+

WO2008013069A1 - El device - Google Patents

El device Download PDF

Info

Publication number
WO2008013069A1
WO2008013069A1 PCT/JP2007/063971 JP2007063971W WO2008013069A1 WO 2008013069 A1 WO2008013069 A1 WO 2008013069A1 JP 2007063971 W JP2007063971 W JP 2007063971W WO 2008013069 A1 WO2008013069 A1 WO 2008013069A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
core portion
core
shell layer
layer
Prior art date
Application number
PCT/JP2007/063971
Other languages
French (fr)
Japanese (ja)
Inventor
Miho Ikenishi
Satoshi Kobayashi
Yuki Iguchi
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to JP2008526727A priority Critical patent/JPWO2008013069A1/en
Publication of WO2008013069A1 publication Critical patent/WO2008013069A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to an EL element (electric mouth luminescence element) of a type that emits light by injecting carriers into luminescent particles by applying an alternating electric field.
  • the second semiconductor fine particles are made of the first semiconductor. Dispersed in the continuous phase. When an alternating electric field is applied to the EL element, carriers generated from the first semiconductor collide with the second semiconductor fine particles, and the second semiconductor fine particles are excited to emit light when returning to the ground state. Arise.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-249373
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-173878
  • Patent Document 1 cannot realize the light emission efficiency expected to reduce the carrier injection efficiency into the fine particles of the second semiconductor. This is because the scattering of carriers due to impurities mixed during the formation of the light emitting layer and the low continuity at the interface between the first semiconductor and the second semiconductor fine particles, resulting in a decrease in the “quantum confinement effect”. It is thought to be due to this.
  • a first aspect of the present invention is an EL device in which a light emitting layer includes a quantum dot having a core-shell structure in which a surface of a core portion is covered with a shell layer, and emits light by applying an alternating electric field.
  • the layer is made of a material having a larger band gap than the material of the core portion, and the shell
  • This is an EL device with a film thickness of 5 nm to 100 nm.
  • a second aspect of the present invention is an EL device in which the light emitting layer includes a quantum dot having a core-shell structure in which the surface of the core portion is covered with a shell layer, and emits light by applying an alternating electric field.
  • the layer is made of a material having a band gap larger than that of the material of the core portion, and is an EL element that emits light when intrinsic charge carriers existing in the shell layer are supplied to the core portion.
  • a third aspect of the present invention is the EL device according to the first or second aspect, wherein the light-emitting layer has core-shell structured particles mixed with a binder material.
  • a fourth aspect of the present invention is the EL element according to the third aspect, wherein the binder material is a dielectric.
  • a fifth aspect of the present invention is the EL device according to any one of the first to third aspects, in which the quantum dot has an organic side chain outside the shell.
  • a sixth aspect of the present invention is the EL device according to any one of the first to fifth aspects, wherein the core portion has a particle size of 1 to: LOnm.
  • the core portion and the carrier injection that are hardly affected by the contamination of impurities during the formation of the light-emitting layer can be obtained by a simple manufacturing method.
  • the continuity of the interface of the shell layer as a layer can be ensured, and carriers present in the shell layer can be efficiently injected into the core portion.
  • the EL element (electric aperture luminescence element) according to this embodiment has a configuration in which a first insulating layer, a light emitting layer, and a second insulating layer are sequentially stacked between a pair of electrodes.
  • an Au (gold) metal electrode and an ITO (indium stannate) transparent electrode can be used as the pair of electrodes.
  • the Au electrode is formed by vacuum evaporation using a normal resistance heating evaporation source.
  • the ITO electrode used is a film formed on a glass substrate. You may form by sputtering method and other well-known means.
  • the two insulating layers are formed, for example, by sputtering or the like using silicon nitride, tantalum oxide, silicon oxide, yttrium oxide, alumina, hafnium oxide, or norium tantalum oxide. be able to.
  • the light emitting layer also constitutes only a core-shell quantum dot force. This eliminates the need to uniformly disperse the particles in the needle and reduces the possibility of impurities being mixed. However, if it is difficult to form a light-emitting layer using only core-shell quantum dots, it is advisable to improve the adhesion to the insulating layer by mixing with a binder.
  • the core-shell structure quantum dot has a structure in which the surface of the core portion is covered with a shell layer.
