WO2008018159A1 - Microwave line plasma generation system with two power supply - Google Patents
Microwave line plasma generation system with two power supply Download PDFInfo
- Publication number
- WO2008018159A1 WO2008018159A1 PCT/JP2006/318403 JP2006318403W WO2008018159A1 WO 2008018159 A1 WO2008018159 A1 WO 2008018159A1 JP 2006318403 W JP2006318403 W JP 2006318403W WO 2008018159 A1 WO2008018159 A1 WO 2008018159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- waveguide
- microwave
- line
- gas
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
Definitions
- the present invention relates to a microwave plasma generator that generates plasma by exciting a plasma generating gas with a microwave, and particularly a large display panel having a large area such as a long film.
- the present invention relates to a microwave line plasma generator for generating line-shaped plasma suitable for plasma processing of an object to be processed.
- FIG. 11 is a diagram showing an overall configuration of an example of a conventional microwave line plasma generator
- FIG. 12 is a perspective view of a main part of the microwave line plasma generator of FIG.
- the microwave plasma generator includes a waveguide 51, a microwave generation source 53, a tapered waveguide 60 and a microwave supply source 53 that supply microwaves from the microwave generation source 53 to the waveguide 51.
- an L-shaped waveguide 59, a gas source 55, and a gas supply tube 54 for supplying gas from the gas source 55 to the waveguide 51.
- the starting end of the waveguide 51 is connected to the microphone mouth wave source 53 via the tapered waveguide 60 and the L-shaped waveguide 59.
- An isolator 57 and a sleeving tab 58 are attached to the L-shaped waveguide 59 from the microwave generation source 53 side.
- a short circuit plunger 62 is connected to the end of the waveguide 51 via a tapered waveguide 61.
- waveguide 51 also has a flat rectangular waveguide force formed so that width a is larger than thickness b in a cross section perpendicular to the central axis.
- the side surface 51a defining the width a of the waveguide 51 forms an H surface
- the side surface 51b defining the thickness b forms an E surface
- the slit 52 is the E of the waveguide 51. It is provided on the surface.
- the microwave line plasma generator further includes plasma generation means for converting an electromagnetic field generated in the waveguide 51 into gas ionization energy.
- the plasma generating means is formed on the side wall of the waveguide 51 and extends in the vicinity of the slit 52 extending from the gas source 55 to the slit 52 extending in the microwave propagation direction (the arrow X direction in FIG. 12).
- Gas supply It consists of a gas supply pipe 54.
- the gas supply pipe 54 is formed of a dielectric, and includes a buffer tank 56 formed in a dielectric casing at a portion upstream of the vicinity of the slit 52 of the waveguide 51. A certain amount of introduced gas can be stored.
- the portion 54e downstream of the buffer tank 56 of the gas supply pipe 54 is configured as a single pipe having an elongated rectangular cross section, while the upstream side of the gas supply pipe 54 from the buffer tank 56 includes a plurality of pipes 54a to 54a. It is configured as an aggregate of 54d.
- a portion 54e of the gas supply pipe 54 on the downstream side of the notfer tank 56 is disposed outside the waveguide 1 and in proximity to the side wall 5 lb provided with the slit 52 in the waveguide 51.
- the slit 52 extends in the vertical direction with a width that covers the entire length 52, and the lower end of the downstream portion 54 e of the gas supply pipe 54 extends beyond the slit 52 by a certain length.
- the notfer tank 56 has a cylindrical shape with both end openings closed, and the upper peripheral wall portion of the notfer tank 56 is connected to one end of the upstream side portion of the gas supply pipe 54 that also has the collective force of the four tubes 54a to 54d. The other ends of the four tubes 54a to 54d are connected to the gas source 55.
- the gas stored in the notfer tank 56 is uniformly introduced into the downstream portion 54e of the gas supply pipe 54 over the entire elongated rectangular cross section, and supplied to the vicinity of the slit 52 of the waveguide 51.
- the microwave force generated by the microwave generation source 53 is introduced into the waveguide 51 through the L-shaped waveguide 59 and the tapered waveguide 60, and gas is supplied from the gas source 55 to the gas supply. It is supplied to the vicinity of the slit 52 of the waveguide 51 through the tube 54.
- the gas passing through the gas supply pipe 54 (downstream portion 54e) is converted into plasma by the electromagnetic field radiated from the slit 52, and the opening force at the lower end of the gas supply pipe 54 is also released (see Patent Document 1).
- Fig. 13 is a graph showing the plasma density along the width direction of the gas supply pipe 54 (in the direction of the slit 52), measured for the plasma generated by this microwave line plasma generator.
- Each graph is shown in the area about 40mm away) ing.
- the distance in the z-axis direction represents the distance in the width direction in which one end force of the gas supply pipe 54 is also measured.
- a graph of the plasma density in the plasma generation region predicted based on the measured plasma density measured in the vicinity of the plasma generation region is shown in FIG. It is shown in 13 (A).
- the plasma density is significantly increased along the width direction of the gas supply pipe 54 in the conventional microwave line plasma generator so that the graph force of FIG.
- the plasma density of the generated line-shaped plasma is not uniform in the plasma processing region, there is a problem that the efficiency of the plasma processing of the object to be processed is significantly reduced.
- Patent Document 1 Japanese Patent Laid-Open No. 2005-340079
- an object of the present invention is to provide a microwave line plasma generator capable of obtaining a uniform plasma density in a plasma processing region.
- the first invention provides a waveguide, first and second microwave generation sources, the first microwave generation source, and one end opening of the waveguide. Connected between the first microwave transmission path for supplying microwaves into the waveguide, and between the second microwave generation source and the other end opening of the waveguide. A second microwave transmission path for supplying microwaves into the waveguide, and a transmission path for the microwave transmission paths provided in the middle of each of the first and second microwave transmission paths.
- a transmission path length adjusting means for adjusting the length of the gas, a gas source for supplying a plasma generating gas, a plasma generation chamber provided in the waveguide, extending in a propagation direction of microwaves in the waveguide, and Plasma emission that emits plasma generated in the plasma generation chamber in a line shape Has the supplied gas for plasma generation to the gas MinamotoTsutomu the plasma generating chamber, subjected to the wave guide And a plasma generating means for generating plasma by exciting the supplied microwave and emitting the plasma outlet force. is there.
- the first and second microwave transmission lines are each formed of a second waveguide, and the transmission line length adjusting means is a U-shaped third waveguide.
- the third waveguide further includes a pair of parallel portions connected to the upstream portion and the downstream portion of the first and second microwave transmission paths, respectively, and the It is preferable that a pair of parallel portions are slidable with respect to them and a U-shaped portion that is fitted so that microwaves do not leak to the outside, and is a force.
- each of the first and second microwave transmission paths is formed of a waveguide
- the transmission path length adjusting means includes a circulator inserted in the middle of the first and second microwave transmission paths.
- the short circuit plunger connected to the circulator is in force, or the first and second microwave transmission paths are each formed from a waveguide, and the transmission path length adjusting means is It is preferable to use Magic T.
- the second invention also includes a waveguide, first and second microwave generation sources, one end side of the first microwave generation source and the waveguide.
- a first microwave transmission path connected to the opening for supplying microwaves into the waveguide, and between the second microwave generation source and the other end opening of the waveguide.
- a plasma generation chamber extending in the direction of propagation of the plasma, and a plasma discharge port for discharging the plasma generated in the plasma generation chamber in a line shape, and the gas source gas includes a plasma generation gas supplied to the plasma generation chamber.
- Plasma generating means for generating a plasma and releasing the plasma from the plasma emission locus; and provided in the vicinity of a plasma emission port of the plasma generation means, and at least partially blocking the plasma emitted from the plasma emission locus.
- a plasma density adjusting means for adjusting the density of the plasma.
- the plasma density adjusting means is below the plasma discharge port and on one side or both sides of the plasma discharge port in the longitudinal direction of the plasma discharge port.
- the rods are arranged in spaced-apart manner along the axis and support the rods, and the rods are arranged in the axial direction of each of the rods independently and across the plasma discharge port.
- Plasma emission locusr It has rod body moving means for moving between a first position where the emitted plasma is at least partially shielded and a second position where the rod body does not contact the plasma.
- the plasma density adjusting means includes a horizontal plate assembly disposed on one side or both sides of the plasma discharge port below the plasma discharge port, and the plate assembly includes A plurality of plate elements arranged adjacent to each other in the longitudinal direction of the plasma emission port, and further supporting the plate element, and each of the plate elements independently across the plasma emission port.
- Plate element moving means for moving between a first position at least partially blocking the plasma emitted from the plasma emission locus and a second position where the plate element does not contact the plasma. It is preferable that
- the waveguide has a flat rectangular waveguide force formed so that a width thereof is larger than a thickness in a cross section perpendicular to a central axis thereof.
- the width a of the waveguide is equal to the wavelength of the microwave in the vacuum free space.
- the width a corresponds to the wavelength ⁇ of the microwave inside the waveguide longer than the length of the plasma to be generated.
- the waveguide is formed with a vertically long opening extending in a microwave propagation direction
- the plasma generating means is made of a dielectric mounted in the opening of the waveguide.
- a discharge tube, and a part of the peripheral wall of the discharge tube approaches or penetrates the internal space of the waveguide, and the peripheral wall portion exposed to the outside of the waveguide in the discharge tube
- a plasma discharge port is formed, and a gas for generating plasma is supplied into the discharge tube from the gas source, and the plasma generating gas is excited in the discharge tube by microwaves, and the generated plasma is Plasma emission loca is also emitted.
- the opening of the waveguide is provided on the H surface of the waveguide, the discharge tube is along the opening, and a part of the peripheral wall is inside the waveguide.
- the plasma discharge port of the discharge tube is preferably installed so as to be close to or enter a space, and is preferably a vertically long opening extending in the length direction of the discharge tube! /.
- the microwaves are supplied from each of the both end openings of the waveguide, and a superimposed wave of the two microwaves is generated in the waveguide, and is provided in the microwave supply path.
- the waveform of the superimposed wave is changed to adjust the plasma density in the plasma generation chamber (plasma generation region), thereby plasma processing outside the plasma emission port It is possible to obtain a line plasma with a uniform density in the region.
- microwaves are supplied from both ends of the waveguide, and a superimposed wave of the two microwaves is generated in the waveguide, and the plasma generation chamber (plasma generation) is generated by the superimposed wave.
- plasma generation plasma generation
- the plasma density adjusting means By generating plasma in the region) and adjusting the density of the plasma emitted from the plasma discharge port by the plasma density adjusting means, a line plasma with a uniform density can be obtained in the plasma processing region.
- FIG. 1 is a diagram showing a schematic configuration of a microwave line plasma generator according to one embodiment of the present invention.
- FIG. 2 is a diagram showing several embodiments of transmission path length adjusting means.
- FIG. 3 is a sectional view taken along line m-m in FIG.
- FIG. 4 is a cross-sectional view taken along line ii in FIG.
- FIG. 5 is a cross-sectional view taken along the line II-II in FIG.
- FIG. 6 is a graph showing the plasma density along the length direction of the plasma (the length direction of the plasma generation chamber of the discharge tube 25) for the line-shaped plasma generated by the apparatus of FIG. ) Shows a graph in the plasma generation chamber, and (B) shows a graph in the plasma processing region.
- FIG. 7 Plasma density in the length direction of the plasma, measured at three different positions below the plasma emission port, for the line-shaped plasma generated by the microwave line plasma generator shown in Fig. 1. It is the shown graph.
- FIG. 8 is a perspective view showing a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention.
- FIG. 9 is a view similar to FIG. 3 of the microwave line plasma generator shown in FIG. 8.
- FIG. 10 is a perspective view showing a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention.
- FIG. 11 is a diagram showing an overall configuration of an example of a conventional microwave line plasma generator
- FIG. 12 is a perspective view of the main part of the microwave line plasma generator shown in FIG. 11.
- FIG. 13 is a graph showing the plasma density in the length direction of the plasma measured for the line-shaped plasma generated by the microwave line plasma generator shown in FIG. A graph in the plasma generation region and (B) show a graph in the plasma processing region, respectively.
- Second microwave transmission line 6a, 6b taper waveguide
- FIG. 1 is a diagram showing a schematic configuration of a microwave line plasma generator according to one embodiment of the present invention.
- a flat rectangular waveguide 1 and first and second microphone mouth wave sources 2 and 3 are provided.
- the first microwave transmission path 4 is connected between the first microwave generation source 2 and the opening at one end of the waveguide 1 so that the microwave is supplied into the waveguide 1.
- a second microwave transmission path 5 is connected between the second microwave generation source 3 and the opening at the other end of the waveguide 1, and the microwave is inserted into the waveguide 1. They are starting to supply waves.
- the first and second microwave transmission lines 4 and 5 are composed of tapered waveguides 6a and 6b and L-shaped waveguides 7a and 7b.
- Isolators 8a and 8b and sleeving tabs 9a and 9b are attached to the L-shaped waveguides 7a and 7b from the microwave sources 2 and 3 side.
- transmission path length adjusting means 10, 11 for adjusting the lengths of the transmission paths of the microphone mouth transmission paths are further provided.
- FIG. 2A to 2C show several embodiments of the transmission path length adjusting means 10 and 11.
- FIG. 2 (A) the transmission path length adjusting means comprises a U-shaped waveguide 19.
- the U-shaped waveguide 19 is further connected to the upstream and downstream portions of the L-shaped waveguides 7a and 7b of the first and second microwave transmission lines 4 and 5, respectively.
- a pair of parallel parts 20a, 20b and a U-shaped part 21 fitted to the pair of parallel parts 20a, 20b so that they can slide relative to each other and microwaves do not leak outside.
