+

WO2007136039A1 - Panel structure for transportation device or panel structure for building structural member, and method of producing the same - Google Patents

Panel structure for transportation device or panel structure for building structural member, and method of producing the same Download PDF

Info

Publication number
WO2007136039A1
WO2007136039A1 PCT/JP2007/060382 JP2007060382W WO2007136039A1 WO 2007136039 A1 WO2007136039 A1 WO 2007136039A1 JP 2007060382 W JP2007060382 W JP 2007060382W WO 2007136039 A1 WO2007136039 A1 WO 2007136039A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular plate
protrusions
panel structure
protrusion
cross
Prior art date
Application number
PCT/JP2007/060382
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Okura
Toshiyuki Ishikawa
Nobuyasu Hagisawa
Original Assignee
Osaka University
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Kansai Technology Licensing Organization Co., Ltd. filed Critical Osaka University
Priority to JP2008516687A priority Critical patent/JPWO2007136039A1/en
Publication of WO2007136039A1 publication Critical patent/WO2007136039A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/324Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with incisions or reliefs in the surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped

Definitions

  • the present invention mainly relates to a panel structure for a transport device or a panel structure for a structural member for a building, and a manufacturing method thereof.
  • the members constituting the structure are required to have a predetermined buckling strength against compressive loads and bending loads.
  • each buckling is different from the deformation pattern when receiving a compressive load.
  • the member buckling strength decreases. Therefore, before the member buckling occurs, the cross-sectional dimensions of the plate are determined so that plate buckling does not occur.
  • the material of the member can be reduced by reducing the thickness of the rectangular plate constituting the member.
  • the rectangular plate is simply reduced in thickness, the rectangular plate has a compressive load acting in the in-plane direction. The problem that it becomes easy to raise
  • the rectangular plate is provided with ribs, there has been no technology for further thinning the rectangular plate without reducing the buckling strength.
  • the technology for thinning a rectangular plate without reducing the buckling strength has been strong.
  • the main object of the present invention is to provide a thinned rectangular plate that can be manufactured with a smaller number of saddle materials while satisfying substantially the same buckling strength as a rectangular plate not provided with a protrusion.
  • the inventors of the present invention conducted intensive research to solve the above-described problems. As a result, by providing protrusions on the rectangular plate, while satisfying substantially the same buckling strength as the rectangular plate without protrusions, The present inventors have found that the width-thickness ratio of the rectangular plate can be increased and the total cross-sectional area of the protrusion and the rectangular plate can be reduced as compared with the conventional rectangular plate having no protrusions, and the present invention has been completed.
  • the present invention relates to the following panel structure for transport equipment or panel structure for a structural member for building, and a method for producing the same.
  • a panel structure for a transportation equipment or a structural member for a building comprising a rectangular plate, two or more supports, and one or more protrusions,
  • the rectangular plate is supported by two or more supports, including two supports at the ends of the rectangular plate.
  • the one or more protrusions are provided on the rectangular plate across a region sandwiched by two opposing supports out of the two or more supports,
  • the width-thickness ratio of the rectangular plate is larger than the width-thickness ratio of the rectangular plate, provided with protrusions.
  • a rectangular plate with one or more protrusions has substantially the same buckling strength as a rectangular plate without protrusions
  • Panel structure for transportation equipment or structural member for buildings are Panel structure for transportation equipment or structural member for buildings.
  • the rectangular plate is made of at least one material selected from the group consisting of metal, resin, and fiber reinforced resin, and the protrusion is made of metal, resin, and fiber reinforced resin.
  • Item 2 The panel structure according to Item 1, which also has at least one material force selected from the group consisting of:
  • Item 2 The method for producing a panel structure according to Item 1, comprising (wherein steps (I) and (ii) may be performed in any order or simultaneously! /)).
  • the rectangular plate In the region sandwiched between the two opposing supports, the rectangular plate is provided on the rectangular plate at an equal interval parallel to the opposing two supports, and the rectangular plate is in the plane of compression or bending.
  • the transport device panel structure or building structure member panel structure according to any one of Items 1 to 12, which is less than 7?
  • k Buckling coefficient of a rectangular plate without protrusions, when subjected to compression, 4 when subjected to bending 23.
  • n E ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
  • Buckling strength of a rectangular plate without protrusions or a rectangular plate with protrusions that is subjected to compression or bending.
  • the feature of the present invention is that for each s (total number of plate elements delimited by protrusions),
  • s and ⁇ that minimize r? Can be easily obtained.
  • the panel structure for transportation equipment or the panel structure for structural members for buildings of the present invention can be obtained as follows.
  • the protrusions created by the above-described calculation may move several times in the out-of-plane direction of the rectangular plate (for example, 0, 1, 2). Or three places, the number of places restrained in proportion to the length of the rectangular plate can be increased), and the same between the adjacent protrusions or between the protrusions and the adjacent end support
  • a new protrusion can be formed (point D in FIG. 26 of Example 5), and the cross-sectional area can be further reduced (further thinning).
