+

WO2008067537A3 - Method and apparatus for growth of iii-nitride semiconductor epitaxial layers - Google Patents

Method and apparatus for growth of iii-nitride semiconductor epitaxial layers Download PDF

Info

Publication number
WO2008067537A3
WO2008067537A3 PCT/US2007/086096 US2007086096W WO2008067537A3 WO 2008067537 A3 WO2008067537 A3 WO 2008067537A3 US 2007086096 W US2007086096 W US 2007086096W WO 2008067537 A3 WO2008067537 A3 WO 2008067537A3
Authority
WO
WIPO (PCT)
Prior art keywords
mohvpe
hvpe
reaction chamber
substrate
iii
Prior art date
Application number
PCT/US2007/086096
Other languages
French (fr)
Other versions
WO2008067537A2 (en
Inventor
M Asif Khan
Qhalid Fareed
Jinwei Yang
Original Assignee
Univ South Carolina
M Asif Khan
Qhalid Fareed
Jinwei Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ South Carolina, M Asif Khan, Qhalid Fareed, Jinwei Yang filed Critical Univ South Carolina
Publication of WO2008067537A2 publication Critical patent/WO2008067537A2/en
Publication of WO2008067537A3 publication Critical patent/WO2008067537A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A metalorganic-hydride vapor phase epitaxy (MOHVPE) system is generally disclosed, along with methods of forming epilayers on a substrate utilizing the MOHVPE system. The system includes a reaction chamber, a nitrogen source gas, a HVPE-like system, and a MOCVD-like system. The metal source of the HVPE-like system is located outside of the reaction chamber. The MOHVPE system is particularly well suited for use in nitride-based devices, such as group III-nitride based devices. The presently disclosed methods and systems combine the advantages of the well known MOCVD, pulsed atomic layer epitaxy (PALE), and HVPE techniques, while minimizing the disadvantages. Additionally, both techniques can be utilized to grow layers on the same substrate without removing the substrate from the reaction chamber.
PCT/US2007/086096 2006-11-30 2007-11-30 Method and apparatus for growth of iii-nitride semiconductor epitaxial layers WO2008067537A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US86182806P 2006-11-30 2006-11-30
US86188606P 2006-11-30 2006-11-30
US60/861,828 2006-11-30
US60/861,886 2006-11-30

Publications (2)

Publication Number Publication Date
WO2008067537A2 WO2008067537A2 (en) 2008-06-05
WO2008067537A3 true WO2008067537A3 (en) 2009-04-16

Family

ID=39468755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/086096 WO2008067537A2 (en) 2006-11-30 2007-11-30 Method and apparatus for growth of iii-nitride semiconductor epitaxial layers

Country Status (1)

Country Link
WO (1) WO2008067537A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318562B2 (en) 2007-04-02 2012-11-27 University Of South Carolina Method to increase breakdown voltage of semiconductor devices
KR20110129444A (en) 2009-03-02 2011-12-01 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Devices grown on nonpolar or semipolar (gallium, aluminum, indium, boron) nitrogen substrates
JP5931737B2 (en) * 2010-10-29 2016-06-08 株式会社トクヤマ Optical element manufacturing method
US11021789B2 (en) 2015-06-22 2021-06-01 University Of South Carolina MOCVD system injector for fast growth of AlInGaBN material
CN111295462A (en) * 2017-10-12 2020-06-16 盖列斯特科技股份有限公司 Method and system for integrated synthesis, delivery, and processing of source chemicals in thin film manufacturing
US11056338B2 (en) 2018-10-10 2021-07-06 The Johns Hopkins University Method for printing wide bandgap semiconductor materials
US11823900B2 (en) 2018-10-10 2023-11-21 The Johns Hopkins University Method for printing wide bandgap semiconductor materials
CN109518164A (en) * 2018-12-20 2019-03-26 北京北方华创微电子装备有限公司 Atomic layer deposition apparatus and method
CN114134572B (en) * 2021-11-12 2024-06-21 中国电子科技集团公司第四十六研究所 Auxiliary heating body device and method for growing aluminum nitride by HVPE method
CN114318543A (en) * 2021-12-28 2022-04-12 江苏布里其曼科技股份有限公司 System and method for manufacturing semipolar gallium nitride epitaxial layer structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086673A (en) * 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086673A (en) * 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates

Also Published As

Publication number Publication date
WO2008067537A2 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2008067537A3 (en) Method and apparatus for growth of iii-nitride semiconductor epitaxial layers
US11658029B2 (en) Method of forming a device structure using selective deposition of gallium nitride and system for same
WO2010129292A3 (en) Cluster tool for leds
WO2010129183A3 (en) Mocvd single chamber split process for led manufacturing
TW200703470A (en) Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD)
WO2008060349A3 (en) Method for heteroepitaxial growth of high-quality n-face gan, inn, and ain and their alloys by metal organic chemical vapor deposition
WO2006093707A2 (en) Single step, high temperature nucleation process for a lattice mismatched substrate
WO2012162197A3 (en) Methods for improved growth of group iii nitride semiconductors
WO2010009325A3 (en) Growth of semi-polar (11-22) or (10-13) gallium nitride with hydride vapor phase epitaxy
TW200644051A (en) Method for growth of gan single crystal, method for preparation of gan substrate, process for producing gan-based element, and gan-based element
WO2011123291A3 (en) Forming a compound-nitride structure that includes a nucleation layer
TW200802958A (en) Group III-nitride semiconductor thin film, method for fabricating the same, and group III-nitride semiconductor light emitting device
JP6406811B2 (en) III-nitride semiconductor device manufacturing apparatus and method, and semiconductor wafer manufacturing method
HK1112268A1 (en) Method for producing gan or algan crystals
TW200723369A (en) Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
CN100524621C (en) Method for growing crystalline gallium nitride-based compound and semiconductor device comprising gallium nitride-based compound
WO2013078136A4 (en) Semiconductor substrate and method of forming
GB0219728D0 (en) MBE growth of an algan layer or algan multilayer structure
JP2016134610A (en) Group III nitride semiconductor device and manufacturing method thereof
Lee et al. Effect of buffer layer on the growth of GaN on Si substrate
CN101397693B (en) Method for high quality single crystal indium nitride film growth
EP3556912B1 (en) Group iii nitride semiconductor substrate and production method for group iii nitride semiconductor substrate
JP7066178B2 (en) Manufacturing equipment and method for group III nitride semiconductor devices and manufacturing method for semiconductor wafers
JP2015168594A (en) Growth method of nitride semiconductor
WO2005041269A3 (en) Maskless lateral epitaxial overgrowth of aluminum nitride and high aluminum composition aluminum gallium nitride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07865003

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07865003

Country of ref document: EP

Kind code of ref document: A2

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载