性向上効果を奏するに は、前記式 (2)を満足することが必要である。この式 (2)を満足すれば、耐凝集性向上 効果を奏して耐凝集性に優れたものとなる。この式 (2)での変数は [Au]、 [Bi]である。 A u、 Biの中、 Auだけを添加する場合は、 1.0原子% (以下、 at%ともいう)以上の添加が 必要であり、 Biだけを添加する場合は、 0.1at%以上の添加が必要であるが、 Auおよ び Biを添加する場合は、例えば Auが 0.5 at%でも、 Biを 0.05at%以上添加すれば耐 凝集性向上効果を奏して耐凝集性に優れたものとなる。  That is, in order to exhibit the effect of improving the anti-aggregation property of Au and / or the effect of improving the anti-aggregation property of Bi, it is necessary to satisfy the above formula (2). If this formula (2) is satisfied, the anti-agglomeration effect is improved and the anti-agglomeration property is excellent. The variables in this equation (2) are [Au] and [Bi]. When adding only Au among Au and Bi, addition of 1.0 atomic% (hereinafter also referred to as at%) or more is required. When adding only Bi, addition of 0.1 at% or more is required. However, when Au and Bi are added, for example, even if Au is 0.5 at%, if 0.05 at% or more of Bi is added, the anti-aggregation effect is improved and the anti-agglomeration resistance is excellent.
[0028] Au +熱処理の耐硫化性向上効果および/または Sn +熱処理の耐硫化性向上効 果を奏するには、前記式 (3)を満足することが必要である。この式 (3)を満足すれば、 上記の耐硫化性向上効果を奏して耐硫化性に優れたものとなる。この式 (3)での変数 は [Au]、 [Sn]である。 Au、 Snの中、 Snだけを添加する場合は、 2.0at%以上の添加が 必要であり、 Auだけを添加する場合は、 1.0at%以上の添加が必要である力 S、 Snおよ び Auを添加する場合は、例えば Snを 1.9at%添加する場合には、 Auを 0.5at%以上添 加すれば耐硫化性向上効果を奏して耐硫化性に優れたものとなる。  [0028] In order to achieve the effect of improving the sulfidation resistance of the Au + heat treatment and / or the effect of improving the sulfidation resistance of the Sn + heat treatment, it is necessary to satisfy the above formula (3). If this formula (3) is satisfied, the above-mentioned effect of improving the sulfidation resistance is achieved and the sulfidation resistance is excellent. The variables in this equation (3) are [Au] and [Sn]. When adding only Sn among Au and Sn, it is necessary to add 2.0at% or more, and when adding only Au, it is necessary to add 1.0at% or more S, Sn and When adding Au, for example, when adding 1.9 at% of Sn, adding 0.5 at% or more of Au provides an effect of improving sulfidation resistance and excellent sulfidation resistance.
[0029] これらの添加元素(Auまたは Au、 Bi、 Snの 2種以上)は、その添加量(含有量)の増 大に伴って Ag合金薄膜の耐凝集性、耐硫化性は向上するが、一方で、反射率は低 下する。このため、添加量には制限があり、 88%以上の反射率を得るためには、前 記式 (1)を満足することが必要である。  [0029] These additive elements (two or more of Au, Au, Bi, and Sn) improve the aggregation resistance and sulfidation resistance of the Ag alloy thin film as the addition amount (content) increases. On the other hand, the reflectivity decreases. For this reason, the amount of addition is limited, and in order to obtain a reflectance of 88% or more, it is necessary to satisfy the above formula (1).
[0030] 以上のことに基づき、本発明に係る Ag合金薄膜は、 Auまたは Au、 Bi、 Snの 2種以上 を含有する Ag合金薄膜であって、前記式 (1)〜(3)を満足すると共に、 130〜200°Cの 不活性ガス雰囲気中で熱処理されていることを特徴とする Ag合金薄膜としている。従 つて、この Ag合金薄膜は、初期反射率が 88%以上であり、かつ、耐凝集性及び耐硫 化性に優れている。このため、保護コートが無くても反射膜として好適に用いることが できる。なお、 Auまたは Au、 Bi、 Snの 2種以上を含有する Ag合金薄膜とは、 Auを含有 する Ag合金薄膜または Au、 Bi、 Snの 2種以上を含有する Ag合金薄膜のことである。 A u、 Bi、 Snの 2種以上を含有する Ag合金薄膜には、 Au、 Biを含有する Ag合金薄膜、 Au 、 Snを含有する Ag合金薄膜、 Bi、 Snを含有する Ag合金薄膜、 Au、 Bi、 Snを含有する A g合金薄膜がある。これらは、 Auまたは Snを必ず含有し、この中、 Auを含有せず、 Sn を含有する場合は Biを必ず含有するものとなって!/、る。 Based on the above, the Ag alloy thin film according to the present invention is an Ag alloy thin film containing two or more of Au, Au, Bi, and Sn, and satisfies the above formulas (1) to (3) In addition, the Ag alloy thin film is characterized by being heat-treated in an inert gas atmosphere at 130 to 200 ° C. Therefore, this Ag alloy thin film has an initial reflectance of 88% or more, and is excellent in aggregation resistance and sulfation resistance. For this reason, even if there is no protective coat, it can be suitably used as a reflective film. The Ag alloy thin film containing two or more of Au, Au, Bi, and Sn is an Ag alloy thin film containing Au or an Ag alloy thin film containing two or more of Au, Bi, and Sn. Ag alloy thin film containing Au, Bi, Sn, Ag alloy thin film containing Au, Bi, Ag alloy thin film containing Au, Sn, Ag alloy thin film containing Bi, Sn, Au A containing Bi, Sn There is a g alloy thin film. These always contain Au or Sn. Of these, when Au is not contained, and Sn is contained, Bi must be contained! /.
[0031] ここで、不活性ガス雰囲気の温度: 130 200°C (即ち、不活性ガス雰囲気中での熱 処理の温度: 130 200°C)としているのは、この温度が 130°Cよりも低いと、 Au +熱処 理の耐硫化性向上効果や、 Sn +熱処理の耐硫化性向上効果を奏することができず 200°Cよりも高いと、熱処理時に熱による凝集が発生し、このため反射率が 88%未 満となってしまうからである。なお、上記熱処理の温度: 130 200°Cにおいて、熱処 理温度が低い場合は熱処理時間を長くすることが好ましい。例えば、 130°Cの場合は 12時間以上、 150°Cの場合は 1時間以上とすればよい。 200°Cの場合は 10分間以上 熱処理すればよい。 [0031] Here, the temperature of the inert gas atmosphere: 130 200 ° C (that is, the temperature of the heat treatment in the inert gas atmosphere: 130 200 ° C) is that this temperature is higher than 130 ° C. If it is low, the effect of improving the sulfidation resistance of the Au + heat treatment and the effect of improving the sulfidation resistance of the Sn + heat treatment cannot be achieved, and if it is higher than 200 ° C, heat aggregation occurs during the heat treatment. This is because the reflectance is less than 88%. When the heat treatment temperature is 130 ° C. and the heat treatment temperature is low, it is preferable to lengthen the heat treatment time. For example, it may be 12 hours or longer at 130 ° C and 1 hour or longer at 150 ° C. If it is 200 ° C, it should be heat-treated for 10 minutes or longer.