  • thinning has been achieved by providing a rib (intermediate support) on a rectangular plate, but in the conventional panel structure design, thinning is achieved when a specific rib (intermediate support) is provided. Since the degree of this was only clarified at a specific point, no means for achieving further thinning was known.
  • the transport device panel structure or the structural member panel structure of the present invention basically includes a rectangular plate, two or more supports and one or more. Consists of protrusions.
  • Two or more supports are provided as “two or more supports” because they can be provided with a pair of supports on opposite sides (ends) of the rectangular plate and further provided with one or more intermediate supports.
  • the number of intermediate supports is a force determined by the size and material of the rectangular plate and the manufacturing conditions of the panel structure. For example, the number of intermediate supports can be set appropriately based on the following concept.
  • the distance between adjacent intermediate supports is generally required to be 300 mm or more due to the workability of welding.
  • a maximum of two intermediate supports are provided in the region above half the width of the rectangular plate that receives compressive stress.
  • one intermediate support is provided, as shown in FIG. 18 (b) of Example 2
  • it is provided at a position 0.2 times the plate width from the upper end of the rectangular plate.
  • the upper end force of the rectangular plate is also provided at a position 0.14 times and 0.36 times the plate width.
  • a rectangular plate provided with one or more protrusions has substantially the same buckling strength as a rectangular plate not provided with protrusions.
  • the numerical values obtained can be rounded up for manufacturing.
  • the thickness of a rectangular plate with the required buckling strength When the thickness and the thickness of the protrusion are calculated to be 7.3 mm and 9.3 mm, respectively, rounding to 7 mm and 9 mm respectively will not provide the required buckling strength.
  • the dimensions may be determined by rounding up. In this case, the value of ⁇ becomes large. “Substantially the same buckling strength” means that the buckling strength may be slightly increased from such a design or practical requirement.
  • FIG. 3 shows a schematic diagram of the panel structure of the present invention.
  • FIG. 3 (a) is a schematic view of the panel structure of the present invention in the case where the rectangular plate is provided with a rib (intermediate support).
  • the buckling strength of the rectangular plate has been increased by attaching ribs to the rectangular plate so that the position of the ribs is not moved.
  • the rectangular plate with ribs is made thinner without reducing the buckling strength.
  • the technology to make it was a great effort.
  • the present invention as shown in FIG. 3 (a), by providing one or more protrusions on a rectangular plate having ribs, the rectangular plate can be further thinned without reducing buckling strength. .
  • FIG. 3 (b) is a schematic view of the panel structure of the present invention when the rectangular plate is not provided with a rib.
  • the technology for thinning a rectangular plate without ribs without reducing the buckling strength has been strong.
  • the rectangular plate can be thinned without reducing buckling strength. .
  • ribs have a large cross-sectional dimension, so that a large number of materials are required even if a large number of ribs cannot be provided on a rectangular plate, or many can be provided on a rectangular plate. It becomes.
  • the projections in the present invention have a relatively small cross-sectional dimension, a large number of protrusions can be provided on a rectangular plate. I'm sorry.
  • the rib and the protrusion in the present invention are different.
  • the rib When the rib is provided on the rectangular plate between the two supporting bodies, when the rectangular plate is subjected to a compressive load exceeding a predetermined level, buckling occurs between the rib and each support using the rib as a node. At this time, the rib position does not move (Fig. 4 (a)).
  • the ribs increase the buckling strength of the rectangular plate by not moving its own position, and function as a support.
  • the projection is provided on the rectangular plate between the two supports, if the rectangular plate is subjected to a large compressive load exceeding a predetermined level, buckling occurs between the support and the support.
  • the rectangular plate is not particularly limited, but the material force used in the field of transportation equipment or building such as metal, fiber reinforced metal, resin, fiber reinforced resin is also made.
  • a metal used in the field of transportation equipment or buildings can be widely used, and is not particularly limited.
  • at least one selected from the group consisting of iron, aluminum, and magnesium force, or An alloy based on this (for example, containing 50% by weight or more) is preferably used.
  • the alloy is not particularly limited to a force that can suitably use steel, stainless steel, aluminum alloy, and the like.
  • phosphorus-added steel, BH (Bake-Hardening) steel, ultra-deep drawn high-strength steel, aluminum alloy, etc. can be suitably used for the rectangular plate in the panel structure for transportation equipment.
  • steel, stainless steel, aluminum alloy, etc. can be suitably used for the rectangular plate in the structural member panel structure for buildings.
  • the resin it is possible to use a synthetic or natural resin such as thermoplastic resin, engineering plastic, thermosetting resin, and the like appropriately mixed with plasticizer, filler, colorant and the like.
  • a synthetic or natural resin such as thermoplastic resin, engineering plastic, thermosetting resin, and the like appropriately mixed with plasticizer, filler, colorant and the like.
