+

WO2008010555A1 - Adhésif pour composants électroniques, procédé de fabrication d'un laminé de puce semi-conductrice, et dispositif semi-conducteur - Google Patents

Adhésif pour composants électroniques, procédé de fabrication d'un laminé de puce semi-conductrice, et dispositif semi-conducteur Download PDF

Info

Publication number
WO2008010555A1
WO2008010555A1 PCT/JP2007/064274 JP2007064274W WO2008010555A1 WO 2008010555 A1 WO2008010555 A1 WO 2008010555A1 JP 2007064274 W JP2007064274 W JP 2007064274W WO 2008010555 A1 WO2008010555 A1 WO 2008010555A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
semiconductor chip
viscosity
electronic components
electronic parts
Prior art date
Application number
PCT/JP2007/064274
Other languages
English (en)
French (fr)
Inventor
Hideaki Ishizawa
Akinobu Hayakawa
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to JP2007545772A priority Critical patent/JP4088337B2/ja
Priority to CN2007800275271A priority patent/CN101490829B/zh
Priority to EP07791028A priority patent/EP2045839A4/en
Priority to US12/309,324 priority patent/US7915743B2/en
Publication of WO2008010555A1 publication Critical patent/WO2008010555A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0657Stacked arrangements of devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26165Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06575Auxiliary carrier between devices, the carrier having no electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01059Praseodymium [Pr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • Adhesive for electronic components method for manufacturing semiconductor chip laminate, and semiconductor device
  • the present invention can maintain a highly accurate distance between electronic components when joining electronic components such as two or more semiconductor chips, and provide a highly reliable electronic device such as a semiconductor device.
  • the present invention relates to an adhesive for electronic components, a method for manufacturing a semiconductor chip laminate using the adhesive for electronic components, and a semiconductor device.
  • semiconductor chips have become very thin films, and fine wiring has been formed on semiconductor chips.
  • semiconductor chips have become very thin films, and fine wiring has been formed on semiconductor chips.
  • it is required to stack each semiconductor chip without damage and keeping it horizontal.
  • Patent Document 2 discloses a method of stacking a dummy chip and a spacer between semiconductor chips to be connected when stacking a plurality of semiconductor chips.
  • the semiconductor chip laminated body obtained by such a method the thickness of the entire semiconductor chip laminated body is increased by the dummy chip, so that it is difficult to reduce the height of the package. There was a problem when an extra process of stacking dummy chips was required.
  • Patent Document 3 describes an adhesive containing hard plastic fine particles having an essential component having a particle size that substantially defines the film thickness after curing of the adhesive, and an average particle size equivalent to 20 m. It describes that the silicon element and the lead frame can be bonded with an adhesive layer having a thickness of.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-179200
  • Patent Document 2 JP 2006 66816
  • Patent Document 3 Japanese Patent Laid-Open No. 11 189765
  • the present invention provides a highly reliable electronic device such as a semiconductor device that maintains a high accuracy in the distance between electronic components when bonding electronic components such as two or more semiconductor chips. It is an object of the present invention to provide an adhesive for electronic parts, a method for producing a semiconductor chip laminate using the adhesive for electronic parts, and a semiconductor device. Means for solving the problem
  • the present invention provides an adhesive for electronic parts for joining electronic parts, an adhesive composition having a curable compound and a curing agent, and spacer particles having a CV value of 10% or less.
  • the viscosity at lrpm is 200 Pa's or less
  • the viscosity at lOrpm is 10 OOPa's or less
  • the viscosity at 0.5 rpm It is an adhesive for electronic parts whose degree is 1 to 4 to 3 times the viscosity at lrpm, and the viscosity at lrpm is 2 to 5 times the viscosity at lOrpm.
  • the inventors of the present invention have a viscosity characteristic measured at 25 ° C using an E-type viscometer consisting of an adhesive composition and spacer particles having a CV value within a predetermined range.
  • the adhesive for electronic parts of the present invention has an upper limit of viscosity at lrpm of 200 Pa's and an upper limit of viscosity at lOrpm of lOOPa 'when measured at 25 ° C using an E-type viscometer. s, and the viscosity at 0.5 rpm is 1 to 4 to 3 times the viscosity at 1 rpm, and the viscosity at 1 rpm is 2 to 5 times the viscosity at 10 rpm.
  • the adhesive for electronic components of the present invention when the viscosity measured at 25 ° C. using an E-type viscometer is within the above range, for example, when used for manufacturing a semiconductor chip laminate, the electronic component In the process of applying the adhesive to the semiconductor chip, V can be applied with a desired shape, and the shape can be maintained until other semiconductor chips are stacked. Become. Also, in the process of stacking other semiconductor chips, by applying pressure after alignment, the excess adhesive for electronic components protrudes sufficiently, and the distance between semiconductor chips (hereinafter also referred to as the distance between chips). Is set to a distance substantially equal to the particle diameter of one spacer particle.
  • the adhesive for electronic parts of the present invention has an upper limit of viscosity at lrpm of 200 Pa's when the viscosity is measured at 25 ° C using an E-type viscometer. If it exceeds 200 Pa's, when used in the manufacture of semiconductor chip stacks with a small chip-to-chip distance, it exhibits high viscosity, making it difficult to reduce the chip-to-chip distance to the extent of the particle size of the spacer. The difficulty is particularly noticeable when the distance between chips is 25 m or less.
  • a preferred upper limit is 150 Pa's.
  • the preferable lower limit of the viscosity at lrpm is 50 Pa's.
  • the adhesive for electronic components may flow out to the electrode area for wire bonding together with the spacer particles.
  • the upper limit of the viscosity at lOrpm is lOOPa's. If it exceeds lOOPa's, it becomes difficult to apply in a desired shape.
  • a preferred upper limit is 75 Pa's.
  • the preferable lower limit of the viscosity at 10 rpm is 5 Pa's. If it is less than 5 Pa's, it is difficult to maintain the shape at the time of coating until another semiconductor chip is laminated after coating.
  • the adhesive for electronic components may flow out to the electrode area for wire bonding together with the spacer particles.
  • the adhesive for electronic parts of the present invention has a lower limit of viscosity at 0.5 rpm of 1.4 times the upper limit of viscosity at lrpm when the viscosity is measured at 25 ° C using an E-type viscometer. Is 3 times. 1. If it is less than 4 times, it becomes difficult to maintain the shape during coating until another semiconductor chip is stacked after coating. If it exceeds 3 times, the distance between chips will be 2 ( ⁇ 111 or so when used for manufacturing a semiconductor chip laminate, it shows high viscosity, and even if pressed, excess adhesive for electronic parts will protrude. As a result, it is difficult to reduce the distance between the chips to the extent of the particle diameter of the spacer particles.
  • the adhesive for electronic parts of the present invention has a lower limit of viscosity at lrpm of 2 times that of lOrpm and an upper limit of 5 times when the viscosity is measured at 25 ° C using an E-type viscometer. is there. If it is less than 2 times, it becomes difficult to maintain the drawing shape after applying the adhesive for electronic parts of the present invention. If it exceeds 5 times, when used for the production of a semiconductor chip stack with a small distance between chips, it shows high viscosity and it becomes difficult to reduce the distance between chips to the extent of the particle diameter of the spacer particles. The difficulty becomes significant when the distance between chips is 25 m or less.
  • the preferred upper limit is 3 times.
  • the adhesive for electronic components of the present invention may be bonded at a temperature higher than 25 ° C when the electronic component is bonded.
  • the adhesive for electronic parts of the present invention has a viscosity at lOrpm when the viscosity is measured at the temperature at which the electronic parts are joined using an E-type viscometer (hereinafter also referred to as joining temperature). It is preferable that it is lOPa's or less. lOPa's exceeded Then, when joining electronic components with the adhesive for electronic components of the present invention, excess adhesive for electronic components between the spacer particles and the electronic components cannot be excluded, and the spacer particles It is difficult to reduce the distance between the chips to a particle size of. A more preferred upper limit is lPa's.
  • said joining temperature Usually, it is about 50-100 degreeC.
  • the adhesive for electronic parts of the present invention contains a curable compound.
  • cured by addition polymerization, polycondensation, polyaromatic addition, addition condensation, and ring-opening polymerization reaction can be used.
  • thermosetting compounds such as a kill benzene compound, an epoxy acrylate compound, a silicon compound, and a urethane compound.
  • an epoxy compound having an imide skeleton which is preferable for an epoxy compound or an acrylic compound, is more preferable because it is excellent in reliability and bonding strength of an electronic device such as a semiconductor device obtained after bonding.
  • the epoxy compound is not particularly limited, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type, and bisphenol S type, phenol nopolac type, and cresol nopolac.
  • bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type, and bisphenol S type, phenol nopolac type, and cresol nopolac.
  • Type nopolac type epoxy resin aromatic epoxy resin such as trisphenol methane triglycidyl ether, naphthalene type epoxy resin, biphenyl type epoxy, fluorene type epoxy resin, dicyclopentane type epoxy resin, resorcinol type epoxy, and These hydrogenated compounds are listed as S.
  • an adhesive for electronic parts having high heat resistance it is preferable to contain at least one selected from the group consisting of naphthalene type epoxy resins, fluorene type epoxy resins and resorcinol type epoxy resins.
  • naphthalene type epoxy resins commercially available products include, for example, HP 4032, HP-4032D, HP-4700, HP-4701 (above, Dainippon Ink & Chemicals, Inc.) and the like.
  • fluorene type epoxy resins commercially available products are EX-1010, 1011, 1012, 1020, 1030, 1040, 1050, 1051, 1060 (above, manufactured by Nagase ChemteX Corporation), and the resorcinol type epoxy resin. Of these, commercially available products are £ —201 (Naga Sechemtex Corporation).
  • naphthalene type epoxy resin fluorene type epoxy resin and resorcinol type epoxy resin
  • those having a softening point of 60 ° C or less are preferably used.
  • a softening point of 60 ° C or less the number of added liquid components such as diluents used to reduce the viscosity of adhesives for electronic components can be reduced. It is possible to obtain an adhesive for electronic components with a small amount of volatile matter. It is more preferable to use a softening point of 40 ° C or lower, and it is more preferable to use a softening point of room temperature or lower.
  • the power of the above-mentioned sales is very good (HP-4032, HP-4032D, EX-1020, EX-201).
  • the naphthalene type epoxy resin and fluorene in the curable compound are used.
  • the preferred lower limit of the blending amount of at least one selected from the group consisting of type epoxy resins and resorcinol type epoxy resins is 40% by weight. If it is less than 40% by weight, an adhesive for electronic parts having sufficient heat resistance cannot be obtained! More preferred! /, Lower limit is 60% by weight. A preferred upper limit is 90% by weight.
  • an epoxy compound such as a rubber-modified epoxy compound having a rubber component such as NBR, CTBN, polybutadiene, or acrylic rubber, or a flexible epoxy compound.
  • a rubber-modified epoxy compound having a rubber component such as NBR, CTBN, polybutadiene, or acrylic rubber
  • a flexible epoxy compound such as NBR, CTBN, polybutadiene, or acrylic rubber
  • flexibility can be imparted after curing, and heat resistance such as a temperature resistance cycle is excellent.
  • conventionally known epoxy compounds may be used!
  • the adhesive for electronic components of the present invention is an epoxy compound having a molecular structure of a 10-mer or less having an aromatic ring in a repeating unit and a crystalline solid at 25 ° C as the curable compound. It is preferable to contain (A)! By containing the epoxy compound (A), the adhesive for electronic components of the present invention can suitably achieve the viscosity characteristics at the bonding temperature described above.
  • the epoxy compound (A) has a molecular structure of 10-mer or less having an aromatic ring in a repeating unit.
  • Such an epoxy compound (A) has extremely high crystallinity and is 25 ° C. In addition to being a crystalline solid, it has the property that its viscosity drops rapidly in the temperature range above 25 ° C. This is because the epoxy compound (A) is a crystalline solid as described above at 25 ° C, but it has a low molecular weight of 10-mer or less, so that the crystal structure can be increased by heating above 25 ° C. This is considered to be because the viscosity is reduced due to breakage.
  • the epoxy compound (A) is a crystalline solid at 25 ° C, and the upper limit of viscosity when measured with an E-type viscometer in the temperature range of 50 to 80 ° C is lPa's. . If the 10-mer is exceeded, the viscosity in the temperature range of 50 to 80 ° C increases, and when the electronic component is laminated at the above bonding temperature using the electronic component adhesive of the present invention, It becomes difficult to make the distance substantially equal to the particle diameter of the spacer particles, resulting in variations in the distance between electronic components.
  • the epoxy compound (A) is more preferably a trimer or less.
  • the temperature range in which the viscosity is lPa's is set to 50 to 80 ° C because the temperature conditions for heating and pressurizing electronic components in the normal manufacturing process of electronic component laminates are as follows. It is taken into consideration. In addition, the temperature at which the epoxy compound (A) becomes a crystalline solid was set to 25 ° C in consideration of the fact that the application of an adhesive for joining electronic components is usually performed at room temperature. is there.
  • the adhesive for electronic parts of the present invention containing such a molecular structure, that is, an epoxy compound (A) having an aromatic ring in a repeating unit and not more than a 10-mer, is used for joining electronic parts and the like.
  • an epoxy compound (A) having an aromatic ring in a repeating unit and not more than a 10-mer is used for joining electronic parts and the like.
  • the epoxy compound (A) since the epoxy compound (A) has an aromatic ring in the repeating unit and becomes a crystalline solid at 25 ° C., the electronic component of the present invention containing the epoxy compound (A)
  • the adhesive for adhesives has a high viscosity at 25 ° C, and when applied on the electronic components to be joined, the applied shape does not cast.
  • the epoxy compound (A) suddenly has a low viscosity when heated, for example, when the electronic components are laminated, an adhesive is formed between the spacer particles and the electronic components. It is possible to stack one electronic component and another electronic component without leaving a gap, and the distance between the electronic components can be made substantially equal to the particle diameter of the spacer particles.
  • the viscosity of the epoxy compound (A) increased rapidly, and the electronic components were laminated together.
  • the later adhesive for electronic parts of the present invention is not cast.
  • the epoxy compound (A) has excellent heat resistance, the heat resistance of the adhesive for electronic parts of the present invention containing the epoxy compound (A) is also excellent.
  • an adhesive used for joining conventional electronic components a force that realizes a low viscosity at the time of heating by adding only a diluent is known.
  • the conventional adhesive has a problem that voids are generated during heating.
  • the adhesive for electronic parts of the present invention containing the epoxy compound (A) realizes a low viscosity during heating by containing the epoxy compound (A). Voids are not generated like the adhesive that had been made low viscosity by adding only this diluent.
  • the adhesive for electronic parts of the present invention was used as an adhesive layer having a thickness of 10, and a cured product obtained by curing the adhesive layer at 170 ° C for 15 minutes was exposed to a temperature condition of 260 ° C for 10 seconds.
  • the preferable upper limit of the void generation rate when the diameter is 100 m or less is 1 piece / mm 2 . If the void generation rate power / mm 2 of the cured product is more than 1 / mm 2 , when the electronic components are bonded using the adhesive for electronic components of the present invention, the connection reliability between the electronic components is improved. Power to become insufficient Sfc.
  • the epoxy compound (A) preferably has two or more epoxy groups in one molecule.
  • the adhesiveness of the adhesive for electronic parts of the present invention is further improved.
  • the epoxy compound (A) is not particularly limited as long as it has the molecular structure described above, and examples thereof include phenol type epoxy, naphthalene type epoxy, biphenyl type epoxy, resorcinol type epoxy, and the like. It is done.
  • examples of such commercially available epoxy compounds (A) include EX-201 (manufactured by Nagase Sangyo Co., Ltd.), YSLV-80XY (manufactured by Tohto Kasei Co., Ltd.), and the like.
  • the curable compound has an epoxy group at both ends of the molecule, and a number average molecule between one epoxy group and the other epoxy group. It is preferable to contain an epoxy compound (B) having an amount of 50 to 1000 and a flexible skeleton.
  • the adhesive for electronic parts of the present invention contains the epoxy compound (B), thereby
  • the cured product of the adhesive for electronic components of the invention achieves a low elastic modulus in the normal temperature region and has excellent adhesion between the electronic component and the substrate, and thus has excellent heat resistance such as a temperature resistant cycle. It will be a thing.
  • the epoxy compound (B) is not particularly limited.
  • 1,2-polybutadiene modified bisphenol A glycidyl ether 1,4 polybutadiene modified bisphenol A glycidyl ether, polypropylene oxide modified bisphenol A glycidyl ether.
  • epoxy compounds (B) may be used alone or in combination of two or more.
  • an epoxy compound in which the flexible skeleton is derived from at least one compound selected from the group consisting of butadiene rubber, propylene oxide, ethylene oxide, acrylic rubber, and these water additives is preferably used. It is done.
  • Epoxy compounds having an aromatic skeleton such as glycidyl ether are preferably used from the viewpoint of increasing the reaction rate.
  • the epoxy compounds (B) those in which the aromatic ring and the glycidyl ether group are directly connected are more preferable from the viewpoint that the reaction rate is further increased.
  • examples of such commercially available epoxy compounds include EPB-13 (manufactured by Nippon Soda Co., Ltd.), EXA-4850 (manufactured by Dainippon Ink and Co., Ltd.), and the like.
  • the curable compound further contains an organic'inorganic hybrid epoxy compound. By containing the organic / inorganic hybrid epoxy compound, the elastic modulus of the electronic component adhesive of the present invention can be increased to a desired value.
  • the organic / inorganic hybrid epoxy compound is not particularly limited, and examples thereof include Compacene E102 (Arakawa Chemical Co., Ltd.).
  • the amount of the organic / inorganic hybrid epoxy compound contained is not particularly limited, but the curable compound contained in the adhesive for electronic components of the present invention such as the epoxy compound (B) described above.
  • the preferred lower limit is 1 part by weight and the preferred upper limit is 10 parts by weight with respect to the total of 100 parts by weight.
  • the preferable upper limit of the moisture absorption rate of the curable compound is 1.5%, and the more preferable upper limit is 1.1%.
  • the curable compound having such a moisture absorption rate include naphthalene type epoxy resins, fluorene type epoxy resins, dicyclopentagen type epoxy resins, phenol nopolac type epoxy resins, cresol nopolac type resins and the like.
  • the adhesive for electronic parts of the present invention preferably further contains a polymer compound having a functional group capable of reacting with the curable compound.
  • a polymer compound having a functional group capable of reacting with the curable compound By including such a polymer compound, the bonding reliability when heat distortion occurs is improved.
  • the polymer compound having a functional group capable of reacting with the curable compound when an epoxy compound is used as the curable compound, for example, an amino group, a urethane group, an imido group, a hydroxyl group, a carboxyl group, or the like. And polymer compounds having an epoxy group, etc. Among them, polymer compounds having an epoxy group are preferable.
  • the cured product of the adhesive for electronic components exhibits excellent flexibility. That is, the cured product of the adhesive for electronic components of the present invention has excellent mechanical strength, heat resistance and moisture resistance derived from an epoxy compound having a polycyclic hydrocarbon skeleton as a curable compound in the main chain. Since it combines excellent flexibility derived from a polymer compound having an epoxy group, it has excellent thermal cycle resistance, nodal reflow resistance, dimensional stability, etc., and has high adhesion reliability and high conductivity. Reliability will be expressed.
  • the polymer compound having an epoxy group is not particularly limited as long as it is a polymer compound having an epoxy group at the terminal and / or side chain (pendant position).
  • an epoxy group-containing acrylic resin is preferably used.
  • These polymer compounds having an epoxy group may be used alone or in combination of two or more.
  • the preferred lower limit of the weight average molecular weight is 10,000. is there. If it is less than 10,000, the film-forming property of the adhesive for electronic parts of the present invention becomes insufficient, and the flexibility of the cured product of the adhesive for electronic parts may not be sufficiently improved.
  • the preferred lower limit of the epoxy equivalent is 200, and the preferred upper limit. Is 1000. If it is less than 200, the flexibility of the cured product of the adhesive for electronic parts of the present invention may not be sufficiently improved. Conversely, if it exceeds 1 000, the cured product of the adhesive for electronic parts of the present invention The strength that mechanical strength and heat resistance are insufficient.
  • the amount of the polymer compound having a functional group capable of reacting with the curable compound is not particularly limited, but a preferable lower limit is 1 part by weight and a preferable upper limit is 20 parts with respect to 100 parts by weight of the curable compound. Parts by weight. If the amount is less than 1 part by weight, sufficient reliability against thermal strain cannot be obtained, and if it exceeds 20 parts by weight, the heat resistance may decrease.
  • the adhesive for electronic parts of the present invention may contain a diluent for the purpose of ensuring applicability at 25 ° C.
  • the diluent is not particularly limited, and examples thereof include a reactive diluent and a non-reactive diluent. Of these, a reactive diluent is preferably used.
  • the epoxy compound (A2) is contained as the reactive diluent! By containing such an epoxy compound (A2), the viscosity can be adjusted and the glass transition temperature can be adjusted. The degree can be adjusted.
  • the epoxy compound (A2) is not particularly limited, and examples thereof include bisphenol A-type epoxy, bisphenol F-type epoxy, and epoxy compounds having an aliphatic cyclic skeleton of 10-mer or less.
  • the content of the epoxy compound (A2) is not particularly limited, but a preferable lower limit force S10 parts by weight with respect to a total of 100 parts by weight of the curable compounds contained in the adhesive for electronic parts of the present invention.
  • the preferred upper limit is 60 parts by weight. If it is less than 10 parts by weight, the effect of adding the epoxy compound (A2) can hardly be obtained, and if it exceeds 60 parts by weight, the viscosity characteristics described later can be obtained in the adhesive for electronic parts of the present invention. There may not be.
  • a more preferred lower limit is 20 parts by weight, more preferred! /, And an upper limit is 30 parts by weight.
  • the reactive diluent may be an epoxy compound having an aliphatic cyclic skeleton in the repeating unit of 10-mer or less ( A3) is preferably used.
  • the adhesive for electronic parts of the present invention has high moisture resistance while ensuring applicability at 25 ° C.
  • the adhesive for electronic parts of the present invention has a high viscosity at 25 ° C, resulting in insufficient applicability to electronic parts. Sometimes.
  • the epoxy compound (A3) is more preferably a pentamer or less.
  • the epoxy compound (A3) is not particularly limited as long as it is a compound having the above-described molecular structure, and examples thereof include dicyclopentagen-type epoxy and cyclohexane-type epoxy.
  • Examples of commercially available products of such an epoxy compound (A3) include EP-4 088S (manufactured by Ade Riki Co., Ltd.), HP-7200 (manufactured by Dainippon Ink & Chemicals, Inc.), and the like.
  • the ratio of the blending ratio of the epoxy compound (A) and the epoxy compound (A3) described above, that is, (A3 / A ) Or (A / A3) is preferably 0.5, and a preferable upper limit is 2. If it is less than 5 or more than 2, the proportion of either the epoxy compound (A) or the epoxy compound (A3) is increased. It is difficult to combine properties such as viscosity characteristics and high moisture resistance. For example, when the ratio (A3 / A) of the blending ratio of the epoxy compound (A) to the blending ratio of the epoxy compound (A3) is less than 0.5, the moisture resistance sufficient for the adhesive for electronic parts of the present invention is sufficient.