[0032] 熱処理の雰囲気を不活性ガス雰囲気としているのは、これ以外の雰囲気(例えば 大気や酸素雰囲気、真空雰囲気)とした場合は、熱処理しないものと殆ど差が無ぐ Au +熱処理の耐硫化性向上効果や、 Sn +熱処理の耐硫化性向上効果を奏すること ができないからである。即ち、熱処理の雰囲気としては不活性ガス雰囲気とした場合 のみ、 Au +熱処理の耐硫化性向上効果や Sn +熱処理の耐硫化性向上効果を奏す ること力 Sでき、耐硫化性に優れたものが得られるからである。なお、不活性ガスは、窒 素ガスやアルゴンガス等の希ガスである。不活性ガス雰囲気は、例えば窒素ガス雰 囲気、アルゴンガス雰囲気、窒素ガスとアルゴンガスの混合ガス雰囲気である。真空 雰囲気は不活性ガス雰囲気ではなレ、。  [0032] The atmosphere of the heat treatment is an inert gas atmosphere. When other atmospheres (for example, air, oxygen atmosphere, vacuum atmosphere) are used, there is almost no difference from those without heat treatment. This is because it is not possible to achieve the effect of improving the resistance and the effect of improving the sulfidation resistance of the Sn + heat treatment. In other words, only when an inert gas atmosphere is used as the heat treatment atmosphere, the effect of improving the sulfidation resistance of Au + heat treatment and the improvement of sulfidation resistance of Sn + heat treatment can be achieved. This is because The inert gas is a rare gas such as nitrogen gas or argon gas. The inert gas atmosphere is, for example, a nitrogen gas atmosphere, an argon gas atmosphere, or a mixed gas atmosphere of nitrogen gas and argon gas. The vacuum atmosphere is not an inert gas atmosphere.
[0033] 本発明に係る Ag合金薄膜の膜厚は、 100 以上であることが望ましい。膜厚が 100 nm未満の場合、可視光が完全に反射されずに透過成分が発生するからである。より 好ましくは 120nm以上、更に好ましくは 150nm以上である。  [0033] The thickness of the Ag alloy thin film according to the present invention is desirably 100 or more. This is because when the film thickness is less than 100 nm, visible light is not completely reflected and a transmission component is generated. More preferably, it is 120 nm or more, and further preferably 150 nm or more.
[0034] 本発明に係る Ag合金薄膜を作製するためのスパッタリングターゲットの組成は、 Bi を除き膜組成と同じにすればよい。これは、 Snや Auについてはターゲットとほぼ同じ 組成 (含有量)の膜が形成されるからである。一方、 Biは、ターゲットでの組成 (含有 量)よりも膜中の組成が低くなる。これは、成膜中に Biが膜中から再蒸発するためと考 えられる。このため、膜中の Bi組成よりもターゲット中の Bi組成を高くしておく必要があ る。 Biの膜中の収率は成膜条件や成膜装置により異なる力 S、ターゲット中の Bi組成は 、膜中組成の 2倍以上であることが望ましい。従って、本発明に係る Ag合金薄膜を作 製するためのスパッタリングターゲットの組成は、前記式 (4)〜(6)を満足すればよい。 [0034] The composition of the sputtering target for producing the Ag alloy thin film according to the present invention may be the same as the film composition except for Bi. This is because a film having the same composition (content) as Sn is formed for Sn and Au. On the other hand, Bi has a lower composition in the film than the composition (content) in the target. This is thought to be because Bi re-evaporates from the film during film formation. For this reason, it is necessary to make the Bi composition in the target higher than the Bi composition in the film. The yield of Bi in the film varies depending on the deposition conditions and deposition equipment S, and the Bi composition in the target is It is desirable that it is at least twice the composition in the film. Therefore, the composition of the sputtering target for producing the Ag alloy thin film according to the present invention should satisfy the above formulas (4) to (6).
[0035] 力、かる点に基づき、本発明に係る Ag合金薄膜の形成用のスパッタリングターゲット は、 Auまたは Au、 Bi、 Snの 2種以上を含有すると共に、前記式 (4)〜(6)を満足すること を特徴とする Ag合金よりなるスパッタリングターゲット (Ag合金スパッタリングターゲット )としている。この Ag合金スパッタリングターゲットによれば、本発明に係る Ag合金薄 膜を形成すること力できる。即ち、この Ag合金スパッタリングターゲットを用いて Ag合 金反射膜を形成し、これを 130〜200°Cの不活性ガス雰囲気中で熱処理することによ り、本発明に係る Ag合金薄膜を得ることができる。 [0035] Based on the force and the point, the sputtering target for forming an Ag alloy thin film according to the present invention contains two or more of Au, Au, Bi, Sn and the above formulas (4) to (6) A sputtering target made of an Ag alloy (Ag alloy sputtering target) characterized by satisfying According to this Ag alloy sputtering target, it is possible to form an Ag alloy thin film according to the present invention. That is, an Ag alloy thin film according to the present invention is obtained by forming an Ag alloy reflective film using this Ag alloy sputtering target and heat-treating it in an inert gas atmosphere at 130 to 200 ° C. Can do.
実施例  Example
[0036] 本発明の実施例および比較例について、以下説明する。なお、本発明はこの実施 例に限定されるものではなぐ本発明の趣旨に適合し得る範囲で適当に変更を加え て実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。  [0036] Examples and comparative examples of the present invention will be described below. It should be noted that the present invention is not limited to these examples, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which fall within the technical scope of the present invention. included.
[0037] 〔例 1〕  [0037] [Example 1]
DCマグネトロンスパッタリング装置を用いて、直径 2インチ(5.08cm)、厚さ 0.7mmの ガラス基板(コーユング # 1737)上に厚さ lOOnmの種々の組成の Ag-Au合金薄膜、 Ag -Au-Sn合金薄膜、 Ag薄膜を成膜した。このとき、スパッタリングターゲットとしては、種 々の組成の Ag合金スパッタリングターゲットを用いた。成膜条件は、基板温度:室温、 Arガス圧:;!〜
Figure imgf000010_0001
133〜0.399?&)、極間距離:550101、成膜速度: 7〜8nm/s とした。成膜前の到達真空度は 1 X 10— 5torr (1.33 X 10— 3Pa)以下であった。
Ag-Au-Sn alloy, Ag-Au-Sn alloy with various compositions of lOOnm on a glass substrate (Cowung # 1737) with a diameter of 2 inches (5.08 cm) and a thickness of 0.7 mm using a DC magnetron sputtering system A thin film and an Ag thin film were formed. At this time, Ag alloy sputtering targets having various compositions were used as the sputtering target. Deposition conditions are: substrate temperature: room temperature, Ar gas pressure:;! ~
Figure imgf000010_0001
133-0.399? &), The distance between electrodes: 550101, and the deposition rate: 7-8 nm / s. Ultimate vacuum before film formation was less than 1 X 10- 5 torr (1.33 X 10- 3 Pa).
