WO2008000573A2 - Wear-resistant coating and production method for the same - Google Patents
Wear-resistant coating and production method for the same Download PDFInfo
- Publication number
- WO2008000573A2 WO2008000573A2 PCT/EP2007/055229 EP2007055229W WO2008000573A2 WO 2008000573 A2 WO2008000573 A2 WO 2008000573A2 EP 2007055229 W EP2007055229 W EP 2007055229W WO 2008000573 A2 WO2008000573 A2 WO 2008000573A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating according
- layer
- coating
- hydrogen
- following
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 60
- 239000011248 coating agent Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000010410 layer Substances 0.000 claims abstract description 104
- 239000002346 layers by function Substances 0.000 claims abstract description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 31
- 239000001257 hydrogen Substances 0.000 claims abstract description 31
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- 239000002105 nanoparticle Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 229910052755 nonmetal Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- -1 carbides nitrides Chemical class 0.000 claims description 3
- 239000002019 doping agent Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 206010010144 Completed suicide Diseases 0.000 claims description 2
- 229910021332 silicide Inorganic materials 0.000 claims description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 229910002091 carbon monoxide Inorganic materials 0.000 claims 1
- 239000005300 metallic glass Substances 0.000 claims 1
- 239000002707 nanocrystalline material Substances 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 abstract 1
- 230000001965 increasing effect Effects 0.000 description 14
- 230000009467 reduction Effects 0.000 description 12
- 235000019589 hardness Nutrition 0.000 description 9
- 150000004767 nitrides Chemical class 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 235000019587 texture Nutrition 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002347 wear-protection layer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/046—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/048—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
- F01L1/143—Tappets; Push rods for use with overhead camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
- F01L1/16—Silencing impact; Reducing wear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/18—Rocking arms or levers
- F01L1/185—Overhead end-pivot rocking arms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/20—Adjusting or compensating clearance
- F01L1/22—Adjusting or compensating clearance automatically, e.g. mechanically
- F01L1/24—Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
- F01L1/2405—Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2301/00—Using particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2303/00—Manufacturing of components used in valve arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2305/00—Valve arrangements comprising rollers
Definitions
- the invention is in the field of tribology and is concerned with the coating of machine parts to reduce friction losses and wear.
- the present invention is basically applicable to many different types of machine parts that are subject to abrasive wear.
- a particularly advantageous example is the use in parts of internal combustion engines, in particular in valve train components such as tappets used.
- an application for industrial use such as in bearings and linear guides is also conceivable.
- cam follower devices are incorporated, for example, in reciprocating piston engine engines having air intake and exhaust valves that open and close in phase with, or in synchronism with, the rotation of the crankshaft.
- a valve drive mechanism is used to transmit the movement of the camshaft mounted cam to the valves as the camshaft rotates with the crankshaft of the engine.
- the cam of the camshaft is in frictional contact with a running surface of the associated tappet.
- valve train components such as, for example, cup and pump tappets
- valve train components are subject to increasing demands.
- the reasons for the need for increased wear resistance lie in the ever-increasing loads and stresses of the tribological system, consisting of control cams and tappets.
- the causes for this are new engine concepts, such as gasoline and diesel direct injection systems, with constantly increasing injection pressures, an increasing proportion of abrasive particles in the lubricant, lack of oil supply to the friction partners, which results in an increased proportion of mixed friction, and Increasing use of tribologically unfavorable steel cams for cost and mass reduction.
- An important contribution to the conservation of resources is the reduction of friction losses in the valve train, resulting in fuel savings while increasing the life of the entire valve train. In order to effectively reduce the friction losses, it is necessary to reduce the friction torque over a wide speed range.
- tappets for the valve control of an internal combustion engine as a light metal plunger, which body has a tappet body and a seated on the contact surface for the control cam of the valve control steel plate with a hardened surface.
- a disadvantage of this approach has turned out to be the fact that such bucket tappets are exposed in operation relatively large temperature fluctuations of -30 ° C at cold start up to about 130 ° C during operation of an internal combustion engine.
- the problem here is the different thermal expansion of the materials used.
- the steel plate inserted as an insert into a light-metal ram has good wear properties, it tends to detach under corresponding thermal stress. The thermal capacity is therefore limited.
- Another technical disadvantage is that the space is lost in the form of a relatively wide edge as a functional surface or as a cam contact surface, which is contacted by the control cam of a valve control.
- wear protection layers which, depending on the application, preferably consist of electroplated metals or metals and / or metal alloys applied with a thermal spraying process, optionally with additions of hard material.
- thermally sprayed metal layers have a relatively weak strength
- it is therefore known to reflow the metal layers after application for example by plasma jets, laser beams, electron beams or by an arc in order to improve the strength in that the spray materials mix and alloy in a molten state with the base material melted down simultaneously in the surface area.
- the thermally sprayed and thus rough coatings must be mechanically reworked to have good trochological properties.
- inhomogeneous zones of different composition arise in which both the base material and the layer material can predominate.
- the layer wear will be too high, and with a low base material content there will be a risk of macrocracking in the case of different layer combinations, so that such layers can not be used. In such a case Friction stresses can cause undesirable adhesive wear on the layers.
- a reduction in friction in the valve train is a necessary contribution to saving fuel and conserving resources.
- This goal can be achieved by reducing the field of solid and mixed friction and thus increasing the field of fluid friction with complete separation of materials. This is achieved by optimizing the overall roughness of the tribological system consisting of bucket tappets and camshaft.
- the surface In order to obtain the necessary optimal surface structure of the tappet over the entire life, it is necessary to make the surface so that it has a high wear resistance, a low adhesive tendency to the counter body and low reactivity to the environment. Furthermore, the surface may preferably not contain any abrasive particles such as droplets.
- the tappets made of iron-carbon alloys do not achieve the requisite wear resistances and tribologically favorable surface conditions. If, for example, nitride layers are treated mechanically, in particular by (fine) grinding, lapping, polishing, blasting, etc., in addition to the surface structure, the chemical composition and reactivity of the surface are also changed. On the one hand, these changes are subject to a great deal of variation, which means that no consistent quality can be achieved. On the other hand, topographically affine surfaces have less favorable tribological properties and tend to adhere to the counterpart body.
- the hard droplets lead to abrasive wear of the counter body or at least to a random polishing of the counter body, which results in unfavorable consequences which are not to be foreseen.
- the droplets break during operation from the layer, resulting in a layer damage and free, abrasive particles.
- the object of the present invention is to provide a coating and a production method for such a coating which eliminate the abovementioned disadvantages and in particular reduce the frictional torque over the entire area of use and increase the service life of the coated machine part and of the counterpart body.
- this object is achieved by a wear-resistant coating with the features of patent claim 1 and by a method having the features of patent claim 21.
- the functional layer is based on hydrogen-containing carbon is, and in cross-section areas of different consistency, the extent of which in at least one direction 20 nm, better still 10nm, below, a nanostructured layer is formed, in which the areas of different consistency, that is, for example, from different materials, different modification, can fulfill different tasks with different proportions of material or even with different crystal orientation, which are very difficult to meet by a single substance of homogeneous nature. Due to the nanostructuring, however, the friction partner in the functional layer is confronted with different areas at the same time, for example to reduce the sliding friction and to generate the necessary material hardness.
- the functional layer is formed at least partially by layers which are essentially parallel to the surface and which form the regions of different consistency.
- a hybrid surface is created in which different layers are exposed at different points.
- the surface of the functional layer thus offers the friction partner different surface areas with different hardness, different friction properties, adhesion tendency and different toughness.
- nanostructuring is additionally formed by the inhomogeneities, a high crack resistance to chipping and peeling of the layer. It can be achieved by suitable design and arrangement of the layers also increased corrosion resistance or increased or decreased wettability with lubricants. Measurements have shown that by the invention the reduction of friction moments by 30% and hardnesses between 15 and 70 GP can be achieved.
- one or more of the layers are advantageously thinner than 10 nm.
- the number of layers is typically greater than 2 and may be up to several tens, in particular more than 50 or more than 100, so that the total thickness of the layer is up to 10 May be micrometer.
- Adjacent layers each have a different consistency in that, for example, at least two adjacent layers each have different of the following three consistencies: amorphous, metal-free, hydrogen-containing carbon, amorphous, metal-containing, hydrogen-containing carbon, amorphous, at least one nonmetal-containing, Hydrogen-containing carbon. In principle, process-adjusted impurities of less than 1% may be contained.
- non-metals containing hydrogen-containing carbon typically has the property to reduce frictional forces and, for example, if fluorine, silicon or oxygen is stored, also the property of favoring a low wettability with lubricants. As a result, a thinner oil film is favored, which brings advantages, in particular in the case of rapid relative movements of the friction partners, that is, for example, in valve trains.
- the metal-containing amorphous, hydrogen-containing hydrocarbons typically have the properties of hardness and abrasion resistance.
- Adjacent layers may also differ only in that they are doped with different materials or that the extent of doping is different.
- the doping can be used specifically to produce certain mechanical properties, the properties thus produced also depend on the nature and size of the doping atoms.
- the nature of the resulting crystalline structure depends on the amount of doping atoms insofar as crystalline transformations take place above a certain degree of doping or mixed phases arise from different modifications.
- even adjacent layers that differ only by the type or the extent of doping differ have completely different mechanical or tribological properties.
- adjacent layers can also differ by the percentage of hydrogen in the amorphous carbon.
- the hydrogen content in the carbon also strongly influences the fundamental tribological properties. Hydrogen contents below 20%, in particular between 5% and 20%, tend to make the hydrogen-containing amorphous carbon harder and are advantageous for the embodiment according to the invention.
- the percentage ratio of sp 3 - and sp 2 -hybhdrawen carbon can distinguish two adjacent layers from each other. This concerns the carbon which is present in diamond and graphite modification which, as is known, have different mechanical properties. Accordingly, the thus different adjacent layers also have different tribological properties. It is particularly advantageous if the proportion of sp 3 " hybridized carbon atoms is greater than 50% of the carbon atoms.
- At least one layer at least one of the parameters: hydrogen content, proportion of the sp 3 -hybridized C atoms, doping perpendicular to the surface of the coating has a gradient.
- the qualities of the surface can be permanently adjusted for a wide variety of tribological requirements by the proportion of each exposed at the surface areas with high hardness, high toughness or effective friction Reduction predominates or is less weighted.
- the invention enables an individual adjustment to customer-specific requirements.
- the regions are at least partially formed by nanoparticles.
- These may for example be formed from one or more of the materials: nitride, boride, carbide, silicide.
- chromium nitride, titanium nitride, silicon nitride, silicon carbide or titanium carbide are conceivable.
- Such nanoparticles can be co-deposited with, for example, in the course of a deposition process together with or before or after the deposition of corresponding hydrogen-containing carbon layers.
- the corresponding necessary substances are temporarily brought into the gas phase in the separation device, either by sputtering or other known methods and by the process parameters, the crystallization of the particles is promoted. This results in nanodisperse, self-organized regions, either of different crystallites or crystallites of the same structure with different orientations.
- nitride formers such as chromium, titanium and other unstable nitride-forming elements such as copper may be deposited together, wherein, for example, when copper and chromium nitride, the copper content compared to the chromium content may be below 2%. Chromium nitride then forms in a copper matrix as a nanocrystal.
- titanium nitride and a very low boron content it also being possible to use titanium carbide instead of titanium nitride and, in any case, to crystallize the corresponding nitride or carbide in a quasi-amorphous boron matrix.
- the corresponding nanoparticles can either be embedded in an amorphous layer consisting of hydrogen-containing carbon or form a nanoparticle layer between the carbon layers.
- the layer formed is thin or the particles are finely distributed, so that at the surface of the functional layer in each case the exposed areas of the nanoparticles occupy only part of the surface and thus other parts through areas of different consistency with other mechanical or tribological properties be occupied.
- the coating below the functional layer has at least one adhesion-promoting layer which consists of chromium, tungsten or titanium or of borides, carbides or nitrides of the transition metals.
- an adhesion promoter stabilizes the overall structure of the coated machine part with the functional layer and in particular prevents detachment of the functional layer.
- Suitable materials suitable for the machine parts are conventional readily processable and cost-effective materials (16Mn Cr5, C45, 100 Cr6, 31 Cr Mo V9, 80 Cr2 and so forth).
- As a friction partner iron / carbon alloys are conceivable in the sense of lightweight construction for weight saving.
- a support layer below the functional layer of a metal-containing or non-metal-containing, hydrogen-containing carbon layer which contains one or more of the components tungsten, tantalum, chromium, vanadium, hafnium, titanium or nickel on the one hand or silicon, oxygen, fluorine, nitrogen on the other hand contains.
- Such a supporting layer has the task of absorbing large mechanical force loads acting on the functional layer, so that no excessive ge deformation of the functional layer occurs, which could lead to the detachment of substrates or destruction of the functional layer by cracking and chipping.
- the intermediate layer is extremely strong, with neither low frictional resistance nor wear resistance. Therefore, the support layer can be designed specifically so that it has a low compliance or is adjusted in the compliance such that it creates an optimal transition between the functional layer and the actual machine part.
