+

WO2008032812A1 - Substance luminescente, son procédé de fabrication, composition contenant la substance luminescente, dispositif émettant de la lumière, dispositif d'affichage d'images et dispositif d'éclairage - Google Patents

Substance luminescente, son procédé de fabrication, composition contenant la substance luminescente, dispositif émettant de la lumière, dispositif d'affichage d'images et dispositif d'éclairage Download PDF

Info

Publication number
WO2008032812A1
WO2008032812A1 PCT/JP2007/067902 JP2007067902W WO2008032812A1 WO 2008032812 A1 WO2008032812 A1 WO 2008032812A1 JP 2007067902 W JP2007067902 W JP 2007067902W WO 2008032812 A1 WO2008032812 A1 WO 2008032812A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
present
less
group
Prior art date
Application number
PCT/JP2007/067902
Other languages
English (en)
French (fr)
Inventor
Etsuo Shimizu
Naoto Kijima
Yasuo Shimomura
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP07807309A priority Critical patent/EP2060616A4/en
Publication of WO2008032812A1 publication Critical patent/WO2008032812A1/ja
Priority to US12/403,405 priority patent/US8021576B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Phosphor and method for producing the same Phosphor and method for producing the same, phosphor-containing composition, light emitting device, image display device, and illumination device
  • the present invention relates to a phosphor and a method for producing the same. More specifically, the present invention relates to a phosphor and a method for producing the same, and a phosphor-containing composition, a light emitting device, an image display device, and an illumination device using the phosphor.
  • a white light emitting device configured by combining a gallium nitride (GaN) light emitting diode (LED) as a semiconductor light emitting element and a phosphor as a wavelength conversion material has low power consumption.
  • GaN gallium nitride
  • LED light emitting diode
  • a phosphor as a wavelength conversion material
  • Patent Document 1 discloses that a compound having a specific chemical composition is a base crystal, and at least 3 as an activator element (light emission center element) in the base crystal.
  • a phosphor containing valent cerium (Ce 3+ ) and having a maximum emission peak in the wavelength range of 485 nm to 555 nm in the emission spectrum and represented by the following general formula (X) is disclosed.
  • this phosphor is abbreviated as CSO phosphor as appropriate.
  • M 1 represents an activator element containing at least Ce
  • M 2 represents a divalent metal element
  • M 3 represents a trivalent metal element
  • ai or 0.0001 ⁇ a ⁇ 0. 2, bi or 0. 8 ⁇ b ⁇ l.
  • ci or 1. 6 ⁇ c ⁇ 2. 4, di or 3. 2 ⁇ d ⁇ 4.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-45526
  • the phosphor that converts the wavelength of the LED light is isotropic. But before The CSO phosphor represented by the general formula (X) has a CaFe O-type crystal structure,
  • the produced CSO phosphor When produced by a synthesis method using a solid phase reaction, the produced CSO phosphor exhibited an indeterminate crystal shape in which particles were fused together, and there were problems with the dispersibility of the particles, which was not practical.
  • the phosphor when the phosphor is usually needle-shaped, the crystals are difficult to be uniformly arranged in the liquid medium described later, and when used for a white LED, there is a tendency to spot in the direction of light. For these reasons, a phosphor having a nearly spherical shape has been desired in addition to excellent emission characteristics such as emission intensity.
  • LEDs have high efficiency! / A significant part of the supplied electrical energy is consumed as heat. For this reason, the temperature of the light-emitting element may increase to around 180 ° C in a large current element for lighting. Many phosphors have the ability to decrease brightness at high temperatures. This tendency is preferably as small as possible. In addition, the fact that the degree of decrease in luminance at high temperature is small is expressed as good temperature characteristics.
  • Patent Document 1 has previously used force (Y, Gd) Al 2 O 3: Ce (hereinafter suitable)
  • the present invention was devised in view of the above problems, and a phosphor having a nearly spherical shape, a method for producing the phosphor, a phosphor-containing composition, a light-emitting device, and an image display device using the phosphor.
  • the first object is to provide a lighting device.
  • being close to spherical means, for example, that the aspect ratio is small.
  • the aspect ratio refers to the ratio of the major axis to the minor axis of a particle, and is an index indicating that the particle is smaller!
  • the present inventors have found that the phosphor having the composition represented by the general formula (X) has a tendency that there is little decrease in luminance at a high temperature with high luminance in a specific M 1 concentration range. I found it. As a result of further studies, it was found that M 1 is preferably uniformly distributed in the crystal, and it has been found that it is not sufficient to perform compositional analysis of the finished phosphor. Therefore, as a result of detailed examination of the phosphor emission color and the relationship between the object color and the light emission characteristics such as luminance, the present inventors have found that the phosphor emission characteristics and temperature characteristics of the object color in a specific range are good. I found out.
  • the gist of the present invention is that the composition ratio of the element represented by the following formula [1] satisfies the following formula [1], and Li, Na, K, Rb, Cs, P, Cl, Fluorescence characterized by containing at least two elements selected from the group consisting of F, Br, I, Zn, Ga, Ge, In, Sn, Ag, Au, Pb, Cd, Bi, and Ti Exists in the body (Claim 1).
  • M 1 is selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
  • M 2 is mainly a divalent metal element
  • M 3 is mainly a trivalent metal element
  • a is a number in the range of 0.0001 ⁇ a ⁇ 0.2, bi or 0 8 ⁇ b ⁇ l. Number in the range 2, ci or 1. 6 ⁇ c ⁇ 2. Number in the range 4, di or 3. 2 ⁇ d ⁇ 4. Represent the number in the range 8.
  • Another gist of the present invention resides in a phosphor satisfying the compositional specific power equation [1 '] of the element represented by the formula [1'] (claim 2).
  • M 1 is a group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. At least one element whose force is also selected, M 2 is mainly a divalent metal element, M 3 is mainly a trivalent metal element,
  • M 2 is at least selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba. Is also one kind of metal element, and M 3 is preferably at least one kind of metal element selected from the group consisting of Al, Sc, Ga, Y, ⁇ , La, Gd, Yb, and Lu ( Claim 3
  • the phosphor of the present invention preferably satisfies the following formula [2] and / or formula [3] (claim 4):
  • Br (25) is the luminance obtained by exciting the phosphor with light having a wavelength of 455 nm at 25 ° C
  • Br (125) is 125 ° C
  • the brightness is obtained by exciting the phosphor with light having a wavelength of 455 nm
  • Br (160) is the brightness obtained by exciting the phosphor with light having a wavelength of 455 nm at 160 ° C.
  • Still another subject matter of the present invention is that it emits light at room temperature and has a crystal phase of CaFe O-type crystal structure.
  • the ratio of phosphor particles having an average circularity of less than 85% is 10% by number or less (claim 5).
  • the preferred value QD is preferably less than 0.24! / ⁇ (claim 6).
  • Still another subject matter of the present invention is to emit light at room temperature and to have a crystal phase of CaFe 2 O-type crystal structure.
  • Weight median diameter D force O m or more and QD is 0.27 or less.
  • Still another gist of the present invention is that particles having a maximum emission peak in a wavelength range of 485 nm to 555 nm, a crystal phase of a CaFe 2 O-type crystal structure, and an aspect ratio of 3 or less.
  • the phosphor of the present invention has an object color of 100 ⁇ L * ⁇ 110, -30 ⁇ a * ⁇ -15, and 45 ⁇ b in the L *, a *, b * color system.
  • the phosphor of the present invention has a group force consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. At least one element selected and Mg At least one metal element selected from the group consisting of Ca Zn Sr Cd and Ba, and at least one metal element selected from the group consisting of A 1 ScGa Y ⁇ La Gd Yb and Lu Is preferred (Claim 10)
  • the phosphor of the present invention satisfies the compositional specific force equation [1] of the element represented by the equation [1] (claim 11).
  • the phosphor of the present invention includes Li Na K Rb Cs P Cl F Br I Zn Ga Ge In
  • the phosphor of the present invention comprises at least two elements selected from the group consisting of Li K ⁇ and ⁇ , lppm ⁇ Li ⁇ 500ppm, lppm ⁇ K ⁇ 500ppm, Oppm ⁇ P ⁇ lOOOOpp m, And 0ppm ⁇ Cl ⁇ 1000ppm in the concentration range (Claim 13)
  • the phosphor of the present invention preferably contains one or more elements selected from the group consisting of Zn Ga Ge In and Sn in the range of 1 ppm to 500 ppm! /, ( (Claim 14)
  • M 1 contains at least Ce
  • M 3 contains at least Sc (claim 15) .
  • the phosphor of the present invention includes Li Na K Rb Cs P Cl F Br I Zn Ga Ge In
  • At least two elemental forces selected from the group consisting of Sn Ag Au Pb Cd Bi and Ti are contained in the crystalline phase of the phosphor! / (Claim 16)
  • the electrical conductivity of the supernatant obtained by dispersing the phosphor in water 10 times by weight and allowing it to stand for 1 hour is 10 mS / m or less. Preferred (claim 17).
  • the phosphor of the present invention preferably has a maximum emission peak in a wavelength range of 500 nm or more and 535 nm or less in an emission spectrum at 25 ° C. excited with light having a wavelength of 455 nm (claims) 18).
  • Still another subject matter of the present invention is a method for producing the phosphor of the present invention, comprising an alkaline earth metal halide, an alkali metal phosphate, an alkali metal halide, and
  • the present invention resides in a method for producing a phosphor, characterized by comprising a step of heating a raw material containing two or more selected from the group consisting of sulfates of rukari metal (claim 19).
  • the raw material preferably contains a compound that generates a metal having a melting point or sublimation point of 1200 ° C or lower by heating and / or a compound that generates an alkali metal oxide by heating. ! / ⁇ (claim 20).
  • the raw material is CaCl, from the group consisting of: Li PO, KH PO, KC1, and Li SO force
  • the raw material is made of ZnO, Ga 2 O 3, GeO 2, In 2 O 3, SnO, and K 2 CO 3
  • the raw material contains one or more selected from 2 3 2 2 3 2 2 3 (claim 22). Among them, it is more preferable that the raw material contains Z ⁇ and / or K 2 CO (claim 23).
  • Still another subject matter of the present invention is a method for producing the phosphor of the present invention, comprising at least two elements constituting the phosphor and obtained by coprecipitation.
  • the present invention resides in a method for producing a phosphor, characterized in that a coprecipitated oxide obtained by heating is used as a raw material (claim 24).
  • a coprecipitated oxide obtained by heating a compound containing at least two elements constituting the phosphor and obtained by coprecipitation may be used as the raw material.
  • the phosphor is composed of at least two elemental forces S, Sc and Ce constituting the phosphor (claim 26).
  • Still another subject matter of the present invention lies in a phosphor-containing composition comprising the phosphor of the present invention and a liquid medium (claim 27).
  • Still another subject matter of the present invention includes a first light emitter and a second light emitter that emits visible light when irradiated with light from the first light emitter.
  • the light-emitting device comprises a light-emitting device characterized in that it contains at least one of the phosphors of the present invention as the first phosphor (claim 28).
  • the second phosphor includes one or more phosphors having emission peak wavelengths different from those of the first phosphor as the second phosphor. Claim 29).
  • the first light emitter has a light emission peak in a range of 420 nm or more and 500 nm or less
  • the second phosphor preferably contains, as the second phosphor, at least one phosphor having an emission peak in a wavelength range of 570 nm to 780 nm (claim 30).
  • the first light emitter has a light emission peak in a range of 300 nm to 420 nm
  • the second light emitter as the second phosphor has a wavelength range of 420 nm to 490 nm. It is also preferable to contain at least one kind of phosphor having an emission peak and at least one kind of phosphor having an emission peak in a wavelength range of 570 nm or more and 780 nm or less (claim 31).
  • Still another subject matter of the present invention is characterized by comprising the light-emitting device of the present invention as a light source.
  • Still another subject matter of the present invention is characterized by comprising the light-emitting device of the present invention as a light source.
  • the present invention since it is nearly spherical, it has an appropriate dispersibility and packing density in an actual use state, and has a high-luminance phosphor and a low luminance decrease at high temperatures.
  • FIG. 1 Excitation light source (first light emitter) and phosphor-containing portion in an example of the light-emitting device of the present invention.
  • FIG. 6 is a schematic perspective view showing a positional relationship with (second light emitter).
  • FIGS. 2 (a) and 2 (b) show a V and a light emitting device each having an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter). It is typical sectional drawing which shows an Example.
  • FIG. 3 is a cross-sectional view schematically showing one embodiment of a lighting device of the present invention.
  • FIG. 4 is a diagram showing X-ray diffraction measurement results measured in Example I 1 of the present invention.
  • FIG. 5 shows an emission spectrum of the phosphor obtained in Example I 1 of the present invention.
  • FIG. 6 is a diagram showing an emission spectrum of a surface-mounted white light-emitting device manufactured in Example I 7 of the present invention.
  • FIG. 7 A picture-substituting photograph showing an image obtained by observing the phosphor produced in Comparative Example I 1 with a scanning electron microscope.
  • FIG. 8] is a drawing-substituting photograph showing an image obtained by observing the phosphor manufactured in Comparative Example I 4 with a scanning electron microscope.
  • FIG. 10 (a) is a drawing-substituting photograph showing an image obtained by observing the phosphor manufactured in Example I 5 of the present invention with a scanning electron microscope
  • FIG. 10 (b) is an embodiment of the present invention.
  • FIG. 10 is a drawing-substituting photograph showing an image obtained by observing the phosphor manufactured in Example I 6 with a scanning electron microscope.
  • FIG. 10 is a drawing-substituting photograph showing an image obtained by observing the phosphor manufactured in Example I 6 with a scanning electron microscope.
  • Example I 20 of the present invention A drawing-substituting photograph showing an SEM photograph of the phosphor obtained in Example I 20 of the present invention.
  • FIG. 14 is a graph showing a measured emission spectrum of the surface-mounted white light-emitting device obtained in Examples 1-26 to 1-28 of the present invention.
  • FIG. 15 is a diagram showing an emission spectrum measured for the surface-mounted white light-emitting device obtained in Examples 1-29 to 1-31 of the present invention.
  • FIG. 16 is a diagram showing an emission spectrum measured for the surface-mounted white light-emitting device obtained in Examples I 32 and I 33 of the present invention.
  • FIG. 17 A diagram showing a measured emission spectrum of the surface-mounted white light-emitting device obtained in Example I 34 of the present invention.
  • FIG. 18 is a graph showing the results of X-ray diffraction measurement performed on Example II-4 of the present invention.
  • FIG. 19 (a) to FIG. 19 (d) are diagrams showing emission spectra of the phosphors obtained in Example II— ;! to II-4 of the present invention.
  • FIG. 20 is a diagram showing the results of comparing the brightness at room temperature of the phosphors of Examples II 1, II 3, II-7 and II 9 of the present invention and Comparative Example II 1 with the brightness at each temperature.
  • FIG. 21 is a cross-sectional view schematically showing a surface-mounted white light emitting device manufactured in Examples II 11 to 11 13 of the present invention.
  • FIG. 22 is a diagram showing an emission spectrum of a surface-mounted white light-emitting device manufactured in Examples II 11 to 11 13 of the present invention.
  • composition formulas of the phosphors in this specification each composition formula is separated by a comma).
  • composition formulas of the phosphors in this specification each composition formula is separated by a comma).
  • a plurality of elements are listed by separating them with commas,,), one or two or more of the listed elements may be contained in any combination and composition.
  • the composition formula “(Ca, Sr, Ba) Al 2 O: Eu” is “CaAl
  • “Ba Al O: Eu”, “Ca Ba Al O: Eu”, and “Ca Sr Ba Al O: Eu” are all x 2 4 1 x x 2 4 1 x— y x y 2 4
  • the composition ratio of the element represented by the following formula [1] satisfies the following formula [1], and
  • M 1 is at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb,
  • M 2 is mainly a divalent metal element
  • M 3 is mainly a trivalent metal element
  • a is a number in the range 0.0001 ⁇ a ⁇ 0.2
  • b is a number in the range 0.8.8 ⁇ b ⁇ l .2
  • c is a number in the range of 1. 6 ⁇ c ⁇ 2.
  • d is a number in the range 3.2 ⁇ d ⁇ 4. 8
  • the composition ratio of the element represented by the following formula [1] with respect to the composition satisfies the following formula [1].
  • the main constituent element of the phosphor A of the present invention is an element represented by the following formula [1].
  • the phosphor A of the present invention has a composition represented by the following formula [1].
  • the structure is such that trace elements derived from the flux described later exist in and / or outside the crystal.
  • M 1 (or, Cr, Mn, Fe, Co , Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, H o, Er, Tm, and Yb, It represents at least one element selected from the group consisting of M 1 in the formula [1] and an activator element (light emission center ion) contained in the host crystal described later.
  • M 1 Ce is preferable among the above-mentioned groups. Therefore, M 1 preferably contains at least Ce. This is because Ce-derived light emission is a 5d-4f transition (allowable transition) and has a high transition probability, so that when Ce is contained, a phosphor with high luminous efficiency can be obtained.
  • M 1 may contain two or more elements selected from the above groups in any combination and ratio.
  • Ce and other elements hereinafter suitably referred to as "co-activator” other elemental
  • the amount of the coactivator with respect to Ce lmol is usually not less than 0. Olmol, preferably not less than 0.1 mol, more preferably not less than lmol. Usually, it is 20 mol or less, preferably 10 mol or less, more preferably 5 mol or less.
  • Pr, Tb, Sm, Tm, etc. can be used as a coactivator.
  • Pr when used as a coactivator, it is preferable because the emission of Pr, which is a coactivator, appears in the vicinity of the wavelength of 620 nm in addition to the emission of Ce, and the red component can be emitted. ! /
  • a represents a concentration of the activator element M 1.
  • a is 0. 0001 ⁇ a ⁇ 0.2.
  • the luminescent center element is appropriate in the host crystal. Since it is preferable that the concentration is uniformly distributed, it is preferable that the value of the coefficient a is in the above-described range in the equation [1]. Specifically, if the value of a is too small, the amount of luminescent center ions present in the host crystal of phosphor A of the present invention tends to be too small and the luminescence intensity tends to decrease. On the other hand, if the value of a is too large, the emission intensity decreases due to concentration quenching, which tends to # 1.
  • the relationship between the Ce concentration and the emission color is constant over a relatively wide concentration range.
  • the value of the coefficient a is in the above-mentioned range in Equation [1].
  • a is too smaller than the above range, the emission brightness of the phosphor is lowered, which may be impractical.
  • “a” is too large, there is a possibility that the brightness of the phosphor is lowered at a high temperature. The reason for this is not clear! /, But when the Ce concentration is high, the mutual distance between the luminescent central elements is shortened and the interaction at high temperature is increased.
  • a is usually 0.0005 or more, preferably 0.002 or more, and usually 0.1 or less, preferably 0.01 or less.
  • a is preferably smaller than 0.01 and larger than 0.003.
  • A is usually 0.004 or more, preferably 0.005 or more, more preferably (or 0.006 or more, and usually 0.15 or less, preferably (or 0.1 or less, more preferably (or 0.00). 01 or less, more preferably (or 0.009 or less, particularly preferably (or 0.008 or less).
  • M 2 mainly represents a divalent metal element.
  • M 2 represents at least one metal element selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba from the viewpoint of luminous efficiency and the like.
  • this group it is preferable to contain at least one metal element of Ca, Sr, Ba and Zn, and it is more preferable to contain at least one metal element of Mg, Ca and Sr.
  • at least one metal element of Sr is particularly preferable.
  • M 2 is an arbitrary combination of two or more elements selected from the above group And including in ratio! /, You can! /
  • mainly means that other elements may be contained within a range that does not affect the light emission characteristics. Specifically, it is usually 95 mol% or more of M 2 , preferably 98 mol% or more, more preferably 99 mol% or more means a divalent metal element. The upper limit is ideally 100 mol%.
  • the phosphor A of the present invention and a green phosphor it is intended preferably contains a large amount of Ca in preferred instrument containing at least Ca as M 2.
  • the element M 2 typically 50 mole 0/0 or more, preferably 80 mol 0/0 or more, more preferably particularly preferably more than 90 mol% are Ca.
  • Sr is preferable as the element to be contained together with Ca as M 2.
  • Inclusion of at least Ca and Sr as M 2 has the effect of shifting the emission peak wavelength to a shorter wavelength as the Sr content increases, and at the same time, the weight median diameter of phosphor A increases. The effect is also obtained.
  • the luminance peak is usually 1 mol% or more, preferably 3 mol% or more, and usually 30 mol% or less, preferably 10 mol% or less, more preferably. 8 mol% or less.
  • M 2 contains a large amount of Sr.
  • the element M 2 usually 50 mol% or more, preferable properly 80 mol% or more, more preferably particularly preferably more than 90 mol% is Sr.
  • M 3 mainly represents a trivalent metal element. Specifically, from the viewpoint of luminous efficiency, M 3 represents at least one metal element selected from the group consisting of Al, Sc, Ga, Y, ⁇ , La, Gd, Yb, and Lu. . Among these groups, it is more preferable to include at least one metal element of Al, Sc, Y, Yb, and Lu, and it is even more preferable to include at least one metal element of Sc, Y, and Gd. It is particularly preferred to contain at least Sc. M 3 may contain two or more elements selected from the above groups in any combination and ratio.
  • “mainly” does not include other elements within a range that does not affect the light emission characteristics. Specifically, it means that 95 mol% or more, preferably 98 mol% or more, more preferably 99 mol% or more of M 3 is a trivalent metal element. The upper limit is ideally 100 mol%.
  • Sc as M 3 element is preferable because more light emission intensity is high. Specifically, it is preferred that Sc is usually 50 mol% or more, especially 60 mol% or more, especially 70 mol% or more of the element of M 3 ! /.
  • the phosphor A of the present invention has M 1 as Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm. And at least one element selected from the group consisting of Yb and at least one metal element selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba as M 2 , and M 3 And at least one metal element selected from the group consisting of Al, Sc, Ga, Y, ⁇ , La, Gd, Yb, and Lu.
  • M 1 contains at least Ce
  • M 2 contains at least Ca and / or Sr
  • M 3 contains at least Sc.
  • the host crystal of the phosphor A of the present invention is generally, M 2 is a bivalent metal element and consists of trivalent of M 3 and oxygen is a metal element, composition formula M 2 M 3 O Because it is a crystal represented by
  • the composition ratio is b in formula [1], c is 2, and d is 4.
  • the activator element M 1 replaces the position of the crystal lattice of either the metal element M 2 or M 3 , or is arranged in the gap between the crystal lattices.
  • b is 1, c is 2, and d may not be 4.
  • b is usually 0.8 or more, preferably 0.9 or more, more preferably 0.95 or more, and usually 1.2 or less, preferably 1.1. Below, more preferably a number of 1.05 or less.
  • C is a number of usually 1.6 or more, preferably 1.8 or more, more preferably 1.9 or more, and usually 2.4 or less, preferably 2.2 or less, more preferably 2.1 or less. It is.
  • d is usually 3.2 or more, preferably 3.6 or more, more preferably 3.8 or more, and usually 4.8 or less, preferably 4.4 or less, more preferably 4.2 or less. Is a number. However, in equation [1] Here, a, b, c and d are selected so that the charge balance of the phosphor A of the present invention is neutral.
  • composition ratio of 0 (oxygen) is 4,
  • M 2 and M 3 mainly represent divalent and trivalent metal elements, respectively, but if the gist thereof is not substantially different from the phosphor A of the present invention, the present invention It is also possible to adjust the charge balance, etc., by using a small part of M 2 and / or M 3 as constituent elements of phosphor A in the form of metal elements of monovalent, tetravalent or pentavalent valence. It is. Furthermore, the phosphor A of the present invention may contain a trace amount of anions, for example, halogen elements (F, Cl, Br, I), nitrogen, yellow, selenium and the like.
  • halogen elements F, Cl, Br, I
  • the phosphor A of the present invention includes Li, Na, K, Rb, Cs, P, Cl, F, Br, I, Zn, Ga, Ge, In, Sn, Ag, Au, Pb, Contains at least two elements selected from the group consisting of Cd, Bi, and Ti (hereinafter referred to as “flux component elements” as appropriate).
  • fluorescent component elements At least two elements selected from the group consisting of Cd, Bi, and Ti.
  • Li, Na, K, Rb, Cs It is preferable to contain at least two elements selected from the group consisting of P, Cl, F, Br, I, Zn, Ga, Ge, In, Sn, Ag, and Au.
  • Li, Na, K, Rb, and Cs are classified as alkali metal elements.
  • the particle size tends to increase.
  • a halide or oxide of these metal elements coexists during heat treatment, it becomes liquid or gas at a high temperature and has an effect of promoting crystal growth. Therefore, it is considered that the particle size becomes large.
  • alkali metal elements elements with smaller ionic radii tend to have a greater effect of promoting crystal growth. Specifically, Li is preferred.
  • the dispersibility of the phosphor tends to be improved and the particle shape tends to be nearly spherical.
  • P is considered to form a phosphate with other elements during the heat treatment and become a liquid or a gas at a high temperature to act.
  • Cl, F, Br, and I are classified as halogen elements.
  • the particle size tends to increase.
  • a heat treatment is performed in the presence of an alkali metal, an alkaline earth metal, or another metal element and a halogen compound (a norogenide)
  • the particle size becomes large because it becomes liquid or gas at high temperature and has the effect of promoting crystal growth.
  • the compound is stable and corrosiveness to the furnace is low! /, So C1 is preferred! /.
  • Zn, Ga, Ge, In, Sn, Ag, and Au can be used as fluxes mainly in the form of oxides and halides, as will be described in detail later. It is an element.
  • the phosphor A of the present invention contains these elements, the particle size tends to increase. Among these elements, the effect of increasing the particle size is great! / So Zn is preferred! /.
  • the flux component elements and the flux are selected based on the melting point, boiling point, and sublimation point of the flux, and the reactivity between the flux and the phosphor component.
  • the phosphor A of the present invention is preferably manufactured using, for example, a flux that becomes a liquid phase at a high temperature.
  • the flux components include alkali metals, alkaline earth metals, and phosphate groups. It is preferable.
  • the phosphor A of the present invention is selected from the group consisting of Li, K, ⁇ and CI. It is preferable to contain at least two kinds of elements. From the viewpoint of increasing the weight median diameter of the phosphor A of the present invention, the phosphor A of the present invention contains one or more elements selected from the group consisting of Zn, Ga, Ge, In, Sn, and K. It is preferable to contain.
  • the flux component element may be present either inside or outside the crystal phase (crystal lattice) of the phosphor, but it is usually preferred that it is contained in the crystal phase of the phosphor. Yes.
  • the phosphor A of the present invention may contain three or more of these flux component elements.
  • the flux component element is a force corresponding to the flux described later, and the phosphor manufacturing process such as a raw material that does not necessarily originate from the flux, heat treatment, cleaning treatment, surface treatment described later, etc. It also includes elements mixed in.
  • the concentration range of the flux component elements contained in the phosphor A of the present invention is not limited, but is usually 1 ppm or more, preferably 3 ppm or more, more preferably 10 ppm or more, and usually 500 Oppm or less, preferably 10 ppm. Below, more preferably 10 ppm or less.
  • concentration of a flux component element means the total density
  • the preferable range of the concentration of each flux component element varies depending on the type of flux component element and the manufacturing conditions such as cleaning treatment and surface treatment.
  • the concentration range of Li contained in the crystalline phase of the phosphor A of the present invention is usually 1 ppm or more, preferably 2 ppm or more, particularly 3 ppm or more, and usually 500 ppm or less, especially 300 ppm or less, particularly preferably lOOppm or less. .
  • the concentration range of K contained in the phosphor A of the present invention is usually 1 ppm or more, preferably 3 ppm or more, particularly 5 ppm or more, and usually 500 ppm or less, particularly 300 ppm or less, particularly preferably 10 ppm or less.
  • the concentration range of P contained in the phosphor A of the present invention is preferably 50 ppm or more, particularly 90 ppm or more, usually 1 OOOppm or less, particularly 800 ppm or less, particularly 700 ppm or less, even if it is larger than Oppm.
  • the concentration range of C1 contained in the phosphor A of the present invention is usually 50 ppm or more, especially lOOppm or more, especially lOOOppm or less, especially 800 ppm or less, especially 600 ppm or less, even if it is larger than Oppm! /.
  • the concentration range of Zn, Ga, Ge, In, and Sn contained in the phosphor A of the present invention is usually 1 ppm or more, especially 5 ppm or more, more than 30 ppm, especially 50 ppm or more, and usually 500 ppm or less, especially 300ppm or less, especially lOOppm or less is preferable.
  • the phosphor A of the present invention contains two or more of Zn, Ga, Ge, In, and Sn, the total concentration is preferably within the above range.
  • the concentration range of the flux component element is not particularly limited as long as the effects of the present invention are not impaired.
  • the concentration of the flux component in the phosphor can be measured as follows.
  • the phosphor is crushed.
  • the degree of crushing is described later by the weight median diameter D of the phosphor.
  • the phosphor is washed with an acid such as hydrochloric acid or nitric acid, and then washed with water to remove soluble parts such as unreacted substances during production.
  • the degree of washing with water is such that the electrical conductivity of the supernatant liquid after dispersion and sedimentation of the washed phosphor in 10 times the weight of water is 5 mS / m or less.
  • elemental analysis of the phosphor that satisfies this condition is performed, and the concentration of the flux component element in the crystal phase is measured.
  • Elemental analysis uses a glow discharge mass spectrometer (GD) that uses a solid sample as a cathode to sputter the sample surface using glow discharge and ionizes the emitted neutral particles by collision with Ar and electrons in the plasma. — Can be quantified by MS). The crushing and washing with water are not necessary when the phosphor to be measured satisfies the above conditions without being crushed and washed with water. [0071] [Characteristics of Phosphor A]
  • the phosphor A of the present invention has a light emission at room temperature as compared with the conventionally known SrY 2 O: Ce phosphor.
  • the phosphor A of the present invention has a maximum emission peak in a wavelength range of usually 420 nm or more and 700 nm or less in an emission spectrum when excited with light having a wavelength of 455 nm at room temperature.
  • the phosphor A of the present invention is particularly excellent as a blue-green, green, yellow-green, and yellow phosphor.
  • the phosphor A of the present invention has a wavelength of usually 485 nm or more, preferably 500 nm or more, more preferably 510 nm or more, and usually 555 nm or less, preferably 535 nm or less, more preferably 525 nm or less, particularly preferably 520 nm or less. It is a phosphor having a maximum emission peak in the range.
  • room temperature means 25 ° C.
  • the maximum emission peak wavelength is too short, it tends to be bluish, while if it is too long, it tends to be yellowish, and the characteristics as green light tend to deteriorate.
  • the maximum emission peak wavelength is too short, when this phosphor is excited with a blue LED having a wavelength of 420 nm to 485 nm, it overlaps with the emission wavelength of the blue LED. Color rendering properties may not be obtained.
  • the maximum emission peak wavelength is too long, good color rendering may not be obtained due to a lack of blue-green to green emission components.
  • the relative intensity of the maximum emission peak is preferably as high as possible. However, it is 110 or more, particularly 125 or more, more preferably 140 or more, particularly 150 or more. Is preferred.
  • the relative intensity of the emission peak of the phosphor A of the present invention was determined by using a Ce-activated yttrium aluminum garnet (hereinafter sometimes referred to as “YAG: Cej”) phosphor P46—Y3 manufactured by Kasei Optonitas Co., Ltd. with light having a wavelength of 455 nm. Express the emission intensity when excited as 100!
  • the peak half-value width of the emission peak is usually 90 nm or more and 120 nm or less.
  • the emission spectrum of the phosphor A of the present invention has a shape with a shoulder on the right side (long wavelength side) of the emission peak that is not generally symmetrical when M 1 is Ce, for example. .
  • M 1 is Ce
  • the ground level (4f level) of Ce d + that is the emission center is split into two, transition from the 5d level to the 4f level of Ce 3+ like phosphor A of the present invention This is because the light emission based on is a superposition of two light emissions with slightly different energies, resulting in a shoulder in the spectrum.
  • all of the emission spectrum originating from Ce 3+ is not necessarily have a shoulder, which, by the two luminous intensity ratio and FWHM is the case there because that looks like a single peak.
  • M 1 when M 1 is Pr, a peak usually appears at a wavelength of about 620 nm, and when M 1 is Tb, a peak usually appears at a wavelength of about 545 nm.
  • a peak appears at a position corresponding to the type of co-activator.
  • these peaks appear together with the peak of Ce near the wavelength of 515 nm.
  • a GaN-based light emitting diode In order to excite phosphor A of the present invention with light having a wavelength of 455 nm, for example, a GaN-based light emitting diode can be used.
  • the measurement of the emission spectrum of the phosphor A of the present invention and the calculation of the emission peak wavelength, peak relative intensity, and peak half-value width can be performed using, for example, an F4500 spectrofluorometer manufactured by Hitachi, Ltd.
  • a 150 W xenon lamp can be used, and a fluorescence measuring apparatus (manufactured by JASCO Corporation) equipped with a multi-channel CCD detector C7041 (manufactured by Hamamatsu Photovitas) as a spectrum measuring apparatus can be used.
  • Host crystal of the phosphor A of the present invention is usually composed of a divalent of M 3 and oxygen is M 2 and trivalent metal element is a metal element, represented by the composition formula M 2 M 3 O It is a crystal. Usually this
  • the crystal of the composition ratio represented by the formula is a space group due to the difference in constituent metal elements.
  • P nma, F d ⁇ m, P 2 x / n, P 2 have P 6 3, P 2 y / c
  • the phosphor A of the present invention has a crystal phase having a 24 type crystal structure because a phosphor exhibiting high-luminance green light emission can be obtained.
  • the crystal structure may be uniform or non-uniform. Therefore, the phosphor A of the present invention has a CaFe O-type crystal structure.
  • the phase should be at least partially, but the content is preferably 50% by weight or more, more preferably 70% by weight or more, more preferably 90% by weight or more, and particularly preferably 100% by weight. Is most preferred.
  • the phosphor A of the present invention has many particles having a shape close to a sphere. Specifically, the ratio force of particles having a circularity of less than 85% is usually less than 10% by number, preferably 8% by number or less, and more preferably 7% by number or less. The upper limit of the circularity is ideally 100%, and the lower limit of the ratio is ideally 0 number%.
  • the phosphor A of the present invention has an appropriate dispersibility and packing density in an actual use state due to the nearly spherical shape of the particles, and can emit light with high luminance.
  • the circularity can be measured in the following manner.
  • the phosphor as a sample is dispersed with ultrasonic waves for 60 seconds using an ultrasonic cleaner (manufactured by Wichi). After that, the circularity of the sample is measured using a flow type particle image analyzer (“FPIA-2000” manufactured by Sysmetas).
  • FPIA-2000 manufactured by Sysmetas.
  • the method for calculating the average circularity by this apparatus is as follows. That is, a particle image (image) is photographed for each particle, and the projected area and peripheral length of the particle are obtained from the obtained particle image by image processing. Assuming a circle with the same area as the projected area of the particle image, the diameter of the circle is calculated, and the value obtained by dividing this diameter by the circumference of the particle is the circularity. Then, the ratio of the number of particles having a circularity of less than 0.85 to the total number of measured particles is determined as “the ratio of particles having a circularity of less than 85%”.
  • the phosphor A of the present invention is characterized by its aspect ratio. That is, particles having an aspect ratio of 3 or less occupy generally 60% by number or more, preferably 70% by number or more, more preferably 80% by number or more. There is no limit on the upper limit, but ideally it is 100% by number. This aspect ratio is preferably close to 1. Particles having an aspect ratio of greater than 3 have, for example, rod-like and needle-like shapes and are difficult to disperse in a liquid medium, and also tend to cause coating unevenness and blockage of dispensers.
  • the ratio of the particles having an aspect ratio of 3 or less is a scanning electron microscope (for example, Using Hitachi, Ltd., Hitachi S-4500), the phosphor is usually photographed at a magnification of 500 to 5000 times, and 30 particles in one field of the obtained micrograph are randomly selected.
  • the major axis and minor axis of these particles are measured using a ruler, the major axis / minor axis value is calculated as the aspect ratio, and the ratio of particles having an aspect ratio of 3 or less is calculated.
  • the phosphor is placed in the longitudinal direction of the particles when the phosphor-containing composition mixed with the liquid medium is applied. In some cases, it can be applied with good orientation.
  • the average aspect ratio is calculated by randomly selecting 30 particles in one field of the micrograph, measuring the major axis and minor axis of each particle, and calculating the major axis / minor axis value as the aspect ratio. Calculate by calculating the average.
  • the phosphor A of the present invention usually has a weight median diameter (hereinafter referred to as “D” as appropriate) of 5 111
  • the range is preferably 10 m or more, particularly 15 m or more, and usually 30 m or less, particularly 20 mm or less. If the D force S is too small, the brightness decreases and the phosphor particles
  • the phosphor A of the present invention can have a content of coarse particles having a particle size of 50 m or more, which is preferably as small as possible. It is further preferred that their content is substantially zero.
  • the phosphor A of the present invention has a small QD value. Specifically, it is usually 0.3 or less, preferably 0.27 or less, particularly preferably 0.24 or less.
  • the QD value is large, that is, the particle size distribution is wide, the local distribution state of phosphor A in the phosphor-containing composition described later is due to the rapid sedimentation of large particles during the curing of the composition. May change
  • the particle size is a value obtained from a weight-based particle size distribution curve.
  • the above-mentioned weight-based particle size distribution curve can be obtained by measuring the particle size distribution by the laser diffraction / scattering method.Specifically, each substance (measurement pair) is measured in water at an ambient temperature of 25 ° C and humidity of 70%. Elephant, here phosphor.) Laser diffraction type particle size distribution analyzer (Horiba, Ltd.) LA-300), which was obtained in a particle size range of 0.1 ⁇ 111 ⁇ m to 600 ⁇ m.
  • the particle size value when the integrated value is 50% is the weight median diameter (D).
  • the particle size values when the integrated value is 25% and 75% are indicated as D and D, respectively.
  • QD (D — D) / (D + D)”.
  • V means that the particle size distribution is narrow! /.
  • the phosphor A of the present invention has a large proportion of particles present as single particles when the particle shape is observed.
  • Single particles are particles formed by a single particle.
  • the phosphor A of the present invention contains both single particles and other particles.
  • the ratio of single particles (single particle ratio) in the phosphor A of the present invention is usually 70 number% or more, preferably 75 number% or more, more preferably 80 number% or more. There is no upper limit. 1S Ideally 100%. Due to the high single particle ratio, when dispersed in a sealing material such as a resin, it is excellent in uniform dispersibility and excellent in uniform light emission.
  • the method of observing the particle shape is not particularly limited as long as it is a microscope having an appropriate magnification, but it is preferably performed by observation with a scanning electron microscope (SEM) photograph.
  • the magnification is usually preferably in the range of 1000 to 3000 times.
  • the single particle ratio for example, 30 particles are randomly selected from particles in one field of view of a scanning electron micrograph, and particles having grain boundaries caused by fusion exist in one particle image. It is possible to calculate the ratio of particles having no grain boundary to the total (30 particles) as the single particle ratio.
  • a grain boundary is a line or a surface where single crystals with different crystal orientations are in contact. Specifically, a grain boundary exists where a clear line can be seen in one particle in an SEM photograph. Particles.
  • the phosphor A of the present invention is particularly excellent as a green to yellow-green phosphor.
  • the chromaticity coordinates X and y in the CIE standard color system of the emission color when excited with light having a wavelength of 455 nm are usually Is as follows.
  • the chromaticity coordinate X is usually 0.320 or more, preferably (or 0.330 or more, particularly preferably (or 0.335 or more, usually 0.360 or less, preferably (or 0). 350 or less, more preferably (0. 345 or less, particularly preferably (0. 339 or less.
  • the chromaticity coordinate y is usually 0.570 or more, preferably 0.580 or more, usually It is not more than 600, preferably not more than 0.590. If the emission color is out of the above range, the color purity of the green or yellow-green phosphor may decrease.
  • the values X and y can be calculated by calculating according to JISZ8701 from the emission spectrum from 480 nm to 800 nm.
  • the excitation spectrum of the phosphor A of the present invention is not limited, but is usually 380 nm or more, preferably 400 nm or more, more preferably 420 nm or more, and usually 500 nm or less, preferably 49 Onm or less, more preferably 480 nm or less. And usually 220 nm or more, preferably 230 or more, more preferably 240 or more, and usually 360 or less, preferably 330 nm or less, more preferably 320 nm or less. Visible light is emitted when excited by light having a wavelength in the surrounding area. Moreover, the peak of the excitation spectrum usually exists in the wavelength range of 430 nm or more and 470 nm or less. Therefore, the phosphor A of the present invention can efficiently convert light in the visible light region, particularly in the blue region, and can be suitably used in combination with a semiconductor light emitting element that emits visible light.
  • the object color of the phosphor A of the present invention is usually as follows in the L *, a *, b * color system at room temperature (25 ° C.).
  • L * is usually at least 100, preferably at least 102, usually at most 110, preferably at most 108, particularly preferably at most 105. If L * is too small, the emission of the phosphor may be weakened. In particular, when L * is 102 or more and 105 or less, the object color is light green, the temperature characteristics are good, and the fluorescence is balanced between the temperature characteristics and the emission intensity, which is preferable.
  • a * is usually 30 or more, preferably 28 or more, and usually 15 or less, preferably -18 or less, more preferably -24 or less. If a * is too large, the total luminous flux of the phosphor tends to be small. Therefore, it is preferable that a * be small.
  • b * is usually 45 or more, preferably 50 or more, particularly preferably 52 or more. Usually 70 or less, preferably 60 or less. If b * is too small, when a light-emitting device is produced using the phosphor A of the present invention, it is inappropriate for improving the luminous efficiency. Therefore, it is preferable that b * is large.
  • the object colors in the L *, a *, and b * color systems are specified in JISZ8729.
  • the object color of the phosphor A of the present invention can be measured by using, for example, a commercially available object color measuring device (for example, CR-300 manufactured by Minolta).
  • the phosphor emits light having a wavelength different from that of the absorbed excitation light by the emission center element absorbing the excitation light.
  • the object color of many phosphors such as for CRT and phosphor lamps is white, and few phosphors have a clear object color.
  • a white light emitting device combining a blue semiconductor light emitting element (blue LED) and a phosphor
  • blue LED blue semiconductor light emitting element
  • a typical phosphor used in this white light emitting device Ce-activated yttrium aluminum garnet (hereinafter sometimes referred to as “YAG: Cej”) is known.
  • the phosphor is a blue LED.
  • green and red phosphors are used in addition to YAG: Ce.
  • White phosphors have also been developed, and phosphors used in these conventional white light emitters have a distinct physical color!
  • the coloring of (1) is due to the presence of an element having an electronic state that does not completely fill the inner shell, such as a transition metal element or a rare earth element. That is, since the incomplete inner shell has unpaired electrons, this excited state colors the material corresponding to the visible spectrum.
  • the emission center element used in many phosphors is a transition metal element or a rare earth element, and in the case of a parent crystal that does not contain the emission center element, there is no coloration. Is considered to be the requirement (1) above.