  • the Synthetic or natural fats include polyethylene, polypropylene, polychlorinated butyl, polyacetic acid butyl, ABS (Acrylonitrile Butadiene Styrene) rosin, AS (Acrylonitril e Styrene) rosin, AES (Acrylonitrile Ethylene Styrene) rosin, AAS (Acrylonitrile).
  • Nitrile Acrylate Styrene acrylic (acid) resin, polyamide, polycarbonate, polyacetal, modified polyphenylene ether, polybutylene terephthalate, GF—P ET resin, polyphenylene sulfide, sulfone-based resin, polyether At least one selected from the group consisting of ether ketone, polyarylate, polyamideimide, thermoplastic polyimide, polyetherimide, fluorine resin, phenol resin, polyurethane, unsaturated polyester resin, and epoxy resin, or this -Based mixed fat (containing 50% by weight or more) It can be used, in particular, polypropylene, acrylic (acid) ⁇ , phenol ⁇ fat, polyurethane, unsaturated polyester ⁇ , Ru can be suitably used epoxy ⁇ .
  • a fiber-reinforced metal or fiber-reinforced resin obtained by reinforcing the metal or the resin with fibers can also be used as a material for the rectangular plate.
  • the fiber reinforced metal or fiber reinforced resin it is possible to use a metal or resin in which fibers are dispersed by a conventional method, or a non-woven fabric or woven fabric made of fibers solidified with a metal or resin by a conventional method. Can also be used.
  • the fiber used for the fiber reinforced metal or fiber reinforced resin include glass fiber, carbon fiber, silicon carbide fiber, Tyranno fiber, boron fiber, aramid fiber, polyarylate fiber, high strength polyethylene fiber, alumina fiber, and amorphous fiber.
  • Metal fibers, steel fibers, stainless steel fibers and the like can be mentioned, and glass fibers, carbon fibers and aramid fibers are particularly preferable.
  • one type of fiber may be used alone, or two or more types of fibers may be used in combination.
  • the rectangular plate includes a curved rectangular plate that is slightly curved in whole or in part in the width direction of the rectangular plate.
  • the radius of curvature R of the curved surface portion is not particularly limited, but is, for example, 0.05 times or more, preferably 0.1 times or more, more preferably 0.2 times or more with respect to b 2 ZT.
  • b is the width of the curved rectangular plate
  • T is the thickness of the curved rectangular plate.
  • the rectangular plate in the present invention includes a substantially plate-shaped rectangular plate having a slightly wavy surface or a slightly rough surface.
  • the support is not particularly limited, but is made of a material used in the field of transportation equipment or building such as metal, fiber reinforced metal, greaves, and fiber reinforced greaves. About a metal, a fiber reinforced metal, a resin, a fiber reinforced resin etc., the thing similar to a rectangular plate can be used conveniently.
  • the shape of the support is not particularly limited.
  • the protrusion is not particularly limited, but is a piece of material made of a material used in the field of transport equipment or building such as metal, fiber reinforced metal, resin, fiber reinforced resin. About a metal, a fiber reinforced metal, a resin, a fiber reinforced resin etc., the thing similar to a rectangular board can be used.
  • the material of the protrusion may be different from the material of the rectangular plate, but the viewpoint power such as the integrity of the protrusion and the rectangular plate, the ease of setting conditions when the protrusion is provided on the rectangular plate, and the material of the rectangular plate It is desirable to be the same.
  • the protrusion is preferably a metal or carbon fiber, and the rectangular plate and the protrusion are preferably made of the same metal.
  • the shape of the protrusion is, for example, a shape having a cross section such as a rectangle, a trapezoid, an ellipse, a mountain, an L shape, and a T shape, but is not limited thereto.
  • the rectangular plate is supported by two or more supports including two supports at the end of the rectangular plate.
  • support means to support at least temporarily.
  • “Support” does not necessarily mean fixing, but usually high safety is required in this field, so it is usually fixed by fusion welding, pressure welding, brazing, bolting, bonding, etc., screw, It is desirable to be done by fixing using bolts, hooks, hinges and other auxiliary tools, fixing using the shape of members such as fitting U, etc.
  • the material of the rectangular plate is aluminum or an aluminum alloy, it is possible to manufacture a rectangular plate having projections by bonding such as friction stir welding (FSW) and to bond the rectangular plate having projections or projections to the support. .
  • FSW friction stir welding
  • a rectangular plate is integrated with two or more supports by a molding technique such as rolling or extrusion, or when the rectangular plate is “supported” by two or more supports. included.
  • a molding technique such as rolling or extrusion
  • the rectangular plate is “supported” by two or more supports. included.
  • prisms are integrated as shown in Fig. 23 (a) and Fig. 23 (b).
  • the rectangular plate may be supported by two or more supports in any state.