  • the present invention If the ratio (A / A3) of the compounding ratio of the epoxy compound (A3) to the compounding ratio of the epoxy compound (A) is less than 0.5, the present invention The above-mentioned viscosity characteristics may not be obtained for adhesives for electronic components.
  • the content of the epoxy compound (A3) in the adhesive for electronic parts of the present invention is not particularly limited, but the total of 100 weights of the curable compounds contained in the adhesive for electronic parts of the present invention.
  • the preferred lower limit is 10 parts by weight and the preferred upper limit is 30 parts by weight with respect to parts. If the amount is less than 10 parts by weight, the effect of adding the epoxy compound (A3) can hardly be obtained. If the amount exceeds 30 parts by weight, the above-mentioned viscosity characteristics cannot be obtained for the adhesive for electronic parts of the present invention. ! / There is a power S. More preferred! /, Upper limit is 20 parts by weight.
  • the non-reactive diluent is not particularly limited, and does not inhibit the object of the present invention.
  • aromatic hydrocarbons chlorinated aromatic hydrocarbons, aliphatic chloride
  • examples include hydrocarbons, alcohols, esters, ethers, ketones, glycol ethers (cellosolves), alicyclic hydrocarbons, and aliphatic hydrocarbons.
  • the content of the non-reactive diluent is not particularly limited, but a preferred lower limit is 1% by weight and a preferred upper limit is 20% by weight. When the content is less than 1% by weight, the effect of adding the non-reactive diluent is hardly obtained. When the content exceeds 20% by weight, voids may occur in the cured product of the adhesive for electronic parts of the present invention.
  • the diluent preferably has a weight loss amount at 120 ° C and a weight loss amount at 150 ° C. 1%. If it exceeds 1%, unreacted substances may volatilize during or after curing of the adhesive for electronic parts of the present invention, which may adversely affect productivity and the resulting electronic part apparatus.
  • the diluent has a lower curing start temperature and a higher curing rate than the curable compound such as the epoxy compound (A) described above! /.
  • the adhesive for electronic parts of the present invention contains a curing agent.
  • the curing agent is not particularly limited, and a force S that can be appropriately selected by combining a conventionally known curing agent with the curable compound, and when an epoxy compound is used as the curable compound.
  • the curing agent include, for example, heat-curing acid anhydride-based curing agents such as trialkyltetrahydrophthalic anhydride, phenol-based curing agents, amine-based curing agents, latent curing agents such as dicyandiamide, and cationic catalyst-type curing agents. Examples thereof include a curing agent. These curing agents may be used alone or in combination of two or more.
  • the amount of the curing agent is not particularly limited, but when a curing agent that reacts with the functional group of the curable compound in an equal amount is used, 90 to 110 equivalents relative to the functional group amount of the curable compound. It is preferable that In the case of using a curing agent that functions as a catalyst, the preferred lower limit is 1 part by weight and the preferred upper limit is 20 parts by weight with respect to 100 parts by weight of the curable compound.
  • the preferable lower limit of the melting point of the curing agent is 120 ° C.
  • the temperature is set to 120 ° C. or higher, gelling is suppressed when the adhesive for electronic parts of the present invention is heated, and the distance between the electronic parts can be suitably adjusted.
  • Examples of the curing agent having a melting point of 120 ° C or higher include, for example, 5- (2,5-dioxotetrahydro-3-ferranyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Anhydride, phenol novolac resin such as TD-2090, bisphenol nore A resin such as KH-6021, orthocresol nopolac resin such as KA-1165, EH-3636AS, EH-3 842, EH-3780, EH-4339S And dicyandiamide such as EH-4346S (Asahi Denka Kogyo Co., Ltd.).
  • microcapsule type curing agent coated with a material having a melting point of 120 ° C. or more it is possible to use a microcapsule type curing agent coated with a material having a melting point of 120 ° C. or more.
  • the adhesive for electronic parts of the present invention contains spacer particles having a CV value of 10% or less.
  • a spacer particle By including such a spacer particle, when two or more semiconductor chips are stacked using the adhesive for electronic components of the present invention, a dummy chip or the like is not interposed. Can be kept constant.
  • the upper limit of the CV value of the spacer particle is 10%. If it exceeds 10%, the particle size varies greatly, so that it is difficult to keep the distance between the electronic components constant, and the function as a spacer particle cannot be sufficiently achieved.
  • a preferred upper limit is 6%, and a more preferred upper limit is 4%.
  • the CV value is a numerical value obtained by the following formula (1).
  • ⁇ 2 represents the standard deviation of the particle diameter
  • Dn2 represents the number average particle diameter
  • the average particle size of the spacer particles is not particularly limited, and is a force capable of selecting a particle size that can achieve the desired inter-chip distance.
  • the preferred lower limit is 3 m, preferably The upper limit is 200 m. 3 If it is less than 111, it may be difficult to reduce the distance between the chips to the particle size of the spacer particle, and if it exceeds 20 ( ⁇ 111, the distance between the semiconductor chips will be larger than necessary.
  • a more preferred lower limit is 5 m, and a more preferred lower limit is 50 ⁇ m.
  • the average particle size of the spacer particles is preferably 1.1 times or more the average particle size of the solid component to be added in addition to the spacer particles. 1. If it is less than 1 time, it may be difficult to reliably reduce the distance between chips to the particle size of a spacer particle. More preferably, 1. 2 times or more.
  • the above spacer single-particle is represented by the following formula (2) preferably the lower limit is 980 N / mm 2 of K value represented by, and the desirable upper limit is 4900 N / mm 2.
  • F and S represent the load value (kgf) and compression displacement (mm), respectively, at 10% compression deformation of resin fine particles, and R represents the radius (mm) of the spacer.
  • the K value can be measured by the following measuring method.
  • particles are dispersed on a steel plate having a smooth surface, and then one particle is selected from them, and the particles are compressed with a smooth end face of a 50 m diameter diamond cylinder using a micro compression tester.
  • the compression load is electrically detected as electromagnetic force
  • the compression displacement is electrically detected as displacement by the actuating transformer.
  • the load value and compression displacement at 10% compression deformation are obtained from the relationship of the obtained compression displacement and load, respectively, and the K value is calculated from the obtained results.
  • the above-mentioned spacer single particle has a preferred compression recovery rate when released from a compression deformation state of 20 ° C and 10%, and the lower limit is 20%.
  • spacer particles having such a compression recovery rate are used, even if particles larger than the average particle diameter exist between the stacked chips, the compression change is caused.
  • the shape can be recovered depending on the shape and used as a gap adjusting material. Therefore, chips can be horizontally stacked at a more stable and constant interval.
  • the compression recovery rate can be measured by the following measuring method.
  • the compression displacement is electrically detected as the displacement by the operating transformer by the same method as the measurement of the K value above, and after compressing to the reverse load value, the load is reduced, and the load and compression displacement at that time are reduced. Measure the relationship.
  • the compression recovery rate is calculated from the obtained measurement result. However, the end point in the removal load is not the load value zero, and the origin load value is 0.lg or more.
  • the material of the spacer particles is not particularly limited, but is preferably resin particles.
  • the resin constituting the resin particles is not particularly limited, and examples thereof include polyethylene, polypropylene, polymethylpentene, polychlorinated butyl, polytetrafluoroethylene, polystyrene, polymethyl methacrylate, polyethylene terephthalate, and polybutylene. Terephthalate, polyamide, polyimide, polysulfone, polyphenylene oxide, polyacetal and the like. Of these, it is preferable to use a crosslinked resin because the hardness and recovery rate of the spacer particles can be easily adjusted and the heat resistance can be improved.
  • the cross-linked resin is not particularly limited.
  • epoxy resin phenol resin, melamine resin, unsaturated polyester resin, dibulebenzene polymer, dibulebenzene styrene copolymer, dibulebenzene acrylate ester
  • resins having a network structure such as a copolymer, a diallyl phthalate polymer, a triallyl isocyanurate polymer, and a benzoguanamine polymer.
  • a dibule benzene polymer a dibulene benzene-styrene copolymer, a dibulene benzene (meth) acrylate copolymer, a diaryl phthalate polymer, and the like are preferable.
  • a dibule benzene polymer a dibulene benzene-styrene copolymer, a dibulene benzene (meth) acrylate copolymer, a diaryl phthalate polymer, and the like are preferable.
  • resistance to heat treatment processes such as curing process and solder reflow process is excellent.
  • the spacer particles are preferably subjected to a surface treatment if necessary.
  • the above-described viscosity characteristics can be realized in the adhesive for electronic parts of the present invention.
  • the surface treatment method is not particularly limited.
  • the adhesive composition exhibits hydrophobicity as a whole, it is preferable to impart a hydrophilic group to the surface.
  • Such means is not particularly limited.
  • a method of treating the surface of the resin particles with a coupling agent having a hydrophilic group can be mentioned. It is done.
  • the shape of the spacer particle is preferably spherical.
  • the preferable upper limit of the aspect ratio of the spacer particles is 1 ⁇ 1.
  • the aspect ratio means the ratio of the length of the major axis to the length of the minor axis (the value obtained by dividing the major axis length by the minor axis length) with respect to the major axis and minor axis of the particle. The closer this aspect ratio is to 1, the closer the shape of the spacer particle is to a true sphere.
  • the preferable lower limit of the blending amount of the spacer particles is 0.01 wt%, and the preferable upper limit is 5 wt%.
  • the amount is less than 01% by weight, the distance between the semiconductor chips may not be stably kept constant when used for the production of a semiconductor chip laminated body. As a result, the function may be deteriorated.
  • the preferable upper limit of the blending amount of such a solid component is 1% by weight. is there.
  • the melting point of the solid component is preferably equal to or lower than the curing temperature.
  • the maximum particle size of the solid component is 1.;! 1. 5 times the average particle size of one spacer particle. 1 ⁇ ;! 1 ⁇ 2 times is more preferable.
  • the adhesive for electronic parts of the present invention preferably further contains a curing accelerator in order to adjust the curing speed, physical properties of the cured product, and the like.
  • the curing accelerator is not particularly limited, and examples thereof include imidazole-based curing accelerators and tertiary amine-based curing accelerators. Among these, for adjusting the curing speed and physical properties of the cured product. From the viewpoint of easy control of the reaction system, an imidazole curing accelerator is preferably used. These curing accelerators may be used alone or in combination of two or more. [0072] The imidazole-based curing accelerator is not particularly limited.
  • 2-MA-OK isocyanuric acid
  • the blending amount of the curing accelerator is not particularly limited, but the preferred lower limit is 1 with respect to a total of 100 parts by weight of the curable compound contained in the adhesive for electronic parts of the present invention, such as the epoxy compound. Part by weight, the preferred upper limit is 20 parts by weight. If it is less than 1 part by weight, the adhesive for electronic parts of the present invention may not be sufficiently cured, and if it exceeds 20 parts by weight, the adhesive reliability of the adhesive for electronic parts of the present invention may be reduced. .
  • the adhesive for electronic parts of the present invention preferably further contains a thixotropic agent.
  • a thixotropic agent By containing the thixotropy-imparting agent, the adhesive for electronic components of the present invention can achieve a desired viscosity behavior.
  • the thixotropy imparting agent is not particularly limited, and for example, fine metal particles, calcium carbonate, fumed silica, inorganic fine particles such as aluminum oxide, boron nitride, aluminum nitride, and aluminum borate can be used. Of these, fumed silica is preferable.
  • the thixotropy-imparting agent it is possible to use a surface-treated one if necessary, and it is particularly preferable to use particles having a hydrophobic group on the surface. Specifically, for example, fumed silica having a hydrophobic surface is preferably used.
  • a preferable upper limit of the average particle diameter is 1 ⁇ m. Beyond 1 mu m, there may force s is unable to express the desired thixotropic properties.
  • the amount of the thixotropy-imparting agent is not particularly limited, but when the spacer particles are not subjected to surface treatment, a preferable lower limit is 0.5% by weight and a preferable upper limit is 20% by weight. . If the amount is less than 5% by weight, sufficient thixotropy cannot be obtained. If the amount exceeds 20% by weight, the evacuation property of the adhesive for electronic components may be reduced when semiconductor chips are laminated. A more preferred lower limit is 1% by weight, and a preferred upper limit is 10% by weight.
  • the adhesive for electronic parts of the present invention may contain a solvent, if necessary. The solvent is not particularly limited.
  • aromatic hydrocarbons for example, aromatic hydrocarbons, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, alcohols, esters, ethers, ketones, glycol ethers (cellosolves) , Alicyclic hydrocarbons, and aliphatic hydrocarbons.
  • the adhesive for electronic parts of the present invention may contain an inorganic ion exchanger, if necessary.
  • inorganic ion exchangers examples of commercially available products include IXE series (manufactured by Toagosei Co., Ltd.).
  • the preferred lower limit of the amount of the inorganic ion exchanger is 1% by weight, and the preferred upper limit is 10% by weight.
  • the adhesive for electronic parts of the present invention may further contain additives such as an anti-bleeding agent and an adhesion-imparting agent such as an imidazole silane coupling agent, if necessary.
  • the adhesive for electronic components of the present invention preferably contains particles composed of a polyfunctional acid anhydride curing agent that is solid at room temperature and a curing accelerator.
  • the polyfunctional acid anhydride curing agent that is solid at normal temperature is not particularly limited, and examples of the trifunctional acid anhydride curing agent include acid anhydride trimellitic anhydride and the like.
  • examples of the above acid anhydride curing agent include pyromellitic anhydride, benzophenone anhydrous tetracarboxylic acid, methylcyclohexene tetracarboxylic acid anhydride, polyazeline acid anhydride, and the like.
  • the particles composed of the polyfunctional acid anhydride curing agent that is solid at room temperature preferably have a melting point V and a lower limit force of 0 ° C.
  • the average particle diameter of the particles composed of the polyfunctional acid anhydride curing agent that is solid at normal temperature is preferably 0 ⁇ l ⁇ m and preferably 10 m.
  • the adhesive for electronic parts of the present invention preferably contains particles composed of a polyfunctional acid anhydride curing agent that is solid at room temperature and a bifunctional acid anhydride curing agent that is liquid at room temperature. Better!/,.
  • a bifunctional acid anhydride curing agent that is liquid at room temperature By containing a bifunctional acid anhydride curing agent that is liquid at room temperature, the overall heat resistance of the cured product can be reduced. It is preferable because it improves.
  • Examples of the particles composed of the polyfunctional acid anhydride curing agent that is solid at room temperature include the same particles as described above.
  • the bifunctional acid anhydride curing agent that is liquid at room temperature is not particularly limited.
  • phthaloleic anhydride hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrate, oral phthalic anhydride, endomethylenetetrahydroanhydride.
  • examples include phthalic acid, methylendomethylenetetrahydrophthalic anhydride, maleic anhydride and the like.
  • the adhesive for electronic components of the present invention contains the acid anhydride curing agent particles that are solid at room temperature and the bifunctional acid anhydride curing agent that is liquid at room temperature, the above-described curing is further performed.
  • An accelerator may be contained.
  • Examples of combinations of the polyfunctional acid anhydride curing agent particles that are solid at room temperature and the bifunctional acid anhydride curing agent that is liquid at room temperature include pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, and methylcyclohexane.
  • pyromellitic anhydride benzophenone tetracarboxylic acid anhydride
  • methylcyclohexane One or more selected from the group consisting of hexenetetracarboxylic anhydride and a group consisting of methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride
  • the amount of the curing agent such as polyfunctional acid anhydride curing agent particles that are solid at room temperature or a bifunctional acid anhydride curing agent that is liquid at room temperature is not particularly limited. It is preferable that the lower limit of the value obtained by dividing the amount of the functional group by the total amount of basic groups of the curing agent is 0.5 and the upper limit is 1.5. If it is less than 5, adhesion reliability with the adhesive for electronic parts of the present invention may be inferior. If it exceeds 1.5, curing of the adhesive for electronic parts of the present invention may be insufficient. For example, when only the trifunctional or higher functional acid anhydride curing agent particles that are solid at room temperature are used, the heat resistance of the cured product may be insufficient. A more preferred lower limit is 0.6, and a more preferred upper limit is 1.3.
  • the adhesive for electronic parts of the present invention containing the polyfunctional acid anhydride curing agent particles solid at normal temperature and the bifunctional acid anhydride curing agent liquid at normal temperature is solid at the normal temperature.
  • the blending ratio of the polyfunctional acid anhydride curing agent particles to the bifunctional acid anhydride curing agent that is liquid at room temperature is not particularly limited, but the composition of the polyfunctional acid anhydride curing agent particles that are solid at room temperature is not particularly limited.
  • the preferable lower limit of the value obtained by dividing the total amount (weight) by the blending amount (weight) of the bifunctional anhydride curing agent that is liquid at room temperature is 0.1, and the preferable upper limit is 10. If it is less than 0.1, the heat resistance of the cured product may be insufficient, and if it exceeds 10, the strength of the entire cured product may not be sufficient.
  • a more preferred lower limit is 0.2, and a more preferred upper limit is 5.
  • the adhesive for electronic parts of the present invention preferably has a reaction rate of less than 5% after 10 minutes at 20 to 120 ° C. If it is 5% or more, the target space may not be reached during die bonding! /.
  • the adhesive for electronic parts of the present invention preferably has a curing shrinkage rate of less than 1% upon curing.
  • the curing shrinkage rate during curing is 1% or more, delamination may occur due to internal stress generated during curing when a semiconductor chip laminate is manufactured.
  • the curing shrinkage rate means a value that can be obtained as a volume shrinkage rate (%) based on a difference in specific gravity between before and after curing based on JIS A06024.
  • the specific gravity is measured at a measurement temperature of 25 ° C.
  • the adhesive for electronic parts of the present invention is applied to 0.2 mg on a mirror surface of a silicon wafer to form a circular adhesive layer having a diameter of 500 ⁇ 111, and the adhesive layer is applied at 170 ° C.
  • the leaching distance of the liquid component that exudes from the cured product is less than 5 m.
  • the so-called bleeding phenomenon that the liquid component of the adhesive oozes out when the electronic component is bonded using the adhesive for electronic components of the present invention is sufficiently prevented. It is possible to obtain highly reliable electronic components, and to fully meet the recent downsizing and higher integration of electronic components.
  • a preferable upper limit of the exudation distance is 3 ⁇ 111, and a more preferable upper limit is l ⁇ m.
  • the liquid component means a component that is liquid at 25 ° C.
  • the liquid component includes a curable compound and a curing agent. It is more preferable to contain a curing accelerator that preferably contains.
  • the exudation distance means the length in the center direction of the different colored portions present around the adhesive cured product when the cured adhesive product is observed with an optical microscope.
  • the low bleeding property of the adhesive for electronic parts of the present invention is that two or more kinds of inorganic fine particles having sufficiently different hydrophilicity (hydrophobicity) functioning as a thickener, and one inorganic fine particle is bonded.
  • the liquid component contained in the adhesive (hydrophobic) is relatively close to the other inorganic fine particle, and the liquid component contained in the adhesive (hydrophobic) is relatively distant from the liquid component. Achieving the power S Furthermore, by containing such inorganic fine particles, the adhesive for electronic components of the present invention can also realize suitable thixotropy as an adhesive.
  • the inorganic fine particles close to the hydrophilicity (hydrophobicity) of the liquid component are present in the present invention. It is considered that the liquid component is prevented from exuding from the adhesive layer using the electronic component adhesive.
  • inorganic fine particles that are far from hydrophilic (hydrophobic) of the liquid component form a linear continuum in the adhesive layer using the adhesive for electronic parts of the present invention, thereby realizing the thixotropy. V, playing a role to play
  • a solubility parameter (SP value) is generally used as an index representing the hydrophilicity of the liquid component, and the SP value of the liquid component of an adhesive used for bonding two or more electronic components is used. Usually, 8 to 14 is required.
  • the degree of hydrophobicity (M value) is generally used as an index representing the hydrophilicity of fillers such as the inorganic fine particles.
  • the SP value which is an index indicating the hydrophilicity of this liquid component
  • the M value which is an index indicating the hydrophilicity of inorganic fine particles
  • the SP value of the liquid component from 8 to 11 and the M value of the inorganic fine particles of 50 or less are relatively close to hydrophilicity (hydrophobic). It almost corresponds to the hydrophilicity (hydrophobic) that is relatively close to the liquid component SP value 11 to 14 and the inorganic fine particle M value 40 or less. there were.
  • the adhesive for electronic parts of the present invention divides the SP value of the liquid component into 8 to 11 and 11 to 14 and has an optimum hydrophilicity (hydrophobic property) corresponding to each SP value range. It is preferable to contain two or more inorganic fine particles having).
  • the method for adjusting the SP value of the liquid component within a predetermined range is not particularly limited.
  • the curable compound, the curing agent, and the like are considered in consideration of the individual SP values. Examples include methods that are appropriately selected and used.
  • the adhesive for electronic components of the present invention has an SP value of the liquid component of 8 to 11;
  • liquid component (1) Inorganic fine particles (A) having an upper limit force S50 nm of average primary particle diameter and an upper limit of hydrophobicity (M value) 50 and average primary particles as inorganic fine particles It is preferable to contain inorganic fine particles (B) having an upper limit of 50 nm in diameter and a lower limit of hydrophobicity (M value) of 60.
  • the inorganic fine particles (A) serve to achieve the low bleeding property with respect to the liquid component (1), and the inorganic fine particles (B) It will play a role of imparting thixotropy suitable for coating.
  • liquid component (1) having a lower SP value of 8 and an upper limit of 11 specifically, for example, dicyclopentagen-type epoxy, butadiene-modified epoxy, silicon-modified
  • examples include a method using epoxy.
  • the upper limit of the average primary particle diameter of the inorganic fine particles (A) and the inorganic fine particles (B) is 50 nm. If it exceeds 50 nm, the above-mentioned thixotropy will be insufficient, resulting in inferior coating properties and insufficient low bleeding properties.
  • a preferred upper limit is 40 nm, and a more preferred upper limit is 30 nm.
  • the average primary particle size is a particle size before aggregation of inorganic particles, and is a value measured by a laser particle size distribution meter after being dispersed by ultrasonic waves or the like in a well-dispersed solvent. Means.
  • the inorganic fine particles (A) have an upper limit of M value of 50, and the inorganic fine particles (B) have a lower limit of M value of 60.
  • M value of the inorganic fine particles (A) exceeds 50, the low bleed property is insufficient. Further, if the M value of the inorganic fine particles (B) is less than 60, the thixotropy is insufficient and the coating property may be inferior.