  • the material and the particle size are appropriately determined according to the emission wavelength required for the EL element.
  • the particle size of the core portion is formed in a spherical shape by a known method (for example, a wet chemical synthesis method (liquid phase synthesis method), a laser ablation method), which is preferably selected based on a force within the range of 1 to lOnm.
  • the Chenole layer is composed of ZnS, ZnSe, CaS, SrS, BaS, CaGa S, SrGa S, ZnM
  • a material having a large band gap is used, for example, formed by a liquid phase synthesis method, a vapor deposition method, an aerosol deposition method or a spray coating method.
  • the quantum dot obtained by the liquid phase synthesis method usually has a ligand having an organic side chain force around the shell layer so that the solvent dispersibility is high.
  • the supply power of intrinsic charge carriers to the core portion is a shell layer formed around the core portion. It will not contribute. Therefore, the quantum dots can be used for the light emitting layer while the organic side chain exists around the shell layer.
  • the specific charge carriers supplied to the core portion are naturally supplied from the shell layer formed around the core portion, but the adjacent quantum dots or remote quantum dot shells are used. Even layer strength will be supplied.
  • a dielectric is preferred from the viewpoint of application of an alternating electric field.
  • epoxy resin vinylidene fluoride resin, cyanocellulose, cyanopolyvinyl alcohol, Polyethylene, polypropylene, polystyrene resin, and silicone resin can be used.
  • the binder can be formed by a relatively simple film formation method such as spin coating, screen printing, dip coating, or spray coating.
  • the EL device of this embodiment is excited and emits light by applying an alternating electric field between a pair of electrodes and injecting carriers into the core portion.
  • the injected carriers exist in the shell layer.
  • the shell layer can have a predetermined thickness and an alternating electric field can be generated at a predetermined period.
  • the predetermined thickness of the shell layer is 5 ⁇ ! It is selected from the range of ⁇ 10 Onm, and the predetermined period can be selected so that only the carriers existing in the shell can be injected into the core portion in combination with the predetermined film thickness.
  • Example 1 of the above embodiment will be described.
  • An ITO electrode formed on a glass substrate (crystallite size film thickness; approximately lOOnm, surface roughness Ra; approximately 50nm) is used.
  • a TaO film was grown as an insulating layer and the substrate was grown at room temperature using a high-frequency magnetron 'sputtering apparatus.
  • the film thickness of the insulating layer was about 400 nm.
  • CdSe (core part) ZZnS (shell layer) quantum dots having a CoreZShell structure surface-modified with TOPO (trioctylphosphine oxide) are dispersed in a cyanoethylcellulose solution (binder). Was spin-coated and dried to form a film.
  • the substrate temperature during drying can be selected from room temperature to around 200 ° C However, it is preferably 100 ° C or lower. This is because if it is too high, the light emission activity of the quantum dots deteriorates.
  • the thickness of the deposited film was about 1 ⁇ m.
  • an insulating layer TaO film was grown to a thickness of about 400 ⁇ m, and an Au electrode having a thickness of about 500 nm was formed by vacuum deposition using a shadow mask.
  • TaO Z CdSe (core diameter: about 5.2 nm) ZZnS (shell thickness: about 15 nm) quantum dot-cyanoethyl cellulose binder) ZTaO ZAu is laminated in this order to form an EL device.
  • An EL spectrum single peak centered around 600 nm, which is the emission color originating from the quantization level of the quantum dot core, was obtained.
  • the photoluminescence (PL) of the EL device was measured using a fluorescence spectrophotometer FP-6500DS manufactured by JASCO Corporation using monochromatic light with a wavelength of 350 nm as excitation light. All sample temperatures at the time of measurement are room temperature. At this time, the PL spectrum of the used raw material dispersion was also measured. The EL measurement was performed by applying a low-frequency sine wave voltage between the ITO and Au electrodes.
  • Example 2 CdSe (core part) ZZnS (shell layer) quantum dots having a CoreZShell structure surface-modified with TOPO (trioctylphosphine oxide) in Example 1 described above! Instead of, EL elements were formed in the same manner except that InP (core part) ZZnSe (shell layer) quantum dots having a CoreZShell structure surface-modified with TOPO were used.
  • the quantum dots used in Example 2 had a core diameter of about 2.6 nm and a shell thickness of about 12 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is an EL device which emits light when an alternating current field is applied thereto. In the EL device, a light-emitting layer contains a quantum dot having a core-shell structure wherein the surface of a core portion is covered with a shell layer. The shell layer is made of a material having a wider band gap than the material for the core portion, and the thickness of the shell layer is 5-100 nm.