- the U-shaped portion 21 has a portion that fits with the parallel portions 20a and 20b in the axial direction. A large number of pleats 21a are formed, and these pleats 21a and the inner wall surfaces of the parallel parts 20a, 20b always come into contact with each other!
- the transmission path length adjusting means is the first and second microwave transmission paths.
- It comprises a circulator 22 inserted in the middle of 4 and 5 and a short circuit plunger 23 connected to the circulator 22.
- the microwave propagated upstream of the first and second microwave transmission lines 4 and 5 is bent at a right angle by the circulator 22 and introduced into the short circuit plunger 23.
- the microwave introduced into the short circuit plunger 23 is then reflected at the end of the short circuit plunger 23 and directed toward the circuit 22. Then, it is bent at a right angle again and guided to the downstream side of the first and second microwave transmission paths 4 and 5.
- the transmission path length is increased by the amount of microwaves traveling back and forth in the short circuit plunger 23.
- the short circuit plunger 23 adjusts the transmission line lengths of the first and second microwave transmission lines.
- the transmission path length adjusting means is composed of a magic T19 ′.
- the microwave propagated from the upstream side of the first and second microwave transmission lines 4 and 5 is bent at a right angle by the branch portion of the magic T19 ', then reflected and branched again. Come back to the department. Then, half of the microwaves are transmitted downstream of the first and second microphone mouth wave transmission lines 4 and 5, and the other half are transmitted upstream. In other words, the transmission path length becomes longer as the microwave propagates back and forth in the magic T19 ′. Thus, the transmission line lengths of the first and second microwave transmission lines are adjusted by the magic T19 ′.
- the waveguide 1 is provided with plasma generating means 16.
- the plasma generation means 16 has a plasma generation chamber extending in the microwave propagation direction in the waveguide 1 and a plasma discharge port for discharging the plasma generated in the plasma generation chamber in a line shape.
- FIG. 3 is a cross-sectional view taken along the line III--X in FIG. 1, and shows the configuration of the plasma generating means 16 in more detail.
- 4 is a cross-sectional view taken along line II in FIG. 3, and FIG. It is sectional drawing along the ⁇ - ⁇ line.
- the waveguide 1 is formed so that the width “a” is larger than the thickness “b” in a cross section perpendicular to the central axis thereof.
- the width a of the waveguide is determined by the wavelength ⁇ of the microwave in vacuum, the wavelength ⁇ of the microwave inside the waveguide, and the width a of the waveguide a.
- the width a corresponds to the microwave wavelength within the waveguide longer than the length of the plasma to be generated.
- a vertically long opening extending in the propagation direction of the microwave is formed, and the discharge tube 25 is formed in this opening.
- the discharge tube 25 is formed of a dielectric material such as quartz glass or ceramic, and both ends are closed, and the middle portion has an inverted U-shaped cross section.
- the discharge tube 25 is disposed such that a part 25 ′ of the peripheral wall enters the internal space of the waveguide 1, and a vertically long opening facing the part 25 ′ of the peripheral wall faces downward.
- a plasma generation chamber is formed in the discharge tube 25, and the vertically long opening of the discharge tube 25 forms a plasma emission port 17.
- a part 25 ′ of the peripheral wall of the discharge tube 25 is configured to enter the internal space of the waveguide 1, but a part 25 ′ of the peripheral wall is close to the internal space of the waveguide 1.
- a discharge tube 25 may be used.
- the waveguide 1 is supported by the support block B, and the discharge tube 25 is held by the support block B.
- gas introduction paths Gl and G2 for supplying gas to the discharge tube 25 are provided on both sides of the support block B.
- a plurality of gas introduction paths Gl and G2 are arranged at equal intervals along the longitudinal direction of the support block B against the peripheral wall of the discharge tube 25 by force.
- G1 is a gas introduction path for plasma generation, and is connected to a gas source 12 for plasma generation gas supply via a gas supply pipe 14, and G2 is a reaction gas introduction path, which is connected to a gas supply pipe 15 To the reactive gas supply gas source 13.
- W is a coolant reflux path for cooling the heat generated in the discharge tube 25 by plasma. This coolant circulation path W is for preventing the waveguide 1 and the support block B from becoming hot due to the plasma heat in the discharge tube 25. It can be provided between the gas introduction paths G1 or on the side of the discharge tube 25.
- a slit-like gas introduction opening 25 is provided along the longitudinal direction at the side of the discharge tube 25.
- 25 is a burrow-like opening row.
- the plasma generating gas introduction path G1 is provided with an expansion portion G1 ′ in the vicinity of the gas introduction portion to the discharge tube 25, and is connected to the gas introduction opening 25 ′′ at the expansion portion G1 ′.
- the gas introduced from the plasma generating gas introduction path G1 is diffused in the lengthwise direction of the discharge tube 25 in the expanded portion G1 ′ and introduced into the discharge tube 25.
- the reaction gas introduction path is provided.
- the connecting portion between G2 and the discharge tube 25 has the same configuration.
- Sl and S2 are baffle plates arranged in the expansion part G1 'of the gas introduction paths Gl and G2, that is, a gas diffusion plate having a large number of holes, and the flow of gas introduced from the gas introduction paths Gl and G2 It is spread in the longitudinal direction of the discharge tube 25 and guided uniformly into the discharge tube 25.
- one end of the waveguide 1 through the first microwave transmission path 4 (the L-shaped waveguide 7a and the tapered waveguide 6a) generated by the first microwave generation source 2
- the microwaves supplied from the side into the waveguide 1 and generated by the second microwave generation source 3 are transferred to the second microwave transmission path 5 (the L-shaped waveguide 7b and the tapered waveguide). It is supplied into the waveguide 1 from the other end side of the waveguide 1 through the wave tube 6b).
- a superimposed wave of two microwaves is generated.
- the plasma generating gas is supplied from the gas source 12 into the discharge tube 1 through the gas supply tube 14 and the gas introduction path G1. Then, the plasma generation gas is excited in the plasma generation chamber of the discharge tube 25 by the electromagnetic field generated by the superimposed wave generated in the waveguide 1, and is plasma-treated.
- reaction gas is supplied from the gas source 13 into the discharge tube 1 through the gas supply tube 15 and the gas introduction path G2.
- the reactive gas is generated by the electromagnetic field generated by the superimposed wave in the waveguide 1 and the plasma production.
- the plasma generated by the excitation of the forming gas is excited in the plasma generation chamber of the discharge tube 25 and turned into plasma.
- the plasma force of the mixed gas of the plasma generating gas and the reactive gas is discharged in a line form from the plasma discharge port 17.
- the microwave supplied into the waveguide 1 through the transmission path 4 is changed.
- the phase of the microwave supplied into the waveguide 1 through the transmission path 5 is changed. Is shifted, and the waveform of the superimposed wave in the waveguide 1 is changed.
- a plasma having an energy density corresponding to the plasma is generated and emitted from the plasma discharge port 17, and a line-shaped plasma having a uniform density is obtained in the plasma processing region below the plasma generation region.
- Fig. 6 is a graph showing the plasma density along the length direction of the plasma (the length direction of the plasma generation chamber of the discharge tube 25) for the line-shaped plasma generated by this apparatus.
- (A) shows a graph in the plasma generation chamber
- (B) shows a graph in the plasma processing region.
- the distance in the z-axis direction represents the distance in the length direction in which one end force of the plasma is also measured.
- the gas for generating plasma is introduced into G1 and the reaction gas is introduced into G2, and both gases may be mixed and introduced simultaneously from both gas introduction paths Gl and G2.
- gas mixing in the discharge tube 14 is improved, which can contribute to plasma stabilization.
- a gas for generating plasma is supplied to both gas introducing paths Gl and G2, or the reactive gas introducing pipe G Let's close 2 though.
- 18 is a plasma processing chamber for performing plasma processing by irradiating an object to be processed with plasma emitted from the plasma generating means 16.
- a hermetic seal such as a conventional vacuum plasma processing apparatus is required when operating in a low pressure state of a pressure S below atmospheric pressure to several Torr .
- the apparatus used in this experiment comprises a waveguide with a width a of approximately 62 mm and a length c of approximately 600 mm, and a discharge tube with a width of approximately 10 mm, a depth of approximately 20 mm, and a length c ′ of approximately 500 mm. It was.
- the gas introduction path G2 was closed, He gas was supplied from the gas introduction path G1 as a plasma generation gas, and lkW, 2.45 GHz microwave was introduced from both ends of the waveguide under a pressure of 2 Torr. did.
- the y-axis (unit: mm) is set downward with the upper end of the inner wall of the discharge tube 25 as the origin (see Fig. 3).
- the distance in the z direction on the horizontal axis represents the distance in the length direction that also measured one end force of the line-shaped plasma.
- “Sono”, “Fist”, and “ ⁇ ” represent the measured values at the positions of 25 mm, 35 mm, and 40 mm, respectively. From the graph of FIG. 7, as described above, if a line-shaped plasma having a peak plasma density at both ends in the plasma generation chamber is generated, the position is 35 mm from the upper end of the inner wall of the discharge tube 25, that is, It can be seen that the plasma density is uniform at a position 15 mm below the plasma discharge port 17. If a plasma treatment region is provided at this position, a line plasma with uniform density can be obtained.
- FIG. 8 is a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention.
- FIG. 9 is a view similar to FIG. 3 of the microwave line plasma generator shown in FIG. This embodiment differs from the embodiment shown in FIG. 1 only in the means for making the line plasma density uniform in the plasma processing region. Therefore, in FIG. 8 and FIG. 9, the same constituent elements as those shown in FIG. For the sake of clarity, the microwave generation source and the microwave transmission path are omitted in FIG.
- the plasma discharge means 17 comprises plasma density adjusting means for adjusting the density of the plasma by at least partially blocking the plasma emitted from the plasma discharge port 17.
- the plasma density adjusting means 31 is a conductor or dielectric that is arranged below the plasma discharge port 17 and on both sides of the plasma discharge port 17 at intervals along the longitudinal direction of the plasma discharge port 17.
- bearings (not shown) for guiding!
- the plasma portion shielded by the rod body 30 is not shielded by the rod body 30, and the plasma density is lower in the plasma processing region than the plasma portion. Therefore, by manually adjusting the position of each rod 30, a line plasma with a uniform density can be obtained in the plasma processing region.
- FIG. 10 is a perspective view showing a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 8 only in the configuration of the plasma density adjusting means. Therefore, in FIG. 10, the same components as those shown in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the plasma density adjusting means 31 ′ has a horizontal plate assembly disposed below the plasma discharge port 17 and on both sides of the plasma discharge port 17. is doing.
- the plate assembly is arranged adjacent to the longitudinal direction of the plasma emission port 17.
- the plasma density adjusting means 31 ′ is further provided on the side walls 18 a and 18 b of the plasma processing chamber 18 to support the plate elements 32 a to 32 d and to each plate element 32 a to 32 d independently of the plasma discharge port 17.
- a guide means (not shown!) That guides it so that it can slide.
- the plasma portion blocked by the plate elements 32a to 32d is compared with the plasma portion not blocked by the plate elements 32a to 32d.
- the plasma density is lowered in the region. Therefore, the density of the line plasma can be made uniform in the plasma processing region by manually adjusting the position of each plate element 32a to 32d.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma Technology (AREA)
Abstract
A microwave line plasma generation system in which a uniform plasma density can be attained in the plasma processing region. The microwave line plasma generation system comprises a waveguide (1), first and second microwave generation sources (2, 3), a first microwave transmission path (4) connected between the first microwave generation source and the opening on one end side of the waveguide and supplying a microwave into the waveguide, a second microwave transmission path (5) connected between the second microwave generation source and the opening on the other end side of the waveguide and supplying a microwave into the waveguide, transmission path length adjusting means (10, 11) respectively provided in the way of the first and second microwave transmission paths in order to adjust the transmission path length of the microwave transmission path, gas sources (12, 13), and a plasma generation means (16). The plasma generation means (16) has a plasma generation chamber extending in the propagating direction of microwave in the waveguide, and a plasma discharge opening for discharging a plasma generated in the plasma generation chamber in the shape of a line.
Description
明 細 書 Specification
2電源を備えたマイクロ波ラインプラズマ発生装置 Microwave line plasma generator with two power supplies
技術分野 Technical field
[0001] 本発明は、プラズマ生成用ガスをマイクロ波によって励起することでプラズマを発生さ せるマイクロ波プラズマ発生装置に関するものであり、特に、大型のディスプレイパネ ルゃ長尺のフィルム等の広い面積をもつ被処理物のプラズマ処理に適したライン状 プラズマを発生させるマイクロ波ラインプラズマ発生装置に関するものである。 TECHNICAL FIELD [0001] The present invention relates to a microwave plasma generator that generates plasma by exciting a plasma generating gas with a microwave, and particularly a large display panel having a large area such as a long film. The present invention relates to a microwave line plasma generator for generating line-shaped plasma suitable for plasma processing of an object to be processed.
背景技術 Background art
[0002] 図 11は、従来のマイクロ波ラインプラズマ発生装置の一例の全体構成を示した図で あり、図 12は、図 11のマイクロ波ラインプラズマ発生装置の主要部の斜視図である。 図 11を参照して、マイクロ波プラズマ発生装置は、導波管 51と、マイクロ波発生源 53 と、マイクロ波発生源 53から導波管 51にマイクロ波を供給するテーパ導波管 60およ び L字形導波管 59と、ガス源 55と、ガス源 55から導波管 51にガスを供給するガス供 給管 54とを備えている。 FIG. 11 is a diagram showing an overall configuration of an example of a conventional microwave line plasma generator, and FIG. 12 is a perspective view of a main part of the microwave line plasma generator of FIG. Referring to FIG. 11, the microwave plasma generator includes a waveguide 51, a microwave generation source 53, a tapered waveguide 60 and a microwave supply source 53 that supply microwaves from the microwave generation source 53 to the waveguide 51. And an L-shaped waveguide 59, a gas source 55, and a gas supply tube 54 for supplying gas from the gas source 55 to the waveguide 51.