- the invention further relates to a method for producing a coating according to claim 1 or one of the following, wherein in a deposition process for applying the areas to the surface, the process parameters are changed at successive times such that the size of the areas formed by deposition in cross section the coating falls below 20 nm. It is particularly advantageous if the size of the regions falls below 10 nm.
- At least one of the parameters pressure, temperature, admixture of dopants, hydrogen content, rotational speed of carbon content can be changed abruptly or continuously during the production of the functional layer.
- a process temperature of 250 ° C. is advantageously not exceeded because the hardening of the base material of the machine part is thus retained and reworking, for example by inductive hardening, does not have to take place.
- the deposition takes place in the context of known PVD (physical vapor diposition) and (PA) CVD (plasma assisted chemical vapor diposition) method.
- a starting material such as graphite
- a jet of high-energy carbon ions from the Imitating graphite and accelerated in the direction of the surface to be coated in a field In a PVD process, a starting material, such as graphite, heated so that a jet of high-energy carbon ions from the Imitating graphite and accelerated in the direction of the surface to be coated in a field.
- a gas mixture is introduced into the process chamber with the aid of a plasma, in which the material parts to be coated are located.
- the (PA) CVD process is a further development of the CVD process and combines the advantages of the CVO process (unrated process) and the PVD process (low temperatures).
- the layer deposition takes place by chemical reaction from the gas phase at temperatures of less than 200 ° C with a targeted plasma support.
- the structure of the resulting coating is determined.
- certain parameter limits there are also sudden changes in the consistency of the deposited layer, since certain, in particular, crystalline configurations can only be formed up to certain material fractions of individual substances. If these components are not present, then another crystal or another modification or a mixed phase is formed.
- the invention also relates to machine parts which are provided with the coating according to the invention, in particular to a valve tappet for a cam-actuatable valve of an internal combustion engine.
- Figure 1 is a front view of a friction pair, consisting of Tassenstö- and camshaft for the operation of a valve of an internal combustion engine;
- Figure 2 is a perspective view of the tappet of Figure 1;
- Figure 3 is a perspective view of a hydraulic support element, which is connected via a rolling bearing component with a finger lever in connection;
- Figure 4 is a schematic cross-sectional view of a machine part with wear-resistant coating according to an embodiment of the present invention.
- FIG. 5 representation of a functional layer.
- FIG. 1 illustrates a friction pairing consisting of a tappet 5 with a cam contact surface 50 and a cup skirt 51 as well as a cam 6.
- the tappet 5 is shown in greater detail in FIG. 2 in a perspective view.
- the tappet 5 is generally connected for machine parts in internal combustion engines with the shaft 7 of a valve which opens or closes the valve by moving the cam surface against the cam contact surface 50 of the tappet 5.
- valve train components such as, for example, cup and pump tappets
- wear resistance and resource conservation in particular with regard to contact area 50.
- FIG. 4 illustrates a schematic cross-sectional view of a wear-resistant coating for a machine part 1, for example for a bucket tappet 5, according to a preferred embodiment of the present invention
- the tappet 5 is coated with a wear-resistant coating according to the invention for a reduction of the coefficient of friction and for an increase of the wear resistance in the region of the cam contact surface 50 or, if required, in the region of the cam contact surface 50 and the cup 51.
- a wear-resistant coating for a reduction of the coefficient of friction and for an increase of the wear resistance in the region of the cam contact surface 50 or, if required, in the region of the cam contact surface 50 and the cup 51.
- a partial coating of the cup 51 can take place.
- the area 2 to be coated i. in the present case the cam contact surface 50 of the tappet 5, is preferably case hardened or carbonized and tempered before coating.
- the base body in the present case, the cam contact surface 50 of the tappet 5, which advantageously consists of a cost-effective steel material, such as 16MnCr5, C45, 100Cr6, 31 CrMoV9, 80Cr2 or the like, is first coated with an adhesion-promoting layer 3 according to the present embodiment.
- the adhesion-promoting layer 3 may, for example, each consist of a metal-containing carbon, for example a compound of tungsten and carbon, but also of metallic materials (eg Cr, Ti), as well as borides, carbides, nitrides and suicides of the transition metals.
- An additional support layer above the primer layer may consist of an amorphous carbon containing a metal or non-metal such as W, Ta, Cr, V, Hf, Ti, Ni or Si, O, F, N and hydrogen.
- the adhesion-promoting and the supporting layer can be used in connection with a heat treatment, for example case-hardening, Carbonitriding, nitrocarburizing, by a thermochemical process, for example nitriding, boriding, by a galvanic process, for example by applying a chromium-containing layer, or by a PVD process, for example, application of Me-C, carbides and nitrides of the transition metals, are formed.
- the support layer is intended to increase the fatigue strength of the overall coating, i. plastic deformation, cracking, growth and fractures of the layer system can be prevented. Such fatigue operations can be caused by the load on the cam and the material stress of the bucket tappet 5 induced therefrom as well as by different degrees of hardness, moduli of elasticity, deformability of the individual layers or of the main body and of the wear-resistant coating.
- a formation of the layer 3 as a support layer 3 either alone or in combination with a suitable adhesion-promoting layer is preferable.
- a wear-resistant coating 4 is formed over the backing and / or the primer layer 3.
- the functional layer 4 is shown there as schematically constructed from many individual nanosheets, wherein the size ratios are reproduced only schematically and not to scale.
- the functional layer is shown to scale greatly enlarged.
- the variants are shown in the left half of the figure, which have different superimposed less than 10 nm thick layers, each consisting of a hydrogen-containing amorphous carbon with different consistency, while on the right side of the figure a variant with additional nanodisperse particles is shown.
- the scale is widely spaced because of the small thickness of the nanosheets in the direction perpendicular to the surface.
- the wavy line at the Surface represents the real surface that self-adjusts due to irregularities in manufacturing or after use.
- the waviness is in reality not as great as shown but appears exaggerated by the uniaxial magnification of the scale perpendicular to the friction surface. Nevertheless, the effect achieved with the invention can be explained on the basis of this illustration.
- the individual layers 60, 61, 62 are hatched differently at least in the upper area toward the surface and can therefore be distinguished.
- the individual layers differ at least partially in relation to the consistency, that is to say the hydrogen content, the type and amount of added, doped substances or crystal modifications and orientations. At the same time, some or many of the layers are open at the surface.
- nanoparticles 63, 64 are introduced into the carbon matrix.
- the corresponding nanoparticles which may be formed, for example, as borides, carbides or nitrides, form where they come to the surface, so for example in the case of the particles 63, 64 hard and wear-resistant areas and thus also prevent the removal of the surrounding material the carbon matrix. This, in turn, contributes somewhat to a reduction in the coefficient of friction, depending on the composition on the surface, for example. If something is removed from the surface of the functional layer in the course of material wear, new nanoparticles are exposed, which then again perform the stated task of ensuring hardness and wear resistance.
- the nanoparticles can also be concentrated in different layers. This can be offered, for example, in the context of the deposition process by introducing between the deposition of the remaining layers during the PVD or PACVD process certain metal nitrides, borides or carbides which are deposited in mixing ratios which automatically form different phases lead. This then leads to the formation of hard nanoparticles in the relevant layer.
- the described invention provides a novel coating which, by selection of the particles and the individual nanolayers, allows adaptation to the present tribological requirements in a very accurate manner, whereby macro-range parameters can be set by the mixture of regions with different surface textures can be achieved with any known homogeneous material.
- the invention also provides a simple production process for such a functional layer, which does not require any constructive changes compared with the production means used hitherto in PVD and (PA) CVD coating.
- the maximum coating temperature is preferably 250 ° C, so that in a coating process, the base material is not tempered.
- FIG. 3 illustrates a perspective view of a hydraulic support element 8 which has a piston 9 and a housing 10.
- the hydraulic support element 8 is coupled to a drag lever 11, wherein the drag lever 1 1 is pivotally mounted via a rolling bearing 12.
- the piston 9 has a contact region 90 between the piston 9 and the drag lever 11.
- the piston 9 has a contact region 91 between the piston 9 and the housing 10.
- the contact region 90 is likewise provided with a nanostructured functional layer 4 according to the invention.
- the contact region 91 between the piston 9 and the housing 10 can also be coated with such a coating 3, 4 depending on the application and manufacturing technology.
- the overall service life of the illustrated tribological system is increased, as a result of which a failure of the individual machine parts during operation is reduced and thus overall costs can be saved.
- components of the rolling bearing 12 for example, the rolling elements, the inner and outer rings of the rolling bearing 12, the rolling bearing cages, the axial discs or the like also to increase the wear resistance and friction reduction with the functional layer 4 according to the invention with the interposition of, for example, a support and / or primer layer 3 are coated.
- the layer system described above is also suitable for other structural and functional units, such as valve stems or valve stem supports, supporting and inserting elements, roller bearing components, release bearings, piston pins, bearing bushings, control pistons for, for example, injection nozzles in the engine area, linear guides and other mechanical and tribological devices. highly stressed parts suitable.
- the functional layer 4 can also be deposited directly on the main body of the machine part to be coated, without a support layer 3 or adhesion-promoting layer 3 being applied therebetween.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Lubricants (AREA)
- Chemical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
Verschlei ßfeste Beschichtung sowie Herstellverfahren hierfür Wear resistant coating and manufacturing process for this
Die Erfindung liegt auf dem Gebiet der Tribologie und beschäftigt sich mit der Beschichtung von Maschinenteilen zur Verringerung der Reibungsverluste und des Verschleisses. Die vorliegende Erfindung ist grundsätzlich auf viele verschiedenartige Maschinenteile anwendbar, die einem reibenden Verschleiß ausgesetzt sind. Als besonders vorteilhaftes Beispiel wird jedoch die Verwendung bei Teilen von Verbrennungskraftmaschinen, insbesondere bei Ventiltriebkomponenten wie beispielsweise Tassenstößeln herangezogen. Eine Anwen- düng bei industrieller Verwendung wie beispielsweise in Wälzlagern und Linearführungen ist jedoch ebenfalls denkbar.The invention is in the field of tribology and is concerned with the coating of machine parts to reduce friction losses and wear. The present invention is basically applicable to many different types of machine parts that are subject to abrasive wear. However, a particularly advantageous example is the use in parts of internal combustion engines, in particular in valve train components such as tappets used. However, an application for industrial use such as in bearings and linear guides is also conceivable.
Grundsätzlich werden die Anforderungen an derartige Komponenten durch Steigerung von mechanischen Belastungen, Bewegungsgeschwindigkeiten und Standzeiten immer höher. Dabei wird zunehmend geringere Wartungsintensität vorausgesetzt. Entsprechende Schmierstoffe werden wegen der steigenden Anforderungen an die Umweltverträglichkeit mit immer weniger Additive verwendet und der Trend geht teilweise zu niederviskosen Schmierstoffen oder sogar zum Betrieb ohne Schmierstoffe.Basically, the demands on such components by increasing mechanical loads, movement speeds and service life are getting higher. Increasingly lower maintenance intensity is assumed. Corresponding lubricants are used because of the increasing demands on the environmental compatibility with fewer and fewer additives and the trend is sometimes to low-viscosity lubricants or even to operate without lubricants.
Die entsprechenden Anforderungen an niedrige Reibungskräfte und Adhäsion sowohl im flüssigkeitsgeschmierten, als auch im trockenen und im Übergangsbereich, an niedrige Adhäsionskräfte, hohen Verschleißwiderstand und gleichzeitig Zähigkeit gegenüber Stoßbelastungen und die Widerstandsfähigkeit ge- gen Abplatzen werden durch konventionelle Beschichtungen nicht mehr erfüllt.The corresponding requirements for low frictional forces and adhesion both in the liquid-lubricated, dry and transitional areas, low adhesion forces, high wear resistance and, at the same time, toughness and resistance to spalling are no longer met by conventional coatings.
Teilweise können einzelne der Anforderungen durch in bestimmter Weise geartete Beschichtungen erfüllt werden, wie beispielsweise die Härte oder der geringe Reibwiderstand, jedoch leiden regelmäßig andere Eigenschaften des tri- bologischen Systems.In part, some of the requirements may be met by specific coatings, such as hardness or low frictional resistance, but regularly suffer from other characteristics of the tri-biological system.
Besonders deutlich wird dies an dem Beispiel von Ventiltrieben bei Verbrennungskraftmaschinen, bei denen das Augenmerk insbesondere auf Nockenstö- ßelvorrichtungen liegt.This becomes particularly clear with the example of valve trains in internal combustion engines, where particular attention is paid to cam stoppers. is located.
Derartige Nockenstößelvorrichtungen sind beispielsweise in Kraftfahrzeugmotoren mit hin- und hergehenden Kolben eingebaut, welche Lufteinlass- und Luft- auslassventile aufweisen, die sich in Phase mit der Drehung der Kurbelwelle oder synchron hierzu öffnen und schließen. Ein Ventilantriebsmechanismus wird zur Übertragung der Bewegung des an der Nockenwelle angebrachten Nockens auf die Ventile verwendet, wenn sich die Nockenwelle zusammen mit der Kurbelwelle des Motors dreht. Dabei gelangt der Nocken der Nockenwelle in Reibkontakt mit einer Lauffläche des zugeordneten Tassenstößels.Such cam follower devices are incorporated, for example, in reciprocating piston engine engines having air intake and exhaust valves that open and close in phase with, or in synchronism with, the rotation of the crankshaft. A valve drive mechanism is used to transmit the movement of the camshaft mounted cam to the valves as the camshaft rotates with the crankshaft of the engine. In this case, the cam of the camshaft is in frictional contact with a running surface of the associated tappet.