  • the M value of the inorganic fine particles means the concentration of methanol when the methanol is dripped into the water containing the inorganic fine particles and the inorganic fine particles are completely swollen, and the concentration thereof. is doing.
  • the method of adjusting the M value of the inorganic fine particles (A) and the inorganic fine particles (B) to the above range is not particularly limited.
  • a method of changing the number of hydrophilic groups to be treated, surface treatment is performed on the inorganic fine particles, and Examples include a method of changing the number of hydrophilic groups present.
  • silica fine particles are selected as the inorganic fine particles, as a method for adjusting the hydrophilicity (hydrophobicity) of the silica fine particles by the above-described surface treatment method, for example, the surface of untreated silica fine particles To adjust the carbon content, the upper limit of M value is 50
  • a method of obtaining a certain silica fine particle (E) and a silica fine particle (F) having a lower M value of 60 is preferable.
  • silica fine particles (E) having an adjusted carbon content include, for example, MT-10 (0. 9), DM-10 (0 ⁇ 9) (all of which are manufactured by Tokuyama Corporation). ) And the like.
  • silica fine particles (F) whose carbon content is adjusted include, for example, PM-20L (5.5), HM-30S (3.5) (all of which are manufactured by Tokuyama Corporation). ) And the like.
  • the numbers in parentheses after each product name above represent the carbon content (% by weight).
  • inorganic fine particles (A) whose upper limit of M value is 50 are DM-10 (48), MT-10 (47) (all of which are manufactured by Tokuyama Co., Ltd.) ), R-972 (48) (manufactured by Degus sa) or the like.
  • the numerical value shown in parentheses after each product name represents M value.
  • inorganic fine particles (B) whose lower limit of M value is 60 are, for example, ZD-30ST (62), HM-20L (64), PM-20L (65) ( As described above, it is possible to use the power of RX-200 (64), R202 (65) (Degussa), etc.
  • the numbers in parentheses after each product name above represent M values.
  • the total content of the inorganic fine particles (A) and inorganic fine particles (B) having the M value described above is based on 100 parts by weight of the total amount of the curable compound contained in the adhesive for electronic parts of the present invention.
  • the preferred lower limit is 2 parts by weight and the preferred upper limit is 10 parts by weight. If the amount is less than 2 parts by weight, the low bleed property may be insufficient, and if it exceeds 10 parts by weight, the adhesiveness of the adhesive for electronic parts of the present invention may be lowered.
  • a more preferred lower limit is 4 parts by weight, and a more preferred upper limit is 8 parts by weight.
  • the preferred lower limit of the inorganic fine particles (B) is 30 parts by weight and the preferred upper limit with respect to 100 parts by weight of the inorganic fine particles (A). 600 fold It is a quantity part. If it is less than 30 parts by weight, the above thixotropy will be insufficient and the coating property will be inferior. If it exceeds 600 parts by weight, the low bleeding property may be insufficient. More preferred, lower limit is 50 parts by weight, more preferred! /, Upper limit is 500 parts by weight.
  • the adhesive for electronic parts of the present invention specifically, when the SP value of the liquid component is 11 to 14 (hereinafter also referred to as liquid component (2)),
  • the upper limit of the average primary particle size is 50 nm and the upper limit of the degree of hydrophobicity (M value) is 40, and the upper limit of the average primary particle size is 50 nm and the lower limit of the degree of hydrophobicity (M value) is 50.
  • Those containing inorganic fine particles (D) are also preferably used.
  • the inorganic fine particles (C) play a role of achieving the low bleeding property with respect to the liquid component (2), and the inorganic fine particles (D) Will serve to impart thixotropy suitable for coating.
  • liquid component (2) having a lower SP value of 11 and an upper limit of 14 specifically, for example, resorcinol type epoxy, naphthalene type epoxy, propylene glycol-modified epoxy, etc. And the like.
  • the upper limit of the average primary particle diameter of the inorganic fine particles (C) and the inorganic fine particles (D) is 50 nm. If it exceeds 50 nm, the above-mentioned thixotropy will be insufficient, resulting in inferior coating properties and insufficient low bleeding properties.
  • a preferred upper limit is 40 nm, and a more preferred upper limit is 30 nm.
  • the inorganic fine particles (C) have an upper limit of M value of 40, and the inorganic fine particles (D) have a lower limit of M value of 50.
  • M value of the inorganic fine particles (C) exceeds 40, the low bleed property is insufficient. Further, if the M value of the inorganic fine particles (D) is less than 50, the thixotropy is insufficient and the coating property may be inferior.
  • the method for adjusting the M value of the inorganic fine particles (C) and the inorganic fine particles (D) to the above range is not particularly limited.
  • the inorganic fine particles (A) and the inorganic fine particles (B ) And the same method.
  • silica fine particles are selected as the inorganic fine particles
  • a method for adjusting the hydrophilicity (hydrophobicity) of the silica fine particles by the above-described surface treatment method for example, the surface of untreated silica fine particles To adjust the carbon content, the upper limit of M value is 40 A method of obtaining certain silica fine particles (G) and silica fine particles (H) having a lower M value of 50 is preferred.
  • silica fine particles (G) having an adjusted carbon content examples include QS -40 (0) (manufactured by Tokuyama Co., Ltd.). Further, the silica fine particles (H) whose carbon content is adjusted are specifically DM-30 (1.7), KS-20S (2.0) (all of which are Manufactured). The numbers in parentheses after each product name above represent the carbon content (% by weight).
  • Specific examples of the inorganic fine particles (C) having an upper limit of M value of 40 include Q S -40 (0) (manufactured by Tokuyama Co., Ltd.). The numbers in parentheses after the above product names represent M values.
  • Specific examples of the inorganic fine particles (D) having a lower limit of M value of 50 include, for example, those listed in the above-mentioned inorganic fine particles (B), DM-30 (52), Examples thereof include KS 20S (56) (all of which are manufactured by Tokuma Corporation) and R-976 (52) (manufactured by Degussa). The numbers in parentheses after each product name above represent M values.
  • the total content of the inorganic fine particles (C) and inorganic fine particles (D) having the above M value is 100 parts by weight in total of the curable compounds contained in the adhesive for electronic parts of the present invention.
  • the preferred lower limit is 2 parts by weight and the preferred upper limit is 10 parts by weight. If the amount is less than 2 parts by weight, the low bleed property may be insufficient, and if it exceeds 10 parts by weight, the adhesiveness of the adhesive for electronic parts of the present invention may be lowered.
  • a more preferred lower limit is 4 parts by weight, and a more preferred upper limit is 8 parts by weight.
  • the preferred lower limit of the inorganic fine particles (D) is 30 parts by weight and the preferred upper limit with respect to 100 parts by weight of the inorganic fine particles (C). Is 600 parts by weight. If it is less than 30 parts by weight, the above thixotropy will be insufficient and the coating property will be inferior. If it exceeds 600 parts by weight, the low bleeding property may be insufficient. More preferred, lower limit is 50 parts by weight, more preferred! /, Upper limit is 400 parts by weight.
  • the adhesive for electronic parts of the present invention is, for example, a polymer having a functional group capable of reacting with a curing accelerator and a curable compound, if necessary, in an adhesive composition having a curable compound and a curing agent.
  • Compound, thixotropy imparting agent, other additives, etc. were blended in a predetermined amount and mixed. Thereafter, it can be produced by a method of blending spacer particles.
  • the mixing method is not particularly limited. For example, a method using a homodisper, a universal mixer, a Banbury mixer, a kneader, or the like can be used.
  • the electronic component to be bonded by the electronic component adhesive of the present invention is not particularly limited, and examples thereof include a semiconductor chip and a sensor. It is also used to form coil core gaps for transformer parts.
  • the coil iron core of the transformer component is not particularly limited, but for example, EI type or EE type is preferably used.
  • a semiconductor device can be produced by laminating two or more semiconductor chips in a multilayer using the adhesive for electronic components of the present invention and sealing with a sealing agent or the like. Such a semiconductor device is also one aspect of the present invention.
  • the adhesive for electronic components of the present invention can be particularly preferably used when semiconductor chips are laminated in a cross shape.
  • the adhesive for electronic parts of the present invention can be used for mounting a semiconductor chip on a substrate as well as for joining parts such as sensors, as well as for laminating two or more semiconductor chips. Use it as a suitable force S.
  • the manufacturing method is a method for manufacturing a semiconductor chip laminate in which two or more semiconductor chips are laminated via the adhesive for electronic components of the present invention, wherein the adhesive for electronic components is applied to one semiconductor chip.
  • the semiconductor chip laminated using the adhesive for electronic components of the present invention is not particularly limited, and can be used for various semiconductor chips.
  • the adhesive for electronic parts of the present invention exhibits the above-mentioned viscosity behavior, for example, It is also preferably used when a wire bonding connection type semiconductor chip is laminated.
  • the wires 6 are embedded, and the semiconductor chips 3 and 4 placed on the substrate 5 are connected via the spacer particles 2. It is preferably used when stacking.
  • FIG. 1 is a cross-sectional view schematically showing an example of semiconductor chips laminated using the electronic component adhesive of the present invention.
  • the spacer particles do not flow out to the connection electrode part for wire bonding, so that the spacer particles come into contact with the wire. This is preferable because it does not cause problems. This is because in the process of stacking semiconductor chips, when the distance between the semiconductor chips approaches the particle size of the spacer particles, the spacer particles move due to the viscosity behavior described above. This is because the spacer particles do not flow out to the wire bonding connection electrode.
  • the semiconductor chips to be stacked may be the same shape or different shapes.
  • two or more semiconductor chips having different thicknesses are arranged next to each other on one substrate, and a semiconductor chip having a size that includes both of these two or more semiconductor chips is placed on the two or more semiconductor chips. It is also possible to laminate them. In such a case, it is preferable to use a plurality of adhesives having different particle diameters for each spacer particle as appropriate between the chips.
  • the adhesive for electronic components is applied to the outer edge portion and the central portion of the region where the other semiconductor chip of the semiconductor chip of 1 is laminated.
  • the coating amount of the electronic component adhesive on the outer edge portion is set to 25 times the coating amount of the central portion. In this way, the coating amount at the outer edge is set to the center coating. If the amount is larger than the amount, when the semiconductor chips are aligned and then pressed in the semiconductor chip stacking step (2), which will be described later, the adhesive for electronic components is evenly distributed evenly to the joints. As a result, the resulting semiconductor chip stack is highly reliable. If the amount applied to the outer edge is less than twice the amount applied to the center, pressure and time are required to reach the desired distance between the chips. If it exceeds, void entrainment occurs. Preferably 3 to 4 times.
  • the outer edge is defined as a set of points corresponding to 0.7 to 0.9 times the distance from the center of gravity to the outer periphery of the region where the other semiconductor chips of the first semiconductor chip are stacked. In this case, it means a region surrounded by the inner periphery and the outer periphery.
  • the central portion corresponds to the distance force S from the center of gravity, which is 0.7 to 0.9 times the distance from the center of gravity to the outer periphery, and a set of points inside the inner periphery is the innermost periphery. In this case, the area surrounded by the innermost circumference.
  • the application method in the application step (1) is not particularly limited.
  • the application method using a combination of a syringe or the like equipped with a precision nozzle and a dispenser is used with force S.
  • the height at which the adhesive for electronic components is applied is not particularly limited, but is preferably 2 to 10 times the desired inter-chip distance.
  • the preferable upper limit of the coating height is 300 m, and the more preferable upper limit is 00 ⁇ m.
  • a semiconductor chip lamination step (2) of laminating another semiconductor chip via the adhesive for electronic components applied to the semiconductor chip described in 1 above is performed.
  • the semiconductor chip stacking step (2) the semiconductor chips are stacked by aligning them with an adhesive for electronic components.
  • the pressing force S is applied to another semiconductor chip stacked on one semiconductor chip.
  • the pressing is preferably performed at a pressure of 0.01 to 0.5 MPa for 0.;! To 5 seconds. If the pressure is less than 0.1 MPa or less than 0.1 second, the effect of pressing may be insufficient, and if a pressure exceeding 0.5 MPa is applied or if the pressure exceeds 5 seconds, In some cases, it is difficult to manufacture a semiconductor chip laminate with high productivity. It is more preferable to press at 0. 05-0. 2 MPa.
  • the semiconductor chip stacking step (2) it is preferable to reduce the inter-chip distance by two times the desired inter-chip distance; At this time, if the inter-chip distance force S is larger than the particle diameter of one spacer particle, in the curing step (3) described later, the inter-chip distance and the spacer distance are made to flow by flowing an adhesive for electronic parts. It is preferable that the particle diameters of the particles are substantially the same.
  • a curing step (3) is then performed in which the adhesive for electronic components between the semiconductor chip of 1 above and another semiconductor chip is cured.
  • a semiconductor chip laminate can be obtained by curing the adhesive for electronic components. Note that the curing step may be performed every time one semiconductor chip is stacked, or may be performed at once after repeating a desired number of stacked semiconductor chips.
  • the curing method is not particularly limited, and can be used by appropriately selecting curing conditions according to the curing characteristics of the adhesive for electronic components. S, prevention of entangled voids, and accuracy of inter-chip distance For improvement, a method in which curing does not substantially start at 70 to 120 ° C. for 10 minutes to 2 hours and then cured at 120 to 200 ° C. is preferable.
  • the variation in the inter-chip distance of the semiconductor chip laminate obtained after the curing step (3) is preferably less than 5 m at 3 ⁇ ! /. If the variation is 5 ⁇ m or more at 3 ⁇ , wire bonding failure or flip chip bonding failure may occur. ⁇ represents standard deviation.
  • a particle size measuring device (Coulter Counter ZB / C-1000, manufactured by Coulter Electronics Co., Ltd.) is used for the measurement of the particle size described in the Examples and Comparative Examples, and a compression test is used for measuring the K value and the compression recovery rate.
  • a micro-compression tester (Fischer Scope H100C, manufactured by Fischer Instrument Co.) was used.
  • materials other than the spacer single particle shown below were stirred and mixed using a homodisper to prepare an adhesive composition.
  • spacer particles were blended according to the composition shown in Table 1, and further stirred and mixed using a homodisper to produce an adhesive for electronic components.
  • Naphthalene type epoxy resin HP-4032D, manufactured by Dainippon Ink & Chemicals, Inc., liquid at normal temperature
  • Fluorene type epoxy resin (EX1020, Nagase Sangyo Co., Ltd., melting point 30 ° C)
  • Epoxy group-containing acrylic resin (Blemmer CP-30, manufactured by Japan Epoxy Resin Co., Ltd.)
  • Spherical silica (S430-2, manufactured by Micron, average particle size: 8.4um, CV value> 10%)
  • the obtained adhesive for electronic components is filled into a 10 mL syringe (manufactured by Iwashita Engineering), a precision nozzle (manufactured by Iwashita Engineering, nozzle tip diameter 0.3 mm) is attached to the syringe tip, and a dispenser device (SHOT MASTER300,
  • the product was applied on a glass substrate at a discharge pressure of 0.4 MPa, a gap between the semiconductor chip and the needle of 200 m, and an application amount of 5 mg.
  • an adhesive for electronic components is applied to chip 1 using the above-described dispenser device, and a semiconductor chip (chip 2) similar to chip 1 is bonded to the long side of chip 1 using the above-described bonding device.
  • the chips 2 were stacked so that the long sides crossed and pressed at a temperature of 25 ° C at 0.15 MPa for 5 seconds. Then, after leaving in a hot air drying oven at 80 ° C. for 60 minutes, heating was performed at 150 ° C. for 60 minutes to cure the adhesive for electronic components, thereby producing a semiconductor chip laminate.
  • E-type viscosity measuring device (trade name: VISCOMETER TV-22, TOKI SANGYO CO Measured with viscosity (A) at 0.5 rpm, viscosity (B) at lrpm, and viscosity (C) at lOrpm using a rotor manufactured by LTD, ⁇ 15mm, set temperature: 25 ° C) did. Further, (A / B) and (B / C) were obtained as a ratio of these viscosities.
  • the silicon wafer After applying the obtained adhesive for electronic parts on the silicon wafer so that it has a diameter of 1 cm and a height of 1 mm, the silicon wafer is left to stand vertically, and the amount of movement of the adhesive for electronic parts at 25 ° C is adjusted. It was measured.
  • the obtained semiconductor chip laminate was dried at 125 ° C for 6 hours, followed by treatment for 48 hours under 30 ° C and 80% wet conditions, and then 260 ° C for 30 seconds, the same as during solder reflow.
  • the heat treatment was performed under the following conditions. Then, it was observed whether or not delamination occurred in the semiconductor chip laminated body after performing such heat treatment three times. The delamination was observed using an ultrasonic exploration imaging device (mi-scope hyper II, manufactured by Hitachi Construction Machinery Finetech).
  • the adhesive for electronic components used for the semiconductor chip laminate was removed with a mixed acid, and observation was made as to whether or not the silicon nitride protective film on the surface of the semiconductor chip was cracked.
  • the heat resistance of the semiconductor chip laminate was evaluated by evaluating the delamination and protective film cracking according to the following criteria.
  • the obtained semiconductor chip laminate was subjected to a temperature cycle test at ⁇ 55 ° C. for 9 minutes and 125 ° C. for 9 minutes for 1 cycle. The power of whether delamination occurred was observed.
  • the adhesive for electronic components used in the semiconductor chip laminate was removed with a mixed acid, and the silicon nitride protective film on the surface of the semiconductor chip was observed to be cracked or not.
  • the delamination and the crack of the protective film were evaluated according to the following criteria.
  • the mixture was stirred and mixed to prepare an adhesive composition.
  • spacer particles were blended according to the composition shown in Table 2, and further stirred and mixed using a homodisper to prepare an adhesive for electronic parts.
  • the amount of each composition represents parts by weight.
  • Phenolic epoxy (EX-201, manufactured by Nagase Sangyo Co., Ltd., monomer, crystalline solid at 25 ° C, melting point 30-60. C, 50. Viscosity at 250mPa.s)
  • Crystalline epoxy resin (YSLV-80XY, manufactured by Tohto Kasei Co., Ltd., monomer, crystalline solid at 25 ° C, melting point 80 ° C, viscosity lPa's at 80 ° C)
  • Naphthalene type epoxy compound (HP-4032D, liquid at room temperature, manufactured by Dainippon Ink & Chemicals, Inc., viscosity 5Pa's at 50 ° C)
  • Bisphenol A-type epoxy compound (EP-1001, manufactured by Japan Epoxy Resin Co., Ltd., solid at room temperature, viscosity at 80 ° C 20 Pa's)
  • Phenolic epoxy compound (EX-141, manufactured by Nagase Sangyo Co., Ltd., liquid at room temperature, viscosity at 50 ° C: 7 mPa's)
  • NBR modified bis A type epoxy compound (EPR-4030, manufactured by Ade-Riki Co., Ltd., liquid at room temperature, viscosity at 50 ° C 50Pa's)
  • Epoxy group-containing acrylic resin (Blemmer CP-30, manufactured by Japan Epoxy Resin Co., Ltd.)
  • the obtained adhesive for electronic components is filled into a 10 mL syringe (manufactured by Iwashita Engineering), a precision nozzle (manufactured by Iwashita Engineering, nozzle tip diameter 0.3 mm) is attached to the syringe tip, and a dispenser device (SHOT MASTER300,
  • the product was applied on a glass substrate at a discharge pressure of 0.4 MPa, a gap between the semiconductor chip and the needle of 200 m, and an application amount of 5 mg.
  • DB-100 flip-flop ponder
  • an adhesive for electronic components is applied to chip 1 using the above-described dispenser device, and the same semiconductor chip (chip 2) as chip 1 is connected to the long side of chip 1 and chip 2 using the above-described bonding apparatus. It was placed so that the long sides crossed, and stacked by pressing at 0.15 MPa for 5 seconds at a temperature of 60 ° C or 80 ° C. Then, after leaving in a hot air drying oven at 80 ° C. for 60 minutes, heating was performed at 150 ° C. for 60 minutes to cure the adhesive for electronic components, thereby producing a semiconductor chip laminate.
  • the viscosity at lrpm (B) and the viscosity at lOrpm (C) were measured. Further, (A / B) and (B / C) were obtained as a ratio of these viscosities.
  • Viscosity at lOrpm was measured at ° C.
  • the coating shape collapses between immediately after coating and bonding, so that the suitable shape cannot be maintained X, more than the suitable system between immediately after coating and bonding Those that can be held were evaluated as ⁇ .
  • the obtained semiconductor chip laminate is left in a constant temperature and high humidity oven at 85 ° C and 85% for 24 hours, and then is placed in an IR reflow oven where 230 ° C or higher is 20 seconds or longer and the maximum temperature is 260 ° C. Input. After the introduction, the presence or absence of reflow cracks in the semiconductor device was observed with an ultrasonic flaw detector (SAT). In Table 2, the number of reflow cracks generated is shown as a defect rate.
  • An adhesive capable of obtaining a semiconductor chip laminate that is excellent in retentiveness of reflow cracks although it has excellent coating shape retention and the distance between chips is controlled with extremely high accuracy.
  • each material other than the spacer single particle shown below was stirred and mixed using a homodispers to prepare an adhesive composition.
  • Spacer particles were blended in the obtained adhesive composition according to the composition shown in Table 2, and further stirred and mixed using a homodisper to produce an adhesive for electronic parts.
  • the amount of each composition is in parts by weight. Represents.
  • Bifunctional acid anhydride curing agent (YH-306, manufactured by Japan Epoxy Resin Co., Ltd., liquid at room temperature)
  • Particles made of tetrafunctional acid anhydride curing agent (B-4400, manufactured by Dainippon Ink, solid at normal temperature, average particle size 3 ⁇ 111)
  • Imidazole curing accelerator (2MA—OK, manufactured by Shikoku Kasei Co., Ltd.)
  • the viscosity at lrpm (B) and the viscosity at lOrpm (C) were measured. Further, (A / B) and (B / C) were obtained as a ratio of these viscosities.
  • Examples 8 to 10; Adhesives for electronic parts prepared in 10 and Comparative Example 8 were placed in a 2 mm X 5 mm X 50 mm mold, cured at 170 ° C for 15 minutes, and then the cured product was easily pulled by hand.
  • X is the one that can be torn, and ⁇ and O in the order of increasing strength. Those that were not torn were marked with ⁇ .
  • the obtained adhesive for electronic components is filled into a 10 mL syringe (manufactured by Iwashita Engineering), a precision nozzle (manufactured by Iwashita Engineering, nozzle tip diameter 0.3 mm) is attached to the syringe tip, and a dispenser device (SHOT MASTER300,
  • the product was applied on a glass substrate at a discharge pressure of 0.4 MPa, a gap between the semiconductor chip and the needle of 200 m, and an application amount of 5 mg.
  • a semiconductor chip laminate was manufactured by heating at 170 ° C for 15 minutes to cure the adhesive for electronic components.
  • the amount of warpage along the diagonal of the semiconductor chip of the manufactured semiconductor chip laminate was measured with a laser displacement meter (LT9010M, KS-1100 manufactured by KEYENCE).
  • wire bonder UTC 2000 manufactured by Shinkawa
  • the prepared semiconductor chip stack is left in a constant temperature and high humidity oven at 85 ° C and 85% for 24 hours, and then thrown three times in an IR reflow furnace where 230 ° C or higher is 20 seconds or longer and the maximum temperature is 260 ° C. I entered. After the introduction, the presence or absence of reflow cracks in the semiconductor device was observed with an ultrasonic flaw detector (SAT) and evaluated according to the following criteria.
  • SAT ultrasonic flaw detector
  • a highly reliable electronic device such as a semiconductor device while maintaining a high accuracy in the distance between the electronic components when joining electronic components such as two or more semiconductor chips.
  • An adhesive for electronic components, a method for manufacturing a semiconductor chip laminate using the adhesive for electronic components, and a semiconductor device can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor chip laminated using an adhesive for electronic parts of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Description