導波管 51は、その始端が、テーパ導波管 60および L字形導波管 59を介してマイク 口波発生源 53に接続されている。 L字形導波管 59には、マイクロ波発生源 53側から 、アイソレータ 57およびスリースタブ 58が取付けられている。また、導波管 51の終端 には、テーパ導波管 61を介してショートサーキットプランジャー 62が接続されている The starting end of the waveguide 51 is connected to the microphone mouth wave source 53 via the tapered waveguide 60 and the L-shaped waveguide 59. An isolator 57 and a sleeving tab 58 are attached to the L-shaped waveguide 59 from the microwave generation source 53 side. A short circuit plunger 62 is connected to the end of the waveguide 51 via a tapered waveguide 61.
[0003] 図 12を参照して、導波管 51は、その中心軸に垂直な断面において幅 aが厚み bよ り大きくなるように形成された扁平な方形導波管力もなつている。そして、導波管 51の 幅 aを規定する側面 51aが H面を形成し、厚み bを規定する側面 51bが E面を形成す るようになっており、スリット 52が導波管 51の E面に設けられている。 Referring to FIG. 12, waveguide 51 also has a flat rectangular waveguide force formed so that width a is larger than thickness b in a cross section perpendicular to the central axis. The side surface 51a defining the width a of the waveguide 51 forms an H surface, the side surface 51b defining the thickness b forms an E surface, and the slit 52 is the E of the waveguide 51. It is provided on the surface.
マイクロ波ラインプラズマ発生装置は、さらに、導波管 51内に生じた電磁界をガス電 離エネルギーに変換するプラズマ生成手段を備えている。プラズマ生成手段は、導 波管 51の側壁に形成され、導波管 51の内部におけるマイクロ波の伝播方向(図 12 の矢印 X方向)にのびるスリット 52と、ガス源 55からスリット 52の近傍にガスを供給す
るガス供給管 54とからなって 、る。 The microwave line plasma generator further includes plasma generation means for converting an electromagnetic field generated in the waveguide 51 into gas ionization energy. The plasma generating means is formed on the side wall of the waveguide 51 and extends in the vicinity of the slit 52 extending from the gas source 55 to the slit 52 extending in the microwave propagation direction (the arrow X direction in FIG. 12). Gas supply It consists of a gas supply pipe 54.
[0004] ガス供給管 54は、誘電体から形成され、導波管 51のスリット 52の近傍よりも上流側 の部分に、誘電体カゝら形成されたバッファータンク 56を備え、ガス源 55から導入され たガスの一定量が蓄えられるようになって 、る。ガス供給管 54のバッファータンク 56 より下流側の部分 54eは、細長い長方形断面の単一の管として構成される一方、ガ ス供給管 54のバッファータンク 56より上流側は、複数本の管 54a〜54dの集合体と して構成されている。 [0004] The gas supply pipe 54 is formed of a dielectric, and includes a buffer tank 56 formed in a dielectric casing at a portion upstream of the vicinity of the slit 52 of the waveguide 51. A certain amount of introduced gas can be stored. The portion 54e downstream of the buffer tank 56 of the gas supply pipe 54 is configured as a single pipe having an elongated rectangular cross section, while the upstream side of the gas supply pipe 54 from the buffer tank 56 includes a plurality of pipes 54a to 54a. It is configured as an aggregate of 54d.
ガス供給管 54のノ ッファータンク 56より下流側の部分 54eは、導波管 1の外側であ つて、導波管 51におけるスリット 52が設けられた側壁 5 lbに近接して配置され、かつ 、スリット 52を全長にわたって被覆する幅をもってスリット 52を上下方向に横切っての びており、ガス供給管 54の下流側部分 54eの下端は、スリット 52を越えて一定の長さ のびている。 A portion 54e of the gas supply pipe 54 on the downstream side of the notfer tank 56 is disposed outside the waveguide 1 and in proximity to the side wall 5 lb provided with the slit 52 in the waveguide 51. The slit 52 extends in the vertical direction with a width that covers the entire length 52, and the lower end of the downstream portion 54 e of the gas supply pipe 54 extends beyond the slit 52 by a certain length.
ノ ッファータンク 56は、両端開口が閉じた円筒形状を有し、ノ ッファータンク 56の 上側周壁部分には、 4本の管 54a〜54dの集合体力もなるガス供給管 54の上流側 部分の一端が接続され、 4本の管 54a〜54dの他端はガス源 55に接続されている。 ノ ッファータンク 56に蓄えられたガスは、ガス供給管 54の下流側部分 54eに、その 細長い長方形断面の全体にわたって均一に導入され、導波管 51のスリット 52の近傍 に供給される。 The notfer tank 56 has a cylindrical shape with both end openings closed, and the upper peripheral wall portion of the notfer tank 56 is connected to one end of the upstream side portion of the gas supply pipe 54 that also has the collective force of the four tubes 54a to 54d. The other ends of the four tubes 54a to 54d are connected to the gas source 55. The gas stored in the notfer tank 56 is uniformly introduced into the downstream portion 54e of the gas supply pipe 54 over the entire elongated rectangular cross section, and supplied to the vicinity of the slit 52 of the waveguide 51.
[0005] こうして、マイクロ波発生源 53で発生せしめられたマイクロ波力 L字形導波管 59お よびテーパ導波管 60を通じて導波管 51に導入されるとともに、ガスがガス源 55から ガス供給管 54を通って導波管 51のスリット 52の近傍に供給される。そして、スリット 5 2から放射される電磁界によってガス供給管 54 (下流側部分 54e)内を通過するガス がプラズマ化され、ガス供給管 54の下端開口力も放出される (特許文献 1参照)。 [0005] In this way, the microwave force generated by the microwave generation source 53 is introduced into the waveguide 51 through the L-shaped waveguide 59 and the tapered waveguide 60, and gas is supplied from the gas source 55 to the gas supply. It is supplied to the vicinity of the slit 52 of the waveguide 51 through the tube 54. The gas passing through the gas supply pipe 54 (downstream portion 54e) is converted into plasma by the electromagnetic field radiated from the slit 52, and the opening force at the lower end of the gas supply pipe 54 is also released (see Patent Document 1).
[0006] 図 13は、このマイクロ波ラインプラズマ発生装置によって発生せしめられたプラズマ について測定した、ガス供給管 54の幅方向(スリット 52方向)に沿ったプラズマ密度 を示したグラフであり、 (A)はプラズマ発生領域 (ガス供給管 54内部の導波管 51のス リット 52の近傍領域)におけるグラフを、 (B)はプラズマ処理領域 (ガス供給管 54の下 端開口から下方に 30mn!〜 40mm程度離れた領域)におけるグラフをそれぞれ示し
ている。なお、図 13のグラフ中、 z軸方向の距離は、ガス供給管 54の一方の端力も測 つた幅方向の距離を表している。また、プラズマ発生領域のプラズマ密度を直接測定 することは困難であるので、プラズマ発生領域の近傍で測定したプラズマ密度の測 定値を基に予測される該プラズマ発生領域のプラズマ密度のグラフを、図 13 (A)に 示している。 [0006] Fig. 13 is a graph showing the plasma density along the width direction of the gas supply pipe 54 (in the direction of the slit 52), measured for the plasma generated by this microwave line plasma generator. ) Is a graph in the plasma generation region (region in the vicinity of the slit 52 of the waveguide 51 inside the gas supply pipe 54), and (B) is a plasma processing region (30mn! ~ From the lower end opening of the gas supply pipe 54). Each graph is shown in the area about 40mm away) ing. In the graph of FIG. 13, the distance in the z-axis direction represents the distance in the width direction in which one end force of the gas supply pipe 54 is also measured. In addition, since it is difficult to directly measure the plasma density in the plasma generation region, a graph of the plasma density in the plasma generation region predicted based on the measured plasma density measured in the vicinity of the plasma generation region is shown in FIG. It is shown in 13 (A).
[0007] 図 13のグラフ力もわ力るように、従来のマイクロ波ラインプラズマ発生装置では、プ ラズマ発生領域にぉ 、て、プラズマ密度はガス供給管 54の幅方向に沿って著 U、ム ラを生じており、所々で殆どゼロになっており、また、プラズマ処理領域においても、 プラズマ密度がゼロとなる位置は存在しな 、もの、ガス供給管 54の幅方向に沿って かなりのムラを生じている。このように、生成されたライン状のプラズマのプラズマ密度 がプラズマ処理領域で不均一であると、被処理物のプラズマ処理の効率が著しく低 下するという問題があった。 In the conventional microwave line plasma generator, the plasma density is significantly increased along the width direction of the gas supply pipe 54 in the conventional microwave line plasma generator so that the graph force of FIG. In the plasma processing region, there is no position where the plasma density is zero, but there is considerable unevenness along the width direction of the gas supply pipe 54. Has produced. As described above, if the plasma density of the generated line-shaped plasma is not uniform in the plasma processing region, there is a problem that the efficiency of the plasma processing of the object to be processed is significantly reduced.
特許文献 1:特開 2005 -340079号公報 Patent Document 1: Japanese Patent Laid-Open No. 2005-340079
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] したがって、本発明の課題は、プラズマ処理領域において均一なプラズマ密度が得 られるようなマイクロ波ラインプラズマ発生装置を提供することにある。 [0008] Accordingly, an object of the present invention is to provide a microwave line plasma generator capable of obtaining a uniform plasma density in a plasma processing region.
課題を解決するための手段 Means for solving the problem
[0009] 上記課題を解決するため、第 1発明は、導波管と、第 1および第 2のマイクロ波発生 源と、前記第 1のマイクロ波発生源と前記導波管の一端側開口との間に接続され、前 記導波管内にマイクロ波を供給する第 1のマイクロ波伝送路と、前記第 2のマイクロ波 発生源と前記導波管の他端側開口との間に接続され、前記導波管内にマイクロ波を 供給する第 2のマイクロ波伝送路と、前記第 1および第 2のマイクロ波伝送路のそれ ぞれの途中に設けられ、それらのマイクロ波伝送路の伝送路の長さを調節する伝送 路長調節手段と、プラズマ生成用ガスを供給するガス源と、前記導波管に備えられ、 前記導波管内のマイクロ波の伝播方向にのびるプラズマ生成室、および前記プラズ マ生成室で生成したプラズマをライン状に放出するプラズマ放出口を有し、前記ガス 源力 前記プラズマ生成室に供給されたプラズマ生成用ガスを、前記導波管内に供
給されたマイクロ波によって励起してプラズマを生成し、該プラズマを前記プラズマ放 出口力 放出するプラズマ生成手段と、を備えていることを特徴とするマイクロ波ライ ンプラズマ発生装置を構成したものである。 [0009] In order to solve the above-mentioned problems, the first invention provides a waveguide, first and second microwave generation sources, the first microwave generation source, and one end opening of the waveguide. Connected between the first microwave transmission path for supplying microwaves into the waveguide, and between the second microwave generation source and the other end opening of the waveguide. A second microwave transmission path for supplying microwaves into the waveguide, and a transmission path for the microwave transmission paths provided in the middle of each of the first and second microwave transmission paths. A transmission path length adjusting means for adjusting the length of the gas, a gas source for supplying a plasma generating gas, a plasma generation chamber provided in the waveguide, extending in a propagation direction of microwaves in the waveguide, and Plasma emission that emits plasma generated in the plasma generation chamber in a line shape Has the supplied gas for plasma generation to the gas MinamotoTsutomu the plasma generating chamber, subjected to the wave guide And a plasma generating means for generating plasma by exciting the supplied microwave and emitting the plasma outlet force. is there.
[0010] 第 1発明の構成において、前記第 1および第 2のマイクロ波伝送路はそれぞれ第 2 の導波管から形成され、前記伝送路長調節手段は U字状の第 3の導波管からなり、 前記第 3の導波管は、さらに、それぞれ前記第 1および第 2のマイクロ波伝送路のそ れぞれの上流側部分および下流側部分に接続された一対の平行部分と、前記一対 の平行部分にそれらに対してスライド運動可能に、かつマイクロ波が外部に漏れない ように嵌合した U字状部分と、力 なって 、ることが好ま 、。 [0010] In the configuration of the first invention, the first and second microwave transmission lines are each formed of a second waveguide, and the transmission line length adjusting means is a U-shaped third waveguide. The third waveguide further includes a pair of parallel portions connected to the upstream portion and the downstream portion of the first and second microwave transmission paths, respectively, and the It is preferable that a pair of parallel portions are slidable with respect to them and a U-shaped portion that is fitted so that microwaves do not leak to the outside, and is a force.
あるいは、前記第 1および第 2のマイクロ波伝送路はそれぞれ導波管から形成され、 前記伝送路長調節手段は、前記第 1および第 2のマイクロ波伝送路の途中に挿入さ れたサーキユレータと、前記サーキユレータに接続されたショートサーキットプランジャ と、力 なっていることが好ましぐまたは、前記第 1および第 2のマイクロ波伝送路は それぞれ導波管から形成され、前記伝送路長調節手段はマジック Tからなつて 、るこ とが好ましい。 Alternatively, each of the first and second microwave transmission paths is formed of a waveguide, and the transmission path length adjusting means includes a circulator inserted in the middle of the first and second microwave transmission paths. Preferably, the short circuit plunger connected to the circulator is in force, or the first and second microwave transmission paths are each formed from a waveguide, and the transmission path length adjusting means is It is preferable to use Magic T.