  • FIG. 6 (a) when the rectangular plate 1 is supported by the support 2 (type I), Fig. 6 (b)
  • FIG. 2 shows a schematic cross-sectional view when a rectangular plate of 2 is supported by a support of 2 (box type).
  • Figure 7 also shows several patterns in which a rectangular plate is supported by two supports located at the ends of the rectangular plate.
  • Figure 8 shows the pattern of forces in which a rectangular plate is supported by two or more supports and ribs (intermediate supports) located at the ends of the rectangular plate. However, the projections are omitted in FIGS.
  • the l or more protrusions are provided on the rectangular plate in a region sandwiched by two of the two or more supports facing each other.
  • facing means facing in parallel or almost in parallel.
  • the "region sandwiched between two opposing supports” means a region on a rectangular plate between one support and the other support of the two supports facing each other.
  • the two supports facing each other include a combination of upper and lower supports in FIG. 8, a combination of upper and lower supports and an intermediate support, and a combination of two intermediate supports.
  • the two supports facing each other are in parallel or substantially parallel to each other.
  • Examples of the “region sandwiched between two opposing supports” include rectangular plate 1, rectangular plate 2, and rectangular plate 3 in FIG.
  • the “region sandwiched between two opposing supports” includes the region sandwiched by two members that are supposed to support the rectangular plate facing each other in the event of a collision.
  • the hood of an automobile is in a state where it is lightly in contact with the parts of the front part of the vehicle body (for example, front fender, frame, etc.) during normal times, it receives a collision load at the time of collision and is strongly sandwiched between these parts. May be supported.
  • the region on the rectangular plate that is assumed to be sandwiched at least temporarily by the support is also included in the “region sandwiched by the two opposing supports”.
  • the support provided in the region inside the end of the rectangular plate is referred to as a "rib (intermediate support)". Since the “rib” supports the rectangular plate, it is included in the “support” in the present invention. Thus, for example, when a rectangular plate having a support at the end portion is further provided with a rib, the “region sandwiched between the two support members facing each other” is the region sandwiched between each support member at the end portion and the rib. , And Z or a region sandwiched between ribs.
  • the protrusion can be provided on the rectangular plate by a conventional method such as fusion welding, pressure welding, brazing, bolt joining, or adhesion.
  • the protrusion is rolled, extruded, It is desirable that the rectangular plate be provided in an integrated state with the rectangular plate by a molding technique such as shape.
  • the protrusion may be provided on one side of the rectangular plate (FIG. 9 (a)) or may be provided on both sides (FIG. 9 (b) and FIG. 9 (c)).
  • the protrusions be provided substantially parallel to the two opposing supports. By being provided in parallel as described above, since the force acts on the protrusion only in the direction along the protrusion, the buckling strength of the rectangular plate is higher than when the protrusion is not provided in parallel.
  • the protrusions are provided at substantially equal intervals between the two supports. As shown in FIG. 10, when the rectangular plate receives a shearing load, the buckling strength of the rectangular plate against the shearing load can be maximized by being provided at equal intervals.
  • FIG. 11 shows several patterns in which one or more protrusions are provided on a rectangular plate.
  • the width-thickness ratio of the rectangular plate is provided with protrusions! /,!, Greater than the width-thickness ratio of the rectangular plate.
  • the designer is provided with a protrusion, and the width-thickness ratio satisfying the buckling strength of the rectangular plate
  • the total cross-sectional area of the rectangular plate and the one or more protrusions is smaller than the cross-sectional area of the rectangular plate provided with the protrusions.
  • the rectangular plate with protrusions has substantially the same buckling strength as the rectangular plate without protrusions.
  • the buckling strength substantially the same as the rectangular plate provided with the protrusions is the buckling strength arbitrarily determined by the designer.
  • the designer cannot generally set the buckling strength to be greater than the yield stress of the material or 0.2% resistance (for materials that do not have a clear yield point).
  • the material yield stress or 0.2% resistance (for materials that do not have a clear yield point) is used!
  • the rectangular plate has a width-thickness ratio that is larger than the width-thickness ratio of the rectangular plate, and has a total cross-sectional area of the rectangular plate and one or more protrusions. Is provided with one or more protrusions that are just smaller than the cross-sectional area of a rectangular plate without protrusions.
  • the rectangular plate has substantially the same buckling strength as the rectangular plate having no protrusion.
  • the rectangular plate having protrusions has substantially the same buckling strength as the rectangular plate having no protrusions, and the width-thickness ratio of the rectangular plates is increased (that is, The rectangular plate is thinned to a certain width), and the cross-sectional area of the rectangular plate including the protrusion is reduced. Reducing the cross-sectional area of the rectangular plate including the protrusions means that a rectangular plate having the protrusions can be manufactured with less material.
  • the transport device panel structure of the present invention is not particularly limited, but can be applied to transport devices such as automobiles, motorcycles, railway vehicles, ships, airplanes, and spacecrafts.