Description

明 細 書  Specification
EL素子  EL element
技術分野  Technical field
[0001] 本発明は、交流電場を印加することによりキャリアを発光微粒子に注入して発光さ せるタイプの EL素子(エレクト口ルミネッセンス素子)に関する。  TECHNICAL FIELD [0001] The present invention relates to an EL element (electric mouth luminescence element) of a type that emits light by injecting carriers into luminescent particles by applying an alternating electric field.
背景技術  Background art
[0002] 交流電場を印加して発光微粒子にキャリアを注入して発光させる EL素子は、高い 発光輝度を得られる可能性があるため盛んに研究されつつある。このような EL素子と しては、例えば、特許文献 1記載のものがある。  [0002] EL devices that emit light by injecting carriers into light-emitting fine particles by applying an alternating electric field are being actively studied because of the possibility of obtaining high emission luminance. As such an EL element, there is one described in Patent Document 1, for example.
[0003] 特許文献 1の EL素子は、二つの電極間に、少なくとも一層の誘電体層と発光層が 積層されてなり、この発光層では、第二の半導体微粒子が、第一の半導体からなる 連続相中に分散されている。この EL素子に交流電場を印加すると、第一の半導体か ら発生したキャリアが第二の半導体の微粒子に衝突することにより、第二の半導体の 微粒子が励起して、基底状態に戻る時に発光を生じる。  [0003] In the EL element of Patent Document 1, at least one dielectric layer and a light emitting layer are laminated between two electrodes, and in this light emitting layer, the second semiconductor fine particles are made of the first semiconductor. Dispersed in the continuous phase. When an alternating electric field is applied to the EL element, carriers generated from the first semiconductor collide with the second semiconductor fine particles, and the second semiconductor fine particles are excited to emit light when returning to the ground state. Arise.
特許文献 1:特開 2003 - 249373号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-249373
特許文献 2 :特開 2003— 173878号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-173878
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、特許文献 1の EL素子では、第二の半導体の微粒子へのキャリア注 入効率が低ぐ期待される発光効率を実現することができない。これは、発光層の成 膜時に混入した不純物によるキャリアの散乱や、第一の半導体と第二の半導体の微 粒子との界面の連続性が低 、ことに起因する「量子閉じ込め効果」の低下によるもの と考えられる。 [0004] However, the EL element of Patent Document 1 cannot realize the light emission efficiency expected to reduce the carrier injection efficiency into the fine particles of the second semiconductor. This is because the scattering of carriers due to impurities mixed during the formation of the light emitting layer and the low continuity at the interface between the first semiconductor and the second semiconductor fine particles, resulting in a decrease in the “quantum confinement effect”. It is thought to be due to this.
課題を解決するための手段  Means for solving the problem
[0005] 本発明の第 1の態様は、発光層が、コア部分の表面をシェル層で覆ったコアシェル 構造の量子ドットを含み、交流電場を印加することにより発光させる EL素子であって 、シェル層は、コア部分の材料よりもバンドギャップが大きい材料からなり、かつ、シェ ル層の膜厚力 5nm〜100nmである EL素子である。 [0005] A first aspect of the present invention is an EL device in which a light emitting layer includes a quantum dot having a core-shell structure in which a surface of a core portion is covered with a shell layer, and emits light by applying an alternating electric field. The layer is made of a material having a larger band gap than the material of the core portion, and the shell This is an EL device with a film thickness of 5 nm to 100 nm.
[0006] 本発明の第 2の態様は、発光層が、コア部分の表面をシェル層で覆ったコアシェル 構造の量子ドットを含み、交流電場を印加することにより発光させる EL素子であって 、シェル層は、コア部分の材料よりもバンドギャップが大きい材料からなり、かつ、シェ ル層に存在する固有電荷キャリアがコア部分に供給されることにより発光する EL素 子である。 [0006] A second aspect of the present invention is an EL device in which the light emitting layer includes a quantum dot having a core-shell structure in which the surface of the core portion is covered with a shell layer, and emits light by applying an alternating electric field. The layer is made of a material having a band gap larger than that of the material of the core portion, and is an EL element that emits light when intrinsic charge carriers existing in the shell layer are supplied to the core portion.
[0007] 本発明の第 3の態様は、発光層は、コアシェル構造の粒子が、バインダ材料と混合 されてなる第 1又は第 2の態様に記載の EL素子である。  [0007] A third aspect of the present invention is the EL device according to the first or second aspect, wherein the light-emitting layer has core-shell structured particles mixed with a binder material.
[0008] 本発明の第 4の態様は、バインダ材料が、誘電体からなる第 3の態様に記載の EL 素子である。 [0008] A fourth aspect of the present invention is the EL element according to the third aspect, wherein the binder material is a dielectric.
[0009] 本発明の第 5の態様は、量子ドットが、シェルの外側に有機側鎖を有している第 1か ら 3の!、ずれかの態様に記載の EL素子である。  [0009] A fifth aspect of the present invention is the EL device according to any one of the first to third aspects, in which the quantum dot has an organic side chain outside the shell.