[0011] 上記課題を解決するため、第 2発明は、また、導波管と、第 1および第 2のマイクロ波 発生源と、前記第 1のマイクロ波発生源と前記導波管の一端側開口との間に接続さ れ、前記導波管内にマイクロ波を供給する第 1のマイクロ波伝送路と、前記第 2のマイ クロ波発生源と前記導波管の他端側開口との間に接続され、前記導波管内にマイク 口波を供給する第 2のマイクロ波伝送路と、プラズマ生成用ガスを供給するガス源と、 前記導波管に備えられ、前記導波管内のマイクロ波の伝播方向にのびるプラズマ生 成室、および前記プラズマ生成室で生成したプラズマをライン状に放出するプラズマ 放出口を有し、前記ガス源力 前記プラズマ生成室に供給されたプラズマ生成用ガ スを、前記導波管内に供給されたマイクロ波によって励起してプラズマを生成し、該 プラズマを前記プラズマ放出ロカゝら放出するプラズマ生成手段と、前記プラズマ生成 手段のプラズマ放出口の近傍に設けられ、前記プラズマ放出ロカ 放出されたブラ ズマを少なくとも部分的に遮ることによって該プラズマの密度を調節するプラズマ密 度調節手段と、を備えて 、ることを特徴とするマイクロ波ラインプラズマ発生装置を構
成したものである。 [0011] In order to solve the above-mentioned problem, the second invention also includes a waveguide, first and second microwave generation sources, one end side of the first microwave generation source and the waveguide. A first microwave transmission path connected to the opening for supplying microwaves into the waveguide, and between the second microwave generation source and the other end opening of the waveguide. A second microwave transmission path for supplying a microwave to the waveguide, a gas source for supplying a plasma generating gas, and a microwave in the waveguide. A plasma generation chamber extending in the direction of propagation of the plasma, and a plasma discharge port for discharging the plasma generated in the plasma generation chamber in a line shape, and the gas source gas includes a plasma generation gas supplied to the plasma generation chamber. Excited by microwaves fed into the waveguide Plasma generating means for generating a plasma and releasing the plasma from the plasma emission locus; and provided in the vicinity of a plasma emission port of the plasma generation means, and at least partially blocking the plasma emitted from the plasma emission locus. And a plasma density adjusting means for adjusting the density of the plasma. Made.
[0012] 第 2発明の構成において、好ましくは、前記プラズマ密度調節手段は、前記プラズ マ放出口の下側であって前記プラズマ放出口の一方の側または両側に該プラズマ 放出口の長手方向に沿って間隔をあけて配列された棒体と、前記棒体を支持すると ともに、前記棒体のそれぞれを独立にその軸方向でかつ前記プラズマ放出口を横切 る方向に、前記棒体が前記プラズマ放出ロカ 放出されるプラズマを少なくとも部分 的に遮る第 1の位置と、前記棒体が該プラズマに接触しない第 2の位置との間におい て移動させる棒体移動手段とを有している。あるいは、前記プラズマ密度調節手段は 、前記プラズマ放出口の下側であって該プラズマ放出口の一方の側または両側に配 置された水平なプレート集合体を有し、前記プレート集合体は、前記プラズマ放出口 の長手方向に隣接して配置された複数のプレート要素からなり、さらに、前記プレート 要素を支持するとともに、前記プレート要素のそれぞれを独立に前記プラズマ放出口 を横切る方向に、前記プレート要素が前記プラズマ放出ロカゝら放出されるプラズマを 少なくとも部分的に遮る第 1の位置と、前記プレート要素が該プラズマに接触しない 第 2の位置との間において移動させるプレート要素移動手段とを有していることが好 ましい。 [0012] In the configuration of the second invention, preferably, the plasma density adjusting means is below the plasma discharge port and on one side or both sides of the plasma discharge port in the longitudinal direction of the plasma discharge port. The rods are arranged in spaced-apart manner along the axis and support the rods, and the rods are arranged in the axial direction of each of the rods independently and across the plasma discharge port. Plasma emission locusr It has rod body moving means for moving between a first position where the emitted plasma is at least partially shielded and a second position where the rod body does not contact the plasma. Alternatively, the plasma density adjusting means includes a horizontal plate assembly disposed on one side or both sides of the plasma discharge port below the plasma discharge port, and the plate assembly includes A plurality of plate elements arranged adjacent to each other in the longitudinal direction of the plasma emission port, and further supporting the plate element, and each of the plate elements independently across the plasma emission port. Plate element moving means for moving between a first position at least partially blocking the plasma emitted from the plasma emission locus and a second position where the plate element does not contact the plasma. It is preferable that
[0013] 第 1および第 2発明の構成において、前記導波管は、その中心軸に垂直な断面に おいて幅が厚みより大きくなるように形成された扁平な方形導波管力 なり、前記導 波管の幅 aが、真空自由空間内におけるマイクロ波の波長え 、前記導波管の内部に [0013] In the configurations of the first and second inventions, the waveguide has a flat rectangular waveguide force formed so that a width thereof is larger than a thickness in a cross section perpendicular to a central axis thereof. The width a of the waveguide is equal to the wavelength of the microwave in the vacuum free space.
0 0
おけるマイクロ波の波長え 、および前記導波管の幅 aの間に成立する関係式、 A relational expression established between the wavelength of the microwave and the width a of the waveguide,
g g
から決定され、それによつて、前記幅 aは、生成すべきプラズマの長さよりも長い前記 導波管の内部におけるマイクロ波の波長 λ に対応して 、ることが好ま 、。 Preferably, the width a corresponds to the wavelength λ of the microwave inside the waveguide longer than the length of the plasma to be generated.
g g
[0014] また好ましくは、前記導波管にはマイクロ波の伝播方向にのびる縦長の開口部が形 成され、前記プラズマ生成手段は、前記導波管の開口部に装着された誘電体製の
放電管を有し、前記放電管は、その周壁の一部が前記導波管の内部空間に近接ま たは侵入し、前記放電管における前記導波管の外側に露出する周壁部分には前記 プラズマ放出口が形成されており、前記ガス源カゝらプラズマ生成用ガスが前記放電 管内に供給され、前記放電管内で前記プラズマ生成用ガスがマイクロ波によって励 起され、生成されたプラズマが前記プラズマ放出ロカも放出されるようになっている。 [0014] Preferably, the waveguide is formed with a vertically long opening extending in a microwave propagation direction, and the plasma generating means is made of a dielectric mounted in the opening of the waveguide. A discharge tube, and a part of the peripheral wall of the discharge tube approaches or penetrates the internal space of the waveguide, and the peripheral wall portion exposed to the outside of the waveguide in the discharge tube A plasma discharge port is formed, and a gas for generating plasma is supplied into the discharge tube from the gas source, and the plasma generating gas is excited in the discharge tube by microwaves, and the generated plasma is Plasma emission loca is also emitted.
[0015] また好ましくは、前記導波管の開口部が前記導波管の H面に設けられ、前記放電 管が、前記開口部に沿って、その周壁の一部が前記導波管の内部空間に近接また は侵入するように装着されており、また、前記放電管のプラズマ放出口は、前記放電 管の長さ方向にのびる縦長の開口からなつて 、ることが好まし!/、。 [0015] Further preferably, the opening of the waveguide is provided on the H surface of the waveguide, the discharge tube is along the opening, and a part of the peripheral wall is inside the waveguide. The plasma discharge port of the discharge tube is preferably installed so as to be close to or enter a space, and is preferably a vertically long opening extending in the length direction of the discharge tube! /.
発明の効果 The invention's effect
[0016] 第 1発明によれば、導波管の両端開口のそれぞれからマイクロ波を供給し、導波管 内にそれら 2つのマイクロ波の重畳波を生じさせるとともに、マイクロ波供給路に設け た伝送路長調節手段によって各マイクロ波の位相をずらすことで、重畳波の波形を 変化させてプラズマ生成室 (プラズマ発生領域)におけるプラズマ密度を調節するこ とにより、プラズマ放出口の外側のプラズマ処理領域において均一な密度のラインプ ラズマを得ることがでさる。 [0016] According to the first invention, the microwaves are supplied from each of the both end openings of the waveguide, and a superimposed wave of the two microwaves is generated in the waveguide, and is provided in the microwave supply path. By shifting the phase of each microwave by means of the transmission path length adjusting means, the waveform of the superimposed wave is changed to adjust the plasma density in the plasma generation chamber (plasma generation region), thereby plasma processing outside the plasma emission port It is possible to obtain a line plasma with a uniform density in the region.
また、第 2発明によれば、導波管の両端開口のそれぞれからマイクロ波を供給し、導 波管内にそれら 2つのマイクロ波の重畳波を生じさせ、その重畳波によってプラズマ 生成室 (プラズマ発生領域)にプラズマを発生させるとともに、プラズマ放出口から放 出されたプラズマの密度を、プラズマ密度調節手段によって調節することによって、 プラズマ処理領域において均一な密度のラインプラズマを得ることができる。 In addition, according to the second invention, microwaves are supplied from both ends of the waveguide, and a superimposed wave of the two microwaves is generated in the waveguide, and the plasma generation chamber (plasma generation) is generated by the superimposed wave. By generating plasma in the region) and adjusting the density of the plasma emitted from the plasma discharge port by the plasma density adjusting means, a line plasma with a uniform density can be obtained in the plasma processing region.
こうして、本発明によれば、被処理物に均一な密度のラインプラズマを照射することが できるので、大きな面積の被処理物に対して非常に効率的かつ均一にプラズマ処理 を行うことが可能となる。 Thus, according to the present invention, it is possible to irradiate a workpiece with a line plasma having a uniform density, so that it is possible to perform a plasma treatment very efficiently and uniformly on a workpiece having a large area. Become.
図面の簡単な説明 Brief Description of Drawings
[0017] [図 1]本発明の 1実施例によるマイクロ波ラインプラズマ発生装置の概略構成を示す 図である。 FIG. 1 is a diagram showing a schematic configuration of a microwave line plasma generator according to one embodiment of the present invention.
[図 2]伝送路長調節手段のいくつかの実施例を示す図である。
[図 3]図 lの m—m線に沿った断面図である。 FIG. 2 is a diagram showing several embodiments of transmission path length adjusting means. FIG. 3 is a sectional view taken along line m-m in FIG.
[図 4]図 3の i—i線に沿った断面図である。 4 is a cross-sectional view taken along line ii in FIG.
[図 5]図 3の Π— II線に沿った断面図である。 FIG. 5 is a cross-sectional view taken along the line II-II in FIG.
[図 6]図 1の装置によって発生せしめられるライン状のプラズマについての、プラズマ の長さ方向(放電管 25のプラズマ生成室の長さ方向)に沿ったプラズマ密度を示す グラフであり、(A)はプラズマ生成室におけるグラフを、(B)はプラズマ処理領域にお けるグラフをそれぞれ示して 、る。 FIG. 6 is a graph showing the plasma density along the length direction of the plasma (the length direction of the plasma generation chamber of the discharge tube 25) for the line-shaped plasma generated by the apparatus of FIG. ) Shows a graph in the plasma generation chamber, and (B) shows a graph in the plasma processing region.
[図 7]図 1に示したマイクロ波ラインプラズマ発生装置によって発生せしめられたライン 状のプラズマについて、プラズマ放出口の下方の異なる 3つの位置で測定した、プラ ズマの長さ方向におけるプラズマ密度を示したグラフである。 [Fig. 7] Plasma density in the length direction of the plasma, measured at three different positions below the plasma emission port, for the line-shaped plasma generated by the microwave line plasma generator shown in Fig. 1. It is the shown graph.
[図 8]本発明の別の実施例によるマイクロ波ラインプラズマ発生装置の概略構成を示 した斜視図である。 FIG. 8 is a perspective view showing a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention.
[図 9]図 8に示したマイクロ波ラインプラズマ発生装置の図 3に類似の図である。 FIG. 9 is a view similar to FIG. 3 of the microwave line plasma generator shown in FIG. 8.
[図 10]本発明の別の実施例によるマイクロ波ラインプラズマ発生装置の概略構成を 示した斜視図である。 FIG. 10 is a perspective view showing a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention.
[図 11]従来のマイクロ波ラインプラズマ発生装置の一例の全体構成を示した図である FIG. 11 is a diagram showing an overall configuration of an example of a conventional microwave line plasma generator
[図 12]図 11に示したマイクロ波ラインプラズマ発生装置の主要部の斜視図である。 FIG. 12 is a perspective view of the main part of the microwave line plasma generator shown in FIG. 11.
[図 13]図 12に示したマイクロ波ラインプラズマ発生装置によって発生せしめられたラ イン状のプラズマにつ 、て測定した、プラズマの長さ方向におけるプラズマ密度示し たグラフであり、(A)はプラズマ発生領域におけるグラフを、(B)はプラズマ処理領域 におけるグラフをそれぞれ示して 、る。 FIG. 13 is a graph showing the plasma density in the length direction of the plasma measured for the line-shaped plasma generated by the microwave line plasma generator shown in FIG. A graph in the plasma generation region and (B) show a graph in the plasma processing region, respectively.