  • the object color of the phosphor is unique to the phosphor because light in a region having a high spectral reflectance is reflected simultaneously with the light that the phosphor itself absorbs by absorbing visible light. It is considered that the coloring of is observed.
  • L * is generally an object that does not emit light by irradiation light, so it usually does not exceed 100.
  • Phosphor A in this case is excited by the irradiation light source, and the emitted light is superimposed on the reflected light.
  • concentration quenching occurs when the concentration of the luminescent center element is increased. Therefore, a locally high concentration of the luminescent center element is not preferable from the viewpoint of luminous efficiency. .
  • the portion where the concentration of the luminescent center element is extremely low is weak in luminescence because the number of luminescent centers is small. Therefore, it is preferable that the luminescent center element is uniformly distributed at an appropriate concentration in the host crystal.
  • the luminescent center element blended in the raw material is uniformly distributed in the finished phosphor crystal lattice.
  • the concentration of the emission center ion in the crystal can be known if the object color is known. That is, when two phosphors are obtained by firing two raw material mixtures with the same blending amount of the luminescent central element, if the two object colors are the same, the distribution state of the luminescent central element in the crystal is the same. It can be said that there is. The above cannot be estimated from the emission spectrum alone, but only after confirming that the phosphor has a specific object color.
  • the phosphor can be specified by specifying the luminescent color and the object color. Therefore, in the phosphor A of the present invention, the object color is preferably within the above-described range in the L *, a *, and b * color systems. In other words, whether or not the distribution of the luminescent center element in the crystal is appropriate can be confirmed by checking that the object colors L *, a * and b * are in the above-mentioned range.
  • the phosphor A of the present invention exhibits good temperature characteristics in a predetermined case.
  • the brightness obtained by exciting phosphor A of the present invention with light having a wavelength of 455 nm at temperatures of 25 ° C., 125 ° C. and 160 ° C. is Br (25) and Br (125), respectively.
  • Br (160), Br (125) / Br (25) and Br (160) / Br (25) satisfy the following formula [2] and / or formula [3], respectively. Add.
  • Br (125) / Br (25) is usually 0.70 or more, preferably 0.71 or more, more preferably 0.72 or more. There is no upper limit, but it is usually 1.0 or less. Also, Br (160) / Br (25) (usually 0.50 or more, preferably (or 0.55 or more, more preferably (or 0.58 or more. Although there is no limit on the upper limit, ordinary) 1. 0 or less.
  • the temperature of the phosphor may increase due to heat generated by a light source ("first light emitter" described later).
  • a light source such as a power LED
  • a high-power light source generates a large amount of heat. The degree of is also increased.
  • the emission intensity decreases when the temperature of the phosphor rises due to operation, and the light emission of the light emitting device due to temperature change The color tends to change.
  • the temperature characteristics of the phosphor are good, it is preferable that even in such a case, the decrease in emission intensity and the change in emission color tend to be small.
  • temperature characteristics such a decrease in emission intensity and a change in emission color associated with temperature changes are referred to as temperature characteristics, and a phosphor with a small degree of decrease in emission intensity or emission color associated with these temperature changes. Is called a phosphor having excellent temperature characteristics.
  • the phosphor A of the present invention has a tendency that the temperature characteristics tend to be improved by keeping the object color within a specific range.
  • This advantage is exhibited in a phosphor having a specific composition. .
  • this advantage is exhibited when a is smaller than 0.01 and larger than 0.003 in the formula [1].
  • the composition of the phosphor (especially the concentration of the emission center element) and the emission color of the phosphor are related, the phosphor having a specific emission color has an object color in the above-mentioned range. It can also be said that the temperature characteristics and the light emission characteristics are improved. That is, the advantage of the present invention that the phosphor power temperature characteristic and the light emission characteristic having both the object color and the light emission color are improved can be exhibited.
  • the phosphor A of the present invention is excellent in temperature characteristics as described above in a predetermined case. Therefore, the phosphor A of the present invention can be suitably used for a light-emitting device described later. wear.
  • Br (25), Br (125) and Br (160) used for the calculation of the temperature characteristics are, for example, MCPD7000 multi-channel spectrum measuring device, luminance measuring device manufactured by Otsuka Electronics as an emission spectrum measuring device. It can be measured using a color luminance meter BM5A, a stage equipped with a Peltier element cooling mechanism and a heater heating mechanism, and a 150 W xenon lamp as a light source. In this case, the following operations are performed as specific operations. That is, a cell containing a phosphor sample is placed on the stage, and the temperature is changed in the range of 20 ° C to 160 ° C.
  • the surface temperature of the phosphor is 25 ° C ⁇ 1 ° C, 125 ° C ⁇ 1 ° C, or 160 ° C ⁇ 1 ° C.
  • the phosphor is excited with light of 455 nm extracted from the light source by the diffraction grating, and the emission spectrum is measured. The brightness is obtained from the measured emission spectrum.
  • the measured value of the surface temperature of the phosphor shall be a value corrected using the temperature measured value by a radiation thermometer and a thermocouple.
  • the luminances Br (125) and Br (160) at 125 ° C and 160 ° C are high, respectively, but other phosphors may be used as phosphors having good temperature characteristics as described above. When used in combination, it is preferable that the temperature characteristics of each phosphor are close to each other because color shift due to temperature is reduced.
  • the phosphor B of the present invention satisfies the composition specific force S of the element represented by the formula [1 ′] and the formula [1 ′].
  • M 1 is at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb,
  • M 2 is mainly a divalent metal element
  • M 3 is mainly a trivalent metal element
  • a is a number 0.003 ⁇ a ⁇ 0.01
  • b is the number 0.8 ⁇ b ⁇ l.2
  • c is a number 1.6 ⁇ c ⁇ 2.4
  • d is a number 3.2 ⁇ d ⁇ 4.8 Represents each.
  • the composition ratio of the element represented by the following formula [1 ′] satisfies the following formula [1 ′] with respect to the composition.
  • the main constituent element of the phosphor of the present invention is an element represented by the following formula [1 ′].
  • the phosphor of the present invention may be composed of only the element represented by the formula [1 ′].
  • Arbitrary trace elements used as necessary for example, elements derived from flux described later existed.
  • a represents a number greater than 0.003 and less than 0.01. Except for this point, a in equation [1 ′] is the same as a in equation [1].
  • the phosphor B of the present invention since a is in a specific range as described above, it is possible to obtain the advantages of reducing the luminance of light emission and improving the temperature characteristics. Furthermore, the phosphor B of the present invention does not necessarily contain a flux component element! /.
  • the phosphor B of the present invention is the same as the phosphor A of the present invention in terms of composition. However, like the phosphor A, the phosphor B of the present invention preferably contains a flux component element.
  • the phosphor B of the present invention does not necessarily have many particles having a shape close to a sphere, but exhibits good temperature characteristics.
  • a specific index representing a good temperature characteristic is the same as that described in the section of phosphor A of the present invention.
  • the phosphor B of the present invention has the same characteristics as the phosphor A of the present invention except for the matters described above. However, in the phosphor B of the present invention, as in the phosphor A of the present invention, there are usually many particles having a shape close to the particle size.
  • the phosphor C of the present invention emits light at room temperature, has a crystal phase of CaFe O-type crystal structure,
  • the proportion of phosphor particles having an average circularity of less than 85% is 10% by number or less.
  • the composition of the phosphor C of the present invention is not limited, but is composed of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. At least one element selected from the group, at least one metal element selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and Al, Sc, Ga, Y, ⁇ , La And at least one metal element selected from the group consisting of Gd, Yb, and Lu. Among them, it is more preferable to include Ca and / or Sr as the divalent metal element and Ce as the activator element that more preferably includes Sc as the trivalent metal element.
  • the composition of the phosphor C of the present invention may be the same as that of the phosphor A or phosphor B of the present invention.
  • the phosphor C of the present invention emits light at room temperature, and the characteristics relating to the light emission are usually the same as the phosphor A of the present invention.
  • the phosphor C of the present invention has a crystal phase of CaFe 2 O-type crystal structure. At this time,
  • the phosphor C of the present invention only needs to have at least part of the crystal phase of the CaFe 2 O-type crystal structure. Also that
  • the content of the crystal phase is the same as that of the phosphor A of the present invention.
  • the phosphor C of the present invention has many particles having a shape close to a sphere, like the phosphor A of the present invention. Specifically, the proportion of particles having a circularity of less than 85% is high. Usually less than 10%. As described above, according to the phosphor C of the present invention, it is possible to obtain a phosphor having high dispersibility and packing density in an actual use state and having high brightness due to being nearly spherical.
  • the phosphor C of the present invention usually has the same characteristics as the phosphor A of the present invention with respect to the other properties. However, it is particularly preferable that the phosphor C of the present invention has a QD of 0.24 or less. As a result, it is possible to obtain a phosphor having high dispersibility and packing density in actual use and having high brightness.
  • the phosphor C of the present invention includes, for example, two or more selected from the group consisting of alkaline earth metal halides, alkali metal phosphates, alkali metal halides, and alkali metal sulfates. It can manufacture by heating the raw material containing. [0110] [4. Phosphor D]
  • the phosphor D of the present invention emits light at room temperature, has a crystal phase of CaFe O-type crystal structure,
  • the quantity median diameter D force is more than ⁇ ⁇ ⁇ ⁇ ⁇ and QD is less than 0.27.
  • the composition of the phosphor D of the present invention is not limited, but is composed of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. At least one element selected from the group, at least one metal element selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and Al, Sc, Ga, Y, ⁇ , La And at least one metal element selected from the group consisting of Gd, Yb, and Lu. Among them, it is more preferable to include Ca and / or Sr as the divalent metal element and Ce as the activator element that more preferably includes Sc as the trivalent metal element.
  • the composition of phosphor D of the present invention may be the same as phosphor A or phosphor B of the present invention.
  • the phosphor D of the present invention emits light at room temperature, and the characteristics relating to the light emission are usually the same as the phosphor A of the present invention.
  • the phosphor D of the present invention has a crystal phase of CaFe 2 O-type crystal structure. At this time,
  • the phosphor D of the present invention only needs to have at least part of the crystal phase of the CaFe 2 O-type crystal structure. Also that
  • the content of the crystal phase is the same as that of the phosphor A of the present invention.
  • the phosphor D of the present invention has a weight median diameter D force of SlO ⁇ m or more.
  • the bright phosphor D has a QD of 0.27 or less.
  • the phosphor D of the present invention is the same as the phosphor A of the present invention except for these matters regarding the powder characteristics.
  • the phosphor D of the present invention usually has the same characteristics as the phosphor A of the present invention with respect to characteristics other than those described above.
  • the phosphor D of the present invention has a melting point or sublimation point of 1200 ° C. or less by heating, for example. It is produced by heating a raw material containing a compound that generates a metal and / or a compound that generates an alkali metal oxide by heating.
  • the phosphor E of the present invention has a maximum emission peak in the wavelength range of 485 nm to 555 nm, a crystal phase of CaFeO type crystal structure, and particles having an aspect ratio of 3 or less.
  • the composition of phosphor E of the present invention is not limited, but is composed of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb At least one element selected from the group, at least one metal element selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and Al, Sc, Ga, Y, ⁇ , La And at least one metal element selected from the group consisting of Gd, Yb, and Lu. Among them, it is more preferable to include Ca and / or Sr as the divalent metal element and Ce as the activator element that more preferably includes Sc as the trivalent metal element.
  • the composition of phosphor E of the present invention may be the same as phosphor A or phosphor B of the present invention.
  • the phosphor E of the present invention has a wavelength range of usually 485 nm or more, preferably 500 nm or more, more preferably 510 nm or more, and usually 555 nm or less, preferably 535 nm or less, more preferably 525 ⁇ m or less, particularly preferably 520 nm or less.
  • the phosphor has the maximum emission peak. If the maximum emission peak wavelength is too short, it tends to be bluish, whereas if it is too long, it tends to be yellowish, and the characteristics as green light tend to deteriorate.
  • the maximum emission peak wavelength is too short, when the phosphor is excited by a blue LED with a wavelength of 420 nm to 485 nm, it overlaps with the emission wavelength of the blue LED. You may not get sex. Also, when the maximum emission peak wavelength is too long, good color rendering may not be obtained due to the lack of blue-green to green light-emitting components.
  • the phosphor E of the present invention has a crystal phase of CaFe 2 O-type crystal structure. At this time,
  • the crystal structure of the phosphor of the present invention may be uniform or non-uniform. E only needs to have at least a part of the crystal phase of the CaFe 2 O-type crystal structure. Also that
  • the content of the crystal phase is the same as that of the phosphor A of the present invention.
  • particles having an aspect ratio of 3 or less are usually 60% by number or more of the whole.
  • the phosphor E of the present invention usually has the same characteristics as the phosphor A of the present invention except for the above characteristics.
  • the phosphor E of the present invention includes, for example, Li, Na, K, Rb, Cs, P, Cl, F, Br, I, Zn, Ga, Ge, In, Sn, Ag, Au, Pb, Cd, It can be produced by heating a raw material containing at least two elements selected from the group consisting of Bi and Ti.
  • the method for producing the phosphor of the present invention there is no limitation on the method for producing the phosphor of the present invention, and any method can be adopted as long as the phosphor of the present invention described above is obtained.
  • it can be manufactured by a general solid phase reaction method.
  • the raw material containing the raw material compound containing the elements constituting the phosphor of the present invention and the raw material containing the flux described later is subjected to a heat treatment (hereinafter, as appropriate)
  • the manufacturing method is referred to as “the manufacturing method of the present invention”).
  • a compound containing an element constituting the phosphor of the present invention (hereinafter appropriately referred to as “phosphor constituent element”) can be used.
  • phosphor constituent element examples thereof include oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, halides, etc. containing phosphor constituent elements. Therefore, when the phosphor of the present invention has the composition described above, M 2 and M 3 oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, halides, and the like can be used.
  • the phosphor of the present invention is an oxide phosphor
  • a raw material compound that becomes an oxide by firing such as an oxide or a hydroxide
  • the raw material compound it is preferable to select in consideration of reactivity to the composite oxide (that is, phosphor) and non-generation of NO x, SO x, etc. during firing.
  • the raw material compounds may be used alone or in combination of two or more in any combination and ratio.
  • Ce is taken as an example, and the corresponding Ce source compound is specifically exemplified as follows: Ce O, CeO, Ce (OH), Ce (OH), Ce (CO) , Ce (NO), Ce (S)
  • Examples of the divalent metal element M 2 include Mg, Ca, and Sr, and examples of M 2 source compounds corresponding to them include Mg source compounds such as MgO and Mg (OH). , MgCO, M
  • Ca source compound examples include, for example, Ca
  • Sr source compound examples include SrO, Sr (OH), SrCO, Sr (NO), Sr (OCO), Sr (OCOCH), SrCl, etc.
  • [0126] include Sc, Lu, Y and A1 as an example trivalent metal elements M 3, to illustrate M 3 Minamotoka compounds corresponding to them, as the Sc source compound, for example, Sc O, Sc ( OH), Sc (CO),
  • source compounds include Lu 2 O, Lu (SO 2), LuCl, etc., and Y source compounds
  • Y O Y (OH), Y (CO), Y (NO), Y (SO), ⁇ (OCO)
  • Al source compounds include, for example, Al ⁇ , Al (
  • the raw material compound having a weight median diameter D in the range of m from 20 m to 20 m because the light emission characteristics of the phosphor are improved.
  • the raw material compound is preferably used after being coprecipitated as a coprecipitation raw material.
  • This coprecipitation raw material is a material in which some or all of the phosphor constituent elements are mixed at the atomic level.
  • coprecipitation is performed by combining raw material compounds containing different phosphor constituent elements, so that the resulting coprecipitation raw material contains two or more phosphor constituent elements.
  • the luminescent center element can be uniformly dispersed in the phosphor, so that a phosphor having higher emission intensity can be obtained.
  • the raw material compound is co-precipitated, it will be easier to keep the phosphor object color within a suitable range (usually a * ⁇ -24).
  • coprecipitation means preparing a solution by dissolving a raw material compound in an appropriate solvent, mixing other substances as a precipitant in this solution, and simultaneously dissolving the elements dissolved in the solution.
  • the components contained in the raw material compound are mixed at the atomic level by precipitation.
  • two or more raw material compounds are also used.
  • the combination of the phosphor constituting elements to be contained in the coprecipitation raw material is arbitrary.
  • the solubility of the coprecipitation raw material obtained as a precipitate during coprecipitation may be within a predetermined range for practical use. preferable. Therefore, in practical use, coprecipitation is possible only for combinations of raw material compounds corresponding to specific phosphor constituent elements, as well as coprecipitation for all raw material compounds.
  • composition of the phosphor of the present invention obtained by the production method of the present invention is represented by the formula [1] or
  • the phosphor constituent elements applicable to coprecipitation are M3 ⁇ 4 and so on.
  • the in the M 1 Ce, Pr, Nd , Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb is preferable instrument particularly Ce are preferred.
  • M 2 Sc, Y, La, Gd, Yb, Lu force S are preferable, and Sc and Y are particularly preferable, and Sc is particularly preferable.
  • composition of the phosphor of the present invention is represented by the formula [1] or the formula [1 ']
  • a coprecipitation raw material a raw material compound containing Sc (Sc source compound) and Ce
  • Ce source compound a raw material compound containing Sc
  • the oxide obtained by recovering the oxalate salt as a coprecipitation raw material and heating it as the coprecipitation raw material.
  • the solvent used for coprecipitation is not particularly limited as long as it can dissolve the raw material compound, so long as the coprecipitation raw material is obtained.
  • this solvent include water, nitric acid, hydrochloric acid, sulfuric acid and the like. These solvents may be used alone or in combination of two or more in any combination and ratio.
  • the solubility of the raw material compound is usually 10 g / L or more, preferably 20 g / L or more, relative to the solvent used.
  • the solvent is preferably 30 g / L or more and the solubility of the resulting coprecipitation raw material is usually 1 lg / L or less, preferably 0.lg / L or less, more preferably 0. Olg / L or less. It is desirable to select.
  • the precipitant used for coprecipitation is not limited as long as the coprecipitation raw material is obtained.
  • coprecipitation agent examples include oxalic acid, carbonic acid, and ammonia. These coprecipitants may be used alone or in combination of two or more in any combination and ratio.
  • the composition of the coprecipitation raw material obtained by coprecipitation is not limited as long as it contains phosphor constituent elements. Yes. However, due to the operation characteristic of coprecipitation, the coprecipitation raw material is obtained as a poorly soluble compound in the solvent used. For example, it can be obtained as oxalate, hydroxide, carbonate, carboxylate or the like. By co-precipitation, only one type of co-precipitation raw material may be obtained, or two or more types may be obtained in any combination and ratio.
  • the coprecipitation raw material is preferably heated to form a coprecipitation oxide and then subjected to a heat treatment described later. Thereby, efficiency can be raised at the time of manufacture of fluorescent substance.
  • the coprecipitation raw material is usually heated in the presence of oxygen, preferably in the air.
  • the temperature condition during the heat is arbitrary as long as the coprecipitation raw material can be oxidized, but is usually 800 ° C or higher, preferably 900 ° C or higher, more preferably 950 ° C or higher, and usually 1500 ° C or lower.
  • the temperature is preferably 1300 ° C or lower, more preferably 1200 ° C or lower.
  • the heating time is not limited, but usually 0.1 hour or more, preferably 1 hour or more, and usually 20 hours or less, preferably 10 hours or less.
  • the weight median diameter D of the coprecipitation raw material is appropriate. The heating conditions to be within the proper range
  • the particle diameter of the phosphor to be produced is large, which tends to improve the light emission characteristics such as luminance.
  • the weight median diameter of the coprecipitation raw material D force Normally 7 111 or more
  • the length is 10 m or more, and the upper limit is usually 20 m or less from the viewpoint of reactivity.
  • the coprecipitation oxide obtained by heating the coprecipitation raw material obtained by coprecipitation containing at least two kinds of phosphor constituting elements is used as the raw material. It is preferably used as a compound (that is, a raw material for a phosphor).
  • the combination of the phosphor constituting elements to be included in the coprecipitated oxide is arbitrary, but when producing the phosphor represented by the formula [1] or the formula [1 ′], at least M 1 and Among them, it is preferable to contain Ce and Sc, although it is preferable to contain one or more elements of M 2 in the coprecipitated oxide. Thereby, a particularly high-performance phosphor can be obtained.
  • the raw material compound is preferably subjected to a mixing treatment to give a pulverized mixture before the heat treatment. Good.
  • a mixing treatment By applying this mixing treatment, all the activator elements charged can be incorporated into the crystal so that they work effectively.
  • the mixing process There are no restrictions on the mixing process.For example, after pulverization using a dry pulverizer such as a hammer mill, roll mill, ball mill, or jet mill, the mixture is mixed using a mixer such as a ribbon blender, V-type blender, or Henschel mixer.
  • a dry method in which these raw material compounds are mixed and then pulverized using a dry pulverizer; or these raw material compounds are added to a medium such as water, and a wet pulverizer such as a medium agitating pulverizer
  • a wet method in which a slurry prepared by pulverizing and mixing these materials with a dry pulverizer and mixing them in a medium such as water is dried by spray drying or the like. Etc. can be used.
  • the phosphor of the present invention can be obtained by subjecting the raw material compound to heat treatment and baking.
  • a flux is used as a raw material according to the composition of the phosphor to be produced and the shape and particle size of the phosphor particles together with the raw material compound, and the raw material containing the raw material compound and the flux is heated. It is preferable.
  • the heat treatment sufficient temperature and time are provided for mutual diffusion of each ion that promotes the solid phase reaction between the raw material compounds.
  • a raw material compound is held in a heat-resistant container, and the raw material compound is heated to a predetermined temperature.
  • the heat-resistant container there are no restrictions on the heat-resistant container, and any one can be used as long as the target phosphor is obtained.
  • a crucible or tray made of alumina, quartz, silicon carbide, platinum or the like.
  • a platinum container is more preferable because a high-purity, high-luminance phosphor with low reactivity between the raw material mixture and the heat-resistant container is obtained, and a high-purity alumina or platinum heat-resistant container is preferred.
  • a metal container such as molybdenum or tungsten, or a container such as boron nitride can be suitably used as the heat-resistant container.
  • An alumina container may react slightly with the raw material mixture, but is preferable because it is inexpensive and easily available.
  • the temperature conditions during the heat treatment are arbitrary as long as the target phosphor can be obtained, but the highest temperature achieved during the heat treatment is usually 1200 ° C or higher, preferably 1350 ° C or higher, more preferably Is 1400 ° C or higher, usually 1800 ° C or lower, preferably 1700 ° C or lower, more preferably 1650 ° C or lower. If this temperature is too low, the solid phase reaction between the raw material mixtures will be insufficient, and the target phosphor may not be synthesized. If this temperature is too high, an expensive firing furnace is required, and unnecessary firing energy may be consumed. In addition, a plurality of temperature conditions can be set during one heat treatment. Usually, it is preferable to hold at the maximum temperature for a certain period of time, but it has a process for holding at a temperature below the maximum temperature for a certain period of time!
  • the temperature increase rate during the heat treatment may be any force S as long as the target phosphor is obtained, usually 0.5 ° C / min or more, preferably 1 ° C / min or more, and usually 20 ° C / min or less, preferably 10 ° C / min or less, more preferably 8 ° C / min or less. If the rate of temperature rise is too slow, the amount of volatilization of the flux will increase and an excessive amount of flux will be required. In addition, excessive energy may be required. If it is too early, defects may occur in the crystal.
  • the atmosphere during the heat treatment is arbitrary as long as the target phosphor can be obtained.
  • a simple gas such as oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, argon, etc.
  • a single or mixed atmosphere is employed.
  • it is an element that can take multiple valences, such as Ce, and the luminescent center element that emits ions of the valence on the reduction side is stably activated in the host crystal to emit light from the phosphor.
  • a reducing atmosphere is preferred! / ⁇ .
  • a hydrogen-containing nitrogen atmosphere is more preferable because the body crystal of the obtained phosphor has a clear green color and the emission characteristics are remarkably improved.
  • a one represented by the formula [1] as a phosphor if used Ce as M 1, reduced cut heat treatment by performing at ⁇ , Ce trivalent a state of emitting light it can be stabilized to a host crystal as an ion Ce 3+.
  • the holding time at the highest temperature is usually 10 minutes or more, preferably 60 minutes or more. More preferably 120 minutes or longer, and usually 24 hours or shorter, preferably 15 hours or shorter, more preferably It is preferably 12 hours or less, particularly preferably 6 hours or less. If the treatment time is too short, the phosphor particles may not grow and the particle size may be reduced. If the treatment time is too long, giant particles may be generated.
  • the heat treatment may be performed continuously once, or may be performed intermittently in two or more times.
  • the firing conditions such as temperature, atmosphere, pressure, time, etc. when the heat treatment is divided into two or more times are basically the same as the above-mentioned conditions, with the first firing and the second and subsequent firings.
  • the firing conditions may be changed. Also, if the heat treatment is performed in two or more times, it is possible to remove the contents from the crucible before the second heating, crush it, and then fill the crucible again and heat it. Depending on the type of flux, it is preferable to add a flux as described later.
  • the flux usually refers to an additive that promotes crystal growth, but an additive that suppresses crystal growth can also be used as the flux.
  • a flux that promotes crystal growth is used alone, crystal growth proceeds only in a specific crystal orientation, and the particle shape of the phosphor may become a high aspect ratio shape such as a needle shape or a flat plate shape.
  • the melt S formed by the flux and the phosphor raw material compound act to promote the crystal growth of the phosphor with a force S.
  • the melting point of the flux is preferably 1200 ° C or lower.
  • the boiling point and sublimation point of flatts are preferably 1500 ° C or higher.
  • the flux activity increases at the same time as the flux activity decreases because the viscosity of the melt decreases as the temperature during the heat treatment approaches the boiling point of the flux.
  • the viscosity of the melt increases, so the activity as the flux decreases.
  • the volatilization rate of the flux component decreases. Therefore, from these viewpoints, it is preferable to use a flux with a high boiling point or melting point when increasing the temperature during heat treatment.
  • a flux with a low boiling point or melting point when lowering the temperature during heat treatment which is preferable. It is preferable.
  • a flux having a boiling point higher by 100 ° C or more and 300 ° C or less than the temperature at the time of heat treatment it is preferable to heat to a temperature lower by 100 ° C. or more and 300 ° C. or less than the boiling point of the flutter.
  • the flux preferably includes i) alkali metal, ii) alkaline earth metal, iii) halide ion, and iv) phosphate group.
  • alkali metals and halogenated ions have an effect of promoting crystal growth and an effect of improving crystallinity.
  • Alkaline earth metals have their halides useful as a main component of the flux melt, This is because the phosphate group has an effect of improving the dispersibility of the obtained phosphor and an effect of promoting isotropic crystal growth (an effect of reducing the aspect ratio).
  • “promoting crystal growth” means that the crystal has high crystallinity with few crystal defects. Also, it is preferable to use two or more kinds of fluxes.
  • the force S is the above-mentioned i) alkali metal, ii) alkaline earth metal, iii) halide ion, and iv) phosphate radical V, both of which are flux. From the point of view of using it as well, it is preferable!
  • suitable fluxes include alkali metal or alkaline earth metal halides. Of these, halides containing phosphor constituent elements are preferred. CaCl is preferred for phosphors mainly composed of Ca. In addition, as described above, the halo
  • a halogen compound such that the temperature during the heat treatment is between the melting point and boiling point of the halide.
  • the melting point and boiling point of CaCl is 772.
  • halide fluoride and chloride are particularly preferable.
  • preferred examples of the compound containing a phosphate group in the flux include phosphate compounds of alkali metals or alkaline earth metals. Further, as described above, it is preferable to use a phosphate compound having a melting point of the phosphate compound lower than the temperature during the heat treatment as the phosphate compound.
  • a preferred phosphate compound is Li 3 PO, which has a melting point of 837 ° C.
  • phosphates phosphate, hydrogen phosphate, metaphosphate, pyrophosphate
  • Specific examples are Na HPO and N
  • alkaline earth metal phosphoric acid 2 4 aH PO, K HPO, KH PO and the like are more preferable. Also alkaline earth metal phosphoric acid
  • Salts and hydrogen phosphates are also preferred examples, among which Ca (PO), Sr (PO), CaHP
  • O 2 and SrHPO are preferred.
  • a compound containing Li, Na, K, Rb, Cs, P, Cl, F, Br, or I is preferably used as the flux.
  • preferred fluxes from the above viewpoints include alkaline earth metal halides, alkali metal phosphates, alkali metal halides, alkali metal sulfates, and the like.
  • Examples include bBr, Rbl, CsF, CsCl, CsBr, Csl. Of these, if CaCl is used,
  • Crystal growth in the longitudinal direction can be promoted. If you use Li PO, you get
  • the crystallinity of the phosphor can be improved, the dispersibility of the phosphor with respect to the sealing material in the resin or the like can be improved, and further, the crystal growth in the longitudinal direction can be suppressed.
  • KH PO, KC1 and Li SO can also promote the overall crystal growth.
  • CaCl among the exemplified fluxes, CaCl ,: Li PO, KH PO, K
  • the flux that promotes crystal growth and the crystal growth in the longitudinal direction are suppressed ( It is preferred to combine with flux, which promotes isotropic crystal growth. Among these, it is preferable that an alkali metal or alkaline earth metal halide is the main component of the flux.
  • the particle size can be controlled and the dispersibility is good.
  • alkali metal phosphate such as 4 or alkali metal sulfate such as Li SO.
  • a compound that generates a metal having a melting point or sublimation point of 1200 ° C or less by heating and / or an alkali metal by heating melts or vaporizes during firing to promote mass transfer of the phosphor raw material compound, thereby promoting particle growth and increasing the weight median diameter.
  • the luminance tends to be improved, which is more preferable.
  • the compound that generates a metal having a melting point or sublimation point of 1200 ° C or lower by heating is as follows: For example, it refers to a compound that changes to a metal having a melting point or sublimation point of 1200 ° C. or less, preferably in a reducing atmosphere, by heating during the heat treatment described above.
  • the metal itself having a melting point or sublimation point of 1200 ° C. or less may be used as a part or all of a compound that generates a metal having a melting point or sublimation point of 1200 ° C. or less.
  • metals having a melting point or sublimation point of 1200 ° C or lower include Zn, Ga, Ge, In, Sn, Ag, Au, Pb, Cd, Bi, Ti and the like.
  • Zn, Ga, Ge, In, Sn, Ag, and Au are preferred because they are not toxic.
  • Zn, Ga, Ge, In, and Sn are preferred.
  • specific examples of compounds whose melting point or sublimation point changes to a metal of 1200 ° C or less by heating include Zn, Ga, Ge, In, Sn, Ag, Au, Pb, Cd, Bi, Ti, etc. These include oxides, hydroxides, nitrates, acetates, sulfates, and the like of each metal. Among them, it is preferable to use an oxide in consideration of the type and amount of components generated by decomposition, the stability of the compound, deliquescence, hygroscopicity, availability of high-purity substances, and the like. As an example, for oxides, ZnO, Ga 0, Ga O, GeO, In O, SnO, Ag 0, PbO
  • ZnO, Ga 2 O 3, GeO 2, In 2 O 3, and SnO are preferably used. Above all, heavy
  • Zn is preferable.
  • the boiling point of Zn metal is not more than 1200 ° C (the boiling point of zinc is 907 ° C). This is because the effect of increasing the weight median diameter appears significantly.
  • the compound that generates an alkali metal oxide by heating refers to, for example, a compound that generates an alkali metal oxide by heating during the aforementioned heat treatment.
  • Alkali metal oxides themselves may be used as part or all of the compounds that produce alkali metal oxides upon heating!
  • Examples of the compound that generates an alkali metal oxide by heating include carbonates, nitrates, acetates, and oxalates of alkali metals, and further, oxidation of alkali metals.
  • the thing itself can also be used.
  • Specific examples of alkali metal carbonates include KCO, LiCO, NaCO, RbCO, and CsCO.
  • KCO KCO
  • RbCO RbCO
  • CsCO CsCO
  • both of the compound that generates a metal having a melting point or sublimation point of 1200 ° C or less upon heating and the compound that generates an oxide of an alkali metal upon heating may be used. May be used in combination. Therefore, from the viewpoint of increasing the weight median diameter of the phosphor of the present invention, ZnO, GaO, GeO, InO, SnO, and
  • the degree to which the flux component element remains in the synthesized phosphor varies depending on the type of element contained in the flux and the degree of cleaning described below.
  • the flux component element is Li, K, P, Cl, Zn, Ga, Ge, In or Sn
  • the concentration of the flux component element in the phosphor is as described above.
  • the timing of mixing the flux into the reaction system is preferably before the heat treatment when the heat treatment is performed only once.
  • the heat treatment when the heat treatment is intermittently performed in two or more times, it may be mixed with the raw material compound in advance, or may be mixed before the second and subsequent heat treatments.
  • the flux may be mixed in multiple times.For example, a part of the flux may be mixed with the raw material compound in advance, and the remaining flux may be mixed before the second and subsequent heat treatments. .
  • the heat treatment reaction system may contain components other than the raw material compound and the flux! /.
  • pulverizers listed as being usable in the raw material mixing step can be used.
  • water such as deionized water, organic solvents such as methanol and ethanol, alkaline aqueous solutions such as ammonia water, aqueous solutions of inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and aqueous solutions of organic acids such as acetic acid. Etc.
  • the classification process can be performed by sieving or water sieving, or by using various classifiers such as various air classifiers or vibrating sieves. In particular, when dry classification using a nylon mesh is used, a phosphor with good dispersibility having a weight median diameter of about 20 m can be obtained.
  • the washing treatment can be performed, for example, with water such as deionized water, an organic solvent such as ethanol, or an alkaline aqueous solution such as ammonia water.
  • water such as deionized water, an organic solvent such as ethanol, or an alkaline aqueous solution such as ammonia water.
  • an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid; or an organic such as acetic acid.
  • An acid aqueous solution can also be used. In this case, it is preferable to further wash with water after washing in an acidic aqueous solution.
  • the pH of the supernatant obtained by dispersing the washed phosphor in water 10 times by weight and allowing to stand for 1 hour should be neutral (about pH 5-9) Is preferred. This is because if it is biased toward basicity or acidity, the liquid medium or the like may be adversely affected when mixed with the liquid medium or the like described later.
  • the degree of washing can also be expressed by the electrical conductivity of the supernatant obtained by dispersing the washed phosphor in 10 times the weight ratio of water and allowing it to stand for 1 hour.
  • the electrical conductivity is preferably as low as possible from the viewpoint of light emission characteristics, but in consideration of productivity, the washing treatment is usually repeated until it is 10 mS / m or less, preferably 5 mS / m or less, more preferably 4 mS / m or less. I prefer it.
  • a specific gravity is higher than that of water by stirring and dispersing in water 10 times the weight of the phosphor for a predetermined time, for example, 10 minutes, and then allowing to stand for 1 hour. Heavy phosphor particles are allowed to settle naturally, and the electrical conductivity of the supernatant liquid at this time may be measured using an electric conductivity meter “EC METER CM-30G” manufactured by Toa Decay Co., Ltd.
  • EC METER CM-30G manufactured by Toa Decay Co., Ltd.
  • Distilled water is preferred.
  • those having a particularly low electrical conductivity are preferred, and those usually used are 0.0063 mS / m or more, usually lmS / m or less, preferably 0.5 mS / m or less.
  • the electrical conductivity is usually measured at room temperature (about 25 ° C).
  • the classification treatment can be performed, for example, by performing a water sieve or a starch syrup treatment, or by using various classifiers such as various air classifiers or vibrating sieves.
  • various classifiers such as various air classifiers or vibrating sieves.
  • drying treatment it is preferable to perform a drying process after the cleaning process.
  • a drying treatment method As appropriate according to the properties of the phosphor, if necessary.
  • normal heat drying, low temperature drying such as vacuum drying, reduced pressure drying, freeze drying, spray drying, and the like can be used.
  • a substance that can be present on the surface of the phosphor (hereinafter referred to as "surface treatment substance” as appropriate).
  • Examples of) include organic compounds, inorganic compounds, glass materials, etc.
  • organic compound examples include hot-melt polymers such as acrylic resin, polycarbonate, polyamide, and polyethylene, latex, polyorganosiloxane, and the like.
  • inorganic compounds include magnesium oxide, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, tin oxide, germanium oxide, tantalum oxide, niobium oxide, vanadium oxide, boron oxide, antimony oxide, zinc oxide, Metal oxides such as yttrium oxide, lanthanum oxide and bismuth oxide, metal nitrides such as silicon nitride and aluminum nitride, orthophosphates such as calcium phosphate, barium phosphate and strontium phosphate, polyphosphate, etc.
  • At least one selected from the group consisting of lithium phosphate, sodium phosphate, and potassium phosphate, barium nitrate, calcium nitrate, strontium nitrate, hydrochloric acid A combination of at least one selected from the group consisting of norium, calcium hydrochloride, and strontium hydrochloride can also be used. Of these, it is preferable to use a combination of sodium phosphate and calcium nitrate.
  • the surface treatment can be performed using only a phosphate such as sodium phosphate.
  • Examples of the glass material include borosilicate, phosphosilicate, and alkali silicate.
  • These surface treatment substances may be used alone or in combination of two or more in any combination and ratio! /.
  • the surface-treated phosphor of the present invention has these surface-treated substances.
  • Examples of the presence of the surface treatment substance include the following.
  • the adhesion amount or the coating amount of the surface treatment substance on the surface of the phosphor of the present invention is usually 0.1% by weight or more, preferably 1% by weight or more, based on the weight of the phosphor of the present invention. More preferably, it is 5% by weight or more, usually 50% by weight or less, preferably 30% by weight or less, more preferably 15% by weight or less. If the amount of the surface treatment substance relative to the phosphor is too large, the light emission characteristics of the phosphor may be impaired. If the amount is too small, the surface coating will be incomplete, and the moisture resistance and dispersibility will not be improved. There is a case.
  • the thickness (layer thickness) of the surface treatment material formed by the surface treatment is usually 10 nm or more, preferably 50 or more, and usually 2000 or less, preferably lOOOnm or less. If the film thickness is too thick, the light emission characteristics of the phosphor may be impaired. If the film thickness is too thin, the surface coating may be incomplete and the moisture resistance and dispersibility may not be improved.
  • the surface treatment method is not particularly limited.
  • the following surface treatment method using a metal oxide silicon oxide
  • the phosphor of the present invention is mixed in an alcohol such as ethanol, stirred, and further ammonia.
  • Aqueous alkali solution such as water is mixed and stirred.
  • a hydrolyzable alkyl silicate ester such as tetraethylorthosilicate is mixed and stirred.
  • the obtained solution is allowed to stand for 3 to 60 minutes, and then the supernatant containing silicon oxide particles that have not adhered to the phosphor surface is removed with a dropper or the like.
  • alcohol mixing, stirring, standing, and removal of supernatant are repeated several times, and then a surface treatment phosphor is obtained through a vacuum drying step at 120 ° C to 150 ° C for 10 minutes to 5 hours, for example, 2 hours. .
  • Other methods of surface treatment of the phosphor include, for example, a method in which spherical silicon oxide fine powder is adhered to the phosphor (JP-A-2-209989, JP-A-2-233794), and silicon in the phosphor.
  • a method of depositing a film of a system compound Japanese Patent Laid-Open No. 3-231987), a method of coating the surface of phosphor fine particles with polymer fine particles (Japanese Patent Laid-Open No. 6-314593), a phosphor with an organic material, an inorganic material and A method of coating with a glass material (Japanese Patent Laid-Open No.
  • phosphors such as those used for cathode ray tubes, plasma display panels, fluorescent lamps, fluorescent display tubes, X-ray intensifying screens and the like are generally used.
  • Known techniques can be used, and can be selected as appropriate according to the purpose and application.
  • a flux when producing the phosphor A of the present invention, it is particularly preferable to use a flux. This is to ensure that the phosphor contains the flux component elements.
  • the amount of the M 1 source compound when producing the phosphor B of the present invention, it is preferable to adjust the amount of the M 1 source compound so that it is narrower than other phosphors and within a predetermined range. This is because the proportion of M 1 element in phosphor B is limited to a narrower range than other phosphors.
  • a flux containing alkali metal, alkali earth metal, halide ion, and phosphate radical may be used.
  • these fluxes are used, the particle size of the obtained phosphor tends to be rounded, that is, the aspect ratio tends to be small.
  • the phosphor D of the present invention when the phosphor D of the present invention is produced, it is preferable to use a compound that changes to a metal whose melting point or sublimation point is 1200 ° C. or less by heating as a flux. This is because these fluxes tend to increase the particle size of the resulting phosphor.
  • the phosphor of the present invention can be used for any application using the phosphor.
  • the phosphor of the present invention is capable of using the phosphor of the present invention alone or in combination of two or more of the phosphors of the present invention, or the phosphor of the present invention and other phosphors. It can also be used as a phosphor mixture in any combination.