[0038] このようにして成膜された Ag合金薄膜 (Ag-Au合金薄膜、 Ag-Au-Sn合金薄膜)およ び Ag薄膜について、一部のものを除き、窒素ガス、アルゴンガス、酸素ガス、真空(3 X 10— 6torr (3.99 X 10— 4Pa) )の各種雰囲気で 160°Cで 1時間の熱処理を行った。この 熱処理は、より具体的には次のようにして行った。窒素ガス雰囲気での熱処理の場 合は、先ず、石英管の中に上記 Ag合金薄膜および Ag薄膜を入れ、石英管内を真空 ポンプで 3 X 10— 6torr (3.99 X 10— 4Pa)に引いた後、窒素を石英管内に導入して大気圧 に戻し、その後、石英管内は大気圧のままとして、窒素を 4L (リットル) / minの流量 で流しながら石英管の周りから赤外線により 160°Cに加熱し、この状態を 1時間維持 することにより行った。アルゴンガス雰囲気での熱処理の場合も、酸素ガス雰囲気で の熱処理の場合も、上記窒素ガス雰囲気での熱処理の場合と同様の方法(上記窒 素をアルゴン、酸素に代え、この点を除き同様)で熱処理を行った。真空雰囲気での 熱処理の場合は、石英管の中に Ag合金薄膜および Ag薄膜を入れ、石英管内を真空 ポンプで 3 X 10— 6torr(3.99 X 10— 4Pa)に引いた後、石英管の周りから赤外線により 160 °Cに加熱し、この状態を 1時間維持することにより行った。 [0038] Except for some of the Ag alloy thin films (Ag-Au alloy thin films, Ag-Au-Sn alloy thin films) and Ag thin films formed in this way, nitrogen gas, argon gas, oxygen gas, heat-treated for one hour at 160 ° C in various atmospheres vacuum (3 X 10- 6 torr (3.99 X 10- 4 Pa)) was performed. More specifically, this heat treatment was performed as follows. If the heat treatment in a nitrogen gas atmosphere, first, putting the Ag alloy thin film and Ag thin films in a quartz tube, pulling the quartz tube to 3 X 10- 6 torr with a vacuum pump (3.99 X 10- 4 Pa) After that, nitrogen is introduced into the quartz tube to return to atmospheric pressure, and then the atmospheric pressure in the quartz tube is kept, and nitrogen is flown at a flow rate of 4 L (liter) / min. And maintain this state for 1 hour It was done by doing. In the case of heat treatment in an argon gas atmosphere and in the case of heat treatment in an oxygen gas atmosphere, the same method as in the case of the heat treatment in the above nitrogen gas atmosphere (same as above except that the above nitrogen is replaced with argon and oxygen) A heat treatment was performed. For heat treatment in a vacuum atmosphere, putting Ag alloy thin film and Ag thin films in a quartz tube, after subtraction of the quartz tube to 3 X 10- 6 torr with a vacuum pump (3.99 X 10- 4 Pa), a quartz tube This was carried out by heating to around 160 ° C with infrared rays and maintaining this state for 1 hour.
[0039] このようにして熱処理された Ag合金薄膜および Ag薄膜、並びに、熱処理されていな い Ag合金薄膜および Ag薄膜 (成膜後のもの)について、可視光反射率 (初期反射率 )の測定、耐硫化性評価のための硫化試験、耐凝集性評価のための凝集試験を行 つた。 [0039] Measurement of visible light reflectance (initial reflectance) of Ag alloy thin films and Ag thin films that have been heat-treated in this way, and Ag alloy thin films and Ag thin films (after film formation) that have not been heat-treated A sulfidation test for evaluating sulfidation resistance and an agglomeration test for evaluating flocculation resistance were performed.
[0040] このとき、可視光反射率は、 JIS 3106の方法によって測定した。硫化試験は、 0.01 Mの Na S水溶液に上記薄膜 (Ag合金薄膜、 Ag薄膜)を 30分浸漬した後、この薄膜の 可視光反射率を測定することにより行った。凝集試験は、 60°C、 90RH%の恒温恒湿 試験槽に上記薄膜を入れ、 500時間経過後に、薄膜表面を目視にて観察し、薄膜表 面の白点 (凝集点)の数を測定することにより行った。  [0040] At this time, the visible light reflectance was measured by the method of JIS 3106. The sulfide test was performed by immersing the thin film (Ag alloy thin film, Ag thin film) in 0.01 M Na S aqueous solution for 30 minutes and then measuring the visible light reflectance of the thin film. In the agglomeration test, the above thin film is placed in a constant temperature and humidity test bath at 60 ° C and 90RH%, and after 500 hours, the surface of the thin film is visually observed and the number of white spots (aggregation points) on the thin film surface is measured. It was done by doing.
[0041] 上記 Ag合金薄膜の合金組成、式 (1)の左辺(5.28[Bi] + 0.15[Au] + 1.14[Sn]≤8.7) の値、式 (2)の右辺(10[Bi] + [Au])の値、式 (3)の右辺([Sn] + 2[Au]4)の値、及び、成 膜後のもの(熱処理されてレ、な!/、)につ!/、ての反射率 (初期反射率)の測定結果を表 1に示す。成膜後のもの(熱処理されてレ、な!/、)につ!/、ての反射率 (初期反射率)、硫 化試験結果 (硫化試験後の反射率)、及び、凝集試験結果〔凝集試験 (恒温恒湿試 験)後の白点発生数〕を表 2に示す。各雰囲気での熱処理後のものについての硫化 試験前の反射率の測定結果、硫化試験結果 (硫化試験後の反射率)、及び、凝集試 験結果〔凝集試験 (恒温恒湿試験)後の白点発生数〕を表 3〜6に示す。なお、表;!〜 6において、番号 1のものは Ag合金薄膜ではなぐ Ag薄膜についての結果を示すも のである。 [0041] Alloy composition of the above Ag alloy thin film, the value of the left side of equation (1) (5.28 [Bi] + 0.15 [Au] + 1.14 [Sn] ≤8.7), the right side of equation (2) (10 [Bi] + The value of [Au]), the right side of equation (3) ([Sn] + 2 [Au] 4 ), and the post-deposition (heat-treated les! /,)! /, Table 1 shows the measurement results of the reflectance (initial reflectance). After film formation (heat-treated, re-!,)! /, Reflectivity (initial reflectivity), sulfurization test result (reflectance after sulfurization test), and agglomeration test result [ Table 2 shows the number of white spots generated after the agglomeration test (constant temperature and humidity test). Measurement results of reflectance before sulfidation test, heat treatment in each atmosphere, sulfidation test result (reflectance after sulfidation test), and agglomeration test result [white after agglomeration test (constant temperature and humidity test) The number of points generated] is shown in Tables 3-6. In Tables! To 6, the number 1 indicates the results for the Ag thin film that is not the Ag alloy thin film.
[0042] 表 1からわかるように、成膜後の Ag合金薄膜 (熱処理されていない)の中、番号 13 のものは、式 (1)の左辺の値力 .7を超え、式 (1)を満たしていないため、初期反射率が 88%を下回っている。従って、番号 13の Ag合金薄膜については、以後熱処理及び 評価試験は実施しなレ、こととした。 [0042] As can be seen from Table 1, among the Ag alloy thin films after film formation (not heat-treated), those with the number 13 exceeded the value power .7 on the left side of the equation (1), and the equation (1) The initial reflectance is below 88% because the above is not satisfied. Therefore, for the Ag alloy thin film of No. 13, the heat treatment and The evaluation test was not conducted.
[0043] 表 2からわかるように、成膜後の Ag合金薄膜 (熱処理されていない)は、 Ag薄膜に比 ベると、 Auや Snの添加により耐硫化性は向上しているものの、硫化試験後に全て反 射率が 88%未満に低下している(耐硫化性が十分でない)。また、 Au含有量が 1. Oat %未満である番号 2, 10, 14のものは、白点の発生を十分抑えきれていない(耐凝集 性が十分でない)。 [0043] As can be seen from Table 2, the Ag alloy thin film (not heat-treated) after film formation has improved sulfidation resistance due to the addition of Au and Sn compared to the Ag thin film, but it is not sulfurized. After the test, the reflectivity has decreased to less than 88% (sulfuration resistance is not sufficient). In addition, those with numbers 2, 10, and 14 with an Au content of less than 1. Oat% have not sufficiently suppressed the occurrence of white spots (coagulation resistance is not sufficient).