[0010] 本発明の第 6の態様は、コア部分の粒径が 1〜: LOnmである第 1から 5のいずれか の態様に記載の EL素子である。 [0010] A sixth aspect of the present invention is the EL device according to any one of the first to fifth aspects, wherein the core portion has a particle size of 1 to: LOnm.
発明の効果  The invention's effect
[0011] 本発明によると、分厚いシェル層を含むコアシェル構造の量子ドットを用いることに より、簡単な製造方法で、発光層形成時の不純物の混入の影響をほとんど受けること なぐコア部分とキャリア注入層としてのシェル層の界面の連続性を確保することがで き、シェル層に存在するキャリアをコア部分に効率よく注入することができる。これらに より、高い発光効率を実現し、量子ドットを含むコア部分本来の高い発光輝度を利用 した EL素子を提供することができる。  [0011] According to the present invention, by using a quantum dot having a core-shell structure including a thick shell layer, the core portion and the carrier injection that are hardly affected by the contamination of impurities during the formation of the light-emitting layer can be obtained by a simple manufacturing method. The continuity of the interface of the shell layer as a layer can be ensured, and carriers present in the shell layer can be efficiently injected into the core portion. As a result, it is possible to provide an EL device that achieves high luminous efficiency and utilizes the intrinsic high luminance of the core including the quantum dots.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明にかかる実施形態を詳しく説明する。 Hereinafter, embodiments according to the present invention will be described in detail.
本実施形態に係る EL素子 (エレクト口ルミネッセンス素子)は、一対の電極間に第 1 の絶縁層、発光層、第 2の絶縁層が順に積層された構成となっている。  The EL element (electric aperture luminescence element) according to this embodiment has a configuration in which a first insulating layer, a light emitting layer, and a second insulating layer are sequentially stacked between a pair of electrodes.
[0013] 一対の電極としては、例えば、 Au (金)金属電極と ITO (インジウム錫酸ィ匕物)透明 電極を用いることができる。 Au電極は通常の抵抗加熱蒸発源を用いた真空蒸着法 によって成膜する。 ITO電極はあらカゝじめガラス基板上に成膜されたものを用いるが スパッタリング法その他の公知の手段で形成してもよい。 [0013] As the pair of electrodes, for example, an Au (gold) metal electrode and an ITO (indium stannate) transparent electrode can be used. The Au electrode is formed by vacuum evaporation using a normal resistance heating evaporation source. The ITO electrode used is a film formed on a glass substrate. You may form by sputtering method and other well-known means.
[0014] 二つの絶縁層は、例えば、シリコン窒化物、タンタル酸ィ匕物、シリコン酸ィ匕物、イット リウム酸化物、アルミナ、ハフニウム酸化物、ノリウムタンタル酸化物をスパッタリング 法等で形成することができる。  [0014] The two insulating layers are formed, for example, by sputtering or the like using silicon nitride, tantalum oxide, silicon oxide, yttrium oxide, alumina, hafnium oxide, or norium tantalum oxide. be able to.
[0015] 発光層は、コアシェル構造の量子ドットのみ力も構成することが好ま 、。こうするこ とにより、ノ インダ中に粒子を均一に分散させる工程が不要となり、不純物が混入す る可能性の低減にもつながる。ただし、コアシェル構造の量子ドットのみでは発光層 の層形成が難しい場合には、バインダに混合することにより、絶縁層との密着性を向 上させるとよい。  [0015] It is preferable that the light emitting layer also constitutes only a core-shell quantum dot force. This eliminates the need to uniformly disperse the particles in the needle and reduces the possibility of impurities being mixed. However, if it is difficult to form a light-emitting layer using only core-shell quantum dots, it is advisable to improve the adhesion to the insulating layer by mixing with a binder.
[0016] コアシェル構造の量子ドットは、コア部分の表面をシェル層で覆った構造である。  [0016] The core-shell structure quantum dot has a structure in which the surface of the core portion is covered with a shell layer.
コア咅分 ίま、 CdSeのま力、 f列えば、、 CdS、 PbSe、 HgTe, CdTe、 InP、 GaP、 InG aPゝ GaAsゝ InGaN、 GaN、 ZnO、 CsSe、 ZnSe、 ZnTe、及びこれらの混晶で構成 される材料を用いて形成することができ、 EL素子に求められる発光波長に応じて、 材料及び粒径が適宜決定される。コア部分の粒径は 1〜 lOnmの範囲内力ゝら選定す ることが好ましぐ公知の方法 (例えば湿式の化学合成手法 (液相合成法)、レーザー アブレーシヨン法)で球形に形成する。  For example, CdS, PbSe, HgTe, CdTe, InP, GaP, InG aP, GaAs, InGaN, GaN, ZnO, CsSe, ZnSe, ZnTe, and mixed crystals thereof. The material and the particle size are appropriately determined according to the emission wavelength required for the EL element. The particle size of the core portion is formed in a spherical shape by a known method (for example, a wet chemical synthesis method (liquid phase synthesis method), a laser ablation method), which is preferably selected based on a force within the range of 1 to lOnm.
[0017] シェノレ層は、 f列えば、 ZnS、 ZnSe、 CaS、 SrS、 BaS、 CaGa S、 SrGa S、 ZnM  [0017] The Chenole layer is composed of ZnS, ZnSe, CaS, SrS, BaS, CaGa S, SrGa S, ZnM
2 4 2 4 gS 、 BaAl S、及びこれらの混晶で構成される材料であって、コア部分の材料よりも 2 4 2 4 gS, BaAl S, and mixed crystals of these materials,
2 2 4 2 2 4