Allgemein unterliegen derartige Ventiltriebkomponenten, wie beispielsweise Tassen- und Pumpenstößel steigenden Anforderungen. Die Ursachen für die Notwendigkeit eines erhöhten Verschleißwiderstandes liegen in den immer hö- her werdenden Belastungen und Beanspruchungen des tribologischen Systems, bestehend aus Steuernocken und -Stößel. Die Ursachen hierfür liegen in neuen Motorkonzepten, wie beispielsweise Benzin- und Dieseldirekteinspritz- systemen, mit stetig steigenden Einspritzdrücken, einem zunehmenden Anteil an abrasiven Partikeln im Schmierstoff, mangelnder Ölversorgung der Reib- partner, was einen erhöhten Anteil an Mischreibung zur Folge hat, und der zunehmenden Verwendung von tribologisch ungünstigen Stahlnocken zur Kosten- und Massereduzierung. Ein wichtiger Beitrag zur Ressourcenschonung ist die Reduzierung der Reibungsverluste im Ventiltrieb, mit daraus folgender Kraftstoffeinsparung bei gleichzeitiger Erhöhung der Lebensdauer des gesamten Ventiltriebes. Um die Reibungsverluste effektiv zu reduzieren, ist es notwendig, das Reibmoment über einen breiten Drehzahlbereich zu senken.In general, such valve train components, such as, for example, cup and pump tappets, are subject to increasing demands. The reasons for the need for increased wear resistance lie in the ever-increasing loads and stresses of the tribological system, consisting of control cams and tappets. The causes for this are new engine concepts, such as gasoline and diesel direct injection systems, with constantly increasing injection pressures, an increasing proportion of abrasive particles in the lubricant, lack of oil supply to the friction partners, which results in an increased proportion of mixed friction, and Increasing use of tribologically unfavorable steel cams for cost and mass reduction. An important contribution to the conservation of resources is the reduction of friction losses in the valve train, resulting in fuel savings while increasing the life of the entire valve train. In order to effectively reduce the friction losses, it is necessary to reduce the friction torque over a wide speed range.
Es ist bekannt, derartige Tassenstößel für die Ventilsteuerung eines Verbrennungsmotors als Leichtmetallstößel auszubilden, welcher einen Stößelgrund- körper und eine an der Berührungsfläche für die Steuernocken der Ventilsteuerung eingelegte Stahlplatte mit einer gehärteten Oberfläche aufweist.It is known to form such tappets for the valve control of an internal combustion engine as a light metal plunger, which body has a tappet body and a seated on the contact surface for the control cam of the valve control steel plate with a hardened surface.
Nachteilig an diesem Ansatz hat sich jedoch die Tatsache herausgestellt, dass derartige Tassenstößel im Betriebsfall relativ großen Temperaturschwankungen von -30 °C bei Kaltstart bis zu ca. 130°C während des Betriebes einer Brennkraftmaschine ausgesetzt sind. Problematisch dabei ist die unterschiedliche Wärmeausdehnung der verwendeten Werkstoffe. Zwar weist die als Einlage in einen Leichtmetallstößel eingelegte Stahlplatte gute Verschleißeigenschaften auf, jedoch neigt sie bei entsprechender thermischer Belastung zum Ablösen. Die thermische Belastbarkeit ist deshalb begrenzt. Ein weiterer anwendungstechnischer Nachteil besteht darin, dass der Bauraum in Form eines relativ breiten Randes als Funktionsfläche bzw. als Nockenkontaktfläche, die von dem Steuernocken einer Ventilsteuerung kontaktiert wird, verloren geht.A disadvantage of this approach, however, has turned out to be the fact that such bucket tappets are exposed in operation relatively large temperature fluctuations of -30 ° C at cold start up to about 130 ° C during operation of an internal combustion engine. The problem here is the different thermal expansion of the materials used. Although the steel plate inserted as an insert into a light-metal ram has good wear properties, it tends to detach under corresponding thermal stress. The thermal capacity is therefore limited. Another technical disadvantage is that the space is lost in the form of a relatively wide edge as a functional surface or as a cam contact surface, which is contacted by the control cam of a valve control.
Gemäß dem Stand der Technik ist es ebenfalls bekannt, Laufflächen von reibendem Verschleiß ausgesetzten Maschinenteilen mit Verschleißschutzschichten zu versehen, die je nach Anwendungsfall bevorzugt aus galvanisch aufge- tragenen Metallen oder aus in einem thermischen Spritzverfahren aufgetragenen Metallen und/oder Metalllegierungen gegebenenfalls mit Hartstoffzusätzen bestehen.According to the prior art, it is likewise known to provide running surfaces of machine parts exposed to frictional wear with wear protection layers which, depending on the application, preferably consist of electroplated metals or metals and / or metal alloys applied with a thermal spraying process, optionally with additions of hard material.
Hierbei hat sich jedoch die Tatsache als nachteilig herausgestellt, dass ther- misch aufgespritzte Metallschichten eine relativ schwache Festigkeit besitzen, und es ist daher bekannt, zur Verbesserung der Festigkeit die Metallschichten nach dem Auftrag beispielsweise durch Plasmastrahlen, Laserstrahlen, Elektronenstrahlen oder durch einen Lichtbogen derart umzuschmelzen, dass sich die Spritzwerkstoffe mit dem dabei gleichzeitig im Oberflächenbereich aufge- schmolzenen Grundwerkstoff schmelzflüssig vermischen und legieren. Darüber hinaus müssen die thermisch aufgespritzten und somit rauhen Beschichtungen mechanisch nachgearbeitet werden um gute trobologische Eigenschaften aufzuweisen. Beim Umschmelzlegieren entstehen jedoch inhomogene Zonen unterschiedlicher Zusammensetzung, in denen sowohl der Grundwerkstoff als auch das Schichtmaterial überwiegen kann. Bei zu hohem Grundmaterialanteil ist der Schichtverschleiß dann zu hoch, und bei geringem Grundmaterialanteil besteht bei verschiedenen Schichtkombinationen die Gefahr von Makrorissbildungen, sodass solche Schichten nicht einsetzbar sind. In einem derartigen Fall können Reibungsbelastungen einen unerwünschten Adhäsiv- Verschleiß an den Schichten verursachen.In this case, however, the fact that thermally sprayed metal layers have a relatively weak strength has been found to be disadvantageous, and it is therefore known to reflow the metal layers after application, for example by plasma jets, laser beams, electron beams or by an arc in order to improve the strength in that the spray materials mix and alloy in a molten state with the base material melted down simultaneously in the surface area. In addition, the thermally sprayed and thus rough coatings must be mechanically reworked to have good trochological properties. In remelting, however, inhomogeneous zones of different composition arise in which both the base material and the layer material can predominate. If the base material content is too high, then the layer wear will be too high, and with a low base material content there will be a risk of macrocracking in the case of different layer combinations, so that such layers can not be used. In such a case Friction stresses can cause undesirable adhesive wear on the layers.
Ferner ist es bekannt, die Lauffläche des Tassenstößels mittels eines thermo- chemischen Prozesses zu carbonitrieren und/oder zu nitrocarbuheren. Dabei hat sich jedoch als nachteilig herausgestellt, dass kein zufriedenstellender Reibungskoeffizient erreicht wird und ein zu geringer Verschleißwiderstand entsteht.Furthermore, it is known to carbonitrate the tread of the tappet by means of a thermochemical process and / or to nitrocarbuheren. However, it has proved to be disadvantageous that no satisfactory coefficient of friction is achieved and too low a wear resistance arises.
Außerdem ist bekannt, die Lauffläche des Stößels mit einer Manganphosphatschicht oder einem Gleitlack zu beschichten. Auch hierbei werden keine zufriedenstellenden Reibungskoeffizienten und Verschleißwiderstände erreicht. Zudem wird durch derartige Materialien die Umwelt unnötig belastet. Das selbe gilt für galvanische Schichten, die ebenfalls auf den Laufflächen aufgebracht wer- den können.It is also known to coat the tread of the tappet with a manganese phosphate layer or a bonded coating. Again, no satisfactory coefficients of friction and wear resistances are achieved. In addition, such materials pollute the environment unnecessarily. The same applies to galvanic layers, which can also be applied to the running surfaces.
Es sind aus dem Stand der Technik als Beschichtungsmatehalien auch Hartmetalle und Schnellarbeitstahle (ASP 23) bekannt, die jedoch neben einem nicht zufriedenstellenden Reibungskoeffizienten und einem nicht zufriedenstellenden Verschleißwiderstand zusätzlich eine nachteilig hohe Masse aufweisen.There are also known from the prior art as Beschichtungsmatehalien hard metals and Schnellarbeitstahle (ASP 23), which in addition to an unsatisfactory coefficient of friction and an unsatisfactory wear resistance additionally have a disadvantageous high mass.
Außerdem sind harte, mittels beispielsweise eines PVD- oder eines (PA)CVD- Verfahrens, hergestellte Schichten, wie beispielsweise TiN, CrN, (Ti, AI)N, bekannt. Nachteilig an diesem Ansatz hat sich jedoch die Tatsache herausgestellt, dass diese Schichten einen hohen Verschleiß des Gegenkörpers zur Folge haben, falls diese Schichten nicht nachbearbeitet werden. Im Falle einer Nachbearbeitung ergeben sich Undefinierte Oberflächenzustände aufgrund der reaktiven Oberflächen.In addition, hard, for example by a PVD or a (PA) CVD method, produced layers such as TiN, CrN, (Ti, Al) N, known. A disadvantage of this approach, however, has proved the fact that these layers have a high wear of the counter body result if these layers are not reworked. In the case of post-processing, undefined surface states result due to the reactive surfaces.
Aus dem US-Patent 5,237,967 sind kohlenstoffbasierte PVD- und (PA)CVD- Schichten mit 20 bis 60 Atoιm-% Wasserstoff in der Deckschicht bekannt, sogenannte metallhaltige Kohlenwasserstoffschichten (a-C:H:Me) und amorphe Kohlenwasserstoffschichten (a-C:H). Diese Schichten weisen jedoch einen relativ geringen Verschleiß- und Ermüdungswiderstand auf und sind deshalb für hoch beanspruchte Bauteile in neuen Motorengenerationen nicht geeignet und bieten eine vergleichsweise geringe Reibungsreduzierung im Betrieb.From US Pat. No. 5,237,967, carbon-based PVD and (PA) CVD layers with 20 to 60 Atoιm-% hydrogen in the top layer known so-called metal-containing hydrocarbon layers (aC: H: Me) and amorphous hydrocarbon layers (aC: H). However, these layers have a relative low wear and fatigue resistance and are therefore not suitable for highly stressed components in new generations of engines and offer a relatively low reduction in friction during operation.
Wie oben bereits erläutert, ist eine Reibungsreduzierung im Ventiltrieb ein notwendiger Beitrag zur Kraftstoffeinsparung und Ressourcenschonung. Dieses Ziel kann erreicht werden, indem man das Gebiet der Festkörper- und Mischreibung reduziert und somit das Gebiet der Flüssigkeitsreibung mit vollständiger Materialtrennung erhöht. Dies erreicht man durch eine möglichst optimierte Ge- samtrauheit des tribologischen Systems bestehend aus Tassenstößel und Nockenwelle.As already explained above, a reduction in friction in the valve train is a necessary contribution to saving fuel and conserving resources. This goal can be achieved by reducing the field of solid and mixed friction and thus increasing the field of fluid friction with complete separation of materials. This is achieved by optimizing the overall roughness of the tribological system consisting of bucket tappets and camshaft.
Um die hierfür notwendige optimale Oberflächenstruktur des Tassenstößels über die gesamte Lebensdauer zu erhalten, ist es notwendig, die Oberfläche so zu gestalten, dass sie einen hohen Verschleißwiderstand, eine geringe adhäsive Neigung zum Gegenkörper und geringe Reaktivität zur Umgebung aufweist. Ferner darf die Oberfläche vorzugsweise keine abrasiven Partikel, wie Droplets, enthalten.In order to obtain the necessary optimal surface structure of the tappet over the entire life, it is necessary to make the surface so that it has a high wear resistance, a low adhesive tendency to the counter body and low reactivity to the environment. Furthermore, the surface may preferably not contain any abrasive particles such as droplets.