[0044] 表 3〜4からわかるように、窒素雰囲気中で熱処理した Ag合金薄膜、アルゴン雰囲 気中で熱処理した Ag合金薄膜については、番号 2と 14のものは式 (3)を満足しないた め、硫化試験後に反射率が 88%を下回った。また、番号 2, 10, 14のものは式 (2)を 満足しないため、白点が発生しており、耐凝集性が十分でない。これに対し、番号 3 〜9、 11〜; 12のもの(本発明例)は、硫化試験後の反射率は 88%以上であり、白点 発生もなく、耐硫化性および耐凝集性に優れて!/ヽる。  [0044] As can be seen from Tables 3 to 4, for Ag alloy thin films heat-treated in a nitrogen atmosphere and Ag alloy thin films heat-treated in an argon atmosphere, those with numbers 2 and 14 do not satisfy equation (3) Therefore, the reflectivity was below 88% after the sulfidation test. In addition, those with numbers 2, 10, and 14 do not satisfy the formula (2), and therefore white spots are generated and the aggregation resistance is not sufficient. On the other hand, those with numbers 3 to 9, 11 to 12 (examples of the present invention) had a reflectance of 88% or more after the sulfidation test, had no white spots, and had excellent sulfidation resistance and aggregation resistance. Talk!
[0045] 表 5からわかるように、酸素雰囲気中で熱処理した Ag合金薄膜については、番号 1 0, 14のものは熱処理後硫化試験前の反射率が 88%を下回っている。これ以外のも のは硫化試験により反射率が 88%未満に低下しており、耐硫化性に劣っている。  [0045] As can be seen from Table 5, regarding the Ag alloy thin films heat-treated in an oxygen atmosphere, the numbers 10 and 14 have a reflectance of less than 88% after the heat treatment and before the sulfidation test. Other than this, the reflectivity decreased to less than 88% by the sulfidation test, and the sulfidation resistance was poor.
[0046] 表 6からわかるように、真空雰囲気で熱処理した Ag合金薄膜については、硫化試験 により反射率が 88%未満に低下しており、耐硫化性に劣っている。  [0046] As can be seen from Table 6, the reflectance of the Ag alloy thin film heat-treated in a vacuum atmosphere was lowered to less than 88% by the sulfidation test, and the sulfidation resistance was poor.
[0047] 〔例 2〕  [Example 2]
RFマグネトロンスパッタリング装置を用いて、直径 2インチ(5.08cm)、厚さ 0.7mmの ガラス基板(コーユング # 1737)上に厚さ lOOnmの種々の組成の Ag_Sn合金薄膜、 Ag -Bi-Sn合金薄膜、 Ag-Bi-Sn-Au合金薄膜を成膜した。このとき、成膜条件は、基板温 度:室温、 Arガス圧:;!〜
Figure imgf000012_0001
133〜0.399?&)、極間距離:1000101、成膜速度: 0. 4〜0.5nm/sとした。成膜前の到達真空度は 1 X 10— 5torr(1.33 X 10— 3Pa)以下であつ た。スパッタリングターゲットとしては、表 7に示す組成の Ag合金スパッタリングターグ ットを用いた。なお、これらのターゲットの中、番号 15、 16、 19のものは、式 (5) (1.0≤ 5[Bi] + [Au])を満足しておらず、番号 17のものは式 (6) (2.0≤ [Sn] + 2[Au]4)を満足し ておらず、番号 22のものは式 (4) (2.64[Bi] + 0.15[Au] + 1.14[Sn]≤8.7)を満足して!/ヽ ない。これ以外のターゲット(番号 18、 20、 21、 23、 24のもの)は式 (4)〜(6)を満足し ている。
Using an RF magnetron sputtering system, Ag_Sn alloy thin films, Ag-Bi-Sn alloy thin films with various compositions of lOOnm on a glass substrate (Counging # 1737) with a diameter of 2 inches (5.08 cm) and a thickness of 0.7 mm, An Ag-Bi-Sn-Au alloy thin film was formed. At this time, the film formation conditions are: substrate temperature: room temperature, Ar gas pressure:;
Figure imgf000012_0001
133-0.399? &), The distance between the electrodes: 1000101, and the deposition rate: 0.4-0.5 nm / s. Ultimate vacuum before film formation was filed with 1 X 10- 5 torr (1.33 X 10- 3 Pa) or less. As the sputtering target, an Ag alloy sputtering target having the composition shown in Table 7 was used. Of these targets, those with numbers 15, 16, and 19 do not satisfy equation (5) (1.0≤ 5 [Bi] + [Au]), and those with number 17 have equations (6). (2.0≤ [Sn] + 2 [Au] 4 ) is not satisfied, and the one with number 22 satisfies equation (4) (2.64 [Bi] + 0.15 [Au] + 1.14 [Sn] ≤8.7) No! Other targets (numbers 18, 20, 21, 23, 24) satisfy the formulas (4) to (6). ing.
[0048] このようにして成膜された Ag合金薄膜の組成を表 8に示す。表 8の番号は、同じタ 一ゲット番号のターゲットを用いて成膜されたことを示す。即ち、表 8の番号 15〜24 の Ag合金薄膜は、表 7の番号 15〜24のターゲットを用いて形成されたものである。 表 7および表 8から、膜中の Au、 Sn含有量はターゲット中の Au、 Sn含有量と等しぐ膜 中の Bi含有量はターゲット中の Bi含有量のほぼ 50%であることがわかる。なお、この Biの含有量につ!/、ては、 ICP-質量分析法(セイコーインスツルメンッ社製 SPQ-8000) を用いて定量分析した。具体的には、 lOOmg以上の試料を前処理として硝酸:純水 = 1: 1の水溶液に溶かし、これを 200°Cのホットプレート上で加熱して試料が完全に 溶解したことを確認した後、冷却し分析を行った。  [0048] Table 8 shows the composition of the Ag alloy thin film thus formed. The numbers in Table 8 indicate that deposition was performed using targets with the same target number. That is, the Ag alloy thin films of numbers 15 to 24 in Table 8 were formed using the targets of numbers 15 to 24 in Table 7. From Table 7 and Table 8, it can be seen that the content of Au and Sn in the film is equal to the content of Au and Sn in the target, and the Bi content in the film is almost 50% of the Bi content in the target. . The Bi content was quantitatively analyzed using ICP-mass spectrometry (SPQ-8000 manufactured by Seiko Instruments Inc.). Specifically, a sample of lOOmg or more was dissolved in an aqueous solution of nitric acid: pure water = 1: 1 as a pretreatment, and this was heated on a 200 ° C hot plate to confirm that the sample was completely dissolved. Cooled and analyzed.
[0049] 上記 Ag合金薄膜 (Ag-Sn合金薄膜、 Ag_Bi_Sn合金薄膜、 Ag-Bi_Sn-Au合金薄膜) について、一部のものを除き、窒素ガス、アルゴンガス、酸素ガス、真空(3 X 10ΛΟΓΓ (3.99 X 10— 4Pa) )の各種雰囲気で 160°Cで 1時間の熱処理を行った。この熱処理は 前述の例 1の場合と同様の方法により行った。 [0049] Except for some of the above Ag alloy thin films (Ag-Sn alloy thin film, Ag_Bi_Sn alloy thin film, Ag-Bi_Sn-Au alloy thin film), nitrogen gas, argon gas, oxygen gas, vacuum (3 X 10ΛΟΓΓ ( 3.99 was carried out for 1 hour heat treatment at 160 ° C with X 10- 4 Pa)) various atmospheres. This heat treatment was performed in the same manner as in Example 1 described above.