バンドギャップが大きい材料を用い、例えば、液相合成法、蒸着法、エアロゾルデポ ジシヨン法やスプレーコーティング法により形成する。液相合成法で得られる量子ドッ トは、通常、溶媒分散性が高くなるように、シェル層の周囲に有機側鎖力もなる配位 子を有している。本実施形態の EL素子では、コア部分への固有電荷キャリアの供給 源力 コア部分の周囲に形成されたシェル層であるため、それぞれの量子ドット同士 のシェル層の界面連続性は発光効率に殆ど寄与しないことになる。そのため、シェル 層の周囲に有機側鎖が存在するまま、量子ドットを発光層に用いることが可能である 。なお、コア部分へ供給される固有電荷キャリアは、コア部分の周囲に形成されたシ エル層から供給されるのはもちろんであるが、隣接する量子ドット、あるいは遠隔に存 在する量子ドットのシェル層力も供給されてもょ 、。 [0018] バインダとしては、交流電場の印加のしゃすさの点から誘電体が好ましぐ例えば、 エポキシ榭脂、フッ化ビ-リデン榭脂、シァノエチルセルロース、シァノエチルポリビ -ルアルコール、ポリエチレン、ポリプロピレン、ポリスチレン系榭脂、シリコーン榭脂 を使うことができる。バインダは、例えば、スピンコート法、スクリーン印刷法、ディップ コート法、スプレー塗布法のような比較的簡便な成膜方法により成膜することができる A material having a large band gap is used, for example, formed by a liquid phase synthesis method, a vapor deposition method, an aerosol deposition method or a spray coating method. The quantum dot obtained by the liquid phase synthesis method usually has a ligand having an organic side chain force around the shell layer so that the solvent dispersibility is high. In the EL device of the present embodiment, the supply power of intrinsic charge carriers to the core portion is a shell layer formed around the core portion. It will not contribute. Therefore, the quantum dots can be used for the light emitting layer while the organic side chain exists around the shell layer. The specific charge carriers supplied to the core portion are naturally supplied from the shell layer formed around the core portion, but the adjacent quantum dots or remote quantum dot shells are used. Even layer strength will be supplied. [0018] As the binder, a dielectric is preferred from the viewpoint of application of an alternating electric field. For example, epoxy resin, vinylidene fluoride resin, cyanocellulose, cyanopolyvinyl alcohol, Polyethylene, polypropylene, polystyrene resin, and silicone resin can be used. The binder can be formed by a relatively simple film formation method such as spin coating, screen printing, dip coating, or spray coating.
[0019] 本実施形態の EL素子は、一対の電極間に交流電場を印加してコア部分にキャリア を注入することにより励起、発光させるものであるが、注入されるキャリアをシェル層に 存在するものに限定するために、シェル層を所定膜厚とするとともに、交流電場を所 定周期で発生させることが可能である。この場合、シェル層の所定膜厚は 5ηπ!〜 10 Onmの範囲から選択され、所定周期は所定膜厚との組み合わせでシェルに存在す るキャリアのみをコア部分に注入できるように選定することが可能である。このようにし てシェル層に存在するキャリアのみをシェル層で囲んだコア部分に注入する場合に は、不純物によってキャリアが散乱することを防止することができ、これにより高い発 光効率を実現し、コア部分本来の高い発光輝度を利用した EL素子を提供することが できる。また、このようにしてシェル層の膜厚を設計した EL素子においても、交流電 場の周期を変化させることにより、隣接または遠隔に存在する量子ドットのシェル層か らの固有電荷キャリアをコア部分に供給することも可能である。また、交流電場の周 期を変化させることにより、 EL素子の発光輝度を変化させることが可能である。 The EL device of this embodiment is excited and emits light by applying an alternating electric field between a pair of electrodes and injecting carriers into the core portion. The injected carriers exist in the shell layer. In order to limit the thickness of the shell, the shell layer can have a predetermined thickness and an alternating electric field can be generated at a predetermined period. In this case, the predetermined thickness of the shell layer is 5ηπ! It is selected from the range of ˜10 Onm, and the predetermined period can be selected so that only the carriers existing in the shell can be injected into the core portion in combination with the predetermined film thickness. In this way, when only the carriers present in the shell layer are injected into the core part surrounded by the shell layer, it is possible to prevent the carriers from being scattered by impurities, thereby realizing high light emission efficiency. It is possible to provide an EL device that utilizes the intrinsic high emission luminance of the core. In addition, even in an EL device in which the thickness of the shell layer is designed in this manner, by changing the period of the AC electric field, the intrinsic charge carriers from the adjacent or remote quantum dot shell layer are used as the core part. It is also possible to supply. It is also possible to change the luminance of the EL element by changing the period of the AC electric field.
実施例 1  Example 1
[0020] 上述の実施形態の実施例 1につ!/、て説明する。  [0020] Example 1 of the above embodiment will be described.