  • the phosphor of the present invention can be suitably used for various light-emitting devices (hereinafter referred to as “light-emitting device of the present invention”) taking advantage of the characteristic that it can be excited by blue light or ultraviolet light.
  • the phosphor of the present invention is usually a green light-emitting phosphor, for example, when an excitation light source that emits blue light or ultraviolet light is combined with the phosphor of the present invention, light emission of blue-green, green, or yellow-green is performed.
  • the device can be manufactured.
  • a white light emitting device can be manufactured.
  • a white light emitting device can be manufactured by combining the phosphor of the present invention with an excitation light source that emits ultraviolet light, a phosphor that emits blue light, and a phosphor that emits red light.
  • the emission color of the light-emitting device is not limited to white, and by appropriately selecting the combination and content of phosphors, light emission that emits light in any color, such as light bulb color (warm white) or pastel color
  • the device can be manufactured.
  • the light-emitting device obtained in this way can be used as a light-emitting part of an image display device (especially a backlight for liquid crystal) or a lighting device.
  • the phosphor of the present invention can be used by mixing with a liquid medium.
  • the phosphor of the present invention is used for a light emitting device or the like, it is preferably used in a form dispersed in a liquid medium. What dispersed the fluorescent substance of this invention in the liquid medium is suitably " This is referred to as “the phosphor-containing composition of the present invention”.
  • the kind of fluorescent substance of this invention contained in the fluorescent substance containing composition of this invention It can select arbitrarily from what was mentioned above.
  • the phosphor of the present invention to be contained in the phosphor-containing composition of the present invention may be only one kind, or two or more kinds may be used in any combination and ratio.
  • the phosphor-containing composition of the present invention may contain a phosphor other than the phosphor of the present invention as long as the effects of the present invention are not significantly impaired.
  • the liquid medium used in the phosphor-containing composition of the present invention is not particularly limited as long as the performance of the phosphor is not impaired within the intended range.
  • it exhibits liquid properties under the desired conditions of use and suitably disperses the phosphor of the present invention, and does not cause favorable reaction or reaction! /
  • Any inorganic material and / or any material can be used.
  • Organic materials can be used.
  • Examples of the inorganic material include, for example, a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor polymer, or a metal alkoxide by a sol-gel method, or an inorganic material (for example, a siloxane bond). Including inorganic materials) etc.
  • Examples of the organic material include thermoplastic resins, thermosetting resins, and photocurable resins.
  • Specific examples include methacrylic resins such as polymethylmethacrylate; styrene resins such as polystyrene and styrene-acrylonitrile copolymers; polycarbonate resins; polyester resins; phenoxy resins; butyral resins;
  • cenorelose-based resins such as cenorelose acetate and cenorelose acetate butyrate; epoxy resins; phenol resins; silicone resins.
  • the silicon-containing compound refers to a compound having a silicon atom in the molecule, such as an organic material (silicone-based material) such as polyorganosiloxane, silicon oxide, silicon nitride, or oxynitride silicon.
  • organic material such as polyorganosiloxane, silicon oxide, silicon nitride, or oxynitride silicon.
  • silicon-based materials are preferable from the viewpoint of easy handling.
  • the silicone material generally refers to an organic polymer having a siloxane bond as the main chain, and examples thereof include a compound represented by the following formula (i) and / or a mixture thereof.
  • R 1 to R 6 are selected from the group consisting of an organic functional group, a hydroxyl group, and a hydrogen atom, which may be the same or different.
  • the silicone material When used for sealing a semiconductor light emitting device, the silicone material can be used after being sealed with a liquid silicone material and then cured by heat or light.
  • silicone materials are classified according to the mechanism of curing, it is usually possible to list silicone materials such as addition polymerization curing type, condensation polymerization curing type, ultraviolet curing type, and peroxide crosslinking type.
  • silicone materials such as addition polymerization curing type, condensation polymerization curing type, ultraviolet curing type, and peroxide crosslinking type.
  • an addition polymerization curing type addition type silicone material
  • a condensation curing type condensation type silicone material
  • an ultraviolet curing type are preferable.
  • the addition type silicone material and the condensation type silicone material will be described.
  • the addition-type silicone material refers to a material in which polyorganosiloxane chains are bridged by organic additional bonds.
  • a typical example is a compound having a Si—C C Si bond at a crosslinking point obtained by reacting butylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst.
  • an addition catalyst such as a Pt catalyst.
  • Commercially available products can be used.
  • specific product names of addition polymerization curing type include “LPS-1400”, “: LPS-2410”, “: LPS-3400”, etc. made by Shin-Etsu Chemical Co., Ltd. ⁇ Can be mentioned.
  • examples of the condensation-type silicone material include a compound having a Si—O—Si bond obtained by hydrolysis-polycondensation of an alkylalkoxysilane at a crosslinking point.
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent group.
  • M represents an organic group
  • m represents an integer of 1 or more that represents the valence of M
  • n represents an integer of 1 or more that represents the number of X groups, where m ⁇ n.
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent group
  • Y 2 represents an u-valent organic group
  • s represents an integer of 1 or more representing the valence of M
  • t represents an integer of 1 or more and s-1 or less
  • u represents an integer of 2 or more.
  • the condensation-type silicone material may contain a curing catalyst.
  • a curing catalyst for example, a metal chelate compound or the like can be suitably used.
  • the metal chelate compound preferably contains Zr, preferably containing one or more of Ti, Ta, and Zr. Only one type of curing catalyst may be used, or two or more types may be used in any combination and ratio! /.
  • condensation-type silicone materials include, for example, Japanese Patent Application Nos. 2006-47274 to 4727 7 (for example, JP 2007-112973 to 112975 and JP 2007-19459). And a member for a semiconductor light emitting device described in Japanese Patent Application No. 2006-176468.
  • condensation-type silicone materials particularly preferable materials will be described below.
  • Silicone materials are generally subject to weak adhesion to semiconductor light-emitting elements, substrates on which the elements are arranged, and packages, but as silicone materials with high adhesion, the following characteristics [1 ]
  • a condensation type silicone material having one or more of [3] to [3] is preferred.
  • the content of silicon is 20% by weight or more.
  • the solid Si nuclear magnetic resonance (NMR) spectrum measured by the method described in detail later has at least one peak derived from Si in the following (a) and / or (b).
  • the peak top position is 40 ppm chemical shift relative to tetramethoxysilane. As described above, the peak is in the region of Oppm or less and the peak half-value width is 0.3 ppm or more and 3. Oppm or less.
  • the silanol content is 0.1% by weight or more and 10% by weight or less.
  • the silicone material having the above features [1] and [2] is preferred because the silicone material having the feature [1] is preferred.
  • a silicone material having all the above features [1] to [3] is more preferable.
  • the basic skeleton of the conventional silicone-based material is a force S, which is an organic resin such as an epoxy resin having a carbon-carbon and carbon-oxygen bond as the basic skeleton, whereas the basic skeleton of the silicone-based material suitable for the present invention is glass (key). It is the same inorganic siloxane bond as that of acid glass. As is apparent from the chemical bond comparison table shown in Table 1 below, this siloxane bond has the following excellent characteristics as a silicone-based material.
  • the silicone-based silicone material formed in (1) is a heat-resistant and light-resistant protective film close to inorganic materials such as glass or rock.
  • a silicone-based material having a methyl group as a substituent is excellent in light resistance, because it does not absorb in the ultraviolet region, and thus photolysis does not easily occur.
  • the silicone content of the silicone-based material suitable for the present invention is usually 20% by weight or more, and of these, 25% by weight or more is preferable, and 30% by weight or more is more preferable.
  • the upper limit is usually that the glass content of SiO alone is 47% by weight.
  • the range is 47% by weight or less.
  • the silicon content of the silicone-based material is abbreviated as "ICP", for example, by using the following method, inductively coupled plasma spectrometry. ) Analysis can be performed and calculated based on the result.
  • the full width at half maximum of the peak described in (b) is usually 5. Oppm or less, preferably 4. Oppm or less, and usually 0.3 ppm or more, preferably 0.4 ppm or more.
  • the half width of the peak is too small, Si atoms in the environment will not be involved in siloxane crosslinking, and the trifunctional silane will remain in an uncrosslinked state. It may be a member that is inferior in heat resistance and weather resistance to the material.
  • the value of the chemical shift of the silicone material suitable for the present invention can be calculated based on the results of solid Si-NMR measurement, for example, using the following method.
  • analysis of measurement data is performed by a method of dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function or a Lorentle function.
  • Probe 7.5mm ⁇ CP / MAS probe
  • ⁇ 1 decoupling frequency 50kHz
  • optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. Do.
  • the silicone material suitable for the present invention has a silanol content power of usually 0.1% by weight or more, preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, more preferably The range is 5% by weight or less.
  • the silanol-based material has excellent long-term performance stability with little change over time, and excellent performance in both moisture absorption and moisture permeability.
  • a member containing no silanol is inferior in adhesion, there is an optimum range of silanol content as described above.
  • the silanol content of the silicone-based material is, for example, as described in ⁇ Characteristic [2] (Solid Si-NMR spectrum)> in the section of ⁇ Solid Si-NMR spectrum measurement and silanol content calculation ⁇ ! /
  • the solid Si-NMR spectrum was measured using the method explained above, and the ratio of the silanol-derived silicon atoms to the total peak area was determined from the ratio of the silanol-derived peak area to the total peak area. (%) Is calculated and compared with the content rate of the key analysis separately Calculate with the force S.
  • the silicone material suitable for the present invention contains an appropriate amount of silanol
  • the silanol usually hydrogen bonds to the polar portion present on the surface of the device, thereby exhibiting adhesiveness.
  • the polar part include a hydroxyl group and oxygen of a metalloxane bond.
  • the silicone material suitable for the present invention is usually heated in the presence of an appropriate catalyst to form a covalent bond by dehydration condensation with the hydroxyl group on the device surface, thereby further strengthening the adhesion. Sex can be expressed.
  • the content of the liquid medium is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 50% by weight or more, preferably 75% by weight or more with respect to the entire phosphor-containing composition of the present invention.
  • the amount is usually 99% by weight or less, preferably 95% by weight or less.
  • the mixing ratio as described above is usually used. It is desirable to use a liquid medium. On the other hand, if there is too little liquid medium, there is a possibility that it will be difficult to handle due to lack of fluidity.
  • the liquid medium mainly serves as a binder in the phosphor-containing composition of the present invention.
  • One type of liquid medium may be used alone, or two or more types may be used in any combination and ratio.
  • it when using a silicon-containing compound for the purpose of heat resistance, light resistance, etc., it contains other thermosetting resins such as epoxy resin to the extent that the durability of the silicon-containing compound is not impaired. Also good.
  • the content of the other thermosetting resin is usually 25% by weight or less, preferably 10% by weight or less based on the total amount of the liquid medium as the binder.
  • the effects of the present invention are significantly impaired.
  • other components may be included.
  • other components may be used alone, or two or more may be used in any combination and ratio.
  • the light-emitting device of the present invention includes a first light emitter (excitation light source), a second light emitter that emits visible light when irradiated with light from the first light emitter, and A light emitting device having at least one of the phosphors of the present invention as the second phosphor.
  • the phosphor of the present invention a phosphor that emits fluorescence in the green region under irradiation of light from an excitation light source (hereinafter sometimes referred to as "the green phosphor of the present invention").
  • the green phosphor of the present invention preferably has an emission peak in the wavelength range of 485 ⁇ m to 555 nm.
  • the green phosphor of the present invention may be used alone or in combination of two or more in any combination and ratio.
  • the light emitting device of the present invention exhibits high luminous efficiency with respect to an excitation light source (first light emitter) having emission from the ultraviolet region to the blue region.
  • an excitation light source first light emitter
  • it is an excellent light emitting device when used in a white light emitting device such as a lighting device or a light source for a liquid crystal display.
  • the configuration of the light-emitting device of the present invention is limited except that it has a first light-emitting body (excitation light source) and at least the phosphor of the present invention is used as the second light-emitting body. It is possible to arbitrarily adopt a known device configuration. A specific example of the device configuration will be described later.
  • the emission peak in the green region of the emission spectrum of the light emitting device of the present invention preferably has an emission peak in the wavelength range of 515 nm to 535 nm.
  • the XYZ color system may be referred to as an XY color system, and is usually expressed as (X, y).
  • the luminous efficiency is obtained by obtaining the total luminous flux from the result of the emission spectrum measurement using the light emitting device as described above and dividing the lumen (lm) value by the power consumption (W).
  • the power consumption can be obtained by measuring the voltage using Fluke's True RMS Multimeters Model 187 & 189 with 20 mA applied, and multiplying the current value by the voltage value.
  • an excitation light source as described later is used as the first light emitter, and in addition to the green phosphor as described above, the following Such as a phosphor emitting red fluorescence (hereinafter referred to as “red phosphor” as appropriate), a phosphor emitting blue fluorescence (hereinafter referred to as “blue phosphor” as appropriate), and a phosphor emitting yellow fluorescence (hereinafter referred to as “blue phosphor”). It can be obtained by using a known apparatus structure using any combination of known phosphors such as “yellow phosphor” as appropriate.
  • the white color of the white light emitting device is defined by JIS Z 8701, (yellowish) white, (greenish) white, (blueish) white, (purple) white and It means to include all of white, and of these, white is preferred.
  • the first light emitter in the light emitting device of the present invention emits light that excites a second light emitter described later.
  • the emission wavelength of the first illuminant is not particularly limited as long as it overlaps the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used.
  • a light emitter having an emission wavelength from the ultraviolet region to the blue region is used, and it is particularly preferable to use a light emitter having an emission wavelength from the near ultraviolet region to the blue region.
  • the specific value of the emission peak wavelength of the first illuminant is usually preferably 200 nm or more. Yes. Among these, when using near-ultraviolet light as excitation light, it is desirable to use an illuminant having an emission peak wavelength of usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 420 nm or less. . When blue light is used as excitation light, a phosphor having an emission peak wavelength of usually 420 or more, preferably 430 or more, and usually 500 or less, preferably 480 nm or less should be used. Is desirable. Both are from the viewpoint of color purity of the light emitting device.
  • a semiconductor light emitting element is generally used, and specifically, a light emitting LED or a semiconductor laser diode (hereinafter abbreviated as "LD" as appropriate).
  • LD semiconductor laser diode
  • Etc. can be used.
  • examples of the illuminant that can be used as the first illuminant include an organic electroluminescent luminescence element, an inorganic electroluminescent luminescence element, and the like.
  • what can be used as the first light emitter is not limited to those exemplified in the present specification.
  • the first light emitter is preferably a GaN LED or LD using a GaN compound semiconductor.
  • GaN-based LEDs and LDs are extremely bright at very low power by combining with the above phosphors, which have significantly higher emission output and external quantum efficiency than SiC-based LEDs that emit light in this region. This is because light emission can be obtained.
  • GaN-based LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC.
  • a GaN-based LED with an N light emitting layer is particularly preferred because its light emission intensity is very strong
  • the emission intensity is very high.
  • the value of X + Y is usually a value in the range of 0.8 to 1.2.
  • these light-emitting layers doped with Zn or Si or those without dopants are preferred for adjusting the light emission characteristics.
  • GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic components, and the light-emitting layers are n-type and p-type AlGaN layers, GaN layers, or In layers. Sand with Ga N layer etc.
  • the power of having a heterostructure that has been turned on is more preferable because the power S and the light emission efficiency are higher.
  • first light emitter may be used, or two or more may be used in any combination and ratio.
  • the second light emitter in the light emitting device of the present invention is a light emitter that emits visible light when irradiated with the light from the first light emitter described above, and the phosphor of the present invention described above as the first phosphor ( A green phosphor) and a second phosphor (a red phosphor, a blue phosphor, an orange phosphor, etc.), which will be described later, as appropriate depending on the application.
  • the second light emitter is configured by dispersing the first and second phosphors in a sealing material.
  • composition of the phosphor other than the phosphor of the present invention used in the second light emitter is not particularly limited.
  • Y O, YVO, Zn SiO, Y Al which becomes the crystal matrix
  • Metal oxides typified by O, Sr SiO, etc.
  • metal nitrides typified by Sr Si N, etc.
  • C metal oxides typified by Sr Si N, etc.
  • Preferred examples of the crystal matrix include, for example, (Zn, Cd) S, SrGa S, SrS, ZnS, etc.
  • Oxysulfides such as Y O S; (Y, Gd) Al O, YAIO, BaMgAl O, (Ba, Sr
  • Halophosphates such as O) CI; phosphates such as SrPO, (La, Ce) PO, etc.
  • the above-mentioned crystal matrix, activator element and coactivator element can be partially replaced with elements of the same family with no particular restrictions on the element composition, and the obtained phosphor can be seen from near ultraviolet to visible region. Any material that absorbs light in the region and emits visible light can be used.
  • phosphors As a force. These are merely examples, and phosphors that can be used in the present invention are not limited to these. In the following examples, as described above, phosphors that differ only in part of the structure are omitted as appropriate.
  • the second light emitter in the light emitting device of the present invention contains at least the above-described phosphor of the present invention as the first phosphor.
  • Any one of the phosphors of the present invention may be used alone, or two or more thereof may be used in any combination and ratio.
  • a phosphor that emits the same color fluorescence as the phosphor of the present invention (same color combined phosphor) may be used as the first phosphor. Since the phosphor of the present invention is usually a green phosphor, other types of green phosphors can be used in combination with the phosphor of the present invention as the first phosphor.
  • any green phosphor may be used as long as the effects of the present invention are not significantly impaired.
  • a specific example of the green phosphor is composed of fractured particles having a fracture surface and emits light in the green region (Mg, Ca, Sr, Ba) Si O N: Eu represented by Eu.
  • Examples include an alkaline earth silicon oxynitride phosphor based on mouth-pium.
  • green phosphors include SrAlO: Eu, (Ba, Sr, Ca) AlO: Eu, etc.
  • Tb activated silicate phosphor such as e, Tb, Sr P O— Sr B O: Eu activated boric acid such as Eu
  • Mn-activated silicate phosphor such as Mn, CeMgAl 2 O 3: Tb, Y A1 0: Tb-activated key such as Tb
  • Body Y (Al, Ga) O: Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) (Al, Ga) O: Ce, etc.
  • Ce-activated aluminate phosphor Ca Sc Si O: Ce, Ca (Sc, Mg, Na, Li) Si O:
  • Ce-activated silicate phosphor such as Ce, CaSc 2 O 3: Ce-activated oxide phosphor such as Ce, Eu-activated
  • Eu-activated oxynitride phosphors such as sialon, BaMgAl 2 O: Eu and Mn such as Eu and Mn Activated aluminate phosphor, SrAl 2 O: Eu activated aluminate phosphor such as Eu, (La, Gd
  • Tb-activated oxysulfide phosphors such as Tb, LaP ⁇ : Ce, Tb-activated phosphorus such as Ce and Tb
  • Acid phosphors, sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO: Ce, Tb T Na Gd B ⁇ : Ce, Tb, (Ba, Sr) (Ca, Mg, Zn) B ⁇ : K,
  • Ce and Tb-activated borate phosphors such as Ce and Tb, Ca Mg (SiO) CI: Eu and Mn such as Eu and Mn
  • Mn activated halosilicate phosphor such as 8 4 4 2, M Si ⁇ N: Eu, M Si ⁇ N: Eu (However, M
  • the green phosphor a pyridine-phthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a naltalic imide-based fluorescent dye, or an organic phosphor such as a terbium complex is used. It is also possible to use it.
  • any of the green phosphors exemplified above may be used alone, or two or more may be used in any combination and ratio! /.
  • the emission peak wavelength (nm) of the first phosphor used in the light emitting device of the present invention is usually
  • It is preferably larger than 500, more preferably 510 or more, more preferably 515 or more, and usually 550 or less, especially 542 nm or less, more preferably 535 nm or less. If this emission peak wavelength is too short, it tends to be bluish, while if it is too long, it becomes yellowish.
  • the characteristics as green light may deteriorate.
  • the first phosphor used in the light emitting device of the present invention has a full width at half maximum (hereinafter, abbreviated as "FWHM" as appropriate) in the above emission spectrum.
  • FWHM full width at half maximum
  • it is preferably 10 nm or more, preferably 20 nm or more, more preferably 25 nm or more, and usually 85 nm or less, particularly 75 nm or less, and further preferably 70 nm or less. If the full width at half maximum FWHM is too narrow, the emission intensity may decrease, and if it is too wide, the color purity may decrease.
  • the second light emitter in the light emitting device of the present invention has the above-mentioned first fluorescent substance depending on its application.
  • one or more phosphors that is, the second phosphor
  • This second phosphor is a phosphor having an emission peak wavelength different from that of the first phosphor.
  • these second phosphors are used to adjust the color tone of light emitted from the second phosphor. Therefore, the second phosphor emits fluorescence having a color different from that of the first phosphor.
  • phosphors are used.
  • examples of the second phosphor include other than green phosphors such as orange to red phosphor, blue phosphor, and yellow phosphor. A phosphor is used.
  • the weight median diameter of the second phosphor used in the light-emitting device of the present invention is usually lO ⁇ m or more, particularly 12 m or more, and usually 30 m or less, especially 25 m or less. And are preferred. If the weight median diameter is too small, the luminance tends to decrease and the phosphor particles tend to aggregate. On the other hand, if the weight median diameter is too large, the coating unevenness tends to cause clogging of the dispenser.
  • the emission peak wavelength of the orange to red phosphor is usually in the wavelength range of 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less, preferably 700 ⁇ m or less, more preferably 680 nm or less. Preferably it is.
  • Such an orange to red phosphor is composed of, for example, fractured particles having a red fracture surface, and emits light in the red region (Mg, Ca, Sr, Ba) SiN: represented by Eu.
  • a light body etc. are mentioned.
  • a phosphor containing an oxynitride is also used in the present invention! it can. These are phosphors containing oxynitride and / or oxysulfide.
  • Eu-activated oxysulfide fireflies such as (La, Y) O S: Eu
  • Active tungstate phosphor, Eu-activated sulfide phosphor such as (Ca, Sr) S: Eu, YAIO: E
  • Eu-activated aluminate phosphor such as 3 u, Ca Y (SiO 2) 0: Eu, LiY (SiO 2) 0: Eu, (
  • Ce-activated aluminate phosphor such as Ce, (Mg, Ca, Sr, B
  • N, O Eu-activated oxide such as Eu, nitride or oxynitride phosphor, (Mg, Ca, Sr, Ba
  • Ce-activated oxide such as Ce, nitride or oxynitride phosphor, (Sr, Ca, B
  • SrY S Eu
  • Ce activated sulfide phosphors such as Eu and Ce
  • CaLa S Ce activated sulfides such as Ce
  • Eu such as Mn, Mn-activated phosphate phosphor, (Y, Lu) WO: Eu, Mo-activated, such as Eu, Mo
  • Eu, Ce activated nitride phosphor such as (Ca, Sr, Ba, Mg) (PO) (F, CI
  • Eu Eu
  • Mn-activated halophosphate phosphors such as Eu, Mn, ((Y, Lu, Gd, Tb)-Sc Ce) (Ca, Mg) (Mg, Zn) Si Ge O, etc.
  • Etc. can also be used.
  • red As the red phosphor, / 3-diketonate, ⁇ -diketone, aromatic carboxylic acid, or: red, consisting of a rare earth element ion complex having an anion such as an acid as a ligand.
  • Phosphors perylene pigments (eg, dibenzo ⁇ [f, f '] -4, 4', 7, 7 '-tetraphenyl-2-nore ⁇ diindeno [1, 2, 3-cd: l', 2, 3 , 1 lm] perylene), anthraquinone pigments, lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane bases It is also possible to use a functional dye, an indanthrone pigment, an indophenol pigment, a cyanine pigment, or a dioxazine pigment.
  • perylene pigments eg, dibenzo ⁇ [f, f '] -4, 4', 7, 7 '-tetraphenyl-2-nore ⁇ diindeno [1, 2, 3-cd: l', 2, 3
  • red phosphors include (Ca, Sr, Ba) Si (N, O): Eu, (Ca, Sr, B
  • (Sr, Ba) SiO 2: Eu is preferable as the orange phosphor.
  • the emission peak wavelength of the blue phosphor (usually 420 nm or more, preferably (or 430 nm or more, more preferably (440 nm or more, usually 490 or less, preferably 480 or less, more preferably 470 or less) More preferably, it is in the wavelength range of 460 nm or less.
  • Such a blue phosphor is composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape, and emits light in the blue region (Ba, Sr, Ca) MgAlO: Eu.
  • Calcium phosphate phosphor growth with a nearly cubic shape as a regular crystal growth shape It consists of particles and emits light in the blue region (Ca, Sr, Ba) BO Cl: Eu
  • blue phosphors include Sn-activated phosphate fluorescence such as Sr P 2 O 3: Sn.
  • Eu-activated aluminate phosphor SrGa S: Ce
  • CaGa S Ce-activated Ciogalley such as Ce
  • Eu-activated halophosphate phosphor such as Eu, Mn, Sb, BaAl Si O: Eu, (Sr, Ba) MgSi
  • Eu-activated silicate phosphor such as Eu
  • Sr P O Eu-activated phosphate phosphor such as Eu
  • Zn Eu-activated silicate phosphor
  • S Ag
  • ZnS Sulfide phosphors such as Ag, Al, etc.
  • Y SiO Ce activated silicate phosphors such as Ce,
  • Tungstate phosphors such as CaWO, (Ba, Sr, Ca) BPO: Eu, Mn, (Sr, Ca) (
  • Eu-activated oxynitride phosphors such as Eu and EuSi Al ON, La Ce Al (Si Al) (N
  • Ce-activated oxynitride phosphors such as
  • the blue phosphor includes, for example, naphthalimide-based, benzoxazole-based, styryl-based, coumarin-based, bilarizone-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, and the like. It is also possible to use it.
  • Sr (PO 4) (CI, F): Eu or Ba MgSi 2 O: Eu is included.
  • (Sr, Ca, Ba, Mg) (PO 4) CI: Eu or (Ca, Sr, Ba) MgAl 0: Eu is particularly preferable for illumination and display applications.
  • the emission peak wavelength of the yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 or less, preferably 600 or less, more preferably 580 or less. It is preferable that it exists in.
  • Examples of such yellow phosphors include phosphors of various oxides, nitrides, oxynitrides, sulfides, oxysulfides, and the like.
  • RE MO Ce (where RE represents at least one element selected from the group consisting of Y, Tb, Gd, Lu, and Sm, and M represents a group consisting of Al, Ga, and Sc)
  • M a M b M c O Ce (where M a is a divalent metal element, M b is a trivalent metal element, Me is a tetravalent metal)
  • Ca represents Mg, and at least one element selected from the group consisting of Zn
  • M d represents the Si, and / or Ge.
  • Etc. oxynitride phosphors obtained by substituting a part of oxygen of the constituent elements of the phosphors with nitrogen, AEA1 SiN: Ce (where AE is Ba, And a phosphor activated by Ce such as a nitride-based phosphor having a CaAlSiN structure such as at least one element selected from the group consisting of Sr, Ca, Mg and Zn.
  • Other yellow phosphors include sulfide phosphors such as CaGa S: Eu, (Ca, Sr) Ga S: Eu, (Ca, Sr) (Ga, Al) S: Eu, Ca (Si, Al) (O, N): SiAlO such as Eu
  • Phosphors activated with Eu such as oxynitride phosphors having an N structure, (M Eu Mn)
  • BO BO
  • X (where M represents one or more elements selected from the group consisting of Ca, Sr, and Ba, and X is one or more selected from the group consisting of F, Cl, and Br) Represents the elements of a, b and p represent numbers satisfying 0. 001 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ p ⁇ 0.2
  • yellow phosphor examples include, for example, brilliant sulfoflavine FF (Colour Index Number 56205), basic yellow HG (Colour Index Number 46040), eosine (Colour Index Number 45380), rhodamine 6G (Colour Index Number 45160). ) And other fluorescent dyes can also be used.
  • the second phosphor only one type of phosphor may be used, or two or more phosphors may be used in any combination and ratio. Further, the ratio between the first phosphor and the second phosphor is also arbitrary as long as the effects of the present invention are not significantly impaired. Therefore, the amount of the second phosphor used, the combination of phosphors used as the second phosphor, and the ratio thereof may be set arbitrarily according to the use of the light emitting device.
  • the presence / absence and type of the second phosphor (orange to red phosphor, blue phosphor, yellow phosphor, etc.) described above depends on the use of the light emitting device. What is necessary is just to select suitably. For example, when the light-emitting device of the present invention is configured as a green light-emitting device, it is usually unnecessary to use the second phosphor, which only requires the first phosphor (green phosphor). It is.
  • the first light emitter and the first phosphor green phosphor
  • the second phosphor may be combined appropriately.
  • the first phosphor, the first phosphor, and the second phosphor are preferred! / Examples include the following combinations (i) to (iii)
  • a blue phosphor (such as a blue LED) is used as the first phosphor
  • a green phosphor (such as the phosphor of the present invention) is used as the first phosphor
  • a second phosphor As a red phosphor.
  • the red phosphor is a kind selected from the group consisting of (Sr, Ca) AlSiN: Eu.
  • a near-ultraviolet emitter (such as a near-ultraviolet LED) is used as the first emitter, a green phosphor (such as the phosphor of the present invention) is used as the first phosphor, and the second emitter A blue phosphor and a red phosphor are used in combination as the phosphor.
  • a blue phosphor (Ba, Sr, Ca) MgAl 2 O: E
  • red phosphor (Sr, Ca) AlSiN: Eu
  • one or more red phosphors selected from the group consisting of Eu are preferred.
  • a blue phosphor (such as a blue LED) is used as the first phosphor, a green phosphor (such as the phosphor of the present invention) is used as the first phosphor, and the second phosphor Use orange phosphor as the body.
  • (Sr, Ba) SiO 2: Eu is preferable as the orange phosphor.
  • Table 2 lists preferred specific examples of the phosphor combinations in the case of (i).
  • the phosphor of the present invention is mixed with other phosphors (here, mixing means that different types of phosphors are not necessarily mixed). Meaning).
  • mixing means that different types of phosphors are not necessarily mixed. Meaning.
  • a preferable phosphor mixture is obtained.
  • the types of phosphors to be mixed There are no particular restrictions on the types of phosphors to be mixed and their proportions.
  • the first and / or second phosphors are usually used by being dispersed in a liquid medium that is a sealing material.
  • liquid medium examples include the same ones as described in the section of the phosphor-containing composition.
  • the liquid medium can contain a metal element that can be a metal oxide having a high refractive index in order to adjust the refractive index of the sealing member.
  • metal elements that give metal oxides with high refraction and refractive index include Si, Al, Zr, Ti, Y, Nb, and B. These metal elements may be used alone or in combination of two or more in any combination and ratio.
  • the presence form of such a metal element is not particularly limited as long as the transparency of the sealing member is not impaired, and for example, in a sealing member that may form a uniform glass layer as a metalloxane bond. It may exist in the form of particles. When present in the form of particles, the internal structure of the particles may be amorphous or crystalline, but it gives a high refractive index. It is preferable to have a crystal structure. Further, the particle diameter is usually not more than the emission wavelength of the semiconductor light emitting device, preferably not more than lOOnm, more preferably not more than 50nm, and particularly preferably not more than 30nm so as not to impair the transparency of the sealing member.
  • the liquid medium may further contain known additives such as a diffusing agent, a filler, a viscosity modifier, and an ultraviolet absorber. These additives may be used alone or in combination of two or more in any combination and ratio.
  • the other configurations of the light-emitting device of the present invention are not particularly limited as long as the light-emitting device includes the above-described first light-emitting body and second light-emitting body.
  • the above-described first light-emitting apparatus is mounted on an appropriate frame.
  • a light emitter and a second light emitter are arranged.
  • the second light emitter is excited by the light emission of the first light emitter (that is, the first and second phosphors are excited) to emit light, and the light emission of the first light emitter is generated.
  • the luminous power S of the second luminous body is arranged so as to be taken out to the outside.
  • the first phosphor and the second phosphor are not necessarily mixed in the same layer.
  • the second phosphor is contained on the layer containing the first phosphor.
  • the phosphor may be contained in a separate layer for each color development of the phosphor, such as by laminating layers.
  • members other than the above-described excitation light source (first light emitter), phosphor (second light emitter), and frame may be used.
  • examples thereof include the aforementioned sealing materials.
  • the sealing material is used for the excitation light source (first light emitter), the phosphor (second light emitter), and the frame. Can be used for the purpose of bonding.
  • FIG. 1 a schematic perspective view showing a positional relationship between a first light-emitting body serving as an excitation light source and a second light-emitting body configured as a phosphor-containing portion having a phosphor.
  • Figure 1 shows the figure. In FIG.
  • reference numeral 1 denotes a phosphor-containing portion (second light emitter)
  • reference numeral 2 denotes a surface-emitting GaN-based LD as an excitation light source (first light emitter)
  • reference numeral 3 denotes a substrate.
  • LD (2) and phosphor-containing part (second light emitter) (1) are produced separately, and their surfaces are brought into contact with each other by an adhesive or other means.
  • the phosphor-containing part (second light emitter) may be formed (molded) on the light emitting surface of LD (2)! /. As a result, the LD (2) can be brought into contact with the phosphor-containing portion (second light emitter) (1).
  • Fig. 2 (a) is a typical example of a light emitting device of a form generally referred to as a cannonball type.
  • FIG. 6 is a schematic cross-sectional view showing an example of a light emitting device having a (first light emitter) and a phosphor-containing portion (second light emitter).
  • reference numeral 5 is a mount lead
  • reference numeral 6 is an inner lead
  • reference numeral 7 is an excitation light source (first light emitter)
  • reference numeral 8 is a phosphor-containing resin portion
  • reference numeral 9 is a conductive wire
  • reference numeral Reference numeral 10 denotes a mold member.
  • Fig. 2 (b) is a typical example of a light-emitting device in a form called a surface-mount type, and includes an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter).
  • 1 is a schematic cross-sectional view showing an embodiment of a light emitting device having
  • reference numeral 22 is an excitation light source (first light emitter)
  • reference numeral 23 is a phosphor-containing resin part as a phosphor-containing part (second light emitter)
  • reference numeral 24 is a frame
  • reference numeral 25 is a conductive wire.
  • Reference numerals 26 and 27 indicate electrodes, respectively.
  • the application of the light-emitting device of the present invention is not particularly limited, and since it has high color rendering properties that can be used in various fields where ordinary light-emitting devices are used, among others, it is used as a light source for lighting devices and image display devices. In particular, it is preferably used.
  • the above light emitting device is publicly known. What is necessary is just to use suitably incorporating in this illuminating device.
  • a surface emitting illumination device (11) incorporating the above-described light emitting device (4) as shown in FIG. 3 can be mentioned.
  • FIG. 3 is a cross-sectional view schematically showing one embodiment of the illumination device of the present invention.
  • the surface-emitting illumination device has a large number of light-emitting devices (13) (described above) on the bottom surface of a rectangular holding case (12) whose inner surface is light-opaque such as a white smooth surface.
  • the light-emitting device (4)) is disposed outside the light-emitting device (13) with a power supply and a circuit (not shown) for driving the light-emitting device (13), and is placed on the lid of the holding case (12).
  • a diffuser plate (14) such as a milky white acrylic plate is fixed to the corresponding part for uniform light emission.
  • the surface-emitting illumination device (11) is driven, and light is emitted by applying a voltage to the excitation light source (first light emitter) of the light-emitting device (13).
  • the phosphor in the phosphor-containing resin portion as the phosphor-containing portion (second light emitter) absorbs and emits visible light, while color rendering is performed by color mixing with blue light or the like that is not absorbed by the phosphor.
  • the light is transmitted through the diffuser plate (14) and emitted upward in the drawing, and the illumination light has uniform brightness within the diffuser plate (14) surface of the holding case (12). Will be obtained.
  • the specific configuration of the image display device is not limited, but it is preferably used together with a color filter.
  • the image display device is a color image display device using a color liquid crystal display element
  • the light emitting device is used as a backlight, and an optical shutter using liquid crystal and a color filter having red, green, and blue pixels are provided.
  • the power S is required to form an image display device by combining
  • the object color is measured using a Minolta CR300 color difference meter with standard light as D65. became.
  • the sample was packed in a circular cell to flatten the surface, and the flat surface was pressed against the measuring section of the color difference meter.
  • the emission spectrum was measured using a 150 W xenon lamp as an excitation light source and a fluorescence measuring apparatus (manufactured by JASCO Corporation) equipped with a multichannel CCD detector C7041 (manufactured by Hamamatsu Photovitas) as a spectrum measuring apparatus.
  • the light from the excitation light source was passed through a diffraction grating spectrometer with a focal length of 10 cm, and only the excitation light with a wavelength of 400 nm was irradiated to the phosphor through an optical fiber.
  • the light generated from the phosphor by the irradiation of the excitation light is dispersed by a diffraction grating spectrometer having a focal length of 25 cm, and the emission intensity of each wavelength is measured by a spectrum measuring device in the wavelength range of 300 nm to 800 nm.
  • An emission spectrum was obtained through signal processing such as sensitivity correction by a personal computer.
  • the slit width of the light-receiving side spectrometer was set to lnm, and the measurement was performed at room temperature.
  • the maximum emission peak wavelength was read from the obtained emission spectrum.
  • the maximum emission peak intensity was expressed as a relative value with the maximum emission peak intensity of YAG: Ce phosphor: P46—Y3 manufactured by Kasei Optonitas as 100.
  • Chromaticity coordinates X and y in the XYZ color system defined by JIS Z8701 were calculated from data in the wavelength region of 480 nm to 800 nm of the emission spectrum by a method according to JIS Z8724. Luminance was expressed as a relative value with the luminance of the YAG: Ce phosphor P46—Y3 phosphor made by Kasei Optonitas equal to the maximum emission peak intensity as 100.
  • the particle size characteristics were measured at room temperature using a laser diffraction / scattering particle size distribution analyzer LA-300 manufactured by Horiba.
  • the particle size value when the integrated value was 50% was defined as the weight median diameter D.
  • the integrated value reaches 25%.
  • the ratio of particles having an aspect ratio of 3 or less was obtained by photographing a phosphor at a magnification of 500 to 5000 using a scanning electron microscope (for example, Hitachi S-4500, manufactured by Hitachi, Ltd.). Randomly select 30 particles in one field of the micrograph, measure the major and minor diameters of these particles using a ruler, calculate the major axis / minor axis value as the aspect ratio, The ratio was determined by calculating the proportion of particles with a ratio of 3 or less.
  • GD Glow Discharge Mass Spectrometry
  • MS Glow Discharge Mass Spectrometry
  • the phosphor as a sample was dispersed with ultrasonic waves for 60 seconds using an ultrasonic cleaner (manufactured by Wichi). Thereafter, the circularity of the sample was measured using a flow-type particle image analyzer (“FPI A-2000” manufactured by Sysmettas).
  • the calculation method of the average circularity by this device is as follows. That is, a particle image (image) was taken for each particle, and the obtained particle image force The projected area of the particle and the perimeter were obtained by image processing. Assuming a circle with the same area as the projected area of the particle image, the diameter of the circle was calculated, and the value obtained by dividing this diameter by the perimeter of the particle was taken as the circularity.
  • the ratio of the number of particles having a circularity of less than 0.85 to the total number of particles measured was determined as “the ratio of particles having a circularity of less than 85%”. The smaller this value, the larger the proportion of particles that are nearly spherical.
  • the blending composition was CaSc 2 O 3: Ce by a conventional method.
  • the mixture was heated for 10 hours at 1450 ° C under atmospheric pressure in a nitrogen atmosphere containing hydrogen (4% by volume), cooled, and the fired product was taken out.
  • Alumina balls with a diameter of 3 mm and HC1 with a concentration of lmol / L were added and processed with a ball mill. This was washed with HC1 having a concentration of 1.3 mol / L and then washed with water, and at the same time, fine particles and coarse particles were removed with a water tank.
  • the obtained phosphor was subjected to the above-mentioned method as the powder characteristics such as particle size characteristics (weight median diameter D and QD), average aspect ratio, and particles having an aspect ratio of 3 or less in all particles.
  • Examples I 1 and I 2 and Comparative Example I 4 were analyzed by GD-MS for each of Li, K, P, and CI contained in the phosphor. Elemental analysis was performed. The results are shown in Table 5.
  • Fig. 4 The X-ray diffraction pattern of the phosphor obtained in Example 1-1 is shown in Fig. 4.
  • the upper part of Fig. 4 shows the raw data of the measurement results, and the upper part of the lower figure shows the peak position and intensity as a result of peak detection from the measurement results, and the lower part of the lower figure.
  • Well JCPDS — ICDD PDF (Joint Committee on Powder Diffraction Standards – International Center for Diffraction Data, Powder Diffraction File), 72 — 1360 (CaSc It is a figure which shows the peak position and intensity
  • the obtained phosphor has a CaFeO structure.
  • the phosphor of the present invention has a crystal phase (phosphor phase) having the same structure as that of CaS c O. Crystal phase other than), that is, impurity phase is included
  • Examples 1-1 to 16 are phosphors fired by adding a predetermined flux, and the particle shape of the obtained phosphors is almost spherical.
  • Comparative Example I 1 does not add any flux
  • Comparative Example I 4 shows the case where only CaF is added as the flux
  • Comparative Examples 1-2 and I 3 show the case where only CaCl is added as the flux.
  • FIG. 5 shows the emission spectrum of the phosphor obtained in Example I1.
  • a white light emitting device shown in FIG. 2 (b) was fabricated by the following procedure.
  • blue 1 ⁇ : 0 [22] emitting at a wavelength of 455 to 46011111 (Cree C460—MB290—S0100; MB grade, optical output 8 ⁇ 0-11. OmW) is used. I got it. this A blue LED [22] was die-bonded to the terminal [27] at the bottom of the recess of the frame [24] using silver paste as an adhesive. Next, using a gold wire [25] with a diameter of 25 m as a wire, the blue LED [22] and the electrode [26] of the frame [24] were connected.
  • a mixed phosphor of the above two types of phosphors green phosphor and red phosphor
  • silicone resin JCR6101UP manufactured by Toray Dow Co., Ltd.
  • the phosphor produced in Comparative Example I 3 was observed with a scanning electron microscope.
  • Figure 9 shows a drawing substitute photo of the observed image.
  • the phosphor produced in Comparative Example I 3 has an elongated shape! /, A particle shape! /, A force S, and a component force.
  • FIGS. 10 (a) and 10 (b) show a photograph substituted for the drawing of the observed image.
  • FIG. 10 (a) corresponds to the phosphor of Example I5
  • FIG. 10 (b) corresponds to the phosphor of Example I6.
  • the phosphor of the present invention Indicates that most of the particles exist as single particles in which the particles are not fused together.
  • the obtained mixture was regarded as a raw material oxide having a molar ratio of Sc and Ce of 1.93934: 0.0066, ie, (Sc Ce) 2 O (formula weight 140 ⁇ 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