符号の説明 Explanation of symbols
1 放電管 1 discharge tube
2 第 1のマイクロ波発生源 2 First microwave source
3 第 2のマイクロ波発生源 3 Second microwave source
4 第 1のマイクロ波伝送路 4 First microwave transmission line
5 第 2のマイクロ波伝送路
6a, 6b テーパ導波管 5 Second microwave transmission line 6a, 6b taper waveguide
7a, 7b L字形導波管 7a, 7b L-shaped waveguide
8a, 8b アイソレータ 8a, 8b isolators
9a, 9b スリースタブ 9a, 9b Three tab
10、 11 伝送路長調節手段 10, 11 Transmission path length adjustment means
12、 13 ガス源 12, 13 Gas source
14、 15 ガス供給管 14, 15 Gas supply pipe
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、添付図面を参照して本発明の好ましい実施例について説明する。図 1は、本 発明の 1実施例によるマイクロ波ラインプラズマ発生装置の概略構成を示す図である 。図 1を参照して、本発明によれば、偏平な方形導波管 1と、第 1および第 2のマイク 口波発生源 2、 3が備えられる。そして、第 1のマイクロ波発生源 2と導波管 1の一端側 開口との間には、第 1のマイクロ波伝送路 4が接続され、導波管 1内にマイクロ波を供 給するようになっており、また、第 2のマイクロ波発生源 3と導波管 1の他端側開口との 間には、第 2のマイクロ波伝送路 5が接続され、導波管 1内にマイクロ波を供給するよ うになつている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a microwave line plasma generator according to one embodiment of the present invention. Referring to FIG. 1, according to the present invention, a flat rectangular waveguide 1 and first and second microphone mouth wave sources 2 and 3 are provided. The first microwave transmission path 4 is connected between the first microwave generation source 2 and the opening at one end of the waveguide 1 so that the microwave is supplied into the waveguide 1. In addition, a second microwave transmission path 5 is connected between the second microwave generation source 3 and the opening at the other end of the waveguide 1, and the microwave is inserted into the waveguide 1. They are starting to supply waves.
第 1および第 2のマイクロ波伝送路 4、 5は、テーパ導波管 6a、 6bおよび L字形導波 管 7a、 7bからなつている。 L字形導波管 7a、 7bには、マイクロ波発生源 2、 3側から、 アイソレータ 8a、 8bおよびスリースタブ 9a、 9bが取付けられている。 The first and second microwave transmission lines 4 and 5 are composed of tapered waveguides 6a and 6b and L-shaped waveguides 7a and 7b. Isolators 8a and 8b and sleeving tabs 9a and 9b are attached to the L-shaped waveguides 7a and 7b from the microwave sources 2 and 3 side.
[0020] 第 1および第 2のマイクロ波伝送路 4、 5のそれぞれの途中には、さらに、それらのマ イク口波伝送路の伝送路の長さを調節する伝送路長調節手段 10、 11が設けられる。 図 2 (A)〜(C)には、伝送路長調節手段 10、 11のいくつかの実施例が示してある 。図 2 (A)の実施例では、伝送路長調節手段は U字状の導波管 19からなつている。 U字状の導波管 19は、さらに、それぞれ第 1および第 2のマイクロ波伝送路 4、 5のそ れぞれの L字形導波管 7a、 7b上流側部分および下流側部分に接続された一対の平 行部分 20a、 20bと、一対の平行部分 20a、 20bにそれらに対してスライド運動可能 に、かつマイクロ波が外部に漏れな 、ように嵌合した U字状部分 21とからなって 、る 。この場合、 U字状部分 21は、平行部分 20a、 20bと嵌合する部分が、軸方向にの
びる多数のひだ 21a状に形成され、これらのひだ 21aと平行部分 20a、 20bの内壁面 が常に接触するようになって!/ヽる。 [0020] In the middle of each of the first and second microwave transmission paths 4, 5, transmission path length adjusting means 10, 11 for adjusting the lengths of the transmission paths of the microphone mouth transmission paths are further provided. Is provided. 2A to 2C show several embodiments of the transmission path length adjusting means 10 and 11. FIG. In the embodiment of FIG. 2 (A), the transmission path length adjusting means comprises a U-shaped waveguide 19. The U-shaped waveguide 19 is further connected to the upstream and downstream portions of the L-shaped waveguides 7a and 7b of the first and second microwave transmission lines 4 and 5, respectively. A pair of parallel parts 20a, 20b and a U-shaped part 21 fitted to the pair of parallel parts 20a, 20b so that they can slide relative to each other and microwaves do not leak outside. And In this case, the U-shaped portion 21 has a portion that fits with the parallel portions 20a and 20b in the axial direction. A large number of pleats 21a are formed, and these pleats 21a and the inner wall surfaces of the parallel parts 20a, 20b always come into contact with each other!
この構成において、 U字状部分 21がー対の平行部分 20a、 20bに対してスライド運 動することによって、第 1および第 2のマイクロ波伝送路 4、 5のそれぞれの伝送路長 が延長または短縮される。 In this configuration, when the U-shaped portion 21 slides with respect to the pair of parallel portions 20a and 20b, the transmission path lengths of the first and second microwave transmission paths 4 and 5 are extended or increased. Shortened.
[0021] 図 2 (B)の実施例では、伝送路長調節手段は、第 1および第 2のマイクロ波伝送路 In the embodiment of FIG. 2 (B), the transmission path length adjusting means is the first and second microwave transmission paths.
4、 5の途中に挿入されたサーキユレータ 22と、サーキユレータ 22に接続されたショー トサーキットプランジャ 23とからなっている。 It comprises a circulator 22 inserted in the middle of 4 and 5 and a short circuit plunger 23 connected to the circulator 22.
この構成において、第 1および第 2のマイクロ波伝送路 4、 5の上流側力 伝播して きたマイクロ波は、サーキユレータ 22によって直角に曲げられ、ショートサーキットプラ ンジャ 23内に導入される。ショートサーキットプランジャ 23内に導入されたマイクロ波 は、その後、ショートサーキットプランジャ 23の末端部で反射せしめられ、サーキユレ ータ 22に向けられる。そしてそこで再び直角に曲げられて、第 1および第 2のマイクロ 波伝送路 4、 5の下流側に導かれる。すなわち、マイクロ波がショートサーキットプラン ジャ 23中を往復伝播する分だけ伝送路長は長くなる。こうして、ショートサーキットプ ランジャ 23によって、第 1および第 2のマイクロ波伝送路の伝送路長が調節される。 In this configuration, the microwave propagated upstream of the first and second microwave transmission lines 4 and 5 is bent at a right angle by the circulator 22 and introduced into the short circuit plunger 23. The microwave introduced into the short circuit plunger 23 is then reflected at the end of the short circuit plunger 23 and directed toward the circuit 22. Then, it is bent at a right angle again and guided to the downstream side of the first and second microwave transmission paths 4 and 5. In other words, the transmission path length is increased by the amount of microwaves traveling back and forth in the short circuit plunger 23. Thus, the short circuit plunger 23 adjusts the transmission line lengths of the first and second microwave transmission lines.
[0022] 図 2 (C)の実施例では、伝送路長調節手段はマジック T19'からなつている。この構 成において、第 1および第 2のマイクロ波伝送路 4、 5の上流側から伝播してきたマイ クロ波は、マジック T19'の分岐部によって直角に曲げられた後、反射せしめられて 再び分岐部に戻ってくる。そしてそこでマイクロ波のうちの半分が第 1および第 2のマ イク口波伝送路 4、 5の下流側に、残りの半分が上流側に伝送される。すなわち、マイ クロ波がマジック T19'中を往復伝播する分だけ伝送路長は長くなる。こうして、マジ ック T19 'によって、第 1および第 2のマイクロ波伝送路の伝送路長が調節される。 In the embodiment of FIG. 2 (C), the transmission path length adjusting means is composed of a magic T19 ′. In this configuration, the microwave propagated from the upstream side of the first and second microwave transmission lines 4 and 5 is bent at a right angle by the branch portion of the magic T19 ', then reflected and branched again. Come back to the department. Then, half of the microwaves are transmitted downstream of the first and second microphone mouth wave transmission lines 4 and 5, and the other half are transmitted upstream. In other words, the transmission path length becomes longer as the microwave propagates back and forth in the magic T19 ′. Thus, the transmission line lengths of the first and second microwave transmission lines are adjusted by the magic T19 ′.
[0023] 導波管 1には、プラズマ生成手段 16が備えられる。プラズマ生成手段 16は、導波 管 1内のマイクロ波の伝播方向にのびるプラズマ生成室と、プラズマ生成室で生成し たプラズマをライン状に放出するプラズマ放出口を有して!/ヽる。 The waveguide 1 is provided with plasma generating means 16. The plasma generation means 16 has a plasma generation chamber extending in the microwave propagation direction in the waveguide 1 and a plasma discharge port for discharging the plasma generated in the plasma generation chamber in a line shape.
図 3は、図 1の III— ΠΙ線に沿った断面図であり、プラズマ生成手段 16の構成をより詳 細に示した図である。また、図 4は、図 3の I I線に沿った断面図であり、図 5は、図 3
の π—π線に沿った断面図である。 FIG. 3 is a cross-sectional view taken along the line III--X in FIG. 1, and shows the configuration of the plasma generating means 16 in more detail. 4 is a cross-sectional view taken along line II in FIG. 3, and FIG. It is sectional drawing along the π-π line.
[0024] 図 3からわ力るように、導波管 1は、その中心軸に垂直な断面において幅 aが厚み bよ り大きくなるように形成されている。そして、導波管の幅 aが、真空中におけるマイクロ 波の波長 λ 、導波管の内部におけるマイクロ波の波長 λ 、および導波管の幅 aの As shown in FIG. 3, the waveguide 1 is formed so that the width “a” is larger than the thickness “b” in a cross section perpendicular to the central axis thereof. The width a of the waveguide is determined by the wavelength λ of the microwave in vacuum, the wavelength λ of the microwave inside the waveguide, and the width a of the waveguide a.
0 g 0 g
間に成立する関係式、 A relational expression established between
[数 1] [Number 1]
から決定され、それによつて、幅 aは、生成すべきプラズマの長さよりも長い導波管の 内部におけるマイクロ波の波長え に対応する。 Thus, the width a corresponds to the microwave wavelength within the waveguide longer than the length of the plasma to be generated.
g g
[0025] また、導波管 1の H面 (この実施例では、下面が対応する)には、マイクロ波の伝播方 向にのびる縦長の開口部が形成され、この開口部に放電管 25が装着される。放電 管 25は、石英ガラスやセラミック等の誘電体から形成され、両端部が閉じられるととも に、中間部は逆 U字状の断面を有している。放電管 25は、その周壁の一部 25'が導 波管 1の内部空間に侵入し、かつ当該周壁の一部 25'に対向する縦長の開口が下 向きになるように配置される。この実施例では、放電管 25内にプラズマ生成室が形成 され、そして、放電管 25の縦長の開口は、プラズマ放出口 17を形成する。この実施 例では、放電管 25の周壁の一部 25'が導波管 1の内部空間に侵入する構成となつ ているが、周壁の一部 25'が導波管 1の内部空間に近接するように放電管 25しても よい。 [0025] Further, in the H surface of the waveguide 1 (the lower surface corresponds in this embodiment), a vertically long opening extending in the propagation direction of the microwave is formed, and the discharge tube 25 is formed in this opening. Installed. The discharge tube 25 is formed of a dielectric material such as quartz glass or ceramic, and both ends are closed, and the middle portion has an inverted U-shaped cross section. The discharge tube 25 is disposed such that a part 25 ′ of the peripheral wall enters the internal space of the waveguide 1, and a vertically long opening facing the part 25 ′ of the peripheral wall faces downward. In this embodiment, a plasma generation chamber is formed in the discharge tube 25, and the vertically long opening of the discharge tube 25 forms a plasma emission port 17. In this embodiment, a part 25 ′ of the peripheral wall of the discharge tube 25 is configured to enter the internal space of the waveguide 1, but a part 25 ′ of the peripheral wall is close to the internal space of the waveguide 1. A discharge tube 25 may be used.
[0026] 導波管 1は支持ブロック Bによって支持されるとともに、放電管 25はこの支持ブロック Bに保持される。支持ブロック Bの両側には、放電管 25にガスを供給するガス導入路 Gl、 G2が設けられる。図 4に示されるように、ガス導入路 Gl、 G2は、支持ブロック B 内において放電管 25の周壁に向力つてその長手方向に沿って等間隔に複数本配 置される。 The waveguide 1 is supported by the support block B, and the discharge tube 25 is held by the support block B. On both sides of the support block B, gas introduction paths Gl and G2 for supplying gas to the discharge tube 25 are provided. As shown in FIG. 4, a plurality of gas introduction paths Gl and G2 are arranged at equal intervals along the longitudinal direction of the support block B against the peripheral wall of the discharge tube 25 by force.
G1は、プラズマ生成用ガス導入路であり、ガス供給パイプ 14を介してプラズマ生成 ガス供給用ガス源 12に接続され、 G2は、反応ガス導入路であり、ガス供給パイプ 15
を介して反応ガス供給用ガス源 13に接続される。また、 Wは、プラズマによる放電管 25の発生熱を冷却するための冷却液還流路である。この冷却液還流路 Wは、放電 管 25内のプラズマ熱によって、導波管 1や支持ブロック Bが高温になるのを防止する ためのもので、必要に応じて導波管 1とプラズマ生成用ガス導入路 G1の間や、放電 管 25の側部に設けられ得る。 G1 is a gas introduction path for plasma generation, and is connected to a gas source 12 for plasma generation gas supply via a gas supply pipe 14, and G2 is a reaction gas introduction path, which is connected to a gas supply pipe 15 To the reactive gas supply gas source 13. W is a coolant reflux path for cooling the heat generated in the discharge tube 25 by plasma. This coolant circulation path W is for preventing the waveguide 1 and the support block B from becoming hot due to the plasma heat in the discharge tube 25. It can be provided between the gas introduction paths G1 or on the side of the discharge tube 25.