[0050] このようにして熱処理された Ag合金薄膜、および、熱処理されて!/、な!/、Ag合金薄膜 について、可視光反射率 (初期反射率)の測定、耐硫化性評価のための硫化試験、 耐凝集性評価のための凝集試験を行った。これらの測定、試験は、前述の例 1の場 合と同様の方法により行った。  [0050] For the heat-treated Ag alloy thin film and the heat-treated! /, NA! /, Ag alloy thin film, for the measurement of the visible light reflectance (initial reflectance) and the evaluation of the sulfidation resistance A sulfidation test and an agglomeration test were conducted to evaluate the anti-agglomeration resistance. These measurements and tests were performed in the same manner as in Example 1 above.
[0051] 上記 Ag合金薄膜の合金組成、式 (1)の左辺の値、式 (2)の右辺の値、及び、式 (3)の 右辺の値、並びに、成膜後のもの(熱処理されていない)についての反射率(初期反 射率)の測定結果を表 8に示す。成膜後のもの(熱処理されていない)についての反 射率 (初期反射率)、硫化試験後の反射率、及び、凝集試験 (恒温恒湿試験)後の白 点発生数を表 9に示す。各雰囲気での熱処理後のものについての硫化試験前の反 射率、硫化試験後の反射率、及び、凝集試験 (恒温恒湿試験)後の白点発生数を表 10〜; 13に示す。  [0051] The alloy composition of the Ag alloy thin film, the value on the left side of Equation (1), the value on the right side of Equation (2), the value on the right side of Equation (3), and the value after film formation (heat treated) Table 8 shows the measurement results of the reflectance (initial reflectance). Table 9 shows the reflectivity (initial reflectivity), the reflectivity after the sulfidation test, and the number of white spots after the agglomeration test (constant temperature and humidity test) for the film after film formation (not heat-treated). . Tables 10 to 13 show the reflectivity before the sulfidation test, the reflectivity after the sulfidation test, and the number of white spots after the agglomeration test (constant temperature and humidity test) for those after heat treatment in each atmosphere.
[0052] 表 8からわかるように、成膜後の Ag合金薄膜 (熱処理されていない)の中、番号 22 のものは、式 (1)の左辺の値力 .7を超え、式 (1)を満たしていないため、初期反射率が 88%を下回っている。従って、番号 22の Ag合金薄膜については、以後熱処理及び 評価試験は実施しなレ、こととした。 [0052] As can be seen from Table 8, among the Ag alloy thin films after film formation (not heat-treated), those with the number 22 exceeded the value power .7 on the left side of the equation (1), and the equation (1) The initial reflectance is below 88% because the above is not satisfied. Therefore, for the Ag alloy thin film with the number 22, The evaluation test was not conducted.
[0053] 表 2の Ag薄膜の結果と表 9からわかるように、成膜後の Ag合金薄膜 (熱処理されて いない)は、 Ag薄膜に比べると、 Snや Auの添加により耐硫化性は向上しているものの 、硫化試験後に全て反射率が 88%未満に低下している。  [0053] As can be seen from the results of the Ag thin film in Table 2 and Table 9, the Ag alloy thin film (not heat-treated) after film formation has improved sulfidation resistance due to the addition of Sn and Au compared to the Ag thin film However, the reflectivity has all dropped to less than 88% after the sulfidation test.
[0054] 表 10〜; 11からわかるように、窒素雰囲気中で熱処理した Ag合金薄膜、アルゴン雰 囲気中で熱処理した Ag合金薄膜については、番号 15、 16、 19のものは耐硫化性は 向上しているものの、式 (2)を満足しないため、白点が発生している。また、番号 17の ものは式 (3)を満足しないため、耐硫化性が不十分である。これに対し、番号 18、 20、 21、 23、 24のもの(本発明例)は、硫化試験後も反射率 88%以上を維持しており、 白点発生もなく、耐硫化性および耐凝集性に優れてレ、る。  [0054] As can be seen from Tables 10 to 11, the Ag alloy thin films heat-treated in a nitrogen atmosphere and the Ag alloy thin films heat-treated in an argon atmosphere have improved resistance to sulfidation with numbers 15, 16, and 19. However, white dots are generated because Equation (2) is not satisfied. In addition, No. 17 does not satisfy the formula (3), and therefore has insufficient sulfidation resistance. On the other hand, those with numbers 18, 20, 21, 23, and 24 (examples of the present invention) maintained a reflectance of 88% or more after the sulfidation test, did not generate white spots, and were resistant to sulfidation and aggregation. It has excellent characteristics.
[0055] 表 12からわ力、るように、酸素ガス雰囲気中で熱処理した Ag合金薄膜については、 番号 15、 17、 18、 20、 21のものは熱処理後硫化試験前の反射率が 88%を下回つ ている。番号 16、 19, 23、 24のものは、熱処理後硫化試験前の反射率が 88%以上 である力 S、硫化試験後に反射率が 88%未満に低下しており、耐硫化性に劣っている [0055] As shown in Table 12, the Ag alloy thin films heat-treated in an oxygen gas atmosphere have a reflectance of 88% after heat treatment and before the sulfidation test. Is below. Numbers 16, 19, 23, and 24 have a force S that the reflectivity after heat treatment and before the sulfidation test is 88% or more, and the reflectivity has decreased to less than 88% after the sulfidation test, and are inferior in sulfidation resistance. Have
Yes
[0056] 表 13からわかるように、真空雰囲気で熱処理した Ag合金薄膜については、硫化試 験により反射率が 88%未満に低下しており、耐硫化性に劣っている。 Ag合金薄膜の 組成が式 (1)〜(3)を満足して!/、る場合であっても、酸素ガス雰囲気や真空下で熱処 理するのでは優れた性能が得られないことがわかる。  [0056] As can be seen from Table 13, the Ag alloy thin film heat-treated in a vacuum atmosphere had a reflectivity decreased to less than 88% by the sulfidation test, and was inferior in sulfidation resistance. Even when the composition of the Ag alloy thin film satisfies the formulas (1) to (3)! /, It may not be possible to obtain excellent performance by heat treatment in an oxygen gas atmosphere or under vacuum. Recognize.
[0057] 〔例 3〕  [0057] [Example 3]
DCマグネトロンスパッタリング装置を用いて、直径 2インチ(5.08cm)、厚さ 0.7mmの ガラス基板(コーユング # 1737)上に厚さ lOOnmの Ag-2.0at%Sn-1.5at%Au合金薄膜を 成膜した。このとき、成膜条件は、基板温度:室温、 Arガス圧:;!〜 3mtorr(0.133〜0.3 99Pa)、極間距離: 55mm、成膜速度: 7〜8nm/sとした。成膜前の到達真空度は 1 X 10— 5torr(1.33 X 10— 3Pa)以下であった。上記成膜直後の八8-2.(^%5。-1.5&1%八11合 金薄膜の反射率は、 94. 3%であった。 Using a DC magnetron sputtering system, an Ag-2.0at% Sn-1.5at% Au alloy thin film with a thickness of lOOnm is formed on a glass substrate (Counging # 1737) with a diameter of 2 inches (5.08cm) and a thickness of 0.7mm. did. At this time, the film forming conditions were as follows: substrate temperature: room temperature, Ar gas pressure:;! To 3 mtorr (0.133 to 0.3 99 Pa), distance between electrodes: 55 mm, film forming speed: 7 to 8 nm / s. Ultimate vacuum before film formation was less than 1 X 10- 5 torr (1.33 X 10- 3 Pa). Eight 8-2. (^% 5.-1.5 & 1% eight 11 Go gold reflectance of the thin film immediately after the film formation was 94.3%.