  • Automobiles, railway vehicles, ships, airplanes, and spacecraft are transportation equipment that can move at high speed, and are highly likely to receive large compression loads and Z or bending loads in the in-plane direction due to collisions. Since the bending strength is required, the present invention can be applied particularly to these high-speed movable transportation equipment.
  • the panel structure for a structural member for a building of the present invention is not particularly limited, but can be applied to a building such as a building or a bridge.
  • the present invention includes (I) a step of supporting a rectangular plate with two or more supports including two supports at the end of the rectangular plate, and (i) one or more protrusions with two or more supports.
  • a method for producing a panel structure for a transportation device or a panel structure for a structural member for a building according to the present invention comprising a step of preparing a rectangular plate in a region sandwiched by two opposing supports in the body.
  • the steps (I) and (ii) may be performed in any order or at the same time.
  • a welding method or a joining method performed in the relevant field such as fusion welding, pressure welding, brazing, bolt joining, adhesion or the like, or screws, bolts, hooks, hinges, etc.
  • the rectangular plate can be fixed to two or more supports using an auxiliary tool, but is not limited thereto. Further, the rectangular plate may be supported by the support by integrating the rectangular plate and the support by molding performed in the field such as rolling or extrusion. The rectangular plate and the support are as described above.
  • one or more protrusions are formed on two or more supports by a welding method or a joining method performed in the relevant field such as fusion welding, pressure welding, brazing, bolt joining, or adhesion. Heading out
  • the force that can be provided to the rectangular plate in the region sandwiched between the two supporting members is not limited to these.
  • the projection may be provided on the rectangular plate by integrally forming the projection and the rectangular plate by molding performed in this field such as rolling or extrusion molding.
  • the protrusions are as described above.
  • a T-shaped member that forms part of the protrusion and the rectangular plate, and a support (there is a part of the support and the rectangular plate) It is also possible to form the rectangular plate and the protrusion at the same time by connecting the T-shaped member) by an appropriate method such as friction stir welding (FSW). This method is particularly useful when the material of the rectangular plate and the projections or intermediate support is aluminum or aluminum alloy.
  • FSW friction stir welding
  • A is the cross-sectional area of a rectangular plate with protrusions having substantially the same buckling strength as a rectangular plate without protrusions, and a conventional plate with a predetermined buckling strength but without protrusions.
  • A is the cross-sectional area of the rectangular plate
  • Example 1 it is described that a rectangular plate with 5 protrusions can further reduce the cross-sectional area by 31% compared to a rectangular plate with 1 intermediate support.
  • Example 2 3 protrusions are provided. It is described that the rectangular plate can further reduce the cross-sectional area by 16% than the rectangular plate with two intermediate supports! RU
  • Rectangular plates used in the field of transportation equipment or buildings require a large amount of material that is larger in size than rectangular plates used in fields such as precision machinery and home appliances.
  • the ability to reduce materials in this area is very meaningful in terms of reducing manufacturing costs and saving resources.
  • reducing the amount of material used can reduce the weight of the transport equipment. , Leading to fuel reduction or increased loading capacity. Furthermore, reducing the amount of materials used can reduce the weight of the building, allowing construction of the building in areas where the ground strength is weak, reducing seismic loads, and construction work. It leads to improvement of sex.
  • k Buckling coefficient of a rectangular plate without protrusions 4 when subjected to compression and 23 when subjected to bending.
  • bZT: Width / thickness ratio of rectangular plate without protrusions
  • T Thickness of rectangular plate without protrusions
  • the buckling strength ⁇ of the rectangular plate without protrusions cannot be set larger than the yield stress of the material or 0.2% resistance (in the case of a material having no clear yield point). Therefore, in general, the buckling strength ⁇ of the rectangular plate without protrusions is often set to the yield stress of the material or 0.2% resistance (with no clear yield point !, for the material).
  • bZt: Width-thickness ratio of rectangular plate with protrusions
  • the buckling coefficient k of a rectangular plate with protrusions for compression or bending is given by the following formula (Ichiro Okura: Fundamental of Structural Design of Steel, Toyo Shoten, PP. 223-264, 2004 and Ichiro Oshoku, Kogo Kitamura, Shinsuke Akasaki, Takahisa Tsuji, Big 'Lazzro' Gergeri, Katsumi Mikawa: Proposal of a new aluminum alloy stiffening girder, Journal of Structural Engineering, Vol. 51 A, pp. 203-210, 2005).
  • t Thickness of the root of the protrusion (see Table 1)
  • b When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b (Table b: Height of protrusions (see Table 1)
  • the plate width b of the rectangular plate with protrusions has the following relationship with the width b of the plate elements divided by the protrusions and the total number s of plate elements.
  • n E ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
  • b Zt: Width / thickness ratio of the plate elements delimited by protrusions
  • n E i ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
  • b Zt: Width / thickness ratio of the plate elements delimited by protrusions
  • the width-thickness ratio ⁇ of the rectangular plate with protrusions and the width-thickness ratio j8 of the plate elements separated by the protrusions have the following relationship.