Die Tassenstößel aus Eisenkohlenstofflegierungen, auch im wärmebehandelten Zustand, wie carbonithert, nitrocarbuhert oder nitriert, erreichen nicht die hierfür notwendigen Verschleißwiderstände und tribologisch günstigen Oberflächenzu- stände. Behandelt man beispielsweise Nitridschichten, insbesondere durch (Fein)Schleifen, Läppen, Polieren, Strahlen, etc., mechanisch nach, so werden neben der Oberflächenstruktur auch die chemische Zusammensetzung und Reaktivität der Oberfläche verändert. Diese Veränderungen sind zum einen großen Streuungen unterworfen, wodurch keine gleich bleibende Qualität realisiert werden kann. Zum anderen weisen topographisch affine Oberflächen ungünstigere tribologische Eigenschaften auf und neigen zu Adhäsionen mit dem Gegenkörper. Ferner werden durch Schleif- und Polierprozesse Druckeigenspannungen in den oberflächennahen Bereichen induziert, welche sich zu den bereits vorhandenen hohen Druckeigenspannungen der Hartstoffschicht addieren. Zusätzlich führen die induzierten Versetzungen und die herausgerissenen Droplets zu Fehlstellen und M ikro rissen, sodass die lokale Dauerfestigkeit der Schicht bei Tassenstößeln reduziert und die Haftfestigkeit bis hin zum mögli- chen Abplatzen beim Nachbearbeiten der Schicht herabgesetzt wird.The tappets made of iron-carbon alloys, even in the heat-treated state, such as carbonized, nitrocarburized or nitrided, do not achieve the requisite wear resistances and tribologically favorable surface conditions. If, for example, nitride layers are treated mechanically, in particular by (fine) grinding, lapping, polishing, blasting, etc., in addition to the surface structure, the chemical composition and reactivity of the surface are also changed. On the one hand, these changes are subject to a great deal of variation, which means that no consistent quality can be achieved. On the other hand, topographically affine surfaces have less favorable tribological properties and tend to adhere to the counterpart body. Furthermore, residual stresses in the near-surface areas are induced by grinding and polishing processes, which add up to the already existing high residual compressive stresses of the hard material layer. In addition, the induced dislocations and the ruptured droplets lead to defects and micro-cracks, so that the local fatigue strength of the layer is reduced in cup tappets and the adhesive strength is reduced to the potential of chipping during reworking of the layer.
Verzichtet man jedoch beispielsweise bei den mit einem Lichtbogenverfahren abgeschiedenen Schichten auf ein nachträgliches Polieren, führen die harten Droplets zu abrasivem Verschleiß des Gegenkörpers oder zumindest zu einem regellosen Polieren des Gegenkörpers, wodurch sich nicht abzusehende nachteilige Folgen ergeben. Darüber hinaus brechen die Droplets während des Betriebes aus der Schicht heraus, was zu einer Schichtschädigung und zu freien, abrasiv wirkenden Partikeln führt.However, if, for example, in the layers deposited by means of an arc process, one omits subsequent polishing, the hard droplets lead to abrasive wear of the counter body or at least to a random polishing of the counter body, which results in unfavorable consequences which are not to be foreseen. In addition, the droplets break during operation from the layer, resulting in a layer damage and free, abrasive particles.
Es ist aus der DE 102004043550 A1 zudem eine Konstellation bekannt, bei der die verschleißfeste Beschichtung aus mindestens einer nanokristallinen Funktionsschicht aus mindestens zwei CrNx-Phasen für eine Reibungsreduzierung und für eine Erhöhung des Verschleißwiderstandes der vorbestimmten Fläche des Maschinenteils besteht. Auch diese Beschichtung erfüllt jedoch nicht alle tribologischen Anforderungen hinsichtlich Reibungsreduzierung und Ver- schleißwiderstand vor allem im Mischreibungsgebiet in idealer Weise.It is also known from DE 102004043550 A1 a constellation in which the wear-resistant coating consists of at least one nanocrystalline functional layer of at least two CrN x phases for a friction reduction and for increasing the wear resistance of the predetermined surface of the machine part. However, this coating also does not meet all the tribological requirements with regard to friction reduction and wear resistance, especially in the mixed friction region in an ideal manner.
Somit liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Beschichtung sowie ein Herstellungsverfahren für eine derartige Beschichtung zu schaf- fen, welche die oben genannten Nachteile beseitigen und insbesondere das Reibmoment im gesamten Einsatzbereich reduzieren und die Standzeit des beschichteten Maschinenteils sowie des Gegenkörpers erhöhen.Thus, the object of the present invention is to provide a coating and a production method for such a coating which eliminate the abovementioned disadvantages and in particular reduce the frictional torque over the entire area of use and increase the service life of the coated machine part and of the counterpart body.
Gemäß der Erfindung wird diese Aufgabe durch eine verschleißfeste Beschich- tung mit den Merkmalen des Patentanspruchs 1 und durch ein Verfahren mit den Merkmalen des Patentanspruchs 21 gelöst.According to the invention, this object is achieved by a wear-resistant coating with the features of patent claim 1 and by a method having the features of patent claim 21.
Dadurch, dass die Funktionsschicht auf wasserstoffhaltigem Kohlenstoff basiert ist, und im Querschnitt Bereiche unterschiedlicher Konsistenz aufweist, deren Ausdehnung in wenigstens einer Richtung 20 nm, besser noch 10nm, unterschreitet, wird eine nanostruktuherte Schicht gebildet, in der die Bereiche unterschiedlicher Konsistenz, das heißt beispielsweise aus unterschiedlichem Mate- rial, unterschiedlicher Modifikation, mit unterschiedlichen Materialanteilen oder auch nur mit unterschiedlicher Kristallorientierung verschiedene Aufgaben erfüllen können, die durch einen einzigen Stoff homogener Beschaffenheit nur sehr schwer zu erfüllen sind. Durch die Nanostrukturierung stehen jedoch dem Reibpartner in der Funktionsschicht jeweils zur gleichen Zeit unterschiedliche Berei- che beispielsweise zur Verringerung der Gleitreibung und zur Erzeugung der notwendigen Materialhärte gegenüber.Because the functional layer is based on hydrogen-containing carbon is, and in cross-section areas of different consistency, the extent of which in at least one direction 20 nm, better still 10nm, below, a nanostructured layer is formed, in which the areas of different consistency, that is, for example, from different materials, different modification, can fulfill different tasks with different proportions of material or even with different crystal orientation, which are very difficult to meet by a single substance of homogeneous nature. Due to the nanostructuring, however, the friction partner in the functional layer is confronted with different areas at the same time, for example to reduce the sliding friction and to generate the necessary material hardness.
Dies ist auch dann der Fall, wenn die Funktionsschicht wenigstens teilweise durch zur Oberfläche im wesentlichen parallele Schichten gebildet ist, die die Bereiche unterschiedlicher Konsistenz bilden. In diesem Fall ist durch die geringe Dicke der Schichten (< 20 nm oder sogar < 10nm) entweder schon von Anfang an oder nach kurzer Betriebszeit und beginnendem Abrieb eine hybride Oberfläche geschaffen, in der an unterschiedlichen Stellen verschiedene der Schichten frei liegen. Die Oberfläche der Funktionsschicht bietet somit dem Reibpartner unterschiedliche Flächenbereiche mit verschiedener Härte, unterschiedlichen Reibungseigenschaften, Adhäsionstendenz und unterschiedlicher Zähigkeit. Durch eine derartige Nanostrukturierung wird zusätzlich durch die Inhomogenitäten ein hoher Risswiderstand gegen Absplitterungen und Abblättern der Schicht gebildet. Es kann durch geeignete Gestaltung und Anordnung der Schichten auch eine erhöhte Korrosionsbeständigkeit oder eine erhöhte oder verringerte Benetzbarkeit mit Schmierstoffen erreicht werden. Messungen haben ergeben, dass durch die Erfindung die Verringerung von Reibmomenten um 30 % sowie Härten zwischen 15 und 70 GP erreicht werden können.This is also the case if the functional layer is formed at least partially by layers which are essentially parallel to the surface and which form the regions of different consistency. In this case, due to the small thickness of the layers (<20 nm or even <10 nm), either from the very beginning or after a short operating time and starting abrasion, a hybrid surface is created in which different layers are exposed at different points. The surface of the functional layer thus offers the friction partner different surface areas with different hardness, different friction properties, adhesion tendency and different toughness. By such a nanostructuring is additionally formed by the inhomogeneities, a high crack resistance to chipping and peeling of the layer. It can be achieved by suitable design and arrangement of the layers also increased corrosion resistance or increased or decreased wettability with lubricants. Measurements have shown that by the invention the reduction of friction moments by 30% and hardnesses between 15 and 70 GP can be achieved.
Vorteilhaft sind bei einer derartigen Konstellation eine oder mehrere der Schichten dünner als 10 nm. Die Anzahl der Schichten ist dabei typisch größer als 2 und kann bis zu einigen 10, insbesondere über 50 oder über 100 betragen, so dass die Gesamtdicke der Schicht bis zu 10 Mikrometer betragen kann. Benachbarte Schichten weisen dabei jeweils unterschiedliche Konsistenz auf, insofern als beispielsweise wenigstens zwei benachbarte Schichten jeweils unterschiedliche der folgenden drei Konsistenzen aufweisen: amorpher, metall- freier, Wasserstoff enthaltender Kohlenstoff, amorpher, Metall enthaltender, Wasserstoff enthaltender Kohlenstoff, amorpher, wenigstens ein Nichtmetall enthaltender, Wasserstoff enthaltender Kohlenstoff. Grundsätzlich können dabei prozessbereinigte Verunreinigungen von weniger als 1 % enthalten sein.In one such constellation, one or more of the layers are advantageously thinner than 10 nm. The number of layers is typically greater than 2 and may be up to several tens, in particular more than 50 or more than 100, so that the total thickness of the layer is up to 10 May be micrometer. Adjacent layers each have a different consistency in that, for example, at least two adjacent layers each have different of the following three consistencies: amorphous, metal-free, hydrogen-containing carbon, amorphous, metal-containing, hydrogen-containing carbon, amorphous, at least one nonmetal-containing, Hydrogen-containing carbon. In principle, process-adjusted impurities of less than 1% may be contained.
Zusätzlich können anders geartete Schichten vorgesehen sein. Dabei hat der Nichtmetalle enthaltende wasserstoffhaltige Kohlenstoff beispielsweise typisch die Eigenschaft, Reibungskräfte zu vermindern und, wenn beispielsweise Fluor, Silizium oder Sauerstoff eingelagert wird, auch die Eigenschaft, eine geringe Benetzbarkeit mit Schmierstoffen zu begünstigen. Dadurch wird ein dünnerer Ölfilm begünstigt, was insbesondere bei schnellen Relativbewegungen der Reibpartner, also zum Beispiel bei Ventiltrieben, Vorteile bringt.In addition, different types of layers may be provided. The non-metals containing hydrogen-containing carbon, for example, typically has the property to reduce frictional forces and, for example, if fluorine, silicon or oxygen is stored, also the property of favoring a low wettability with lubricants. As a result, a thinner oil film is favored, which brings advantages, in particular in the case of rapid relative movements of the friction partners, that is, for example, in valve trains.
Die metallhaltigen amorphen, wasserstoffhaltigen Kohlenwasserstoffe weisen typisch eher die Eigenschaften Härte und Abreibfestigkeit auf.The metal-containing amorphous, hydrogen-containing hydrocarbons typically have the properties of hardness and abrasion resistance.
Benachbarte Schichten können sich auch lediglich dadurch unterscheiden, dass sie mit unterschiedlichen Materialien dotiert sind oder dass das Ausmaß der Dotierung unterschiedlich ist.Adjacent layers may also differ only in that they are doped with different materials or that the extent of doping is different.
Durch die Dotierung werden die Materialeigenschaften, insbesondere dann wenn es sich um eine kristalline Phase handelt, deutlich verändert. Somit kann die Dotierung gezielt zur Erzeugung bestimmter mechanischer Eigenschaften verwendet werden, wobei die hierdurch erzeugten Eigenschaften auch von der Art und Größe der Dotierungsatome abhängen. Zudem ist die Art der entste- henden kristallinen Struktur von der Menge der Dotierungsatome insofern abhängig, als ab einem bestimmten Dotierungsgrad kristalline Umwandlungen erfolgen beziehungsweise Mischphasen aus verschiedenen Modifikationen entstehen. Somit können auch benachbarte Schichten, die sich nur durch die Art oder das Ausmaß der Dotierung unterscheiden, völlig unterschiedliche mechanische oder tribologische Eigenschaften aufweisen.By doping the material properties, especially when it is a crystalline phase, significantly changed. Thus, the doping can be used specifically to produce certain mechanical properties, the properties thus produced also depend on the nature and size of the doping atoms. In addition, the nature of the resulting crystalline structure depends on the amount of doping atoms insofar as crystalline transformations take place above a certain degree of doping or mixed phases arise from different modifications. Thus, even adjacent layers that differ only by the type or the extent of doping differ, have completely different mechanical or tribological properties.
Zudem können sich benachbarte Schichten auch durch den prozentualen Was- serstoffanteil in dem amorphen Kohlenstoff unterscheiden. Auch durch den Wasserstoffanteil im Kohlenstoff werden die grundsätzlichen tribologischen Eigenschaften stark mitbestimmt. Wasserstoffanteile unter 20 % insbesondere zwischen 5 % und 20 %, machen den wasserstoffhaltigen amorphen Kohlenstoff tendenziell härter und sind für die erfindungsgemäße Ausführung vorteil- haft.In addition, adjacent layers can also differ by the percentage of hydrogen in the amorphous carbon. The hydrogen content in the carbon also strongly influences the fundamental tribological properties. Hydrogen contents below 20%, in particular between 5% and 20%, tend to make the hydrogen-containing amorphous carbon harder and are advantageous for the embodiment according to the invention.