[0027] 図 5に示されるように、放電管 25の側部には、長手方向に沿って、スリット状のガス導 入用開口部 25"が設けられる。このスリット状のガス導入用開口部 25"は、放電管 25 の機械的強度を保持するために巣穴状の開口列となっている。また、プラズマ生成 用ガス導入路 G1は、放電管 25へのガス導入部近辺に拡張部 G1 'を備えており、拡 張部 G1 'においてガス導入用開口部 25"に接続されている。そして、プラズマ生成 用ガス導入路 G1から導入されたガスは、拡張部 G1 'において放電管 25の長さ方向 に拡散されて放電管 25内に導入される。なお、図示されないが、反応ガス導入路 G2 と放電管 25との接続部もこれと同様の構成を有している。 As shown in FIG. 5, a slit-like gas introduction opening 25 ”is provided along the longitudinal direction at the side of the discharge tube 25. This slit-like gas introduction opening. In order to maintain the mechanical strength of the discharge tube 25, 25 "is a burrow-like opening row. Further, the plasma generating gas introduction path G1 is provided with an expansion portion G1 ′ in the vicinity of the gas introduction portion to the discharge tube 25, and is connected to the gas introduction opening 25 ″ at the expansion portion G1 ′. The gas introduced from the plasma generating gas introduction path G1 is diffused in the lengthwise direction of the discharge tube 25 in the expanded portion G1 ′ and introduced into the discharge tube 25. Although not shown, the reaction gas introduction path is provided. The connecting portion between G2 and the discharge tube 25 has the same configuration.
Sl、 S2は、ガス導入路 Gl、 G2の拡張部 G1 'に配置されたバッフルプレート、即ち 多数の孔を設けたガス拡散板で、ガス導入路 Gl、 G2から導入されたガスの流れを、 放電管 25の縦軸方向に広げて放電管 25内に均一に案内する。 Sl and S2 are baffle plates arranged in the expansion part G1 'of the gas introduction paths Gl and G2, that is, a gas diffusion plate having a large number of holes, and the flow of gas introduced from the gas introduction paths Gl and G2 It is spread in the longitudinal direction of the discharge tube 25 and guided uniformly into the discharge tube 25.
[0028] こうして、第 1のマイクロ波発生源 2で発生せしめられたマイクロ波力 第 1のマイクロ 波伝送路 4 (L字形導波管 7aおよびテーパ導波管 6a)を通じて導波管 1の一端側か ら該導波管 1内に供給されるとともに、第 2のマイクロ波発生源 3で発生せしめられた マイクロ波が、第 2のマイクロ波伝送路 5 (L字形導波管 7bおよびテーパ導波管 6b)を 通じて導波管 1の他端側から該導波管 1内に供給される。そして、導波管 1内には、 2 つのマイクロ波の重畳波が生成される。 Thus, one end of the waveguide 1 through the first microwave transmission path 4 (the L-shaped waveguide 7a and the tapered waveguide 6a) generated by the first microwave generation source 2 The microwaves supplied from the side into the waveguide 1 and generated by the second microwave generation source 3 are transferred to the second microwave transmission path 5 (the L-shaped waveguide 7b and the tapered waveguide). It is supplied into the waveguide 1 from the other end side of the waveguide 1 through the wave tube 6b). In the waveguide 1, a superimposed wave of two microwaves is generated.
[0029] さら〖こ、プラズマ生成用ガスがガス源 12からガス供給管 14およびガス導入路 G1を通 じて放電管 1内に供給される。そして、導波管 1内に生成された重畳波による電磁界 によって、放電管 25のプラズマ生成室においてプラズマ生成用ガスが励起され、プ ラズマイ匕される。 [0029] Further, the plasma generating gas is supplied from the gas source 12 into the discharge tube 1 through the gas supply tube 14 and the gas introduction path G1. Then, the plasma generation gas is excited in the plasma generation chamber of the discharge tube 25 by the electromagnetic field generated by the superimposed wave generated in the waveguide 1, and is plasma-treated.
また、反応ガスがガス源 13からガス供給管 15およびガス導入路 G2を通じて放電管 1 内に供給される。反応ガスは、導波管 1内の重畳波による電磁界、およびプラズマ生
成用ガスの励起によるプラズマによって、放電管 25のプラズマ生成室において励起 され、プラズマ化される。 Further, the reaction gas is supplied from the gas source 13 into the discharge tube 1 through the gas supply tube 15 and the gas introduction path G2. The reactive gas is generated by the electromagnetic field generated by the superimposed wave in the waveguide 1 and the plasma production. The plasma generated by the excitation of the forming gas is excited in the plasma generation chamber of the discharge tube 25 and turned into plasma.
こうして、プラズマ生成用ガスおよび反応ガスの混合ガスのプラズマ力 プラズマ放出 口 17からライン状に放出される。 Thus, the plasma force of the mixed gas of the plasma generating gas and the reactive gas is discharged in a line form from the plasma discharge port 17.
[0030] このとき、伝送路長調節手段 10によって、第 1のマイクロ波伝送路 4の伝送路長が変 化せしめられると、この伝送路 4を通じて導波管 1内に供給されるマイクロ波の位相が ずれ、また、伝送路長調節手段 11によって、第 2のマイクロ波伝送路 5の伝送路長が 変化せしめられると、この伝送路 5を通じて導波管 1内に供給されるマイクロ波の位相 がずれ、導波管 1内の重畳波の波形が変化せしめられる。 [0030] At this time, if the transmission path length of the first microwave transmission path 4 is changed by the transmission path length adjusting means 10, the microwave supplied into the waveguide 1 through the transmission path 4 is changed. When the phase is shifted and the transmission path length of the second microwave transmission path 5 is changed by the transmission path length adjusting means 11, the phase of the microwave supplied into the waveguide 1 through the transmission path 5 is changed. Is shifted, and the waveform of the superimposed wave in the waveguide 1 is changed.
そして、プラズマ生成室において、それに対応するエネルギー密度のプラズマが生 成され、プラズマ放出口 17から放出されるとともに、その下方のプラズマ処理領域に お 、て均一な密度のライン状のプラズマが得られる。 In the plasma generation chamber, a plasma having an energy density corresponding to the plasma is generated and emitted from the plasma discharge port 17, and a line-shaped plasma having a uniform density is obtained in the plasma processing region below the plasma generation region. .
[0031] 図 6は、この装置によって発生せしめられるライン状のプラズマについての、プラズ マの長さ方向(放電管 25のプラズマ生成室の長さ方向)に沿ったプラズマ密度を示 すグラフであり、(A)はプラズマ生成室におけるグラフを、(B)はプラズマ処理領域に おけるグラフをそれぞれ示している。なお、図 6のグラフ中、 z軸方向の距離は、ブラ ズマの一方の端力も測った長さ方向の距離を表している。図 6のグラフを参照して、 プラズマ生成室で生成されるライン状プラズマのプラズマ密度が、プラズマの両端部 分でそれぞれピークを有するように 2つのマイクロ波の位相を調節すれば、プラズマ 処理領域で均一なプラズマ密度を有するライン状プラズマが得られる。 [0031] Fig. 6 is a graph showing the plasma density along the length direction of the plasma (the length direction of the plasma generation chamber of the discharge tube 25) for the line-shaped plasma generated by this apparatus. , (A) shows a graph in the plasma generation chamber, and (B) shows a graph in the plasma processing region. In the graph of FIG. 6, the distance in the z-axis direction represents the distance in the length direction in which one end force of the plasma is also measured. Referring to the graph of Fig. 6, if the phase of the two microwaves is adjusted so that the plasma density of the line plasma generated in the plasma generation chamber has peaks at both ends of the plasma, the plasma processing region A line-shaped plasma having a uniform plasma density can be obtained.
このようにプラズマ処理領域にぉ 、て均一なプラズマ密度が得られるのは、プラズ マの両端部から中央部へのプラズマの拡散や、プラズマの両端部とプラズマプラズ マ生成室の両端壁との相互作用による再結合が原因であると考えられる。 In this way, a uniform plasma density can be obtained in the plasma processing region because the plasma diffuses from both ends of the plasma to the center, or between the both ends of the plasma and both ends of the plasma plasma generation chamber. This is thought to be due to recombination due to interaction.
[0032] この実施例では、 G1にプラズマ生成用ガス、 G2に反応ガスを導入するようにした 力 両方のガスを混合した状態で両方のガス導入路 Gl、 G2から同時に導入してもよ ぐこのようにすれば放電管 14内においてガスの混合もよくなりプラズマの安定化に 貢献できる。また、プラズマ処理において反応ガスを使用しない場合には、両方のガ ス導入路 Gl、 G2にプラズマ生成用ガスを供給するか、あるいは反応ガス導入管路 G
2を閉鎖するようにしてもょ 、。 [0032] In this embodiment, the gas for generating plasma is introduced into G1 and the reaction gas is introduced into G2, and both gases may be mixed and introduced simultaneously from both gas introduction paths Gl and G2. In this way, gas mixing in the discharge tube 14 is improved, which can contribute to plasma stabilization. When no reactive gas is used in the plasma treatment, either a gas for generating plasma is supplied to both gas introducing paths Gl and G2, or the reactive gas introducing pipe G Let's close 2 though.
[0033] 図 1中、 18はプラズマ生成手段 16から放出されたプラズマを被処理物に照射してプ ラズマ処理を行うためのプラズマ処理室である。 In FIG. 1, 18 is a plasma processing chamber for performing plasma processing by irradiating an object to be processed with plasma emitted from the plasma generating means 16.
なお、装置を大気圧下で作動させる場合には、導波管 1と放電管 25との装着部、支 持ブロック Bと放電管 25との接合部、および支持ブロック Bとプラズマ処理室 18との 接合部等の気密シールは不要である力 S、大気圧以下〜数 Torrの低圧状態で作動さ せる場合には、従来の真空プラズマ処理装置のような気密シールが必要となる。 When the apparatus is operated under atmospheric pressure, the mounting portion between the waveguide 1 and the discharge tube 25, the joint between the support block B and the discharge tube 25, and the support block B and the plasma processing chamber 18 A hermetic seal such as a conventional vacuum plasma processing apparatus is required when operating in a low pressure state of a pressure S below atmospheric pressure to several Torr .
[0034] 次に、上述のマイクロ波ラインプラズマ発生装置を実際に作動させて、発生せしめ られるライン状プラズマの密度を測定する実験を行った。この実験で使用した装置は 、幅 aが約 62mm、長さ cが約 600mmの導波管と、幅が約 10mm、深さが約 20mm、 長さ c'が約 500mmの放電管を備えていた。実験では、ガス導入路 G2は閉鎖し、ガ ス導入路 G1からプラズマ生成用ガスとして Heガスを供給し、 2Torrの圧力下で、導 波管の両端から lkW、 2. 45GHzのマイクロ波を導入した。 Next, an experiment was performed in which the above-described microwave line plasma generator was actually operated to measure the density of the line plasma generated. The apparatus used in this experiment comprises a waveguide with a width a of approximately 62 mm and a length c of approximately 600 mm, and a discharge tube with a width of approximately 10 mm, a depth of approximately 20 mm, and a length c ′ of approximately 500 mm. It was. In the experiment, the gas introduction path G2 was closed, He gas was supplied from the gas introduction path G1 as a plasma generation gas, and lkW, 2.45 GHz microwave was introduced from both ends of the waveguide under a pressure of 2 Torr. did.
[0035] そして、放電管 25の内壁上端を原点として下向きに y軸 (単位 mm)を設定し(図 3参 照)、 y座標がそれぞれ 25mm、 35mm, 40mmの 3つの位置において、ライン状の プラズマの長さ方向(放電管 25のプラズマ生成室の長さ方向)に沿ってプラズマ密度 を測定した。この場合、プラズマ生成室のプラズマ密度を直接測定することは困難で あるので、 y= 20mmの位置でのプラズマ密度の測定値をもって、プラズマ生成室の プラズマ密度のグラフの振る舞 、を予測するようにして!/、る。 [0035] Then, the y-axis (unit: mm) is set downward with the upper end of the inner wall of the discharge tube 25 as the origin (see Fig. 3). At three positions where the y-coordinates are 25mm, 35mm, and 40mm, respectively, The plasma density was measured along the length direction of the plasma (the length direction of the plasma generation chamber of the discharge tube 25). In this case, since it is difficult to directly measure the plasma density in the plasma generation chamber, it is necessary to predict the behavior of the plasma density graph in the plasma generation chamber using the measured value of the plasma density at the position y = 20 mm. And!
測定結果を図 7に示した。図 7のグラフ中、横軸の z方向の距離とは、ライン状プラズ マの一方の端力も測った長さ方向の距離を表している。また、「園」、「拳」、「▲」は、 それぞれ、 25mm, 35mm, 40mmの位置での測定値を表している。図 7のグラフか ら、上述のように、プラズマ生成室において両端部分でプラズマ密度がピークを有す るようなライン状プラズマを生成すれば、放電管 25の内壁上端から 35mmの位置、 すなわち、プラズマ放出口 17から下方に 15mmの位置において、プラズマ密度が均 一になることがわかる。そして、この位置にプラズマ処理領域を設ければ、均一な密 度のライン状プラズマが得られる。 The measurement results are shown in FIG. In the graph of Fig. 7, the distance in the z direction on the horizontal axis represents the distance in the length direction that also measured one end force of the line-shaped plasma. “Sono”, “Fist”, and “▲” represent the measured values at the positions of 25 mm, 35 mm, and 40 mm, respectively. From the graph of FIG. 7, as described above, if a line-shaped plasma having a peak plasma density at both ends in the plasma generation chamber is generated, the position is 35 mm from the upper end of the inner wall of the discharge tube 25, that is, It can be seen that the plasma density is uniform at a position 15 mm below the plasma discharge port 17. If a plasma treatment region is provided at this position, a line plasma with uniform density can be obtained.