ITO電極はガラス基板上に成膜されたもの (結晶子サイズ 膜厚;約 lOOnm、表 面粗さ Ra ;約 50nm)を用いる。この ITO付ガラス基板上に、絶縁層として TaO膜を 、高周波マグネトロン'スパッタ装置を用いて、基板を常温に保ち成長させた。絶縁層 の膜厚は約 400nmとした。その上に、 TOPO (トリオクチルホスフィンォキシド)で表 面修飾された CoreZShell構造を有する CdSe (コア部分) ZZnS (シェル層)量子ド ットをシァノエチルセルロース溶液 (バインダ)に分散させた分散液をスピンコートし、 乾燥させて成膜した。乾燥時の基板温度は室温〜 200°C程度までの間で選択可能 であるが、 100°C以下が好ましい。高過ぎる場合、量子ドットの発光活性が劣化する ためである。堆積膜の膜厚は 1 μ m程度とした。この上に、絶縁層 TaO膜を約 400η mの膜厚に成長させ、さらにシャドウマスクを用い、真空蒸着法で膜厚約 500nmの A u電極を形成した。 An ITO electrode formed on a glass substrate (crystallite size film thickness; approximately lOOnm, surface roughness Ra; approximately 50nm) is used. On this ITO-attached glass substrate, a TaO film was grown as an insulating layer and the substrate was grown at room temperature using a high-frequency magnetron 'sputtering apparatus. The film thickness of the insulating layer was about 400 nm. On top of this, CdSe (core part) ZZnS (shell layer) quantum dots having a CoreZShell structure surface-modified with TOPO (trioctylphosphine oxide) are dispersed in a cyanoethylcellulose solution (binder). Was spin-coated and dried to form a film. The substrate temperature during drying can be selected from room temperature to around 200 ° C However, it is preferably 100 ° C or lower. This is because if it is too high, the light emission activity of the quantum dots deteriorates. The thickness of the deposited film was about 1 μm. On this, an insulating layer TaO film was grown to a thickness of about 400 ηm, and an Au electrode having a thickness of about 500 nm was formed by vacuum deposition using a shadow mask.
[0021] このようにして、 TaO Z (CdSe (コア径約 5. 2nm) ZZnS (シェル厚約 15nm)量 子ドットーシァノエチルセルロースバインダ) ZTaO ZAuの順で膜を積層して EL素 子を作製した。量子ドットのコアの量子化準位を起源とする発光色である ELスぺタト ル(600nm付近を中心とした単独のピーク)が得られた。  [0021] In this way, TaO Z (CdSe (core diameter: about 5.2 nm) ZZnS (shell thickness: about 15 nm) quantum dot-cyanoethyl cellulose binder) ZTaO ZAu is laminated in this order to form an EL device. Produced. An EL spectrum (single peak centered around 600 nm), which is the emission color originating from the quantization level of the quantum dot core, was obtained.
[0022] 次にルミネッセンス 'スペクトル及び強度の測定法について説明する。 EL素子のフ オトルミネッセンス(PL)は、波長 350nmの単色光を励起光として、日本分光製蛍光 分光光度計 FP— 6500DSを用いて測定した。測定時の試料の温度は全て室温で ある。このとき、使用した原料分散溶液の PLスペクトルも測定した。 ELの測定は低周 波正弦波電圧を ITO電極、 Au電極間に印加することで行った。 Au電極の寸法を縦 横それぞれ lmmの長さの正方形とし、両電極に Inを介して周波数 f= 100kHz (周 期 0. 01ms)、電圧 V= 100V の電圧(交流電場)を印加し、電流及び発光(EL)を  Next, a method for measuring the luminescence spectrum and intensity will be described. The photoluminescence (PL) of the EL device was measured using a fluorescence spectrophotometer FP-6500DS manufactured by JASCO Corporation using monochromatic light with a wavelength of 350 nm as excitation light. All sample temperatures at the time of measurement are room temperature. At this time, the PL spectrum of the used raw material dispersion was also measured. The EL measurement was performed by applying a low-frequency sine wave voltage between the ITO and Au electrodes. The size of the Au electrode is a square with a length of lmm each in length and width, and a voltage of f = 100kHz (period 0.01 ms) and voltage V = 100V (AC electric field) is applied to both electrodes via In. And light emission (EL)
PP  PP
測定したところ、約 600nmでの発光が確認された。素子のガラス基板面から出射さ れた発光を、光ファイバ一で蛍光分光光度計の検出器に取り込み、測光したところ、 素子の PLスペクトルと原料溶液の PLスペクトルはほぼ一致した。  When measured, light emission at about 600 nm was confirmed. When the light emitted from the glass substrate surface of the device was taken into the detector of the fluorescence spectrophotometer with a single optical fiber and measured, the PL spectrum of the device and the PL spectrum of the raw material solution almost coincided.
実施例 2  Example 2
[0023] 実施例 2では、上述の実施例 1にお!/、て、 TOPO (トリオクチルホスフィンォキシド) で表面修飾された CoreZShell構造を有する CdSe (コア部分) ZZnS (シェル層)量 子ドットの代わりに、 TOPOで表面修飾された CoreZShell構造を有する InP (コア 部分) ZZnSe (シェル層)量子ドットを用いたこと以外は、同様にして EL素子を形成 した。実施例 2で用いた量子ドットは、コア径は約 2. 6nm、シェル厚は約 12nmであ つた。周波数 f = 10kHz、電圧 V= 150V の電圧を印加したところ、約 540nmでの  [0023] In Example 2, CdSe (core part) ZZnS (shell layer) quantum dots having a CoreZShell structure surface-modified with TOPO (trioctylphosphine oxide) in Example 1 described above! Instead of, EL elements were formed in the same manner except that InP (core part) ZZnSe (shell layer) quantum dots having a CoreZShell structure surface-modified with TOPO were used. The quantum dots used in Example 2 had a core diameter of about 2.6 nm and a shell thickness of about 12 nm. When voltage f = 10kHz and voltage V = 150V is applied,
PP  PP
発光が確認された。  Luminescence was confirmed.
[0024] 本発明につ ヽて上記実施形態を参照しつつ説明したが、本発明は上記実施形態 に限定されるものではなぐ改良の目的または本発明の思想の範囲内において改良 または変更が可能である。 [0024] Although the present invention has been described with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is improved within the scope of the idea of the present invention or the idea of the present invention. Or it can be changed.