明 細 書
電子部品用接着剤、半導体チップ積層体の製造方法及び半導体装置 技術分野
[0001] 本発明は、 2以上の半導体チップ等の電子部品を接合する際に電子部品間の距離 を高精度に保ち、かつ、信頼性の高い半導体装置等の電子部品を得ることが可能な 電子部品用接着剤、該電子部品用接着剤を用いた半導体チップ積層体の製造方 法及び半導体装置に関する。
背景技術
[0002] 近年、半導体パッケージを初めとする電子部品の小型化への要望に伴い、複数の電 子部品を積層して多層の半導体チップ積層体とする 3次元実装 の動きが進んでき ている。また、半導体チップ積層体等の電子部品を更に小型化させる研究が進めら れている。
これに伴い、例えば半導体チップは極めて薄い薄膜となり、更に半導体チップには 微細な配線が形成されるようになってきた。このような 3次元実装の半導体チップ積 層体においては、各半導体チップを損傷なぐかつ、水平を保って積層することが求 められている。
[0003] これに対して、従来は、信頼性の高!/、半導体チップ積層体を得ることを目的として、 下層半導体チップのワイヤーを保護する方法や、水平を保って積層することを目的と して、半導体チップ間にスぺーサーチップを介在させる方法等が検討されていた。こ のような方法として、例えば、特許文献 1に、複数の半導体チップを積層する際に、一 方の半導体チップの他方のチップを積層する面に、スぺーサーを散点状に形成した 後、他方のチップを積層する方法が開示されている。
し力、しながら、このような方法では、半導体チップ積層体の充分な小型化及び高精度 の水平積層を達成できる程度にスぺーサ一の厚み及び形状を制御することが、極め て困難であった。また、工程が煩雑となるという問題があった。
[0004] 更に、特許文献 2には、複数の半導体チップを積層する際に、接続する半導体チッ プの間にダミーチップ及びスぺーサーを積層させる方法が開示されている。 し力、しながら、このような方法で得られる半導体チップ積層体では、ダミーチップによ つて、半導体チップ積層体全体の厚みが大きくなるため、パッケージ高さの低背化が 困難となるとともに、ダミーチップを積層する工程が余分に必要となるといつた問題が あった。
[0005] また一方で、スぺーサ一粒子の配合された接着剤が検討されている。
例えば、特許文献 3には、接着剤硬化後の膜厚を実質的に規定する粒子径を有する 硬質プラスチック微粒子を必須成分とする接着剤が記載されており、平均粒子径が 2 0 mと同等の厚さの接着剤層にてシリコン素子とリードフレームを接着できる旨が記 載されている。
し力、しながら、このようなスぺーサ一粒子の配合された接着剤を用いた場合にも、得 られた積層体の接着剤層の厚みばらつきの問題が依然として解決されておらず (例 えば、引用文献 3の実施例においては、厚みの最大値と最小値の間で 3〜5 mもの 差がある)、単に所望の膜厚と略同等のスぺーサ一粒子を添加しても、高精度に膜 厚を制御することはできな!/、と!/、う問題があった。
特許文献 1:特開 2003— 179200号公報
特許文献 2 :特開 2006 66816号公報
特許文献 3:特開平 11 189765号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記現状に鑑み、 2以上の半導体チップ等の電子部品を接合する際に 電子部品間の距離を高精度に保ち、かつ、信頼性の高い半導体装置等の電子部品 を得ることが可能な電子部品用接着剤、該電子部品用接着剤を用いた半導体チッ プ積層体の製造方法及び半導体装置を提供することを目的とする。 課題を解決するための手段
[0007] 本発明は、電子部品を接合するための電子部品用接着剤であって、硬化性化合物 及び硬化剤を有する接着組成物と、 CV値が 10%以下のスぺーサ一粒子とを含有し 、 E型粘度計を用いて 25°Cにて粘度を測定したときに、 lrpmにおける粘度が 200P a ' s以下、 lOrpmにおける粘度が lOOPa ' s以下であり、かつ、 0· 5rpmにおける粘 度が lrpmにおける粘度の 1 · 4〜3倍、 lrpmにおける粘度が lOrpmにおける粘度 の 2〜5倍である電子部品用接着剤である。
以下に本発明を詳述する。
[0008] 本発明者らは、鋭意検討の結果、接着組成物と所定範囲の CV値を有するスぺーサ 一粒子とからなり、 E型粘度計を用いて 25°Cにて測定した粘度特性が所定範囲内で ある電子部品用接着剤を用いて、電子部品の接合を行った場合、電子部品間の距 離を高精度に保つことができるとともに、得られる電子部品装置が非常に信頼性の高 いものとなることを見出し、本発明を完成させるに至った。
[0009] 本発明の電子部品用接着剤は、 E型粘度計を用いて 25°Cにて粘度を測定したとき に、 lrpmにおける粘度の上限が 200Pa ' s、 lOrpmにおける粘度の上限が lOOPa ' sであり、かつ、 0· 5rpmにおける粘度が lrpmにおける粘度が 1 · 4〜3倍、 lrpmに おける粘度が lOrpmにおける粘度の 2〜5倍である。
本発明の電子部品用接着剤では、 E型粘度計を用いて 25°Cにて測定した粘度を上 記範囲内とすることで、例えば、半導体チップ積層体の製造に使用する場合、電子 部品用接着剤を半導体チップに塗布する工程にお V、ては、所望の形状で好適に塗 布すること力 Sでき、他の半導体チップを積層するまで、その形状を維持することが可 能となる。また、他の半導体チップを積層する工程においては、位置合わせ後に加 圧を行うことで、余剰の電子部品用接着剤が充分にはみ出し、半導体チップ間の距 離 (以下、チップ間距離ともいう)をスぺーサ一粒子の粒子径と実質的に等しい距離 にすることカでさる。
[0010] 本発明の電子部品用接着剤は、 E型粘度計を用いて 25°Cにて粘度を測定したとき に、 lrpmにおける粘度の上限が 200Pa ' sである。 200Pa ' sを超えると、チップ間距 離の小さい半導体チップ積層体の製造に使用する場合に、高粘性を示し、スぺーサ 一粒子の粒子径の程度までチップ間距離を縮めることが困難となり、特にチップ間距 離が 25 m以下の場合に困難性が顕著となる。好ましい上限は 150Pa ' sである。 また、 lrpmにおける粘度の好ましい下限は 50Pa ' sである。 50Pa ' s未満であると、 塗布後、他の半導体チップを積層するまでの間、塗布時の形状を維持することが困 難となること力 Sある。また、例えば、ワイヤーボンディング型の半導体チップを積層す る用途に用いる場合には、電子部品用接着剤がスぺーサ一粒子ごとワイヤーボンデ イング用の電極エリアに流れ出してしまう場合がある。
[0011] 本発明の電子部品用接着剤は、 E型粘度計を用いて 25°Cにて粘度を測定したとき に、 lOrpmにおける粘度の上限が lOOPa ' sである。 lOOPa ' sを超えると、所望の形 状で塗布することが困難となる。好ましい上限は 75Pa ' sである。
また、 lOrpmにおける粘度の好ましい下限は 5Pa ' sである。 5Pa ' s未満であると、塗 布後、他の半導体チップを積層するまでの間、塗布時の形状を維持することが困難 となること力 Sある。また、例えば、ワイヤーボンディング型の半導体チップを積層する 用途に用いる場合には、電子部品用接着剤がスぺーサ一粒子ごとワイヤーボンディ ング用の電極エリアに流れ出してしまう場合がある。
[0012] 本発明の電子部品用接着剤は、 E型粘度計を用いて 25°Cにて粘度を測定したとき に、 0. 5rpmにおける粘度の下限が lrpmにおける粘度の 1. 4倍、上限が 3倍である 。 1. 4倍未満であると、塗布後、他の半導体チップを積層するまでの間、塗布時の形 状を維持することが困難となる。 3倍を超えると、チップ間距離が 2(^ 111程度のような 半導体チップ積層体の製造に使用する場合に、高粘性を示し、押圧しても余剰の電 子部品用接着剤がはみ出さないため、スぺーサ一粒子の粒子径の程度までチップ 間距離を縮めることが困難となる。好ましい下限は 2倍である。
[0013] 本発明の電子部品用接着剤は、 E型粘度計を用いて 25°Cにて粘度を測定したとき に、 lrpmにおける粘度の下限が lOrpmにおける粘度の 2倍、上限が 5倍である。 2 倍未満であると、本発明の電子部品用接着剤を塗布した後に描画形状を維持するこ とが困難となる。 5倍を超えると、チップ間距離の小さい半導体チップ積層体の製造 に使用する場合に、高粘性を示し、スぺーサ一粒子の粒子径の程度までチップ間距 離を縮めることが困難となり、特にチップ間距離が 25 m以下の場合に困難性が顕 著となる。好ましい上限は 3倍である。
[0014] また、本発明の電子部品用接着剤は、上記電子部品を接合する際に 25°Cよりも高い 温度で接合される場合がある。このとき、本発明の電子部品用接着剤は、 E型粘度計 を用いて電子部品を接合する際の温度(以下、接合温度ともいう)にて粘度を測定し たときに、 lOrpmにおける粘度が lOPa ' s以下であることが好ましい。 lOPa ' sを超え ると、本発明の電子部品用接着剤で電子部品を接合する際に、スぺーサ一粒子と電 子部品との間の余剰の電子部品用接着剤を排除できず、スぺーサ一粒子の粒子径 までチップ間距離を縮めることが困難となる。より好ましい上限は lPa ' sである。
なお、上記接合温度としては特に限定されないが、通常、 50〜100°C程度である。
[0015] 本発明の電子部品用接着剤は、硬化性化合物を含有する。
上記硬化性化合物としては特に限定されないが、例えば、付加重合、重縮合、重付 カロ、付加縮合、開環重合反応により硬化する化合物を用いることができる。
具体的には、例えば、ユリア化合物、メラミン化合物、フエノール化合物、レゾルシノ ール化合物、エポキシ化合物、アクリル化合物、ポリエステル化合物、ポリアミド化合 物、ポリべンズイミダゾール化合物、ジァリルフタレート化合物、キシレン化合物、アル キル ベンゼン化合物、エポキシアタリレート化合物、珪素化合物、ウレタン化合物 等の熱硬化性化合物が挙げられる。なかでも、接合後に得られる半導体装置等の電 子装置の信頼性及び接合強度に優れていることから、エポキシ化合物、アクリル化合 物が好ましぐイミド骨格を有するエポキシ化合物がより好ましい。
[0016] 上記エポキシ化合物としては特に限定されず、例えば、ビスフエノール A型、ビスフエ ノール F型、ビスフエノール AD型、ビスフエノール S型等のビスフエノール型エポキシ 樹脂、フエノールノポラック型、クレゾールノポラック型等のノポラック型エポキシ樹脂、 トリスフェノールメタントリグリシジルエーテル等のような芳香族エポキシ樹脂、ナフタ レン型エポキシ樹脂、ビフエニル型エポキシ、フルオレン型エポキシ樹脂、ジシクロぺ ンタジェン型エポキシ樹脂、レゾルシノール型エポキシ、及び、これらの水添化物等 力 S挙げられる。なかでも、耐熱性の高い電子部品用接着剤が得られることから、ナフ タレン型エポキシ樹脂、フルオレン型エポキシ樹脂及びレゾルシノール型エポキシ樹 脂からなる群より選択される少なくとも一種を含有することが好ましい。
[0017] 上記ナフタレン型エポキシ樹脂のうち、市販品としては、例えば、 HP 4032、 HP— 4032D、 HP— 4700、 HP— 4701 (以上、大日本インキ化学工業社製)等が挙げら れる。また、上記フルオレン型エポキシ樹脂のうち、市販品としては、 EX— 1010、 1 011、 1012, 1020、 1030、 1040、 1050、 1051、 1060 (以上、ナガセケムテックス 社製)、上記レゾルシノール型エポキシ樹脂のうち、市販品としては、 £ —201 (ナガ セケムテックス社製)等が挙げられる。
[0018] 上記ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂及びレゾルシノール型ェ ポキシ樹脂としては、軟化点が 60°C以下のものを用いることが好ましい。軟化点が 6 0°C以下のものを用いることにより、電子部品用接着剤の粘度を下げるために使用さ れる希釈剤等の液状成分の添加部数を低減することができ、硬化時及び硬化後に 揮発分の少ない電子部品用接着剤を得ることができる。軟化点が 40°C以下のものを 用いること力 り好ましく、軟化点が室温以下のものを用いることが更に好ましい。上 記巿販ロロ口のな力、で (ま、 HP— 4032、 HP— 4032D、 EX— 1020、 EX— 201カ好ま しい。
[0019] 上記硬化性化合物としてナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂及 びレゾルシノール型エポキシ樹脂からなる群より選択される少なくとも一種を用いる場 合、上記硬化性化合物中の上記ナフタレン型エポキシ樹脂、フルオレン型エポキシ 樹脂及びレゾルシノール型エポキシ樹脂からなる群より選択される少なくとも一種の 配合量の好ましい下限は 40重量%である。 40重量%未満であると、充分な耐熱性 を有する電子部品用接着剤が得られな!/、こと力 Sある。より好まし!/、下限は 60重量% である。また、好ましい上限は 90重量%である。
[0020] 上記エポキシ化合物としては、更に、 NBR、 CTBN、ポリブタジエン、アクリルゴム等 のゴム成分を有するゴム変性エポキシ化合物、可撓性エポキシ化合物等のエポキシ 化合物を用いることができる。このようなエポキシ化合物を用いた場合、硬化後に柔 軟性を付与することができ、耐温度サイクル等の耐熱性に優れたものとなる。また、従 来公知のエポキシ化合物を用いてもよ!/、。
[0021] また、本発明の電子部品用接着剤は、上記硬化性化合物として、繰り返し単位中に 芳香環を有する 10量体以下の分子構造を持ち、 25°Cで結晶性固体であるエポキシ 化合物 (A)を含有することが好まし!/、。上記エポキシ化合物 (A)を含有することで、 本発明の電子部品用接着剤は、上述の接合温度での粘度特性を好適に達成するこ とが可能となる。
[0022] 上記エポキシ化合物 (A)は、繰り返し単位中に芳香環を有する 10量体以下の分子 構造を持つものである。このようなエポキシ化合物 (A)は、極めて結晶性が高く 25°C で結晶性固体となるとともに、 25°Cより高い温度領域において粘度が急激に低下す るという性質を有する。これは、上記エポキシ化合物 (A)は、 25°Cでは上記の通り結 晶性固体であるが、 10量体以下と低分子量であるため、 25°Cを超えて加熱すること で、結晶構造が壊れて粘度が低下するからであると考えられる。具体的には、上記ェ ポキシ化合物(A)は、 25°Cで結晶固体であり、 50〜80°Cの温度範囲において E型 粘度計で測定した場合の粘度の上限が lPa ' sとなる。 10量体を超えると、 50〜80 °Cの温度範囲における粘度が高くなり、本発明の電子部品用接着剤を用いて電子 部品の積層等を上記接合温度にて行うと、電子部品間の間隔をスぺーサ一粒子の 粒子径と実質的に等しい距離にすることが困難となり、電子部品間隔にバラツキが生 じてしまう。上記エポキシ化合物 (A)は、 3量体以下であることがより好ましい。なお、 上記粘度が lPa' sとなる温度領域を 50〜80°Cとしたのは、通常の電子部品積層体 の製造工程にお!/、て、電子部品を加熱加圧する際の温度条件を考慮したものである 。また、上記エポキシ化合物 (A)が結晶性固体となる温度を 25°Cとしたのは、電子部 品の接合を行うための接着剤の塗布は、通常室温で行われることを考慮したもので ある。
このような分子構造、すなわち、繰り返し単位中に芳香環を有し、かつ、 10量体以下 であるエポキシ化合物 (A)を含有する本発明の電子部品用接着剤は、電子部品間 等の接合に用いると、接合した電子部品間の距離を高精度に保ち、かつ、信頼性の 高レ、電子装置を得ることができる。
すなわち、上記エポキシ化合物 (A)は、繰り返し単位中に芳香環を有することで 25 °Cにお!/、て結晶性個体となるため、該エポキシ化合物 (A)を含有する本発明の電子 部品用接着剤は 25°Cでの粘度が高いものとなり、接合する電子部品上に塗布したと きに塗布形状が流延してしまうことがない。また、上記エポキシ化合物 (A)は、加熱さ れることで急激に低粘度となるため、例えば、電子部品同士の積層を行った際に、ス ぺーサ一粒子と電子部品との間に接着剤を残留させることなく 1の電子部品と他の電 子部品との積層ができ、電子部品間の間隔をスぺーサ一粒子の粒子径と実質的に 等しい距離にすることができる。また、電子部品の積層が完了した後温度を 25°Cに 戻すと、上記エポキシ化合物 (A)は粘度が急激に上昇し、電子部品同士を積層した 後の本発明の電子部品用接着剤が流延してしまうこともない。また、上記エポキシ化 合物 (A)は、耐熱性が優れたものとなるため、該エポキシ化合物 (A)を含有する本 発明の電子部品用接着剤の耐熱性も優れたものとなる。
[0024] ここで、従来の電子部品の接合に用いられていた接着剤として、希釈剤のみを添カロ することで、加熱時の低粘度を実現させたものが知られている力 このような従来の接 着剤では加熱時にボイドが発生してしまうという問題があった。し力、しながら、上記ェ ポキシ化合物 (A)を含有する本発明の電子部品用接着剤は、上記エポキシ化合物( A)を含有させることで加熱時の低粘度を実現させているため、従来の希釈剤のみを 添加することで低粘度としていた接着剤のようにボイドが発生することもない。
すなわち、本発明の電子部品用接着剤を、厚さ 10 の接着剤層とし、該接着剤層 を 170°C15分で硬化させた硬化物を、 260°Cの温度条件下に 10秒間曝したときの 直径 100 m以下のボイド発生率の好ましい上限が 1個/ mm2である。上記硬化物 のボイドの発生率力 個/ mm2を超えるものであると、本発明の電子部品用接着剤 を用いて電子部品同士の接合を行ったときに、電子部品間の接続信頼性が不充分 となること力 Sfcる。
[0025] 上記エポキシ化合物 (A)は、 1分子中に 2以上のエポキシ基を有することが好ましい 。このような分子構造のエポキシ化合物 (A)を含有することで、本発明の電子部品用 接着剤の接着性がより優れたものとなる。
[0026] このようなエポキシ化合物 (A)としては、上述した分子構造を有するものであれば特 に限定されず、例えば、フエノール型エポキシ、ナフタレン型エポキシ、ビフエニル型 エポキシ、レゾルシノール型エポキシ等が挙げられる。このようなエポキシ化合物 (A) の市販品としては、例えば、 EX- 201 (長瀬産業社製)、 YSLV— 80XY (東都化成 社製)等が挙げられる。
[0027] また、本発明の電子部品用接着剤において、上記硬化性化合物は、分子の両端に エポキシ基を有し、かつ、一方のエポキシ基と他方のエポキシ基との間に数平均分 子量が 50〜; 1000の柔軟な骨格を有するエポキシ化合物(B)を含有することが好ま しい。
本発明の電子部品用接着剤は、上記エポキシ化合物 (B)を含有することにより、本 発明の電子部品用接着剤の硬化物は、常温領域での低弾性率を達成しつつ、電子 部品と基板との接着性に優れたものとなるため、耐温度サイクル等の耐熱性に優れ たものとなる。
[0028] 上記エポキシ化合物(B)としては特に限定されず、例えば、 1 , 2—ポリブタジエン変 性ビスフエノール Aグリシジルエーテル、 1 , 4 ポリブタジエン変性ビスフエノーノレ A グリシジルエーテル、ポリプロピレンオキサイド変性ビスフエノール Aグリシジルエーテ ル、ポリエチレンオキサイド変性ビスフエノール Aグリシジルエーテル、アクリルゴム変 性ビスフエノール Aグリシジルエーテル、ウレタン樹脂変性ビスフエノール Aグリシジル エーテル、ポリエステル樹脂変性ビスフエノール Aグリシジルエーテル、 1 , 2—ポリブ タジェン変性グリシジルエーテル、 1 , 4 ポリブタジエン変性グリシジルエーテル、ポ リプロピレンオキサイド変性グリシジルエーテル、ポリエチレンオキサイド変性グリシジ ルエーテル、アクリルゴム変性グリシジルエーテル、ウレタン樹脂変性グリシジルエー テル、ポリエステル樹脂変性グリシジルエーテル、及び、これらの水添化物等が挙げ られる。これらのエポキシ化合物(B)は単独で用いられてもよぐ 2種以上が併用され てもよい。なかでも、上記柔軟な骨格がブタジエンゴム、プロピレンオキサイド、ェチレ ンオキサイド、アクリルゴム、及び、これらの水添加物からなる群より選択される少なく とも 1種の化合物に由来するエポキシ化合物が好適に用いられる。
[0029] また、例えば、 1 , 2 ポリブタジエン変性ビスフエノール Aグリシジルエーテル、 1 , 4
ポリブタジエン変性ビスフエノール Aグリシジルエーテル、ポリプロピレンオキサイド 変性ビスフエノール Aグリシジルエーテル、ポリエチレンオキサイド変性ビスフエノール Aグリシジルエーテル、アクリルゴム変性ビスフエノーノレ Aグリシジルエーテル、ウレタ ン樹脂変性ビスフエノール Aグリシジルエーテル、ポリエステル樹脂変性ビスフエノー ノレ Aグリシジルエーテル等の芳香族骨格を持つエポキシ化合物は、反応速度が速く なるとい点から好適に用いられる。
[0030] 上記エポキシ化合物(B)のうち、芳香環とグリシジルエーテル基とが直接つながって いるものは、反応速度が更に速くなるという点からより好ましい。このようなエポキシ化 合物の市販品としては、例えば、 EPB— 13 (日本曹達社製)、 EXA— 4850 (大日本 インキ社製)等が挙げられる。 [0031] 上記硬化性化合物は、更に、有機'無機ハイブリッドエポキシ化合物を含有すること が好ましい。上記有機 ·無機ハイブリッドエポキシ化合物を含有することにより、本発 明の電子部品用接着剤の弾性率の値を所望の値にまで上昇させることができる。
[0032] 上記有機 ·無機ハイブリッドエポキシ化合物としては特に限定されず、例えば、コンポ ラセン E102 (荒川化学社製)等が挙げられる。
[0033] 上記有機 ·無機ハイブリッドエポキシ化合物を含有する場合の配合量としては特に限 定されないが、上述したエポキシ化合物(B)等の本発明の電子部品用接着剤に含 有される硬化性化合物の全合計 100重量部に対して好ましい下限は 1重量部、好ま しい上限は 10重量部である。
[0034] 上記硬化性化合物は、吸湿率の好ましい上限が 1. 5%であり、より好ましい上限が 1 . 1 %である。このような吸湿率を有する硬化性化合物としては、例えば、ナフタレン 型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジェン型エポキシ樹脂 、フエノールノポラック型エポキシ樹脂、クレゾールノポラック型樹脂等が挙げられる。
[0035] 本発明の電子部品用接着剤は、更に、上記硬化性化合物と反応可能な官能基を有 する高分子化合物を含有することが好ましレ、。このような高分子化合物を含有するこ とにより、熱によるひずみが発生する際の接合信頼性が向上する。