  • the buckling strength of the rectangular plate without protrusions is set equal to that of the rectangular plate with protrusions.
  • the following equation is obtained by placing the equations (1) and (3) equally.
  • bZt: Width-thickness ratio of rectangular plate with protrusions
  • bZT: Width / thickness ratio of rectangular plate without protrusions
  • b Zt: Width / thickness ratio of the plate elements delimited by protrusions
  • Equation 14 [0099] [Equation 14] c [0100] Substituting Equation (5) into Equation (16) and solving for ⁇ , we obtain
  • n E ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
  • bZT: Width / thickness ratio of rectangular plate without protrusions
  • b Zt: Width / thickness ratio of the plate elements delimited by protrusions
  • T Thickness of rectangular plate without protrusions
  • the buckling strength of the rectangular plate with protrusions cannot exceed the buckling strength of the plate elements separated by the protrusions. Therefore, the buckling coefficient k for compression or bending of the rectangular plate with protrusions is subject to the following restrictions.
  • k The buckling coefficient of a plate element separated by protrusions against compression or bending is expressed as the buckling coefficient of the entire rectangular plate with protrusions.
  • 4sV 2. Is— 2 (Ochiro Ichiro: Fundamentals of Steel Structural Design, Toyo Shoten, PP. 223-264, 2004) and Ochiro Ichiro, Kitamura Kosuke, Akasaki Kosuke, Tsuji Takahisa, Big 'Razguchi' Gergeri, Katsumi Mikawa: Proposal of a new aluminum alloy stiffening girder, Structural Engineering Papers, Vol. 51 A, pp. 203-210, 2005).
  • the protrusion should be less than the buckling strength of the rectangular plate with protrusions and should not buckle. Therefore, if the protrusion is regarded as a free protruding plate subjected to compression, the protrusion must satisfy the following equation.
  • Equation (28) The left side of equation (28) is the buckling strength of the free protruding plate subjected to compression (Okura Ichiro: Fundamental Design of Steel Structure, Toyo Shoten, pp. 223-264) o
  • the average thickness t of the protrusion is , Protrusion breakage
  • the area (if there are protrusions on both sides of the rectangular plate, the sectional area of the protrusion on one side) is the height of the protrusion b
  • the stress ⁇ generated in the protrusion is given by the following equation under the condition that the strain generated in the rectangular plate is equal to the strain generated in the protrusion.
  • the stress ⁇ e generated on the protrusion cannot be greater than the yield stress of the protrusion material or 0.2% resistance (for materials that do not have a clear yield point). Therefore, the stress ⁇ generated in the protrusion is subject to the following restrictions.
  • Equation (30) always holds when the material of the rectangular plate and the material of the protrusion are the same. If a material different from that of the rectangular plate is used for the projection, depending on the material, equation (30) may not be satisfied! Because there are some materials, it must be confirmed that the material selected for the projection satisfies equation (30). I must.
  • the Young's modulus and Poisson's ratio can be obtained with reference to JIS standards and the like.
  • the Young's modulus E and Poisson's ratio of a metal material can be determined according to the standard of JIS Z 2241 “Metal material tensile test method”.
  • the Young's modulus E and Poisson's ratio of the plastic can be determined according to the standard of JIS K 7113 “Plastic tensile test method”.
  • the Young's modulus E and Poisson's ratio of the carbon fiber reinforced resin can be obtained according to the standard of JIS K 7073 “Tensile test method for carbon fiber reinforced plastic”.
  • the thickness, width, and height of the rectangular plate and the protrusion are measured by a conventional method using a measuring instrument such as a caliper, a micrometer, a laser displacement sensor, and a microscope.
  • a measuring instrument such as a caliper, a micrometer, a laser displacement sensor, and a microscope.
  • Young's modulus, Poisson's ratio, thickness, etc. are often described in catalogs and instructions, so use those values. Say it with a word.
  • the width-thickness ratio of the rectangular plate is satisfied while satisfying substantially the same buckling strength as that of the rectangular plate without the protrusions. It is possible to make the cross-sectional area of the rectangular plate including the protrusion larger than the width-thickness ratio of the rectangular plate not including the protrusion and smaller than the cross-sectional area of the rectangular plate not including the protrusion.
  • the panel structure for a transportation device or the structural member for a building of the present invention satisfies substantially the same buckling strength as a rectangular plate not provided with a projection, and is less than the conventional one. ! / Can be manufactured with materials.
  • the total cross-sectional area of the rectangular plate and the protrusion can be increased. , About 0.4 to about 0.6 of the cross-sectional area of a rectangular plate without conventional protrusions It is possible to reduce by a factor of two.
  • the present invention uses protrusions having a smaller cross-sectional dimension than the ribs, the present invention can be applied to a panel structure in which it is difficult to design a rib having a large cross-sectional dimension.