Claims

請求の範囲 The scope of the claims
[1] 発光層が、コア部分の表面をシェル層で覆ったコアシェル構造の量子ドットを含み 、交流電場を印加することにより発光させる EL素子であって、  [1] An EL element that includes a quantum dot having a core-shell structure in which a surface of a core portion is covered with a shell layer and that emits light by applying an alternating electric field,
前記シェル層は、前記コア部分の材料よりもバンドギャップが大きい材料力 なり、 かつ、  The shell layer has a material force having a larger band gap than the material of the core portion, and
前記シェル層の膜厚が、 5nm〜 1 OOnmである EL素子。  An EL device having a thickness of the shell layer of 5 nm to 1 OO nm.
[2] 発光層が、コア部分の表面をシェル層で覆ったコアシェル構造の量子ドットを含み 、交流電場を印加することにより発光させる EL素子であって、 [2] The EL element includes a quantum dot having a core-shell structure in which the surface of the core portion is covered with a shell layer, and emits light by applying an alternating electric field,
前記シェル層は、前記コア部分の材料よりもバンドギャップが大きい材料力 なり、 かつ、  The shell layer has a material force having a larger band gap than the material of the core portion, and
前記シェル層に存在する固有電荷キャリアが前記コア部分に供給されることにより発 光する EL素子。  An EL device that emits light by supplying intrinsic charge carriers present in the shell layer to the core portion.
[3] 前記発光層は、前記コアシェル構造の粒子が、バインダ材料と混合されてなる請求 項 1又は請求項 2に記載の EL素子。  [3] The EL device according to [1] or [2], wherein the light emitting layer is formed by mixing particles of the core-shell structure with a binder material.
[4] 前記バインダ材料が、誘電体力もなる請求項 3に記載の EL素子。 4. The EL device according to claim 3, wherein the binder material also has a dielectric force.
[5] 前記量子ドットが、前記シェルの外側に有機側鎖を有している請求項 1乃至請求項[5] The quantum dot has an organic side chain outside the shell.
3の!、ずれ力 1項に記載の EL素子。 3. EL element according to item 1!
[6] 前記コア部分の粒径が 1〜: LOnmである請求項 1乃至請求項 5のいずれ力 1項に記 載の EL素子。 [6] The EL device according to any one of [1] to [5], wherein the core portion has a particle size of 1 to LOnm.
PCT/JP2007/063971 2006-07-28 2007-07-13 El device WO2008013069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526727A JPWO2008013069A1 (en) 2006-07-28 2007-07-13 EL element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006205625 2006-07-28
JP2006-205625 2006-07-28

Publications (1)

Publication Number Publication Date
WO2008013069A1 true WO2008013069A1 (en) 2008-01-31

Family

ID=38981382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063971 WO2008013069A1 (en) 2006-07-28 2007-07-13 El device

Country Status (3)