明 細 書
蛍光体及びその製造方法、並びに、蛍光体含有組成物、発光装置、画 像表示装置及び照明装置
技術分野
[0001] 本発明は、蛍光体とその製造方法に関する。より詳しくは、蛍光体及びその製造方 法、並びに、その蛍光体を用いた蛍光体含有組成物、発光装置、画像表示装置及 び照明装置に関するものである。
背景技術
[0002] 近年、半導体発光素子としての窒化ガリウム(GaN)系発光ダイオード (LED)と、波 長変換材料としての蛍光体とを組み合わせて構成される白色発光の発光装置が、消 費電力が小さく長寿命であるという特徴を活かして画像表示装置や照明装置の発光 源として注目されている。また、これに伴い、製造が容易で発光強度が高ぐ粒径が 揃った蛍光体、更には、演色性の高い発光装置を得ることができる蛍光体の開発が 望まれている。
[0003] 前述の課題を解決する蛍光体の候補として、特許文献 1には、特定の化学組成の 化合物を母体結晶とし、この母体結晶内に付活剤元素 (発光中心元素)として少なく とも 3価のセリウム(Ce3+)を含有し、発光スペクトルにおいて 485nm〜555nmの波 長範囲に最大発光ピークを有し、下記一般式 (X)で表される蛍光体が開示されてい る。以下適宜、この蛍光体を CSO蛍光体と略記する。
M1 M2 M3 O (X)
a b e d
(式 (X)中、 M1は少なくとも Ceを含む付活剤元素、 M2は 2価の金属元素、 M3は 3価 の金属元素をそれぞれ示し、 aiま 0. 0001≤a≤0. 2、 biま 0. 8≤b≤l . 2、 ciま 1. 6 ≤c≤2. 4、 diま 3. 2≤d≤4. 8の範囲の数である。 )
[0004] 特許文献 1:特開 2006— 45526号公報
発明の開示
発明が解決しょうとする課題
[0005] LEDの光を波長変換する蛍光体は発光が等方的であることが好ましい。しかし、前 記の一般式 (X)で表わされる CSO蛍光体は CaFe O型結晶構造を有し、一般的な
2 4
固相反応による合成法によって製造すると、製造される CSO蛍光体は粒子同士が融 着した不定形の結晶形状を呈し、粒子の分散性に課題があり、実用的でなかった。 また、通常、蛍光体は針状であると結晶が後述する液体媒体中で均一に配列しにく く、白色 LEDに使用した場合、光の方向に斑ができる傾向がある。このような理由か ら、発光強度等の発光特性に優れていることに加えて球状に近い蛍光体が望まれて いた。
[0006] また一方で、 LEDは効率の高!/、光源である力 供給された電気エネルギーのかな りの部分が熱となり消費される。そのため、照明用等の大電流素子では発光素子の 温度は 180°C付近まで上昇することがある。多くの蛍光体は高温では輝度が低下す る力 この傾向はできるだけ少ないことが好ましい。なお、高温で輝度が低下する程 度が小さいことを、温度特性が良い、と表現する。
ところ力 従来の蛍光体は温度特性は十分なものではなかった。また、特許文献 1 に開示された蛍光体は、それ以前力も使用されている (Y, Gd) Al O : Ce (以下適
3 5 12
宜「¥八0 :じ6」と略記する)に比べると温度特性が改善されていた力 その温度特性 は依然として不十分であった。
[0007] 本発明は上記の課題に鑑みて創案されたもので、球状に近い蛍光体及びその製 造方法、並びに、その蛍光体を用いた蛍光体含有組成物、発光装置、画像表示装 置及び照明装置を提供することを第一の目的とする。ここで、球状に近いとは、例え ば、アスペクト比が小さいことを意味する。なお、アスペクト比とは、粒子の長径と短径 の比を指し、これが小さ!/、ほど球形に近!/ヽ粒子であることを示す指標である。
また、従来よりも温度特性を改善した蛍光体及びその製造方法、並びに、それを用 いた蛍光体含有組成物、発光装置、画像表示装置及び照明装置を提供することを 第二の目的とする。
課題を解決するための手段
[0008] 本発明者等は上記課題を解決するべく鋭意検討した結果、蛍光体の焼成の際、特 定の化合物を共存させて加熱すると、粒子同士の融着が減少することにより得られる 蛍光体が単粒子化し、かつ、球状に近い粒子形状を有する蛍光体が得られることを 見出した。
[0009] また、本発明者等は、前記一般式 (X)で表わされる組成を有する蛍光体において、 特定の M1濃度範囲において輝度も高ぐ高温での輝度低下が少ない傾向にあること を見出した。更に検討を重ねた結果、 M1が結晶内に均一に分布していることが好ま しぐこのことは出来上がった蛍光体の組成分析を行なっただけでは不十分であるこ とが分った。そこで、本発明者等は蛍光体の発光色及び物体色と輝度等の発光特性 との関係を詳細に検討した結果、物体色が特定の範囲にある蛍光体の発光特性や 温度特性が良好であることを見出した。
本発明者らは、以上の知見に基づき、本発明を完成した。
[0010] 即ち、本発明の要旨は、下記式 [1]に表わされる元素の組成比が、下記式 [1]を満 足するとともに、 Li、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 Cd、 Bi、及び Tiからなる群より選択される少なくとも 2種の元素を含有する ことを特徴とする、蛍光体に存する (請求項 1)。
M1 M2 M3 O [1]
(ただし、式 [1]中、 M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群より選択される少なくとも 1種の元素、 M2は主 として 2価の金属元素、 M3は主として 3価の金属元素、 aは 0. 0001≤a≤0. 2の範 囲の数、 biま 0. 8≤b≤l . 2の範囲の数、 ciま 1. 6≤c≤2. 4の範囲の数、 diま 3. 2≤ d≤4. 8の範囲の数をそれぞれ表わす。 )
[0011] また、本発明の別の要旨は、式 [1 ' ]に表わされる元素の組成比力 式 [1 ' ]を満足 することを特徴とする蛍光体に存する (請求項 2)。
M1 M2 M3 O [1 ' ]
(ただし、式 [1,]中、 M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群力も選択される少なくとも 1種の元素、 M2は主 として 2価の金属元素、 M3は主として 3価の金属元素、
aiま 0. 003< a< 0. 01の数、 biま 0. 8≤b≤l . 2の数、 ciま 1. 6≤c≤2. 4の数、 diま 3. 2≤d≤4. 8の数をそれぞれ表わす。 )
[0012] このとき、 M2が、 Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群から選択される少なくと も 1種の金属元素であり、 M3が、 Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる 群から選択される少なくとも 1種の金属元素であることが好ましい(請求項 3
[0013] また、本発明の蛍光体は、下記式 [2]及び/又は式 [3]を満足することが好ましい( 請求項 4
Br (125) /Br (25)≥0. 7 [2]
Br (160) /Br (25)≥0. 5 [3]
(前記式 [2]、 [3]において、 Br (25)は、 25°Cにおいて、該蛍光体を波長 455nmの 光で励起して得られる輝度であり、 Br (125)は、 125°Cにおいて、該蛍光体を波長 4 55nmの光で励起して得られる輝度であり、 Br (160)は、 160°Cにおいて、該蛍光体 を波長 455nmの光で励起して得られる輝度である。 )
[0014] 本発明の更に別の要旨は、室温下で発光し、 CaFe O型結晶構造の結晶相を有
2 4
し、かつ、平均円形度が 85%未満である蛍光体粒子の割合が 10個数%以下である ことを特徴とする蛍光体に存する (請求項 5)。
[0015] このとき、重量基準粒度分布曲線において積算値が 25%及び 75%の時の粒径値 をそれぞれ D 、 D と表記した場合に「QD= (D — D ) / (D +D )」で表わさ
25 75 75 25 75 25
れる値 QDが 0. 24以下であることが好まし!/ヽ(請求項 6)。
[0016] 本発明の更に別の要旨は、室温下で発光し、 CaFe O型結晶構造の結晶相を有
2 4
し、重量メジアン径 D 力 O m以上であり、かつ、 QDが 0. 27以下であることを特
50
徴とする蛍光体に存する (請求項 7)。
[0017] 本発明の更に別の要旨は、 485nm〜555nmの波長範囲に最大発光ピークを有 し、 CaFe O型結晶構造の結晶相を有し、かつ、アスペクト比が 3以下の粒子が全体
2 4
の 60個数%以上を占めることを特徴とする蛍光体に存する(請求項 8
[0018] このとき、本発明の蛍光体は、物体色が、 L*、 a*、 b*表色系において、 100≤L* ≤110, - 30≤a*≤- 15,及び 45≤b*≤ 70を満足し、且つ、波長 455 の光で 励起したときの発光色の CIE標準表色系における色度座標 X及び y力 0. 320≤x ≤0. 360及び 0. 570≤y≤0. 600を満足すること力好ましい(請求項 9)。
[0019] また、本発明の蛍光体は、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb 、 Dy、 Ho、 Er、 Tm、及び Ybからなる群力 選択される少なくとも 1種の元素と、 Mg Ca Zn Sr Cd、及び Baからなる群から選択される少なくとも 1種の金属元素と、 A 1 Sc Ga Y Ιη La Gd Yb、及び Luからなる群から選択される少なくとも 1種の 金属元素とを含むことが好ましレヽ (請求項 10)
[0020] さらに、本発明の蛍光体は、式 [1]に表わされる元素の組成比力 式 [1]を満足す ることが好ましい(請求項 11)。
[0021] また、本発明の蛍光体は、 Li Na K Rb Cs P Cl F Br I Zn Ga Ge In
Sn Ag Au Pb Cd Bi、及び Tiからなる群より選択される少なくとも 2種の元素 を lppm以上 5000ppm以下の濃度範囲で含有することが好ましい(請求項 12)。
[0022] さらに、本発明の蛍光体は、 Li K Ρ及び αからなる群より選択される少なくとも 2 種の元素を、 lppm≤Li≤500ppm, lppm≤K≤ 500ppm, Oppm< P≤ lOOOpp m、及び 0ppm< Cl≤1000ppmの濃度範囲で含有することが好ましい(請求項 13)
[0023] また、本発明の蛍光体は、 Zn Ga Ge In、及び Snからなる群より選ばれる 1種以 上の元素を、 lppm以上 500ppm以下の範囲で含有することが好まし!/、(請求項 14)
[0024] さらに、本発明の蛍光体は、 M1が少なくとも Ceを含有し、 M2が少なくとも Ca及び/ 又は Srを含有し、 M3が少なくとも Scを含有することが好ましい(請求項 15)。
[0025] また、本発明の蛍光体は、 Li Na K Rb Cs P Cl F Br I Zn Ga Ge In
Sn Ag Au Pb Cd Bi、及び Tiからなる群より選択される少なくとも 2種の元素 力 蛍光体の結晶相中に含有されて!、ることが好まし!/、(請求項 16)
[0026] さらに、本発明の蛍光体は、前記蛍光体を重量比で 10倍の水に分散後、 1時間静 置して得られる上澄み液の電気伝導度が 10mS/m以下であることが好ましい(請求 項 17)。
[0027] また、本発明の蛍光体は、波長 455nmの光で励起した 25°Cでの発光スペクトルに おいて、 500nm以上 535nm以下の波長範囲に最大発光ピークを有することが好ま しい(請求項 18)。
[0028] 本発明の更に別の要旨は、本発明の蛍光体の製造方法であって、アルカリ土類金 属のハロゲン化物、アルカリ金属のリン酸塩、アルカリ金属のハロゲン化物、及びァ ルカリ金属の硫酸塩からなる群より選択される 2種以上を含む原料を加熱する工程を 有することを特徴とする、蛍光体の製造方法に存する (請求項 19)。
[0029] このとき、前記原料が、加熱により融点または昇華点が 1200°C以下の金属を生成 する化合物、及び/又は、加熱によりアルカリ金属の酸化物を生成する化合物を含 有することが好まし!/ヽ(請求項 20)。
[0030] また、前記原料が、 CaCl、: Li PO 、 KH PO 、 KC1、及び Li SO力、らなる群より
2 3 4 2 4 2 4
選択される 2種以上を含有することも好ましい (請求項 21)。
[0031] さらに、前記原料が、 ZnO、 Ga O 、 GeO 、 In O 、 SnO、及び K COからなる群
2 3 2 2 3 2 2 3 より選ばれる 1種以上を含有することも好ましい (請求項 22)。中でも、前記原料が、 Z ηθ及び/又は K COを含有することがより好ましい(請求項 23)。
2 3
[0032] 本発明の更に別の要旨は、本発明の蛍光体を製造する方法であって、前記蛍光 体を構成する少なくとも 2種の元素を含有し、かつ、共沈により得られた化合物を加 熱することにより得られた共沈酸化物を原料として使用することを特徴とする蛍光体 の製造方法に存する(請求項 24)。
[0033] このとき、前記蛍光体を構成する少なくとも 2種の元素を含有し、かつ、共沈により 得られた化合物を加熱することにより得られた共沈酸化物を前記原料として使用する ことが好ましい (請求項 25)。
[0034] また、前記蛍光体を構成する少なくとも 2種の元素力 S、 Sc及び Ceであることが好ま しい(請求項 26)。
[0035] 本発明の更に別の要旨は、本発明の蛍光体と、液体媒体とを含有することを特徴と する、蛍光体含有組成物に存する (請求項 27)。
[0036] 本発明の更に別の要旨は、第 1の発光体と、該第 1の発光体からの光の照射によつ て可視光を発する第 2の発光体とを備え、該第 2の発光体が、本発明の蛍光体を 1種 以上、第 1の蛍光体として含有することを特徴とする、発光装置に存する (請求項 28)
[0037] このとき、前記第 2の発光体が、前記第 1の蛍光体とは発光ピーク波長の異なる 1種 以上の蛍光体を、第 2の蛍光体として含有することが好ましレ、(請求項 29)。
[0038] また、前記第 1の発光体が、 420nm以上 500nm以下の範囲に発光ピークを有し、 前記第 2の発光体が、前記第 2の蛍光体として、 570nm以上 780nm以下の波長範 囲に発光ピークを有する少なくとも一種の蛍光体を含有することが好ましい(請求項 3 0)。
[0039] さらに、前記第 1の発光体が、 300nm以上 420nm以下の範囲に発光ピークを有し 、前記第 2の発光体が、前記第 2の蛍光体として、 420nm以上 490nm以下の波長 範囲に発光ピークを有する少なくとも一種の蛍光体と、 570nm以上 780nm以下の 波長範囲に発光ピークを有する少なくとも一種の蛍光体とを含有することも好ましい( 請求項 31 )。
[0040] 本発明の更に別の要旨は、本発明の発光装置を光源として備えることを特徴とする
、画像表示装置に存する(請求項 32)。
[0041] 本発明の更に別の要旨は、本発明の発光装置を光源として備えることを特徴とする
、照明装置に存する (請求項 33)。
発明の効果
[0042] 本発明によれば、球状に近いことにより、実使用状態において適切な分散性ゃパッ キング密度を有し、かつ、高輝度な蛍光体、及び、高温での輝度低下が少ない良好 な温度特性を有する新規な蛍光体の少なくとも一方、並びに、その蛍光体の製造方 法、その蛍光体を用いた蛍光体含有組成物、発光装置、画像表示装置及び照明装 置を提供すること力 Sできる。
図面の簡単な説明
[0043] [図 1]本発明の発光装置の一例における、励起光源 (第 1の発光体)と蛍光体含有部
(第 2の発光体)との位置関係を示す模式的斜視図である。
[図 2]図 2 (a)及び図 2 (b)は、 V、ずれも、励起光源 (第 1の発光体)と蛍光体含有部( 第 2の発光体)とを有する発光装置の一実施例を示す模式的断面図である。
[図 3]本発明の照明装置の一実施形態を模式的に示す断面図である。
[図 4]本発明の実施例 I 1につ!/、て測定した X線回折測定結果を示す図である。
[図 5]本発明の実施例 I 1で得られた蛍光体の発光スペクトルを示す図である。
[図 6]本発明の実施例 I 7で製造した表面実装型白色発光装置の発光スペクトルを 示す図である。 園 7]比較例 I 1で製造した蛍光体を走査型電子顕微鏡で観察した像を表わす図 面代用写真である。
園 8]比較例 I 4で製造した蛍光体を走査型電子顕微鏡で観察した像を表わす図 面代用写真である。
園 9]比較例 I 3で製造した蛍光体を走査型電子顕微鏡で観察した像を表わす図 面代用写真である。
[図 10]図 10 (a)は本発明の実施例 I 5で製造した蛍光体を走査型電子顕微鏡で観 察した像を表わす図面代用写真であり、図 10 (b)は本発明の実施例 I 6で製造した 蛍光体を走査型電子顕微鏡で観察した像を表わす図面代用写真である。
園 11]本発明の実施例 I 20で得られた蛍光体の SEM写真を表す図面代用写真で ある。
園 12]本発明の実施例 1- 22で得られた蛍光体の SEM写真を表す図面代用写真で ある。
園 13]本発明の実施例 1- 24で得られた蛍光体の SEM写真を表す図面代用写真で ある。
園 14]本発明の実施例 1— 26〜1— 28で得られた表面実装型白色発光装置につい て、測定した発光スペクトルを表す図である。
園 15]本発明の実施例 1— 29〜1— 31で得られた表面実装型白色発光装置につい て、測定した発光スペクトルを表す図である。
園 16]本発明の実施例 I 32及び I 33で得られた表面実装型白色発光装置につ いて、測定した発光スペクトルを表す図である。
園 17]本発明の実施例 I 34で得られた表面実装型白色発光装置について、測定 した発光スペクトルを表す図である。
園 18]本発明の実施例 II— 4について測定した X線回折測定結果を示す図である。
[図 19]図 19 (a)〜図 19 (d)は、本発明の実施例 II—;!〜 II— 4で得られた蛍光体の発 光スペクトルを示す図である。
[図 20]本発明の実施例 II 1 , II 3, II— 7及び II 9並びに比較例 II 1の蛍光体の 室温における輝度と、各温度の輝度を比較した結果を示す図である。 [図 21]本発明の実施例 II 11〜11 13で製造した表面実装型白色発光装置を模式 的に示す断面図である。
[図 22]本発明の実施例 II 11〜11 13で製造した表面実装型白色発光装置の発光 スペクトルを示す図である。
符号の説明
1:第 2の発光体
2:面発光型 GaN系 LD
3:基板
4:発光装置
5:マウントリード
6:インナーリード
7:第 1の発光体
8:蛍光体含有樹脂部
9:導電性ワイヤー
10:モールド部材
11:面発光照明装置
12:保持ケース
13:発光装置
14:拡散板
22:第 1の発光体
23:蛍光体含有樹脂部
24:フレーム
25:導電性ワイヤー
26:電極
27:電極
121:青色 LED
122:蛍光体含有部
123:フレーム 124 :金線
125 :電極
126 :電極
発明を実施するための最良の形態
[0045] 以下、本発明について実施形態や例示物を示して説明するが、本発明は以下の 実施形態や例示物等に限定されるものではなぐ本発明の要旨を逸脱しない範囲に ぉレ、て任意に変更して実施することができる。
なお、本明細書中の蛍光体の組成式において、各組成式の区切りは読点し)で区 切って表わす。また、カンマ、, )で区切って複数の元素を列記する場合には、列記さ れた元素のうち一種又は二種以上を任意の組み合わせ及び組成で含有していても よいことを示している。例えば、「(Ca, Sr, Ba)Al O : Eu」という組成式は、「CaAl
2 4 2
O : Eu」と、「SrAl O : Eu」と、「: BaAl O : Eu」と、「Ca Sr Al O : Eu」と、「Sr
4 2 4 2 4 1— x x 2 4 1 x
Ba Al O : Eu」と、「Ca Ba Al O : Eu」と、「Ca Sr Ba Al O : Eu」とを全て x 2 4 1 x x 2 4 1 x— y x y 2 4
包括的に示しているものとする(但し、前記式中、 0<x< l、 0<y< l、 0<x+y< l
)。
[0046] [1.蛍光体 A]
本発明の蛍光体 Aは、下記式 [1]に表わされる元素の組成比が、下記式 [1]を満 足するとともに、
U、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 Cd、
Bi、及び Tiからなる群より選択される少なくとも 2種の元素を含有する。
M1 M2 M3 O [1]
a b e d
(ただし、式 [1]中、
M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、 及び Ybからなる群より選択される少なくとも 1種の元素、
M2は主として 2価の金属元素、
M3は主として 3価の金属元素、
aは 0. 0001≤a≤0. 2の範囲の数、
bは 0. 8≤b≤l . 2の範囲の数、 cは 1. 6≤c≤2. 4の範囲の数、
dは 3. 2≤d≤4. 8の範囲の数
をそれぞれ表わす。 )
[0047] [1 - 1.蛍光体 Aの組成]
本発明の蛍光体 Aは、組成に関し、下記式 [1]に表わされる元素の組成比が、下 記式 [1]を満足する。なお、本発明の蛍光体 Aの主要な構成元素は下記式 [1]に表 わされる元素であり、通常は、本発明の蛍光体 Aは、下記式 [1]の組成を有する蛍光 体結晶の内及び/又は外に、後述するフラックスに由来する微量元素が存在した構 成となっている。
M1 M2 M3 O [1]
a b e d
[0048] 式 [1]中、 M1 (ま、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 H o、 Er、 Tm、及び Ybからなる群より選択される少なくとも 1種の元素を表わす。ここで 、式 [1]における M1は、後述の母体結晶中に含有される付活剤元素 (発光中心ィォ ン)である。
[0049] M1としては前記の群のうちでも Ceが好ましぐしたがって、 M1は少なくとも Ceを含 むことが好ましい。 Ce由来の発光は、 5d— 4f遷移(許容遷移)であり、遷移確率が高 いため、 Ceを含有させると発光効率の高い蛍光体が得られるからである。
また、 M1は前記の群から選択される元素を 2種以上、任意の組み合わせ及び比率 で含んでいても良い。中でも、 M1として Ceとその他の元素(以下適宜、その他の元 素を「共付活剤」という)とを併用することは、蓄光性、色度調整、増感等の観点から 好ましい。このように Ceと共付活剤とを併用する場合には、 Ce lmolに対する共付 活剤の量は、通常 0. Olmol以上、好ましくは 0. lmol以上、より好ましくは lmol以 上であり、通常 20mol以下、好ましくは lOmol以下、より好ましくは 5mol以下である。 なお、共付活剤としては、 Pr、 Tb、 Sm、 Tm等を用いることができる。例えば、 Prを共 付活剤として使用する場合は、 Ceの発光に加えて波長 620nm付近に共付活剤であ る Prの発光が現れて、赤色成分の発光を加えることができるため好まし!/、。
[0050] 式 [1]中、 aは、付活剤元素 M1の濃度を表わす。式 [1]において、 aは、 0. 0001≤ a≤0. 2である。本発明の蛍光体においては、発光中心元素は母体結晶中に適切な 濃度で均一に分布していることが好ましいので、式 [1]において、係数 aの値が上述 した範囲となることが好ましいのである。具体的には、 aの値が小さすぎると、本発明 の蛍光体 Aの母体結晶中に存在する発光中心イオンの量が少なすぎて発光強度が 小さくなる傾向にある。一方、 aの値が大きすぎると、濃度消光により発光強度が小さ くなる #1向にある。
発光中心元素が Ceである場合を例に挙げて更に具体的に説明すると、 Ce濃度と 発光色の関係は比較的広い濃度範囲にわたり一定である。ところ力 温度特性は発 光中心元素である Ce濃度に大きく影響されるため、式 [1]において、係数 aの値が上 述した範囲となること力 S好ましい。この際、 aが上記の範囲より小さすぎると蛍光体の 発光の輝度が低くなり、実用的でなくなる可能性がある。一方、 aが大きすぎると、蛍 光体の高温での輝度の低下が大きくなる可能性がある。この理由は明確ではな!/、が 、 Ce濃度が高い場合は発光中心元素間の相互距離が短くなり、高温での相互作用 が大きくなるためと推定することができる。
従って、発光強度の点からは、 aは、通常 0. 0005以上、中でも 0. 002以上、また、 通常 0. 1以下、中でも 0. 01以下が好ましい。その中でも、蛍光体 Aの発光の輝度を 低下させず、かつ、温度特性の改善を実現するためには、 aは 0. 01より小さく 0. 00 3より大きいこと力 S好ましい。また、 Ceの濃度が高くなるに従って発光ピーク波長が長 波長側にシフトして視感度の高い緑色発光量が相対的に増加するために、発光強 度と発光ピーク波長とのバランスの点からは、 aは、通常 0. 004以上、好ましくは 0. 0 05以上、より好ましく (ま 0. 006以上、また、通常 0. 15以下、好ましく (ま 0. 1以下、よ り好ましく (ま 0. 01以下、更に好ましく (ま 0. 009以下、特に好ましく (ま 0. 008以下カ 好ましい。
式 [1]中、 M2は、主として 2価の金属元素を表わす。具体的には、発光効率等の観 点から、 M2は、 Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群より選択される少なくとも 1 種の金属元素を表わす。この群の中でも、 Ca、 Sr、 Ba及び Znのうち少なくとも 1種の 金属元素を含むことが好ましぐ Mg、 Ca、及び Srのうち少なくとも 1種の金属元素を 含むことが更に好ましぐ Ca及び Srのうち少なくとも 1種の金属元素を含むことが特に 好ましい。また、 M2は前記の群から選択される元素を 2種以上、任意の組み合わせ 及び比率で含んで!/、ても良!/、。
なお、ここで「主として」とは発光特性に影響を与えない範囲で他の元素を含んでい てもよいことを意味し、具体的には、 M2のうち通常 95モル%以上、好ましくは 98モル %以上、より好ましくは 99モル%以上が 2価の金属元素であることをいう。なお、上限 は理想的には 100モル%である。
[0052] ここで、本発明の蛍光体 Aを緑色の蛍光体とする場合には、 M2として少なくとも Ca を含むことが好ましぐ中でも Caを多く含むものが好ましい。具体的な範囲を言えば、 M2の元素の、通常 50モル0 /0以上、好ましくは 80モル0 /0以上、より好ましくは 90モル %以上が Caであることが特に好ましい。このとき、 M2として Caと共に含有させる元素 としては、 Srが好ましい。 M2として少なくとも Caと Srとを含有させると、 Srの含有量が 増えるに連れて、発光ピーク波長が短波長にシフトするという効果が得られ、同時に 、蛍光体 Aの重量メジアン径が大きくなるという効果も得られる。発光ピーク波長が短 波長にシフトすると輝度低下につながる傾向もある力 重量メジアン径の増大は輝度 向上につながる。 M2として適切な量の Srを含有させることにより、輝度の高い蛍光体 を得ること力 Sできる。 Sr含有量の具体的な範囲を言えば、 M2の元素の、通常 1モル %以上、好ましくは 3モル%以上、また、通常 30モル%以下、好ましくは 10モル%以 下、更に好ましくは 8モル%以下である。
また、本発明の蛍光体 Aを青緑色の蛍光体とする場合には、 M2として Srを多く含 むものが好ましい。具体的な範囲を言えば、 M2の元素の、通常 50モル%以上、好ま しくは 80モル%以上、より好ましくは 90モル%以上が Srであることが特に好ましい。
[0053] 式 [1]中、 M3は、主として 3価の金属元素を表わす。具体的には、発光効率等の観 点から、 M3は、 Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる群より選択される 少なくとも 1種の金属元素を表わす。この群の中でも、 Al、 Sc、 Y、 Yb、及び Luのうち 少なくとも 1種の金属元素を含むことがより好ましぐ Sc、 Y及び Gdのうち少なくとも 1 種の金属元素を含むことが更に好ましぐ少なくとも Scを含むことが特に好ましい。ま た、 M3は前記の群から選択される元素を 2種以上、任意の組み合わせ及び比率で 含んでいても良い。
なお、ここで「主として」とは発光特性に影響を与えない範囲で他の元素を含んでい てもよいことを意味し、具体的には、 M3のうち通常 95モル%以上、好ましくは 98モル %以上、より好ましくは 99モル%以上が 3価の金属元素であることをいう。なお、上限 は理想的には 100モル%である。
[0054] M3として好適な例を挙げると、 Sc単独、 Scと Yとの組み合わせ、 Scと A1との組み合 わせ、 Scと Luとの組み合わせ、などが挙げられる。その中でも、 Sc単独、 Scと Yとの 組み合わせが特に好ましい。
さらに、 M3元素として Scを含むことは、より一層発光強度が高くなるので好ましい。 具体的な範囲を挙げると、 M3の元素の、通常 50モル%以上、中でも 60モル%以上 、特に 70モル%以上が Scであることが好まし!/、。
[0055] 以上の観点から、本発明の蛍光体 Aは、 M1として Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群から選択される少なく とも 1種の元素と、 M2として Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群から選択される 少なくとも 1種の金属元素と、 M3として Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luか らなる群から選択される少なくとも 1種の金属元素とを含むことが好ましい。中でも、前 記式 [1]において、 M1が少なくとも Ceを含有し、 M2が少なくとも Ca及び/又は Srを 含有し、 M3が少なくとも Scを含有することが、特に好ましい。
[0056] 本発明の蛍光体 Aの母体結晶は、一般的には、 2価の金属元素である M2と 3価の 金属元素である M3と酸素からなる、組成式 M2M3 Oで表される結晶であるため、化
2 4
学組成比は、一般には、式 [1]における bが 1、 cが 2で、 dが 4である。し力、し、本発明 においては、付活剤元素である M1が、 M2又は M3のいずれの金属元素の結晶格子 の位置に置換するのか、或いは、結晶格子間の隙間に配置するのか等により、式 [1 ]において bが 1、 cが 2で、 dが 4とはならない場合もあり得る。
[0057] したがって、式 [1]において、 bは、通常 0. 8以上、好ましくは 0. 9以上、より好まし くは 0. 95以上、また、通常 1. 2以下、好ましくは 1. 1以下、より好ましくは 1. 05以下 の数である。また、 cは、通常 1. 6以上、好ましくは 1. 8以上、より好ましくは 1. 9以上 、また、通常 2. 4以下、好ましくは 2. 2以下、より好ましくは 2. 1以下の数である。さら に、 dは、通常 3. 2以上、好ましくは 3. 6以上、より好ましくは 3. 8以上、また、通常 4 . 8以下、好ましくは 4. 4以下、より好ましくは 4. 2以下の数である。ただし、式 [1]に おいて、 a、 b、 c及び dは、本発明の蛍光体 Aの電荷バランスが中性となるように、そ れぞれ選択される。
[0058] 式 [1]の b、 c、 dは、本発明の母体結晶の組成比を規定するパラメータであり、 b= l 、 c = 2及び d = 4となるものが理想的な結晶である。本発明の蛍光体 Aは、発光中心 元素を含み、さらに種々の添加物を含んでいたり、格子欠陥を生じていたりする可能 性があるため、実際には b= l、 c = 2及び d = 4からずれる場合がある力 S、通常は、前 述の範囲から外れることは無い。前述の範囲を外れた結晶は生成が困難であり、また 、仕込み組成が前述の範囲を外れる場合は、蛍光体以外の副生成物(不純物相)が 生成し、発光強度が低下する可能性がある。
[0059] 式 [1]の好ましい具体例を挙げると、 Ca Ce Sc O 、 Ca Ce Sc O
0. 995 0. 005 2 4 0. 994 0. 006 2 4
、 Ca Ce Sc O 、 Ca Ce Sc O 、 Sr Ca Ce Sc O 、 Sr
0. 993 0. 007 2 4 0. 992 0. 008 2 4 0. 1 0. 894 0. 006 2 4 0. 05
Ca Ce Sc O 、 Sr Ca Ce Sc O 、 Sr Ca Ce Sc O 、 C
0. 944 0. 006 2 4 0. 1 0. 892 0. 008 2 4 0. 05 0. 942 0. 008 2 4 a し e Sc Lu O 、 Ca Ce Sc Lu O 、 Ca Ce Sc
0. 992 0. 008 1. 95 0. 05 4 0. 992 0. 008 1. 9 0. 1 4 0. 992 0. 008 1. 95
Y O 、 Ca Ce Sc Y O 、 Ca Ce Sc Mg O 、 Ca Ce
0. 05 4 0. 992 0. 008 1. 9 0. 1 4 0. 992 0. 008 1. 95 0. 05 4 0. 992
Sc Mg O 、 Sr Ca Ce Sc Lu O 、 Sr Ca Ce Sc
0. 008 1. 9 0. 1 4 0. 1 0. 892 0. 008 1. 95 0. 05 4 0. 1 0. 892 0. 008 1.
Lu O 、 Sr Ca Ce Sc Lu O 、 Sr Ca Ce Sc Lu
9 0. 1 4 0. 05 0. 942 0. 008 1. 95 0. 05 4 0. 05 0. 942 0. 008 1. 9 0. 1
Oなどが挙げられる。なお、上記の組成では 0 (酸素)の組成比が 4となっているが、
4
酸素の欠損や過剰により、 O (酸素)の組成比が土 20%の範囲内でずれて!/、ても好 ましい例に含まれるものとする。
[0060] また、 M2及び M3は、上述したように、それぞれ主として 2価及び 3価の金属元素を 表すが、その要旨が本発明の蛍光体 Aと本質的に異ならなければ、本発明の蛍光体 Aの構成元素としての M2及び/又は M3のごく一部を、 1価、 4価、 5価のいずれかの 価数の金属元素として、電荷バランス等を調整することも可能である。さらに、本発明 の蛍光体 Aには、微量の陰イオン、たとえば、ハロゲン元素(F、 Cl、 Br、 I)、窒素、 黄、セレン等が含まれていてもよい。
[0061] また、本発明の蛍光体 Aは、 Li、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 I n、 Sn、 Ag、 Au、 Pb、 Cd、 Bi、及び Tiからなる群より選択される少なくとも 2種の元素 (以下適宜、「フラックス成分元素」という)を含有する。中でも、 Li、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、及び Auからなる群より選択される少な くとも 2種の元素を含有することが好ましい。
[0062] 前記の例示の中で、 Li、 Na、 K、 Rb、及び Csはアルカリ金属元素に分類される。本 発明の蛍光体 Aがこれらのアルカリ金属元素を含有すると、粒径が大きくなる傾向が ある。例えば、本発明の蛍光体 Aの製造工程において加熱処理の際にこれらの金属 元素のハロゲン化物や酸化物を共存させると、高温で液体又は気体になり、結晶成 長を促進する効果を有することから粒径が大きくなるものと考えられる。アルカリ金属 元素の中でも、イオン半径が小さい元素ほど、結晶成長を促進する効果が大きい傾 向にあり、具体的には Liが好ましい。
[0063] また、本発明の蛍光体 A力 Φを含有すると、蛍光体の分散性が向上したり、粒子形 状が球状に近くなつたりする傾向にある。 Pは、本発明の蛍光体 Aの製造工程におい て加熱処理の際に他の元素とリン酸塩を形成し、高温で液体または気体になり作用 するあのと考免られる。
[0064] さらに、前記の例示の中で、 Cl、 F、 Br、 Iは、ハロゲン元素に分類される。本発明の 蛍光体 Aがこれらのハロゲン元素を含有すると、粒径が大きくなる傾向がある。例え ば、本発明の蛍光体 Aの製造工程において加熱処理の際に、アルカリ金属、アル力 リ土類金属、又はその他の金属元素とハロゲンとの化合物(ノヽロゲン化物)を共存さ せると、高温で液体または気体になり、結晶成長を促進する効果を有することから粒 径が大きくなるものと考えられる。ハロゲン元素の中でも、化合物が安定しており、ノレ ッボゃ炉材に対する腐食性が小さ!/、ことから C1が好まし!/、。
[0065] また、前記の例示の中で、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Auは、後に詳しく述べるよう に、主に酸化物やハロゲン化物の形でフラックスとして使用することのできる元素であ る。本発明の蛍光体 Aがこれらの元素を含有すると、粒径が大きくなる傾向にある。こ れらの元素の中でも、粒径増大効果が大き!/、ことから Znが好まし!/、。
[0066] フラックス成分元素及びフラックスの選択は、フラックスの融点、沸点、昇華点、及び そのフラックスと蛍光体構成成分との反応性を元に選択される。本発明の蛍光体 Aは 、例えば、高温状態で液相となるフラックスを使用して製造されることが好ましい。この ため、フラックスの成分としては、アルカリ金属、アルカリ土類金属、リン酸根を含有す ることが好ましい。
[0067] 特に、本発明の蛍光体 Aの形状を球状に近くし、かつ、結晶成長を促進させる観点 からは、本発明の蛍光体 Aは Li、 K、 Ρ及び CIからなる群より選択される少なくとも 2種 の元素を含有することが好ましい。また、本発明の蛍光体 Aの重量メジアン径を大きく する観点からは、本発明の蛍光体 Aは Zn、 Ga、 Ge、 In、 Sn、及び Kからなる群より 選ばれる 1種以上の元素を含有することが好ましい。
さらに、フラックス成分元素は、蛍光体の結晶相(結晶格子)の中及び外のいずれ に存在していてもよいが、通常は、蛍光体の結晶相中に含有されて存在することが好 ましい。
また、本発明の蛍光体 Aは、これらのフラックス成分元素を 3種以上が含有していて あよい。
なお、フラックス成分元素は、後述するフラックスに対応する元素である力 必ずし も全てがフラックスに由来しなくてもよぐ原料や後述する加熱処理、洗浄処理、表面 処理等、蛍光体の製造工程におレ、て混入する元素も含むものとする。
[0068] 本発明の蛍光体 Aに含有されるフラックス成分元素の濃度範囲に制限は無いが、 通常 lppm以上、好ましくは 3ppm以上、より好ましくは lOppm以上、また、通常 500 Oppm以下、好ましくは lOOOppm以下、より好ましくは lOOppm以下である。なお、フ ラックス成分元素の前記濃度は、蛍光体に含有されるフラックス成分元素の合計濃 度のことをいう。前記の濃度範囲でフラックス成分元素を含むことにより、蛍光体粒子 の粒径や形状が好ましレ、ものとなる。
[0069] また、フラックス成分元素それぞれの濃度の好適な範囲はフラックス成分元素の種 類や、洗浄処理、表面処理等の製造条件によって異なる。
例えば、本発明の蛍光体 Aの結晶相中に含有される Liの濃度範囲は、通常 lppm 以上、中でも 2ppm以上、特に 3ppm以上、また、通常 500ppm以下、中でも 300pp m以下、特に lOOppm以下が好ましい。
本発明の蛍光体 Aに含有される Kの濃度範囲は、通常 lppm以上、中でも 3ppm以 上、特 ίこ 5ppm以上、また、通常 500ppm以下、中でも 300ppm以下、特 ίこ lOOppm 以下が好ましい。 本発明の蛍光体 Aに含有される Pの濃度範囲は、通常 Oppmより大きぐ中でも 50p pm以上、特に 90ppm以上、また、通常 lOOOppm以下、中でも 800ppm以下、特に 700ppm以下が好ましい。
本発明の蛍光体 Aに含有される C1の濃度範囲は、通常 Oppmより大きぐ中でも 50 ppm以上、特に lOOppm以上、また、通常 lOOOppm以下、中でも 800ppm以下、 特に 600ppm以下が好まし!/、。
さらに、本発明の蛍光体 Aに含有される Zn、 Ga、 Ge、 In、及び Snの濃度範囲は、 通常 lppm以上、中でも 5ppm以上、さらに 30ppm以上、特に 50ppm以上、また、 通常 500ppm以下、中でも 300ppm以下、特に lOOppm以下が好ましい。なお、本 発明の蛍光体 Aが Zn、 Ga、 Ge、 In、及び Snのうち 2種以上を含有している場合には 、その合計濃度が、前記の範囲に収まっていることが好ましい。
この範囲外の蛍光体は、フラックスの効果が十分に現れず、アスペクト比が所望の 値より大きくなつて蛍光体の形状が球形から大きく外れる可能性がある。また、フラッ タス成分元素が多すぎると、蛍光体の特性や蛍光体含有組成物の特性に影響を与 える可能性がある。また、フラックス成分が蛍光体の結晶相の外に存在している場合 は、本発明の効果を損なわない限り、フラックス成分元素の濃度範囲に特に制限は 無い。
なお、蛍光体中のフラックス成分の濃度は、以下のようにして測定できる。
まず、蛍光体を解砕する。解砕の程度は、蛍光体の重量メジアン径 D が後述する
50 範囲となる程度である。その後、蛍光体を塩酸や硝酸などの酸で洗浄し、ついで、水 洗することにより、製造時の未反応物などの可溶部分を除去する。水洗の程度は、水 洗後の蛍光体を 10倍重量の水に分散沈降後の上澄み液の電気電導度が 5mS/m 以下となる程度である。そして、この条件を満たした蛍光体の元素分析を行ない、フ ラックス成分元素の結晶相中に存在する濃度を測定する。元素分析は、固体試料を 陰極としグロ一放電を用いて試料表面をスパッタし、放出された中性粒子をプラズマ 内の Arや電子との衝突によつてイオン化させるグロ一放電質量分析計(GD— MS ) により定量できる。なお、前記の解砕及び水洗は、測定対象である蛍光体が解砕及 び水洗を行なわなくても前記の条件を満たしてレ、る場合には、不要である。 [0071] [1 2·蛍光体 Aの特性]
[1 - 2 - 1.蛍光体 Aの発光スペクトル]
本発明の蛍光体 Aは、従来公知の SrY O : Ce蛍光体等と比較して室温下での発
2 4
光特性に優れている。本発明の蛍光体 Aは、室温において波長 455nmの光で励起 した場合での発光スペクトルにおいて、通常 420nm以上 700nm以下の波長範囲に 最大発光ピークを有する。
本発明の蛍光体 Aは、特に、青緑色、緑色、黄緑色、黄色蛍光体としてその特性が 優れている。この場合、本発明の蛍光体 Aは、通常 485nm以上、好ましくは 500nm 以上、より好ましくは 510nm以上、また、通常 555nm以下、好ましくは 535nm以下、 より好ましくは 525nm以下、特に好ましくは 520nm以下の波長範囲に最大発光ピー クを有する蛍光体である。なお、本明細書において室温とは、 25°Cのことをいう。最 大発光ピーク波長が短すぎると青みを帯びる傾向がある一方で、長過ぎると黄味を 帯びる傾向があり、何れも緑色光としての特性が低下する傾向がある。また、最大発 光ピーク波長があまりに短波長側にある場合には、波長 420nm〜485nmの青色 L EDでこの蛍光体を励起する際に、青色 LEDの発光波長と重なってしまうために、良 好な演色性を得られない場合がある。また、最大発光ピーク波長があまりに長波長側 にある場合には、青緑色〜緑色の発光成分が不足するために良好な演色性を得ら れない場合がある。
[0072] また、本発明の蛍光体 Aの前記の発光スペクトルにおいて、上記の最大発光ピーク の相対強度は高いほど好ましいが、 110以上、中でも 125以上、更には 140以上、 特に 150以上であることが好ましい。なお、本発明の蛍光体 Aの発光ピークの相対強 度は、化成ォプトニタス社製 Ce付活イットリウムアルミニウムガーネット(以下「YAG: Cejと称する場合がある)蛍光体 P46— Y3を波長 455nmの光で励起した時の発光 強度を 100として表わして!/、る。
[0073] さらに、本発明の蛍光体 Aの前記の発光スペクトルにおいて、発光ピークのピーク 半値幅は、通常 90nm以上 120nm以下である。
[0074] 本発明の蛍光体 Aの前記の発光スペクトルは、例えば M1が Ceである場合、通常は 左右対称ではなぐ発光ピークの右側 (長波長側)に肩を持った形状をしている。これ は、発光中心である Ced+の基底準位 (4f準位)が 2つに分裂しているため、本発明の 蛍光体 Aのように Ce3+の 5d準位から 4f準位への遷移に基づく発光は、少しエネルギ 一の異なる 2つの発光の重なったものとなり、その結果、スペクトルに肩を生じるから である。なお、 Ce3+に由来するすべての発光スペクトルが肩を持つわけではないが、 それは、 2つの発光の強度比や半価幅によって単一のピークのように見える場合があ るためである。
また、例えば、 M1が Prである場合には通常は波長 620nm付近に、 M1が Tbである 場合には通常は波長 545nm付近に、それぞれピークが現れる。
また、例えば共付活の場合は、共付活剤の種類に応じた位置にピークが現れる。 C eとこれらの元素を共付活した場合には、 Ceの波長 515nm付近のピークと共にこれ らのピークが現れる。
[0075] なお、本発明の蛍光体 Aを波長 455nmの光で励起するには、例えば、 GaN系発 光ダイオードを用いることができる。また、本発明の蛍光体 Aの発光スペクトルの測定 、並びに、その発光ピーク波長、ピーク相対強度及びピーク半値幅の算出は、例え ば、 日立製作所製 F4500型分光蛍光光度計を用いたり、励起光源として 150Wキセ ノンランプを、スペクトル測定装置としてマルチチャンネル CCD検出器 C7041 (浜松 フォト二タス社製)を備える蛍光測定装置(日本分光社製)を用いたりして行なうことが できる。
[0076] [1 - 2 - 2.蛍光体 Aの母体結晶の結晶構造]
本発明の蛍光体 Aの母体結晶は、通常は、 2価の金属元素である M2と 3価の金属 元素である M3と酸素とからなる、組成式 M2M3 Oで表される結晶である。通常、この
2 4
式で表される組成比の結晶は、構成金属元素の違いにより、空間群
[化 1コ
P n m a、 F d ¥m、 P 2 x / n , P 2 い P 6 3、 P 2 y/ c
のいずれかを有する。このうち、特に、空間群 Pnmaを有する構造、即ち、 CaFe O
2 4 型結晶構造の結晶相を本発明の蛍光体 Aが有することにより、高輝度の緑色発光を 示す蛍光体が得られるので好ましい。なお、前記の結晶構造は、均一であっても不 均一であっても良く、したがって、本発明の蛍光体 Aは CaFe O型結晶構造の結晶 相を少なくとも一部に有していればよいが、その含有率は、 50重量%以上が好ましく 、 70重量%以上が更に好ましぐ 90重量%以上が特に好ましぐ 100重量%である ことが最も好ましい。
[0077] [1 2— 3·形状特性]
〔円形度〕
本発明の蛍光体 Aは、球形に近い形状の粒子が多い。具体的には、円形度が 85 %未満である粒子の割合力 通常 10個数%未満、好ましくは 8個数%以下、より好ま しくは 7個数%以下である。なお、円形度の上限は理想的には 100%であり、前記割 合の下限は理想的には 0個数%である。本発明の蛍光体 Aは、その粒子の形状が球 状に近いことにより、実使用状態において適切な分散性やパッキング密度を有し、か つ、高い輝度で発光できるようになつている。
[0078] 円形度は、以下の要領で測定できる。
まず、円形度を測定する前に、超音波洗浄機 (ィゥチ製)を用いて 60秒間、試料で ある蛍光体を超音波で分散させる。その後、フロー式粒子像分析装置 (シスメッタス 製「FPIA— 2000」)を用いて、試料の円形度を測定する。また、この装置による平均 円形度の算出法は以下の通りである。即ち、粒子ごとに粒子像 (画像)を撮影し、得ら れた粒子像から粒子の投影面積、及び周囲長を画像処理により求める。粒子像の投 影面積と同じ面積を持つ円を想定してその円の直径を算出し、この直径を粒子の周 囲長で割った値を円形度とする。そして、円形度が 0. 85未満の粒子数の測定全粒 子数に対する割合を「円形度が 85%未満である粒子の割合」として求める。
[0079] 〔アスペクト比〕
本発明の蛍光体 Aは、そのアスペクト比に特徴を有する。即ち、アスペクト比が 3以 下の粒子が、全体の、通常 60個数%以上、好ましくは 70個数%以上、より好ましくは 80個数%以上を占める。なお、上限に制限は無いが、理想的には 100個数%である 。このアスペクト比は 1に近いことが好ましい。アスペクト比が 3より大きいの粒子は、例 えば棒状、針状等の形状を有しており、液体媒体中で分散しにくぐまた、塗布ムラ やディスペンサー等の閉塞が生じる傾向がある。
なお、前記のアスペクト比が 3以下の粒子の比率は、走査型電子顕微鏡 (例えば、 株式会社日立製作所製、 日立 S— 4500)を用いて、通常、 500倍〜 5000倍の倍率 で蛍光体を撮影し、得られた顕微鏡写真の 1視野中の粒子 30個を無作為に選び、 それらの粒子の長径と短径を、定規を用いて測定し、長径/短径の値をアスペクト比 として算出し、アスペクト比が 3以下の粒子の割合を計算することにより求める。
[0080] ただし、平均アスペクト比の値が通常 3より大きい針状の粒子を多く含む蛍光体は、 液体媒体と混合した蛍光体含有組成物を塗布する際に、蛍光体を粒子の長手方向 に配向性良く塗布することができる場合もある。
なお、前記の平均アスペクト比は、顕微鏡写真の 1視野中の粒子 30個を無作為に 選び、それらの粒子の長径と短径を測定し、長径/短径の値をアスペクト比として算 出し、その平均を計算することにより求める。
[0081] 〔粉体特性〕
本発明の蛍光体 Aは、その重量メジアン径(以下適宜「D 」という)が、通常 5 111
50
以上、中でも 10 m以上、特には 15 m以上、また、通常 30 m以下、中でも 20〃 m以下の範囲であることが好ましい。 D 力 S小さすぎると、輝度が低下し、蛍光体粒子
50
が凝集してしまう傾向がある。一方、 D が大きすぎると、塗布ムラやディスペンサー
50
等の閉塞が生じる傾向がある。
[0082] また、同様の理由で、本発明の蛍光体 Aは、粒径 100 m以上の粗大粒子の含有 率はできるだけ小さいことが好ましぐ粒径 50 m以上の粗大粒子の含有率ができる だけ小さいことが更に好ましぐこれらの含有量が実質ゼロであることが好ましい。 また、本発明の蛍光体 Aは、 QDの値が小さいことが好ましぐ具体的には、通常 0. 3以下、中でも 0. 27以下、特には 0. 24以下が好ましい。 QDの値が大きい、即ち粒 度分布が広いと、後述の蛍光体含有組成物中における蛍光体 Aの場所的な分布状 態が、当該組成物の硬化中に大粒子の沈降が早いために、変化してしまう場合があ
[0083] 本明細書において、粒径とは、重量基準粒度分布曲線により得られる値である。前 記重量基準粒度分布曲線は、レーザ回折 ·散乱法により粒度分布を測定し得られる もので、具体的には、気温 25°C、湿度 70%の環境下において、水に各物質 (測定対 象。ここでは蛍光体。)を分散させ、レーザ回折式粒度分布測定装置 (堀場製作所 LA— 300)により、粒径範囲 0· 1 μ 111〜600〃 mにて測定し得られたものである。こ の重量基準粒度分布曲線において積算値が 50%のときの粒径値が重量メジアン径 (D )である。また、積算値が 25%及び 75%の時の粒径値をそれぞれ D 、D と表
50 25 75 記すると、 QDは「QD= (D — D ) / (D +D )」と定義される。ここで、 QDが小さ
75 25 75 25
V、ことは粒度分布が狭!/、ことを意味する。
[0084] 〔粒子形状及び単粒子率〕
本発明の蛍光体 Aは、その粒子形状を観察した場合に、単粒子として存在する粒 子の割合が大きい。単粒子とは、単一の粒子により形成されている粒子である。 通常、本発明の蛍光体 Aには単粒子とそれ以外の粒子とが共に含まれる。この際、 本発明の蛍光体 Aにおける単粒子の割合(単粒子率)は、通常 70個数%以上、好ま しくは 75個数%以上、より好ましくは 80個数%以上である。なお、上限に制限は無い 1S 理想的には 100個数%である。単粒子率が高いことにより、樹脂等の封止材料 に分散させる際に均一分散性に優れると共に、均一発光性に優れると!/、う利点が得 られる。
[0085] なお、粒子形状の観察は適切な倍率を有する顕微鏡であればその方式は問わな いが、走査型電子顕微鏡(SEM)写真による観察によって行うことが好ましい。観察 のし易さの点から、倍率は、通常、 1000倍〜 3000倍の範囲とすることが好ましい。 また、単粒子率については、走査型電子顕微鏡写真の 1視野中の粒子から、例え ば 30個を、無作為に選び、 1個の粒子像内に融着により生じた粒界が存在する粒子 と粒界が存在しない粒子とに分けてそれぞれの数を数え、全体(30個)に対する粒界 が存在しない粒子の比率を単粒子率として計算することができる。なお、粒界とは、 結晶方位の異なる単結晶が接触した線又は面のことを言い、具体的には、 SEM写 真において一つの粒子の中に明確な線が見えるものを粒界が存在する粒子とする。
[0086] [1 2— 4·蛍光体 Aの発光色]
本発明の蛍光体 Aは、緑色ないし黄緑色蛍光体として特に優れている力 この場合 、波長 455nmの光で励起したときの発光色の CIE標準表色系における色度座標 X 及び yは、通常は、以下の通りである。即ち、色度座標 Xは、通常 0. 320以上、好まし く (ま 0. 330以上、特 ίこ好ましく (ま 0. 335以上であり、通常 0. 360以下、好ましく (ま 0 . 350以下、より好ましく (ま 0. 345以下、特 ίこ好ましく (ま 0. 339以下である。一方、色 度座標 yは、通常 0. 570以上、好ましくは 0. 580以上であり、通常 0. 600以下、好 ましくは 0. 590以下である。発光色が上記の範囲を外れた場合、緑色ないし黄緑色 蛍光体としては色純度が低下する可能性がある。なお、色度座標値 X及び yは、 480 nm〜800nmの発光スペクトルから、 JISZ8701に準じて計算することにより算出でき