Auch das prozentuale Verhältnis von sp3- und sp2-hybhdisierten Kohlenstoff kann zwei benachbarte Schichten voreinander unterscheiden. Es betrifft dies den Kohlenstoff, der in Diamant- und Graphitmodifikation vorliegt, die bekann- termaßen unterschiedliche mechanische Eigenschaften aufweisen. Dementsprechend haben die derart unterschiedlichen benachbarten Schichten auch verschiedene tribologische Eigenschaften. Besonders vorteilhaft ist dabei, wenn der Anteil der sp3"hybridisierten C-Atome größer als 50 % der C-Atome ist.Also, the percentage ratio of sp 3 - and sp 2 -hybhdisierten carbon can distinguish two adjacent layers from each other. This concerns the carbon which is present in diamond and graphite modification which, as is known, have different mechanical properties. Accordingly, the thus different adjacent layers also have different tribological properties. It is particularly advantageous if the proportion of sp 3 " hybridized carbon atoms is greater than 50% of the carbon atoms.
Es kann auch vorteilhaft vorgesehen sein, dass in wenigstens einer Schicht wenigstens einer der Parameter: Wasserstoffgehalt, Anteil der sp3- hybridisierten C-Atome, Dotierung senkrecht zur Oberfläche der Beschichtung einen Gradienten aufweist.It can also be advantageously provided that in at least one layer at least one of the parameters: hydrogen content, proportion of the sp 3 -hybridized C atoms, doping perpendicular to the surface of the coating has a gradient.
Wichtig ist dabei vornehmlich, dass im praktischen Einsatz an der tatsächlichen Reiboberfläche verschiedene Bereiche mit unterschiedlichen mechanischen Eigenschaften zur Verfügung stehen.It is important, above all, that in practical use on the actual friction surface, different areas with different mechanical properties are available.
Durch die beschriebenen Arten und Konstellationen von Schichten und durch ihre Dicke und Abfolge von der Reiboberfläche aus gesehen, können für unterschiedlichste tribologische Anforderungen die Qualitäten der Oberfläche dauerhaft eingestellt werden, indem der Anteil der jeweils an der Oberfläche freiliegenden Bereiche mit großer Härte, großer Zähigkeit oder effektiver Reibungs- Verminderung überwiegt oder geringer gewichtet ist. Somit ermöglicht die Erfindung durch geeignete Schichtung der Bereiche mit unterschiedlicher Konsistenz eine individuelle Einstellung auf kundenspezifische Anforderungen.Due to the described types and constellations of layers and their thickness and sequence from the friction surface, the qualities of the surface can be permanently adjusted for a wide variety of tribological requirements by the proportion of each exposed at the surface areas with high hardness, high toughness or effective friction Reduction predominates or is less weighted. Thus, by appropriate layering of the areas of different consistency, the invention enables an individual adjustment to customer-specific requirements.
Es kann gemäß der Erfindung auch vorgesehen sein, dass die Bereiche wenigstens teilweise durch Nanopartikel gebildet sind. Diese können beispielsweise aus einem oder mehreren der Materialien: Nitrid, Borid, Karbid, Silizid gebildet sein. Es sind dabei beispielsweise Chromnitrid, Titannitrid, Siliziumnitrid, Siliziumkarbid oder Titankarbid denkbar.It can also be provided according to the invention that the regions are at least partially formed by nanoparticles. These may for example be formed from one or more of the materials: nitride, boride, carbide, silicide. For example, chromium nitride, titanium nitride, silicon nitride, silicon carbide or titanium carbide are conceivable.
Derartige Nanopartikel können beispielsweise im Rahmen eines Abscheidungs- verfahrens gemeinsam mit oder vor oder nach der Abscheidung entsprechender wasserstoffhaltiger Kohlenstoffschichten mit abgeschieden werden.Such nanoparticles can be co-deposited with, for example, in the course of a deposition process together with or before or after the deposition of corresponding hydrogen-containing carbon layers.
Dazu werden in der Abscheidevorrichtung zeitweise die entsprechend notwendigen Stoffe mit in die Gasphase gebracht, entweder durch Sputtering oder andere bekannte Verfahren und durch die Prozessparameter wird die Auskristallisation der Partikel gefördert. Dabei entstehen nanodisperse, selbstorganisierte Bereiche, entweder von unterschiedlichen Kristalliten oder auch von Kristalliten derselben Struktur mit unterschiedlichen Orientierungen.For this purpose, the corresponding necessary substances are temporarily brought into the gas phase in the separation device, either by sputtering or other known methods and by the process parameters, the crystallization of the particles is promoted. This results in nanodisperse, self-organized regions, either of different crystallites or crystallites of the same structure with different orientations.
Beispielsweise können sogenannte Nitridbildner wie beispielsweise Chrom, Titan und andere, instabile Nitride bildende Elemente wie beispielsweise Kupfer zusammen abgeschieden werden, wobei beispielsweise bei Anwendung von Kupfer und Chromnitrid der Kupferanteil gegenüber dem Chromanteil unter 2 % liegen kann. Es bildet sich dann Chromnitrid in einer Kupfermatrix als Na- nokristall. Ein ähnliches Ergebnis kann mit Titannitrid und einem sehr geringen Boranteil erreicht werden, wobei anstelle von Titannitrid auch Titankarbid verwendet werden kann und jedenfalls das entsprechende Nitrid beziehungsweise Karbid in einer quasi amorphen Bormatrix kristallisiert.For example, so-called nitride formers such as chromium, titanium and other unstable nitride-forming elements such as copper may be deposited together, wherein, for example, when copper and chromium nitride, the copper content compared to the chromium content may be below 2%. Chromium nitride then forms in a copper matrix as a nanocrystal. A similar result can be achieved with titanium nitride and a very low boron content, it also being possible to use titanium carbide instead of titanium nitride and, in any case, to crystallize the corresponding nitride or carbide in a quasi-amorphous boron matrix.
Im Ergebnis können die entsprechenden Nanopartikel entweder in eine aus wasserstoffhaltigem Kohlenstoff bestehende amorphe Schicht eingebettet sein oder zwischen den Kohlenstoffschichten eine Nanopartikel-Schicht bilden.As a result, the corresponding nanoparticles can either be embedded in an amorphous layer consisting of hydrogen-containing carbon or form a nanoparticle layer between the carbon layers.
Wichtig ist dabei, dass die gebildete Schicht dünn ist beziehungsweise die Partikel fein verteilt sind, so dass an der Oberfläche der Funktionsschicht jeweils die freiliegenden Bereiche der Nanopartikel nur einen Teil der Oberfläche besetzen und damit andere Teile durch Bereiche anderer Konsistenz mit anderen mechanischen beziehungsweise tribologischen Eigenschaften belegt werden.It is important that the layer formed is thin or the particles are finely distributed, so that at the surface of the functional layer in each case the exposed areas of the nanoparticles occupy only part of the surface and thus other parts through areas of different consistency with other mechanical or tribological properties be occupied.
Auch durch die Einlagerung von Nanopartikeln wird außer den diesen innewoh- nenden mechanischen Eigenschaften auch insgesamt in der entstehenden Funktionsschicht die Rissausbreitung effektiv gehemmt. Dies ist bei einer Größe der Nanopartikel unter 20 nm besser noch unterhalb von 10 nm optimal gewährleistet.In addition to the incorporation of nanoparticles, in addition to the inherent mechanical properties, crack propagation is also effectively inhibited in the resulting functional layer. With a size of the nanoparticles below 20 nm, this is optimally ensured even below 10 nm.
Vorteilhaft weist die Beschichtung unterhalb der Funktionsschicht wenigstens eine Haftvermittlungsschicht auf, die aus Chrom, Wolfram oder Titan oder aus Boriden, Karbiden oder Nitriden der Übergangsmetalle besteht. Ein derartiger Haftvermittler stabilisiert den Gesamtaufbau aus dem beschichteten Maschinenteil mit der Funktionsschicht und verhindert insbesondere Ablösungen der Funktionsschicht. Als für die Maschinenteile geeignete Materialien kommen übliche leicht verarbeitbare und kostengünstige Werkstoffe (16Mn Cr5, C45, 100 Cr6, 31 Cr Mo V9, 80 Cr2 und so weiter) in Frage. Als Reibpartner sind im Sinne eines Leichtbaus zur Gewichtseinsparung auch Eisen/Kohlenstofflegierungen denkbar.Advantageously, the coating below the functional layer has at least one adhesion-promoting layer which consists of chromium, tungsten or titanium or of borides, carbides or nitrides of the transition metals. Such an adhesion promoter stabilizes the overall structure of the coated machine part with the functional layer and in particular prevents detachment of the functional layer. Suitable materials suitable for the machine parts are conventional readily processable and cost-effective materials (16Mn Cr5, C45, 100 Cr6, 31 Cr Mo V9, 80 Cr2 and so forth). As a friction partner, iron / carbon alloys are conceivable in the sense of lightweight construction for weight saving.
Besonders vorteilhaft ist zusätzlich das Vorsehen einer Stützschicht unterhalb der Funktionsschicht aus einer metallhaltigen oder nichtmetallhaltigen, Wasserstoff enthaltenden Kohlenstoffschicht, die eine oder mehrere der Komponenten Wolfram, Tantal, Chrom, Vanadium, Hafnium, Titan oder Nickel einerseits oder Silizium, Sauerstoff, Fluor, Stickstoff andererseits enthält.In addition, it is particularly advantageous to provide a support layer below the functional layer of a metal-containing or non-metal-containing, hydrogen-containing carbon layer which contains one or more of the components tungsten, tantalum, chromium, vanadium, hafnium, titanium or nickel on the one hand or silicon, oxygen, fluorine, nitrogen on the other hand contains.
Eine derartige Stützschicht hat die Aufgabe, große mechanische Kraftbelastungen, die auf die Funktionsschicht wirken, abzufangen, so dass keine übermäßi- ge Verformung der Funktionsschicht eintritt, die zur Ablösung von Untergründen oder zur Zerstörung der Funktionsschicht durch Rissbildung und Abplatzen führen könnte. Die Zwischenschicht ist extrem fest, wobei sie weder einen geringen Reibungswiderstand noch Verschleißfestigkeit aufweisen muss. Daher kann die Stützschicht gezielt so gestaltet werden, dass sie eine geringe Nachgiebigkeit aufweist beziehungsweise in der Nachgiebigkeit derart eingestellt wird, dass sie einen optimalen Übergang zwischen der Funktionsschicht und dem eigentlichen Maschinenteil schafft.Such a supporting layer has the task of absorbing large mechanical force loads acting on the functional layer, so that no excessive ge deformation of the functional layer occurs, which could lead to the detachment of substrates or destruction of the functional layer by cracking and chipping. The intermediate layer is extremely strong, with neither low frictional resistance nor wear resistance. Therefore, the support layer can be designed specifically so that it has a low compliance or is adjusted in the compliance such that it creates an optimal transition between the functional layer and the actual machine part.
Die Erfindung bezieht sich weiterhin auf ein Verfahren zur Herstellung einer Beschichtung gemäß Anspruch 1 oder einem der folgenden, wobei in einem Abscheideverfahren zum Aufbringen der Bereiche auf die Oberfläche die Prozessparameter zu aufeinanderfolgenden Zeitpunkten derart geändert werden, dass die Größe der durch Abscheidung gebildeten Bereiche im Querschnitt der Beschichtung 20 nm unterschreitet. Besonders vorteilhaft ist es, wenn die Größe der Bereiche 10 nm unterschreitet.The invention further relates to a method for producing a coating according to claim 1 or one of the following, wherein in a deposition process for applying the areas to the surface, the process parameters are changed at successive times such that the size of the areas formed by deposition in cross section the coating falls below 20 nm. It is particularly advantageous if the size of the regions falls below 10 nm.
Hierzu kann wenigstens einer der Parameter Druck, Temperatur, Beimengung von Dotierungsstoffen, Wasserstoffgehalt, Rotationsgeschwindigkeit Kohlen- stoffgehalt während der Herstellung der Funktionsschicht sprunghaft oder kontinuierlich geändert werden.For this purpose, at least one of the parameters pressure, temperature, admixture of dopants, hydrogen content, rotational speed of carbon content can be changed abruptly or continuously during the production of the functional layer.
Beim Abscheidevorgang wie auch bei eventuellen anderen Schritten der Beschichtung wie zum Beispiel Ausheizen oder Plasmaätzen wird eine Verfah- renstemperatur von 250° C vorteilhaft nicht überschritten, da damit die Härtung des Grundmaterials des Maschinenteils erhalten bleibt und eine Nachbearbeitung beispielsweise durch induktives Härten nicht erfolgen muss.During the deposition process as well as any other steps of the coating, such as heating or plasma etching, a process temperature of 250 ° C. is advantageously not exceeded because the hardening of the base material of the machine part is thus retained and reworking, for example by inductive hardening, does not have to take place.