Country Link
JP (1) JPWO2008013069A1 (en)
CN (1) CN101449626A (en)
WO (1) WO2008013069A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107790A1 (en) * 2014-01-16 2015-07-23 コニカミノルタ株式会社 Electroluminescent element
WO2015114679A1 (en) * 2014-01-29 2015-08-06 株式会社ダイセル Quantum dot conjugate, wavelength conversion element comprising conjugate, photoelectric conversion device, and solar cell
WO2020174604A1 (en) * 2019-02-27 2020-09-03 シャープ株式会社 Light emitting element and display device using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715370B (en) * 2013-12-26 2017-08-08 合肥京东方光电科技有限公司 The preparation method of microcapsules
CN104701430B (en) * 2015-02-10 2017-12-08 河南大学 A kind of method for improving the light emitting diode with quantum dots life-span

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228285A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Multicolor luminescence diffusing el lamp
WO2004081141A1 (en) * 2003-03-11 2004-09-23 Philips Intellectual Property & Standards Gmbh Electroluminescent device with quantum dots
JP2005505428A (en) * 2001-10-02 2005-02-24 クァンタム・ドット・コーポレイション Semiconductor nanoparticle synthesis method
JP2005132947A (en) * 2003-10-30 2005-05-26 Konica Minolta Medical & Graphic Inc Fluorophor for inorganic electroluminescence, method for producing the same, and inorganic electroluminescent device
WO2005071764A1 (en) * 2004-01-23 2005-08-04 Hoya Corporation Quantum dot light-emitting device and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228285A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Multicolor luminescence diffusing el lamp
JP2005505428A (en) * 2001-10-02 2005-02-24 クァンタム・ドット・コーポレイション Semiconductor nanoparticle synthesis method
WO2004081141A1 (en) * 2003-03-11 2004-09-23 Philips Intellectual Property & Standards Gmbh Electroluminescent device with quantum dots
JP2005132947A (en) * 2003-10-30 2005-05-26 Konica Minolta Medical & Graphic Inc Fluorophor for inorganic electroluminescence, method for producing the same, and inorganic electroluminescent device
WO2005071764A1 (en) * 2004-01-23 2005-08-04 Hoya Corporation Quantum dot light-emitting device and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107790A1 (en) * 2014-01-16 2015-07-23 コニカミノルタ株式会社 Electroluminescent element
JPWO2015107790A1 (en) * 2014-01-16 2017-03-23 コニカミノルタ株式会社 Electroluminescent device
US9773993B2 (en) 2014-01-16 2017-09-26 Konica Minolta, Inc. Electroluminescence element
WO2015114679A1 (en) * 2014-01-29 2015-08-06 株式会社ダイセル Quantum dot conjugate, wavelength conversion element comprising conjugate, photoelectric conversion device, and solar cell
US9796920B2 (en) 2014-01-29 2017-10-24 Daicel Corporation Quantum dot composite and wavelength conversion element, photoelectric conversion device, and solar cell having the composite
WO2020174604A1 (en) * 2019-02-27 2020-09-03 シャープ株式会社 Light emitting element and display device using same

Also Published As

Publication number Publication date
JPWO2008013069A1 (en) 2009-12-17
CN101449626A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP6971972B2 (en) Light conversion material
US9142732B2 (en) LED lamp with quantum dots layer
US8536776B2 (en) Light emitting device including semiconductor nanocrystals
US8089061B2 (en) Quantum dot inorganic electroluminescent device
KR101794082B1 (en) Quantum dot light emitting diode device comprising quantum dot emitting layer with substituted ligand by dendrimer having amine groups, and method for manufacturing the same
JP5452218B2 (en) Light-emitting devices containing semiconductor nanocrystals
US9441811B2 (en) Lighting devices utilizing optical waveguides and remote light converters, and related methods
JP2007095685A (en) LIGHT EMITTING DEVICE INCLUDING SEMICONDUCTOR NANOCRYSTAL LAYER WITHOUT GAP AND ITS MANUFACTURING METHOD
US9101036B2 (en) Photoluminescent nanofiber composites, methods for fabrication, and related lighting devices
US20140021503A1 (en) Semiconductor light emitting device
CN103460798B (en) Organic electroluminescent element
JP5793083B2 (en) Surface emitting light source with uniform irradiation
JP4932873B2 (en) Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
KR20100081978A (en) White color light emitting device
KR20190131089A (en) Wavelength Converters with Improved Thermal Conductivity and Lighting Devices Including the Same
JP2009527099A (en) White light emitting device
JP2013033916A (en) Light-emitting device and manufacturing method of the same
WO2008013069A1 (en) El device
WO2013001685A1 (en) Composite phosphor and light-emitting device
CN108417698A (en) Quantum dot package and its preparation method, light emitting device and display device
TW200901502A (en) Light emitting diode device and fabrication method thereof
JP2007157798A (en) Light emitting device
JP2006120328A (en) Distributed electroluminescent element
KR102735548B1 (en) Method for manufacturing light emitting diodes having polarized emission
JP2011076827A (en) Quantum dot inorganic el element, drive waveform control device, and quantum dot inorganic el light emission system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018320.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790752

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载