[0087] [1 2— 5·蛍光体 Aの励起スペクトル]
本発明の蛍光体 Aの励起スペクトルに制限は無いが、通常 380nm以上、好ましく は 400nm以上、より好ましくは 420nm以上、また、通常 500nm以下、好ましくは 49 Onm以下、より好ましくは 480nm以下の波長範囲、及び、通常 220nm以上、好まし くは 230應以上、より好ましくは 240腹以上、また、通常 360應以下、好ましくは 3 30nm以下、より好ましくは 320nm以下の波長範囲の少なくともいずれかの波長範 囲に波長を有する光で励起されて可視光を発する。また、励起スペクトルのピークは 、通常は波長 430nm以上 470nm以下の範囲に存在する。したがって、本発明の蛍 光体 Aは、可視光領域、特に青色領域の光を効率よく変換することができ、可視光を 発する半導体発光素子と好適に組み合わせて用いることができる。
[0088] [1 - 2 - 6.蛍光体 Aの物体色]
本発明の蛍光体 Aの物体色は、室温(25°C)では、 L*、 a*、 b*表色系において、 通常は以下の通りである。
即ち、 L*は、通常 100以上、好ましくは 102以上であり、通常 110以下、好ましくは 108以下、特に好ましくは 105以下である。 L*が小さすぎると蛍光体の発光が弱くな る可能性がある。特に、 L*が 102以上 105以下の場合は、物体色は薄い緑色となり 、また、温度特性が良好となり、温度特性と発光強度とのバランスのとれた蛍光となる ので好ましい。
また、 a*は、通常 30以上、好ましくは 28以上であり、通常 15以下、好ましく は— 18以下、より好ましくは— 24以下である。 a*が大きすぎると蛍光体の発光の全 光束が小さくなる傾向があるため、 a*は小さいほうが好ましい。
さらに、 は、通常 45以上、好ましくは 50以上、特に好ましくは 52以上であり、通 常 70以下、好ましくは 60以下である。 b*が小さすぎると本発明の蛍光体 Aを用いて 発光装置を作製した場合に発光効率の向上に不適当となるため、 b*は大きいほうが 好ましい。
なお、 L*、 a*、 b*表色系における物体色は、 JISZ8729に規定されている。また、 本発明の蛍光体 Aの物体色の測定は、例えば、市販の物体色測定装置 (例えば、ミ ノルタ社製 CR— 300)を使用することにより行なうことが可能である。
[0089] 蛍光体は、多くの場合、発光中心元素が励起光を吸収し、吸収した励起光と異なる 波長の光を発光する。一方、粉体としての蛍光体の物体色を見ると、 CRT用、蛍光ラ ンプ用など多くの蛍光体の物体色は白色であり、明瞭な物体色を有する蛍光体は少 ない。
また、最近、青色半導体発光素子(青色 LED)と蛍光体とを組み合わせた白色発 光装置が開発されている。この白色発光装置に使用される代表的な蛍光体としては Ce付活イットリウムアルミニウムガーネット(以下「YAG: Cejと称する場合がある)が 知られている。前記の白色発光装置では蛍光体は青色 LEDからの青色光により励 起され、補色となる黄色を発光するようになっている。また、白色発光装置の演色性 を向上するため、 YAG: Ce等に加えて緑色及び赤色蛍光体を用レ、た白色発光装置 も開発されている。これらの従来の白色発光装置に使用される蛍光体は、明瞭な物 体色を有して!/、るものが多く見られる。
[0090] ここで、無機質結晶の着色の原因は、次の 3通りに分けられると思料される。
(1)配位子吸収帯による着色 (結晶場着色)。
(2)分子軌道間の遷移による着色。
(3)エネルギー帯を持つ物質内の遷移による着色。
[0091] このうち、(1)の着色は遷移金属元素、希土類元素のような内殻を完全に満たして いない電子状態を有する元素の存在による。即ち、不完全な内殻は不対電子を有す るため、この励起状態が可視スペクトルに対応して物質に色がつくことになる。
よって、多くの蛍光体に使用される発光中心元素は遷移金属元素または希土類元 素であり、発光中心元素を含まない母体結晶の場合は着色がないことを考えると、蛍 光体の着色の原因は、前記の(1)の要件であると考えられる。 [0092] 以上のことから、蛍光体の物体色は、可視光を吸収して蛍光体自身が発光する光 と同時に、分光反射率が高い領域の光が反射されるために、蛍光体に独自の着色 が観察されると考えられる。物体色を L*、 a*、 b*表色系を用いて表示する場合、 L* は一般的には照射光で発光しない物体を极うので通常は 100を超える事は無いが、 本発明の蛍光体 Aでは照射光源で励起されて発光が反射光に重畳されるので 100 を超えることがありえる。
[0093] また、本発明の蛍光体 Aに関して、発光中心元素の濃度が増加すると濃度消光現 象が起こることから、局所的に発光中心元素の濃度が高いことは発光効率の面から も好ましくない。また、極端に発光中心元素の濃度の低い部分は発光中心の数が少 ないことから発光も弱くなる。従って、発光中心元素は母体結晶中に適切な濃度で 均一に分布していることが好ましい。しかし、一般的に、原料中に配合した発光中心 元素が、出来上がった蛍光体結晶格子中に均一に分布している保証はない。また、 物体色は前記のように結晶場着色により起こることから、物体色を知れば結晶中の発 光中心イオンの濃度を知ることができる。即ち、発光中心元素の配合量が同じである 2つの原料混合物を焼成して 2つの蛍光体を得たとき、両者の物体色が同じであれ ば発光中心元素の結晶内の分布状態が同じであるということができる。以上のことは 発光スペクトルからだけでは推定できず、蛍光体が特定の物体色であることを確認し て初めてわかることである。
[0094] このように、物体色は発光中心元素の存在状態をマクロに示すので、発光色と物体 色を特定すれば蛍光体を特定することが可能である。したがって、本発明の蛍光体 Aでは、その物体色が L*、 a*、 b*表色系において上述した範囲に収まることが好ま しい。つまり、発光中心元素の結晶内分布が適切であるか否かは、物体色 L*, a* , b *が上述した範囲にあることにより確かめることができるのである。
[0095] [1 2— 7·蛍光体 Aの温度特性]
本発明の蛍光体 Aは、所定の場合に良好な温度特性を示す。具体的には、温度 2 5°C、 125°C及び 160°Cにおいて、本発明の蛍光体 Aを波長 455nmの光で励起し て得られる輝度を、それぞれ Br(25)、 Br (125)及び Br (160)とした場合、 Br (125) /Br (25)及び Br(160) /Br (25)がそれぞれ、下記式 [2]及び/又は式 [3]を満 足する。
Br (125) /Br (25)≥0. 7 [2]
Br (160) /Br (25)≥0. 5 [3]
詳しくは、 Br (125) /Br(25)は、通常 0. 70以上、好ましくは 0. 71以上、より好ま しくは 0. 72以上である。なお、上限に制限は無いが、通常 1. 0以下である。また、 Br (160) /Br (25) (ま、通常 0. 50以上、好ましく (ま 0. 55以上、より好ましく (ま 0. 58以 上である。なお、上限に制限は無いが、通常 1. 0以下である。
[0096] 蛍光体を発光装置に使用する場合、光源 (後述する「第 1の発光体」 )の発熱により 蛍光体が昇温することがある。特に、近年ではより明るい発光装置が求められている ため、光源としてパワー LED等の高出力な光源を使用することがある力 通常は高 出力な光源の発熱の程度は大きいため、前記の昇温の程度も大きくなる。この際、蛍 光体の温度特性が悪ければ、 LED等と組み合わせて発光装置を構成した場合に、 動作により蛍光体の温度が上昇すると発光強度が低下し、また、温度変化によって 発光装置の発光色が変化する傾向にある。一方、蛍光体の温度特性が良好であれ ば、このような場合でも発光強度の低下や発光色の変化が小さくなる傾向にあり、好 ましい。本明細書においては、このような温度変化に伴う発光強度の低下や発光色 の変化を温度特性と呼び、これらの温度変化に伴う発光強度の低下や発光色の変 化の程度が小さい蛍光体を温度特性の優れた蛍光体と言う。
[0097] このように本発明の蛍光体 Aでは物体色が特定の範囲に収まることで温度特性が 改善する傾向がある力 この利点は、特定の組成を有する蛍光体において発揮され るものである。本発明の蛍光体 Aの場合、式 [1]において aが 0. 01より小さく 0. 003 より大きい場合にこの利点が発揮される。ここで、蛍光体の組成 (特に、発光中心元 素の濃度)と蛍光体の発光色とは関連性を有しているため、特定の発光色を有する 蛍光体が上述した範囲の物体色を有することにより、温度特性や発光特性が向上す るということもできる。即ち、上記の物体色及び発光色を共に備えた蛍光体力 温度 特性や発光特性の向上という本発明の利点を発揮することができるのである。
[0098] 本発明の蛍光体 Aは、所定の場合に上述したように温度特性に優れている。したが つて、そのような本発明の蛍光体 Aは、後述する発光装置等に好適に用いることがで きる。
なお、前記の温度特性の算出に用いる Br(25)、 Br(125)及び Br(160)は、例え ば、発光スペクトル測定装置として大塚電子製 MCPD7000マルチチャンネルスぺク トル測定装置、輝度測定装置として色彩輝度計 BM5A、ペルチェ素子による冷却機 構とヒーターによる加熱機構を備えたステージ、及び光源として 150Wキセノンランプ を備える装置を用いて測定することができる。この場合、具体的操作としては、以下 の操作を行なう。即ち、ステージに蛍光体サンプルを入れたセルを載せ、温度を 20 °Cから 160°Cの範囲で変化させる。そして、蛍光体の表面温度が 25°C±1°C、 125 °C±1°C、又は 160°C±1°Cになったことを確認する。次いで、光源から回折格子で 分光して取り出した 455nmの光で蛍光体を励起して発光スペクトルを測定する。測 定された発光スペクトルから、輝度を求める。なお、蛍光体の表面温度の測定値は、 放射温度計と熱電対による温度測定値を利用して補正した値を用いるものとする。
[0099] さらに、 125°C及び 160°Cでの輝度 Br(125)及び Br(160)はそれぞれ高いことが 好ましいが、他の蛍光体を上記のように良好な温度特性を有する蛍光体と併用する 場合は、各蛍光体の温度特性が近いことが、温度による色ズレが少なくなり好ましい
[0100] [2.蛍光体 B]
本発明の蛍光体 Bは、式 [1']に表わされる元素の組成比力 S、式 [1']を満足する。
M1 M2 M3 O [1']
a b e d
(ただし、式 [1']中、
M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、 及び Ybからなる群から選択される少なくとも 1種の元素、
M2は主として 2価の金属元素、
M3は主として 3価の金属元素、
aは 0.003<a<0.01の数、
bは 0.8≤b≤l.2の数、
cは 1.6≤c≤2.4の数、
dは 3.2≤d≤4.8の数 をそれぞれ表わす。 )
[0101] [2— 1 ·蛍光体 Bの組成]
本発明の蛍光体 Βは、組成に関し、下記式 [1 ' ]に表わされる元素の組成比が、下 記式 [1 ' ]を満足する。なお、本発明の蛍光体の主要な構成元素は下記式 [1 ' ]に表 わされる元素である。本発明の蛍光体は、式 [1 ' ]に表わされる元素のみで構成され ている場合もありえる力 通常は、下記式 [1 ' ]の組成を有する蛍光体結晶の内及び /又は外に、必要に応じて用いられる任意の微量元素(例えば、後述するフラックス に由来する元素など)が存在した構成となっている。
Μ1 Μ2 Μ3 Ο [1 ' ]
a b d
[0102] 式 [1 ' ]中、
Figure imgf000030_0001
M2、 M3、 b、 c及び dは、式 [1]と同様である。
また、式 [1 ' ]中、 aは、 0. 003より大きく、 0. 01より小さい数を表わす。この点以外 は、式 [1 ' ]における aは、式 [1]における aと同様である。本発明の蛍光体 Bは、この ように aが特定の範囲に収まっていることにより、発光の輝度を低下させず、かつ、温 度特性の改善という利点を得ることができる。さらに、本発明の蛍光体 Bは、フラックス 成分元素を必ずしも含有しな!/、。
前記の事項以外は、本発明の蛍光体 Bは、組成に関しては、本発明の蛍光体 Aと 同様である。ただし、本発明の蛍光体 Bも、蛍光体 Aと同様に、フラックス成分元素を 含有することが好ましい。
[0103] [2- 2.蛍光体 Bの特性]
本発明の蛍光体 Bは、必ずしも球形に近い形状の粒子が多いものではなぐ代わり に、いずれも良好な温度特性を示すものである。ここで、良好な温度特性を表わす具 体的な指標は、本発明の蛍光体 Aの項で説明したのと同様である。
本発明の蛍光体 Bは、前記の事項以外は、本発明の蛍光体 Aと同様の特性を有す る。ただし、本発明の蛍光体 Bにおいても、本発明の蛍光体 Aと同様に、通常は粒径 に近い形状の粒子が多い。
[0104] [3.蛍光体 C]
本発明の蛍光体 Cは、室温下で発光し、 CaFe O型結晶構造の結晶相を有し、か
2 4
つ、平均円形度が 85%未満である蛍光体粒子の割合が 10個数%以下である。 [0105] [3— 1 ·蛍光体 Cの組成]
本発明の蛍光体 Cの組成に制限は無いが、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群から選択される少なくとも 1種の元素と、 Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群から選択される少なくとも 1 種の金属元素と、 Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる群から選択さ れる少なくとも 1種の金属元素とを含むことが好ましい。中でも、 2価の金属元素として Ca及び/又は Srと、 3価の金属元素として Scを含むことがより好ましぐ付活剤元素 として Ceを含むことが更に好ましい。また、本発明の蛍光体 Cの組成は、本発明の蛍 光体 A又は蛍光体 Bと同様であってもよい。
[0106] [3- 2.蛍光体 Cの特性]
本発明の蛍光体 Cは、室温下で発光するものであり、その発光に関する特性は、通 常は本発明の蛍光体 Aと同様である。
[0107] また、本発明の蛍光体 Cは CaFe O型結晶構造の結晶相を有する。この際、前記
2 4
の結晶構造は、均一であっても不均一であっても良ぐしたがって、本発明の蛍光体 Cは CaFe O型結晶構造の結晶相を少なくとも一部に有していればよい。また、その
2 4
結晶相の含有率は、本発明の蛍光体 Aと同様である。
[0108] さらに、本発明の蛍光体 Cは、本発明の蛍光体 Aと同様に、球形に近い形状の粒 子が多ぐ具体的には、円形度が 85%未満である粒子の割合が通常 10個数%未満 である。このように、本発明の蛍光体 Cによれば、球状に近いことにより、実使用状態 において適切な分散性やパッキング密度を有し、かつ、高輝度な蛍光体を得ることが できる。
[0109] また、本発明の蛍光体 Cは、上記以外の特性については、通常は本発明の蛍光体 Aと同様の特性を有する。ただし、本発明の蛍光体 Cは、その QDは、 0. 24以下であ ることが特に好ましい。これにより、実使用状態において適切な分散性やパッキング 密度を有し、かつ、高輝度な蛍光体を得ることができる。
なお、本発明の蛍光体 Cは、例えば、アルカリ土類金属のハロゲン化物、アルカリ 金属のリン酸塩、アルカリ金属のハロゲン化物、及びアルカリ金属の硫酸塩からなる 群より選択される 2種以上を含む原料を加熱することにより製造できる。 [0110] [4.蛍光体 D]
本発明の蛍光体 Dは、室温下で発光し、 CaFe O型結晶構造の結晶相を有し、重
2 4
量メジアン径 D 力 ^Ο μ ΐη以上であり、かつ、 QDが 0. 27以下である。
50
[0111] [4 1 ·蛍光体 Dの組成]
本発明の蛍光体 Dの組成に制限は無いが、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群から選択される少なくとも 1種の元素と、 Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群から選択される少なくとも 1 種の金属元素と、 Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる群から選択さ れる少なくとも 1種の金属元素とを含むことが好ましい。中でも、 2価の金属元素として Ca及び/又は Srと、 3価の金属元素として Scを含むことがより好ましぐ付活剤元素 として Ceを含むことが更に好ましい。また、本発明の蛍光体 Dの組成は、本発明の蛍 光体 A又は蛍光体 Bと同様であってもよい。
[0112] [4- 2.蛍光体 Dの特性]
本発明の蛍光体 Dは、室温下で発光するものであり、その発光に関する特性は、通 常は本発明の蛍光体 Aと同様である。
[0113] また、本発明の蛍光体 Dは CaFe O型結晶構造の結晶相を有する。この際、前記
2 4
の結晶構造は、均一であっても不均一であっても良ぐしたがって、本発明の蛍光体 Dは CaFe O型結晶構造の結晶相を少なくとも一部に有していればよい。また、その
2 4
結晶相の含有率は、本発明の蛍光体 Aと同様である。
[0114] さらに、本発明の蛍光体 Dは、重量メジアン径 D 力 SlO ^ m以上である。また、本発
50
明の蛍光体 Dは、 QDが 0. 27以下である。本発明の蛍光体 Dは、その粉体特性に 関し、これらの事項以外は本発明の蛍光体 Aと同様である。
[0115] このような構成により、本発明の蛍光体 Dによれば、球状に近いことにより、実使用 状態において適切な分散性やパッキング密度を有し、かつ、高輝度な蛍光体を得る こと力 Sでさる。
また、本発明の蛍光体 Dは、上記以外の特性については、通常は本発明の蛍光体 Aと同様の特性を有する。
なお、本発明の蛍光体 Dは、例えば、加熱により融点又は昇華点が 1200°C以下の 金属を生成する化合物、及び/又は、加熱によりアルカリ金属の酸化物を生成する 化合物を含む原料を加熱することにより製造される。
[0116] [5.蛍光体 E]
本発明の蛍光体 Eは、 485nm〜555nmの波長範囲に最大発光ピークを有し、 Ca Fe O型結晶構造の結晶相を有し、かつ、アスペクト比が 3以下の粒子が全体の 60
2 4
個数%以上を占める。
[0117] [5— 1 ·蛍光体 Eの組成]
本発明の蛍光体 Eの組成に制限は無いが、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群から選択される少なくとも 1種の元素と、 Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群から選択される少なくとも 1 種の金属元素と、 Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる群から選択さ れる少なくとも 1種の金属元素とを含むことが好ましい。中でも、 2価の金属元素として Ca及び/又は Srと、 3価の金属元素として Scを含むことがより好ましぐ付活剤元素 として Ceを含むことが更に好ましい。また、本発明の蛍光体 Eの組成は、本発明の蛍 光体 A又は蛍光体 Bと同様であってもよい。
[0118] [5- 2.蛍光体 Eの特性]
本発明の蛍光体 Eは、通常 485nm以上、好ましくは 500nm以上、より好ましくは 5 10nm以上、また、通常 555nm以下、好ましくは 535nm以下、より好ましくは 525η m以下、特に好ましくは 520nm以下の波長範囲に最大発光ピークを有する蛍光体 である。最大発光ピーク波長が短すぎると青みを帯びる傾向がある一方で、長過ぎる と黄味を帯びる傾向があり、何れも緑色光としての特性が低下する傾向がある。また 、最大発光ピーク波長があまりに短波長側にある場合には、波長 420nm〜485nm の青色 LEDでこの蛍光体を励起する際に、青色 LEDの発光波長と重なってしまうた めに、良好な演色性を得られない場合がある。また、最大発光ピーク波長があまりに 長波長側にある場合には、青緑色〜緑色の発光成分が不足するために良好な演色 性を得られない場合がある。
[0119] また、本発明の蛍光体 Eは CaFe O型結晶構造の結晶相を有する。この際、前記
2 4
の結晶構造は、均一であっても不均一であっても良ぐしたがって、本発明の蛍光体 Eは CaFe O型結晶構造の結晶相を少なくとも一部に有していればよい。また、その
2 4
結晶相の含有率は、本発明の蛍光体 Aと同様である。
[0120] さらに、本発明の蛍光体 Eは、本発明の蛍光体 Aと同様に、アスペクト比が 3以下の 粒子が、全体の、通常 60個数%以上である。
[0121] このような構成により、本発明の蛍光体 Eによれば、球状に近いことにより、実使用 状態において適切な分散性やパッキング密度を有し、かつ、高輝度な蛍光体を得る こと力 Sでさる。
また、本発明の蛍光体 Eは、上記以外の特性については、通常は本発明の蛍光体 Aと同様の特性を有する。
なお、本発明の蛍光体 Eは、例えば、 Li、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 Cd、 Bi、及び Tiからなる群より選択される少なくとも 2種の元素を含む原料を加熱することにより製造できる。
[0122] [6.蛍光体の製造方法]
以下、本発明の蛍光体 A〜Eの製造方法について説明する。なお、以下の説明に おいて、本発明の蛍光体 A〜Eを区別せずに指す場合、単に「本発明の蛍光体」と いう。
本発明の蛍光体の製造方法に制限は無ぐ上述した本発明の蛍光体が得られる限 り任意の方法を採用することができる。例えば、一般的な固相反応法により製造する こと力 Sできる。具体例を挙げると、上述したように式 [1]又は式 [1 ' ]で表わされる組成 を有する蛍光体を製造する場合、付活剤元素 M1を含有する M1源化合物、 2価の金 属元素 M2を含有する M2源化合物、及び 3価の金属元素 M3を含有する M3源化合 物等の原料化合物を、乾式粉砕機(例えば、ハンマーミル、ロールミル、ボールミル、 ジェットミル等)を用いて粉砕した後、混合機 (例えば、リボンプレンダー、 V型プレン ダー、ヘンシェルミキサー等)により混合する力、、或いは、これらの原料化合物を混合 した後、乾式粉砕機を用いて粉砕する乾式法;又は、これらの原料化合物を水等の 媒体中に加え、媒体攪拌式粉砕機等の湿式粉砕機を用いて粉砕及び混合するか、 或いは、これらの原料化合物を乾式粉砕機により粉砕した後、水等の媒体中に加え て混合することにより調製したスラリーを、噴霧乾燥等により乾燥させる湿式法により、 粉砕混合物を調製し、得られた粉砕混合物を加熱処理して焼成することにより製造 すること力 Sでさる。
ただし、通常は、以下に説明するように、本発明の蛍光体を構成する元素を含有す る原料化合物と、後述するフラックスとを含有する原料に対して加熱処理を施すこと( 以下適宜、この製造方法を「本発明の製造方法」という)により製造する。
[0123] [6— 1.原料化合物]
原料化合物としては、本発明の蛍光体を構成する元素(以下適宜、「蛍光体構成元 素」という)を含有する化合物を用いることができる。その例を挙げると、蛍光体構成 元素を含有する、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸 塩、ハロゲン化物等が挙げられる。よって、本発明の蛍光体が上述した組成を有する 場合、
Figure imgf000035_0001
M2及び M3それぞれの酸化物、水酸化物、炭酸 塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等を用いることができる。 中でも、本発明の蛍光体は酸化物蛍光体であるため、特に、例えば酸化物、水酸化 物等の、焼成によって酸化物となる原料化合物が好ましい。また、原料化合物の選 択に際しては、複合酸化物(即ち、蛍光体)への反応性、及び、焼成時における NO x、 SOx等の非発生性等を考慮して選択することが好ましい。さらに、本発明の蛍光 体を構成する各元素に対応し、原料化合物は、それぞれ、 1種を用いてもよぐ 2種 以上を任意の組み合わせ及び比率で併用しても良!/、。
[0124] 付活剤元素 M1のうち Ceを例に挙げ、それに対応する Ce源化合物を具体的に例 示すると、 Ce O 、 CeO 、 Ce (OH) 、 Ce (OH) 、 Ce (CO ) 、 Ce (NO ) 、 Ce (S
2 3 2 3 4 2 3 3 3 3 2
O ) 、 Ce (SO ) 、 Ce (OCO) 、 Ce (OCOCH ) 、 CeCl 、 CeCl等が挙げられる
4 3 4 2 2 6 3 3 3 4
[0125] 2価の金属元素 M2として Mg、 Ca、及び Srを例に挙げ、それらに対応する M2源化 合物を例示すると、 Mg源化合物としては、例えば、 MgO、 Mg (OH) 、 MgCO 、 M
2 3 g (OH) - 3MgCO - 3H 0、 Mg (NO ) · 6Η 0、 MgSO 、 Mg (OCO) - 2H 0、
2 3 2 3 2 2 4 2 2
Mg (OCOCH ) -4H 0、 MgCl等が挙げられ、 Ca源化合物としては、例えば、 Ca
3 2 2 2
0、 Ca (OH) 、 CaCO 、 Ca (NO ) ·4Η 0、 CaSO - 2H 0、 Ca (OCO) -H 0、
2 3 3 2 2 4 2 2 2
Ca (OCOCH ) .H 0、 CaCl等が挙げられ、 Sr源化合物としては、例えば、 SrO、 Sr(OH) 、 SrCO 、 Sr(NO ) 、 Sr(OCO) 、 Sr (OCOCH ) 、 SrCl等が挙げら
2 3 3 2 2 3 2 2
れる。
[0126] 3価の金属元素 M3として Sc、 Lu、 Y及び A1を例に挙げ、それらに対応する M3源化 合物を例示すると、 Sc源化合物としては、例えば、 Sc O 、 Sc (OH) 、 Sc (CO ) 、
2 3 3 2 3 3
Sc (NO ) 、 Sc (SO ) 、 Sc (OCO) 、 Sc (OCOCH ) 、 ScCl等が挙げられ、 Lu
3 3 2 4 3 2 6 3 3 3 源化合物としては、例えば、 Lu O、 Lu (SO ) 、 LuCl等が挙げられ、 Y源化合物
2 3 2 4 3 3
としては、例えば、 Y O 、 Y (OH) 、 Y (CO ) 、 Y (NO ) 、 Y (SO ) 、 Υ (OCO)
2 3 3 2 3 3 3 3 2 4 3 2
、 Y (〇C〇CH ) 、 YC1等が挙げられ、 Al源化合物としては、例えば、 Al〇、 Al (
6 3 3 3 2 3
OH) 、 A1〇〇H、 A1 (N〇 ) · 9Η〇、 Al (SO ) 、 A1C1等が挙げられる。
3 3 3 2 2 4 3 3
なお、上述した原料化合物は、蛍光体の発光特性が向上することから、重量メジァ ン径 D 力 m以上 20 m以下の範囲のものを用いることが好ましい。
50
[0127] また、原料化合物は、共沈を行なうことにより共沈原料としてから用いることが好まし い。この共沈原料は、蛍光体構成元素の一部又は全部が原子レベルで混合されて いるものである。通常、共沈は、それぞれ異なる蛍光体構成元素を含む原料化合物 を組み合わせて行なうため、得られる共沈原料は、蛍光体構成元素を 2種以上含有 することになる。原料化合物を共沈させて力 使用することにより、蛍光体構成元素 が均一に混合された蛍光体を得ることができるので、発光強度が優れる蛍光体を得 ること力 Sできる。特に、発光中心元素を含有する共沈原料を使用することにより、発光 中心元素を蛍光体中に均一に分散させることができるので、より発光強度に優れる蛍 光体を得ることができる。また、原料化合物を共沈させてから使用すれば、蛍光体の 物体色を好適な範囲(通常は a*≤- 24)に収めやすくなる。
[0128] ここで共沈とは、原料化合物を適切な溶媒中に溶解して溶液を調製し、この溶液に 他の物質を沈殿剤として混合して、溶液中に溶解している元素を同時に沈殿させる ことにより、前記原料化合物に含まれる成分を原子レベルで混合させる方法である。 この際、共沈原料に上記のように 2種以上の蛍光体構成元素を含有させるために は、通常は、原料化合物も 2種以上用いる。
[0129] 共沈原料に含有させる蛍光体構成元素の組み合わせは任意である。ただし、共沈 の際、沈殿物として得られる共沈原料の溶解度は、実用上、所定の範囲となることが 好ましい。したがって、実用上は、全ての原料化合物について共沈が可能であるの ではなぐ特定の蛍光体構成元素に対応した原料化合物の組み合わせについての み共沈が可能である。
[0130] 例えば、本発明の製造方法により得られる本発明の蛍光体の組成が式 [1]又は式
[1 ' ]で表される場合には、共沈に適用可能な蛍光体構成元素としては、
Figure imgf000037_0001
M¾ どが挙げられる。このうち、 M1の中では、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、 Ybが好ましぐ特に Ceが好ましい。また、 M2の中では、 Sc、 Y、 La、 Gd、 Yb、 Lu力 S好ましく、さらには Sc及び Yが好ましぐ特に Scが好ましい。
[0131] したがって本発明の蛍光体の組成が式 [1]又は式 [1 ' ]で表される場合、共沈原料 を用いるのであれば、 Scを含む原料化合物(Sc源化合物)と Ceを含む原料化合物( Ce源化合物)とを共沈させて、 Scと Ceとを含有する共沈原料を得るようにすること力 S 好ましい。この場合、共沈原料として、通常は蓚酸塩として回収し、それを加熱して得 られる酸化物を共沈原料として使用することが好ましレ、。この共沈原料を原料化合物 として使用することにより、高特性の蛍光体を得ることができる。
[0132] 共沈に用いる溶媒としては、原料化合物を溶解することができるものであれば特に 制限は無ぐ共沈原料が得られる限り任意である。この溶媒の例を挙げると、例えば、 水、硝酸、塩酸、硫酸などが挙げられる。なお、これらの溶媒は、 1種を用いても良ぐ 2種以上を任意の組み合わせ及び比率で併用しても良!/、。
[0133] また、共沈の際に沈殿物として得られる共沈原料の溶解度を考慮すると、使用する 溶媒に対し、原料化合物の溶解度が通常 10g/L以上、好ましくは 20g/L以上、よ り好ましくは 30g/L以上であり、且つ、生成する共沈原料の溶解度が通常 lg/L以 下、好ましくは 0. lg/L以下、より好ましくは 0. Olg/L以下となるように、溶媒を選 択することが望ましい。
[0134] また、共沈に使用する沈殿剤に制限は無ぐ共沈原料が得られる限り任意である。
この共沈剤の例を挙げると、例えば、蓚酸、炭酸、アンモニアなどが挙げられる。なお 、これらの共沈剤は、 1種を用いても良ぐ 2種以上を任意の組み合わせ及び比率で 併用しても良い。
[0135] 共沈により得られる共沈原料の組成は、蛍光体構成元素を含有する限り制限は無 い。ただし、共沈という操作の特性上、共沈原料は、使用する溶媒に対して難溶性の 化合物として得られる。例えば、蓚酸塩、水酸化物、炭酸塩、カルボン酸塩等として 得られる。なお、共沈により、共沈原料が 1種のみ得られるようにしてもよぐ 2種以上 が任意の組み合わせ及び比率で得られるようにしてもょレ、。
[0136] また、共沈原料は、加熱して共沈酸化物としてから、後述する加熱処理に供するこ とが好ましい。これにより、蛍光体の製造時に効率を上げることができる。
[0137] 前記の共沈原料の加熱は、通常は酸素存在下、好ましくは大気下にて行なう。カロ 熱の際の温度条件は共沈原料を酸化できる限り任意であるが、通常 800°C以上、好 ましくは 900°C以上、より好ましくは 950°C以上、また、通常 1500°C以下、好ましくは 1300°C以下、より好ましくは 1200°C以下である。なお、加熱時の圧力条件に制限 は無いが、通常は大気圧下で行なう。また、加熱時間に制限は無いが、通常 0. 1時 間以上、好ましくは 1時間以上、また、通常 20時間以下、好ましくは 10時間以下であ なお、共沈原料の重量メジアン径 D が適切な範囲内となるように加熱条件を調整
50
すること力 S好ましい。特に、 3価の金属元素 M3を含む共沈原料の重量メジアン径 D
50 が大きいと、製造される蛍光体の粒径が大きくなり、輝度等の発光特性が向上する傾 向にあり、好ましい。具体的には、共沈原料の重量メジアン径 D 力 通常 7 111以上
50
、中でも 10 m以上であることが好ましぐまた、その上限は、反応性の観点から通 常 20 m以下である。
[0138] したがって、本発明の製造方法では、蛍光体構成元素を少なくとも 2種含有し、力、 つ、共沈により得られた共沈原料を加熱することにより得られた共沈酸化物を原料化 合物(即ち、蛍光体の原料)として使用することが好ましい。この際、共沈酸化物に含 有させる蛍光体構成元素の組み合わせは任意であるが、前記式 [1]又は式 [1 ' ]で 表わされる蛍光体を製造する場合には、少なくとも M1と M2のそれぞれ一種以上の元 素を共沈酸化物に含有させることが好ましぐ中でも、 Ce及び Scを含有させることが 好ましい。これにより、特に高性能な蛍光体を得ることができる。
[0139] [6 - 2.原料混合法]
原料化合物は、加熱処理を施す前に、混合処理を施し粉砕混合物とすることが好 ましい。この混合処理を施すことにより、仕込んだ付活剤元素がすべて有効に働くよ う、結晶中に取り込まれるようにすることができる。混合処理に制限は無ぐ例えば、 ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機を用いて粉砕し た後、例えば、リボンブレンダー、 V型ブレンダー、ヘンシェルミキサー等の混合機に より混合するか、或いは、これらの原料化合物を混合した後、乾式粉砕機を用いて粉 砕する乾式法;または、これらの原料化合物を水等の媒体中に加え、媒体攪拌式粉 砕機等の湿式粉砕機を用いて粉砕及び混合するか、或いは、これらの原料化合物を 乾式粉砕機により粉砕した後、水等の媒体中に加えて混合することにより調製したス ラリーを、噴霧乾燥等により乾燥させる湿式法などを用いることができる。
[0140] [6 - 3.加熱処理]
原料化合物に対して加熱処理を施して焼成することにより、本発明の蛍光体を得る ことができる。ただし、本発明の製造方法では、原料化合物とともに、製造する蛍光 体の組成や蛍光体粒子の形状及び粒径に応じてフラックスが原料として用いられ、こ の原料化合物及びフラックスを含む原料が加熱されることが好ましい。なお、加熱処 理では、原料化合物間の固相反応を促進すベぐ各イオンの相互拡散のための充 分な温度及び時間が与えられる。
[0141] 加熱処理の具体的操作としては、耐熱容器中に原料化合物を保持し、その原料化 合物を所定の温度に加熱する。
耐熱容器に制限は無ぐ 目的とする蛍光体が得られる限り任意のものを用いること ができる。例えば、アルミナ製、石英製、炭化珪素製、白金製等の坩堝やトレィ等を 用いること力 Sできる。中でも、原料混合物と耐熱容器との反応性が低ぐ高純度、高 発光特性の蛍光体が得られるため、高純度のアルミナ製や白金製の耐熱容器が好 ましぐ白金製の容器が更に好ましい。また、モリブデン、タングステン等の金属容器 ゃ窒化ホウ素等の容器も耐熱容器として好適に使用することができる。なお、アルミ ナ製容器は、原料混合物と若干反応する可能性があるが、低コストで入手が容易な 点で好ましい。
[0142] 加熱処理時の温度条件は、 目的とする蛍光体が得られる限り任意であるが、加熱 処理時の最高到達温度が、通常 1200°C以上、好ましくは 1350°C以上、より好ましく は 1400°C以上、また、通常 1800°C以下、好ましくは 1700°C以下、より好ましくは 16 50°C以下である。この温度が低すぎると原料混合物間の固相反応が不十分となって 目的の蛍光体が合成できない可能性がある。また、この温度が高すぎると高価な焼 成炉が必要となり、また、無用な焼成エネルギーを消費する可能性がある。また、 1回 の加熱処理時においては、複数の温度条件を設定することもできる。通常、最高到 達温度で一定時間保持することが好ましいが、最高到達温度以下の温度で一定時 間保持する工程を有して!/、てもよレ、。
[0143] 加熱処理時の昇温速度は、 目的とする蛍光体が得られる限り任意である力 S、通常 0 . 5°C/分以上、好ましくは 1°C/分以上、また、通常 20°C/分以下、好ましくは 10 °C /分以下、より好ましくは 8°C/分以下である。昇温速度が遅すぎるとフラックスの 揮発量が増加し過剰のフラックスが必要となって、さらに過剰なエネルギーが必要と なる可能性があり、早すぎると結晶中に欠陥を生ずる可能性がある。
[0144] 加熱処理時の雰囲気は、 目的とする蛍光体が得られる限り任意である力 通常、大 気中、または、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単 独或いは混合雰囲気が採用される。ただし、例えば Ceのように複数の価数をとること ができる元素であって、還元側の価数のイオンが発光する発光中心元素を安定に母 体結晶中に付活して蛍光体の発光特性を高くするためには、還元雰囲気が好まし!/ヽ 。中でも、水素含有窒素雰囲気は、得られる蛍光体の母体結晶の体色が澄んだ緑色 となり、発光特性が顕著に良好となるため更に好ましい。また、一旦、酸化雰囲気や 中性雰囲気で加熱処理を施した後に、還元雰囲気で再加熱処理を施すことも、発光 中心イオンを母体結晶中に安定化させるためには有用である。例えば、蛍光体として 式 [1]で表わされるものを製造する場合、 M1として Ceを用いるのであれば、還元雰 囲気での加熱処理を行なうことで、発光する状態である Ceを 3価のイオン Ce3+として 母体結晶中に安定化させることができる。さらに、還元雰囲気での加熱を複数回行な うことも特性向上には有用である。
[0145] 加熱処理を施す時間に制限は無ぐ 目的とする蛍光体が得られる限り任意であるが 、例えば、最高到達温度での保持時間を、通常 10分以上、好ましくは 60分以上、よ り好ましくは 120分以上、また、通常 24時間以下、好ましくは 15時間以下、より好まし くは 12時間以下、特に好ましくは 6時間以下とすることが好ましい。処理時間が短す ぎると蛍光体の粒子が成長せず粒径が小さくなる可能性があり、長すぎると巨大粒子 が発生する可能性がある。
[0146] 加熱処理を行なう際の圧力条件に制限は無ぐ 目的とする蛍光体が得られる限り任 意であるが、大気圧(0. IMPa)前後が好ましぐ好ましくは 0. 09MPa以上 0. 11M Pa以下である。
[0147] 加熱処理は、 1回で連続的に行なってもよぐ 2回以上に分けて断続的に行なって もよい。加熱処理を 2回以上に分けて行う場合の温度、雰囲気、圧力、時間等の焼成 条件は、基本的に上述に記載の条件と同様である力 1回目の焼成と 2回目以降の 焼成とで、焼成条件を変更してもよい。また、加熱処理を 2回以上に分けて行なう場 合には、 2回目の加熱の前にルツボから内容物を取り出し、解砕した後、再度ルツボ に充填して加熱することが、均一な製品の製造に有効であり、フラックスの種類によつ てはこの際に後述のフラックスを追加することが好ましい。
[0148] [6 -4.フラックス]
本発明の製造方法においては、加熱処理に際して、結晶成長を促進するため、反 応系に 2種以上のフラックスを共存させることが好ましい。フラックスとは、通常、結晶 成長を促進する添加物のことをいうが、結晶成長を抑制する添加物をフラックスとして 用いることもできる。また、フラックスは、 2種以上を任意の比率で組み合わせて用い ること力 Sできる。結晶成長を促進するフラックスを単独で使用すると特定の結晶方位 にのみ結晶成長が進行し、蛍光体の粒子形状が針状や平板状などの高アスペクト比 の形状となる場合があるが、例えば、結晶成長を促進する添加物と、長手方向への 結晶成長を抑制する添加物とを適切に組み合わせてフラックスとして用いることにより 、アスペクト比を低く抑制することができるので、好ましい。
[0149] 前記のフラックスとしては、通常は主に融液として作用するものを用いる。これにより 、フラックスが形成する融液と蛍光体の原料化合物とが作用し、蛍光体の結晶成長を 促進させること力 Sでさる。
したがって、フラックスとしては、前記の加熱処理時の温度よりも融点が低ぐ且つ、 前記の加熱処理時の温度よりも沸点及び昇華点が高レ、ものを用いることが好まし!/、。 即ち、フラックスの融点以上、沸点及び昇華点以下の温度範囲で、前記の加熱処理 が行なわれるようなフラックスを用いることが好ましい。これにより、加熱処理において フラックスは液状の融液となるため、フラックスが蛍光体の原料化合物に良好に作用 でさるようになる。
前記の観点から、フラックスの融点は 1200°C以下であることが好ましい。また、フラ ッタスの沸点及び昇華点は、 1500°C以上であることが好ましレ、。
[0150] 中でも、加熱処理時の温度がフラックスの沸点に近いほど融液の粘度が低下する などの理由により、フラックスとしての活性は高くなる力 同時にフラックスの揮発速度 も上昇する。一方、加熱処理時の温度がフラックスの融点に近いほど融液の粘度が 増大するなどの理由により、フラックスとしての活性は低くなる力 同時にフラックス成 分の揮発速度が低下する。よって、これらの観点から、加熱処理時の温度を高めに する場合は沸点や融点の高いフラックスを使うことが好ましぐ加熱処理時の温度を 低めにするときは沸点や融点の低いフラックスを使うことが好ましい。具体的な範囲を 挙げると、フラックスとしては加熱処理時の温度よりも 100°C以上 300°C以下だけ高 い沸点を有するものと用いることが好ましい。換言すれば、前記の加熱処理ではフラ ッタスの沸点よりも 100°C以上 300°C以下だけ低い温度に加熱することが好ましい。
[0151] また、フラックスとしては、 i)アルカリ金属、 ii)アルカリ土類金属、 iii)ハロゲン化物ィ オン、及び iv)リン酸根を含有させることが好ましい。アルカリ金属及びノヽロゲン化物ィ オンは結晶成長を促進させる効果及び結晶性を向上させる効果を有するためであり 、アルカリ土類金属はそのハロゲン化物がフラックスの融液の主成分として有用であ り、リン酸根は得られる蛍光体の分散性を向上させる効果及び等方的な結晶成長を 促進する効果(アスペクト比を小さくする効果)を有するためである。なお、ここで「結 晶成長を促進する」とは、結晶欠陥が少なぐ結晶性の高い綺麗な結晶となることを 意味する。また、フラックスは 2種以上用いることが好ましいのである力 S、これは、前記 の i)アルカリ金属、 ii)アルカリ土類金属、 iii)ハロゲン化物イオン、及び iv)リン酸根を V、ずれもフラックスとして用いる観点からも、好ましレ、と!/、える。
[0152] 好適なフラックスの例を挙げると、アルカリ金属又はアルカリ土類金属のハロゲン化 物が挙げられる。中でも蛍光体の構成元素を含むハロゲン化物が好ましぐ例えば、 Caを主成分とする蛍光体には CaClが好ましい。また、上述したように、前記のハロ
2
ゲン化物としては、加熱処理時の温度が当該ハロゲン化物の融点と沸点との間に入 るようなハロゲン化合物を用いることが好ましい。例えば、 CaClの融点と沸点は 772
2
°Cと 1600°Cであり、 CaSc O : Ceの加熱処理時の好ましい温度は、それらの中間の
2 4
温度となっている。
また、ハロゲン化物としては、特にフッ化物、塩化物が好ましい。
[0153] また、フラックスのうちリン酸根を含む化合物の好適な例を挙げると、アルカリ金属 又はアルカリ土類金属のリン酸塩化合物が挙げられる。また、上述したように、前記の リン酸塩化合物としては、当該リン酸塩化合物の融点が加熱処理時の温度よりも低い リン酸塩化合物を用いることが好ましい。例えば、好ましいリン酸塩化合物の一例とし ては、 Li POが挙げられるが、この融点は 837°Cである。
3 4
フラックスとして好適なリン酸根を含む化合物の例を更に挙げると、ナトリウム又は力 リウムの各種リン酸塩 (リン酸塩、リン酸水素塩、メタリン酸塩、ピロリン酸塩)が挙げら れ、その中でもリン酸塩、リン酸水素塩が好ましい。具体例を挙げると、 Na HPO 、 N
2 4 aH PO 、 K HPO 、 KH PO等がさらに好ましい。また、アルカリ土類金属のリン酸
2 4 2 4 2 4
塩及びリン酸水素塩も好ましい例であり、なかでも Ca (PO ) 、 Sr (PO ) 、 CaHP
3 4 2 3 4 2
O 、 SrHPOが好ましい。
4 4
[0154] また、例えば、 Li、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br又は Iを含有する化合物などをフ ラックスとして用いることが好ましい。よって、上述した観点から好ましいフラックスの例 を挙げると、アルカリ土類金属のハロゲン化物、アルカリ金属のリン酸塩、アルカリ金 属のハロゲン化物、アルカリ金属の硫酸塩などが挙げられ、その具体例としては CaC 1、 CaF、: Li PO 、 KH PO 、 KC1、 Li SO (ただし、水和物であってもよい。 )、 Na
2 2 3 4 2 4 2 4
H PO 、 Na HPO、 Na PO 、 Rb PO 、 Cs PO 、 KF、 KBr、 KI、 RbF、 RbCl、 R
2 4 2 4 3 4 3 4 3 4
bBr、 Rbl、 CsF、 CsCl、 CsBr、 Cslなどが挙げられる。このうち、 CaClを用いれば、
2
長手方向への結晶の成長を促進させることができる。また、 Li POを用いれば、得ら
3 4
れる蛍光体の結晶性を向上させられると共に、樹脂等への封止材料に対する蛍光体 の分散性を向上させることができ、さらに、長手方向への結晶の成長を抑制すること 力 Sできる。また、 KH PO 、 KC1、及び Li SOは、結晶成長全体を促進することがで き、結晶性を高めることが可能であり、さらに、得られる蛍光体の格子欠陥を少なくす ること力 Sできる。格子欠陥を少なくできれば、結晶格子での転移や空間の形成などを 抑制できる。したがって、例示したフラックスの中でも、 CaCl、: Li PO 、 KH PO 、 K
2 3 4 2 4
C1、及び Li SO力もなる群より選択される 2種以上を用いることが好ましい。
2 4
[0155] また、フラックスは 2種以上を用いることが好ましいのである力 S、この場合、取り扱い 性の向上を考慮して、結晶成長を促進するフラックスと長手方向への結晶成長を抑 制する(等方的な結晶成長を促進する)フラックスとを組み合わせることが好ましレ、。 中でも、アルカリ金属又はアルカリ土類金属のハロゲン化物がフラックスの主成分と なるようにすることが好ましい。
[0156] さらに、フラックスは 3種類以上を組み合わせて用いることが好ましい。例えば、 Li P
3
Oと CaClと KC1とを組み合わせて用いれば、粒径制御が可能で、分散性が良好で
4 2
、発光特性が高い好ましい蛍光体が得られる。なお、ここで KC1の代わりに KH PO
2 4 などの別のアルカリ金属リン酸塩を使用したり、 Li SOなどのアルカリ金属硫酸塩を
2 4
用いたりすることもできる。また、この組み合わせにさらに、後述するように炭酸力リウ ム、酸化亜鉛を加えると、得られる蛍光体の重量メジアン径が大きくなり、輝度も向上 するため、より好ましい。
[0157] また、フラックスの選択に際しては、アルカリ金属が 2種類以上含まれるようにフラッ タス化合物を選ぶことが好ましい。フラックスを 2種類以上存在させることで、フラックス の融点が下がるなどの理由により、フラックスとしての効果が増大するためである。中 でもアルカリ金属の組み合わせとしては、 Liと Kとを組み合わせることが特に好まし!/、
[0158] 上述のフラックスの代わりに、又は、好ましくは上述のフラックスに加えて、加熱によ り融点または昇華点が 1200°C以下の金属を生成する化合物、及び/又は、加熱に よりアルカリ金属の酸化物を生成する化合物をフラックスとして用いると、焼成時にフ ラックスが融解又は気化して蛍光体の原料化合物の物質移動を促進することにより、 粒子成長を促進し、重量メジアン径が大きくなり、輝度が向上する傾向にあり、さらに 好ましい。
[0159] 前記加熱により融点または昇華点が 1200°C以下の金属を生成する化合物とは、 例えば前述の加熱処理の際の加熱により、好ましくは還元雰囲気下において、融点 または昇華点が 1200°C以下の金属に変化する化合物のことをいう。なお、加熱によ り融点または昇華点が 1200°C以下の金属を生成する化合物の一部または全部とし て、融点または昇華点が 1200°C以下の金属自体を用いてもよい。
[0160] 融点または昇華点が 1200°C以下の金属の具体例としては、 Zn、 Ga、 Ge、 In、 Sn 、 Ag、 Au、 Pb、 Cd、 Bi、 Ti等が挙げられる。中でも、毒性がないことから、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Auが好ましぐ特には Zn、 Ga、 Ge、 In及び Snが好ましい。
[0161] また、加熱により融点又は昇華点が 1200°C以下の金属に変化する化合物の具体 例としては、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 Cd、 Bi、 Ti等の、各金属の酸化物 、水酸化物、硝酸塩、酢酸塩、硫酸塩等が挙げられる。その中でも、分解によって発 生する成分の種類や量、あるいは、化合物の安定性、潮解性、吸湿性、高純度物質 の入手容易性などを考慮すると、酸化物を用いることが好ましい。一例として、酸化 物について例示すると、 ZnO、 Ga 0、 Ga O 、 GeO 、 In O、 SnO、 Ag 0、 PbO
2 2 3 2 2 3 2 2
、 CdO、 Bi O、 TI Oなどが挙げられる。これらの酸化物の中でも、毒性の面などを
2 3 2 3
考慮すると、 ZnO、 Ga O 、 GeO 、 In O 、 SnOを用いることが好ましい。中でも、重
2 3 2 2 3 2
量メジアン径増大効果が大きいことから、 Zn、または、 ZnO、 Zn (OH )、 Zn (NO )
2 3 2
、 ZnSO等の亜鉛の化合物を用いることがより好ましぐさらには ZnOを用いること力 S
4
特に好ましい。 Znが好ましい理由としては、 Zn金属は、融点だけでなぐ沸点も 120 0°C以下であり(亜鉛の沸点は 907°Cである。)、気相状態でフラックス作用を発揮す るためにその重量メジアン径増大効果が顕著にあらわれるからである。
なお、加熱により融点又は昇華点が 1200°C以下の金属に変化する化合物は、 1種 のみを用いても良く、 2種以上を任意の組み合わせで併用してもょレ、。
[0162] 一方、前記加熱によりアルカリ金属の酸化物を生成する化合物とは、例えば前述の 加熱処理中の加熱により、アルカリ金属の酸化物を生成する化合物のことをいう。な お、加熱によりアルカリ金属の酸化物を生成する化合物の一部または全部としてアル カリ金属の酸化物自体を用いてもよ!/、。
[0163] 加熱によりアルカリ金属の酸化物を生成する化合物としては、例えば、アルカリ金属 の炭酸塩、硝酸塩、酢酸塩、シユウ酸塩などが挙げられ、さらに、アルカリ金属の酸化 物そのものを用いることも出来る。その中でも、取り扱いの容易さや高純度材料の入 手の容易さから、アルカリ金属の炭酸塩を用いることが好ましい。アルカリ金属炭酸 塩の具体例としては、 K CO 、 Li CO 、 Na CO、 Rb CO 、 Cs COなどが挙げら
2 3 2 3 2 3 2 3 2 3
れ、中でも K CO 、 Rb CO 、 Cs COが好ましぐ K COが特に好ましい。
2 3 2 3 2 3 2 3
なお、加熱によりアルカリ金属の酸化物を生成する化合物としては、 1種のみを用い ても良く、 2種以上を任意の組み合わせで併用してもよい。
[0164] さらに、加熱により融点または昇華点が 1200°C以下の金属を生成する化合物、及 び、加熱によりアルカリ金属の酸化物を生成する化合物は、いずれか一方のみを用 いてもよぐ両方を併用してもよい。したがって、本発明の蛍光体の重量メジアン径を 大きくする観点からは、フラックスとして、 ZnO、 Ga O、 GeO、 In O 、 SnO、及び
2 3 2 2 3 2
K CO力もなる群より選ばれる 1種以上を用いることがより好ましぐ少なくとも ZnO及
2 3
び/又は K COを用いることが特に好ましい。
2 3
[0165] フラックス成分元素が合成された蛍光体中に残存する程度はフラックスが含む元素 の種類や後述する洗浄の程度によって異なる。フラックス成分元素が Li、 K、 P、 Cl、 Zn、 Ga、 Ge、 In又は Snである場合における、蛍光体中の前記フラックス成分元素の 濃度は、上述したとおりである。
[0166] 加熱処理の反応系にフラックスを共存させるため、当該反応系にフラックスを混合 する時機は加熱処理を 1回のみ行なう場合は、加熱処理の前が好ましい。また、加熱 処理を 2回以上に分けて断続的に行なう場合、予め原料化合物と混合しておいても 良ぐ 2回目以降の加熱処理の前に混合するようにしても良い。このとき、フラックスを 複数回に分けて混合しても良ぐ例えば、一部のフラックスは予め原料化合物と混合 しておき、残りのフラックスを 2回目以降の加熱処理の前に混合しても良い。
なお、本発明の蛍光体が得られる限り、加熱処理の反応系には原料化合物及びフ ラックス以外の成分を含有させてもよ!/、。
[0167] [6 - 5.その他の処理]
本発明の製造方法においては、任意の時機において、上述した以外の処理を施し てもよい。
例えば、上述の加熱処理後は、必要に応じて、洗浄、乾燥、粉砕、分級処理等がな される。
粉砕処理には、原料の混合工程に使用できるとして列挙した粉砕機が使用できる。 粉砕を湿式で行なう場合は、脱イオン水等の水、メタノール、エタノール等の有機溶 剤、アンモニア水等のアルカリ性水溶液、塩酸、硝酸、硫酸等の無機酸の水溶液、 酢酸などの有機酸の水溶液等で行なうことができる。分級処理は、篩分や水篩を行 なう、或いは、各種の気流分級機や振動篩等各種の分級機を用いることにより行なう こと力 Sできる。中でも、ナイロンメッシュによる乾式分級を用いると、重量メジアン径 20 m程度の分散性の良い蛍光体を得ることができる。