[0036] 上記硬化性化合物と反応可能な官能基を有する高分子化合物としては、上記硬化 性化合物としてエポキシ化合物を用いる場合には、例えば、アミノ基、ウレタン基、ィ ミド基、水酸基、カルボキシル基、エポキシ基等を有する高分子化合物等が挙げられ 、なかでも、エポキシ基を有する高分子化合物が好ましい。上記エポキシ基を有する 高分子化合物を添加することで、電子部品用接着剤の硬化物は、優れた可撓性を 発現する。即ち、本発明の電子部品用接着剤の硬化物は、硬化性化合物である多 環式炭化水素骨格を主鎖に有するエポキシ化合物に由来する優れた機械的強度、 耐熱性及び耐湿性と、上記エポキシ基を有する高分子化合物に由来する優れた可 橈性とを兼備することとなるので、耐冷熱サイクル性、耐ノヽンダリフロー性、寸法安定 性等に優れるものとなり、高い接着信頼性や高い導通信頼性を発現することとなる。
[0037] 上記エポキシ基を有する高分子化合物としては、末端及び/又は側鎖 (ペンダント 位)にエポキシ基を有する高分子化合物であればよぐ特に限定されないが、例えば 、エポキシ基含有アクリルゴム、エポキシ基含有ブタジエンゴム、ビスフエノール型高 分子量エポキシ樹脂、エポキシ基含有フエノキシ樹脂、エポキシ基含有アクリル樹脂 、エポキシ基含有ウレタン樹脂、エポキシ基含有ポリエステル樹脂等が挙げられ、な かでも、エポキシ基を多く含む高分子化合物を得ることができ、硬化物の機械的強度 や耐熱性がより優れたものとなることから、エポキシ基含有アクリル樹脂が好適に用い られる。これらのエポキシ基を有する高分子化合物は、単独で用いてもよぐ 2種以上 を併用してもよい。
[0038] 上記硬化性化合物と反応可能な官能基を有する高分子化合物として、上記エポキシ 基を有する高分子化合物、特にエポキシ基含有アクリル樹脂を用いる場合、重量平 均分子量の好ましい下限が 1万である。 1万未満であると、本発明の電子部品用接着 剤の造膜性が不充分となって、電子部品用接着剤の硬化物の可撓性が充分に向上 しないことがある。
[0039] 上記硬化性化合物と反応可能な官能基を有する高分子化合物として、上記エポキシ 基を有する高分子化合物、特にエポキシ基含有アクリル樹脂を用いる場合、ェポキ シ当量の好ましい下限が 200、好ましい上限が 1000である。 200未満であると、本 発明の電子部品用接着剤の硬化物の可撓性が充分に向上しないことがあり、逆に 1 000を超えると、本発明の電子部品用接着剤の硬化物の機械的強度や耐熱性が不 充分となること力 Sfcる。
[0040] 上記硬化性化合物と反応可能な官能基を有する高分子化合物の配合量としては特 に限定されないが、上記硬化性化合物 100重量部に対し、好ましい下限が 1重量部 、好ましい上限が 20重量部である。 1重量部未満であると、熱ひずみに対する充分な 信頼性が得られず、 20重量部を超えると、耐熱性が低下することがある。
[0041] 本発明の電子部品用接着剤は、 25°Cでの塗布性担保等を目的として希釈剤を含有 していてもよい。
上記希釈剤としては特に限定されず、例えば、反応性希釈剤や非反応性希釈剤等 力 S挙げられる。なかでも、反応性希釈剤が好適に用いられる。
[0042] 上記反応性希釈剤としてエポキシ化合物 (A2)を含有して!/、てもよ!/、。このようなェポ キシ化合物 (A2)を含有することで、粘度を調節することができ、また、ガラス転移温 度を調節することができる。
[0043] 上記エポキシ化合物 (A2)としては特に限定されず、例えば、ビスフエノール A型ェ ポキシ、ビスフエノール F型エポキシ、脂肪族環状骨格を有する 10量体以下のェポキ シ化合物等が挙げられる。
[0044] 上記エポキシ化合物 (A2)の含有量としては特に限定されないが、本発明の電子部 品用接着剤に含有される硬化性化合物の合計 100重量部に対して、好ましい下限 力 S10重量部、好ましい上限が 60重量部である。 10重量部未満であると、エポキシ化 合物 (A2)を添加した効果を殆ど得ることができず、 60重量部を超えると、本発明の 電子部品用接着剤に後述する粘度特性が得られないことがある。より好ましい下限 は 20量部、より好まし!/、上限は 30重量部である。
[0045] また、例えば、硬化性化合物として上述したエポキシ化合物 (A)を含有する場合、上 記反応性希釈剤としては、繰り返し単位中に脂肪族環状骨格を有する 10量体以下 のエポキシ化合物 (A3)が好適に用いられる。このような分子構造のエポキシ化合物 (A3)を含有することで、本発明の電子部品用接着剤は、 25°Cでの塗布性を担保し つつ、高い耐湿性を有するものとなる。
[0046] 上記エポキシ化合物 (A3)が 10量体を超えるものであると、本発明の電子部品用接 着剤の 25°Cでの粘度が高くなり、電子部品に対する塗布性が不充分となることがあ る。上記エポキシ化合物 (A3)は、 5量体以下であることがより好ましい。
[0047] 上記エポキシ化合物 (A3)としては、上述した分子構造を有する化合物であれば特 に限定されず、例えば、ジシクロペンタジェン型エポキシ、シクロへキサン型エポキシ 等が挙げられる。このようなエポキシ化合物 (A3)の市販品としては、例えば、 EP-4 088S (アデ力社製)、 HP— 7200 (大日本インキ化学工業社製)等が挙げられる。
[0048] 本発明の電子部品用接着剤が上記エポキシ化合物 (A3)を含有する場合、上述し たエポキシ化合物 (A)とエポキシ化合物 (A3)との配合割合の比、すなわち、(A3/ A)又は(A/A3)の好ましい下限は 0. 5、好ましい上限は 2である。 0. 5未満又は 2 を超えるものであると、上記エポキシ化合物(A)又はエポキシ化合物(A3)の!/、ずれ か一方の配合割合が多くなるため、本発明の電子部品用接着剤に上述した粘度特 性や高耐湿性といった性質を兼ね備えることが困難となる。 例えば、上記エポキシ化合物 (A)の配合割合の上記エポキシ化合物 (A3)の配合割 合に対する比 (A3/A)が 0. 5未満であると、本発明の電子部品用接着剤に充分な 耐湿性が得られな!/、ことがあり、上記エポキシ化合物 (A3)の配合割合の上記ェポキ シ化合物 (A)の配合割合に対する比 (A/A3)が 0· 5未満であると、本発明の電子 部品用接着剤に上述した粘度特性が得られないことがある。
[0049] また、本発明の電子部品用接着剤における上記エポキシ化合物 (A3)の含有量とし ては特に限定されないが、本発明の電子部品用接着剤に含有される硬化性化合物 の合計 100重量部に対して、好ましい下限が 10重量部、好ましい上限が 30重量部 である。 10重量部未満であると、エポキシ化合物 (A3)を添加した効果を殆ど得るこ とができず、 30重量部を超えると、本発明の電子部品用接着剤に上述した粘度特性 が得られな!/、こと力 Sある。より好まし!/、上限は 20重量部である。
[0050] また、上記非反応性希釈剤としては特に限定されず、本発明の目的を阻害しなレ、範 囲で、例えば、芳香族炭化水素類、塩化芳香族炭化水素類、塩化脂肪族炭化水素 類、アルコール類、エステル類、エーテル類、ケトン類、グリコールエーテル(セロソル ブ)類、脂環式炭化水素類、脂肪族炭化水素類等が挙げられる。
[0051] 上記非反応性希釈剤の含有量としては特に限定されないが、好ましい下限は 1重量 %、好ましい上限は 20重量%である。 1重量%未満であると、上記非反応性希釈剤 を添加する効果が殆ど得られず、 20重量%を超えると、本発明の電子部品用接着剤 の硬化物にボイドが生じることがある。
[0052] 本発明の電子部品用接着剤が上述した希釈剤を含有する場合、該希釈剤は、 120 °Cでの重量減少量及び 150°Cでの重量減少量の好まし V、上限が 1 %である。 1 %を 超えると、本発明の電子部品用接着剤の硬化中や硬化後に未反応物が揮発してし まい、生産性や得られる電子部品装置に悪影響を与えることがある。
また、上記希釈剤は、上述したエポキシ化合物 (A)等の硬化性化合物よりも、硬化開 始温度が低く、硬化速度が大きレ、ものであることが好まし!/、。
[0053] 本発明の電子部品用接着剤は、硬化剤を含有する。
上記硬化剤としては特に限定されず、従来公知の硬化剤を上記硬化性化合物に合 わせて適宜選択することができる力 S、硬化性化合物としてエポキシ化合物を用いる場 合の硬化剤としては、例えば、トリアルキルテトラヒドロ無水フタル酸等の加熱硬化型 酸無水物系硬化剤、フエノール系硬化剤、アミン系硬化剤、ジシアンジアミド等の潜 在性硬化剤、カチオン系触媒型硬化剤等が挙げられる。これらの硬化剤は、単独で 用いてもよぐ 2種以上を併用してもよい。
[0054] 上記硬化剤の配合量としては特に限定されないが、上記硬化性化合物の官能基と 等量反応する硬化剤を用いる場合、上記硬化性化合物の官能基量に対して、 90〜 110当量であることが好ましい。また、触媒として機能する硬化剤を用いる場合であ れば、上記硬化性化合物 100重量部に対して好ましい下限が 1重量部、好ましい上 限が 20重量部である。
[0055] 上記硬化剤は、融点の好ましい下限が 120°Cである。 120°C以上とすることで、本発 明の電子部品用接着剤を加熱した場合に、ゲル化が抑制され、好適に電子部品の 接合及び電子部品間の距離の調整ができる。
[0056] 上記融点が 120°C以上の硬化剤としては、例えば、 5- (2, 5—ジォキソテトラヒドロ ー3—フェラニル)ー3—メチルー 3—シクロへキセン一 1 , 2—ジカルボン酸無水物、 TD— 2090等のフエノールノボラック樹脂、 KH— 6021等のビスフエノーノレ Aノボラッ ク樹脂、 KA— 1165等のオルソクレゾールノポラック樹脂、 EH— 3636AS、 EH— 3 842、 EH— 3780、 EH— 4339S、 EH— 4346S (以上、旭電化工業社製)等のジシ アンジアミドが挙げられる。
また、融点が 120°C以上の材質で被覆されたマイクロカプセル型硬化剤も好適に用 いること力 Sでさる。
[0057] 本発明の電子部品用接着剤は、 CV値が 10%以下のスぺーサ一粒子を含有する。
このようなスぺーサ一粒子を含有することにより、本発明の電子部品用接着剤を用い て 2以上の半導体チップを積層する場合に、ダミーチップ等を介在させることがなぐ 半導体チップ同士の間隔を一定に保つことが可能となる。
[0058] 上記スぺーサ一粒子は、 CV値の上限が 10%である。 10%を超えると、粒子径のば らつきが大きいことから、電子部品間の間隔を一定に保つことが困難となり、スぺーサ 一粒子としての機能を充分に果たせない。好ましい上限は 6%、より好ましい上限は 4 %である。 なお、本明細書において CV値とは、下記式(1)により求められる数値のことである。
Figure imgf000017_0001
式(1)中、 σ 2は粒子径の標準偏差を表し、 Dn2は数平均粒子径を表す。
[0059] 上記スぺーサ一粒子の平均粒子径としては特に限定されず、所望のチップ間距離 が達成可能となるような粒子径を選択することができる力 好ましい下限が 3 m、好 ましい上限が 200 mである。 3 111未満であると、スぺーサ一粒子の粒子径程度に までチップ間距離を縮めることが困難となる場合が有り、 20(^ 111を超えると、半導体 チップ同士の間隔が必要以上に大きくなることがある。より好ましい下限は 5 m、より 好ましレ、上限は 50 μ mである。
[0060] 上記スぺーサ一粒子の平均粒子径は、スぺーサ一粒子以外に添加する固体成分の 平均粒子径の 1. 1倍以上であることが好ましい。 1. 1倍未満であると、チップ間距離 を確実にスぺーサ一粒子の粒子径程度にまで縮めることが困難となることがある。より 好ましくは 1. 2倍以上である。
[0061] 上記スぺーサ一粒子は、下記式(2)で表される K値の好ましい下限が 980N/mm2 、好ましい上限が 4900N/mm2である。
K= (3/^2) 'F' S 3/2'R— 1/2 (2)
式(2)中、 F、 Sはそれぞれ樹脂微粒子の 10%圧縮変形における荷重値 (kgf)、圧 縮変位(mm)を表し、 Rは該スぺーサ一の半径(mm)を表す。
[0062] 上記 K値は以下の測定方法により測定することができる。
まず、平滑表面を有する鋼板の上に粒子を散布した後、その中から 1個の粒子を選 び、微小圧縮試験機を用いてダイヤモンド製の直径 50 mの円柱の平滑な端面で 微粒子を圧縮する。この際、圧縮荷重を電磁力として電気的に検出し、圧縮変位を 作動トランスによる変位として電気的に検出する。そして、得られた圧縮変位一荷重 の関係から 10%圧縮変形における荷重値、圧縮変位をそれぞれ求め、得られた結 果から K値を算出する。
[0063] 上記スぺーサ一粒子は 20°C、 10%の圧縮変形状態から解放した時の圧縮回復率 の好ましレ、下限が 20%である。このような圧縮回復率を有するスぺーサ一粒子を用 いた場合、積層されたチップ間に平均粒子径よりも大きな粒子が存在しても、圧縮変 形により形状を回復してギャップ調整材として働かせることができる。従って、より安定 した一定間隔でチップを水平に積層することができる。
[0064] 上記圧縮回復率は、以下の測定方法により測定することができる。
上記 K値の測定の場合と同様の手法によって圧縮変位を作動トランスによる変位とし て電気的に検出し、反転荷重値まで圧縮したのち荷重を減らしていき、その際の荷 重と圧縮変位との関係を測定する。得られた測定結果から圧縮回復率を算出する。 ただし、除荷重における終点は荷重値ゼロではなぐ 0. lg以上の原点荷重値とする
[0065] 上記スぺーサ一粒子の材質としては特に限定されないが、樹脂粒子であることが好 ましい。上記樹脂粒子を構成する樹脂としては特に限定はされないが、例えば、ポリ エチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビュル、ポリテトラフルォロェ チレン、ポリスチレン、ポリメチルメタタリレート、ポリエチレンテレフタラート、ポリブチレ ンテレフタラート、ポリアミド、ポリイミド、ポリスルフォン、ポリフエ二レンオキサイド、ポリ ァセタール等が挙げられる。なかでも、スぺーサ一粒子の硬さと回復率を調整しやす く耐熱性についても向上させることが可能であることから、架橋樹脂を用いることが好 ましい。
[0066] 上記架橋樹脂としては特に限定されず、例えば、エポキシ樹脂、フエノール樹脂、メ ラミン樹脂、不飽和ポリエステル樹脂、ジビュルベンゼン重合体、ジビュルベンゼン スチレン共重合体、ジビュルベンゼン アクリル酸エステル共重合体、ジァリルフ タレート重合体、トリアリルイソシァヌレート重合体、ベンゾグアナミン重合体等の網目 構造を有する樹脂が挙げられる。なかでも、ジビュルベンゼン重合体、ジビュルベン ゼンースチレン系共重合体、ジビュルベンゼン (メタ)アクリル酸エステル共重合体 、ジァリルフタレート重合体等が好ましい。これらを用いた場合、チップをボンディング した後、硬化プロセス、半田リフロープロセス等の熱処理プロセスへの耐性が優れる
[0067] 上記スぺーサ一粒子は、必要に応じて表面処理がなされていることが好ましい。
上記スぺーサ一粒子に表面処理を施すことにより、本発明の電子部品用接着剤に おいて上述した粘度特性を実現することが可能となる。 上記表面処理の方法としては特に限定はされないが、例えば、接着組成物が全体と して疎水性を示す場合には、表面に親水基を付与することが好ましい。このような手 段としては特に限定されないが、例えば、スぺーサ一粒子として上記樹脂粒子を用 いる場合には、樹脂粒子の表面を、親水基を有するカップリング剤で処理する方法 等が挙げられる。
[0068] 上記スぺーサ一粒子の形状としては、球状が好ましい。また、上記スぺーサ一粒子 のアスペクト比の好ましい上限は 1 · 1である。アスペクト比を 1 · 1以下とすることで、 半導体チップを積層する場合に、半導体チップ同士の間隔を安定して一定に保つこ と力 Sできる。なお、本明細書においてアスペクト比とは、粒子の長径と短径に関して、 短径の長さに対する長径の長さの比(長径の長さを短径の長さで割った値)を意味す る。このアスペクト比の値が 1に近いほどスぺーサ一粒子の形状は真球に近くなる。
[0069] 上記スぺーサ一粒子の配合量の好ましい下限は 0. 01重量%、好ましい上限は 5重 量%である。 0. 01重量%未満であると、半導体チップ積層体の製造に用いた場合 に、半導体チップ同士の間隔を安定して一定に保つことができないことがあり、 5重量 %を超えると、接着剤としての機能が低下することがある。
また、上記スぺーサ一粒子以外に、上記スぺーサ一粒子の平均粒子径以上の径を 有する固形成分を含有する場合は、このような固形成分の配合量の好ましい上限は 1重量%である。また、その固形成分の融点は硬化温度以下であることが好ましい 更に、固形成分の最大粒子径は、スぺーサ一粒子の平均粒子径の 1. ;! 1. 5倍で あること力 S好ましく、 1 · ;! 1 · 2倍であることがより好ましい。
[0070] 本発明の電子部品用接着剤は、硬化速度や硬化物の物性等を調整するために、更 に硬化促進剤を含有することが好ましレ、。
[0071] 上記硬化促進剤としては特に限定されず、例えば、イミダゾール系硬化促進剤、 3級 アミン系硬化促進剤等が挙げられ、なかでも、硬化速度や硬化物の物性等の調整を するための反応系の制御をしやすいことから、イミダゾール系硬化促進剤が好適に 用いられる。これらの硬化促進剤は、単独で用いてもよぐ 2種以上を併用してもよい [0072] 上記イミダゾール系硬化促進剤としては特に限定されず、例えば、イミダゾールの 1 位をシァノエチル基で保護した 1ーシァノエチルー 2—フエ二ルイミダゾールや、イソ シァヌル酸で塩基性を保護したもの(商品名「2MA— OK」、四国化成工業社製)等 が挙げられる。これらのイミダゾール系硬化促進剤は、単独で用いてもよぐ 2種以上 を併用してもよい。
[0073] 上記硬化促進剤の配合量としては特に限定されないが、上記エポキシ化合物等、本 発明の電子部品用接着剤に含有される硬化性化合物の合計 100重量部に対して、 好ましい下限が 1重量部、好ましい上限が 20重量部である。 1重量部未満であると、 本発明の電子部品用接着剤が充分に硬化しない場合があり、 20重量部を超えると、 本発明の電子部品用接着剤の接着信頼性が低下する場合がある。
[0074] 本発明の電子部品用接着剤は、更に、チキソトロピー付与剤を含有することが好まし い。上記チキソトロピー付与剤を含有することにより、本発明の電子部品用接着剤は 所望の粘度挙動を達成することができる。
[0075] 上記チキソトロピー付与剤としては特に限定されず、例えば、金属微粒子、炭酸カル シゥム、ヒュームドシリカ、酸化アルミニウム、窒化硼素、窒化アルミニウム、硼酸アルミ 等の無機微粒子等を用いることができる。なかでも、ヒュームドシリカが好ましい。
[0076] また、上記チキソトロピー付与剤としては、必要に応じて、表面処理を行ったものを用 いること力 Sでき、特に表面に疎水基を有する粒子を用いることが好ましい。具体的に は例えば、表面を疎水化したヒュームドシリカ等を用いることが好ましい。
[0077] 上記チキソトロピー付与剤として、粒子状のものを用いる場合、平均粒子径の好まし い上限は 1 μ mである。 1 μ mを超えると、所望のチキソトロピー性を発現できないこと 力 sある。
[0078] 上記チキソトロピー付与剤の配合量としては特に限定されないが、上記スぺーサー 粒子に表面処理がなされていない場合には、好ましい下限が 0. 5重量%、好ましい 上限が 20重量%である。 0. 5重量%未満であると、充分なチキソトロピー性が得られ ず、 20重量%を超えると、半導体チップを積層する際に電子部品用接着剤の排除 性が低下することがある。より好ましい下限は 1重量%、好ましい上限は 10重量%で ある。 [0079] 本発明の電子部品用接着剤は、必要に応じて、溶媒を含有してもよい。 上記溶媒としては特に限定されず、例えば、芳香族炭化水素類、塩化芳香族炭化水 素類、塩化脂肪族炭化水素類、アルコール類、エステル類、エーテル類、ケトン類、 グリコールエーテル (セロソルブ)類、脂環式炭化水素類、脂肪族炭化水素類等が挙 げられる。
[0080] 本発明の電子部品用接着剤は、必要に応じて、無機イオン交換体を含有してもよい 。上記無機イオン交換体のうち、市販品としては、例えば、 IXEシリーズ (東亞合成社 製)等が挙げられる。上記無機イオン交換体の配合量の好ましい下限は 1重量%、好 ましい上限は 10重量%である。
[0081] 本発明の電子部品用接着剤は、その他必要に応じて、ブリード防止剤、イミダゾール シランカップリング剤等の接着性付与剤等の添加剤を含有してもよい。
[0082] 本発明の電子部品用接着剤は、常温で固体の多官能の酸無水物硬化剤からなる粒 子と、硬化促進剤とを含有することが好ましい。
上記常温で固体の多官能の酸無水物硬化剤を含有することにより、接着時に加熱し た際に硬化剤が溶融することにより粘度が下がり、ギャップ間距離を達成しやすいた め、好ましい。また、多官能であることにより、硬化後の耐熱性に優れたものとなる。
[0083] 上記常温で固体の多官能の酸無水物硬化剤としては特に限定されず、 3官能の酸 無水物硬化剤としては、例えば、酸無水物無水トリメリット酸等が挙げられ、 4官能以 上の酸無水物硬化剤としては、例えば、無水ピロメリット酸、無水べンゾフエノンテトラ カルボン酸、メチルシクロへキセンテトラカルボン酸無水物、ポリアゼライン酸無水物 等が挙げられる。
[0084] 上記常温で固体の多官能の酸無水物硬化剤からなる粒子は、融点の好まし V、下限 力 0°Cである。
また、上記常温で固体の多官能の酸無水物硬化剤からなる粒子の平均粒子径とし ては、好ましい下限が 0· l ^ m,好ましい上限が 10 mである。
[0085] また、本発明の電子部品用接着剤は、常温で固体の多官能の酸無水物硬化剤から なる粒子と、常温で液体の 2官能酸無水物硬化剤とを含有することが好まし!/、。 常温で液体の 2官能酸無水物硬化剤を含有することにより、硬化物全体の耐熱性が 向上するため好ましい。
[0086] 上記常温で固体の多官能の酸無水物硬化剤からなる粒子としては、上述したものと 同様のものが挙げられる。
上記常温で液体の 2官能酸無水物硬化剤としては特に限定されず、例えば、無水フ タノレ酸、へキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルへキサヒド 口無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒ ドロ無水フタル酸、無水マレイン酸等が挙げられる。
[0087] また、本発明の電子部品用接着剤が、上記常温で固体の酸無水物硬化剤粒子と、 常温で液体の 2官能酸無水物硬化剤とを含有する場合、更に、上述した硬化促進剤 を含有してもよい。