[0036] 図 8は、本発明の別の実施例によるマイクロ波ラインプラズマ発生装置の概略構成
を示した斜視図であり、図 9は、図 8に示したマイクロ波ラインプラズマ発生装置の図 3 に類似の図である。この実施例は、図 1に示した実施例と、プラズマ処理領域でのラ インプラズマの密度を均一にするための手段が異なるだけである。したがって、図 8 および図 9中、図 1に示した構成要素を同じ構成要素については同一番号を付して 詳細な説明を省略する。なお、明瞭化のため、図 8において、マイクロ波発生源およ びマイクロ波伝送路を省略してある。 FIG. 8 is a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention. FIG. 9 is a view similar to FIG. 3 of the microwave line plasma generator shown in FIG. This embodiment differs from the embodiment shown in FIG. 1 only in the means for making the line plasma density uniform in the plasma processing region. Therefore, in FIG. 8 and FIG. 9, the same constituent elements as those shown in FIG. For the sake of clarity, the microwave generation source and the microwave transmission path are omitted in FIG.
[0037] 図 8および図 9を参照して、この実施例では、プラズマ処理領域でのラインプラズマの 密度を均一にするための手段は、プラズマ生成手段 16のプラズマ放出口 17の近傍 に設けられ、プラズマ放出口 17から放出されたプラズマを少なくとも部分的に遮るこ とによって該プラズマの密度を調節するプラズマ密度調節手段からなっている。 プラズマ密度調節手段 31は、この実施例では、プラズマ放出口 17の下側であってプ ラズマ放出口 17の両側にプラズマ放出口 17の長手方向に沿って間隔をあけて配列 された導体または誘電体製の棒体 30と、プラズマ処理室 18の側壁 18a、 18bに設け られ、棒体 30を支持するとともに、各棒体 30を独立にその軸方向でかつプラズマ放 出口 17を横切る方向に、棒体 30がプラズマ放出口 17から放出されるプラズマを少 なくとも部分的に遮る第 1の位置と、棒体 30が該プラズマに接触しない第 2の位置と の間にお 、てスライド運動可能に案内する軸受(図示はされな 、)と、を有して!/、る。 With reference to FIGS. 8 and 9, in this embodiment, means for making the density of the line plasma uniform in the plasma processing region is provided in the vicinity of the plasma discharge port 17 of the plasma generation means 16. The plasma discharge means 17 comprises plasma density adjusting means for adjusting the density of the plasma by at least partially blocking the plasma emitted from the plasma discharge port 17. In this embodiment, the plasma density adjusting means 31 is a conductor or dielectric that is arranged below the plasma discharge port 17 and on both sides of the plasma discharge port 17 at intervals along the longitudinal direction of the plasma discharge port 17. Are provided on the body rod 30 and the side walls 18a and 18b of the plasma processing chamber 18, and support the rod 30 and each rod 30 independently in its axial direction and across the plasma outlet 17. Slide motion is possible between the first position where the rod 30 at least partially blocks the plasma emitted from the plasma outlet 17 and the second position where the rod 30 does not contact the plasma. And bearings (not shown) for guiding!
[0038] この構成によれば、棒体 30によって遮られたプラズマ部分は、棒体 30によって遮ら れな 、プラズマ部分に比べ、プラズマ処理領域にぉ 、てそのプラズマ密度が低くな る。したがって、各棒体 30の位置を手動で調節することによって、プラズマ処理領域 にお 、て、均一な密度のラインプラズマが得られる。 [0038] According to this configuration, the plasma portion shielded by the rod body 30 is not shielded by the rod body 30, and the plasma density is lower in the plasma processing region than the plasma portion. Therefore, by manually adjusting the position of each rod 30, a line plasma with a uniform density can be obtained in the plasma processing region.
[0039] 図 10は、本発明の別の実施例によるマイクロ波ラインプラズマ発生装置の概略構 成を示した斜視図である。この実施例は、図 8に示した実施例と、プラズマ密度調節 手段の構成が異なっているだけである。したがって、図 10中、図 8に示した構成要素 と同じ構成要素については同一番号を付して詳細な説明を省略する。 FIG. 10 is a perspective view showing a schematic configuration of a microwave line plasma generator according to another embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 8 only in the configuration of the plasma density adjusting means. Therefore, in FIG. 10, the same components as those shown in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0040] 図 10を参照して、この実施例では、プラズマ密度調節手段 31 'は、プラズマ放出口 17の下側であってプラズマ放出口 17の両側に配置された水平なプレート集合体を 有している。プレート集合体は、プラズマ放出口 17の長手方向に隣接して配置され
た複数の導体または誘電体製のプレート要素 32a〜32dからなつて 、る。プラズマ密 度調節手段 31 'は、さらに、プラズマ処理室 18の側壁 18a、 18bに設けられて、プレ ート要素 32a〜32dを支持するとともに、各プレート要素 32a〜32dを独立にプラズマ 放出口 17を横切る方向に、プレート要素 32a〜32dがプラズマ放出口 17から放出さ れるプラズマを少なくとも部分的に遮る第 1の位置と、プレート要素 32a〜32dが該プ ラズマに接触しない第 2の位置との間においてスライド運動可能に案内するガイド手 段(図示されな!ヽ)とを有して!/ヽる。 Referring to FIG. 10, in this embodiment, the plasma density adjusting means 31 ′ has a horizontal plate assembly disposed below the plasma discharge port 17 and on both sides of the plasma discharge port 17. is doing. The plate assembly is arranged adjacent to the longitudinal direction of the plasma emission port 17. And a plurality of conductor or dielectric plate elements 32a to 32d. The plasma density adjusting means 31 ′ is further provided on the side walls 18 a and 18 b of the plasma processing chamber 18 to support the plate elements 32 a to 32 d and to each plate element 32 a to 32 d independently of the plasma discharge port 17. Between the first position where the plate elements 32a to 32d at least partially block the plasma emitted from the plasma outlet 17 and the second position where the plate elements 32a to 32d do not contact the plasma. It has a guide means (not shown!) That guides it so that it can slide.
この構成においても、図 8の実施例の棒体 30の場合と同様、プレート要素 32a〜3 2dによって遮られたプラズマ部分は、プレート要素 32a〜32dによって遮られないプ ラズマ部分に比べ、プラズマ処理領域においてそのプラズマ密度が低くなる。したが つて、各プレート要素 32a〜32dの位置を手動で調節することによって、プラズマ処 理領域においてラインプラズマの密度を均一にすることができる。
Also in this configuration, as in the case of the rod 30 in the embodiment of FIG. 8, the plasma portion blocked by the plate elements 32a to 32d is compared with the plasma portion not blocked by the plate elements 32a to 32d. The plasma density is lowered in the region. Therefore, the density of the line plasma can be made uniform in the plasma processing region by manually adjusting the position of each plate element 32a to 32d.
Claims
請求の範囲 The scope of the claims
[1] 導波管と、 [1] a waveguide;
第 1および第 2のマイクロ波発生源と、 First and second microwave sources;
前記第 1のマイクロ波発生源と前記導波管の一端側開口との間に接続され、前記導 波管内にマイクロ波を供給する第 1のマイクロ波伝送路と、 A first microwave transmission path connected between the first microwave generation source and one end opening of the waveguide and supplying microwaves into the waveguide;
前記第 2のマイクロ波発生源と前記導波管の他端側開口との間に接続され、前記導 波管内にマイクロ波を供給する第 2のマイクロ波伝送路と、 A second microwave transmission path connected between the second microwave generation source and the other end side opening of the waveguide, and supplying microwaves into the waveguide;
前記第 1および第 2のマイクロ波伝送路のそれぞれの途中に設けられ、それらのマイ クロ波伝送路の伝送路の長さを調節する伝送路長調節手段と、 Transmission path length adjusting means provided in the middle of each of the first and second microwave transmission paths, for adjusting the lengths of the transmission paths of the microwave transmission paths;
プラズマ生成用ガスを供給するガス源と、 A gas source for supplying a plasma generating gas;
前記導波管に備えられ、前記導波管内のマイクロ波の伝播方向にのびるプラズマ生 成室、および前記プラズマ生成室で生成したプラズマをライン状に放出するプラズマ 放出口を有し、前記ガス源力 前記プラズマ生成室に供給されたプラズマ生成用ガ スを、前記導波管内に供給されたマイクロ波によって励起してプラズマを生成し、該 プラズマを前記プラズマ放出ロカゝら放出するプラズマ生成手段と、を備えていること を特徴とするマイクロ波ラインプラズマ発生装置。 The gas source includes a plasma generation chamber provided in the waveguide and extending in a microwave propagation direction in the waveguide, and a plasma discharge port for discharging the plasma generated in the plasma generation chamber in a line shape. A plasma generating means for generating a plasma by exciting a plasma generating gas supplied to the plasma generating chamber with a microwave supplied into the waveguide, and for releasing the plasma from the plasma discharge locuser; The microwave line plasma generator characterized by comprising.
[2] 前記第 1および第 2のマイクロ波伝送路はそれぞれ第 2の導波管から形成され、前 記伝送路長調節手段は U字状の第 3の導波管からなり、前記第 3の導波管は、さらに 、それぞれ前記第 1および第 2のマイクロ波伝送路のそれぞれの上流側部分および 下流側部分に接続された一対の平行部分と、前記一対の平行部分にそれらに対し てスライド運動可能に、かつマイクロ波が外部に漏れないように嵌合した U字状部分 と、力らなって!/、ることを特徴とする請求項 1に記載のマイクロ波ラインプラズマ発生 装置。 [2] Each of the first and second microwave transmission paths is formed of a second waveguide, and the transmission path length adjusting means is a U-shaped third waveguide, The waveguide further includes a pair of parallel portions connected to the upstream portion and the downstream portion of the first and second microwave transmission lines, respectively, and the pair of parallel portions with respect to them. 2. The microwave line plasma generating apparatus according to claim 1, wherein a U-shaped portion fitted so as to be slidable and so that the microwave does not leak to the outside, and a force! /.
[3] 前記第 1および第 2のマイクロ波伝送路はそれぞれ導波管から形成され、前記伝送 路長調節手段は、前記第 1および第 2のマイクロ波伝送路の途中に挿入されたサー キュレータと、前記サーキユレータに接続されたショートサーキットプランジャと、から なって 、ることを特徴とする請求項 1に記載のマイクロ波ラインプラズマ発生装置。 [3] The first and second microwave transmission paths are each formed of a waveguide, and the transmission path length adjusting means is a circulator inserted in the middle of the first and second microwave transmission paths. 2. The microwave line plasma generator according to claim 1, further comprising: a short circuit plunger connected to the circulator.
[4] 前記第 1および第 2のマイクロ波伝送路はそれぞれ導波管力 形成され、前記伝送
路長調節手段はマジック Tからなつて 、ることを特徴とする請求項 1に記載のマイクロ 波ラインプラズマ発生装置。 [4] The first and second microwave transmission paths are each formed by a waveguide force, and the transmission 2. The microwave line plasma generating apparatus according to claim 1, wherein the path length adjusting means includes a magic T.
[5] 導波管と、 [5] waveguide,
第 1および第 2のマイクロ波発生源と、 First and second microwave sources;
前記第 1のマイクロ波発生源と前記導波管の一端側開口との間に接続され、前記導 波管内にマイクロ波を供給する第 1のマイクロ波伝送路と、 A first microwave transmission path connected between the first microwave generation source and one end opening of the waveguide and supplying microwaves into the waveguide;
前記第 2のマイクロ波発生源と前記導波管の他端側開口との間に接続され、前記導 波管内にマイクロ波を供給する第 2のマイクロ波伝送路と、 A second microwave transmission path connected between the second microwave generation source and the other end side opening of the waveguide, and supplying microwaves into the waveguide;
プラズマ生成用ガスを供給するガス源と、 A gas source for supplying a plasma generating gas;
前記導波管に備えられ、前記導波管内のマイクロ波の伝播方向にのびるプラズマ生 成室、および前記プラズマ生成室で生成したプラズマをライン状に放出するプラズマ 放出口を有し、前記ガス源力 前記プラズマ生成室に供給されたプラズマ生成用ガ スを、前記導波管内に供給されたマイクロ波によって励起してプラズマを生成し、該 プラズマを前記プラズマ放出口カゝら放出するプラズマ生成手段と、 The gas source includes a plasma generation chamber provided in the waveguide and extending in a microwave propagation direction in the waveguide, and a plasma discharge port for discharging the plasma generated in the plasma generation chamber in a line shape. A plasma generating means for generating a plasma by exciting a plasma generating gas supplied to the plasma generating chamber with a microwave supplied into the waveguide, and discharging the plasma from the plasma discharge port When,
前記プラズマ生成手段のプラズマ放出口の近傍に設けられ、前記プラズマ放出口か ら放出されたプラズマを少なくとも部分的に遮ることによって該プラズマの密度を調節 するプラズマ密度調節手段と、を備えて ヽることを特徴とするマイクロ波ラインプラズ マ発生装置。 Plasma density adjusting means provided in the vicinity of the plasma emission port of the plasma generating means for adjusting the density of the plasma by at least partially blocking the plasma emitted from the plasma emission port. A microwave line plasma generator characterized by this.