[0168] 洗浄処理は、例えば、脱イオン水等の水、エタノール等の有機溶剤、アンモニア水 等のアルカリ性水溶液などで行なうことができる。また、使用されたフラックス等の蛍 光体表面に付着した不純物相を除去し発光特性を改善するなどの目的のために、 例えば、塩酸、硝酸、硫酸などの無機酸;又は、酢酸などの有機酸の水溶液を使用 することもできる。この場合、酸性水溶液中で洗浄処理した後に、水で更に洗浄する ことが好ましい。
[0169] 洗浄の程度としては、洗浄後の蛍光体を重量比で 10倍の水に分散後、 1時間静置 して得られる上澄み液の pHが中性(pH5〜9程度)であることが好ましい。塩基性、 又は酸性に偏っていると、後述の液体媒体等と混合するときに液体媒体等に悪影響 を与えてしまう可能性があるためである。
また、上記洗浄の程度は、洗浄後の蛍光体を重量比で 10倍の水に分散後、 1時間 静置して得られる上澄み液の電気電導度でも表わすことができる。前記電気伝導度 は、発光特性の観点からは低いほど好ましいが、生産性も考慮すると通常 10mS/ m以下、好ましくは 5mS/m以下、より好ましくは 4mS/m以下となるまで洗浄処理 を繰り返し行なうことが好ましレ、。
[0170] 電気伝導度の測定方法としては、当該蛍光体の 10重量倍の水中で所定時間、例 えば 10分間撹拌して分散させた後、 1時間静置することにより、水よりも比重の重い 蛍光体粒子を自然沈降させ、このときの上澄み液の電気伝導度を東亜ディケーケー 社製電気伝導度計「EC METER CM— 30G」等を用いて測定すればよい。洗浄 処理、及び電気伝導度の測定に用いる水としては、特に制限はないが、脱塩水又は 蒸留水が好ましい。中でも特に電気伝導度が低いものが好ましぐ通常 0. 0064mS /m以上、また、通常 lmS/m以下、好ましくは 0. 5mS/m以下のものを用いる。 なお、電気伝導度の測定は、通常、室温(25°C程度)にて行なう。
[0171] 分級処理は、例えば、水篩ゃ水簸処理を行なう、あるいは、各種の気流分級機や 振動篩など各種の分級機を用いることにより行なうことができる。中でも、ナイロンメッ シュによる乾式分級を用いると、重量メジアン径 20 m程度の分散性の良い蛍光体 を得ること力 Sでさる。
[0172] また、洗浄処理後に乾燥処理を行なうことが好ましい。乾燥処理の方法に特に制限 はないが、必要に応じて、蛍光体の性質に合わせて適宜乾燥処理方法を選択するこ とが好ましい。例えば、通常の加熱乾燥や、真空乾燥、減圧乾燥、凍結乾燥等の低 温乾燥、スプレードライ等を用いることができる。
[0173] <表面処理〉
なお、上述の手順により得られた本発明の蛍光体を用いて、後述の方法で発光装 置を製造する際には、耐湿性等の耐候性を一層向上させるために、又は、後述する 発光装置の蛍光体含有部における樹脂に対する分散性を向上させるために、必要 に応じて、蛍光体の表面を異なる物質で被覆する等の表面処理を行なってもよレ、。
[0174] 蛍光体の表面に存在させることのできる物質(以下適宜「表面処理物質」と称する。
)の例としては、例えば、有機化合物、無機化合物、ガラス材料等を挙げることができ
[0175] 有機化合物の例としては、アクリル樹脂、ポリカーボネート、ポリアミド、ポリエチレン 等の熱溶融性ポリマー、ラテックス、ポリオルガノシロキサン等が挙げられる。
[0176] 無機化合物の例としては、酸化マグネシウム、酸化アルミニウム、酸化珪素、酸化チ タン、酸化ジルコニウム、酸化スズ、酸化ゲルマニウム、酸化タンタル、酸化ニオブ、 酸化バナジウム、酸化硼素、酸化アンチモン、酸化亜鉛、酸化イットリウム、酸化ラン タン、酸化ビスマス等の金属酸化物、窒化珪素、窒化アルミニウム等の金属窒化物、 燐酸カルシウム、燐酸バリウム、燐酸ストロンチウム等のオルト燐酸塩、ポリリン酸塩等 力 S挙げられる。なお、燐酸リチウム、燐酸ナトリウム、及び燐酸カリウムからなる群から 選ばれる少なくとも 1種と、硝酸バリウム、硝酸カルシウム、硝酸ストロンチウム、塩酸 ノ リウム、塩酸カルシウム、及び塩酸ストロンチウムからなる群から選ばれる少なくとも 1種とを組み合わせて用いることもできる。中でも、燐酸ナトリウムと硝酸カルシウムと を組み合わせて用いることが好ましい。また、蛍光体表面にバリウム、カルシウム、スト ロンチウムが存在する場合には燐酸ナトリウム等の燐酸塩のみを用いても表面処理 を fiなうことができる。
[0177] ガラス材料の例としてはホウ珪酸塩、ホスホ珪酸塩、アルカリ珪酸塩等が挙げられる
[0178] これらの表面処理物質は、何れか一種のみを単独で用いてもよぐ二種以上を任 意の組み合わせ及び比率で併用してもよ!/、。
[0179] 表面処理を施した本発明の蛍光体は、これらの表面処理物質を有することになるが
、その表面処理物質の存在態様としては、例えば下記のものが挙げられる。
(i)前記表面処理物質が連続膜を構成して、本発明の蛍光体の表面を被覆する態 様。
(ii)前記表面処理物質が多数の微粒子となって、本発明の蛍光体の表面に付着す ることにより、本発明の蛍光体の表面を被覆する態様。
[0180] 本発明の蛍光体の表面への表面処理物質の付着量ないし被覆量は、本発明の蛍 光体の重量に対して、通常 0. 1重量%以上、好ましくは 1重量%以上、更に好ましく は 5重量%以上、また、通常 50重量%以下、好ましくは 30重量%以下、更に好ましく は 15重量%以下であることが望ましい。蛍光体に対する表面処理物質量の量が多 過ぎると、蛍光体の発光特性が損なわれる場合があり、少な過ぎると表面被覆が不完 全となって、耐湿性、分散性の改善が見られない場合がある。
[0181] また、表面処理により形成される表面処理物質の膜厚(層厚)は、通常 10nm以上、 好ましくは 50應以上、また、通常 2000腹以下、好ましくは lOOOnm以下であること が望ましい。この膜厚が厚過ぎると蛍光体の発光特性が損なわれる場合があり、薄過 ぎると表面被覆が不完全となって、耐湿性、分散性の改善が見られない場合がある。
[0182] 表面処理の方法には特に限定は無いが、例えば、以下に説明するような、金属酸 化物(酸化珪素)による被覆処理法を挙げること力 Sできる。
[0183] 本発明の蛍光体をエタノール等のアルコール中に混合して、攪拌し、更にアンモニ ァ水等のアルカリ水溶液を混合して、攪拌する。次に、加水分解可能なアルキル珪 酸エステル、例えばテトラエチルオルト珪酸を混合して、攪拌する。得られた溶液を 3 分間〜 60分間静置した後、スポイト等により蛍光体表面に付着しなかった酸化珪素 粒子を含む上澄みを除去する。次いで、アルコール混合、攪拌、静置、上澄み除去 を数回繰り返した後、 120°C〜150°Cで 10分〜 5時間、例えば 2時間の減圧乾燥ェ 程を経て、表面処理蛍光体を得る。
[0184] 蛍光体の表面処理方法としては、この他、例えば球形の酸化珪素微粉を蛍光体に 付着させる方法(特開平 2— 209989号公報、特開平 2— 233794号公報)、蛍光体 に珪素系化合物の皮膜を付着させる方法 (特開平 3— 231987号公報)、蛍光体微 粒子の表面をポリマー微粒子で被覆する方法(特開平 6— 314593号公報)、蛍光 体を有機材料、無機材料及びガラス材料等でコーティングする方法(特開 2002— 2 23008号公報)、蛍光体の表面を化学気相反応法によって被覆する方法(特開 200 5— 82788号公報)、金属化合物の粒子を付着させる方法(特開 2006— 28458号 公報)等の公知の方法を用いることができる。
[0185] また、加熱処理後の後処理については、公知の蛍光体、例えば、ブラウン管、プラ ズマディスプレイパネル、蛍光ランプ、蛍光表示管、 X線増感紙等に用いられる蛍光 体に関して一般的に知られている技術を利用することができ、 目的、用途等に応じて 適宜選択することができる。
[0186] 上述した本発明の製造方法によれば、本発明の蛍光体 A〜Eをいずれも製造する ことが可能である力 S、中でも、各蛍光体を製造する場合、以下のような傾向がある。 例えば、本発明の蛍光体 Aを製造する場合には、フラックスを用いるようにすること が特に好ましい。蛍光体にフラックス成分元素を確実に含有させるようにするためで ある。
また、例えば本発明の蛍光体 Bを製造する場合は、 M1源化合物の量を他の蛍光 体よりも狭レ、所定の範囲に収まるように調整することが好ましレ、。蛍光体 Bにお!/、ては M1元素の割合が他の蛍光体よりも狭い範囲に制限されているからである。
さらに、例えば本発明の蛍光体 Cや蛍光体 Eを製造する場合は、アルカリ金属、ァ ルカリ土類金属、ハロゲン化物イオン、及びリン酸根を含有するフラックスを用いるこ とが好ましい。これらのフラックスを用いると、得られる蛍光体の粒径が丸くなる傾向、 即ち、アスペクト比が小さくなる傾向があるからである。
また、例えば本発明の蛍光体 Dを製造する場合は、フラックスとして加熱により融点 又は昇華点が 1200°C以下の金属に変化する化合物を用いることが好ましい。これら のフラックスは得られる蛍光体の粒径を大きくする傾向があるからである。
[0187] [7.蛍光体の用途]
本発明の蛍光体は、蛍光体を使用する任意の用途に用いることができる。また、本 発明の蛍光体は、本発明の蛍光体を単独で使用することも可能である力 本発明の 蛍光体を 2種以上併用したり、本発明の蛍光体とその他の蛍光体とを併用したりした 、任意の組み合わせの蛍光体混合物として用いることも可能である。
また、本発明の蛍光体は、特に、青色光又は紫外光で励起可能であるという特性を 生かして、各種の発光装置(後述する「本発明の発光装置」 )に好適に用いることが できる。本発明の蛍光体が通常は緑色発光蛍光体であることから、例えば、本発明 の蛍光体に、青色光又は紫外光を発する励起光源を組み合わせれば、青緑色、緑 色または黄緑色の発光装置を製造することができる。また、本発明の蛍光体に、青色 光を発する励起光源及び赤色光を発光する蛍光体を組み合わせれば、白色発光装 置を製造すること力できる。また、本発明の蛍光体と、紫外光を発する励起光源、青 色光を発光する蛍光体、及び赤色光を発光する蛍光体を組み合わせても、白色発 光装置を製造することができる。
[0188] 発光装置の発光色としては白色に制限されず、蛍光体の組み合わせや含有量を 適宜選択することにより、電球色(暖かみのある白色)やパステルカラー等、任意の色 に発光する発光装置を製造することができる。こうして得られた発光装置を、画像表 示装置の発光部 (特に液晶用バックライトなど)や照明装置として使用することができ
[0189] [8.蛍光体含有組成物]
本発明の蛍光体は、液体媒体と混合して用いることもできる。特に、本発明の蛍光 体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態 で用いることが好ましい。本発明の蛍光体を液体媒体中に分散させたものを、適宜「 本発明の蛍光体含有組成物」と呼ぶものとする。
[0190] [8— 1 ·蛍光体]
本発明の蛍光体含有組成物に含有させる本発明の蛍光体の種類に制限は無ぐ 上述したものから任意に選択することができる。また、本発明の蛍光体含有組成物に 含有させる本発明の蛍光体は、 1種のみであってもよぐ 2種以上を任意の組み合わ せ及び比率で併用してもよい。更に、本発明の蛍光体含有組成物には、本発明の効 果を著しく損なわない限り、本発明の蛍光体以外の蛍光体を含有させてもよい。
[0191] [8 - 2.液体媒体]
本発明の蛍光体含有組成物に使用される液体媒体としては、該蛍光体の性能を目 的の範囲で損なわない限りにおいて特に限定されない。例えば、所望の使用条件下 において液状の性質を示し、本発明の蛍光体を好適に分散させるとともに、好ましく なレ、反応を生じな!/、ものであれば、任意の無機系材料及び/又は有機系材料が使 用できる。
[0192] 無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは 金属アルコキシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶液、 又はこれらを組み合わせた無機系材料 (例えばシロキサン結合を有する無機系材料 )等を挙げること力 Sでさる。
[0193] 有機系材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が 挙げられる。具体例を挙げると、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリス チレン、スチレン—アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂 ;ポリエステル樹脂;フエノキシ樹脂;ブチラール樹脂;ポリビュルアルコール;ェチル セノレロース、セノレロースアセテート、セノレロースアセテートブチレート等のセノレロース 系樹脂;エポキシ樹脂;フエノール樹脂;シリコーン樹脂等が挙げられる。
[0194] これらの中で特に照明など大出力の発光装置に蛍光体を用いる場合には、耐熱性 や耐光性等を目的として珪素含有化合物を使用することが好ましレ、。
[0195] 珪素含有化合物とは、分子中に珪素原子を有する化合物をいい、例えば、ポリオ ルガノシロキサン等の有機材料 (シリコーン系材料)、酸化ケィ素、窒化ケィ素、酸窒 化ケィ素等の無機材料、及びホウケィ酸塩、ホスホケィ酸塩、アルカリケィ酸塩等の ガラス材料を挙げること力 Sできる。中でも、ハンドリングの容易さ等の点から、シリコー ン系材料が好ましい。
[0196] 上記シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい 、例えば下記式 (i)で表される化合物及び/又はそれらの混合物が挙げられる。
(R'R'R'SiO ) (R4R5SiO ) (R6SiO ) (SiO ) 式(i)
1/2 M 2/2 D 3/2 T 4/2 Q
[0197] 上記式 (i)において、 R1から R6は同じであっても異なってもよぐ有機官能基、水酸 基、水素原子からなる群から選択される。
また、上記式(i)において、 M、 0、丁及び0は、各々 0以上 1未満の数であり、且つ 、 M + D + T + Q = lを満足する数である。
[0198] 該シリコーン系材料は、半導体発光素子の封止に用いる場合、液状のシリコーン系 材料を用いて封止した後、熱や光によって硬化させて用いることができる。
[0199] シリコーン系材料を硬化のメカニズムにより分類すると、通常、付加重合硬化タイプ 、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン 系材料を挙げること力 Sできる。これらの中では、付加重合硬化タイプ (付加型シリコー ン系材料)、縮合硬化タイプ (縮合型シリコーン系材料)、紫外線硬化タイプが好適で ある。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明す
[0200] 付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架 橋されたものをいう。代表的なものとしては、例えばビュルシランとヒドロシランとを Pt 触媒などの付加型触媒の存在下反応させて得られる Si— C C Si結合を架橋点 に有する化合物等を挙げることができる。これらは市販のものを使用することができ、 例えば付加重合硬化タイプの具体的商品名としては信越化学工業社製「LPS— 14 00」「: LPS— 2410」「: LPS— 3400」等力《挙げられる。
[0201] 一方、縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分 解-重縮合で得られる Si— O— Si結合を架橋点に有する化合物を挙げることができる
具体的には、下記一般式 (ii)及び/又は (iii)で表わされる化合物、及び/又はそ のオリゴマーを加水分解 ·重縮合して得られる重縮合物が挙げられる。 [0202] Mm+X Y1 (ii)
n m— n
(式(ii)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少な くとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有機基を表わ し、 mは、 Mの価数を表わす 1以上の整数を表わし、 nは、 X基の数を表わす 1以上の 整数を表わす。但し、 m≥nである。 )
[0203] (Ms+X Y1 ) Y2 (iii)
s - 1
(式(iii)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少な くとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有機基を表わ し、 Y2は、 u価の有機基を表わし、 sは、 Mの価数を表わす 1以上の整数を表わし、 t は、 1以上、 s— 1以下の整数を表わし、 uは、 2以上の整数を表わす。 )
[0204] また、縮合型シリコーン系材料には、硬化触媒を含有させてもよい。この硬化触媒と しては、例えば、金属キレート化合物などを好適なものとして用いることができる。金 属キレート化合物は、 Ti、 Ta、 Zrの何れか 1以上を含むものが好ましぐ Zrを含むも のが更に好ましい。なお、硬化触媒は、 1種のみを用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもよ!/、。
[0205] このような縮合型シリコーン系材料としては、例えば特願 2006— 47274号〜 4727 7号明細書(例免ば特開 2007— 112973号〜 112975号公報、特開 2007— 1945 9号公報)及び特願 2006— 176468号明細書に記載の半導体発光デバイス用部材 が好適である。
[0206] 縮合型シリコーン系材料の中で、特に好ましい材料について、以下に説明する。
シリコーン系材料は、一般に半導体発光素子や素子を配置する基板及びパッケ一 ジ等との接着性が弱いことが課題とされるが、密着性が高いシリコーン系材料として、 特に、以下の特徴〔1〕〜〔3〕のうち 1つ以上を有する縮合型シリコーン系材料が好ま しい。
[0207] 〔1〕ケィ素含有率が 20重量%以上である。
〔2〕後に詳述する方法によって測定した固体 Si 核磁気共鳴 (NMR)スペクトルに ぉレ、て、下記(a)及び/又は (b)の Siに由来するピークを少なくとも 1つ有する。
(a)ピークトップの位置がテトラメトキシシランを基準としてケミカルシフト 40ppm 以上、 Oppm以下の領域にあり、ピークの半値幅が 0. 3ppm以上、 3. Oppm以下で あるピーク。
(b)ピークトップの位置がテトラメトキシシランを基準としてケミカルシフト一 80ppm 以上、 40ppm未満の領域にあり、ピークの半ィ直幅が 0. 3ppm以上 5. Oppm以下 であるピーク。
〔3〕シラノーノレ含有率が 0. 1重量%以上、 10重量%以下である。
[0208] 本発明においては、上記の特徴〔1〕〜〔3〕のうち、特徴〔1〕を有するシリコーン系材 料が好ましぐ上記の特徴〔1〕及び〔2〕を有するシリコーン系材料がより好ましぐ上 記の特徴〔1〕〜〔3〕を全て有するシリコーン系材料が特に好ましい。
以下、上記の特徴〔1〕〜〔3〕について説明する。
[0209] <特徴〔1〕(ケィ素含有率) >
従来のシリコーン系材料の基本骨格は炭素 炭素及び炭素 酸素結合を基本骨 格としたエポキシ樹脂等の有機樹脂である力 S、これに対し本発明に好適なシリコーン 系材料の基本骨格はガラス(ケィ酸塩ガラス)などと同じ無機質のシロキサン結合で ある。このシロキサン結合は、下記表 1の化学結合の比較表からも明らかなように、シ リコーン系材料として優れた以下の特徴がある。
[0210] (I)結合エネルギーが大きぐ熱分解 ·光分解し難いため、耐光性が良好である。
(II)電気的に若干分極している。
(III)鎖状構造の自由度は大きぐフレキシブル性に富む構造が可能であり、シロキサ ン鎖中心に自由回転可能である。
(IV)酸化度が大きぐこれ以上酸化されない。
(V)電気絶縁性に富む。
[0211] [表 1]
表 1 化学結合比較表
Figure imgf000055_0001
[0212] これらの特徴から、シロキサン結合が 3次元的に、し力、も高架橋度で結合した骨格 で形成されるシリコーン系のシリコーン系材料は、ガラス或いは岩石などの無機質に 近ぐ耐熱性 '耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換 基とするシリコーン系材料は、紫外領域に吸収を持たないため光分解が起こり難ぐ 耐光性に優れる。
[0213] 本発明に好適なシリコーン系材料のケィ素含有率は、通常 20重量%以上であるが 、中でも 25重量%以上が好ましぐ 30重量%以上がより好ましい。一方、上限として は、 SiOのみからなるガラスのケィ素含有率が 47重量%であるという理由から、通常
2
47重量%以下の範囲である。
[0214] なお、シリコーン系材料のケィ素含有率は、例えば以下の方法を用いて誘導結合 尚 皮プフズマ分光 unductively coupled plasma spectrometry:以 適且「 ICP」と略する。)分析を行ない、その結果に基づいて算出することができる。
[0215] {ケィ素含有率の測定 }
シリコーン系材料を白金るつぼ中にて大気中、 450°Cで 1時間、次いで 750°Cで 1 時間、 950°Cで 1. 5時間保持して焼成し、炭素成分を除去した後、得られた残渣少 量に 10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却し て脱塩水を加え、更に塩酸にて pHを中性程度に調整しつつケィ素として数 ppm程 度になるよう定容し、 ICP分析を行なう。
[0216] <特徴〔2〕(固体 Si— NMRスペクトル) >
本発明に好適なシリコーン系材料の固体 Si— NMRスペクトルを測定すると、有機 基の炭素原子が直接結合したケィ素原子に由来する前記(a)及び/又は (b)のピー ク領域に少なくとも 1本、好ましくは複数本のピークが観測される。
[0217] ケミカルシフト毎に整理すると、本発明に好適なシリコーン系材料において、 (a)に 記載のピークの半値幅は、分子運動の拘束が小さいために、全般に後述の (b)に記 載のピークの場合より小さぐ通常 3. Oppm以下、好ましくは 2. Oppm以下、また、通 常 0. 3ppm以上の範囲である。
一方、(b)に記載のピークの半値幅は、通常 5. Oppm以下、好ましくは 4. Oppm以 下、また、通常 0. 3ppm以上、好ましくは 0. 4ppm以上の範囲である。
[0218] 上記のケミカルシフト領域において観測されるピークの半値幅が大き過ぎると、分 子運動の拘束が大きくひずみの大きな状態となり、クラックが発生し易ぐ耐熱'耐候 耐久性に劣る部材となる場合がある。例えば、四官能シランを多用した場合や、乾燥 工程におレ、て急速な乾燥を行なレ、大きな内部応力を蓄えた状態などにお!/、て、半 値幅範囲が上記の範囲より大きくなる。
[0219] また、ピークの半値幅が小さ過ぎると、その環境にある Si原子はシロキサン架橋に 関わらないことになり、三官能シランが未架橋状態で残留する例など、シロキサン結 合主体で形成される物質より耐熱 ·耐候耐久性に劣る部材となる場合がある。
[0220] 但し、大量の有機成分中に少量の Si成分が含まれるシリコーン系材料においては 、—80ppm以上に上述の半値幅範囲のピークが認められても、良好な耐熱'耐光性 及び塗布性能は得られな!/、場合がある。
[0221] 本発明に好適なシリコーン系材料のケミカルシフトの値は、例えば以下の方法を用 いて固体 Si— NMR測定を行ない、その結果に基づいて算出することができる。また 、測定データの解析(半値幅ゃシラノール量解析)は、例えばガウス関数やローレン ッ関数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行なう
[0222] {固体 Si— NMRスペクトル測定及びシラノール含有率の算出 }
シリコーン系材料について固体 Si— NMRスペクトルを行なう場合、以下の条件で 固体 Si— NMRスペクトル測定及び波形分離解析を行なう。また、得られた波形デー タより、シリコーン系材料について、各々のピークの半値幅を求める。また、全ピーク 面積に対するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノール となっているケィ素原子の比率(%)を求め、別に分析したケィ素含有率と比較するこ とによりシラノーノレ含有率を求める。
[0223] {装置条件 }
装置: Chemagnetics社 Infinity CMX-400 核磁気共鳴分光装置
29Si共鳴周波数: 79. 436MHz
プローブ: 7. 5mm φ CP/MAS用プローブ
測定温度:室温
試料回転数: 4kHz 測定法:シングルパルス法
ェ^1デカップリング周波数: 50kHz
29Siフリップ角: 90°
29Si90°パルス幅: 5. O ^ s
繰り返し時間: 600s
積算回数: 128回
観測幅: 30kHz
ブロードユングファクター: 20Hz
基準試料:テトラメトキシシラン
[0224] シリコーン系材料については、 512ポイントを測定データとして取り込み、 8192ポィ ントにゼロフィリングしてフーリエ変換する。
[0225] {波形分離解析法 }
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或 いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメ一 タとして、非線形最小二乗法により最適化計算を行なう。
なお、ピークの同定は、 AIChE Journal, 44(5), p.1141, 1998年等を参考にする。
[0226] <特徴〔3〕(シラノール含有率)〉
本発明に好適なシリコーン系材料は、シラノール含有率力 通常 0. 1重量%以上、 好ましくは 0. 3重量%以上、また、通常 10重量%以下、好ましくは 8重量%以下、更 に好ましくは 5重量%以下の範囲である。シラノール含有率を低くすることにより、シラ ノール系材料は経時変化が少なぐ長期の性能安定性に優れ、吸湿'透湿性何れも 低い優れた性能を有する。但し、シラノールが全く含まれない部材は密着性に劣るた め、シラノール含有率に上記のごとく最適な範囲が存在する。
[0227] なお、シリコーン系材料のシラノール含有率は、例えば上記 <特徴〔2〕(固体 Si— NMRスペクトル)〉の {固体 Si— NMRスペクトル測定及びシラノール含有率の算出 }の項にお!/、て説明した方法を用いて固体 Si— NMRスペクトル測定を行ない、全ピ ーク面積に対するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノ ールとなっているケィ素原子の比率(%)を求め、別に分析したケィ素含有率と比較 することにより算出すること力 Sでさる。
[0228] また、本発明に好適なシリコーン系材料は、適当量のシラノールを含有しているた め、通常は、デバイス表面に存在する極性部分にシラノールが水素結合し、密着性 が発現する。極性部分としては、例えば、水酸基やメタロキサン結合の酸素等が挙げ られる。
[0229] また、本発明に好適なシリコーン系材料は、通常、適当な触媒の存在下で加熱する ことにより、デバイス表面の水酸基との間に脱水縮合による共有結合を形成し、更に 強固な密着性を発現することができる。
[0230] 一方、シラノールが多過ぎると、系内が増粘して塗布が困難になったり、活性が高く なり加熱により軽沸分が揮発する前に固化したりすることによって、発泡や内部応力 の増大が生じ、クラックなどを誘起する場合がある。
[0231] [8 - 3.液体媒体の含有率]
液体媒体の含有率は、本発明の効果を著しく損なわない限り任意であるが、本発 明の蛍光体含有組成物全体に対して、通常 50重量%以上、好ましくは 75重量%以 上であり、通常 99重量%以下、好ましくは 95重量%以下である。液体媒体の量が多 い場合には特段の問題は起こらないが、半導体発光装置とした場合に所望の色度 座標、演色指数、発光効率等を得るには、通常、上記のような配合比率で液体媒体 を用いることが望ましい。一方、液体媒体が少な過ぎると流動性がなく取り扱い難くな る可能十生がある。
[0232] 液体媒体は、本発明の蛍光体含有組成物において、主にバインダーとしての役割 を有する。液体媒体は、一種を単独で用いてもよいが、二種以上を任意の組み合わ せ及び比率で併用してもよい。例えば、耐熱性や耐光性等を目的として珪素含有化 合物を使用する場合は、当該珪素含有化合物の耐久性を損なわない程度に、ェポ キシ樹脂など他の熱硬化性樹脂を含有してもよい。この場合、他の熱硬化性樹脂の 含有量は、バインダーである液体媒体全量に対して通常 25重量%以下、好ましくは 10重量%以下とすることが望ましい。
[0233] [8 -4.その他の成分]
なお、本発明の蛍光体含有組成物には、本発明の効果を著しく損なわない限り、 蛍光体及び液体媒体以外に、その他の成分を含有させてもよい。また、その他の成 分は、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても よい。
[0234] [9.発光装置]
本発明の発光装置 (以下、適宜「発光装置」という)は、第 1の発光体 (励起光源)と 、当該第 1の発光体からの光の照射によって可視光を発する第 2の発光体とを有する 発光装置であって、該第 2の発光体として本発明の蛍光体を 1種以上、第 1の蛍光体 として含有するものである。
[0235] 本発明の蛍光体としては、通常は、励起光源からの光の照射下において、緑色領 域の蛍光を発する蛍光体 (以下「本発明の緑色蛍光体」と言う場合がある。)を使用 する。具体的には、発光装置を構成する場合、本発明の緑色蛍光体としては、 485η m〜555nmの波長範囲に発光ピークを有するものが好ましい。本発明の緑色蛍光 体は、何れか一種を単独で使用してもよぐ二種以上を任意の組み合わせ及び比率 で併用してもよい。
[0236] 本発明の緑色蛍光体を使用することにより、本発明の発光装置は、紫外から青色 領域までの発光を有する励起光源 (第 1の発光体)に対して高い発光効率を示し、更 には、照明装置、液晶ディスプレイ用光源等の白色発光装置に使用した場合に優れ た発光装置となる。
[0237] また、本発明の発光装置に用いられる本発明の緑色蛍光体の好ましい具体例とし ては、前述の本発明の蛍光体の項で例示した本発明の蛍光体や、後述の [実施例] の欄の各実施例に用いた蛍光体が挙げられる。
[0238] 本発明の発光装置は、第 1の発光体 (励起光源)を有し、且つ、第 2の発光体として 少なくとも本発明の蛍光体を使用している他は、その構成は制限されず、公知の装 置構成を任意にとることが可能である。装置構成の具体例については後述する。
[0239] 本発明の発光装置の発光スペクトルにおける緑色領域の発光ピークとしては、 515 nm〜535nmの波長範囲に発光ピークを有するものが好ましい。
[0240] なお、発光装置の発光スペクトルは、気温 25 ± 1°Cに保たれた室内において、ォ 一シャン ォプテイクス社製の色.照度測定ソフトウェア及び USB2000シリーズ分光 器 (積分球仕様)を用いて 20mA通電して測定を行なうことができる。この発光スぺク トルの 380nm〜780nmの波長領域のデータから、 JIS Z8701で規定される XYZ 表色系における色度座標として色度値 (X, y, z)を算出できる。この場合、 x + y+ z = 1の関係式が成立する。本明細書においては、前記 XYZ表色系を XY表色系と称 している場合があり、通常 (X, y)で表記している。
[0241] また、発光効率は、前述のような発光装置を用いた発光スペクトル測定の結果から 全光束を求め、そのルーメン (lm)値を消費電力(W)で割ることにより求められる。消 費電力は、 20mAを通電した状態で、 Fluke社の True RMS Multimeters Mo del 187& 189を用いて電圧を測定し、電流値と電圧値の積で求められる。
[0242] 本発明の発光装置のうち、特に白色発光装置として、具体的には、第 1の発光体と して後述するような励起光源を用い、上述のような緑色蛍光体の他、後述するような 赤色の蛍光を発する蛍光体(以下、適宜「赤色蛍光体」という)、青色の蛍光を発する 蛍光体 (以下、適宜「青色蛍光体」という)、黄色の蛍光を発する蛍光体 (以下、適宜「 黄色蛍光体」という)等の公知の蛍光体を任意に組み合わせて使用し、公知の装置 構成をとることにより得られる。
[0243] ここで、該白色発光装置の白色とは、 JIS Z 8701により規定された、(黄みの)白 、(緑みの)白、(青みの)白、(紫みの)白及び白の全てを含む意であり、このうち好ま しくは白である。
[0244] [9 1.発光装置の構成 (発光体) ]
(第 1の発光体)
本発明の発光装置における第 1の発光体は、後述する第 2の発光体を励起する光 を発光するものである。
[0245] 第 1の発光体の発光波長は、後述する第 2の発光体の吸収波長と重複するもので あれば、特に制限されず、幅広い発光波長領域の発光体を使用することができる。 通常は、紫外領域から青色領域までの発光波長を有する発光体が使用され、近紫 外領域から青色領域までの発光波長を有する発光体を使用することが特に好ましい
[0246] 第 1の発光体の発光ピーク波長の具体的数値としては、通常 200nm以上が望まし い。このうち、近紫外光を励起光として用いる場合には、通常 300nm以上、好ましく は 330nm以上、より好ましくは 360nm以上、また、通常 420nm以下の発光ピーク波 長を有する発光体を使用することが望ましい。また、青色光を励起光として用いる場 合には、通常 420腹以上、好ましくは 430應以上、また、通常 500應以下、好まし くは 480nm以下の発光ピーク波長を有する発光体を使用することが望ましい。何れ も、発光装置の色純度の観点からである。
[0247] 第 1の発光体としては、一般的には半導体発光素子が用いられ、具体的には発光 LEDや半導体レーサータイ才ード (semiconductor laser diode。以下、適宜「L D」と略称する。)等が使用できる。その他、第 1の発光体として使用できる発光体とし ては、例えば、有機エレクト口ルミネッセンス発光素子、無機エレクト口ルミネッセンス 発光素子等が挙げられる。但し、第 1の発光体として使用できるものは本明細書に例 示されるものに限られない。
[0248] 中でも、第 1の発光体としては、 GaN系化合物半導体を使用した GaN系 LEDや L Dが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する SiC系 LED等 に比し、発光出力や外部量子効率が格段に大きぐ前記蛍光体と組み合わせること によって、非常に低電力で非常に明るい発光が得られるからである。例えば、 20mA の電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の発光強度を有 する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層又は In Ga N
X Υ X Υ
発光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中でも In G
X
a N発光層を有するものは発光強度が非常に強いので特に好ましぐ GaN系 LED
Y
においては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度は非常に
X Y
強いので特に好ましい。
[0249] なお、上記において X + Yの値は通常 0. 8〜; 1. 2の範囲の値である。 GaN系 LED において、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好ましレ、ものである。
[0250] GaN系 LEDはこれら発光層、 p層、 n層、電極、及び基板を基本構成要素としたも のであり、発光層を n型と p型の Al Ga N層、 GaN層、又は In Ga N層などでサンド
X Y X Y
イッチにしたへテロ構造を有しているもの力 発光効率が高くて好ましぐ更にへテロ 構造を量子井戸構造にしたもの力 S、発光効率が更に高いため、より好ましい。
なお、第 1の発光体は、 1個のみを用いてもよぐ 2個以上を任意の組み合わせ及び 比率で併用してもよい。
[0251] (第 2の発光体)
本発明の発光装置における第 2の発光体は、上述した第 1の発光体からの光の照 射によって可視光を発する発光体であり、第 1の蛍光体として前述の本発明の蛍光 体(緑色蛍光体)を含有するとともに、その用途等に応じて適宜、後述する第 2の蛍光 体 (赤色蛍光体、青色蛍光体、橙色蛍光体等)を含有する。また、例えば、第 2の発 光体は、第 1及び第 2の蛍光体を封止材料中に分散させて構成される。
[0252] 上記第 2の発光体中に用いられる、本発明の蛍光体以外の蛍光体の組成には特 に制限はない。その例を挙げると、結晶母体となる、 Y O 、 YVO、 Zn SiO 、 Y Al
2 3 4 2 4 3 5
O 、 Sr SiO等に代表される金属酸化物、 Sr Si N等に代表される金属窒化物、 C
12 2 4 2 5 8
a (PO ) C1等に代表されるリン酸塩及び ZnS、 SrS、 CaS等に代表される硫化物、
5 4 3
Y O S, La O S等に代表される酸硫化物等に Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Tb、 D
2 2 2 2
y、 Ho、 Er、 Tm、 Yb等の希土類金属のイオンや Ag、 Cu、 Au、 Al、 Mn、 Sb等の金 属のイオンを付活元素又は共付活元素として組み合わせたものが挙げられる。
[0253] 結晶母体の好ましい例としては、例えば、(Zn, Cd) S、 SrGa S 、 SrS、 ZnS等の
2 4
硫化物; Y O S等の酸硫化物;(Y, Gd) Al O 、 YAIO 、 BaMgAl O 、 (Ba, Sr
2 2 3 5 12 3 10 17
) (Mg, Mn)Al O 、 (Ba, Sr, Ca) (Mg, Zn, Mn)Al O 、 BaAl O 、 CeMg
10 17 10 17 12 19
Al O 、 (Ba, Sr, Mg) 0 -Al O、 BaAl Si O、 SrAl O、 Sr Al O 、 Y Al O
11 19 2 3 2 2 8 2 4 4 14 25 3 5 12 等のアルミン酸塩; Y SiO 、 Zn SiO等の珪酸塩; SnO 、 Υ Ο等の酸化物; GdMg
2 5 2 4 2 2 3
B O 、(Y, Gd) BO等の硼酸塩; Ca (PO ) (F, CI) 、 (Sr, Ca, Ba, Mg) (P
5 10 3 10 4 6 2 10
O ) CI等のハロリン酸塩; Sr P O 、 (La, Ce) PO等のリン酸塩等を挙げることがで
4 6 2 2 2 7 4
きる。
[0254] 但し、上記の結晶母体、付活元素及び共付活元素は、元素組成には特に制限は なぐ同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領 域の光を吸収して可視光を発するものであれば用いることが可能である。
[0255] 具体的には、蛍光体として以下に挙げるものを用いることが可能である力 これらは あくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。 なお、以下の例示では、前述の通り、構造の一部のみが異なる蛍光体を、適宜省略 して示している。
[0256] (第 1の蛍光体)
本発明の発光装置における第 2の発光体は、第 1の蛍光体として、少なくとも上述 の本発明の蛍光体を含有する。本発明の蛍光体は、何れか 1種を単独で使用しても よぐ 2種以上を任意の組み合わせ及び比率で併用してもよい。また、第 1の蛍光体と しては、本発明の蛍光体以外にも、本発明の蛍光体と同色の蛍光を発する蛍光体( 同色併用蛍光体)を用いてもよい。通常、本発明の蛍光体は緑色蛍光体であるので 、第 1の蛍光体として、本発明の蛍光体と共に他種の緑色蛍光体を併用することがで きる。
[0257] 該緑色蛍光体としては、本発明の効果を著しく損なわない限り任意のものを使用す ることができる。該緑色蛍光体の具体例を挙げると、破断面を有する破断粒子から構 成され、緑色領域の発光を行なう(Mg, Ca, Sr, Ba) Si O N : Euで表わされるユウ
2 2 2
口ピウム付活アルカリ土類シリコンォキシナイトライド系蛍光体等が挙げられる。
[0258] また、その他の緑色蛍光体としては、 Sr Al O : Eu、 (Ba, Sr, Ca)Al O : Eu等
4 14 25 2 4 の Eu付活アルミン酸塩蛍光体、(Sr, Ba)Al Si O : Eu、 (Ba, Mg) SiO : Eu、 (B
2 2 8 2 4
a, Sr, Ca, Mg) SiO : Eu、 (Ba, Sr, Ca) (Mg, Zn) Si O : Eu、 (Ba, Ca, Sr,
2 4 2 2 7
Mg) (Sc, Y, Lu, Gd) (Si, Ge) O : Eu等の Eu付活珪酸塩蛍光体、 Y SiO : C
9 2 6 24 2 5 e, Tb等の Ce, Tb付活珪酸塩蛍光体、 Sr P O— Sr B O : Eu等の Eu付活硼酸リ
2 2 7 2 2 5
ン酸塩蛍光体、 Sr Si O - 2SrCl : Eu等の Eu付活ハロ珪酸塩蛍光体、 Zn SiO :
2 3 8 2 2 4
Mn等の Mn付活珪酸塩蛍光体、 CeMgAl O : Tb、Y A1 0 : Tb等の Tb付活ァ
11 19 3 5 12
ルミン酸塩蛍光体、 Ca Y (SiO ) O :Tb、 La Ga SiO : Tb等の Tb付活珪酸塩蛍
2 8 4 6 2 3 5 14
光体、(Sr, Ba, Ca) Ga S : Eu, Tb, Sm等の Eu, Tb, Sm付活チォガレート蛍光
2 4
体、 Y (Al, Ga) O : Ce、(Y, Ga, Tb, La, Sm, Pr, Lu) (Al, Ga) O : Ce等の
3 5 12 3 5 12
Ce付活アルミン酸塩蛍光体、 Ca Sc Si O : Ce、 Ca (Sc, Mg, Na, Li) Si O :
3 2 3 12 3 2 3 12
Ce等の Ce付活珪酸塩蛍光体、 CaSc O : Ce等の Ce付活酸化物蛍光体、 Eu付活
2 4
サイアロン等の Eu付活酸窒化物蛍光体、 BaMgAl O : Eu, Mn等の Eu, Mn 付活アルミン酸塩蛍光体、 SrAl O : Eu等の Eu付活アルミン酸塩蛍光体、(La, Gd
2 4
, Y) O S :Tb等の Tb付活酸硫化物蛍光体、 LaP〇 : Ce, Tb等の Ce, Tb付活リン
2 2 4
酸塩蛍光体、 ZnS : Cu, Al、 ZnS : Cu, Au, Al等の硫化物蛍光体、(Y, Ga, Lu, S c, La) BO : Ce, Tbゝ Na Gd B〇 : Ce, Tb、(Ba, Sr) (Ca, Mg, Zn) B〇 : K,
3 2 2 2 7 2 2 6
Ce, Tb等の Ce, Tb付活硼酸塩蛍光体、 Ca Mg (SiO ) CI : Eu, Mn等の Eu, Mn
8 4 4 2
付活ハロ珪酸塩蛍光体、 (Sr, Ca, Ba) (Al, Ga, In) S : Eu等の Eu付活チォアル
2 4
ミネート蛍光体やチォガレート蛍光体、(Ca, Sr) (Mg, Zn) (SiO ) CI : Eu, Mn
8 4 4 2 等の Eu, Mn付活ハロ珪酸塩蛍光体、 M Si〇 N : Eu、 M Si〇 N : Eu (但し、 M
3 6 9 4 3 6 12 2
はアルカリ土類金属元素を表わす。)等の Eu付活酸窒化物蛍光体等を用いることも 可能である。
[0259] また、緑色蛍光体としては、ピリジン—フタルイミド縮合誘導体、ベンゾォキサジノン 系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テ ルビゥム錯体等の有機蛍光体を用いることも可能である。
以上例示した緑色蛍光体は、何れか一種を単独で使用してもよぐ二種以上を任 意の組み合わせ及び比率で併用してもよ!/、。
[0260] 本発明の発光装置に使用される第 1の蛍光体の発光ピーク波長え (nm)は、通常
P
500腹より大きく、中でも 510應以上、更には 515腹以上、また、通常 550應以 下、中でも 542nm以下、更には 535nm以下の範囲であることが好ましい。この発光 ピーク波長え が短過ぎると青味を帯びる傾向がある一方で、長過ぎると黄味を帯び
P
る傾向があり、何れも緑色光としての特性が低下する場合がある。
[0261] また、本発明の発光装置に使用される第 1の蛍光体は、上述の発光スペクトルにお ける発光ピーク半値幅(full width at half maximum。以下適宜「FWHM」と 略称する。)が、通常 10nm以上、好ましくは 20nm以上、より好ましくは 25nm以上、 また、通常 85nm以下、中でも 75nm以下、更には 70nm以下の範囲であることが好 ましい。この半値幅 FWHMが狭過ぎると発光強度が低下する場合があり、広過ぎる と色純度が低下する場合がある。
[0262] (第 2の蛍光体)
本発明の発光装置における第 2の発光体は、その用途に応じて、上述の第 1の蛍 光体以外にも蛍光体(即ち、第 2の蛍光体)を 1種以上含有していてもよい。この第 2 の蛍光体は、第 1の蛍光体とは発光ピーク波長が異なる蛍光体である。通常、これら の第 2の蛍光体は、第 2の発光体の発光の色調を調節するために使用されるため、 第 2の蛍光体としては第 1の蛍光体とは異なる色の蛍光を発する蛍光体を使用するこ とが多い。上記のように、通常は第 1の蛍光体として緑色蛍光体を使用するので、第 2の蛍光体としては、例えば橙色ないし赤色蛍光体、青色蛍光体、黄色蛍光体等の 緑色蛍光体以外の蛍光体を用いる。
[0263] 本発明の発光装置に使用される第 2の蛍光体の重量メジアン径は、通常 lO ^ m以 上、中でも 12 m以上、また、通常 30 m以下、中でも 25 m以下の範囲であるこ とが好ましい。重量メジアン径が小さ過ぎると、輝度が低下し、蛍光体粒子が凝集し てしまう傾向がある。一方、重量メジアン径が大き過ぎると、塗布ムラゃデイスペンサ 一等の閉塞が生じる傾向がある。
[0264] (橙色ないし赤色蛍光体)
第 2の蛍光体として橙色ないし赤色蛍光体を使用する場合、当該橙色ないし赤色 蛍光体は本発明の効果を著しく損なわない限り任意のものを使用することができる。 この際、橙色ないし赤色蛍光体の発光ピーク波長は、通常 570nm以上、好ましくは 580nm以上、より好ましくは 585nm以上、また、通常 780nm以下、好ましくは 700η m以下、より好ましくは 680nm以下の波長範囲にあることが好適である。
[0265] このような橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子 から構成され、赤色領域の発光を行なう(Mg, Ca, Sr, Ba) Si N : Euで表わされる
2 5 8
ユウ口ピウム賦活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状 としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y, La , Gd, Lu) O S : Euで表わされるユウ口ピウム賦活希土類ォキシカルコゲナイド系蛍
2 2
光体等が挙げられる。
[0266] 更 ίこ、特開 2004— 300247号公幸 ίこ記載された、丁 i、 Zr、 Hf、 Nb、丁 a、 W、及び
Moよりなる群から選ばれる少なくも 1種類の元素を含有する酸窒化物及び/又は酸 硫化物を含有する蛍光体や、 A1元素の一部又は全てが Ga元素で置換されたアルフ ァサイアロン構造をもつ酸窒化物を含有する蛍光体も、本発明にお!/、て用いることが できる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
[0267] また、そのほか、赤色蛍光体としては、(La, Y) O S : Eu等の Eu付活酸硫化物蛍
2 2
光体、 Y(V, P) 0 : Eu、 Y Ο : Eu等の Eu付活酸化物蛍光体、(Ba, Mg) SiO : E
4 2 3 2 4 u, Mn、(Ba, Sr, Ca, Mg) SiO : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、 LiW
2 4 2
〇 : Eu、 LiW〇 : Eu, Sm、 Eu W〇、 Eu W〇 : Nb、 Eu W〇 : Sm等の Eu付
8 2 8 2 2 9 2 2 9 2 2 9
活タングステン酸塩蛍光体、(Ca, Sr) S : Eu等の Eu付活硫化物蛍光体、 YAIO : E
3 u等の Eu付活アルミン酸塩蛍光体、 Ca Y (SiO ) 〇 :Eu、 LiY (SiO ) 〇 :Eu、(
2 8 4 6 2 9 4 6 2
Sr, Ba, Ca) SiO : Eu、 Sr BaSiO : Eu等の Eu付活珪酸塩蛍光体、(Y, Gd) Al
3 5 2 5 3 5
〇 : Ce、(Tb, Gd) Al〇 : Ce等の Ce付活アルミン酸塩蛍光体、(Mg, Ca, Sr, B
12 3 5 12
a) Si (N, O) : Eu、 (Mg, Ca, Sr, Ba) Si (N, O) : Eu、 (Mg, Ca, Sr, Ba)AlSi
2 5 8 2
(N, O) : Eu等の Eu付活酸化物、窒化物又は酸窒化物蛍光体、(Mg, Ca, Sr, Ba
3
)AlSi (N, O) : Ce等の Ce付活酸化物、窒化物又は酸窒化物蛍光体、(Sr, Ca, B
3
a, Mg) (PO ) CI : Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍光体、 Ba MgSi〇
10 4 6 2 3 2 8
: Eu, Mn、 (Ba, Sr, Ca, Mg) (Zn, Mg) Si O : Eu, Mn等の Eu, Mn付活珪酸
3 2 8
塩蛍光体、 3. 5MgO- 0. 5MgF -GeO : Mn等の Mn付活ゲルマン酸塩蛍光体、 E
2 2
u付活 αサイアロン等の Eu付活酸窒化物蛍光体、(Gd, Y, Lu, La) O : Eu, Bi等
2 3
の Eu, Bi付活酸化物蛍光体、 (Gd, Y, Lu, La) 〇 S : Eu, Bi等の Eu, Bi付活酸硫
2 2
化物蛍光体、(Gd, Y, Lu, La)VO : Eu, Bi等の Eu, Bi付活バナジン酸塩蛍光体
4
、 SrY S : Eu, Ce等の Eu, Ce付活硫化物蛍光体、 CaLa S : Ce等の Ce付活硫化
2 4 2 4
物蛍光体、(Ba, Sr, Ca) MgP O : Eu, Mn、 (Sr, Ca, Ba, Mg, Zn) P O : Eu,
2 7 2 2 7
Mn等の Eu, Mn付活リン酸塩蛍光体、(Y, Lu) WO : Eu, Mo等の Eu, Mo付活タ
2 6
ングステン酸塩蛍光体、(Ba, Sr, Ca) Si N : Eu, Ce (但し、 x、 y、 zは、 1以上の整 x y z
数を表わす。)等の Eu, Ce付活窒化物蛍光体、(Ca, Sr, Ba, Mg) (PO ) (F, CI
10 4 6
, Br, OH): Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍光体、((Y, Lu, Gd, Tb) ― Sc Ce ) (Ca, Mg) (Mg, Zn) Si Ge O 等の Ce付活珪酸塩蛍光体 y x y 2 1 -r 2 + r z-q q 12+ δ
等を用いることも可能である。
[0268] 赤色蛍光体としては、 /3—ジケトネート、 βージケトン、芳香族カルボン酸、又は、 :'酸等のァニオンを配位子とする希土類元素イオン錯体からなる赤色有 機蛍光体、ペリレン系顔料 (例えば、ジベンゾ { [f, f ' ] -4, 4' , 7, 7 '—テトラフヱ二 ノレ }ジインデノ [1 , 2, 3-cd : l ' , 2,, 3, 一lm]ペリレン)、アントラキノン系顔料、レー キ系顔料、ァゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔 料、イソインドリノン系顔料、フタロシアニン系顔料、トリフエニルメタン系塩基性染料、 インダンスロン系顔料、インドフエノール系顔料、シァニン系顔料、ジォキサジン系顔 料を用いることも可能である。
[0269] 以上の中でも、赤色蛍光体としては、(Ca, Sr, Ba) Si (N, O) : Eu、 (Ca, Sr, B
2 5 8
a) Si (N, O) : Eu、 (Ca, Sr, Ba)AlSi (N, O) : Eu、 (Ca, Sr, Ba)AlSi (N, O) :
2 3 3
Ce、 (Sr, Ba) SiO : Eu、 (Ca, Sr) S : Eu、 (La, Y) O S : Eu又は Eu錯体を含むこ
3 5 2 2
と力 S好ましく、より好ましくは(Ca, Sr, Ba) Si (N, O) : Eu、 (Ca, Sr, Ba) Si (N, O
2 5 8
) : Eu、 (Ca, Sr, Ba)AlSi (N, O) : Eu、 (Ca, Sr, Ba)AlSi (N, O) : Ce、 (Sr, B
2 3 3
a) SiO : Eu、 (Ca, Sr) S : Eu又は(La, Y) O S : Eu、もしくは Eu (ジベンゾィルメタ
3 5 2 2
ン) · 1 , 10—フエナント口リン錯体等の /3—ジケトン系 Eu錯体又はカルボン酸系 Eu
3
錯体を含むことが好ましく、(Ca, Sr, Ba) Si (N,〇) : Eu、 (Sr, Ca)AlSiN : Eu
2 5 8 3 又は(La, Y) 〇 S : Euが特に好ましい。