[0088] 上記常温で固体の多官能の酸無水物硬化剤粒子と、常温で液体の 2官能酸無水物 硬化剤との組み合わせとしては、例えば、無水ピロメリット酸、無水べンゾフエノンテト ラカルボン酸、メチルシクロへキセンテトラカルボン酸無水物からなる群より選択され る 1種類以上と、メチルテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、ェ ンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸 力もなる群より選択される 1種類以上との組み合わせが好ましい。
[0089] 上記常温で固体の多官能の酸無水物硬化剤粒子や、常温で液体の 2官能酸無水 物硬化剤等の硬化剤の配合量としては特に限定されな V、が、硬化性化合物の官能 基量を硬化剤の塩基性基量全合計で除した値の下限が 0. 5、上限が 1. 5となること が好ましい。 0. 5未満であると、本発明の電子部品用接着剤による接着信頼性に劣 る場合があり、 1. 5を超えると、本発明の電子部品用接着剤の硬化が不充分となるこ とがあり、また、例えば、上記常温で固体の 3官能以上の酸無水物硬化剤粒子のみ を用いた場合に、硬化物の耐熱性が不充分となる場合がある。より好ましい下限は 0 . 6、より好ましい上限は 1. 3である。
[0090] また、上記常温で固体の多官能の酸無水物硬化剤粒子と常温で液体の 2官能酸無 水物硬化剤とを含有する本発明の電子部品用接着剤において、上記常温で固体の 多官能の酸無水物硬化剤粒子と、常温で液体の 2官能酸無水物硬化剤との配合比 としては特に限定はされないが、常温で固体の多官能の酸無水物硬化剤粒子の配 合量 (重量)を、常温で液体の 2官能酸無水物硬化剤の配合量 (重量)で除した値の 好ましい下限が 0. 1、好ましい上限が 10である。 0. 1未満であると、硬化物の耐熱性 が不充分となる場合があり、 10を超えると、硬化物全体の強度が充分でない場合が ある。より好ましい下限は 0. 2、より好ましい上限は 5である。
[0091] 本発明の電子部品用接着剤は、 20〜120°Cの条件で 10分間経過した後の反応率 力 5%未満であることが好ましい。 5%以上であると、ダイボンディング時に目的とする スペースまで到達できな!/、ことがある。
[0092] 本発明の電子部品用接着剤は、硬化の際の硬化収縮率が 1 %未満であることが好ま しい。硬化の際の硬化収縮率が 1 %以上であると、半導体チップ積層体を製造する 場合に、硬化において生じる内部応力により、層間剥離が生じることがある。
なお、本明細書において、上記硬化収縮率は、 JIS A06024に基づき、硬化前後 による比重差より体積収縮率(%)として求めること力 Sできる値を意味する。この場合、 比重の測定は測定温度 25°Cにおいて行う。
[0093] また、本発明の電子部品用接着剤は、シリコンウェハーのミラー面上に 0. 2mg塗布 して直径 500 ^ 111の円形の接着剤層を形成し、該接着剤層を 170°C、 10分の条件 で硬化させて硬化物としたときに、該硬化物から染み出す液状成分の滲出距離が 5 m未満であることが好ましい。上記液状成分の滲出距離が 5 m以上であると、本 発明の電子部品用接着剤を用いて電子部品を接合したときに接着剤の液状成分が 染み出す、いわゆるブリード現象を充分に防止し、信頼性の高い電子部品を得ること ができ、近年の電子部品の小型化、高集積化に充分に応えることができるようになる 。上記滲出距離の好ましい上限は 3 ^ 111、より好ましい上限は l ^ mである。
[0094] 本明細書において、上記液状成分とは、 25°Cで液状である成分のことを意味し、本 発明の電子部品用接着剤では、上記液状成分としては、硬化性化合物、硬化剤を 含有することが好ましぐ硬化促進剤を含有することがより好ましくい。
また、上記滲出距離とは、光学顕微鏡にて接着剤硬化物を観察したとき、接着剤硬 化物の周りに存在する色の異なる部分の中心方向 の長さを意味する。
以下の説明において、本発明の電子部品用接着剤の硬化物からの液状成分の滲出 距離が上述の条件を満たす性質を「低ブリード性」ともいう。 [0095] 本発明の電子部品用接着剤の上記低ブリード性は、増粘剤として機能する親水性( 疎水性)が充分に異なる 2種以上の無機微粒子であって、一方の無機微粒子が接着 剤に含まれる液状成分の親水性 (疎水性)と比較的近ぐ他方の無機微粒子が接着 剤に含まれる液状成分の親水性 (疎水性)と比較的遠レ、ものとすることで、好適に達 成すること力 Sできる。更に、このような無機微粒子を含有することで、本発明の電子部 品用接着剤は、接着剤としての好適なチクソ性も実現できる。
このような親水性 (疎水性)が充分に異なる 2種以上の無機微粒子を含有する本発明 の電子部品用接着剤では、上記液状成分の親水性 (疎水性)に近い無機微粒子が 、本発明の電子部品用接着剤を用いてなる接着剤層中から上記液状成分の滲出を 防止する役割を果たしているものと考えられる。また、上記液状成分の親水性 (疎水 性)に遠い無機微粒子が、本発明の電子部品用接着剤を用いてなる接着剤層中で 直鎖状の連続体を形成し、上記チクソ性を実現する役割を果たして V、ると考えられる
[0096] ここで、上記液状成分の親水性を表す指標としては、一般に溶解度パラメータ(SP値 )が用いられ、 2以上の電子部品の接着に用いられる接着剤の液状成分の SP値とし ては、通常、 8〜; 14程度が要求される。一方、上記無機微粒子のようなフィラーの親 水性を表す指標としては、一般に疎水化度(M値)が用いられる。
この液状成分の親水性を表す指標である SP値と、無機微粒子の親水性を表す指標 である M値とは、両者の関係を直接的に換算することはできない。
し力、しながら、本発明者らの研究によると、上記液状成分の SP値の 8〜; 11と、上記無 機微粒子の M値の 50以下とが比較的近い親水性 (疎水性)に略対応し、また、上記 液状成分の SP値の 11〜; 14と、上記無機微粒子の M値の 40以下とが比較的近い親 水性 (疎水性)に略対応して!/、るようであった。
そこで、本発明の電子部品用接着剤は、上記液状成分の SP値を 8〜; 11と、 11〜; 14 とに分け、それぞれの SP値の範囲に対応して最適な親水性 (疎水性)を有する 2以 上の無機微粒子を含有させたものであることが好適なものとなる。
[0097] 上記液状成分の SP値を所定の範囲内に調整する方法としては特に限定されず、例 えば、上記硬化性化合物及び硬化剤等を、これらの有する個々の SP値を考慮して 適宜選択して用いる方法等が挙げられる。
[0098] 本発明の電子部品用接着剤としては、具体的には、上記液状成分の SP値が 8〜; 11
(以下、液状成分(1)ともいう)のときに、無機微粒子として、平均一次粒子径の上限 力 S50nmかつ疎水化度(M値)の上限が 50の無機微粒子(A)と、平均一次粒子径の 上限が 50nmかつ疎水化度(M値)の下限が 60の無機微粒子(B)とを含有すること が好ましい。このような組成の本発明の電子部品用接着剤では、上記液状成分(1) に対して、上記無機微粒子 (A)が上記低ブリード性を達成する役割を果たし、上記 無機微粒子 (B)が塗布に好適なチクソ性を付与する役割を果たすこととなる。
[0099] 上記 SP値の下限が 8、上限が 11である液状成分(1)を調製する方法としては、具体 的には、例えば、ジシクロペンタジェン型エポキシやブタジエン変性エポキシ、シリコ ーン変性エポキシ等を用いる方法等が挙げられる。
[0100] 上記無機微粒子 (A)及び無機微粒子(B)は、平均一次粒子径の上限が 50nmであ る。 50nmを超えると、上記チクソ性が不充分となって塗布性が劣ったり、充分な低ブ リード性が得られなかったりする。好ましい上限は 40nm、より好ましい上限は 30nm である。
なお、本明細書において、上記平均一次粒子径とは、無機粒子の凝集前の粒子径 のことであり、良分散溶媒中で、超音波等により分散後レーザー式粒度分布計により 測定された値を意味する。
[0101] 上記無機微粒子 (A)は、 M値の上限が 50であり、上記無機微粒子(B)は、 M値の 下限が 60である。上記無機微粒子 (A)の M値が 50を超えると、上記低ブリード性が 不充分となること力 Sある。また、上記無機微粒子(B)の M値が 60未満であると、上記 チクソ性が不充分となって塗布性が劣ることがある。
なお、本明細書において、無機微粒子の M値は、上記無機微粒子入りの水にメタノ ールを滴下し、無機微粒子が完全に膨潤したときのメタノール濃度を測定し、その濃 度のことを意味している。
[0102] ここで、上記無機微粒子 (A)及び無機微粒子(B)の M値を上記範囲に調整する方 法としては特に限定されず、例えば、無機微粒子に表面処理を施し、表面に存在す る親水性基の数を変化させる方法、上記無機微粒子に表面処理を施し、表面に存 在する親水性基の数を変化させる方法等が挙げられる。
[0103] 例えば、上記無機微粒子としてシリカ微粒子を選択した場合、該シリカ微粒子の親水 性 (疎水性)を上記表面処理による方法で調整する方法としては、例えば、未処理の シリカ微粒子の表面を CHで修飾して炭素含有量を調整し、 M値の上限が 50で
3
あるシリカ微粒子(E)、及び、 M値の下限が 60であるシリカ微粒子(F)を得る方法が 好適である。
このような炭素含有量が調整されたシリカ微粒子(E)としては、具体的には、例えば、 MT- 10 (0. 9)、 DM— 10 (0· 9) (以上、いずれもトクャマ社製)等が挙げられる。 また、上記炭素含有量が調整されたシリカ微粒子(F)としては、具体的には、例えば 、 PM— 20L (5. 5)、HM— 30S (3. 5) (以上、いずれもトクャマ社製)等が挙げられ る。なお、上記各製品名の後に括弧書で示した数値は炭素含有量 (重量%)を表す
[0104] また、上記 M値の上限が 50である無機微粒子 (A)としては、具体的には、例えば、 D M— 10 (48)、 MT— 10 (47) (以上、いずれもトクャマ社製)、 R— 972 (48) (Degus sa社製)等を用いることができる。なお、上記各製品名の後に括弧書で示した数値は M値を表す。
[0105] また、上記 M値の下限が 60である無機微粒子(B)としては、具体的には、例えば、 Z D— 30ST (62)、 HM— 20L (64)、 PM— 20L (65) (以上、いずれもトクャマ社製) 、 RX- 200 (64)、 R202 (65) (Degussa社製)等を用いること力 Sできる。なお、上記 各製品名の後に括弧書で示した数値は M値を表す。
[0106] 上記 M値を有する無機微粒子 (A)及び無機微粒子(B)の合計の含有量としては、 本発明の電子部品用接着剤に含有される硬化性化合物の合計 100重量部に対して 、好ましい下限は 2重量部、好ましい上限は 10重量部である。 2重量部未満であると 、上記低ブリード性ゃチクソ性が不充分となることがあり、 10重量部を超えると、本発 明の電子部品用接着剤の接着性が低下することがある。より好ましい下限は 4重量部 、より好ましい上限は 8重量部である。
[0107] 上記無機微粒子 (A)と無機微粒子(B)との配合比としては、無機微粒子 (A) 100重 量部に対して、無機微粒子(B)の好ましい下限は 30重量部、好ましい上限は 600重 量部である。 30重量部未満であると、上記チクソ性が不充分となって塗布性が劣るこ と力 Sある。 600重量部を超えると、上記低ブリード性が不充分になることがある。より好 ましレ、下限は 50重量部、より好まし!/、上限は 500重量部である。
[0108] また、本発明の電子部品用接着剤としては、具体的には、上記液状成分の SP値が 1 1〜14 (以下、液状成分(2)ともいう)のときに、無機微粒子として、平均一次粒子径 の上限が 50nmかつ疎水化度(M値)の上限が 40の無機微粒子(C)と、平均一次粒 子径の上限が 50nmかつ疎水化度(M値)の下限が 50の無機微粒子(D)とを含有 するものも好適に用いられる。このような組成の本発明の電子部品用接着剤では、上 記液状成分(2)に対して、上記無機微粒子(C)が上記低ブリード性を達成する役割 を果たし、上記無機微粒子 (D)が塗布に好適なチクソ性を付与する役割を果たすこ ととなる。
[0109] 上記 SP値の下限が 11、上限が 14である液状成分(2)を調製する方法としては、具 体的には、例えば、レゾルシノール型エポキシ、ナフタレン型エポキシ、プロピレング リコール変性エポキシ等を用いる方法等が挙げられる。
[0110] 上記無機微粒子(C)及び無機微粒子(D)は、平均一次粒子径の上限が 50nmであ る。 50nmを超えると、上記チクソ性が不充分となって塗布性が劣ったり、充分な低ブ リード性が得られなかったりする。好ましい上限は 40nm、より好ましい上限は 30nm である。
[0111] 上記無機微粒子(C)は、 M値の上限が 40であり、上記無機微粒子(D)は、 M値の 下限が 50である。上記無機微粒子(C)の M値が 40を超えると、上記低ブリード性が 不充分となること力 Sある。また、上記無機微粒子(D)の M値が 50未満であると、上記 チクソ性が不充分となって塗布性が劣ることがある。
[0112] ここで、上記無機微粒子(C)及び無機微粒子(D)の M値を上記範囲に調整する方 法としては特に限定されず、例えば、上述した無機微粒子 (A)及び無機微粒子(B) と同様の方法が挙げられる。
[0113] 例えば、上記無機微粒子としてシリカ微粒子を選択した場合、該シリカ微粒子の親水 性 (疎水性)を上記表面処理による方法で調整する方法としては、例えば、未処理の シリカ微粒子の表面を CHで修飾して炭素含有量を調整し、 M値の上限が 40で あるシリカ微粒子(G)、及び、 M値の下限が 50であるシリカ微粒子(H)を得る方法が 好適である。
このような炭素含有量が調整されたシリカ微粒子(G)としては、具体的には、例えば、 QS -40 (0) (トクャマ社製)等が挙げられる。また、上記炭素含有量が調整されたシ リカ微粒子(H)としては、具体的には、例えば、 DM— 30 (1. 7)、KS— 20S (2. 0) ( 以上、いずれもトクャマ社製)等が挙げられる。なお、上記各製品名の後に括弧書で 示した数値は炭素含有量 (重量%)を表す。
[0114] また、上記 M値の上限が 40である無機微粒子(C)としては、具体的には、例えば、 Q S -40 (0) (トクャマ社製)等が挙げられる。なお、上記製品名の後に括弧書で示し た数値は M値を表す。
[0115] 上記 M値の下限が 50である無機微粒子(D)としては、具体的には、例えば、上述し た無機微粒子(B)で列挙したもののほ力、、 DM— 30 (52)、 KS 20S (56) (以上、 いずれもトクャマ社製)、 R— 976 (52) (Degussa社製)等が挙げられる。なお、上記 各製品名の後に括弧書で示した数値は M値を表す。
[0116] 上記 M値を有する無機微粒子(C)及び無機微粒子(D)の合計の含有量としては、 本発明の電子部品用接着剤に含有される硬化性化合物の合計 100重量部に対して 、好ましい下限は 2重量部、好ましい上限は 10重量部である。 2重量部未満であると 、上記低ブリード性ゃチクソ性が不充分となることがあり、 10重量部を超えると、本発 明の電子部品用接着剤の接着性が低下することがある。より好ましい下限は 4重量部 、より好ましい上限は 8重量部である。
[0117] 上記無機微粒子(C)と無機微粒子(D)との配合比としては、無機微粒子(C) 100重 量部に対して、無機微粒子(D)の好ましい下限は 30重量部、好ましい上限は 600重 量部である。 30重量部未満であると、上記チクソ性が不充分となって塗布性が劣るこ と力 Sある。 600重量部を超えると、上記低ブリード性が不充分になることがある。より好 ましレ、下限は 50重量部、より好まし!/、上限は 400重量部である。
[0118] 本発明の電子部品用接着剤は、例えば、硬化性化合物及び硬化剤を有する接着組 成物に、必要に応じて硬化促進剤、硬化性化合物と反応可能な官能基を有する高 分子化合物、チキソトロピー付与剤、その他の添加剤等を所定量配合して混合した 後、スぺーサ一粒子を配合する方法により製造することができる。
上記混合の方法としては特に限定されないが、例えば、ホモディスパー、万能ミキサ 一、バンバリ一ミキサー、ニーダ一等を使用する方法を用いることができる。
[0119] 本発明の電子部品用接着剤により接合する電子部品としては特に限定されず、半導 体チップ、センサー等が挙げられる。また、トランス部品用のコイル鉄心ギャップ形成 用にも用いられる。上記トランス部品のコイル鉄心としては特に限定されないが、例え ば、 EI型や EE型が好適に用いられる。
[0120] 本発明の電子部品用接着剤を用いて 2以上の半導体チップを多層に積層して、封 止剤等で封止することにより半導体装置を作製することができる。このような半導体装 置もまた本発明の 1つである。本発明の電子部品用接着剤は、半導体チップを十字 状に積層する場合に、特に好適に用いることができる。
また、本発明の電子部品用接着剤は、 2以上の半導体チップを積層する場合だけで なぐ基板上に半導体チップを積載することや、センサー等の部品を接合することを 目的とする接着斉 IJとしてあ好適に用いること力 Sでさる。
[0121] 本発明の電子部品用接着剤を用いることにより、 2以上の半導体チップを積層し、半 導体チップ積層体を製造することができる。その製造方法としては、 2以上の半導体 チップが、本発明の電子部品用接着剤を介して積層された半導体チップ積層体の 製造方法であって、 1の半導体チップに上記電子部品用接着剤を塗布する塗布ェ 程(1)と、上記 1の半導体チップに塗布した電子部品用接着剤を介して他の半導体 チップを積層する半導体チップ積層工程(2)と、上記 1の半導体チップと他の半導体 チップとの間の電子部品用接着剤を硬化させる硬化工程(3)とを有し、上記塗布ェ 程(1)において、上記電子部品用接着剤を、上記 1の半導体チップの上記他の半導 体チップを積層する領域の外縁部及び中央部に塗布し、かつ、外縁部 の上記電 子部品用接着剤の塗布量を、中央部への塗布量の 2〜5倍とする方法を用いること ができる。このような半導体チップ積層体の製造方法もまた本発明の 1つである。
[0122] 本発明の電子部品用接着剤を用いて積層する半導体チップとしては特に限定され ず、種々の半導体チップに用いることができる。
なかでも、本発明の電子部品用接着剤は、上述の粘度挙動を示すことから、例えば 、ワイヤーボンディング接続型の半導体チップを積層する場合にも好適に用いられる 。特に、図 1に示すように、本発明の電子部品用接着剤 1を用いて、ワイヤー 6を埋め 込み、基板 5上に配置された半導体チップ 3及び 4を、スぺーサ一粒子 2を介して積 層する場合に好適に用いられる。なお、図 1は、本発明の電子部品用接着剤を用い て積層した半導体チップの一例を模式的に示す断面図である。
本発明の電子部品用接着剤を使用すると、上述の粘度挙動ゆえに、スぺーサ一粒 子がワイヤーボンディング用接続電極部に流れ出すことがなぐよって、スぺーサー 粒子がワイヤーと接触してしまう等の不具合が起こらないため、好適である。これは、 半導体チップを積層するプロセスにおレ、て、半導体チップ間距離がスぺーサ一粒子 の粒径に近づくと、上述の粘度挙動ゆえにスぺーサ一粒子が移動しに《なり、スぺ ーサ一粒子がワイヤーボンディング用接続電極部に流れ出すことがなくなるからであ
[0123] また、積層する半導体チップは、同形であってもよく異形であってもよい。
更に、 1の基板に、厚みの異なる半導体チップが隣り合うよう 2以上並べ、これら 2以 上の半導体チップの両方が含まれるような大きさの半導体チップを、上記 2以上の半 導体チップの上に積層することも可能である。そのような場合は、スぺーサ一粒子の 粒子径の異なる接着剤をチップ間に合わせて適宜複数使用することが好ましい。
[0124] 更に、 1の基板に、厚みの異なる半導体チップが隣り合うよう 2以上並べる際に、スぺ ーサ一粒子の粒子径の異なる接着剤を、半導体チップの厚みに合わせて適宜複数 使用し、厚みの異なる半導体チップの上面高さを等しくし、該厚みの異なる半導体チ ップの両方が含まれるような大きさの半導体チップを上に積層することも可能である。
[0125] 本発明の半導体チップ積層体の製造方法では、まず、 1の半導体チップに上記電子 部品用接着剤を塗布する塗布工程(1)を行う。
上記塗布工程(1)では、上記電子部品用接着剤を、上記 1の半導体チップの上記他 の半導体チップを積層する領域の外縁部及び中央部に塗布する。このような領域に 上記電子部品用接着剤を塗布することで、半導体チップ同士の接着性が向上する。
[0126] また、上記塗布工程(1)では、外縁部 の上記電子部品用接着剤の塗布量を、中 央部 の塗布量の 2 5倍とする。このように、外縁部 の塗布量を中央部 の塗布 量より多くすることによって、後述する半導体チップ積層工程(2)において、半導体チ ップ同士を位置合わせした後、押圧を行う場合に、電子部品用接着剤をムラ無く均 一に接合部に行き渡らせることができ、その結果、得られる半導体チップ積層体は信 頼性の高いものとなる。外縁部への塗布量が中央部への塗布量の 2倍未満であると 、所望のチップ間距離に到達するのに圧力、時間が必要となることから、生産性が低 下し、 5倍を超えるとボイドの巻き込みが発生する。好ましくは 3〜4倍である。
なお、上記外縁部とは、上記 1の半導体チップの上記他の半導体チップを積層する 領域の重心から外周までの距離の 0. 7〜0. 9倍に相当する点の集合を内周とした 場合における、内周と外周とに囲まれた領域のことをいう。また、上記中央部とは、上 記重心からの距離力 S、上記重心から外周までの距離の 0. 7〜0. 9倍に相当し、内周 よりも内側の点の集合を最内周とした場合における、最内周に囲まれた領域のことを いう。
[0127] 上記塗布工程(1)における塗布方法としては特に限定されず、例えば、精密ノズル を取り付けたシリンジ等とディスペンサ等を組み合わせて用いて塗布する方法等を用 いること力 Sでさる。
[0128] 上記塗布工程(1)において、電子部品用接着剤を塗布する際の高さとしては特に限 定されないが、所望のチップ間距離の 2〜; 10倍であることが好ましい。特に、所望の チップ間距離が 50 ,1 m以下及び/又は半導体チップの主面の面積が 80mm2以上 である場合は、塗布する高さの好ましい上限は 300 mであり、より好ましい上限は 2 00 μ mである。
[0129] 本発明の半導体チップ積層体の製造方法では、次いで、上記 1の半導体チップに塗 布した電子部品用接着剤を介して他の半導体チップを積層する半導体チップ積層 工程 (2)を行う。上記半導体チップ積層工程 (2)では、電子部品用接着剤を介して 半導体チップ同士を位置合わせすることにより積層する。