[0058] このようにして成膜された Ag合金薄膜 (Ag-2.0at%Sn-1.5at%Au合金薄膜)について 、アルゴンガス雰囲気で 100。C X 20時間、 130。C X 12時間、 180。C X 20分、 210 °C X 10分の熱処理を行った後、耐硫化性評価のための硫化試験、耐凝集性評価の ための凝集試験を行った。この結果を表 14に示す。 [0058] The Ag alloy thin film (Ag-2.0at% Sn-1.5at% Au alloy thin film) thus formed is 100 in an argon gas atmosphere. CX 20 hours, 130. CX 12 hours, 180. CX 20 minutes, 210 After heat treatment at ° CX for 10 minutes, a sulfidation test for evaluating sulfidation resistance and an agglomeration test for evaluating flocculation resistance were performed. The results are shown in Table 14.
[0059] 表 14からわかるように、熱処理温度: 100°Cの場合には、硫化試験後に反射率が 8 8%未満に低下しており、耐硫化性が不充分であり、耐硫化性向上効果がない。熱 処理の温度が 210°Cの場合は、熱処理により Ag合金の凝集が生じ、熱処理後硫化 試験前の反射率が 88%を下回った(従って、熱処理後の硫化試験および凝集試験 は行わなかった)。 130°Cで熱処理したもの、及び、 180°Cで熱処理したものは、硫 化試験後の反射率も反射率 88%以上であり、耐硫化性に優れている。  [0059] As can be seen from Table 14, when the heat treatment temperature was 100 ° C, the reflectivity decreased to less than 88% after the sulfidation test, the sulfidation resistance was insufficient, and the sulfidation resistance was improved. has no effect. When the heat treatment temperature was 210 ° C, the Ag alloy agglomerated by the heat treatment, and the reflectivity after the heat treatment before the sulfidation test was lower than 88% (therefore, the sulfidation test and the agglomeration test after the heat treatment were not performed). ). Those heat-treated at 130 ° C and those heat-treated at 180 ° C have a reflectance of 88% or more after the sulfation test, and are excellent in sulfidation resistance.
[0060] [表 1]  [0060] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[0061] [表 2] [0061] [Table 2]
成腆ままの 硫化試験後の 恒通恒湿弒験後の 反射率 (%) 反射率 (%) 白点発生数 (個)Reflection rate (%) Reflection rate (%) Reflection rate (%) Number of white spots (number)
96 . 7 47 . 2 8696. 7 47. 2 86
96 . 5 53 . 0 1 096. 5 53. 0 1 0
96 . 5 58 . 3 096. 5 58. 3 0
96 . 4 63 . 1 096. 4 63. 1 0
96 . 5 67 . 8 096. 5 67. 8 0
96 . 1 76 . 3 0 96. 1 76. 3 0
95 . 5 79 . 5 0  95. 5 79. 5 0
95 . 2 80 . 7 0  95. 2 80. 7 0
94 . 5 83 . 0 0 94. 5 83. 0 0
95 . 3 7 1 . 5 1 295. 3 7 1. 5 1 2
9 1 . 3 83 . 1 0 9 1. 3 83. 1 0
88 . 6 85 . 9 0 試験せず 試験せず 試 »せず 88. 6 85. 9 0 Not tested Not tested »Not tested
95 . 2 7 1 . 3 9 95. 2 7 1. 3 9
硫化試験前 (窒素 硫化試 後の 恒通恒;' fi試敎後の 雰囲気熱処理後) 反射率 (%) 白点発生数 (個) の反射率(% ) Before sulfidation test (constant constant after nitrogen sulfidation test; after atmospheric heat treatment after fi test) Reflectivity (%) Reflectance of number of white spots (pieces) (%)
97 . 0 46 . 1 76 97. 0 46. 1 76
96 . 6 72 . 0 896. 6 72. 0 8
96 . 8 88 . 3 096. 8 88. 3 0
97 . 3 90 . 0 097. 3 90. 0 0
97 . 4 9 1 . 0 097. 4 9 1. 0 0
97 . 0 90 . 2 097. 0 90. 2 0
96 . 6 90 . 0 096. 6 90. 0 0
95 . 8 89 . 5 095. 8 89. 5 0
95 . 2 89 . 0 095. 2 89. 0 0
95 . 7 92 . 5 1095. 7 92. 5 10
9 1 . 9 89 . 7 09 1. 9 89. 7 0
88 . 7 88 . 4 0 試《せず 試 «せず 試綾せず88. 7 88. 4 0 Trial 《No Trial «No Trial Without Trial
95 . 7 86 . 7 1 1 95. 7 86. 7 1 1
硫化試験前 (アル Tン 硫化試 »後の 恒通恒湿試験後の 雰囲気熱 理後) 反射率(% ) 白点発生数 (個) の反射率 (%) Before sulfidation test (after tantalum sulfidation test »after atmospheric heat treatment after constant humidity test) Reflectivity (%) Reflectance of number of white spots (pieces) (%)
96 . 8 45 . 3 87 96. 8 45. 3 87
96 . 7 70 . 5 996. 7 70. 5 9
97 . 0 89 . 0 097. 0 89. 0 0
97 . 2 90 . 5 097. 2 90. 5 0
97 . 2 9 1 . 6 097. 2 9 1. 6 0
96 . 8 90 . 9 096. 8 90. 9 0
96 . 4 90 . 3 096. 4 90. 3 0
95 . 7 89 . 9 095. 7 89. 9 0
95 . 2 89 . 4 095. 2 89. 4 0
95 . 9 92 . 3 1 295. 9 92. 3 1 2
9 1 . 7 89 . 9 09 1. 7 89. 9 0
89 . 5 88 . 6 0 試験せず 試験せず 弒換せず89. 5 88. 6 0 Not tested Not tested Not converted
95 . 1 86 . 9 1 4 95. 1 86 .9 1 4
硫化試験前 »素 硫化試験後の 恒湿恒湿試験後の 雰囲気熱処理後) 反射率 (%) 白点発生個数 (個) の反射率 (%) Before sulfidation test »Element After sulfidation test After atmospheric heat treatment after humidity and humidity test) Reflectivity (%) Reflectance of number of white spots (pieces) (%)
97 . 0 41 . 3 90 97. 0 41. 3 90
96 . 8 62 . 5 1096. 8 62. 5 10
96 . 7 68 . 0 096. 7 68. 0 0
96 . 9 71 . 0 096. 9 71. 0 0
97 . 0 75 . 0 097. 0 75. 0 0
96 . 5 86 . 8 096. 5 86. 8 0
95 . 6 87 . 0 095. 6 87. 0 0
95 . 4 86 . 8 095. 4 86. 8 0
94 . 6 87 . 0 094. 6 87. 0 0
85 . 6 試験せず せず85. 6 Not tested
89 . 4 82 . 1 089. 4 82. 1 0
89 . 0 8 1 . 4 0 試験せず 拭 »せず 試《せず89. 0 8 1. 4 0 Not tested Wipe »Not tested
85 . 2 試験せず 試験せず 85.2 Not tested Not tested