2 2
[0270] また、以上例示の中でも、橙色蛍光体としては(Sr, Ba) SiO : Euが好ましい。
3 5
[0271] (青色蛍光体)
第 2の蛍光体として青色蛍光体を使用する場合、当該青色蛍光体は本発明の効果 を著しく損なわない限り任意のものを使用することができる。この際、青色蛍光体の発 光ピーク波長 (ま、通常 420nm以上、好ましく (ま 430nm以上、より好ましく (ま 440nm 以上、また、通常 490應以下、好ましくは 480應以下、より好ましくは 470應以下、 更に好ましくは 460nm以下の波長範囲にあることが好適である。
[0272] このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有す る成長粒子から構成され、青色領域の発光を行なう(Ba, Sr, Ca) MgAl O : Euで
10 17 表わされるユウ口ピウム賦活ノ リウムマグネシウムアルミネート系蛍光体、規則的な結 晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行 なう(Mg, Ca, Sr, Ba) (PO ) (CI, F): Euで表わされるユウ口ピウム賦活ハロリン
5 4 3
酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長 粒子から構成され、青色領域の発光を行なう(Ca, Sr, Ba) B O Cl : Euで表わされ
2 5 9
るユウ口ピウム賦活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子 から構成され、青緑色領域の発光を行なう(Sr, Ca, Ba)Al O : Eu又は(Sr, Ca, B
2 4
a) Al O : Euで表わされるユウ口ピウム賦活アルカリ土類アルミネート系蛍光体等
4 14 25
が挙げられる。
[0273] また、そのほか、青色蛍光体としては、 Sr P O : Sn等の Sn付活リン酸塩蛍光
2 2 7
体、(Sr, Ca, Ba)Al O : Eu又は(Sr, Ca, Ba) Al O : Eu、 BaMgAl O : Eu、
2 4 4 14 25 10 17
(Ba, Sr, Ca) MgAl 〇 : Eu, BaMgAl 〇 : Eu, Tb, Sm、 BaAl〇 : Eu等の
10 17 10 17 8 13
Eu付活アルミン酸塩蛍光体、 SrGa S : Ce、 CaGa S : Ce等の Ce付活チォガレー
2 4 2 4
ト蛍光体、(Ba, Sr, Ca) MgAl O : Eu, Mn等の Eu, Mn付活アルミン酸塩蛍光
10 17
体、(Sr, Ca, Ba, Mg) (PO ) CI : Eu、 (Ba, Sr, Ca) (PO ) (CI, F, Br, OH)
10 4 6 2 5 4 3
: Eu, Mn, Sb等の Eu付活ハロリン酸塩蛍光体、 BaAl Si O : Eu、 (Sr, Ba) MgSi
2 2 8 3
O : Eu等の Eu付活珪酸塩蛍光体、 Sr P O : Eu等の Eu付活リン酸塩蛍光体、 Zn
2 8 2 2 7
S :Ag、 ZnS :Ag, Al等の硫化物蛍光体、 Y SiO : Ce等の Ce付活珪酸塩蛍光体、
2 5
CaWO等のタングステン酸塩蛍光体、(Ba, Sr, Ca) BPO : Eu, Mn、 (Sr, Ca) (
4 5 10
PO ) ·ηΒ〇 : Eu、 2SrO - 0. 84P〇 · 0· 16B〇 : Eu等の Eu, Mn付活硼酸リン
4 6 2 3 2 5 2 3
酸塩蛍光体、 Sr Si O - 2SrCl : Eu等の Eu付活ハロ珪酸塩蛍光体、 SrSi Al ON
2 3 8 2 9 19
: Eu, EuSi Al ON 等の Eu付活酸窒化物蛍光体、 La Ce Al (Si Al ) (N
31 9 19 31 1 x x 6 z z 10
〇 ) (ここで、 x、及び zは、それぞれ 0≤x≤l、 0≤z≤6を満たす数である。)、 La
Ce Ca Al (Si Al ) (N O ) (ここで、 x、 y、及び zは、それぞれ、 0≤x≤ 1、 0 x— y x y 6— z z 10— z z
≤y≤l , 0≤z≤6を満たす数である。)等の Ce付活酸窒化物蛍光体等を用いること も可能である。
[0274] また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾォキサゾール系、ス チリル系、クマリン系、ビラリゾン系、トリァゾール系化合物の蛍光色素、ツリウム錯体 等の有機蛍光体等を用いることも可能である。
[0275] 以上の例示の中でも、青色蛍光体としては、(Ca, Sr, Ba) MgAl O : Eu、 (Sr,
10 17
Ca, Ba, Mg) (PO ) (CI, F) : Eu又は(Ba, Ca, Mg, Sr) SiO : Euを含むこと
10 4 6 2 2 4
が好ましく、(Ca, Sr, Ba) MgAl O : Eu、(Sr, Ca, Ba, Mg) (PO ) (CI, F) :
10 17 10 4 6 2 Eu又は(Ba, Ca, Sr) MgSi O : Euを含むことがより好ましぐ BaMgAl O : Eu、
Sr (PO ) (CI, F) : Eu又は Ba MgSi O : Euを含むことがより好ましい。また、こ のうち照明用途及びディスプレイ用途としては(Sr, Ca, Ba, Mg) (PO ) CI : Eu 又は(Ca, Sr, Ba) MgAl 〇 : Euが特に好ましい。
[0276] (黄色蛍光体)
第 2の蛍光体として黄色蛍光体を使用する場合、当該青色蛍光体は本発明の効果 を著しく損なわない限り任意のものを使用することができる。この際、黄色蛍光体の発 光ピーク波長は、通常 530nm以上、好ましくは 540nm以上、より好ましくは 550nm 以上、また、通常 620應以下、好ましくは 600應以下、より好ましくは 580應以下 の波長範囲にあることが好適である。
[0277] このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物 系、酸硫化物系等の蛍光体が挙げられる。
特に、 RE M O : Ce (ここで、 REは、 Y、 Tb、 Gd、 Lu、及び Smからなる群から選 ばれる少なくとも 1種類の元素を表わし、 Mは、 Al、 Ga、及び Scからなる群から選ば れる少なくとも 1種類の元素を表わす。)や Ma Mb Mc O : Ce (ここで、 Maは 2価の 金属元素、 Mbは 3価の金属元素、 Meは 4価の金属元素を表わす。)等で表わされる ガーネット構造を有するガーネット系蛍光体、 AE MdO : Eu (ここで、 AEは、 Ba、 Sr
、 Ca、 Mg、及び Znからなる群から選ばれる少なくとも 1種類の元素を表わし、 Mdは、 Si、及び/又は Geを表わす。)等で表わされるオルソシリケート系蛍光体、これらの 系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、 AEA1 SiN : Ce (ここで、 AEは、 Ba、 Sr、 Ca、 Mg及び Znからなる群から選ばれる少なくと も 1種類の元素を表わす。)等の CaAlSiN構造を有する窒化物系蛍光体等の Ceで 付活した蛍光体が挙げられる。
[0278] また、その他、黄色蛍光体としては、 CaGa S : Eu、 (Ca, Sr) Ga S : Eu、 (Ca, S r) (Ga, Al) S : Eu等の硫化物系蛍光体、 Ca (Si, Al) (O, N) : Eu等の SiAlO
N構造を有する酸窒化物系蛍光体等の Euで付活した蛍光体、(M Eu Mn ) (
BO ) (PO ) X (但し、 Mは、 Ca、 Sr、及び Baからなる群より選ばれる 1種以上の 元素を表し、 Xは、 F、 Cl、及び Brからなる群より選ばれる 1種以上の元素を表す。 a、 b、及び pは、各々、 0. 001≤a≤0. 3、 0≤b≤0. 3、 0≤p≤0. 2を満たす数を表す
。)等の Eu付活又は Eu, Mn共付活ハロゲン化ホウ酸塩蛍光体等を用いることも可 能である。
[0279] また、黄色蛍光体としては、例えば、 brilliant sulfoflavine FF (Colour Inde x Number 56205)、 basic yellow HG (Colour Index Number 46040) 、 eosine (Colour Index Number 45380)、 rhodamine 6G (Colour Ind ex Number 45160)等の蛍光染料等を用いることも可能である。
[0280] (第 2の蛍光体の組み合わせ)
上記第 2の蛍光体としては、 1種類の蛍光体のみを使用してもよぐ 2種以上の蛍光 体を任意の組み合わせ及び比率で併用してもよい。また、第 1の蛍光体と第 2の蛍光 体との比率も、本発明の効果を著しく損なわない限り任意である。従って、第 2の蛍光 体の使用量、並びに、第 2の蛍光体として用いる蛍光体の組み合わせ及びその比率 等は、発光装置の用途等に応じて任意に設定すればよい。
[0281] 本発明の発光装置において、以上説明した第 2の蛍光体 (橙色ないし赤色蛍光体 、青色蛍光体、黄色蛍光体等)の使用の有無及びその種類は、発光装置の用途に 応じて適宜選択すればよい。例えば、本発明の発光装置を緑色発光の発光装置とし て構成する場合には、第 1の蛍光体(緑色蛍光体)のみを使用すればよぐ第 2の蛍 光体の使用は通常は不要である。
[0282] 一方、本発明の発光装置を白色発光の発光装置として構成する場合には、所望の 白色光が得られるように、第 1の発光体と、第 1の蛍光体 (緑色蛍光体)と、第 2の蛍光 体とを適切に組み合わせればよい。具体的に、本発明の発光装置を白色発光の発 光装置として構成する場合における、第 1の発光体と、第 1の蛍光体と、第 2の蛍光体 との好まし!/、組み合わせの例としては、以下の(i)〜(iii)の組み合わせが挙げられる
[0283] (i)第 1の発光体として青色発光体 (青色 LED等)を使用し、第 1の蛍光体として緑色 蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として赤色蛍光体を使用する。 この場合、赤色蛍光体としては、(Sr, Ca) AlSiN : Euからなる群より選ばれる一種
3
又は二種以上の赤色蛍光体が好まし!/、。 [0284] (ii)第 1の発光体として近紫外発光体 (近紫外 LED等)を使用し、第 1の蛍光体として 緑色蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として青色蛍光体及び赤 色蛍光体を併用する。この場合、青色蛍光体としては、(Ba, Sr, Ca) MgAl O : E
10 17 u及び(Mg, Ca, Sr, Ba) (P〇 ) (CI, F): Euからなる群より選ばれる一種又は二
5 4 3
種以上の青色蛍光体が好ましい。また、赤色蛍光体としては、(Sr, Ca)AlSiN : Eu
3 及び La O S : Euからなる群より選ばれる一種又は二種以上の赤色蛍光体が好まし
2 2
い。中でも、近紫外 LEDと、本発明の蛍光体と、青色蛍光体として BaMgAl O : E
10 17 uと、赤色蛍光体として(Sr, Ca)AlSiN : Euとを組み合わせて用いることが好ましい
3
[0285] (iii)第 1の発光体として青色発光体(青色 LED等)を使用し、第 1の蛍光体として緑 色蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として橙色蛍光体を使用する 。この場合、橙色蛍光体としては、(Sr, Ba) SiO : Euが好ましい。
3 5
[0286] 上記の(i)の場合における蛍光体の組み合わせについて、好ましい具体例を表 2に 挙げる。
[表 2]
Figure imgf000072_0001
上記組み合わせにおいて、下記表 3に示すように、さらに緑色蛍光体として(Ba, S r) SiO : Euや Sr GaS : Euを使用することにより、特に、色調と発光強度のバランス
2 4 2 4
に優れた液晶バックライト光源用発光装置を得ることができる。
[表 3] [表 3 : 蛍光体の組み合わせの例]
Figure imgf000073_0001
[0288] また、本発明の蛍光体は、他の蛍光体と混合 (ここで、混合とは、必ずしも蛍光体同 士が混ざり合っている必要はなぐ異種の蛍光体が組み合わされていることを意味す る。)して用いることができる。特に、上記に記載の組み合わせで蛍光体を混合すると 、好ましい蛍光体混合物が得られる。なお、混合する蛍光体の種類やその割合に特 に制限はない。
[0289] (封止材料)
本発明の発光装置において、上記第 1及び/又は第 2の蛍光体は、通常、封止材 料である液体媒体に分散させて用いられる。
該液体媒体としては、前述の蛍光体含有組成物の項で記載したのと同様のものが 挙げられる。
[0290] また、該液体媒体は、封止部材の屈折率を調整するために、高レ、屈折率を有する 金属酸化物となり得る金属元素を含有させることができる。高レ、屈折率を有する金属 酸化物を与える金属元素の例としては、 Si、 Al、 Zr、 Ti、 Y、 Nb、 B等が挙げられる。 これらの金属元素は単独で使用されてもよぐ 2種以上が任意の組み合わせ及び比 率で併用されてもよい。
[0291] このような金属元素の存在形態は、封止部材の透明度を損なわなければ特に限定 されず、例えば、メタロキサン結合として均一なガラス層を形成していてもよぐ封止部 材中に粒子状で存在していてもよい。粒子状で存在している場合、その粒子内部の 構造はアモルファス状であっても結晶構造であってもよレ、が、高屈折率を与えるため には結晶構造であることが好ましい。また、その粒子径は、封止部材の透明度を損な わないために、通常は、半導体発光素子の発光波長以下、好ましくは lOOnm以下、 更に好ましくは 50nm以下、特に好ましくは 30nm以下である。例えばシリコーン系材 料に、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化イットリウム 、酸化ニオブ等の粒子を混合することにより、上記の金属元素を封止部材中に粒子 状で存在させること力 Sできる。
また、上記液体媒体としては、更に、拡散剤、フィラー、粘度調整剤、紫外線吸収剤 等公知の添加剤を含有していてもよい。なお、これらの添加剤は、 1種のみを用いて もよく、 2種以上を任意の組み合わせ及び比率で併用してもよい。
[0292] [9 2.発光装置の構成 (その他)]
本発明の発光装置は、上述の第 1の発光体及び第 2の発光体を備えていれば、そ のほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の第 1の発 光体及び第 2の発光体を配置してなる。この際、第 1の発光体の発光によって第 2の 発光体が励起されて (即ち、第 1及び第 2の蛍光体が励起されて)発光を生じ、且つ、 この第 1の発光体の発光及び/又は第 2の発光体の発光力 S、外部に取り出されるよう に配置されることになる。この場合、第 1の蛍光体と第 2の蛍光体とは必ずしも同一の 層中に混合されなくてもよぐ例えば、第 1の蛍光体を含有する層の上に第 2の蛍光 体を含有する層が積層する等、蛍光体の発色毎に別々の層に蛍光体を含有するよう にしてもよい。
[0293] また、本発明の発光装置では、上述の励起光源 (第 1の発光体)、蛍光体 (第 2の発 光体)及びフレーム以外の部材を用いてもよい。その例としては、前述の封止材料が 挙げられる。該封止材料は、発光装置において、蛍光体 (第 2の発光体)を分散させ る目的以外にも、励起光源 (第 1の発光体)、蛍光体 (第 2の発光体)及びフレーム間 を接着する目的で用いたりすることができる。
[0294] [9 - 3.発光装置の実施形態]
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説 明する力 本発明は以下の実施形態に限定されるものではなぐ本発明の要旨を逸 脱しない範囲において任意に変形して実施することができる。 [0295] 本発明の発光装置の一例における、励起光源となる第 1の発光体と、蛍光体を有 する蛍光体含有部として構成された第 2の発光体との位置関係を示す模式的斜視図 を図 1に示す。図 1中の符号 1は蛍光体含有部 (第 2の発光体)、符号 2は励起光源( 第 1の発光体)としての面発光型 GaN系 LD、符号 3は基板を表す。相互に接触した 状態をつくるために、 LD (2)と蛍光体含有部(第 2の発光体)(1)とそれぞれ別個に 作製し、それらの面同士を接着剤やその他の手段によって接触させてもよいし、 LD ( 2)の発光面上に蛍光体含有部(第 2の発光体)を製膜 (成型)させてもよ!/、。これらの 結果、 LD (2)と蛍光体含有部 (第 2の発光体)(1)とを接触した状態とすることができ
[0296] このような装置構成をとつた場合には、励起光源(第 1の発光体)からの光が蛍光体 含有部(第 2の発光体)の膜面で反射されて外にしみ出るという光量損失を避けること ができるので、装置全体の発光効率を良くすることができる。
[0297] 図 2 (a)は、一般的に砲弾型と言われる形態の発光装置の代表例であり、励起光源
(第 1の発光体)と蛍光体含有部 (第 2の発光体)とを有する発光装置の一実施例を 示す模式的断面図である。該発光装置 (4)において、符号 5はマウントリード、符号 6 はインナーリード、符号 7は励起光源 (第 1の発光体)、符号 8は蛍光体含有樹脂部、 符号 9は導電性ワイヤ、符号 10はモールド部材をそれぞれ指す。
[0298] また、図 2 (b)は、表面実装型と言われる形態の発光装置の代表例であり、励起光 源 (第 1の発光体)と蛍光体含有部 (第 2の発光体)とを有する発光装置の一実施例 を示す模式的断面図である。図中、符号 22は励起光源 (第 1の発光体)、符号 23は 蛍光体含有部 (第 2の発光体)としての蛍光体含有樹脂部、符号 24はフレーム、符 号 25は導電性ワイヤ、符号 26及び符号 27は電極をそれぞれ指す。
[0299] [9 4·発光装置の用途]
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種 の分野に使用することが可能である力 演色性が高いことから、中でも照明装置や画 像表示装置の光源として、とりわけ好適に用いられる。
[0300] [9 4 1 ·照明装置]
本発明の発光装置を照明装置に適用する場合には、前述のような発光装置を公知 の照明装置に適宜組み込んで用いればよい。例えば、図 3に示されるような、前述の 発光装置 (4)を組み込んだ面発光照明装置(11)を挙げることができる。
[0301] 図 3は、本発明の照明装置の一実施形態を模式的に示す断面図である。この図 3 に示すように、該面発光照明装置は、内面を白色の平滑面等の光不透過性とした方 形の保持ケース(12)の底面に、多数の発光装置(13) (前述の発光装置 (4)に相当 )を、その外側に発光装置(13)の駆動のための電源及び回路等(図示せず。)を設 けて配置し、保持ケース(12)の蓋部に相当する箇所に、乳白色としたアクリル板等 の拡散板(14)を発光の均一化のために固定してなる。
[0302] そして、面発光照明装置(11)を駆動して、発光装置(13)の励起光源 (第 1の発光 体)に電圧を印加することにより光を発光させ、その発光の一部を、蛍光体含有部( 第 2の発光体)としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を 発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発 光が得られ、この光が拡散板(14)を透過して、図面上方に出射され、保持ケース(1 2)の拡散板(14)面内において均一な明るさの照明光が得られることとなる。
[0303] [9-4 - 2.画像表示装置]
本発明の発光装置を画像表示装置の光源として用いる場合には、その画像表示 装置の具体的構成に制限は無いが、カラーフィルターとともに用いることが好ましい。 例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置 とする場合は、上記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑 、青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形 成すること力 Sでさる。
実施例
[0304] 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を逸 脱しない限り、以下の実施例に限定されるものではな!/、。
[0305] [実施例群 I]
[1- 1.測定方法]
[物体色の測定方法]
物体色の測定は、ミノルタ製色彩色差計 CR300を用いて、標準光を D65として行 なった。サンプルを円形のセルに詰めて表面を平らにし、平らな面を色差計の測定 部に押しつけて測定した。
[0306] [発光スペクトルの測定方法]
発光スペクトルは、励起光源として 150Wキセノンランプを、スペクトル測定装置とし てマルチチャンネル CCD検出器 C7041 (浜松フォト二タス社製)を備える蛍光測定 装置(日本分光社製)用いて測定した。励起光源力もの光を焦点距離が 10cmである 回折格子分光器に通し、波長 400nmの励起光のみを光ファイバ一を通じて蛍光体 に照射した。励起光の照射により蛍光体から発生した光を焦点距離が 25cmである 回折格子分光器により分光し、 300nm以上 800nm以下の波長範囲においてスぺク トル測定装置により各波長の発光強度を測定し、パーソナルコンピュータによる感度 補正等の信号処理を経て発光スペクトルを得た。なお、測定時には、受光側分光器 のスリット幅を lnmに設定して、室温にて測定を行なった。
[0307] [最大発光ピーク波長及び強度の測定]
最大発光ピーク波長は、得られた発光スペクトルから読み取った。最大発光ピーク 強度は、化成ォプトニタス製 YAG: Ce蛍光体: P46— Y3の最大発光ピーク強度を 1 00とした相対値で表した。
[0308] [色度座標及び輝度の測定]
発光スペクトルの 480nm〜800nmの波長領域のデータから、 JIS Z8724に準じ た方法で、 JIS Z8701で規定される XYZ表色系における色度座標 Xと yを算出した 。輝度は、最大発光ピーク強度と同じぐ化成ォプトニタス製 YAG : Ce蛍光体 P46— Y3蛍光体の輝度を 100とした相対値で表した。
[0309] [粒度特性の測定]
粒度特性の測定は、堀場製作所製レーザ回折/散乱式粒子径分布測定装置 LA — 300を用いて室温にて行った。測定により得られた重量基準粒度分布曲線におい て積算値が 50%のときの粒径値を重量メジアン径 D とした。また、積算値が 25%及
50
び 75%の時の粒径値をそれぞれ D 、 D とし、 QD= (D — D ) / (D +D )を
25 75 75 25 75 25 算出した。
[0310] [アスペクト比の測定] アスペクト比が 3以下の粒子の比率は、走査型電子顕微鏡 (例えば、株式会社日立 製作所製、 日立 S— 4500)を用いて、 500倍〜 5000倍の倍率で蛍光体を撮影し、 得られた顕微鏡写真の 1視野中の粒子 30個を無作為に選び、それらの粒子の長径 と短径を、定規を用いて測定し、長径/短径の値をアスペクト比として算出し、ァスぺ タト比が 3以下の粒子の割合を計算することにより求めた。
[0311] [単粒子率の測定]
顕微鏡写真の 1視野中の粒子 30個を無作為に選び、 1個の粒子像内に融着により 生じた粒界が存在する粒子と存在しな!/、粒子に分けてそれぞれの数を数え、全体(3 0個)に対する粒界が存在しな!/、粒子の比率を単粒子率とした。
[0312] [化学組成の分析]
固体試料を陰極としグロ一放電を用いて試料表面をスパッタし、放出された中性粒 子をプラズマ内の Arや電子との衝突によってイオン化させるグロ一放電質量分析計 (Glow Discharge Mass Spectrometry ; GD— MS)により、微量成分の定量 を fiつた。
[0313] [円形度が 85%未満である粒子の割合の測定]
円形度を測定する前に、超音波洗浄機 (ィゥチ製)を用いて 60秒間、試料である蛍 光体を超音波で分散させた。その後、フロー式粒子像分析装置 (シスメッタス製「FPI A— 2000」)を用いて、試料の円形度を測定すた。この装置による平均円形度の算 出法は以下の通りである。即ち、粒子ごとに粒子像(画像)を撮影し、得られた粒子像 力 粒子の投影面積、及び周囲長を画像処理により求めた。粒子像の投影面積と同 じ面積を持つ円を想定してその円の直径を算出し、この直径を粒子の周囲長で割つ た値を円形度とした。そして、円形度が 0. 85未満の粒子数の測定全粒子数に対す る割合を「円形度が 85%未満である粒子の割合」として求めた。この値が小さいほど 、球状に近い粒子の割合が大きいことを意味する。
[0314] [1- 2.実施例 I I 6及び比較例 I I 4]
各実施例及び比較例において、常法により、配合組成が CaSc O : Ceとなるように
2 4
各原料を秤量した。 Ca源としては CaCOを、 Sc源としては Sc Oを、 Ce源としては C
3 2 3
eOを使用した。 秤量した原料を充分混合し、蓋付きのアルミナ製ルツボに充填した。空気中、大気 圧下、 1450°Cで 1時間保持後、冷却し、ルツボを炉外に取り出した。得られた焼成 物にフラックス成分リン酸リチウム(Li PO )、塩化カルシウム(CaCl )、塩化カリウム(
3 4 2
KC1)、リン酸水素カリウム(KH PO )及び Li SO ·Η〇を表 4の割合で加え、充分
2 4 2 4 2
混合後、アルミナ製ルツボに再度充填した。
水素(4体積%)混合窒素雰囲気中、大気圧下、 1450°Cで、 10時間加熱後、冷却 し、焼成物を取り出した。
焼成物直径 3mmのアルミナボールと濃度 lmol/Lの HC1を加え、ボールミルで処 理した。これを濃度 1. 3mol/Lの HC1により洗浄し、その後水で洗浄すると同時に 水簸により微小粒子及び粗大粒子を除去した。
[0315] 得られた蛍光体につき、 ICP— MS (誘導結合プラズマ質量分析法)により Ce含有 量を測定した。結果を表 4に示す。
また、得られた蛍光体につき、上述した測定方法により、発光特性として、最大発光 ピーク波長、色度座標、最大発光ピーク強度、及び、輝度を測定した。結果を表 4に 示す。
[0316] また、得られた蛍光体につき、上述した方法により、粉体特性として、粒度特性(重 量メジアン径 D 及び QD)、平均アスペクト比、全粒子中にアスペクト比が 3以下の粒
50
子が占める割合、単粒子率、及び、円形度が 85%未満である粒子の割合を測定し た。結果を表 5に示す。
さらに、得られた蛍光体のうち、代表的な例(実施例 I 1 , I 2及び比較例 I 4) について、 GD— MSにより、蛍光体中に含まれる Li、 K、 P、 CIの各元素の分析を行 つた。結果を表 5に示す。
[0317] 実施例 1—1において得られた蛍光体について、 X線回折パターンを測定した結果 を図 4に示す。図 4の上の図は、測定結果の生データであり、下の図の上段は、測定 結果からピーク検出を行った結果であるピークの位置と強度を示す図であり、下の図 の下段 (ま、 JCPDS— ICDD PDF (Joint Committee on Powder Diffractio n Standards ― International Centre for Diffraction Data Powder Diffraction File;粉末 X線回折の標準チャートファイル)の 72— 1360番(CaSc o )のピーク位置と強度を示す図である。下の図の上段と下段のピーク位置、および
4
.強度比がおおむね一致しているため、得られた蛍光体は、 CaFe〇構造を取るこ
2 4
とが知られている CaSc Oと同一の構造をもつことがわかる。ただし、本発明の蛍光
2 4
体は、発光中心元素である Ceが添加されているため、若干の格子定数変化、結晶 欠陥の存在、構造の歪みが存在する可能性があるが、粉末 X線回折図形の比較に おいては同一構造と判断できる。さらに、下の図の下段のパターンに存在しないピー クカ 下の図の上段のパターンには現れていないので、本発明の蛍光体には、 CaS c Oと同一の構造の結晶相(蛍光体相)以外の結晶相、すなわち、不純物相は含ま
2 4
れていないことがわかる。
[0318] なお、実施例 1—1〜1 6は所定のフラックスを添加して焼成した蛍光体であって、 得られた蛍光体の粒子形状は球形に近い。これに対して比較例 I 1はフラックスを まったく加えない場合、比較例 I 4はフラックスとして CaFのみを加えた場合、比較 例 1— 2, I 3は CaClのみをフラックスとして加えた場合である。
また、図 5に、実施例 I 1で得られた蛍光体の発光スペクトルを示す。
[0319] [表 4]
[表 4 : フラックス使用量及び発光特性]
Figure imgf000080_0001
[0320] [表 5]
Figure imgf000081_0001
[0321] [I 3·実施例 I 7:白色 LED]
実施例 I 1で得られた緑色蛍光体と赤色蛍光体 Ca Eu AlSiNとを用い.
0. 992 0.008 3 以下のような手順により、図 2(b)に示す白色発光装置を作製した。
[0322] 第1の発光体としては455〜46011111の波長で発光する青色1^:0〔22〕(Cree社製 C460— MB290— S0100;MBグレード、光出力 8· 0-11. OmW)を用レヽた。この 青色 LED〔22〕を、フレーム〔24〕の凹部の底の端子〔27〕に、接着剤として銀ペース トを使ってダイボンディングした。次に、ワイヤとして直径 25 mの金線〔25〕を使用し て青色 LED〔22〕とフレーム〔24〕の電極〔26〕とを結線した。
[0323] 上記 2種の蛍光体(緑色蛍光体及び赤色蛍光体)の混合蛍光体とシリコーン樹脂( 東レダウ社製 JCR6101UP)とを以下の比率で良く混合し、この混合蛍光体とシリコ ーン樹脂との混合物(蛍光体含有組成物)を、上記フレーム〔24〕の凹部内に注入し た。
緑色蛍光体:赤色蛍光体:= 89 : 11 (重量比)
蛍光体合計:シリコーン樹脂 = 7 : 100 (重量比)
これを 150°Cで 2時間保持し、シリコーン樹脂を硬化させることにより、蛍光体含有 部〔23〕を形成して表面実装型白色発光装置を得た。なお、本実施例の説明におい て、図 2 (b)に対応する部位の符号を〔〕内に示す。
[0324] 製造した表面実装型白色発光装置について、発光スペクトルを測定した。その結 果を図 6に示す。
[0325] [1-4.走査型電子顕微鏡による観察]
比較例 I 1で製造した蛍光体を、走査型電子顕微鏡により観察した。観察された 像を写した図面代用写真を図 7に示す。
また、比較例 I 4で製造した蛍光体を、走査型電子顕微鏡により観察した。観察さ れた像を写した図面代用写真を図 8に示す。
図 7, 8から分かるように、これらの比較例で製造した蛍光体では、蛍光体の粒子が 融着して不定形になって!/、ること力 S分力、る。
[0326] さらに、比較例 I 3で製造した蛍光体を、走査型電子顕微鏡により観察した。観察 された像を写した図面代用写真を図 9に示す。図 9から分かるように、比較例 I 3で 製造した蛍光体は、細長!/、粒子形状を有して!/、ること力 S分力、る。
[0327] これに対して、実施例 I 5, I 6で製造した蛍光体を、それぞれ、走査型電子顕 微鏡により観察した。観察された像を写した図面代用写真を図 10 (a) ,図 10 (b)に示 す。なお、図 10 (a)は実施例 I 5の蛍光体に対応し、図 10 (b)は実施例 I 6の蛍 光体に対応する。これらの図 10 (a) ,図 10 (b)から分かるように、本発明の蛍光体で は、ほとんどの粒子が粒子同士の融着がなぐ単粒子として存在していることが分か
[0328] [実施例 I 8〜1 12]
購入した 115gの共沈酸化物(Sc Ce ) Oに Sc Oを 1035gカロえて、良く
1. 9336 0. 0664 2 3 2 3
混合した。得られた混合物を Scと Ceのモル比率が 1. 9934 : 0. 0066の原料酸化物 、すなわち、(Sc Ce ) O (式量 140· 2)とみなした。
1. 9934 0. 0066 2 3
[0329] Ca、 Sr、 Sc、 Ce、 Zn及び Kの比率力 S、表 6に示した仕込み組成の比率となるよう、 CaCO、 SrCO、 ZnO、 K CO、及び上記の原料酸化物を秤量し、よく混合した。
3 3 2 3
調合モル比と原料の総重量は表 6に示した通りである。得られた原料混合物をアルミ ナルツボに入れて、空気雰囲気下、 1400°Cで 5時間加熱した。得られた焼成物に、 CaCl、 Li PO及び KC1を表 6に示した比率で加え、乾式で良く粉砕、及び混合を
2 3 4
行った。得られた混合物をアルミナルツボに入れ、大気圧の水素含有窒素ガス(窒素 :水素 = 96 : 4 (体積比))を流通させながら、 1450°Cで、 12時間加熱した。
[0330] 得られた焼成物を、冷却してから取り出し、粗く粉砕した後、直径 3mmのアルミナ ボール、 0. 5mol/lの HC1とともにガラス容器に入れ、ボールミル処理(60rpm、 4 時間)を行った。アルミナボールと焼成物のスラリーを分離させた後、このスラリーを、 NXX25ナイロンメッシュ(オープニング 63ミクロン)を通過させることにより、粗大粒子 を除去した。このスラリーに HCl (lmol/l)を加え、撹拌し、所定の時間だけ静置し た後、上澄み液を排出した。ここで言う所定の時間とは、 6 πι以上の粒子が沈降す るのに必要な時間(スト一タスの法則で計算される。 )である。
[0331] このスラリーに、さらに HCl (lmol/l)を加えて、上記の撹拌、静置、及びデカンテ ーシヨン(上澄み液の排出)の操作を 2回繰り返した。ついで、上澄み液の電導度が 5 mS/m以下になるまで、 HC1のかわりに水を使用して、同様の操作を繰り返した。そ こに、リン酸アンモニゥム水溶液を加え、ついで、硝酸カルシウムの水溶液を加えて、 カルシウムリン酸塩コートを蛍光体表面に形成させた。最後に、吸引濾過を行うことに よりスラリーを脱水した。これを 120°Cの乾燥器で 10時間乾燥させた。得られた粉体 を、 NXX13ナイロンメッシュ(オープニング 100 m)を通過させ、蛍光体を得た。得 られた蛍光体について、前述の方法により特性を測定し、表 6に示した。 [0332] [表 6]
[表 6 ]
Figure imgf000084_0001
[0333] また、得られた蛍光体つレ、て SEM写真を撮影した。その写真から、前述の方法に より、粒子の平均アスペクト比と、アスペクト比が 3以下の粒子の比率を計算した。また 、前述の方法により、粒度特性(重量メジアン径 D 及び QD)、単粒子率、及び、円 形度が 85%未満である粒子の割合も測定した。その結果を表 7に併せて示す。実施 例 I 8〜1 12の蛍光体は、何れもアスペクト比が 3以下の割合が高ぐ本発明の蛍 光体に該当することがわかる。
[0334] [表 7]
[表 7 ]
Figure imgf000085_0001
[0335] 実施例 1— 9と実施例 1—10の結果から、 CaCl、 Li P〇、及び KC1に加えて、さら
2 3 4
に ΖηΟを添加することにより、粒径(重量メジアン径)が大きくなることがわかる。また、 実施例 I 9と実施例 I 11の結果から、 CaCl、 Li PO、及び KC1に加えて、一次
2 3 4
焼成前に K COを添加することによつても粒径が大きくなることがわかる。さらに、実
2 3
施例 1—11と実施例 I 12の結果により、 Srの仕込み量を増やすと粒径が大きくなる 傾向にあることがわかる。
また、実施例 I— 8〜1— 12の結果から、蛍光体の重量メジアン径が大きいほど、輝 度や発光ピーク強度が高くなる傾向にあることがわかる。よって、 ZnOや、 K C〇を
2 3 添加すると、結晶成長が促進され、粒径が大きくなり、その結果、輝度や発光ピーク 強度も向上するものと考えられる。
[0336] [実施例 I 13〜1 25] 原料の仕込み組成、及びフラックスとして添加する化合物の比率を表 6に示した値 となるようにしたこと以外は、実施例 1- 8と同様の条件で蛍光体を製造した。得られた 蛍光体について前述の方法により特性を測定し、表 6及び表 7に示した。
実施例 1—13と実施例 1—14の結果から、 CaCl、 Li PO、及び KC1に加えて、 Sr
2 3 4
、及び Znを添加することにより粒径(重量メジアン径)が大きくなり、輝度が向上してい ること力 Sわ力、る。また、実施例 1—14と実施例 1—15の結果から、さらに、 K COを添
2 3 加すると、さらに粒径が大きくなることがわかる。実施例 1—15と実施例 1—16の結果 から、 KC1を添加した方力 粒径がより大きくなる傾向にあることがわかる。
また、実施例1 17〜1 24は、 Sr、 K CO、及び ZnOを添加した実施例であり、
2 3
いずれも輝度等の発光特性に優れ、かつ、アスペクト比も小さい優れた蛍光体が得 られている。
[0337] 以上の結果により、 Sr、 K CO
2 3、 ZnOをそれぞれ原料中に単独で添加しても粒径 が大きくなり、輝度が向上するという効果が得られると考えられる力、 Sr、 K CO、及
2 3 び ZnOからなる群から選ばれる 2種類又は 3種類を原料に混合すると、さらに粒径が 大きくなり、輝度が向上する傾向にあることがわかる。
[0338] 得られた蛍光体のうち、実施例 I 20、 I 23、及び I 25の蛍光体について、それ に含まれる微量元素量を GD— MS (グロ一放電質量分析法)により測定した。その 結果を表 8及び表 9に示す。
[0339] [表 8]
ほ 8 ]
Figure imgf000086_0001
[0340] [表 9] ほ 9 ]
Figure imgf000087_0001
[0341] 得られた蛍光体ついて SEM写真を撮影した。その写真から、前述の方法により、 粒子の平均アスペクト比と、アスペクト比が 3以下の粒子の比率等を計算した。その結 果を表 7に併せて示す。実施例 I 13〜1 25の蛍光体は、何れもアスペクト比が 3 以下の割合が高ぐ本発明の蛍光体に該当することがわかる。
[0342] なお、実施例 I 20、 I 22、及び I 24の蛍光体の SEM写真を表す図面代用写 真を、図 11〜; 13として掲載した。図 11〜; 13から、蛍光体の粒子が、図 7〜9と比較し て球状に近ぐ分散性に優れた蛍光体であることがわかる。このような蛍光体は、例え ば、前述の液体媒体中で配列しやすぐ実用的である。
[0343] また、上記実施例及び比較例の蛍光体の物体色を、上述した方法により測定した。
結果を下記表 10に示す。
[表 10]
[表 1 o ]
Figure imgf000088_0001
[0344] [実施例 I 26〜1 34]LEDの実施例
緑色蛍光体として、実施例 1— 20、 I 23、または 1— 24で得られた蛍光体と、赤色 蛍光体として、 Ca Eu AlSiN (以下、蛍光体 (A)と称する場合がある。 )、ま
0. 992 0. 008 3
たは Sr Ca Eu AlSiN (以下、蛍光体 (B)と称する場合がある。)を用いて
0. 792 0. 2 0. 008 3
、以下のような手順により、白色発光装置を作製した。なお、 Ca Eu AlSiN
0. 992 0. 008 3 は、 Electrochemical and Solid— state Letters, vol. 9 , No. 4, pp . H22-H25 (2006)を参考にして合成したものを用いた。 Sr Ca Eu Al
0. 792 0. 2 0. 008
SiNは、 WO2006106948 (Al)を参考にして合成したものを用いた。
3
[0345] 第1の発光体としては4551 111〜4601 111の波長で発光する青色1^^〔22〕 (Cree 社製 C460— EZ)を用いた。この青色 LED〔22〕を、フレーム〔24〕の凹部の底の端 子〔27〕に、接着剤として銀ペーストを使ってダイボンディングした。次に、ワイヤとし て直径 25 μ mの金線〔25〕を使用して青色 LED〔22〕とフレーム〔24〕の電極〔26〕と を結線した。
[0346] 上記 2種の蛍光体 (緑色蛍光体及び赤色蛍光体)の混合蛍光体とシリコーン樹脂( 東レダウ社製 JCR6101UP)とを表 11に示した比率で良く混合し、この蛍光体—シ リコーン樹脂混合物(蛍光体含有組成物)を、上記フレーム〔24〕の凹部内に注入し た。
これを 150°Cで 2時間保持し、シリコーン樹脂を硬化させることにより、蛍光体含有 部〔23〕を形成して表面実装型白色発光装置を得た。なお、本実施例の説明におい て、図 2 (b)に対応する部位の符号を〔〕内に示す。
[0347] 得られた表面実装型発光装置を、その青色 LED (22)に 20mAの電流を通電して 駆動し、発光させたところ、いずれの実施例の発光装置においても斑のない均一な 白色光が得られた。
得られた表面実装型白色発光装置について、発光スペクトルを測定した。その結 果を図 14〜; 17に示す。得られた発光スペクトルより JIS規格に従って算出された各種 発光特性の値 (全光束、光出力(全放射束)、色度座標、色温度、色偏差、演色評価 数)を表 11に示す (全光束及び光出力(全放射束)は JIS Z 8113、色度座標は JIS
Z 8701、相関色温度及び色偏差は JIS Z 8725、演色評価数は JIS Z 8726 に基づき算出された値である)。なお、表 11において、蛍光体 (A)は Ca Eu
0. 992 0. 008
AlSiNを表し、蛍光体(B)は Sr Ca Eu AlSiNを表し、 Tcpは相関色温
3 0. 792 0. 2 0. 008 3
度(単位 K)を表し、 Duvは色偏差を表す。
このように、本発明の蛍光体を任意の赤色蛍光体と組み合わせて使用することで、 演色性の高い発光装置を得ることが出来る。
[0348] [表 11] [表 1 1 ]
Figure imgf000090_0001
[0349] [実施例群 Π]
[II 1.測定方法]
[物体色の測定方法]
実施例群 Iと同様の方法で、サンプルの物体色を測定した。
[0350] [発光スペクトル、最大発光ピーク波長及び強度、並びに、色度座標 X, yの測定方法
] 蛍光体の発光スペクトルは、 日本分光社製蛍光測定装置にて、励起光源として 15 OWキセノンランプを用い、キセノンランプの光を 10cm回折格子分光器に通し、波長 455nmの光のみを光ファイバ一を通じて蛍光体に照射した。励起光の照射により発 生した光を 25cm回折格子分光器により分光し、浜松フォト二タス社製マルチチャン ネル CCD検出器「C7041」によって 300nm〜800nmの各波長の発光強度を測定 し、パーソナルコンピュータによる感度補正等の信号処理を経て発光スペクトルを得 た。
[0351] [最大発光ピーク波長及び強度]
実施例群 Iと同様の方法で、最大発光ピーク波長及び強度を測定した。
[0352] [色度座標]
実施例群 Iと同様の方法で、色度座標を測定した。
[0353] [温度特性の測定方法]
発光スペクトル測定装置として大塚電子製 MCPD7000マルチチャンネルスぺタト ル測定装置、ペルチェ素子による冷却機構とヒーターによる加熱機構を備えたステ ージ、及び光源として 150Wキセノンランプを備える装置を使用して測定した。
ステージに蛍光体サンプルを入れたセルを載せ、温度を 20°Cから 180°Cの範囲で 変化させた。蛍光体の表面温度が 25°C、 125°C、又は 160°Cとなったことを確認した 後で、各温度において、光源から回折格子で分光して取り出した 455nmの光で励 起して発光スペクトルを測定した。測定された発光スペクトルから輝度を求めた。輝度 の算出は、 JIS Z8724に準じた方法で、 480nm〜800nmの波長領域のデータを 用いて fiなった。
なお、温度の測定値は、放射温度計と熱電対による温度測定値を利用して適切に 補正した値を用いた。この際、 25°Cにおける輝度値に対する各温度(125°C、 160°C )における輝度値の比率をそれぞれ温度特性(Br(125) /Br (25)、Br(160) /Br ( 25) )とした。
[0354] [粒度特性の測定]
実施例群 Iと同様の方法で、粒度特性を測定した。
[0355] [円形度が 85%未満である粒子の割合の測定] 実施例群 Iと同様の方法で、円形度が 85%未満である粒子の割合を測定した。
[0356] [II- 2.製造例] Sc/Ce共沈酸化物調製
Sc O 151. 3g、 Ce (NO ) · 6Η Ο 2. 9gを 2. 2モノレ/: Lの石肖酸 1Lにカロ温しな
2 3 3 3 2
力 ¾溶解し、 Sc ' Ce混合硝酸溶液を得た。得られた硝酸溶液に 0. 5モル/ Lの蓚酸 溶液 5Lを撹拌しながら徐々に添加し、蓚酸塩を沈殿させた。得られた蓚酸塩沈殿物 を水洗した後、脱水、乾燥した後、 1000°C、大気中で焼成し、酸化物 138gを得た。 得られた酸化物を ICP— MS (誘導結合プラズマ質量分析法)により分析した結果、 組成(Sc , Ce ) Oであった。また、重量メジアン径は 10 μ mであった。この
1. 994 0. 006 3
酸化物を以後共沈酸化物と呼ぶ。
[0357] [II 3.実施例 II II 10]
実施例 II—;!〜 II— 10については、常法に従い、配合組成が CaSc O : Ceとなるよ
2 4
うに各原料を秤量した。原料化合物のうち、 Ca源としては CaCOを、 Sc源としては S
3
c Oを、 Ce源としては CeOを、それぞれ使用した。また、実施例 II II— 6, II—
2 3 2
8においては、 Sc源及び Ce源としての原料化合物は、前記の [製造例]のようにして 表 12に示す Ce含有量の Sc— Ce共沈酸化物としてから使用したが、実施例 II 7, II - 9, II— 10においては Sc O 、 CeOをそのまま使用した。
2 3 2
[0358] 秤量した原料化合物を充分混合し、蓋付きのアルミナ製ルツボに充填した。空気中 、大気圧下、 1450°Cで 1時間保持して加熱処理 (一次焼成)を行なった後、冷却し、 ルツボを炉外に取り出した。得られた焼成物にフラックスとして、リン酸リチウム(Li P
3
O )、塩化カルシウム(CaCl )、塩化カリウム(KC1)、リン酸水素カリウム(KH PO )
4 2 2 4 及び Li SO ·Η Οを表 12に示す割合(一次焼成後の焼成物に対する重量%)で加
2 4 2
え、充分混合後、アルミナ製ルツボに再度充填した。
[0359] 雰囲気加熱炉にルツボを揷入後、水素(4体積%)混合窒素雰囲気中、大気圧下、
1450°Cで、 10時間加熱後、冷却し、焼成物を取り出した。
焼成物を直径 3mmのアルミナボールと濃度 lmol/Lの HC1とともにボールミル処 理した。これを濃度 1. 3mol/Lの HC1により洗浄し、その後、水で洗浄すると同時に 水簸により微小粒子及び粗大粒子を除去した。
[0360] 実施例 II— 4において得られた蛍光体について、 X線回折パターンを測定した結果 を図 18に示す。図 18の上の図は、測定結果の生データであり、下の図の上段は、測 定結果からピーク検出を行った結果であるピークの位置と強度を示す図であり、下の 図の下段は、 JCPDS— ICDD PDF (Joint Committee on Powder Diffract ion Standards ― International Centre for Diffraction Data Powder Diffraction File;粉末 X線回折の標準チャートファイル)の 72— 1360番(CaSc
2 o )のピーク位置と強度を示す図である。下の図の上段と下段のピーク位置、および
4
、強度比がおおむね一致しているため、得られた蛍光体は、 CaFe O構造を取るこ
2 4
とが知られている CaSc Oと同一の構造をもつことがわかる。ただし、本発明の蛍光
2 4
体は、発光中心元素である Ceが添加されているため、若干の格子定数変化、結晶 欠陥の存在、構造の歪みが存在する可能性があるが、粉末 X線回折図形の比較に おいては同一構造と判断できる。さらに、下の図の下段のパターンに存在しないピー クが、下の図の上段のパターンには現れていないので、本発明の蛍光体には、 CaS c Oと同一の構造の結晶相(蛍光体相)以外の結晶相、すなわち、不純物相は含ま
2 4
れていないことがわかる。
[0361] 蛍光体を水に分散させた状態で、リン酸ナトリウム(Na PO - 12H O)と硝酸カルシ
3 4 2
ゥム(Ca (NO ) · 4Η Ο)とを加え、撹拌することによりリン酸カルシウムを蛍光体表
3 2 2
面にコートした。
150°Cで乾燥後、オープニング 50 mのナイロン篩を通して蛍光体を得た。得られ た蛍光体の重量メジアン径 D および QD、並びに円形度が 85%未満である粒子の
50
割合を測定した。また、 ICP— MSにより Ce含有量を求めた。結果を表 12にまとめた
[0362] [表 12]
Figure imgf000094_0001
また、各実施例で得られた蛍光体について、上述した方法により、発光スペクトル、 最大発光ピーク波長、最大発光ピーク強度、色度座標 X, y、物体色及び温度特性を 測定した。これらの結果を、表 13に示す。また、図 19 (a)〜図 19 (d)に、実施例 II 1 H 4で得られた蛍光体の発光スペクトルを示す。なお、図 19 (a)は実施例 II 1
、図 19 (b)は実施例 II 2、図 19 (c)は実施例 II 3、図 19 (d)は実施例 II 4にそれ ぞれ対応している。 さらに、表 13には、比較例 II— 1として、 YAG : Ce蛍光体(化成ォプトニタス社製 P4 6 -Y3)について同様に測定した結果も示す。
[0364] [表 13]
[表 1 3 : 蛍光体の光学特性」
Figure imgf000095_0001
[0365] さらに、図 20に、実施例 II 1 , II 3, II— 7及び II 9及び比較例 II 1の蛍光体の 室温(25°C)における輝度と、各温度の輝度を比較した結果を示す。
これらの結果から、 Ce濃度が 0. 003< a< 0. 01、物体色が L*、 a*、 b*表色系に おいて 100≤L* 108、 - 30≤a*≤- 18, 50≤b*≤65を満足する範囲で温度 特性が特に優れていることが分る。また、従来使用されてきた YAG : Ce (比較例 II 1)に比べ、本発明の蛍光体の温度による輝度低下が少ないことも分る。
[0366] [II 4.実施例 II一;!;!〜 II— 13]
緑色蛍光体として実施例 II 1又は実施例 II 4で得られた蛍光体を用い、赤色蛍 光体として赤色蛍光体 Ca Eu AlSiN又は(Sr Ca Eu )AlSiNを
0. 992 0. 008 3 0. 792 0. 2 0. 008 3 用レ、、これらを表 14に表わすように組み合わせることによって、以下の手順で図 21に 示す白色発光装置を作製した。
[0367] [表 14] [表 1 4 :緑色蛍光体と赤色蛍光体の組み合わせ]
Figure imgf000096_0001
[0368] 第1の発光体としては455 4601 111の波長で発光する青色1^:0〔121〕(Cree社 製 C460— MB290— S0100 ; MBグレード、光出力 8. 0—11. OmW)を用いた。こ の青色 LED〔121〕を、フレーム〔123〕の凹部の底の電極の端子〔126〕に、接着剤と して銀ペーストを使ってダイボンディングした。次に、ワイヤとして直径 25 mの金線 〔124〕を使用して青色 LED〔121〕とフレーム〔123〕の電極〔125〕とを結線した。
[0369] 上記 2種の蛍光体(緑色蛍光体及び赤色蛍光体)の混合蛍光体とシリコーン樹脂( 東レダウ社製 JCR6101UP)とを以下の比率で良く混合し、この混合蛍光体とシリコ ーン樹脂との混合物(蛍光体含有組成物)を、上記フレーム〔123〕の凹部内に注入 した。
緑色蛍光体:赤色蛍光体:= 89 : 11 (重量比)
蛍光体合計:シリコーン樹脂 = 7 : 100 (重量比)
これを 150°Cで 2時間保持し、シリコーン樹脂を硬化させることにより、蛍光体含有 部〔122〕を形成して表面実装型白色発光装置を得た。なお、本実施例の説明にお V、て、図 21に対応する部位の符号を〔〕内に示す。
[0370] 製造した表面実装型白色発光装置それぞれについて、発光スペクトルを測定した 。その結果を図 22に示す。
また、これらの白色 LEDの相関色温度、色偏差、色度座標、相対輝度、平均演色 指数 Ra、及び特殊演色指数 R1 R15を、それぞれ JISZ8726により求めた。その結 果を表 15に示す。図 22及び表 15から分るように、実施例 Π— 11 Π— 13の白色発 光装置は、 500nm付近から 650nm付近までフラットな発光スペクトルを示す。また、 平均演色評価指数 Raが高いことが分る。
[0371] [表 15] [表 1 5 :演色性等]
Figure imgf000097_0001
産業上の利用可能性
[0372] 本発明は光を用いる任意の分野において用いることができ、例えば屋内及び屋外 用の照明などのほか、携帯電話、家庭用電化製品、屋外設置用ディスプレイ等の各 種電子機器の画像表示装置などに用いて好適である。
[0373] 以上、本発明を特定の態様を用いて詳細に説明したカ、本発明の意図と範囲を離 れることなく様々な変更が可能であることは当業者に明らかである。
なお本出願は、 2006年 9月 15日付で出願された日本特許出願(特願 2006— 25 1826)、 2006年 9月 15日付で出願された日本特許出願(特願 2006— 251827)、 及び、 2007年 4月 27日付で出願された日本特許出願(特願 2007— 119627)に基 づいており、その全体が引用により援用される。