[0130] 上記半導体チップ積層工程(2)では、 1の半導体チップに積層された他の半導体チ ップに対して押圧すること力 S好ましい。上記押圧を行うことで、電子部品用接着剤の 余剰分を充分に排出し、スぺーサ一粒子により半導体チップ間の間隔が支持される ように積層することが可能となる。 上記押圧は、 0. 01—0. 5MPaの圧力で 0.;!〜 5秒間行うことが好ましい。 0. 01M Pa未満であったり、 0. 1秒未満であったりすると、押圧を行うことによる効果が不充分 となることがあり、 0. 5MPaを超える圧力を加えたり、 5秒を超えたりすると、生産性よ く半導体チップ積層体を製造することが困難となることがある。 0. 05-0. 2MPaで 押圧することがより好ましい。
[0131] 上記半導体チップ積層工程(2)では、上記押圧を行うことにより、所望のチップ間距 離の;!〜 1. 2倍にチップ間距離を縮小させることが好ましい。このとき、チップ間距離 力 Sスぺーサ一粒子の粒子径より大きい場合は、後述する硬化工程(3)において、電 子部品用接着剤をフローさせることにより、チップ間距離とスぺーサ一粒子の粒子径 とを実質的に同じとすることが好ましい。
[0132] 本発明の半導体チップ積層体の製造方法では、次いで、上記 1の半導体チップと他 の半導体チップとの間の電子部品用接着剤を硬化させる硬化工程(3)を行う。上記 電子部品用接着剤を硬化させることにより、半導体チップ積層体を得ることができる。 なお、上記硬化工程は、半導体チップを 1つ積層する度に行ってもよぐ半導体チッ プの積層を所望の数まで繰り返した後、一度に行ってもよい。
[0133] 上記硬化の方法としては特に限定されず、電子部品用接着剤の硬化特性に合わせ た硬化条件を適宜選択して用いることができる力 S、巻き込みボイドの防止や、チップ 間距離の精度向上のため、実質的に硬化の始まらない 70〜120°Cで 10分〜 2時間 プレキュアした後、 120〜200°Cで硬化を行う方法が好ましい。
[0134] 上記硬化工程(3)の後に得られる半導体チップ積層体のチップ間距離のばらつきは 、 3 σで 5 m未満であることが好まし!/、。ばらつきが 3 σで 5 μ m以上であると、ワイ ヤーボンディング不良、フリップチップボンディング不良が発生することがある。なお、 σは標準偏差を表す。
発明の効果
[0135] 本発明によれば、 2以上の半導体チップ等の電子部品を接合する際に電子部品間 の距離を高精度に保ち、かつ、信頼性の高い半導体装置等の電子部品を得ることが 可能な電子部品用接着剤、該電子部品用接着剤を用いた半導体チップ積層体の製 造方法及び半導体装置を提供することができる。 発明を実施するための最良の形態
[0136] 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。なお、実施例及び比較例に記載の粒子径の測定には粒 子サイズ測定機(コールターカウンター ZB/C— 1000、コールターエレクトロニクス 社製)を、 K値及び圧縮回復率の測定には、圧縮試験微小圧縮試験機 (フィッシャー スコープ H100C、フィッシャーインストルメンッ社製)を使用した。
[0137] (実施例;!〜 2、比較例;!〜 3、参考例 1)
(1)電子部品用接着剤の作製
表 1の組成に従って、下記に示すスぺーサ一粒子以外の各材料を、ホモディスパー を用いて攪拌混合して、接着組成物を作製した。得られた接着組成物に、スぺーサ 一粒子を表 1の組成に従って配合し、更にホモディスパーを用いて攪拌混合すること により電子部品用接着剤を作製した。
[0138] (硬化性化合物)
ジシクロペンタジェン型エポキシ樹脂(HP— 7200HH、大日本インキ化学工業社製 )
ナフタレン型エポキシ樹脂(HP— 4032D、大日本インキ化学工業社製、常温で液 状)
フルオレン型エポキシ樹脂(EX1020、長瀬産業社製、融点 30°C)
低粘度エポキシ樹脂(EP— 4088S 旭電化工業社製、粘度 250mPa' s/25°C)
[0139] (硬化剤)
酸無水物(YH— 307、ジャパンエポキシレジン社製)
[0140] (硬化促進剤)
イミダゾール化合物(2MA— OK、四国化成工業社製)
[0141] (チキソトロピー付与剤)
ヒュームドシリカ(AEROSIL R202S、 日本ァェロジル社製)
[0142] (エポキシ基を有する高分子化合物)
エポキシ基含有アクリル樹脂(ブレンマー CP— 30、ジャパンエポキシレジン社製)
[0143] (ゴム変性エポキシ樹脂) CTBN変性エポキシ樹脂(EPR— 4023、旭電化工業社製)
[0144] (スぺーサ一粒子)
樹脂粒子(ミクロパール SP— 210、積水化学工業社製、平均粒子径: 10 111、 CV 値 = 4%)
球状シリカ(S430— 2、マイクロン社製、平均粒子径: 8. 4um、 CV値〉 10%)
[0145] (2)半導体チップ積層体の作製
得られた電子部品用接着剤を 10mLシリンジ (岩下エンジニアリング社製)に充填し、 シリンジ先端に精密ノズル (岩下エンジニアリング社製、ノズル先端径 0. 3mm)を取 り付け、デイスペンサ装置(SHOT MASTER300、武蔵エンジニアリング社製)を 用いて、吐出圧 0. 4MPa、半導体チップとニードルとのギャップ 200 m、塗布量 5 mgにてガラス基板上に塗布した。塗布量は、(接合部分の外周部への塗布量/中 央部への塗布量) =4とした。
塗布を行った後、ペリフエラル状に 110 mのパッド開口部を 172個有する半導体チ ップ(チップ 1) (厚さ 80 μ m、 8mm X 12mm角、メッシュ状パターン、アルミ配線:厚 み 0· Z ^ m, L/S = 15/15、表面の窒化シリコン膜の厚み: 1. 0 m)をフリツプチ ップポンダー(DB— 100、溢谷工業社製)を用いて 0. 15MPaの圧力で 5秒間押圧 することにより積層した。次いで、チップ 1に電子部品用接着剤を上述のディスぺンサ 装置を用いて塗布し、上述のボンディング装置を用いてチップ 1と同様の半導体チッ プ(チップ 2)を、チップ 1の長辺とチップ 2の長辺が交差するように載せ、温度 25°Cで 0. 15MPaで 5秒間押圧することにより積層した。その後、熱風乾燥炉内にて 80°Cで 60分間放置後、 150°Cで 60分間加熱を行い、電子部品用接着剤を硬化させること により、半導体チップ積層体を作製した。
[0146] (評価)
実施例;!〜 2、比較例 1〜 3及び参考例 1で得られた電子部品用接着剤及び半導体 チップ積層体につ V、て、以下の方法により評価を行った。
結果を表 1に示した。
[0147] (粘度の測定)
E型粘度測定装置(商品名: VISCOMETER TV—22、TOKI SANGYO CO . LTD社製、使用ローター: φ 15mm,設定温度: 25°C)を用いて回転数 0. 5rpmに おける粘度 (A)、 lrpmにおける粘度(B)、及び、 lOrpmにおける粘度(C)を測定し た。また、これらの粘度の比として(A/B)及び(B/C)を求めた。
[0148] (垂れ量)
シリコンウェハー上に直径 lcm、高さ lmmとなるように、得られた電子部品用接着剤 を塗布した後、シリコンウェハーを垂直に静置し、 25°Cにおける電子部品用接着剤 の移動量を測定した。
[0149] (チップ間距離のバラツキ、スペース到達度)
実施例 1〜 2、比較例 1〜 3及び参考例 1で得られた半導体チップ積層体について、 サンプルを 10個作製し、各半導体チップ積層体の積層状態をレーザー変位計 (KS 1100、 KEYENCE社製)を用いて測定した。具体的には、チップ 1とチップ 2の上 面との段差を測定し、測定値からチップ厚みを引くことで、チップ 1とチップ 2との間の チップ間距離を求めた後、チップ間距離のバラツキを 3 σ ( σ;標準偏差)として算出 した。また、(チップ間距離/スぺーサー微粒子の平均粒子径)を、スペース到達度 として算出した。
[0150] (耐熱性試験)
得られた半導体チップ積層体を 125°Cで 6時間乾燥し、続!/、て 30°C、 80%の湿潤 条件で 48時間処理した後、ハンダリフロー時と同様の 260°C、 30秒の条件で加熱処 理を行った。そして、このような加熱処理を 3回行った後の半導体チップ積層体につ いて、層間剥離が発生しているか否かを観察した。層間剥離の観察は、超音波探査 映像装置(mi— scope hyper II、 日立建機ファインテック社製)を用いて行った。 また、半導体チップ積層体に用いた電子部品用接着剤を混酸で除去し、半導体チッ プ表面の窒化シリコン保護膜に割れが生じているか否かについて観察を行った。 層間剥離及び保護膜の割れについて、下記の基準で評価することにより、半導体チ ップ積層体の耐熱性評価を行った。
〇:層間剥離及び保護膜の割れが観察されな力 た。
△:層間剥離又は保護膜の割れがわずかに観察された。
X:層間の目立った剥離又は保護膜の目立った割れが観察された。 [0151] (温度サイクル試験)
得られた半導体チップ積層体について、—55°Cで 9分間、 125°Cで 9分間を 1サイク ルとする温度サイクル試験を行 V、、 1000サイクルを行った後の半導体チップ積層体 について、層間剥離が発生しているか否力、を観察した。また、半導体チップ積層体に 用いた電子部品用接着剤を混酸で除去し、半導体チップ表面の窒化シリコン保護膜 に割れが生じて V、るか否かにつ!/、て観察を行った。
層間剥離及び保護膜の割れについて、下記の基準で評価を行った。
〇:層間剥離及び保護膜の割れが観察されなかった。
△:層間剥離又は保護膜の割れがわずかに観察された。
X:層間の目立った剥離又は保護膜の目立った割れが観察された。
[0152] [表 1]
^)〕 (^薪 It73745301〜〜
Figure imgf000037_0001
Figure imgf000037_0002
を用いて攪拌混合して、接着組成物を作製した。得られた接着組成物に、スぺーサ 一粒子を表 2の組成に従って配合し、更にホモディスパーを用いて攪拌混合すること により電子部品用接着剤を作製した。なお、表 2中、各組成の配合量は重量部を表 す。
[0154] (エポキシ化合物 ( A) )
フエノール型エポキシ (EX— 201、長瀬産業社製、単量体、 25°Cで結晶固体、融点 30〜60。C、 50。Cでの粘度 250mPa . s)
結晶性エポキシ樹脂 (YSLV— 80XY、東都化成社製、単量体、 25°Cで結晶固体、 融点 80°C、 80°Cでの粘度 lPa ' s)
[0155] (エポキシ化合物(B) )
ジシクロペンタジェン型エポキシ(EP— 4088S、アデ力社製、単量体)
ジシクロペンタジェン型エポキシ化合物(HP— 7200、大日本インキ化学工業社製、
5量体)
[0156] (他のエポキシ化合物)
ビスフエノール A型エポキシ化合物(EP828、ジャパンエポキシレジン社製、 50°Cで の粘度 2Pa' s)
ナフタレン型エポキシ化合物(HP— 4032D、常温液状、大日本インキ化学工業社 製、 50°Cでの粘度 5Pa ' s)
ビスフエノーノレ A型エポキシ化合物(EP— 1001、ジャパンエポキシレジン社製、常温 固体、 80°Cでの粘度 20Pa ' s)
フエノール型エポキシ化合物(EX— 141、ナガセ産業社製、常温液状、 50°Cでの粘 度 7mPa ' s)
NBR変性ビス A型エポキシ化合物(EPR— 4030、アデ力社製、常温液状、 50°Cで の粘度 50Pa' s)
[0157] (エポキシ基含有アクリル系高分子化合物)
エポキシ基含有アクリル樹脂(ブレンマー CP— 30、ジャパンエポキシレジン社製)
[0158] (硬化剤)
酸無水物(YH— 306、ジャパンエポキシレジン社製) [0159] (硬化促進剤)
イミダゾール化合物(2MA— OK、四国化成工業社製)
[0160] 増粘剤(R202、 日本ァエロジル社製)
[0161] (接着性付与剤)
イミダゾールシランカップリング剤(SP— 1000、 日鉱マテリアル社製)
[0162] (スぺーサ一粒子)
樹脂粒子(ミクロパール SP— 210、積水化学工業社製、平均粒子径: 10 111、 CV 値 = 4%)
[0163] (半導体チップ積層体の作製)
得られた電子部品用接着剤を 10mLシリンジ (岩下エンジニアリング社製)に充填し、 シリンジ先端に精密ノズル (岩下エンジニアリング社製、ノズル先端径 0. 3mm)を取 り付け、デイスペンサ装置(SHOT MASTER300、武蔵エンジニアリング社製)を 用いて、吐出圧 0. 4MPa、半導体チップとニードルとのギャップ 200 m、塗布量 5 mgにてガラス基板上に塗布した。塗布量は、(接合部分の外周部への塗布量/中 央部への塗布量) =4とした。
塗布を行った後、ペリフエラル状に 110 mのパッド開口部を 172個有する半導体チ ップ(チップ 1) (厚さ 80 μ m、 8mm X 12mm角、メッシュ状パターン、アルミ配線:厚 み 0· Z ^ m, L/S = 15/15、表面の窒化シリコン膜の厚み: 1. 0 m)をフリツプチ ップポンダー(DB— 100、溢谷工業社製)を用いて温度 60°C若しくは 80°Cで 0. 15 MPaの圧力で 5秒間押圧することにより積層した。次いで、チップ 1に電子部品用接 着剤を上述のデイスペンサ装置を用いて塗布し、上述のボンディング装置を用いて チップ 1と同様の半導体チップ(チップ 2)を、チップ 1の長辺とチップ 2の長辺が交差 するように載せ、温度 60°C若しくは 80°Cで 0. 15MPaで 5秒間押圧することにより積 層した。その後、熱風乾燥炉内にて 80°Cで 60分間放置後、 150°Cで 60分間加熱を 行い、電子部品用接着剤を硬化させることにより、半導体チップ積層体を作製した。
[0164] (評価)
実施例 3〜7及び比較例 4〜7で得られた電子部品用接着剤及び半導体チップ積層 体について、以下の方法により評価を行った。結果を表 2に示した。 [0165] (粘度の測定(1) )
E型粘度測定装置(商品名: VISCOMETER TV—22、TOKI SANGYO CO . LTD社製、使用ローター: φ 15mm,設定温度: 25°C)を用いて回転数 0. 5rpmに おける粘度 (A)、 lrpmにおける粘度(B)、及び、 lOrpmにおける粘度(C)を測定し た。また、これらの粘度の比として(A/B)及び(B/C)を求めた。
[0166] (粘度の測定 (2) )
E型粘度測定装置(商品名: VISCOMETER TV—22、TOKI SANGYO CO . LTD社製、使用ローター: φ 15mm,設定温度: 25°C)を用いて回転数 lOrpmに おける粘度、 60°C若しくは 80°Cで lOrpmにおける粘度を測定した。
[0167] (塗布形状保持性)
ガラス基板上に塗布した後、塗布形状が塗布直後から貼り合せまでの間に形状が崩 れてしまい好適な形状を保持できないものを X、塗布直後から貼り合せまでの間好 適な系以上を保持できるものを〇として評価した。
[0168] (チップ間距離のバラツキ)
実施例 3〜7及び比較例 4〜7で得られた半導体チップ積層体につ V、て、サンプルを 10個作製し、各半導体チップ積層体の積層状態をレーザー変位計 (KS— 1100、 K EYENCE社製)を用いて測定した。具体的には、チップ 1とチップ 2の上面との段差 を測定し、測定値からチップ厚みを引くことで、チップ 1とチップ 2との間のチップ間距 離を求めた後、チップ間距離のバラツキを 3 σ ( σ;標準偏差)として算出した。
[0169] (リフロークラックの発生の有無)
得られた半導体チップ積層体を、 85°C、 85%の恒温高湿オーブンに 24時間放置し たのち、 230°C以上が 20秒以上でかつ最高温度が 260°Cとなる IRリフロー炉に投入 した。投入後、半導体装置のリフロークラックの発生の有無を超音波探傷装置(SAT )により観察した。なお、表 2においては、リフロークラックの発生数を不良率として表 示した。
[0170] (総合評価)
実施例 3〜7及び比較例 4〜7で得られた電子部品用接着剤及び半導体チップ積層 体の総合評価として、以下の基準で評価を行った。 ◎:塗布形状保持性に優れ、チップ間距離を極めて高精度に制御することができ、か つ、リフロークラック信頼性の高!/、半導体チップ積層体を得ることのできる接着剤であ
〇:塗布形状保持性に優れ、チップ間距離が極めて高精度に制御されているものの 、リフロークラック信頼性にお!/、てやや劣る半導体チップ積層体を得ることのできる接 着剤である。
X:チップ間距離を精度よく制御することができなレ、接着剤である。
[表 2]
Figure imgf000042_0002
Figure imgf000042_0001
(実施例 8〜; L 0、比較例 8)
下記表 3の組成に従って、下記に示すスぺーサ一粒子以外の各材料を、ホモディス パーを用いて攪拌混合して、接着組成物を作製した。得られた接着組成物に、スぺ ーサ一粒子を表 2の組成に従って配合し、更にホモディスパーを用いて攪拌混合す ることにより電子部品用接着剤を作製した。なお、表 3中、各組成の配合量は重量部 を表す。
[0173] (エポキシ化合物)
両末端ビスフエノーノレ Aグリシジルエーテル変性ポリブタジエン(EPB— 13、 日本曹 達社製、常温半固体)
両末端グリシジルエーテル変性プロピレンオキサイド (EX— 941、ナガセ産業社製、 常温液体)
[0174] (その他のエポキシ化合物)
ビスフエノール A型エポキシ化合物(EP— 828、ジャパンエポキシレジン社製、 50°C での粘度: 2Pa' s)
[0175] (硬化剤)
2官能酸無水物硬化剤 (YH— 306、ジャパンエポキシレジン社製、常温で液体)
4官能酸無水物硬化剤からなる粒子(B— 4400、大日本インキ社製、常温で固体、 平均粒子径 3 ^ 111)
[0176] (硬化促進剤)
イミダゾール硬化促進剤(2MA— OK、四国化成社製)
[0177] (反応性希釈剤)
ジシクロペンタジェン型エポキシ(EP— 4088S、アデ力社製、単量体)
[0178] (チキソトロピー付与剤)
疎水性ヒウームドシリカ(MT—10、トクャマ社製)
[0179] (接着性付与剤)
イミダゾールシランカップリング剤(SP— 1000、 日鉱マテリアル社製)
[0180] (スぺーサ一粒子)
樹脂粒子(ミクロパール SP— 210、積水化学工業社製、平均粒子径: 10 111、 CV 値 = 4%)
[0181] (評価)
実施例 8〜; 10及び比較例 8で調製した電子部品用接着剤について、以下の評価を 行った。結果を表 3に示した。
[0182] (粘度の測定) E型粘度測定装置(商品名: VISCOMETER TV—22、TOKI SANGYO CO . LTD社製、使用ローター: φ 15mm,設定温度: 25°C)を用いて回転数 0. 5rpmに おける粘度 (A)、 lrpmにおける粘度(B)、及び、 lOrpmにおける粘度(C)を測定し た。また、これらの粘度の比として(A/B)及び(B/C)を求めた。
[0183] (引張り強度の測定)
実施例 8〜; 10及び比較例 8で調製した電子部品用接着剤を 2mm X 5mm X 50mm の金型に入れ、 170°C、 15分で硬化させた後、手で硬化物を引っ張り、簡単に引き 裂かれるものを Xとし、強度が強くなる順に△、〇とした。そして引き裂かれないもの を◎とした。
[0184] (半導体チップ積層体の作製)
得られた電子部品用接着剤を 10mLシリンジ (岩下エンジニアリング社製)に充填し、 シリンジ先端に精密ノズル (岩下エンジニアリング社製、ノズル先端径 0. 3mm)を取 り付け、デイスペンサ装置(SHOT MASTER300、武蔵エンジニアリング社製)を 用いて、吐出圧 0. 4MPa、半導体チップとニードルとのギャップ 200 m、塗布量 5 mgにてガラス基板上に塗布した。塗布量は、(接合部分の外周部への塗布量/中 央部への塗布量) =4とした。
塗布を行った後、ペリフエラル状に 110 mのパッド開口部を 172個有する半導体チ ップ(チップ 1) (厚さ 80 μ m、 10mm X 10mm角、メッシュ状パターン、アルミ配線: 厚み 0· Z ^ m, L/S = 15/15、表面の窒化シリコン膜の厚み: 1. 0 m)をフリップ チップポンダー(DB— 100、溢谷工業社製)を用いて常温で 0. IMPaの圧力で 5秒 間押圧することにより積層した。 170°Cで 15分間加熱を行い、電子部品用接着剤を 硬化させることにより、半導体チップ積層体を作製した。
[0185] (半導体チップのソリ量の測定)
作製した半導体チップ積層体の半導体チップの対角線に沿って反り量をレーザー変 位計(KEYENCE社製 LT9010M、 KS— 1100)にて測定した。
[0186] (ワイヤーボンディング性評価)
半導体チップ積層体と同様に、基板上に半導体チップ (チップ 2) (厚さ 80 111、 3m m X 3mm角、メッシュ状パターン、アルミ配線:厚み 0· Z ^ m, L/S = 15/15、表 面の窒化シリコン膜の厚み: 1 . Ο μ m)を積層した。その後、この積層体を 1 70°C、 1 5 分で硬化させた。そして、ワイヤーポンダー UTC 2000 (新川社製)を用いて径 25〃 mのワイヤーでワイヤーボンディングを行った。このワイヤーをワイヤネック部分で引 つ張り、ワイヤネックで切れたものを〇、接合部分で切断されたものを Xとした。
[0187] (耐リフロー性評価)
作製した半導体チップ積層体を、 85°C 85 %の恒温高湿オーブンに 24時間放置した のち、 230°C以上が 20秒以上でかつ最高温度が 260°Cとなる IRリフロー炉に 3回投 入した。投入後、半導体装置のリフロークラックの発生の有無を超音波探傷装置(SA T)により観察し、以下の基準で評価した。
◎:リフロークラック発生数 0Z6
〇:リフロークラック発生数 1 /6
[0188] (総合評価)
実施例 8〜; L 0及び比較例 8で調製した電子部品用接着剤及び半導体チップ積層体 の総合評価として、半導体チップのソリの評価が 50 m以下と評価されたものを「◎」 とし、半導体チップのソリの評価が 100 m未満であったものを「〇」とし、半導体チッ プのソリの評価が 100 μ m以上であったものを「 X」とした。
[0189] [表 3]
Figure imgf000045_0001
産業上の利用可能性
[0190] 本発明によれば、 2以上の半導体チップ等の電子部品を接合する際に電子部品間 の距離を高精度に保ち、かつ、信頼性の高い半導体装置等の電子部品を得ることが 可能な電子部品用接着剤、該電子部品用接着剤を用いた半導体チップ積層体の製 造方法及び半導体装置を提供することができる。
図面の簡単な説明
[0191] [図 1]本発明の電子部品用接着剤を用いて積層した半導体チップの一例を模式的に 示す断面図。