[6] 前記プラズマ密度調節手段は、前記プラズマ放出口の下側であって前記プラズマ放 出口の一方の側または両側に該プラズマ放出口の長手方向に沿って間隔をあけて 配列された棒体と、前記棒体を支持するとともに、前記棒体のそれぞれを独立にその 軸方向でかつ前記プラズマ放出口を横切る方向に、前記棒体が前記プラズマ放出 ロカ 放出されるプラズマを少なくとも部分的に遮る第 1の位置と、前記棒体が該プ ラズマに接触しな 、第 2の位置との間にお 、て移動させる棒体移動手段とを有して!/ヽ ることを特徴とする請求項 5に記載のマイクロ波ラインプラズマ発生装置。 [6] The plasma density adjusting means is a rod body that is arranged below the plasma discharge port and at one side or both sides of the plasma discharge port at intervals along the longitudinal direction of the plasma discharge port. And supporting the rod body, and the rod body at least partially blocks the plasma emitted from the plasma emission locus in the axial direction of the rod body and in a direction transverse to the plasma emission port. A rod moving means for moving between the first position and the second position when the rod does not contact the plasma is provided! Item 6. The microwave line plasma generator according to Item 5.
[7] 前記プラズマ密度調節手段は、前記プラズマ放出口の下側であって該プラズマ放 出口の一方の側または両側に配置された水平なプレート集合体を有し、前記プレー ト集合体は、前記プラズマ放出口の長手方向に隣接して配置された複数のプレート
要素からなり、さらに、前記プレート要素を支持するとともに、前記プレート要素のそ れぞれを独立に前記プラズマ放出口を横切る方向に、前記プレート要素が前記ブラ ズマ放出ロカ 放出されるプラズマを少なくとも部分的に遮る第 1の位置と、前記プレ ート要素が該プラズマに接触しない第 2の位置との間において移動させるプレート要 素移動手段とを有して 、ることを特徴とする請求項 5に記載のマイクロ波ラインプラズ マ発生装置。 [7] The plasma density adjusting means includes a horizontal plate assembly disposed on one side or both sides of the plasma discharge port below the plasma discharge port, and the plate assembly includes: A plurality of plates arranged adjacent to each other in the longitudinal direction of the plasma emission port The plate element further supports the plate element, and the plate element at least partly emits the plasma emitted by the plasma emission locus in a direction transversely across the plasma emission opening of each of the plate elements. 6. A plate element moving means for moving between a first position where the plate element is obstructed and a second position where the plate element does not contact the plasma. The microwave line plasma generator described in 1.
前記導波管は、その中心軸に垂直な断面において幅が厚みより大きくなるように形 成された扁平な方形導波管からなり、前記導波管の幅 aが、真空自由空間内におけ るマイクロ波の波長え 、前記導波管の内部におけるマイクロ波の波長え 、および前 The waveguide is a flat rectangular waveguide formed so that its width is greater than its thickness in a cross section perpendicular to its central axis, and the width a of the waveguide is within the vacuum free space. The microwave wavelength, the microwave wavelength inside the waveguide, and the front
0 g 0 g
記導波管の幅 aの間に成立する関係式、 A relational expression established between the width a of the waveguide,
[数 1] [Number 1]
から決定され、それによつて、前記幅 aは、生成すべきプラズマの長さよりも長い前記 導波管の内部におけるマイクロ波の波長 λ に対応していることを特徴とする請求項 1 The width a corresponds to the wavelength λ of the microwave inside the waveguide, which is longer than the length of the plasma to be generated.
g g
〜請求項 7のいずれかに記載のマイクロ波ラインプラズマ発生装置。 The microwave line plasma generator according to any one of claims 7 to 8.
[9] 前記導波管にはマイクロ波の伝播方向にのびる縦長の開口部が形成され、前記ブラ ズマ生成手段は、前記導波管の開口部に装着された誘電体製の放電管を有し、前 記放電管は、その周壁の一部が前記導波管の内部空間に近接または侵入し、前記 放電管における前記導波管の外側に露出する周壁部分には前記プラズマ放出口が 形成されており、前記ガス源カゝらプラズマ生成用ガスが前記放電管内に供給され、 前記放電管内で前記プラズマ生成用ガスがマイクロ波によって励起され、生成された プラズマが前記プラズマ放出ロカも放出されるようになっていることを特徴とする請求 項 1〜請求項 8のいずれかに記載のマイクロ波ラインプラズマ発生装置。 [9] The waveguide has an elongated opening extending in the microwave propagation direction, and the plasma generating means has a dielectric discharge tube attached to the opening of the waveguide. In the discharge tube, a part of the peripheral wall thereof approaches or enters the internal space of the waveguide, and the plasma emission port is formed in the peripheral wall portion exposed to the outside of the waveguide in the discharge tube. The gas source and the plasma generation gas are supplied into the discharge tube, the plasma generation gas is excited in the discharge tube by microwaves, and the generated plasma is also released from the plasma emission locusr. The microwave line plasma generator according to any one of claims 1 to 8, wherein the microwave line plasma generator is configured as described above.
[10] 前記導波管の開口部が前記導波管の H面に設けられ、前記放電管が、前記開口 部に沿って、その周壁の一部が前記導波管の内部空間に近接または侵入するように 装着されていることを特徴とする請求項 9に記載のマイクロ波ラインプラズマ発生装置
前記放電管のプラズマ放出口は、前記放電管の長さ方向にのびる縦長の開口から なっていることを特徴とする請求項 9または請求項 10に記載のマイクロ波ラインプラズ マ発生装置。
[10] The opening of the waveguide is provided on the H-plane of the waveguide, and the discharge tube is close to the internal space of the waveguide along the opening. 10. The microwave line plasma generator according to claim 9, wherein the microwave line plasma generator is mounted so as to penetrate. 11. The microwave line plasma generating device according to claim 9, wherein the plasma discharge port of the discharge tube is a vertically long opening extending in a length direction of the discharge tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008528712A JPWO2008018159A1 (en) | 2006-08-08 | 2006-09-15 | Microwave line plasma generator with two power supplies |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006215817 | 2006-08-08 | ||
JP2006-215817 | 2006-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008018159A1 true WO2008018159A1 (en) | 2008-02-14 |
Family
ID=39032700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/318403 WO2008018159A1 (en) | 2006-08-08 | 2006-09-15 | Microwave line plasma generation system with two power supply |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008018159A1 (en) |
WO (1) | WO2008018159A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150020735A1 (en) * | 2009-05-08 | 2015-01-22 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
KR101690625B1 (en) * | 2015-06-22 | 2017-01-09 | 한국기초과학지원연구원 | Large scale ecr plasma generating device |
KR101858867B1 (en) * | 2016-12-23 | 2018-05-16 | 한국기초과학지원연구원 | Plasma processing apparatus for generating a plasma by emitting a microwave in a chamber |
KR101980273B1 (en) * | 2017-11-23 | 2019-05-21 | 한국기초과학지원연구원 | Linear microwave plasma generating device |
US10490386B2 (en) | 2017-06-27 | 2019-11-26 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US10861667B2 (en) | 2017-06-27 | 2020-12-08 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208899A (en) * | 1997-01-23 | 1998-08-07 | Toshiba Corp | Plasma processing device |
JPH11354297A (en) * | 1998-05-29 | 1999-12-24 | Leybold Syst Gmbh | Plasma generator |
JP2000515678A (en) * | 1997-05-28 | 2000-11-21 | ライボルト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Plasma generator |
JP2002203844A (en) * | 2000-10-13 | 2002-07-19 | Tokyo Electron Ltd | Plasma treatment device |
JP2005203709A (en) * | 2004-01-19 | 2005-07-28 | Tokyo Electron Ltd | Plasma processing apparatus |
JP2005330566A (en) * | 2004-05-21 | 2005-12-02 | Sumitomo Bakelite Co Ltd | Vacuum film deposition method using deposition preventive film |
JP2005340079A (en) * | 2004-05-28 | 2005-12-08 | Adtec Plasma Technology Co Ltd | Microwave plasma generator |
JP2005353411A (en) * | 2004-06-10 | 2005-12-22 | Tatsuo Shiyouji | Plasma generation method in atmospheric pressure and its device |
JP2006040609A (en) * | 2004-07-23 | 2006-02-09 | Naohisa Goto | Plasma processing apparatus and method, and flat panel display device manufacturing method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01296599A (en) * | 1988-05-25 | 1989-11-29 | Tel Sagami Ltd | Ecr plasma generating device |
JP3186777B2 (en) * | 1991-01-17 | 2001-07-11 | 神港精機株式会社 | Plasma source |
JPH11274801A (en) * | 1998-03-19 | 1999-10-08 | Toshiba Corp | Waveguide displacement absorber and absorbing device |
JP2001118698A (en) * | 1999-10-15 | 2001-04-27 | Nisshin:Kk | Method of generating surface wave excitation plasma and plasma generating apparatus |
JP2001308066A (en) * | 2000-04-21 | 2001-11-02 | Shibaura Mechatronics Corp | Plasma processing equipment |
-
2006
- 2006-09-15 WO PCT/JP2006/318403 patent/WO2008018159A1/en active Application Filing
- 2006-09-15 JP JP2008528712A patent/JPWO2008018159A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208899A (en) * | 1997-01-23 | 1998-08-07 | Toshiba Corp | Plasma processing device |
JP2000515678A (en) * | 1997-05-28 | 2000-11-21 | ライボルト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Plasma generator |
JPH11354297A (en) * | 1998-05-29 | 1999-12-24 | Leybold Syst Gmbh | Plasma generator |
JP2002203844A (en) * | 2000-10-13 | 2002-07-19 | Tokyo Electron Ltd | Plasma treatment device |
JP2005203709A (en) * | 2004-01-19 | 2005-07-28 | Tokyo Electron Ltd | Plasma processing apparatus |
JP2005330566A (en) * | 2004-05-21 | 2005-12-02 | Sumitomo Bakelite Co Ltd | Vacuum film deposition method using deposition preventive film |
JP2005340079A (en) * | 2004-05-28 | 2005-12-08 | Adtec Plasma Technology Co Ltd | Microwave plasma generator |
JP2005353411A (en) * | 2004-06-10 | 2005-12-22 | Tatsuo Shiyouji | Plasma generation method in atmospheric pressure and its device |
JP2006040609A (en) * | 2004-07-23 | 2006-02-09 | Naohisa Goto | Plasma processing apparatus and method, and flat panel display device manufacturing method |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10727031B2 (en) | 2009-05-08 | 2020-07-28 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US9520271B2 (en) | 2009-05-08 | 2016-12-13 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US9653265B2 (en) | 2009-05-08 | 2017-05-16 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US9847212B2 (en) | 2009-05-08 | 2017-12-19 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US20180076009A1 (en) * | 2009-05-08 | 2018-03-15 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US20150020735A1 (en) * | 2009-05-08 | 2015-01-22 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
KR101690625B1 (en) * | 2015-06-22 | 2017-01-09 | 한국기초과학지원연구원 | Large scale ecr plasma generating device |
KR101858867B1 (en) * | 2016-12-23 | 2018-05-16 | 한국기초과학지원연구원 | Plasma processing apparatus for generating a plasma by emitting a microwave in a chamber |
CN108243550A (en) * | 2016-12-23 | 2018-07-03 | 韩国基础科学支援研究院 | Linear electromagnetic wave plasma source and plasma processing device using same |
US10490386B2 (en) | 2017-06-27 | 2019-11-26 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US10861669B2 (en) | 2017-06-27 | 2020-12-08 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US10861667B2 (en) | 2017-06-27 | 2020-12-08 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
KR101980273B1 (en) * | 2017-11-23 | 2019-05-21 | 한국기초과학지원연구원 | Linear microwave plasma generating device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008018159A1 (en) | 2009-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9252000B2 (en) | Microwave waveguide apparatus, plasma processing apparatus and plasma processing method | |
WO2008018159A1 (en) | Microwave line plasma generation system with two power supply | |
JP5082229B2 (en) | Plasma processing equipment | |
CN102760633B (en) | Plasma processing apparatus and method of plasma processing | |
KR101751200B1 (en) | Microwave radiation antenna, microwave plasma source and plasma processing apparatus | |
JP4978985B2 (en) | Plasma processing method | |
JP4865034B2 (en) | Plasma generating apparatus and work processing apparatus using the same | |
US20090026963A1 (en) | Surface wave excitation plasma generator and surface wave excitation plasma processing apparatus | |
KR950010714A (en) | Plasma generating method and apparatus and plasma processing method and apparatus using same | |
JP2009205921A (en) | Microwave plasma treatment device, and usage of microwave plasma treatment device | |
US7934468B2 (en) | Plasma processing apparatus and plasma processing method | |
WO2006120904A1 (en) | Surface wave excitation plasma processing system | |
JP6501493B2 (en) | Plasma processing system | |
JP4381001B2 (en) | Plasma process equipment | |
JP4134077B2 (en) | Microwave line plasma generator | |
TW201508809A (en) | Plasma processing device and plasma processing method | |
JPH04274199A (en) | Microwave radiator | |
JP3683081B2 (en) | Plasma processing equipment | |
JP6046985B2 (en) | Microwave plasma generator | |
JP7617682B1 (en) | Plasma generating unit, plasma processing apparatus, and plasma generating method | |
WO2008004318A1 (en) | Method of microwave plasma treatment and apparatus therefor | |
JP4619973B2 (en) | Plasma generating apparatus and work processing apparatus using the same | |
JP2005340079A (en) | Microwave plasma generator | |
JP2007149404A (en) | Microwave heating device | |
JP2010219004A (en) | Plasma generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06810195 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008528712 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06810195 Country of ref document: EP Kind code of ref document: A1 |