硫化試験前(莫 硫化試験後の 恒通恒湿試験後の 空熱処理後 )の 反射率(% ) 白点発生個数 (個) 反射率 ( °/。 ) Reflectivity (%) Number of white spots (pieces) Reflectivity (° /.) Before sulfidation test (after air-heat treatment after constant humidity test after huge sulfidation test)
1 96 . 0 44 . 5 90 1 96. 0 44. 5 90
2 96 . 1 68 . 3 1 02 96. 1 68. 3 1 0
3 96 . 0 7 1 . 3 03 96. 0 7 1. 3 0
4 95 . 7 74 . 5 04 95. 7 74. 5 0
5 95 . 6 79 . 9 05 95. 6 79. 9 0
6 96 . 3 84 . 6 06 96. 3 84. 6 0
7 95 . 3 85 . 4 07 95. 3 85. 4 0
8 95 . 3 86 . 0 08 95. 3 86. 0 0
9 94 . 5 86 . 2 09 94. 5 86. 2 0
10 95 . 3 82 . 3 910 95. 3 82. 3 9
11 89 . 0 84 . 1 011 89. 0 84. 1 0
12 88 . 5 8 1 . 4 012 88. 5 8 1. 4 0
13 試驗せず 試験せず 試驗せず13 Not tried Not tested Not tested
14 95 . 3 8 1 . 0 1 2 14 95. 3 8 1. 0 1 2
[0066] [表 7] [0066] [Table 7]
Figure imgf000020_0001
Figure imgf000020_0001
[0067] [表 8]
Figure imgf000021_0001
[0067] [Table 8]
Figure imgf000021_0001
[0068] [表 9][0068] [Table 9]
Figure imgf000021_0002
Figure imgf000021_0002
[0069] [表 10] 番号 硫化試験前 (窒素 硫化試 ft後の 恒温恒湿弒験後の 雰囲気熱処理後) 反射率(% ) 白点発生個数 (個) の反射率 (% ) [0069] [Table 10] No. Before sulfidation test (after nitrogen sulfidation test ft after atmospheric heat treatment after constant temperature and humidity test) Reflectivity (%) Reflectance of number of white spots (pieces) (%)
15 94 . 4 90 . 6 68 15 94. 4 90. 6 68
16 9 1 . 2 89 . 3 6216 9 1. 2 89. 3 62
17 93 . 3 86 . 8 017 93. 3 86. 8 0
18 93 . 8 90 . 1 018 93. 8 90. 1 0
19 90 . 6 89 . 0 1 519 90. 6 89. 0 1 5
20 95 . 4 90 . 9 020 95. 4 90. 9 0
21 93 . 9 9 1 . 0 021 93 .9 9 1 .0 0
22 試》せず 試験せず 試験せず22 No test >> No test No test
23 95 . 5 88 . 2 023 95. 5 88. 2 0
24 96 . 1 9 1 . 0 0 24 96. 1 9 1. 0 0
[0070] [表 11] [0070] [Table 11]
Figure imgf000022_0001
Figure imgf000022_0001
[0071] [表 12] 番号 硫化試敏前(酸素 硫化試験後の 恒温恒湿試験後の 雰囲気熱処理後) 反射率(% ) 白点発生個数 (個) の反射率(% ) [0071] [Table 12] Number Before sulfidation test (after oxygen heat treatment after atmospheric heat treatment after constant temperature and humidity test) Reflectivity (%) Reflectance (%) of number of white spots (number)
15 87 . 3 試験せず 試験せず 15 87.3 Not tested Not tested
16 90 . 6 85 . 3 5616 90. 6 85. 3 56
17 85 . 4 試»せず 試験せず17 85. 4 Not tested »Not tested
18 84 . 6 試糠せず 試験せず18 84. 6 Not tested Not tested
19 90 . 5 84 . 2 1 619 90. 5 84. 2 1 6
20 86 . 0 試 »せず 試験せず20 86. 0 Trial »Not tested Not tested
21 87 . 6 試験せず 試験せず21 87. 6 Not tested Not tested
22 試験せず 試験せず 試驗せず22 Not tested Not tested Not tested
23 96 . 0 7 1 . 0 023 96. 0 7 1. 0 0
24 95 . 7 74 . 9 0 24 95. 7 74. 9 0
[0072] [表 13] 番号 硫化試験前(真 硫化試験後の 恒温恒湿試驗後の 空熱処理後)の 反射率(% ) 白点発生個数 (個) 反射率( °/。 ) [0072] [Table 13] No. Reflectivity (%) Number of white spots generated (%) Reflectivity (° /.) Before sulfidation test (after air heat treatment after constant temperature and humidity test after true sulfidation test)
15 95 . 0 82 . 1 63  15 95. 0 82. 1 63
16 92 . 8 87 . 6 53  16 92. 8 87. 6 53
17 96 . 0 8 1 . 1 44  17 96. 0 8 1. 1 44
18 95 . 6 80 . 8 0  18 95. 6 80. 8 0
19 92 . 4 86 . 6 0  19 92. 4 86. 6 0
20 95 . 2 83 . 9 0  20 95. 2 83. 9 0
21 94 . 8 84 . 6 0  21 94. 8 84. 6 0
22 試驗せず 試》せず 試験せず 22 Do not try Do not test
23 95 . 5 80 . 7 0 23 95. 5 80. 7 0
24 94 . 9 79 . 9 0  24 94. 9 79. 9 0
[0073] [表 14] 熱処理条件 熱処理後の 硫化試験後の 恒温恒温試驗によ [0073] [Table 14] Heat treatment conditions After constant temperature and temperature test after sulfidation test after heat treatment
反射率 (%) 反射率 (%) る白点発生数 (個) Reflectance (%) Reflectance (%) Number of white spots generated (pieces)
100°O 20時間 94 . 2 83 . 6 0 100 ° O 20 hours 94. 2 83. 6 0
130°Ο 1 2時聞 94 . 0 90 . 5 0 130 ° Ο 1 2 o'clock 94.0 90.5 0
180°Ο20分 94 . 6 91 . 4 0180 ° Ο20min 94. 6 91 .4 0
210°Ο10分 85 . 0 試験せず 試験せず 210 ° Ο10min 85.0 Not tested Not tested
[0074] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。本出願は 2006年 9月 21日出願の日本特許出願(特願 2006— 256136 に基づくものであり、その内容はここに参照として取り込まれる。 [0074] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there. This application is based on a Japanese patent application filed on September 21, 2006 (Japanese Patent Application No. 2006-256136), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0075] 本発明に係る Ag合金薄膜は、初期反射率が 88%以上であり、かつ、耐凝集性及 び耐硫化性に優れているので、保護コートが無くても照明器具用反射膜や自動車用 ヘッドランプ、リアランプ用の反射膜として好適に用いることができて有用である。 [0075] The Ag alloy thin film according to the present invention has an initial reflectivity of 88% or more, and is excellent in aggregation resistance and sulfidation resistance. It can be suitably used as a reflective film for automobile headlamps and rear lamps, and is useful.