Die Abscheidung erfolgt im Rahmen bekannter PVD (physical vapour diposition) und (PA)CVD (plasma assisted chemical vapour diposition)-Verfahren.The deposition takes place in the context of known PVD (physical vapor diposition) and (PA) CVD (plasma assisted chemical vapor diposition) method.
Bei einem PVD-Verfahren wird ein Ausgangsmaterial, beispielsweise Graphit, derart erhitzt, dass ein Strahl hochenergetischer Kohlenstoff-Ionen aus dem Graphit imitiert und in Richtung der zu beschichtenden Oberfläche in einem Feld beschleunigt wird.In a PVD process, a starting material, such as graphite, heated so that a jet of high-energy carbon ions from the Imitating graphite and accelerated in the direction of the surface to be coated in a field.
Bei einem (PA)CVD-Verfahren wird unter Zuhilfenahme eines Plasmas ein Gasgemisch in die Prozesskammer eingebracht, in welcher sich die zu beschichtenden Materialteile befinden. Das (PA) CVD-Verfahren ist eine Weiterentwicklung des CVD-Verfahrens und kombiniert die Vorteile des CVO- Verfahrens (ungehchteter Prozess) und des PVD-Verfahrens (niedrige Temperaturen). Beim PACVD-Verfahren erfolgt die Schichtabscheidung durch chemi- sehe Reaktion aus der Gasphase bei Temperaturen von weniger als 200° C mit einer gezielten Plasma-Unterstützung.In a (PA) CVD process, a gas mixture is introduced into the process chamber with the aid of a plasma, in which the material parts to be coated are located. The (PA) CVD process is a further development of the CVD process and combines the advantages of the CVO process (unrated process) and the PVD process (low temperatures). In the PACVD process, the layer deposition takes place by chemical reaction from the gas phase at temperatures of less than 200 ° C with a targeted plasma support.
Durch die Änderung der Prozessparameter wie Druck, Temperatur und Wasserstoffgehalt sowie Dotierungsstoffe oder die Rotationsgeschwidigkeit des zu beschichtenden Gegenstandes wird die Struktur der entstehenden Beschich- tung bestimmt. Dabei ergeben sich bei bestimmten Parametergrenzen auch sprunghafte Änderungen in der Konsistenz der abgeschiedenen Schicht, da bestimmte insbesondere kristalline Konfigurationen nur bis zu bestimmten Materialanteilen einzelner Stoffe gebildet werden können. Liegen diese Anteile nicht vor, so wird ein anderer Kristall oder eine andere Modifikation beziehungsweise eine Mischphase gebildet.By changing the process parameters such as pressure, temperature and hydrogen content and dopants or the Rotationsgeschwidigkeit of the object to be coated, the structure of the resulting coating is determined. In the case of certain parameter limits, there are also sudden changes in the consistency of the deposited layer, since certain, in particular, crystalline configurations can only be formed up to certain material fractions of individual substances. If these components are not present, then another crystal or another modification or a mixed phase is formed.
Somit lassen sich durch Variation der Prozessparameter in geeigneten Zeitabständen entsprechend kleine (kleiner 10 nm) Bereiche entweder partikel- oder schichtweise abscheiden.Thus, by varying the process parameters at appropriate time intervals, correspondingly small (smaller than 10 nm) regions can be deposited either particle-wise or layer-by-layer.
Die Erfindung bezieht sich letztlich auch auf Maschinenteile, die mit der erfindungsgemäßen Beschichtung versehen sind, besonders auf einen Ventilstößel für ein durch Nocken betätigbares Ventil eines Verbrennungsmotors.Finally, the invention also relates to machine parts which are provided with the coating according to the invention, in particular to a valve tappet for a cam-actuatable valve of an internal combustion engine.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles mit Bezug auf den genannten Ventilstößel in einer Zeichnung gezeigt und anschließend beschrieben. Dabei zeigen:The invention is shown below with reference to an embodiment with reference to said valve stem in a drawing and described below. Showing:
Figur 1 eine Vorderansicht einer Reibpaarung, bestehend aus Tassenstö- ßel und Nockenwelle für den Betrieb eines Ventils einer Brennkraftmaschine;Figure 1 is a front view of a friction pair, consisting of Tassenstö- and camshaft for the operation of a valve of an internal combustion engine;
Figur 2 eine perspektivische Ansicht des Tassenstößels aus Figur 1 ;Figure 2 is a perspective view of the tappet of Figure 1;
Figur 3 eine perspektivische Ansicht eines hydraulischen Abstützelementes, welches über eine Wälzlagerkomponente mit einem Schlepphebel in Verbindung steht;Figure 3 is a perspective view of a hydraulic support element, which is connected via a rolling bearing component with a finger lever in connection;
Figur 4 eine schematische Querschnittsansicht eines Maschinenteils mit verschleißfester Beschichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung undFigure 4 is a schematic cross-sectional view of a machine part with wear-resistant coating according to an embodiment of the present invention and
Figur 5 Darstellung einer Funktionsschicht.Figure 5 representation of a functional layer.
In den Figuren der Zeichnung bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten, soweit nichts Gegenteiliges angegeben ist.In the figures of the drawing, like reference characters designate like or functionally identical components, unless otherwise indicated.
Fig. 1 illustriert eine Reibpaarung, bestehend aus einem Tassenstößel 5 mit einer Nockenkontaktfläche 50 und einem Tassenhemd 51 sowie aus einer No- cke 6. Der Tassenstößel 5 ist in Fig. 2 in einer perspektivischen Ansicht detaillierter dargestellt. Der Tassenstößel 5 ist im allgemeinen für Maschinenteile in Brennkraftmaschinen mit dem Schaft 7 eines Ventils verbunden, welches durch Verschieben der Nockenfläche gegen die Nockenkontaktfläche 50 des Tassenstößels 5 das Ventil öffnet oder schließt.FIG. 1 illustrates a friction pairing consisting of a tappet 5 with a cam contact surface 50 and a cup skirt 51 as well as a cam 6. The tappet 5 is shown in greater detail in FIG. 2 in a perspective view. The tappet 5 is generally connected for machine parts in internal combustion engines with the shaft 7 of a valve which opens or closes the valve by moving the cam surface against the cam contact surface 50 of the tappet 5.
Im allgemeinen unterliegen moderne Ventiltriebkomponenten, wie beispielsweise Tassen- und Pumpenstößel, hohen Anforderungen bezüglich des Ver- schleißwiderstandes und der Ressourcenschonung, insbesondere an der Kon- taktfläche 50.In general, modern valve train components, such as, for example, cup and pump tappets, are subject to high requirements with respect to wear resistance and resource conservation, in particular with regard to contact area 50.
In Verbindung mit Fig. 4, welche eine schematische Querschnittsansicht einer verschleißfesten Beschichtung für ein Maschinenteil 1 , beispielsweise für einen Tassenstößel 5, gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung illustriert, wird ein Ausführungsbeispiel der vorliegenden Erfindung im folgenden näher erläutert.In conjunction with FIG. 4, which illustrates a schematic cross-sectional view of a wear-resistant coating for a machine part 1, for example for a bucket tappet 5, according to a preferred embodiment of the present invention, an embodiment of the present invention is explained in more detail below.
Der Tassenstößel 5 wird für eine Reduzierung des Reibungskoeffizienten und für eine Erhöhung des Verschleißwiderstandes im Bereich der Nockenkontaktfläche 50 oder bei Bedarf im Bereich der Nockenkontaktfläche 50 und des Tassenhemdes 51 mit einer erfindungsgemäßen verschleißfesten Beschichtung beschichtet. Im Falle hoher Verformungen des Tassenhemdes 51 des Tassenstößels 50 im Bereich der offenen Seite, kann wahlweise auch eine Teilbe- Schichtung des Tassenhemdes 51 erfolgen.The tappet 5 is coated with a wear-resistant coating according to the invention for a reduction of the coefficient of friction and for an increase of the wear resistance in the region of the cam contact surface 50 or, if required, in the region of the cam contact surface 50 and the cup 51. In the case of high deformations of the cup skirt 51 of the tappet 50 in the region of the open side, optionally also a partial coating of the cup 51 can take place.
Die zu beschichtende Fläche 2, d.h. vorliegend die Nockenkontaktfläche 50 des Tassenstößels 5, wird vorzugsweise vor einem Beschichten einsatzgehärtet oder carbonithert und angelassen.The area 2 to be coated, i. in the present case the cam contact surface 50 of the tappet 5, is preferably case hardened or carbonized and tempered before coating.
Der Grundkörper, im vorliegenden Fall die Nockenkontaktfläche 50 des Tassenstößels 5, welcher vorteilhaft aus einem kostengünstigen Stahlwerkstoff, wie beispielsweise 16MnCr5, C45, 100Cr6, 31 CrMoV9, 80Cr2 oder dergleichen, besteht, wird gemäß dem vorliegenden Ausführungsbeispiel zunächst mit einer Haftvermittlungsschicht 3 beschichtet. Die Haftvermittlungsschicht 3 kann beispielsweise jeweils aus einem metallhaltigen Kohlenstoff, beispielsweise einer Verbindung aus Wolfram und Kohlenstoff, aber auch aus metallischen Stoffen (z.B. Cr, Ti), sowie Boriden, Carbiden, Nitriden und Suiziden der Übergangsmetalle bestehen. Eine zusätzliche Stützschicht oberhalb der Haftvermittlungs- Schicht kann aus einem ein Metall oder Nichtmetall wie beispielsweise W, Ta, Cr, V, Hf, Ti, Ni oder Si, O, F, N sowie Wasserstoff enthaltenden amorphen Kohlenstoff bestehen. Die Haftvermittlungs- und die Stützschicht können im Zusammenhang mit einer Wärmebehandlung, beispielsweise Einsatzhärten, Carbonitrieren, Nitrocarburieren, durch ein thermochemisches Verfahren, beispielsweise Nitrieren, Borieren, durch ein galvanisches Verfahren, beispielsweise durch Aufbringen einer chromhaltigen Schicht, oder mittels eines PVD- Verfahrens, beispielsweise Aufbringen von Me-C, Carbiden und Nitriden der Übergangsmetalle, gebildet werden.The base body, in the present case, the cam contact surface 50 of the tappet 5, which advantageously consists of a cost-effective steel material, such as 16MnCr5, C45, 100Cr6, 31 CrMoV9, 80Cr2 or the like, is first coated with an adhesion-promoting layer 3 according to the present embodiment. The adhesion-promoting layer 3 may, for example, each consist of a metal-containing carbon, for example a compound of tungsten and carbon, but also of metallic materials (eg Cr, Ti), as well as borides, carbides, nitrides and suicides of the transition metals. An additional support layer above the primer layer may consist of an amorphous carbon containing a metal or non-metal such as W, Ta, Cr, V, Hf, Ti, Ni or Si, O, F, N and hydrogen. The adhesion-promoting and the supporting layer can be used in connection with a heat treatment, for example case-hardening, Carbonitriding, nitrocarburizing, by a thermochemical process, for example nitriding, boriding, by a galvanic process, for example by applying a chromium-containing layer, or by a PVD process, for example, application of Me-C, carbides and nitrides of the transition metals, are formed.
Durch die Stützschicht soll die Ermüdungsfestigkeit der Gesamtbeschichtung erhöht, d.h. plastische Verformungen, Rissbildungen, -Wachstum und Brüche des Schichtsystems verhindert werden. Derartige Ermüdungsvorgänge können durch die Belastung des Nockens und der daraus induzierten Materialbeanspruchung des Tassenstößels 5 sowie durch unterschiedliche Härtegrade, Elastizitätsmodule, Verformbarkeiten der einzelnen Schichten bzw. des Grundkörpers und der verschleißfesten Beschichtung entstehen. In diesem Fall ist eine Ausbildung der Schicht 3 als Stützschicht 3 entweder alleine oder in Kombinati- on mit einer geeigneten Haftvermittlungsschicht vorzuziehen.The support layer is intended to increase the fatigue strength of the overall coating, i. plastic deformation, cracking, growth and fractures of the layer system can be prevented. Such fatigue operations can be caused by the load on the cam and the material stress of the bucket tappet 5 induced therefrom as well as by different degrees of hardness, moduli of elasticity, deformability of the individual layers or of the main body and of the wear-resistant coating. In this case, a formation of the layer 3 as a support layer 3 either alone or in combination with a suitable adhesion-promoting layer is preferable.
Wie in Fig. 4 dargestellt, ist gemäß dem vorliegenden Ausführungsbeispiel über der Stütz- und/oder der Haftvermittlungsschicht 3 eine verschleißfeste Beschichtung 4 gebildet.As shown in FIG. 4, according to the present embodiment, a wear-resistant coating 4 is formed over the backing and / or the primer layer 3.
Die Funktionsschicht 4 ist dort schematisch als aus vielen einzelnen Nano- schichten aufgebaut gezeigt, wobei die Größenverhältnisse nur schematisch und nicht maßstäblich wiedergegeben sind.The functional layer 4 is shown there as schematically constructed from many individual nanosheets, wherein the size ratios are reproduced only schematically and not to scale.