Claims

請求の範囲
[1] 電子部品を接合するための電子部品用接着剤であって、
硬化性化合物及び硬化剤を有する接着組成物と、 CV値が 10%以下のスぺーサー 粒子とを含有し、
E型粘度計を用いて 25°Cにて粘度を測定したときに、 lrpmにおける粘度が 200Pa ' s以下、 lOrpmにおける粘度が l OOPa ' s以下であり、かつ、 0· 5rpmにおける粘度 力 S lrpmにおける粘度の 1 · 4〜3倍、 lrpmにおける粘度が lOrpmにおける粘度の 2 〜 5倍である
ことを特徴とする電子部品用接着剤。
[2] E型粘度計を用いて電子部品を接合する際の温度にて粘度を測定したときに、 10rp mにおける粘度が lPa ' s以下であることを特徴とする請求項 1記載の電子部品用接 着剤。
[3] 硬化性化合物は、繰り返し単位中に芳香環を有する 10量体以下の分子構造を持ち 、 25°Cで結晶性固体であるエポキシ化合物 (A)を含有することを特徴とする請求項 1又は 2記載の電子部品用接着剤。
[4] 硬化性化合物は、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂及びレゾ ルシノール型エポキシ樹脂からなる群より選択される少なくとも一種を 40重量%以上 含有することを特徴とする請求項 1、 2又は 3記載の電子部品用接着剤。
[5] 硬化性化合物は、分子の両端にエポキシ基を有し、かつ、一方のエポキシ基と他方 のエポキシ基との間に数平均分子量が 50〜; 1000の柔軟な骨格を有するエポキシ 化合物 (B)を含有することを特徴とする請求項 1、 2、 3又は 4記載の電子部品用接着 剤。
[6] 柔軟な骨格は、ブタジエンゴム、プロピレンオキサイド、エチレンオキサイド、アクリル ゴム、及び、これらの水添加物からなる群より選択される少なくとも 1種の化合物に由 来することを特徴とする請求項 5記載の電子部品用接着剤。
[7] エポキシ化合物 (B)は、更に、分子内に芳香族骨格を有することを特徴とする請求 項 5又は 6記載の電子部品用接着剤。
[8] グリシジルエーテル基が芳香族骨格に直接結合していることを特徴とする請求項 7記 載の電子部品用接着剤。
更に、硬化性化合物と反応可能な官能基を有する高分子化合物を含有することを特 徴とする請求項 1、 2、 3、 4、 5、 6、 7又は 8記載の電子部品用接着剤。
常温で固体の多官能の酸無水物硬化剤からなる粒子と、硬化促進剤とを含有するこ とを特徴とする請求項 1、 2、 3、 4、 5、 6、 7、 8又は 9記載の電子部品用接着剤。 常温で固体の多官能の酸無水物硬化剤からなる粒子と、常温で液体の 2官能酸無 水物硬化剤とを含有することを特徴とする請求項 1、 2、 3、 4、 5、 6、 7、 8又は 9記載 の電子部品用接着剤。
更に、硬化促進剤を含有することを特徴とする請求項 11記載の電子部品用接着剤。 液状成分の溶解度パラメータ(SP値)が 8〜; 11であり、更に、平均一次粒子径が 50η m以下かつ疎水化度(M値)が 50以下の無機微粒子(A)と、平均一次粒子径が 50η m以下かつ疎水化度(M値)が 60以上の無機微粒子(B)とを含有することを特徴と する請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11又は 12記載の電子部品用接着剤。 液状成分の溶解度パラメータ(SP値)が 11〜; 14であり、更に、平均一次粒子径が 50 nm以下かつ疎水化度(M値)が 40以下の無機微粒子(C)と、平均一次粒子径が 50 nm以下かつ疎水化度(M値)が 50以上の無機微粒子(D)とを含有することを特徴と する請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11又は 12記載の電子部品用接着剤。 電子部品は、半導体チップであることを特徴とする請求項 1、 2、 3、 4、 5、 6、 7、 8、 9 、 10、 11、 12、 13又は 14記載の電子部品用接着剤。
2以上の半導体チップ力 請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14 又は 15記載の電子部品用接着剤を介して積層された半導体チップ積層体の製造方 法であって、
1の半導体チップに前記電子部品用接着剤を塗布する塗布工程(1)と、
前記 1の半導体チップに塗布した電子部品用接着剤を介して他の半導体チップを積 層する半導体チップ積層工程 (2)と、
前記 1の半導体チップと他の半導体チップとの間の電子部品用接着剤を硬化させる 硬化工程(3)とを有し、
前記塗布工程(1)において、前記電子部品用接着剤を、前記 1の半導体チップの前 記他の半導体チップを積層する領域の外縁部及び中央部に塗布し、かつ、外縁部 の前記電子部品用接着剤の塗布量を、中央部 の塗布量の 2 5倍とする ことを特徴とする半導体チップ積層体の製造方法。
[17] 半導体チップ積層工程(2)において、 1の半導体チップに積層された他の半導体チ ップに対して、 0. 01—0. 5MPaで 0.;! 5秒間押圧することを特徴とする請求項 16 記載の半導体チップ積層体の製造方法。
[18] 請求項 1 2 3 4 5 6 7 8 9 10 11 12 13 14又は 15記載の電子部品用 接着剤を用いてなることを特徴とする半導体装置。
PCT/JP2007/064274 2006-07-20 2007-07-19 Adhésif pour composants électroniques, procédé de fabrication d'un laminé de puce semi-conductrice, et dispositif semi-conducteur WO2008010555A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007545772A JP4088337B2 (ja) 2006-07-20 2007-07-19 電子部品用接着剤及び半導体チップ積層体の製造方法
CN2007800275271A CN101490829B (zh) 2006-07-20 2007-07-19 电子部件用粘合剂、半导体芯片层叠体的制造方法及半导体装置
EP07791028A EP2045839A4 (en) 2006-07-20 2007-07-19 GLUE FOR ELECTRONIC COMPONENTS, METHOD FOR PRODUCING A SEMICONDUCTOR CHIP LAMINATE AND SEMICONDUCTOR ARRANGEMENT
US12/309,324 US7915743B2 (en) 2006-07-20 2007-07-19 Adhesive for electronic components, method for manufacturing semiconductor chip laminate, and semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-198311 2006-07-20
JP2006198311 2006-07-20
JP2007002803 2007-01-10
JP2007-002803 2007-01-10
JP2007-005092 2007-01-12
JP2007005092 2007-01-12

Publications (1)

Publication Number Publication Date
WO2008010555A1 true WO2008010555A1 (fr) 2008-01-24

Family

ID=38956887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064274 WO2008010555A1 (fr) 2006-07-20 2007-07-19 Adhésif pour composants électroniques, procédé de fabrication d'un laminé de puce semi-conductrice, et dispositif semi-conducteur

Country Status (7)

Country Link
US (1) US7915743B2 (ja)
EP (1) EP2045839A4 (ja)
JP (1) JP4088337B2 (ja)
KR (1) KR100923901B1 (ja)
CN (1) CN101490829B (ja)
TW (1) TW200808932A (ja)
WO (1) WO2008010555A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011383A1 (ja) * 2007-07-19 2009-01-22 Sekisui Chemical Co., Ltd. 電子部品用接着剤
WO2009014115A1 (ja) * 2007-07-25 2009-01-29 Sekisui Chemical Co., Ltd. 電子部品用接着剤、半導体チップの積層方法及び半導体装置
JP2009185132A (ja) * 2008-02-04 2009-08-20 Sekisui Chem Co Ltd 電子部品用接着剤及び電子部品用接着剤の製造方法
KR100946606B1 (ko) 2007-01-12 2010-03-09 세키스이가가쿠 고교가부시키가이샤 전자 부품용 접착제
WO2010104125A1 (ja) * 2009-03-10 2010-09-16 積水化学工業株式会社 半導体チップ積層体の製造方法及び半導体装置
JP2010219162A (ja) * 2009-03-13 2010-09-30 Sekisui Chem Co Ltd 半導体チップ接合用接着剤
JP2010229172A (ja) * 2009-03-25 2010-10-14 Sekisui Chem Co Ltd 半導体用接着剤
JP2011021183A (ja) * 2009-06-15 2011-02-03 Sekisui Chem Co Ltd 光硬化性樹脂組成物、有機エレクトロルミネッセンス表示素子用封止剤、及び、有機エレクトロルミネッセンス表示素子
JP2011046809A (ja) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd 半導体チップ接合用接着剤
JP2012007007A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd ダイボンド剤組成物及び半導体装置。
US20120016057A1 (en) * 2009-01-29 2012-01-19 Akinobu Hayakawa Adhesive for electronic components
JP2012046738A (ja) * 2010-07-29 2012-03-08 Dainippon Printing Co Ltd 接着組成物および熱硬化性接着シートの製造方法
US20120153009A1 (en) * 2009-08-05 2012-06-21 San-Ei Kagaku Co., Ltd. Method for surface mounting using cleaning-free activated resinous composition
JP2012177123A (ja) * 2009-11-13 2012-09-13 Hitachi Chemical Co Ltd 接着剤組成物、それを用いた半導体装置及びその製造方法
WO2013047643A1 (ja) 2011-09-27 2013-04-04 積水化成品工業株式会社 樹脂組成物層用スペーサー粒子およびその用途
WO2017057561A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 樹脂組成物及び多層基板
JP2018142709A (ja) * 2016-03-10 2018-09-13 積水化学工業株式会社 半導体実装用接着剤及び半導体センサ
JP2018165359A (ja) * 2017-03-28 2018-10-25 積水化学工業株式会社 樹脂組成物及びインダクタ
KR20190080774A (ko) * 2017-12-28 2019-07-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 열 경화성 조성물, 경화막 및 표시 장치
JP2020094143A (ja) * 2018-12-13 2020-06-18 サンスター技研株式会社 硬化性樹脂組成物

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816750B2 (ja) * 2009-03-13 2011-11-16 住友電気工業株式会社 プリント配線基板の接続方法
JP5752784B2 (ja) 2010-04-16 2015-07-22 ヴァルスパー・ソーシング・インコーポレーテッド パッケージ物品用のコーティング組成物及びコーティング方法
US20110253943A1 (en) * 2010-04-19 2011-10-20 Trillion Science, Inc. One part epoxy resin including a low profile additive
KR101036441B1 (ko) * 2010-12-21 2011-05-25 한국기계연구원 반도체 칩 적층 패키지 및 그 제조 방법
WO2012161758A2 (en) 2011-02-07 2012-11-29 Valspar Sourcing, Inc. Coating compositions for containers and other articles and methods of coating
US9011629B2 (en) * 2011-03-09 2015-04-21 Sekisui Chemical Co., Ltd. Adhesive for electronic components, and manufacturing method for semiconductor chip mount
KR101961952B1 (ko) * 2012-02-29 2019-07-17 에스케이하이닉스 주식회사 다이 어태치 접착제 및 반도체 장치
KR102020084B1 (ko) * 2012-08-06 2019-09-09 세키스이가가쿠 고교가부시키가이샤 반도체 장치의 제조 방법 및 플립 칩 실장용 접착제
BR112015002731B1 (pt) 2012-08-09 2021-11-30 Swimc Llc Sistema de revestimento de múltiplas camadas, artigo, e, método
JP2015527455A (ja) 2012-08-09 2015-09-17 ヴァルスパー・ソーシング・インコーポレーテッド 容器及び他の物品のための組成物並びにその使用方法
KR101365107B1 (ko) * 2012-09-21 2014-02-20 제일모직주식회사 이방성 도전 필름 및 이를 포함하는 반도체 장치
JP6013118B2 (ja) * 2012-09-28 2016-10-25 株式会社タムラ製作所 絶縁性接着剤組成物および回路基板
CN110790914A (zh) 2014-04-14 2020-02-14 宣伟投资管理有限公司 制备用于容器和其它制品的组合物的方法以及使用所述组合物的方法
US10044171B2 (en) * 2015-01-27 2018-08-07 TeraDiode, Inc. Solder-creep management in high-power laser devices
TWI614275B (zh) 2015-11-03 2018-02-11 Valspar Sourcing Inc 用於製備聚合物的液體環氧樹脂組合物
CN110058334A (zh) * 2019-04-25 2019-07-26 像航(上海)科技有限公司 光学成像元件及其制造方法
CN112630110B (zh) * 2020-12-14 2023-04-25 百尔罗赫塑料添加剂(江苏)有限公司 一种氧化锌粉末粒径测试方法及应用
JPWO2022190746A1 (ja) 2021-03-08 2022-09-15
CN112895639A (zh) * 2021-03-12 2021-06-04 杭州盛得新材料有限公司 一种改性再生pvb复合层压织物及其制备方法
CN116179131B (zh) * 2023-03-20 2024-10-01 广州聚合新材料科技股份有限公司 一种底部填充胶及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104174A (ja) * 1996-06-18 1998-01-06 Mitsui Petrochem Ind Ltd 半導体装置用リードフレーム及びその製造方法
JPH11189765A (ja) 1997-12-26 1999-07-13 Toshiba Chem Corp 絶縁性接着剤
JP2003179200A (ja) 2001-12-10 2003-06-27 Shinko Electric Ind Co Ltd 半導体装置およびその製造方法
JP2005216973A (ja) * 2004-01-27 2005-08-11 Sekisui Chem Co Ltd 半導体装置
JP2006066816A (ja) 2004-08-30 2006-03-09 Toshiba Corp 半導体装置の製造方法及び半導体装置
JP2007169448A (ja) * 2005-12-21 2007-07-05 Sekisui Chem Co Ltd 熱硬化性樹脂組成物及び半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1287427C (en) * 1985-09-25 1991-08-06 Koichiro Oka Epoxy type spherical particulate adhesive and process for preparation thereof
JP2005320404A (ja) 2004-05-07 2005-11-17 Nagase Chemtex Corp 電子部品シール用接着剤組成物及び有機電界発光装置の製造方法
JP4213767B2 (ja) * 2007-01-12 2009-01-21 積水化学工業株式会社 電子部品用接着剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104174A (ja) * 1996-06-18 1998-01-06 Mitsui Petrochem Ind Ltd 半導体装置用リードフレーム及びその製造方法
JPH11189765A (ja) 1997-12-26 1999-07-13 Toshiba Chem Corp 絶縁性接着剤
JP2003179200A (ja) 2001-12-10 2003-06-27 Shinko Electric Ind Co Ltd 半導体装置およびその製造方法
JP2005216973A (ja) * 2004-01-27 2005-08-11 Sekisui Chem Co Ltd 半導体装置
JP2006066816A (ja) 2004-08-30 2006-03-09 Toshiba Corp 半導体装置の製造方法及び半導体装置
JP2007169448A (ja) * 2005-12-21 2007-07-05 Sekisui Chem Co Ltd 熱硬化性樹脂組成物及び半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2045839A4

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946606B1 (ko) 2007-01-12 2010-03-09 세키스이가가쿠 고교가부시키가이샤 전자 부품용 접착제
US7838577B2 (en) 2007-07-19 2010-11-23 Sekisui Chemical Co., Ltd. Adhesive for electronic component
WO2009011383A1 (ja) * 2007-07-19 2009-01-22 Sekisui Chemical Co., Ltd. 電子部品用接着剤
WO2009014115A1 (ja) * 2007-07-25 2009-01-29 Sekisui Chemical Co., Ltd. 電子部品用接着剤、半導体チップの積層方法及び半導体装置
JP2009185132A (ja) * 2008-02-04 2009-08-20 Sekisui Chem Co Ltd 電子部品用接着剤及び電子部品用接着剤の製造方法
US20120016057A1 (en) * 2009-01-29 2012-01-19 Akinobu Hayakawa Adhesive for electronic components
US8901207B2 (en) * 2009-01-29 2014-12-02 Sekisui Chemical Co., Ltd. Adhesive for electronic components
WO2010104125A1 (ja) * 2009-03-10 2010-09-16 積水化学工業株式会社 半導体チップ積層体の製造方法及び半導体装置
JP2011009764A (ja) * 2009-03-10 2011-01-13 Sekisui Chem Co Ltd 半導体チップ積層体の製造方法
JP4638556B2 (ja) * 2009-03-10 2011-02-23 積水化学工業株式会社 半導体チップ積層体の製造方法
TWI489565B (zh) * 2009-03-10 2015-06-21 Sekisui Chemical Co Ltd Semiconductor wafer laminated body manufacturing method and semiconductor device
CN102326239A (zh) * 2009-03-10 2012-01-18 积水化学工业株式会社 半导体芯片层叠体的制造方法及半导体装置
US8563362B2 (en) 2009-03-10 2013-10-22 Sekisui Chemical Co., Ltd. Method of producing semiconductor chip laminate comprising an adhesive that comprises a curing compound, curing agent and spacer particles
JP2010219162A (ja) * 2009-03-13 2010-09-30 Sekisui Chem Co Ltd 半導体チップ接合用接着剤
JP2010229172A (ja) * 2009-03-25 2010-10-14 Sekisui Chem Co Ltd 半導体用接着剤
JP2011021183A (ja) * 2009-06-15 2011-02-03 Sekisui Chem Co Ltd 光硬化性樹脂組成物、有機エレクトロルミネッセンス表示素子用封止剤、及び、有機エレクトロルミネッセンス表示素子
US20120153009A1 (en) * 2009-08-05 2012-06-21 San-Ei Kagaku Co., Ltd. Method for surface mounting using cleaning-free activated resinous composition
US8551819B2 (en) * 2009-08-05 2013-10-08 San-Ei Kagaku Co., Ltd. Method for surface mounting using cleaning-free activated resinous composition
JP2011046809A (ja) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd 半導体チップ接合用接着剤
JP2012177123A (ja) * 2009-11-13 2012-09-13 Hitachi Chemical Co Ltd 接着剤組成物、それを用いた半導体装置及びその製造方法
JP2012007007A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd ダイボンド剤組成物及び半導体装置。
JP2012046738A (ja) * 2010-07-29 2012-03-08 Dainippon Printing Co Ltd 接着組成物および熱硬化性接着シートの製造方法
US9975970B2 (en) 2011-09-27 2018-05-22 Sekisui Plastics Co., Ltd. Spacer particle for resin composition layer and use thereof
WO2013047643A1 (ja) 2011-09-27 2013-04-04 積水化成品工業株式会社 樹脂組成物層用スペーサー粒子およびその用途
WO2017057561A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 樹脂組成物及び多層基板
JPWO2017057561A1 (ja) * 2015-09-30 2017-10-05 積水化学工業株式会社 多層プリント配線板用樹脂組成物及び多層プリント配線板
JP2018142709A (ja) * 2016-03-10 2018-09-13 積水化学工業株式会社 半導体実装用接着剤及び半導体センサ
JP2018165359A (ja) * 2017-03-28 2018-10-25 積水化学工業株式会社 樹脂組成物及びインダクタ
JP7086657B2 (ja) 2017-03-28 2022-06-20 積水化学工業株式会社 樹脂組成物及びインダクタ
KR20190080774A (ko) * 2017-12-28 2019-07-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 열 경화성 조성물, 경화막 및 표시 장치
JP2019119765A (ja) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 熱硬化性組成物、硬化膜および表示装置
JP7493301B2 (ja) 2017-12-28 2024-05-31 日鉄ケミカル&マテリアル株式会社 熱硬化性組成物、硬化膜および表示装置
KR102725367B1 (ko) 2017-12-28 2024-11-01 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 열 경화성 조성물, 경화막 및 표시 장치
JP2020094143A (ja) * 2018-12-13 2020-06-18 サンスター技研株式会社 硬化性樹脂組成物

Also Published As

Publication number Publication date
CN101490829B (zh) 2011-06-22
JP4088337B2 (ja) 2008-05-21
KR100923901B1 (ko) 2009-10-28
JPWO2008010555A1 (ja) 2009-12-17
TWI313291B (ja) 2009-08-11
CN101490829A (zh) 2009-07-22
US7915743B2 (en) 2011-03-29
EP2045839A4 (en) 2009-08-05
US20090311827A1 (en) 2009-12-17
TW200808932A (en) 2008-02-16
EP2045839A1 (en) 2009-04-08
KR20090031739A (ko) 2009-03-27

Similar Documents

Publication Publication Date Title
JP4088337B2 (ja) 電子部品用接着剤及び半導体チップ積層体の製造方法
KR100946606B1 (ko) 전자 부품용 접착제
JP4376957B2 (ja) 電子部品用接着剤
JP4339927B2 (ja) 半導体チップの積層方法
JP4705192B2 (ja) 半導体チップ積層体の製造方法
JP5346166B2 (ja) 電子部品用接着剤
JP5118956B2 (ja) 電子部品用接着剤
WO2019088128A1 (ja) 実装構造体の製造方法およびこれに用いられるシート
JP2011198953A (ja) 電子部品積層体の製造方法
WO2019065976A1 (ja) 実装構造体の製造方法およびこれに用いられる積層シート
JP2013006899A (ja) 接着フィルム及びこれを用いた半導体装置
JP5629168B2 (ja) 半導体チップ実装体の製造方法及び半導体装置
WO2004069894A1 (ja) エポキシ樹脂組成物、同組成物の硬化層を有する半導体装置、および同半導体装置の製造方法
JP2012004224A (ja) 電子部品接合体の製造方法及び電子部品接合体
JP2012060020A (ja) 半導体チップ実装体の製造方法及び半導体装置
JP2006216790A (ja) 電子部品装置及び電子部品装置の製造方法
JP2005244189A (ja) 半導体チップ接合用接着性樹脂シート及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027527.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007545772

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097001042

Country of ref document: KR

Ref document number: 2007791028

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12309324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载