Claims

請求の範囲 The scope of the claims
Auまたは Au、 Bi、 Snの 2種以上を含有する Ag合金薄膜であって、下記式 (1)〜(3)を 満足すると共に、 130〜200°Cの不活性ガス雰囲気中で熱処理されていることを特徴 とする Ag合金薄膜。  An Ag alloy thin film containing two or more of Au, Au, Bi, and Sn, satisfying the following formulas (1) to (3), and heat-treated in an inert gas atmosphere of 130 to 200 ° C Ag alloy thin film characterized by
5.28[Bi] + 0.15[Au] + 1.14[Sn]≤8.7 式 (1)  5.28 [Bi] + 0.15 [Au] + 1.14 [Sn] ≤8.7 Equation (1)
1.0≤10[Bi] + [Au] 式 (2)  1.0≤10 [Bi] + [Au] Equation (2)
2.0≤[Sn] + 2[Au]4 式 (3) 2.0≤ [Sn] + 2 [Au] 4 formulas (3)
ただし、上記式 (1)〜(3)において、 [Bi]は Bi含有量(原子%)、 [Au]は Au含有量(原 子%)、 [Sn]は Sn含有量 (原子%)を示すものである。  However, in the above formulas (1) to (3), [Bi] is the Bi content (atomic%), [Au] is the Au content (atomic%), and [Sn] is the Sn content (atomic%). It is shown.
[2] 請求項 1記載の Ag合金薄膜の形成用の Ag合金スパッタリングターゲットであって、 Auまたは Au、 Bi、 Snの 2種以上を含有すると共に、下記式 (4)〜(6)を満足することを特 徴とする Ag合金スパッタリングターゲット。 [2] An Ag alloy sputtering target for forming an Ag alloy thin film according to claim 1, comprising two or more of Au, Au, Bi, Sn and satisfying the following formulas (4) to (6): Ag alloy sputtering target.
2.64[Bi] + 0.15[Au] + 1.14[Sn]≤8.7 式 (4)  2.64 [Bi] + 0.15 [Au] + 1.14 [Sn] ≤8.7 Equation (4)
1.0≤5[Bi] + [Au] 式 (5)  1.0≤5 [Bi] + [Au] Equation (5)
2.0≤[Sn] + 2[Au]4 式 (6) 2.0≤ [Sn] + 2 [Au] 4 formulas (6)
ただし、上記式 (4)〜(6)において、 [Bi]は Bi含有量 (原子%)、 [Au]は Au含有量 (原 子%)、 [Sn]は Sn含有量 (原子%)を示すものである。  However, in the above formulas (4) to (6), [Bi] is the Bi content (atomic%), [Au] is the Au content (atomic%), and [Sn] is the Sn content (atomic%). It is shown.
PCT/JP2007/067847 2006-09-21 2007-09-13 Ag ALLOY THIN FILM, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF THE Ag ALLOY THIN FILM WO2008035617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006256136 2006-09-21
JP2006-256136 2006-09-21

Publications (1)

Publication Number Publication Date
WO2008035617A1 true WO2008035617A1 (en) 2008-03-27

Family

ID=39200444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067847 WO2008035617A1 (en) 2006-09-21 2007-09-13 Ag ALLOY THIN FILM, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF THE Ag ALLOY THIN FILM

Country Status (1)

Country Link
WO (1) WO2008035617A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139712A (en) * 2002-08-20 2004-05-13 Kobe Steel Ltd Reflection film and translucent reflection film for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
JP2004197117A (en) * 2002-12-16 2004-07-15 Ulvac Japan Ltd Ag-ALLOY REFLECTIVE FILM, SPUTTERING TARGET AND METHOD FOR MANUFACTURING Ag-ALLOY THIN FILM
JP2005029849A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
JP2005264329A (en) * 2004-02-19 2005-09-29 Ulvac Seimaku Kk Ag alloy film and manufacturing method thereof
JP2005332557A (en) * 2004-04-21 2005-12-02 Kobe Steel Ltd Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2006098856A (en) * 2004-09-30 2006-04-13 Ulvac Japan Ltd Ag REFLECTIVE FILM AND ITS MANUFACTURING METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139712A (en) * 2002-08-20 2004-05-13 Kobe Steel Ltd Reflection film and translucent reflection film for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
JP2004197117A (en) * 2002-12-16 2004-07-15 Ulvac Japan Ltd Ag-ALLOY REFLECTIVE FILM, SPUTTERING TARGET AND METHOD FOR MANUFACTURING Ag-ALLOY THIN FILM
JP2005029849A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
JP2005264329A (en) * 2004-02-19 2005-09-29 Ulvac Seimaku Kk Ag alloy film and manufacturing method thereof
JP2005332557A (en) * 2004-04-21 2005-12-02 Kobe Steel Ltd Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2006098856A (en) * 2004-09-30 2006-04-13 Ulvac Japan Ltd Ag REFLECTIVE FILM AND ITS MANUFACTURING METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONISHI T. ET AL.: "Adding Metal Elements to Improve the Corrosion Resistance of Silver-based Thin Films", R&D/KOBE STEEL ENGINEERING REPORTS, vol. 52, no. 2, 1 September 2002 (2002-09-01), pages 17 - 22, XP003018729 *

Similar Documents

Publication Publication Date Title
US7452604B2 (en) Reflective Ag alloy film for reflectors and reflector provided with the same
KR100491931B1 (en) Reflective film, reflection type liquid crystal display, and sputtering target for forming the reflective film
JP2005015893A (en) REFLECTION FILM OF Ag ALLOY FOR REFLECTOR, REFLECTOR USING THE REFLECTION FILM OF Ag ALLOY, AND SPUTTERING TARGET OF Ag ALLOY FOR FORMING THIN FILM OF Ag ALLOY FOR THE REFLECTION FILM
EP2204674A1 (en) Reflective film, reflective film laminate, led, organic el display, and organic el illuminating device
WO2010101160A1 (en) Al ALLOY REFLECTIVE FILM, AUTOMOBILE LIGHT, ILLUMINATOR, AND ORNAMENTATION, AND Al ALLOY SPUTTERING TARGET
JP2010204291A (en) Aluminum alloy reflection film, lighting fixture for automobile, illuminator, ornamental part and aluminum alloy sputtering target
US8603648B2 (en) Reflective film laminate
WO1999062646A1 (en) Article having silver layer and resin composition for coating covering silver
JPWO2015075792A1 (en) Galvanized steel sheet excellent in blackening resistance and corrosion resistance and method for producing the same
WO2006132417A1 (en) Silver alloy excellent in reflectance/transmittance maintaining characteristics
JP5049417B2 (en) Vehicle lamp reflector
JP2009105033A (en) Reflective film, led, organic el display, and organic el lighting fixture
WO2005031016A1 (en) Silver alloy, sputtering target material thereof, and thin film thereof
JP5096701B2 (en) Silver film coating composition, light reflector and lighting apparatus having the same
CN114765968B (en) Copper alloy powder with Si coating film and method for producing same
US8367200B2 (en) Reflecting film excellent in cohesion resistance and sulfur resistance
WO2008035617A1 (en) Ag ALLOY THIN FILM, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF THE Ag ALLOY THIN FILM
JP4176136B2 (en) Ag alloy thin film
CN115976478B (en) Silver sulfide resistant alloy target and preparation method thereof
JP4185523B2 (en) Electroless nickel plating film and machine part having this film
WO2016017792A1 (en) Catalyst-containing metal silicon oligomer, method for manufacturing same, and application for catalyst-containing metal silicon oligomer
JP2006001271A (en) Ag-BASED TWO-LAYER FILM AND TRANSPARENT ELECTRIC CONDUCTOR
WO2006007895A1 (en) Rear surface mirror
JP5260452B2 (en) Al alloy reflective film with excellent hot water resistance and sputtering target
JP5144302B2 (en) Reflective film laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807254

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载