In der Figur 5 ist dagegen die Funktionsschicht maßstäblich stark vergrößert dargestellt. Dabei sind in der linken Hälfte der Figur die Varianten dargestellt, die verschiedene übereinander angeordnete weniger als 10 nm dicke Schichten aufweisen, die jeweils aus einem Wasserstoff enthaltendem amorphen Kohlenstoff mit unterschiedlicher Konsistenz bestehen, während auf der rechten Seite der Figur eine Variante mit zusätzlich nanodispersen Partikeln dargestellt ist.In contrast, in FIG. 5, the functional layer is shown to scale greatly enlarged. In this case, the variants are shown in the left half of the figure, which have different superimposed less than 10 nm thick layers, each consisting of a hydrogen-containing amorphous carbon with different consistency, while on the right side of the figure a variant with additional nanodisperse particles is shown.
Der Maßstab ist wegen der geringen Dicke der Nanoschichten in Richtung senkrecht zur Oberfläche weit auseinandergezogen. Die gewellte Linie an der Oberfläche stellt die reale Oberfläche dar, die sich durch Unregelmäßigkeiten bei der Herstellung oder nach Gebrauch von selbst einstellt. Die Welligkeit ist in der Realität nicht so groß wie dargestellt sondern erscheint durch die einachsige Vergrößerung des Maßstabs senkrecht zur Reiboberfläche übertrieben. Dennoch lässt sich anhand dieser Darstellung der mit der Erfindung erzielte Effekt erklären. Die einzelnen Schichten 60, 61 , 62 sind zumindest im oberen Bereich zur Oberfläche hin unterschiedlich schraffiert und dadurch unterscheidbar. Es zeigt sich, dass durch die etwas (einige nm)unregelmäßige Struktur der Oberfläche spätestens nach einer ersten Inbetriebnahme und Abnutzung an verschiedenen Stellen die unteren Schichten 61 , 62 und auch noch weiter unten liegende nicht einzeln bezeichnete Schichten zu Tage treten. Diese Schichten haben jeweils unterschiedliche tribologische Eigenschaften, so dass sich dem Reibpartner die gesamte Oberfläche als Mischung von vielen verschiedenen Bereichen mit unterschiedlichen Eigenschaften bezüglich Härte, Elastizität, Verschleißfestigkeit und Reibungskoeffizient darstellt. Dieser Zustand bleibt auch erhalten, wenn die Abnutzung weiter fortschreitet, was jedoch durch die genannte Struktur und die sich einstellende Verschleißfestigkeit stark verzögert wird.The scale is widely spaced because of the small thickness of the nanosheets in the direction perpendicular to the surface. The wavy line at the Surface represents the real surface that self-adjusts due to irregularities in manufacturing or after use. The waviness is in reality not as great as shown but appears exaggerated by the uniaxial magnification of the scale perpendicular to the friction surface. Nevertheless, the effect achieved with the invention can be explained on the basis of this illustration. The individual layers 60, 61, 62 are hatched differently at least in the upper area toward the surface and can therefore be distinguished. It turns out that due to the somewhat (a few nm) irregular structure of the surface, at the latest after a first startup and wear at various points, the lower layers 61, 62 and even layers not individually marked below are revealed. These layers each have different tribological properties, so that the entire surface of the friction partner is a mixture of many different areas with different properties in terms of hardness, elasticity, wear resistance and friction coefficient. This state is maintained even if the wear continues to progress, but this is greatly delayed by the said structure and the resulting wear resistance.
Die einzelnen Schichten unterscheiden sich wenigstens teilweise in Bezug auf die Konsistenz, das heißt den Wasserstoffanteil, die Art und Menge der zugesetzten, eindotierten Stoffe beziehungsweise Kristallmodifikationen und Orientierungen. Es liegen gleichzeitig einige oder viele der Schichten offen an der Oberfläche.The individual layers differ at least partially in relation to the consistency, that is to say the hydrogen content, the type and amount of added, doped substances or crystal modifications and orientations. At the same time, some or many of the layers are open at the surface.
Auf der rechten Seite der Figur 5 zeigt sich die Variante, bei der Nanopartikel 63, 64 in die Kohlenstoffmatrix mit eingebracht sind. Die entsprechenden Nanopartikel, die zum Beispiel als Boride, Karbide oder Nitride ausgebildet sein können, bilden dort, wo sie an die Oberfläche treten, also beispielsweise im Fall der Partikel 63, 64 harte und verschleißfeste Bereiche und verhindern somit auch den Abtrag des sie umgebenden Materials der Kohlenstoffmatrix. Diese ihrerseits trägt je nach der Zusammensetzung an der Oberfläche beispielsweise etwas zu einer Verringerung des Reibungskoeffizienten bei. Wird im Laufe des Materialverschleißes von der Oberfläche der Funktionsschicht etwas abgetragen, so werden neue Nanopartikel freigelegt, die dann wieder die genannte Aufgabe, die Härte und Verschleißfestigkeit sicherzustel- len, wahrnehmen.On the right side of FIG. 5, the variant in which nanoparticles 63, 64 are introduced into the carbon matrix is shown. The corresponding nanoparticles, which may be formed, for example, as borides, carbides or nitrides, form where they come to the surface, so for example in the case of the particles 63, 64 hard and wear-resistant areas and thus also prevent the removal of the surrounding material the carbon matrix. This, in turn, contributes somewhat to a reduction in the coefficient of friction, depending on the composition on the surface, for example. If something is removed from the surface of the functional layer in the course of material wear, new nanoparticles are exposed, which then again perform the stated task of ensuring hardness and wear resistance.
Grundsätzlich können die Nanopartikel auch in verschiedenen Schichten konzentriert sein. Dies kann sich zum Beispiel im Rahmen des Abscheidungspro- zesses anbieten indem zwischen der Abscheidung der übrigen Schichten wäh- rend des PVD- beziehungsweise PACVD-Verfahrens bestimmte Metallnitride, - boride oder -karbide eingebracht werden, die in Mischverhältnissen abgeschieden werden, welche automatisch zur Bildung unterschiedlicher Phasen führen. Dies führt dann zur Bildung von harten Nanopartikeln in der betreffenden Schicht.In principle, the nanoparticles can also be concentrated in different layers. This can be offered, for example, in the context of the deposition process by introducing between the deposition of the remaining layers during the PVD or PACVD process certain metal nitrides, borides or carbides which are deposited in mixing ratios which automatically form different phases lead. This then leads to the formation of hard nanoparticles in the relevant layer.
Die beschriebene Erfindung schafft eine neuartige Beschichtung, die durch Auswahl der Partikel und der einzelnen Nanoschichten eine Anpassung an die vorliegenden tribologischen Anforderungen in sehr genauer Weise erlaubt, wobei durch die Mischung von Bereichen mit unterschiedlichen Konsistenzen an der Oberfläche Parameter im Makrobereich eingestellt werden können, die mit keinem bekannten homogenen Material erreicht werden können. Die Erfindung stellt außerdem ein einfaches Herstellungsverfahren für eine derartige Funktionsschicht bereit, das gegenüber den bisher verwendeten Produktionsmitteln beim PVD- und (PA)CVD -Beschichten keine konstruktiven Veränderungen erfordert.The described invention provides a novel coating which, by selection of the particles and the individual nanolayers, allows adaptation to the present tribological requirements in a very accurate manner, whereby macro-range parameters can be set by the mixture of regions with different surface textures can be achieved with any known homogeneous material. The invention also provides a simple production process for such a functional layer, which does not require any constructive changes compared with the production means used hitherto in PVD and (PA) CVD coating.
Die maximale Beschichtungstemperatur beträgt vorzugsweise 250°C, sodass bei einem Beschichtungsvorgang das Grundmaterial nicht angelassen wird.The maximum coating temperature is preferably 250 ° C, so that in a coating process, the base material is not tempered.
Die Beschichtung wird vorzugsweise mit einer Dicke von etwa 0,5 μm bis etwa 10,0 μm, vorzugsweise 2,0 μm, ausgebildet. Dadurch ändern sich die Abmessungen und Oberflächenrauheiten des Grundkörpers in einem derart geringen Maße, dass keine Nachbearbeitung notwendig ist. Im Folgenden wird eine weitere vorteilhafte Verwendung der erfindungsgemäßen Beschichtung näher erläutert. Fig. 3 illustriert eine perspektivische Ansicht eines hydraulischen Abstützelementes 8, welches einen Kolben 9 und ein Ge- häuse 10 aufweist. Das hydraulische Abstützelement 8 ist mit einem Schlepphebel 11 gekoppelt, wobei der Schlepphebel 1 1 über ein Wälzlager 12 schwenkbar gelagert ist. Wie in Fig. 3 ferner ersichtlich ist, weist der Kolben 9 einen Kontaktbereich 90 zwischen dem Kolben 9 und dem Schlepphebel 11 auf. Ferner weist der Kolben 9 einen Kontaktbereich 91 zwischen dem Kolben 9 und dem Gehäuse 10 auf. Für eine Reduzierung des Verschleißes im Kontaktbereich 90 zwischen dem Kolben 9 und dem Schlepphebel 1 1 wird der Kontaktbereich 90 ebenfalls mit einer erfindungsgemäßen nanostrukturierten Funktionsschicht 4 versehen.The coating is preferably formed with a thickness of about 0.5 μm to about 10.0 μm, preferably 2.0 μm. As a result, the dimensions and surface roughness of the base body change to such a small extent that no reworking is necessary. In the following, a further advantageous use of the coating according to the invention is explained in more detail. FIG. 3 illustrates a perspective view of a hydraulic support element 8 which has a piston 9 and a housing 10. The hydraulic support element 8 is coupled to a drag lever 11, wherein the drag lever 1 1 is pivotally mounted via a rolling bearing 12. As can also be seen in FIG. 3, the piston 9 has a contact region 90 between the piston 9 and the drag lever 11. Furthermore, the piston 9 has a contact region 91 between the piston 9 and the housing 10. For a reduction of the wear in the contact region 90 between the piston 9 and the drag lever 1 1, the contact region 90 is likewise provided with a nanostructured functional layer 4 according to the invention.
Ferner kann ebenfalls der Kontaktbereich 91 zwischen dem Kolben 9 und dem Gehäuse 10 mit einer derartigen Beschichtung 3, 4 je nach Anwendung und Fertigungsgstechnologie beschichtet werden. Dadurch wird die Gesamtlebensdauer des dargestellten tribologischen Systems erhöht, wodurch ein Ausfall der einzelnen Maschinenteile während eines Betriebes reduziert und somit insge- samt Kosten eingespart werden können.Furthermore, the contact region 91 between the piston 9 and the housing 10 can also be coated with such a coating 3, 4 depending on the application and manufacturing technology. As a result, the overall service life of the illustrated tribological system is increased, as a result of which a failure of the individual machine parts during operation is reduced and thus overall costs can be saved.
Außerdem können Komponenten des Wälzlagers 12, beispielsweise der Wälzkörper, die Innen- und Außenringe des Wälzlagers 12, die Wälzlagerkäfige, die Axialscheiben oder dergleichen ebenfalls zur Erhöhung des Verschleißwider- Standes und zur Reibungsreduzierung mit der erfindungsgemäßen Funktionsschicht 4 unter Zwischenschaltung beispielsweise einer Stütz- und/oder Haftvermittlungsschicht 3 beschichtet werden.In addition, components of the rolling bearing 12, for example, the rolling elements, the inner and outer rings of the rolling bearing 12, the rolling bearing cages, the axial discs or the like also to increase the wear resistance and friction reduction with the functional layer 4 according to the invention with the interposition of, for example, a support and / or primer layer 3 are coated.
Das oben beschriebene Schichtsystem ist selbstverständlich auch für andere Bau- und Funktionseinheiten, wie beispielsweise Ventilschäfte bzw. Ventilschaftauflagen, Abstütz- und Einsteckelemente, Wälzlagerkomponenten, Ausrücklager, Kolbenbolzen, Lagerbuchsen, Steuerkolben für beispielsweise Einspritzdüsen im Motorenbereich, Linearführungen und andere mechanisch und tribolo- gisch hoch beanspruchte Teile geeignet.Of course, the layer system described above is also suitable for other structural and functional units, such as valve stems or valve stem supports, supporting and inserting elements, roller bearing components, release bearings, piston pins, bearing bushings, control pistons for, for example, injection nozzles in the engine area, linear guides and other mechanical and tribological devices. highly stressed parts suitable.
Es sei an dieser Stelle darauf hingewiesen, dass die Funktionsschicht 4 auch direkt auf dem Grundkörper des zu beschichtenden Maschinenteils abgeschie- den werden kann, ohne dass eine Stützschicht 3 bzw. Haftvermittlungsschicht 3 dazwischen aufgebracht ist.It should be noted at this point that the functional layer 4 can also be deposited directly on the main body of the machine part to be coated, without a support layer 3 or adhesion-promoting layer 3 being applied therebetween.
Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar. Although the present invention has been described above with reference to preferred embodiments, it is not limited thereto but modifiable in a variety of ways.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Maschinenteil1 machine part
2 vorbestimmte Fläche des Maschinenteils2 predetermined area of the machine part
3 Stützschicht/Haftvermittlungsschicht3 support layer / adhesion-promoting layer
4 nanokristalline Funktionsschicht4 nanocrystalline functional layer
5 Tassenstößel5 tappets
6 Nocke6 cam
7 Ventilschaft7 valve stem
8 hydraulisches Abstützelement8 hydraulic support element
9 Kolben9 pistons
10 Gehäuse10 housing
11 Schlepphebel11 drag lever
12 Wälzlager12 rolling bearings
50 Nockenkontaktfläche50 cam contact surface
51 Tassenhemd51 cup shirt
60,61 ,62 Schichten60.61, 62 layers
63,64 Nanopartikel63.64 nanoparticles
90 Kontaktbereich zwischen Kolben und Schlepphebel90 contact area between piston and drag lever
91 Kontaktbereich zwischen Kolben und Gehäuse 91 Contact area between piston and housing
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009517069A JP5669390B2 (en) | 2006-06-27 | 2007-05-30 | Abrasion resistant coating and manufacturing method therefor |
CN2007800246584A CN101479401B (en) | 2006-06-27 | 2007-05-30 | Wear-resistant coating and production method for the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006029415.7 | 2006-06-27 | ||
DE102006029415.7A DE102006029415B4 (en) | 2006-06-27 | 2006-06-27 | Wear-resistant coating and manufacturing process therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008000573A2 true WO2008000573A2 (en) | 2008-01-03 |
WO2008000573A3 WO2008000573A3 (en) | 2008-04-24 |
Family
ID=38523436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/055229 WO2008000573A2 (en) | 2006-06-27 | 2007-05-30 | Wear-resistant coating and production method for the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5669390B2 (en) |
CN (1) | CN101479401B (en) |
DE (1) | DE102006029415B4 (en) |
WO (1) | WO2008000573A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009062877A3 (en) * | 2007-11-14 | 2009-11-26 | Schaeffler Kg | Corrosion-resistant coating and method for producing same |
DE102011076410A1 (en) * | 2011-05-24 | 2012-11-29 | Schaeffler Technologies AG & Co. KG | machine element |
CN102865220A (en) * | 2012-09-28 | 2013-01-09 | 武汉大学 | Engine fuel pump plunger with carbon nitride-based nano composite coating and manufacturing method thereof |
DE102016206838A1 (en) * | 2016-04-22 | 2017-10-26 | Schaeffler Technologies AG & Co. KG | Drag lever for an internal combustion engine |
US10131988B2 (en) | 2009-11-02 | 2018-11-20 | Federal-Mogul Burscheid Gmbh | Sliding element, in particular piston ring, and combination of a sliding element with a mating running element |
US20200040996A1 (en) * | 2017-04-12 | 2020-02-06 | Mahle Metal Leve S/A | Piston ring for internal combustion engines |
US11143302B2 (en) * | 2016-06-30 | 2021-10-12 | Mahle Metal Leve S/A | Sliding element for internal combustion engines |
US11198932B2 (en) | 2017-06-07 | 2021-12-14 | Schaeffler Technologies AG & Co. KG | Method for producing a sliding surface |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007058564A1 (en) * | 2007-11-30 | 2009-06-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Smooth wear-protection coating for metal or ceramic components or tools, deposits layers of alternating structure to limit growth of defects and prevent unacceptable surface roughness |
DE102008022039A1 (en) * | 2008-04-30 | 2009-11-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wear-resistant coating of amorphous carbon, is deposited in layers with varying oxygen content to control hardness, friction and wear rate |
US8109247B2 (en) | 2008-05-19 | 2012-02-07 | GM Global Technology Operations LLC | Wear resistant camshaft and follower material |
DE102009025023A1 (en) | 2009-06-10 | 2010-12-16 | Neumayer Tekfor Holding Gmbh | Method for producing a camshaft and corresponding camshaft |
DE102009028504C5 (en) | 2009-08-13 | 2014-10-30 | Federal-Mogul Burscheid Gmbh | Piston ring with a coating |
DE102010052971A1 (en) * | 2010-11-30 | 2012-05-31 | Amg Coating Technologies Gmbh | Workpiece with Si-DLC coating and process for the production of coatings |
CN102485939A (en) * | 2010-12-02 | 2012-06-06 | 鸿富锦精密工业(深圳)有限公司 | Plated film member and its preparation method |
JP2012189057A (en) * | 2011-03-14 | 2012-10-04 | Kubota Corp | Valve gear for overhead valve engine |
DE102011006294B4 (en) | 2011-03-29 | 2018-10-04 | Schaeffler Technologies AG & Co. KG | Process for producing a hardened, coated metal component |
DE102012214284B4 (en) * | 2012-08-10 | 2014-03-13 | Federal-Mogul Burscheid Gmbh | Sliding element, in particular piston ring, with a resistant coating |
DE102013209863A1 (en) | 2013-05-28 | 2014-12-04 | Schaeffler Technologies Gmbh & Co. Kg | Coated component |
DE102013216745B4 (en) * | 2013-08-23 | 2015-10-22 | Schaeffler Technologies AG & Co. KG | Rolling bearing cage |
CN104525860B (en) * | 2014-11-18 | 2018-02-27 | 西安理工大学 | Engine prop column and preparation method thereof |
DE102016202149A1 (en) | 2016-02-12 | 2017-08-17 | Schaeffler Technologies AG & Co. KG | Sheave bearing arrangement |
FR3048433B1 (en) * | 2016-03-03 | 2020-03-13 | Total Marketing Services | LUBRICATING COMPOSITION BASED ON NEUTRALIZED AMINES AND MOLYBDENE |
US10737462B2 (en) * | 2016-08-24 | 2020-08-11 | Hyundai Motor Company | Method for coating surface of moving part of vehicle and moving part of vehicle manufactured by the same |
DE102017128727A1 (en) * | 2017-12-04 | 2019-01-17 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Layer system, component and method for coating |
WO2020188313A2 (en) * | 2018-07-10 | 2020-09-24 | Next Biometrics Group Asa | Thermally conductive and protective coating for electronic device |
DE102019110299A1 (en) * | 2019-04-18 | 2020-10-22 | Schaeffler Technologies AG & Co. KG | Tapered roller bearings |
KR102435592B1 (en) * | 2022-01-21 | 2022-08-24 | 주식회사 에스엘티지 | Pharmaceutical Capsule Appearance Inspection Device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237967A (en) | 1993-01-08 | 1993-08-24 | Ford Motor Company | Powertrain component with amorphous hydrogenated carbon film |
DE4434428A1 (en) | 1994-09-27 | 1996-03-28 | Widia Gmbh | Composite body, use of this composite body and method for its production |
US6080470A (en) | 1996-06-17 | 2000-06-27 | Dorfman; Benjamin F. | Hard graphite-like material bonded by diamond-like framework |
US5771873A (en) | 1997-04-21 | 1998-06-30 | Ford Global Technologies, Inc. | Carbonaceous deposit-resistant coating for engine components |
DE19810969A1 (en) | 1998-03-13 | 1999-09-30 | Fraunhofer Ges Forschung | Flowable solids press tooling, especially punches for pressing powder to produce pharmaceutical tablets |
US6261693B1 (en) | 1999-05-03 | 2001-07-17 | Guardian Industries Corporation | Highly tetrahedral amorphous carbon coating on glass |
DE19954164B4 (en) | 1999-11-10 | 2008-08-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sensor for determining the state of characteristics of mechanical components using amorphous carbon layers with piezoresistive properties |
DE10005614A1 (en) | 2000-02-09 | 2001-08-16 | Hauzer Techno Coating Europ B | Process for the production of coatings and object |
US6878404B2 (en) | 2003-02-06 | 2005-04-12 | Guardian Industries Corp. | Method of depositing DLC on substrate |
JP2005090489A (en) | 2003-08-11 | 2005-04-07 | Nissan Motor Co Ltd | Valve lifter for internal combustion engine |
DE102004043550B4 (en) | 2004-09-09 | 2012-02-16 | Schaeffler Technologies Gmbh & Co. Kg | Wear resistant coating, its use and method of making the same |
EP1841896B1 (en) | 2004-11-25 | 2014-11-05 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided |
WO2007115419A2 (en) * | 2006-04-07 | 2007-10-18 | Ecole D'ingenieurs De Geneve (Eig) | Wear-resistant layer for parts, method for coating a part with a wear-resistant layer, and device for carrying out said method |
-
2006
- 2006-06-27 DE DE102006029415.7A patent/DE102006029415B4/en active Active
-
2007
- 2007-05-30 WO PCT/EP2007/055229 patent/WO2008000573A2/en active Application Filing
- 2007-05-30 JP JP2009517069A patent/JP5669390B2/en active Active
- 2007-05-30 CN CN2007800246584A patent/CN101479401B/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009062877A3 (en) * | 2007-11-14 | 2009-11-26 | Schaeffler Kg | Corrosion-resistant coating and method for producing same |
EP2264217A1 (en) * | 2007-11-14 | 2010-12-22 | Schaeffler Technologies AG & Co. KG | Corrosion-resistant coating |
US10131988B2 (en) | 2009-11-02 | 2018-11-20 | Federal-Mogul Burscheid Gmbh | Sliding element, in particular piston ring, and combination of a sliding element with a mating running element |
DE102011076410A1 (en) * | 2011-05-24 | 2012-11-29 | Schaeffler Technologies AG & Co. KG | machine element |
CN102865220A (en) * | 2012-09-28 | 2013-01-09 | 武汉大学 | Engine fuel pump plunger with carbon nitride-based nano composite coating and manufacturing method thereof |
DE102016206838A1 (en) * | 2016-04-22 | 2017-10-26 | Schaeffler Technologies AG & Co. KG | Drag lever for an internal combustion engine |
US11143302B2 (en) * | 2016-06-30 | 2021-10-12 | Mahle Metal Leve S/A | Sliding element for internal combustion engines |
US20200040996A1 (en) * | 2017-04-12 | 2020-02-06 | Mahle Metal Leve S/A | Piston ring for internal combustion engines |
US10995857B2 (en) * | 2017-04-12 | 2021-05-04 | Mahle International Gmbh | Piston ring for internal combustion engines |
US11198932B2 (en) | 2017-06-07 | 2021-12-14 | Schaeffler Technologies AG & Co. KG | Method for producing a sliding surface |
Also Published As
Publication number | Publication date |
---|---|
WO2008000573A3 (en) | 2008-04-24 |
JP5669390B2 (en) | 2015-02-12 |
DE102006029415A1 (en) | 2008-01-03 |
CN101479401B (en) | 2013-05-08 |
JP2009542902A (en) | 2009-12-03 |
CN101479401A (en) | 2009-07-08 |
DE102006029415B4 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006029415B4 (en) | Wear-resistant coating and manufacturing process therefor | |
DE102004043550B4 (en) | Wear resistant coating, its use and method of making the same | |
EP1781835B1 (en) | Wear-resistant coating and method for producing the same | |
EP2209927B1 (en) | Corrosion-resistant coating | |
EP1767662B1 (en) | Wear resistant coating and process of its manufacture | |
DE102004041234A1 (en) | Wear resistant coating and method of making same | |
DE602005005428T2 (en) | Rolling a tilt lever | |
DE102011006294B4 (en) | Process for producing a hardened, coated metal component | |
EP2574685B1 (en) | Sliding element with DLC coating | |
DE19824310C1 (en) | Bearing surface for metal bearing | |
WO2007031160A1 (en) | Bearing arrangement | |
EP2912207B1 (en) | Component having a coating and method for the production thereof | |
EP2568058A1 (en) | Articulated chain with hard coated chain links | |
DE102006057484B4 (en) | Rolling bearings with a surface coating | |
WO2008128849A1 (en) | Method for applying a wear-resistant coating | |
DE202006020978U1 (en) | PVD hard coating of chain link parts | |
DE102006027502A1 (en) | Wear resistant coating and method of making same | |
EP4200533B1 (en) | Sliding bearing element | |
DE19848025B4 (en) | Process for the surface treatment of tools and tools with treated surface | |
DE102006027501A1 (en) | Wear-resistant, electrically insulating coating for machine parts subject to frictional wear, e.g. roller bearings, comprises metal-free amorphous hydrocarbon layer(s) | |
DE102010046941A1 (en) | Device, preferably tri-bological system, useful for power transmission, comprises first body and second body adapted to stand with the first body in sliding-rolling contact | |
EP1753887B1 (en) | Heavy-duty engine component | |
DE102011087667A1 (en) | Surface treatment of diamond-like carbon layer on component for valve train, crank drive or gear of internal combustion engine, where carbon layer is radiated with hard material that comprises spherical surface and/or irregular surface | |
DE102004037274A1 (en) | Surface design for assigned area of machine part for internal combustion engine has striation, for intake of lubricant, whose grooves are aligned under predetermined angle diagonal to longitudinal direction of occurred friction torque |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780024658.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07729646 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009517069 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07729646 Country of ref document: EP Kind code of ref document: A2 |