Claims

請求の範囲 [1] 下記式 [1]に表わされる元素の組成比が、下記式 [1]を満足するとともに、 U、 Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 CdBi、及び Tiからなる群より選択される少なくとも 2種の元素を含有する ことを特徴とする、蛍光体。 M1 M2 M3 O [1] a b e d
(ただし、式 [1]中、
M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm, 及び Ybからなる群より選択される少なくとも 1種の元素、
M2は主として 2価の金属元素、
M3は主として 3価の金属元素、
aは 0.0001≤a≤0.2の範囲の数、
bは 0.8≤b≤l.2の範囲の数、
cは 1.6≤c≤2.4の範囲の数、
dは 3.2≤d≤4.8の範囲の数
をそれぞれ表わす。 )
[2] 式 [1']に表わされる元素の組成比力 式 [1']を満足する
ことを特徴とする蛍光体。
M1 M2 M3 O [1']
a b e d
(ただし、式 [1']中、
M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm, 及び Ybからなる群から選択される少なくとも 1種の元素、
M2は主として 2価の金属元素、
M3は主として 3価の金属元素、
aは 0.003<a<0.01の数、
bは 0.8≤b≤l.2の数、
cは 1.6≤c≤2.4の数、
dは 3.2≤d≤4.8の数 をそれぞれ表わす。 )
[3] M2が、 Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群力、ら選択される少なくとも 1種の 金属元素であり、
M3が、 Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる群から選択される少なく とも 1種の金属元素である
ことを特徴とする請求項 1又は請求項 2に記載の蛍光体。
[4] 下記式 [2]及び/又は式 [3]を満足する
ことを特徴とする請求項;!〜 3のいずれか 1項に記載の蛍光体。
Br (125) /Br (25)≥0. 7 [2]
Br (160) /Br (25)≥0. 5 [3]
(前記式 [2]、 [3]において、
Br (25)は、 25°Cにおいて、該蛍光体を波長 455nmの光で励起して得られる輝度 であり、
Br (125)は、 125°Cにおいて、該蛍光体を波長 455nmの光で励起して得られる輝 度であり、
Br (160)は、 160°Cにおいて、該蛍光体を波長 455nmの光で励起して得られる輝 度である。 )
[5] 室温下で発光し、
CaFe O型結晶構造の結晶相を有し、かつ、
2 4
平均円形度が 85%未満である蛍光体粒子の割合が 10個数%以下である ことを特徴とする蛍光体。
[6] 重量基準粒度分布曲線にお!/、て積算値が 25%及び 75%の時の粒径値をそれぞ れ D 、 D と表記した場合に「QD= (D -D ) / (D +D )」で表わされる値 QD
25 75 75 25 75 25
が 0. 24以下である
ことを特徴とする請求項 5に記載の蛍光体。
[7] 室温下で発光し、
CaFe O型結晶構造の結晶相を有し、
2 4
重量メジアン径 D 力 ^Ο μ ΐη以上であり、かつ、 重量基準粒度分布曲線にお!/、て積算値が 25 %及び 75 %の時の粒径値をそれぞ れ D 、 D と表記した場合に「QD= (D -D ) / (D +D )」で表わされる値 QD が 0. 27以下である
ことを特徴とする蛍光体。
[8] 485nm〜555nmの波長範囲に最大発光ピークを有し、
CaFe O型結晶構造の結晶相を有し、かつ、
アスペクト比が 3以下の粒子が全体の 60個数%以上を占める
ことを特徴とする蛍光体。
[9] 物体色力 L*、 a*、b*表色系において、 100≤L*≤110、— 30≤a*≤— 15、及 び 45≤b*≤70を満足し、且つ、
波長 455nmの光で励起したときの発光色の CIE標準表色系における色度座標 及び y力 0. 320≤x≤0. 360及び 0. 570≤y≤0. 600を満足する
ことを特徴とする請求項 5〜8のいずれか 1項に記載の蛍光体。
[10] Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybからなる群から選択される少なくとも 1種の元素と、
Mg、 Ca、 Zn、 Sr、 Cd、及び Baからなる群から選択される少なくとも 1種の金属元 素と、
Al、 Sc、 Ga、 Y、 Ιη、 La、 Gd、 Yb、及び Luからなる群から選択される少なくとも 1種 の金属元素とを含む
ことを特徴とする請求項 5〜9のいずれか 1項に記載の蛍光体。
[11] 式 [1]に表わされる元素の組成比が、式 [1]を満足する
ことを特徴とする請求項 5〜; 10のいずれか 1項に記載の蛍光体。
M1 M2 M3 O [1]
(ただし、式 [1]中、
M1は Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、 及び Ybからなる群から選択される少なくとも 1種の元素、
M2は主として 2価の金属元素、
M3は主として 3価の金属元素、 aは 0. 0001≤a≤0. 2の数、
bは 0. 8≤b≤l . 2の数、
cは 1. 6≤c≤2. 4の数、
dは 3. 2≤d≤4. 8の数
をそれぞれ表わす。 )
[12] Li, Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 Cd、
Bi、及び Tiからなる群より選択される少なくとも 2種の元素を lppm以上 5000ppm以 下の濃度範囲で含有する
ことを特徴とする請求項;!〜 11の!/、ずれか 1項に記載の蛍光体。
[13] Li、 K、 Ρ及び CIからなる群より選択される少なくとも 2種の元素を、 lppm≤Li≤50 Oppm、 lppm≤K≤500ppm, Oppm< P≤ lOOOppm,及び Oppmく Cl≤ ΙΟΟΟρ pmの濃度範囲で含有する
ことを特徴とする、請求項;!〜 12のいずれか 1項に記載の蛍光体。
[14] Zn、 Ga、 Ge、 In、及び Snからなる群より選ばれる 1種以上の元素を、 lppm以上 5 OOppm以下の範囲で含有する
ことを特徴とする、請求項;!〜 12のいずれか 1項に記載の蛍光体。
[15] M1が少なくとも Ceを含有し、 M2が少なくとも Ca及び/又は Srを含有し、 M3が少な くとも Scを含有する
ことを特徴とする、請求項 1、請求項 2、又は請求項 11に記載の蛍光体。
[16] Li, Na、 K、 Rb、 Cs、 P、 Cl、 F、 Br、 I、 Zn、 Ga、 Ge、 In、 Sn、 Ag、 Au、 Pb、 Cd、
Bi、及び Tiからなる群より選択される少なくとも 2種の元素力 S、蛍光体の結晶相中に 含有されている
ことを特徴とする、請求項;!〜 15のいずれか 1項に記載の蛍光体。
[17] 前記蛍光体を重量比で 10倍の水に分散後、 1時間静置して得られる上澄み液の 電気伝導度が 10mS/m以下である
ことを特徴とする請求項;!〜 16のいずれか 1項に記載の蛍光体。
[18] 波長 455nmの光で励起した 25°Cでの発光スペクトルにおいて、 500nm以上 535 nm以下の波長範囲に最大発光ピークを有する ことを特徴とする請求項;!〜 17のいずれか 1項に記載の蛍光体。
[19] 請求項 1〜; 18のいずれか 1項に記載の蛍光体の製造方法であって、
アルカリ土類金属のハロゲン化物、アルカリ金属のリン酸塩、アルカリ金属のハロゲ ン化物、及びアルカリ金属の硫酸塩からなる群より選択される 2種以上を含む原料を 加熱する工程を有する
ことを特徴とする、蛍光体の製造方法。
[20] 前記原料が、
加熱により融点または昇華点が 1200°C以下の金属を生成する化合物、及び/又 は、加熱によりアルカリ金属の酸化物を生成する化合物を含有する
ことを特徴とする、請求項 19に記載の蛍光体の製造方法。
[21] 前記原料が、 CaCl、 Li PO、 KH PO、 KC1、及び Li SOからなる群より選択さ
2 3 4 2 4 2 4
れる 2種以上を含有する
ことを特徴とする、請求項 19又は請求項 20に記載の蛍光体の製造方法。
[22] 前記原料が、 ZnO、 Ga O、 GeO、 In O、 SnO、及び K CO力、らなる群より選
2 3 2 2 3 2 2 3
ばれる 1種以上を含有する
ことを特徴とする、請求項 19〜21のいずれか 1項に記載の蛍光体の製造方法。
[23] 前記原料が、 ZnO及び/又は K COを含有する
2 3
ことを特徴とする、請求項 22に記載の蛍光体の製造方法。
[24] 請求項;!〜 18のいずれか 1項に記載の蛍光体を製造する方法であって、
前記蛍光体を構成する少なくとも 2種の元素を含有し、かつ、共沈により得られた化 合物を加熱することにより得られた共沈酸化物を原料として使用する
ことを特徴とする蛍光体の製造方法。
[25] 前記蛍光体を構成する少なくとも 2種の元素を含有し、かつ、共沈により得られた化 合物を加熱することにより得られた共沈酸化物を前記原料として使用する ことを特徴とする請求項 19〜23のいずれ力、 1項に記載の蛍光体の製造方法。
[26] 前記蛍光体を構成する少なくとも 2種の元素力 Sc及び Ceである
ことを特徴とする請求項 24又は請求項 25に記載の蛍光体の製造方法。
[27] 請求項;!〜 18のいずれか 1項に記載の蛍光体と、 液体媒体とを含有する
ことを特徴とする、蛍光体含有組成物。
[28] 第 1の発光体と、該第 1の発光体からの光の照射によって可視光を発する第 2の発 光体とを備え、
該第 2の発光体が、請求項 1〜; 18の何れ力、 1項に記載の蛍光体を 1種以上、第 1の 蛍光体として含有する
ことを特徴とする、発光装置。
[29] 前記第 2の発光体が、前記第 1の蛍光体とは発光ピーク波長の異なる 1種以上の蛍 光体を、第 2の蛍光体として含有する
ことを特徴とする、請求項 28記載の発光装置。
[30] 前記第 1の発光体が、 420nm以上 500nm以下の範囲に発光ピークを有し、 前記第 2の発光体が、前記第 2の蛍光体として、 570nm以上 780nm以下の波長 範囲に発光ピークを有する少なくとも一種の蛍光体を含有する
ことを特徴とする、請求項 29記載の発光装置。
[31] 前記第 1の発光体が、 300nm以上 420nm以下の範囲に発光ピークを有し、 前記第 2の発光体が、前記第 2の蛍光体として、 420nm以上 490nm以下の波長 範囲に発光ピークを有する少なくとも一種の蛍光体と、 570nm以上 780nm以下の 波長範囲に発光ピークを有する少なくとも一種の蛍光体とを含有する
ことを特徴とする、請求項 29記載の発光装置。
[32] 請求項 28〜31のいずれ力、 1項に記載の発光装置を光源として備える
ことを特徴とする、画像表示装置。
[33] 請求項 28〜31のいずれ力、 1項に記載の発光装置を光源として備える
ことを特徴とする、照明装置。
PCT/JP2007/067902 2006-09-15 2007-09-14 Substance luminescente, son procédé de fabrication, composition contenant la substance luminescente, dispositif émettant de la lumière, dispositif d'affichage d'images et dispositif d'éclairage WO2008032812A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07807309A EP2060616A4 (en) 2006-09-15 2007-09-14 FLUORESCENT, MANUFACTURING METHOD, FLUORESCENT COMPOSITION, LIGHTING DEVICE, PICTURE INDICATOR AND LIGHTING DEVICE
US12/403,405 US8021576B2 (en) 2006-09-15 2009-03-13 Phosphor and production method thereof, and phosphor-containing composition, light emitting device, image display and lighting system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-251826 2006-09-15
JP2006251826 2006-09-15
JP2006-251827 2006-09-15
JP2006251827 2006-09-15
JP2007119627 2007-04-27
JP2007-119627 2007-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/403,405 Continuation US8021576B2 (en) 2006-09-15 2009-03-13 Phosphor and production method thereof, and phosphor-containing composition, light emitting device, image display and lighting system

Publications (1)

Publication Number Publication Date
WO2008032812A1 true WO2008032812A1 (fr) 2008-03-20

Family

ID=39183864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067902 WO2008032812A1 (fr) 2006-09-15 2007-09-14 Substance luminescente, son procédé de fabrication, composition contenant la substance luminescente, dispositif émettant de la lumière, dispositif d'affichage d'images et dispositif d'éclairage

Country Status (5)

Country Link
US (1) US8021576B2 (ja)
EP (1) EP2060616A4 (ja)
JP (1) JP5493258B2 (ja)
TW (1) TWI414583B (ja)
WO (1) WO2008032812A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163555A (ja) * 2009-01-16 2010-07-29 Nichia Corp 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置
CN103228825A (zh) * 2010-12-06 2013-07-31 皇家飞利浦电子股份有限公司 增加激光材料中Ce3+含量的方法
JP2013535531A (ja) * 2010-07-14 2013-09-12 インテマティックス・コーポレーション 一般用途及びバックライト照明用途の緑色放出ガーネット系蛍光体
CN113340865A (zh) * 2021-06-09 2021-09-03 浦江县富盛塑胶新材料有限公司 一种橡皮泥中硼砂含量检测方法和材料
US11339325B2 (en) * 2019-03-29 2022-05-24 Denka Company Limited Phosphor particle, composite, light-emitting device, and method for producing phosphor particle

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032682B2 (ja) * 2001-08-28 2008-01-16 三菱化学株式会社 蛍光体
US7830472B2 (en) * 2004-04-26 2010-11-09 Mitsubishi Chemical Corporation Blue color composition for color filter, color filter, and color image display device
WO2006008935A1 (ja) * 2004-06-30 2006-01-26 Mitsubishi Chemical Corporation 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
US7994702B2 (en) 2005-04-27 2011-08-09 Prysm, Inc. Scanning beams displays based on light-emitting screens having phosphors
EP1990396A4 (en) * 2006-02-28 2011-05-11 Mitsubishi Chem Corp PHOSPHOROLE MATERIAL AND METHOD FOR PRODUCING AN ALLOY FOR PHOSPHOROUS RAW MATERIAL
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
JP5578597B2 (ja) 2007-09-03 2014-08-27 独立行政法人物質・材料研究機構 蛍光体及びその製造方法、並びにそれを用いた発光装置
DE102007056342A1 (de) * 2007-11-22 2009-05-28 Merck Patent Gmbh Oberflächenmodifizierte Konversionsleuchtstoffe
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
JP5641384B2 (ja) 2008-11-28 2014-12-17 独立行政法人物質・材料研究機構 表示装置用照明装置及び表示装置
JP5824676B2 (ja) * 2009-09-29 2015-11-25 パナソニックIpマネジメント株式会社 Led照明光源及び照明装置
US7998526B2 (en) * 2009-12-01 2011-08-16 Bridgelux, Inc. Method and system for dynamic in-situ phosphor mixing and jetting
WO2011078239A1 (ja) 2009-12-22 2011-06-30 三菱化学株式会社 半導体発光装置用樹脂成形体用材料
JP2011238811A (ja) * 2010-05-12 2011-11-24 Konica Minolta Opto Inc 波長変換素子および発光装置
KR100984273B1 (ko) 2010-05-25 2010-10-01 충남대학교산학협력단 질화물 형광체, 이의 제조방법 및 상기 형광체를 포함하는 발광 소자
JP5238753B2 (ja) * 2010-05-31 2013-07-17 株式会社日立製作所 照明装置
WO2011161580A1 (en) * 2010-06-22 2011-12-29 Koninklijke Philips Electronics N.V. Laser
US7976727B1 (en) * 2010-08-25 2011-07-12 The United States Of America As Represented By The Secretary Of The Air Force Chromium-doped zinc-nitro-antimony-gallium-tellurium infrared phosphors
EP2428543B1 (en) 2010-09-08 2013-05-08 Kabushiki Kaisha Toshiba Light emitting device
US9673363B2 (en) 2011-01-31 2017-06-06 Cree, Inc. Reflective mounting substrates for flip-chip mounted horizontal LEDs
JP2012177551A (ja) * 2011-02-25 2012-09-13 Yokogawa Electric Corp 分光測定装置、測定システムおよび分光測定方法
DE112012001414B4 (de) * 2011-03-24 2017-07-13 Panasonic Intellectual Property Management Co., Ltd. Organisches Elektrolumineszenz-Element, Beleuchtungskörper und Lebensmittellagervorrichtung
WO2012128117A1 (ja) * 2011-03-24 2012-09-27 パナソニック株式会社 有機エレクトロルミネッセンス素子、照明器具、及び食品保管装置
JP5105132B1 (ja) * 2011-06-02 2012-12-19 三菱化学株式会社 半導体発光装置、半導体発光システムおよび照明器具
US8814621B2 (en) 2011-06-03 2014-08-26 Cree, Inc. Methods of determining and making red nitride compositions
US8906263B2 (en) * 2011-06-03 2014-12-09 Cree, Inc. Red nitride phosphors
TWI479011B (zh) 2011-09-14 2015-04-01 Ind Tech Res Inst 螢光材料與紫外光發光裝置
JP2013064954A (ja) * 2011-09-20 2013-04-11 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、画像形成方法及び画像形成装置
CN103874879B (zh) * 2011-10-20 2018-07-24 飞利浦灯具控股公司 包括灯罩的照明单元及其组合体和使用
WO2013102222A1 (en) 2011-12-30 2013-07-04 Intematix Corporation Nitride phosphors with interstitial cations for charge balance
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
US9318669B2 (en) * 2012-01-30 2016-04-19 Cree, Inc. Methods of determining and making red nitride compositions
EP2626401B1 (en) * 2012-02-10 2016-10-05 Rolex Sa Novel long decay phosphors
JP5845965B2 (ja) * 2012-02-24 2016-01-20 富士ゼロックス株式会社 静電荷像現像用透明トナー、静電荷像現像剤、トナーカートリッジ、画像形成方法及び画像形成装置
EP2860235B1 (en) * 2012-06-08 2017-09-06 Denka Company Limited Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
TWI448538B (zh) 2012-10-23 2014-08-11 Ind Tech Res Inst 螢光材料與紫外光發光裝置
TWI494413B (zh) 2012-12-22 2015-08-01 Chi Mei Corp 螢光體與發光裝置
TWI486424B (zh) * 2013-03-27 2015-06-01 Chi Mei Corp 螢光體粒子與發光裝置
TWI464238B (zh) 2013-03-27 2014-12-11 Chi Mei Corp 螢光體與發光裝置
JP2014203932A (ja) * 2013-04-03 2014-10-27 株式会社東芝 発光装置
KR20140129770A (ko) * 2013-04-30 2014-11-07 삼성디스플레이 주식회사 플라즈마 코팅 시스템용 타블렛, 이의 제조 방법, 및 이를 이용한 박막의 제조 방법
KR20150007885A (ko) * 2013-07-12 2015-01-21 엘지이노텍 주식회사 형광체 및 이를 구비한 발광 소자
EP3092284A1 (de) * 2014-01-09 2016-11-16 Merck Patent GmbH Leuchtstoffe auf basis von europium-dotierten erdalkalimetall-silicooxynitriden
TWI575778B (zh) * 2014-05-07 2017-03-21 新世紀光電股份有限公司 發光二極體封裝結構
TWI621284B (zh) * 2014-05-07 2018-04-11 新世紀光電股份有限公司 發光二極體封裝結構
JP6455817B2 (ja) * 2014-09-12 2019-01-23 パナソニックIpマネジメント株式会社 照明装置
US9376617B2 (en) 2014-10-23 2016-06-28 Panasonic Intellectual Property Management Co., Ltd. Fluorescent material and light-emitting device
KR102360957B1 (ko) * 2015-03-27 2022-02-11 삼성디스플레이 주식회사 발광 다이오드 패키지
JP2017017059A (ja) * 2015-06-26 2017-01-19 パナソニックIpマネジメント株式会社 照明用光源及び照明装置
TWI712187B (zh) * 2015-09-11 2020-12-01 晶元光電股份有限公司 發光元件以及其製造方法
JP6384468B2 (ja) * 2015-12-22 2018-09-05 日亜化学工業株式会社 発光装置
JP6418208B2 (ja) * 2016-08-24 2018-11-07 日亜化学工業株式会社 窒化物蛍光体及び発光装置
JP6865823B2 (ja) * 2017-06-30 2021-04-28 シャープ株式会社 蛍光体層組成物、蛍光部材、光源装置および投影装置
CN115244004A (zh) * 2020-03-31 2022-10-25 松下知识产权经营株式会社 卤化物的制造方法
CN113481009B (zh) * 2021-07-02 2022-08-30 山东大学 一种Cr3+和Yb3+共掺红外发光材料及制备方法和应用

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209989A (ja) 1989-02-09 1990-08-21 Nichia Chem Ind Ltd 極小球形の二酸化ケイ素を付着した蛍光体の製造方法
JPH02233794A (ja) 1989-03-08 1990-09-17 Nichia Chem Ind Ltd 球形の二酸化ケイ素を付着した蛍光体の製造方法
JPH03231987A (ja) 1989-12-26 1991-10-15 Kasei Optonix Co Ltd 螢光体及びその製造方法
JPH06314593A (ja) 1993-03-05 1994-11-08 Japan Synthetic Rubber Co Ltd エレクトロルミネッセンス素子
JP2002223008A (ja) 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv 発光素子
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2005082788A (ja) 2003-09-11 2005-03-31 Nichia Chem Ind Ltd 発光装置、発光素子用蛍光体および発光素子用蛍光体の製造方法
JP2006028458A (ja) 2004-07-21 2006-02-02 Matsushita Electric Ind Co Ltd 蛍光体の製造方法、蛍光体、蛍光ランプ及び照明器具
JP2006047274A (ja) 2004-07-07 2006-02-16 East Japan Railway Co 経路誘導システム
JP2006047277A (ja) 2004-07-08 2006-02-16 Nitto Denko Corp 衝撃試験装置及び衝撃試験方法
JP2006045526A (ja) 2004-06-30 2006-02-16 Mitsubishi Chemicals Corp 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
JP2006176468A (ja) 2004-12-24 2006-07-06 Shin Etsu Chem Co Ltd 窒素化合物、レジスト組成物及びパターン形成方法
WO2006093015A1 (ja) * 2005-02-28 2006-09-08 Mitsubishi Chemical Corporation 蛍光体及びその製造方法並びにその応用
JP2006251826A (ja) 2006-05-29 2006-09-21 Matsushita Electric Ind Co Ltd パターン形成方法
WO2006098450A1 (ja) * 2005-03-18 2006-09-21 Mitsubishi Chemical Corporation 発光装置、白色発光装置、照明装置及び画像表示装置
JP2006251827A (ja) 1994-12-09 2006-09-21 Unaxis Balzers Ag 回折格子および光導体の製造方法
JP2007019459A (ja) 2005-06-06 2007-01-25 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007112973A (ja) 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007112975A (ja) 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007119627A (ja) 2005-10-28 2007-05-17 Masamitsu Nagahama 可燃性液体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689852B2 (ja) * 1993-06-02 1997-12-10 双葉電子工業株式会社 蛍光表示管用蛍光体
DE69617850T2 (de) * 1995-04-14 2002-10-10 Kabushiki Kaisha Tokyo Kagaku Kenkyusho, Yamato Leuchtstoff mit nachleuchtzeitcharakteristik
US6267911B1 (en) * 1997-11-07 2001-07-31 University Of Georgia Research Foundation, Inc. Phosphors with long-persistent green phosphorescence
JP3770524B2 (ja) * 1998-12-08 2006-04-26 富士写真フイルム株式会社 テルビウム、サマリウム共付活アルカリ土類金属希土類酸化物蛍光体
US6190577B1 (en) * 1999-07-20 2001-02-20 Usr Optonix Inc. Indium-substituted aluminate phosphor and method for making the same
JP3825431B2 (ja) * 2002-09-30 2006-09-27 双葉電子工業株式会社 蛍光表示管
US7830472B2 (en) * 2004-04-26 2010-11-09 Mitsubishi Chemical Corporation Blue color composition for color filter, color filter, and color image display device
WO2006008935A1 (ja) * 2004-06-30 2006-01-26 Mitsubishi Chemical Corporation 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
TW200801158A (en) 2006-02-02 2008-01-01 Mitsubishi Chem Corp Complex oxynitride phosphor, light-emitting device using the same, image display, illuminating device, phosphor-containing composition and complex oxynitride

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209989A (ja) 1989-02-09 1990-08-21 Nichia Chem Ind Ltd 極小球形の二酸化ケイ素を付着した蛍光体の製造方法
JPH02233794A (ja) 1989-03-08 1990-09-17 Nichia Chem Ind Ltd 球形の二酸化ケイ素を付着した蛍光体の製造方法
JPH03231987A (ja) 1989-12-26 1991-10-15 Kasei Optonix Co Ltd 螢光体及びその製造方法
JPH06314593A (ja) 1993-03-05 1994-11-08 Japan Synthetic Rubber Co Ltd エレクトロルミネッセンス素子
JP2006251827A (ja) 1994-12-09 2006-09-21 Unaxis Balzers Ag 回折格子および光導体の製造方法
JP2002223008A (ja) 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv 発光素子
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2005082788A (ja) 2003-09-11 2005-03-31 Nichia Chem Ind Ltd 発光装置、発光素子用蛍光体および発光素子用蛍光体の製造方法
JP2006045526A (ja) 2004-06-30 2006-02-16 Mitsubishi Chemicals Corp 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
JP2006047274A (ja) 2004-07-07 2006-02-16 East Japan Railway Co 経路誘導システム
JP2006047277A (ja) 2004-07-08 2006-02-16 Nitto Denko Corp 衝撃試験装置及び衝撃試験方法
JP2006028458A (ja) 2004-07-21 2006-02-02 Matsushita Electric Ind Co Ltd 蛍光体の製造方法、蛍光体、蛍光ランプ及び照明器具
JP2006176468A (ja) 2004-12-24 2006-07-06 Shin Etsu Chem Co Ltd 窒素化合物、レジスト組成物及びパターン形成方法
JP2007112973A (ja) 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007112975A (ja) 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
WO2006093015A1 (ja) * 2005-02-28 2006-09-08 Mitsubishi Chemical Corporation 蛍光体及びその製造方法並びにその応用
WO2006098450A1 (ja) * 2005-03-18 2006-09-21 Mitsubishi Chemical Corporation 発光装置、白色発光装置、照明装置及び画像表示装置
JP2007019459A (ja) 2005-06-06 2007-01-25 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007119627A (ja) 2005-10-28 2007-05-17 Masamitsu Nagahama 可燃性液体
JP2006251826A (ja) 2006-05-29 2006-09-21 Matsushita Electric Ind Co Ltd パターン形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AICHE JOURNAL, vol. 44, no. 5, 1998, pages 1141
See also references of EP2060616A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163555A (ja) * 2009-01-16 2010-07-29 Nichia Corp 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置
JP2013535531A (ja) * 2010-07-14 2013-09-12 インテマティックス・コーポレーション 一般用途及びバックライト照明用途の緑色放出ガーネット系蛍光体
JP2015180741A (ja) * 2010-07-14 2015-10-15 インテマティックス・コーポレーションIntematix Corporation 一般用途及びバックライト照明用途の緑色放出ガーネット系蛍光体
CN103228825A (zh) * 2010-12-06 2013-07-31 皇家飞利浦电子股份有限公司 增加激光材料中Ce3+含量的方法
US11339325B2 (en) * 2019-03-29 2022-05-24 Denka Company Limited Phosphor particle, composite, light-emitting device, and method for producing phosphor particle
CN113340865A (zh) * 2021-06-09 2021-09-03 浦江县富盛塑胶新材料有限公司 一种橡皮泥中硼砂含量检测方法和材料
CN113340865B (zh) * 2021-06-09 2024-04-26 佛山市奇妙岛科技有限公司 一种橡皮泥中硼砂含量检测的材料及其制备方法和应用

Also Published As

Publication number Publication date
TWI414583B (zh) 2013-11-11
EP2060616A1 (en) 2009-05-20
JP5493258B2 (ja) 2014-05-14
US8021576B2 (en) 2011-09-20
US20090243467A1 (en) 2009-10-01
TW200825155A (en) 2008-06-16
EP2060616A4 (en) 2010-08-04
JP2008291203A (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5493258B2 (ja) 蛍光体及びその製造方法、並びに、発光装置
CN101379164B (zh) 荧光体及其制造方法、含荧光体的组合物、发光装置、图像显示装置和照明装置
CN103254900B (zh) 荧光体及其发光装置
TWI403570B (zh) 螢光體與其製造方法,含螢光體組成物,發光裝置及其用途
JP5245222B2 (ja) 蛍光体及びそれを用いた発光装置
JP2009173905A (ja) 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP5643424B2 (ja) 炭窒化物系蛍光体およびこれを使用する発光素子
US20100090585A1 (en) Phosphor, production method thereof, phosphor-containing composition, light emitting device, and display and illuminating device
JP5092667B2 (ja) 発光装置
WO2007088966A1 (ja) 複合酸窒化物蛍光体、それを用いた発光装置、画像表示装置、照明装置及び蛍光体含有組成物、並びに、複合酸窒化物
JP2008285662A (ja) 無機化合物の製造方法、蛍光体、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
CN101175835A (zh) 荧光体及其应用
JP2009263610A (ja) 蛍光体及びその製造方法、結晶性窒化珪素及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2008095091A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2009057554A (ja) 蛍光体の製造方法及びその製造方法で得られる蛍光体、並びに、その蛍光体を用いた蛍光体含有組成物、発光装置、照明装置及び画像表示装置
JP2009040918A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2009030042A (ja) 蛍光体、蛍光体の製造方法、蛍光体含有組成物、並びに発光装置
JP2009263201A (ja) 結晶性窒化珪素及びその製造方法、並びに、それを用いた蛍光体、該蛍光体含有組成物、発光装置、照明装置、画像表示装置、焼結体及び顔料
JP2010270196A (ja) 蛍光体及び蛍光体の製造方法、並びに、蛍光体含有組成物、発光装置、照明装置、画像表示装置及び蛍光塗料
JP6115432B2 (ja) 複合波長変換粒子及び複合波長変換粒子含有樹脂組成物並びに発光装置
JP2009040944A (ja) 蛍光体、蛍光体含有組成物、発光装置、照明装置、及び、画像表示装置
JP2008174621A (ja) 蛍光体、蛍光体含有組成物、発光装置、画像表示装置、及び照明装置
JP2008050493A (ja) 蛍光体及びそれを用いた発光装置
JP5590092B2 (ja) 蛍光体、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2008266410A (ja) 蛍光体、蛍光体含有組成物、蛍光体の製造方法、発光装置、画像表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007807309

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载