  • Fig. 1 (a) shows member buckling
  • Fig. (B) shows plate buckling
  • FIG. 2 A conventional panel structure for a structural member, in which a support called a rib is attached to a rectangular plate.
  • FIG. 3 The structural member panel structure of the present invention when the rectangular plate is provided with ribs or when the rectangular plate is provided with ribs.
  • Fig. (A) is a panel structure for a structural member of the present invention having one or more protrusions on a rectangular plate having ribs.
  • Fig. (B) is one or more protrusions on a rectangular plate having no ribs. It is the panel structure for structural members of this invention provided with these.
  • Fig. 4 Fig. (A) is a buckling deformation pattern of a rectangular plate with ribs
  • Fig. (B) is a buckling deformation pattern of a rectangular plate with protrusions
  • Fig. (C) is a plurality of protrusions
  • (D) shows the buckling deformation pattern of a rectangular plate with ribs and protrusions.
  • FIG. 5 A curved rectangular plate that is slightly curved in whole or in part in the width direction of the rectangular plate.
  • Fig. (A) is a schematic cross-sectional view of the case where 1 rectangular plate is supported by 2 supports (type I cross section), and Fig. 6 (b) is that 2 rectangular plates are supported by 2 supports. A schematic cross-sectional view when supported (box-shaped cross section) is shown.
  • the rectangular plate shows several patterns supported by two supports located at the ends of the rectangular plate.
  • FIG. 8 A rectangular plate shows several patterns supported by two or more supports and ribs (intermediate supports) located at the end of the rectangular plate.
  • Fig. 9 Fig. (A) is provided with protrusions on one side of the rectangular plate, Fig. (B) is provided with protrusions on both sides of the rectangular plate, and Fig. (C) is shown on both sides of the rectangular plate. Are provided with protrusions at the same position.
  • FIG. 10 A rectangular plate with protrusions at equal intervals is subjected to a shear load.
  • FIG. 11 Shows several turns that have one or more protrusions on a rectangular plate.
  • FIG.12 Four-sided simply supported rectangular plate subjected to compression or bending.
  • Fig. (A) shows the case where a rectangular plate supported simply by 4 sides is subjected to compression
  • Fig. (B) shows the case where a rectangular plate supported simply by 4 sides is subjected to bending.
  • FIG. 13 A rectangular plate with protrusions at equal intervals, subject to compression or bending.
  • Figure (a) shows the case where rectangular plates with projections at equal intervals are subjected to compression
  • Fig. (B) shows the case where rectangular plates with projections at equal intervals are bent.
  • FIG.14 Location of protrusion.
  • Figure (a) shows b and b when there are protrusions on one side of the rectangular plate
  • Figure (b) shows b and b when there are protrusions on both sides of the rectangular plate.
  • Figure 15 Cross-sectional shape of aluminum alloy web according to “Aluminum alloy civil engineering design 'production guidelines”.
  • Figure (a) shows the cross-sectional shape of an aluminum alloy web without protrusions or ribs (intermediate support), and
  • Figure (b) shows aluminum with one rib (intermediate support). The cross-sectional shape of an alloy web is shown.
  • FIG. 17 is a cross-sectional shape of an aluminum alloy web having 5 protrusions obtained by applying the present invention.
  • FIG.18 Cross section of steel web according to “Road Bridge Specification / Common Explanation I Common Section II Steel Bridge Section”.
  • Figure (a) shows the cross-sectional shape of a steel web without protrusions or ribs (intermediate support), and
  • Figure (b) shows the cross-sectional shape of a steel web with one rib (intermediate support).
  • Figure (c) shows the cross-sectional shape of a steel web with two ribs (intermediate support).
  • FIG. (A) shows the cross-sectional shape of a steel web provided with 6 projections obtained by applying the present invention.
  • Fig. (B) shows the half of the width of the web in the figure (a). The cross-sectional shape of the web from which the protrusions have been removed is shown.
  • FIG.21 Cross section of aluminum beam.
  • Figure (a) shows the general cross-sectional shape of the aluminum girder without protrusions
  • Figure (b) shows the final cross-sectional shape of the aluminum girder without protrusions
  • Figure (c) shows the cross-sectional shape of the aluminum girder with protrusions.
  • FIG. 22 Relationship between ⁇ and e of aluminum alloy web with protrusions subjected to bending.
  • FIG.23 Cross section of aluminum column.
  • Figure (a) shows the cross-sectional shape of an aluminum column without protrusions.
  • Figure (b) shows the cross-sectional shape of the aluminum column with protrusions.
  • FIG. 26 Sectional shape of aluminum alloy plate corresponding to points 0, A, B, C, D in FIG.
  • FIG. 27 is a panel structure obtained by applying the present invention twice.
  • FIG.29 Cross-sectional shape of steel plate subjected to compression.
  • Fig. (A) shows the cross-sectional shape of a steel plate without projections
  • Fig. (B) shows the cross-sectional shape of a steel plate with projections.
  • FIG.31 Cross-sectional shape of steel plate subjected to bending.
  • Fig. (A) shows the cross-sectional shape of a steel plate without projections
  • Fig. (B) shows the cross-sectional shape of a steel plate with projections.
  • A Cross-sectional area of a rectangular plate without protrusions
  • A Cross-sectional area of a rectangular plate with protrusions, including protrusions
  • T Thickness of rectangular plate without protrusions
  • k The buckling coefficient of a plate element separated by protrusions, expressed as the buckling coefficient of the entire rectangular plate with protrusions
  • n Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
  • Width-thickness ratio of rectangular plate without protrusions 18 Width-thickness ratio of plate elements delimited by protrusions
  • Buckling strength of a rectangular plate with or without protrusions subjected to compression or bending
  • an aluminum alloy girder web There are provisions for the case where one rib (intermediate support) is provided on a rectangular plate to be bent.
  • the aluminum alloy type is A6061——6, the width / thickness ratio of a web without ribs is limited to 65 or less, and the width / thickness ratio of a web with one rib is limited to 90 or less. Yes. Therefore, the width-thickness ratio j8 of a web without ribs is set to 65.
  • the ratio of the area of the cross-sectional shape of Fig. 15 (b) to the area of the cross-sectional shape of Fig. 15 (a) is 0.820.
  • the present invention is applied to a web without protrusions having a width-thickness ratio 13 of 65.
  • Protrusion is width to thickness ratio
  • Figure 16 shows the relationship between 7? And j8.
  • s 6
  • 173.8
  • takes the maximum value / J and takes the value 0.565.
  • the cross-sectional shape of the web at this time is shown in FIG.
  • "Aluminum alloy civil engineering structure design 'production guideline draft" by reducing the cross-sectional area of the web by providing one rib (intermediate support)
  • the cross-sectional area of the web can be further reduced by 31%.
  • FIG. 18 (a) shows a cross-sectional shape of a web without ribs.
  • Figure 18 shows the results for a web width b of 2829 mm.
  • the ratio of the area of the cross-sectional shape of FIG. 18 (b) to the area of the cross-sectional shape of FIG. 18 (a) is 0.627, and the ratio of the area of the cross-sectional shape of FIG. 18 (a) to that of FIG.
  • the ratio of the cross-sectional area is 0.464.
  • the “Road Bridge Specification Manual” in the same description I Common Edition ⁇ Steel Bridge Edition it is possible to reduce the cross-sectional area by 37% by providing 1 rib on the web, and 54% by providing 2 rib on the web.
  • the cross-sectional area can be reduced.
  • the present invention is applied to a web without protrusions having a width-thickness ratio of 8 forces.
  • the protrusion is wide and thick
  • FIG. 20 (a) shows the relationship between 7? And j8.
  • takes the maximum value / J and takes the value 0.452.
  • the cross-sectional shape of the web at this time is shown in FIG. 20 (a).
  • An aluminum girder with an H-shaped section will be applied to a 20m highway bridge.
  • the width and height of the girders are 400mm and 1400mm, respectively.
  • the effect of light weight by providing the projection described in the present invention on the girder web is shown below.
  • the required cross-sectional second moment for the girder is 1.3 X 10 1C) mm 4 . Since the cross-sectional shape of the girder is shown in Fig. 21 (a), the cross-sectional secondary moment is expressed by the following equation.
  • the type of aluminum alloy is A6061-T6. This aluminum alloy has a 0.2% yield strength of 245 MPa, a Young's modulus of 7.0 X 10 4 MPa, and a Poisson's ratio of 0.3.
  • the width-to-thickness ratio j8 of the web without protrusions is
  • a protrusion having a rectangular cross section is attached to one side of the web. From equation (31),
  • Figure 22 shows the relationship between 7? And j8.
  • the cross-sectional secondary moment of the cross-sectional shape of Fig. 21 (c) is 1. 334X10 lc> mm 4, which is larger than the required cross-sectional secondary moment of 1.3X10 10 mm 4 .
  • Sectional area of the [0174] FIG. 21 (b) is 43220mm 2
  • the cross-sectional area shown in FIG. 21 (c) is 36795mm 2.
  • the ratio of the cross-sectional area of the girders with protrusions to the cross-sectional area of the girders without protrusions is 0.85. Therefore, by attaching a protrusion, the weight is reduced to 15%.
  • a girder having the cross-sectional shape of Fig. 21 (c) can be obtained by friction stir welding (FSW) of a T-shaped extruded profile Example 4
  • Box-shaped aluminum profile is applied to the 4m span column.
  • the inner dimension of the box section is 280 mm X 280 mm.
  • the effect of light weight by providing the projections described in the present invention is shown below.
  • the type of aluminum alloy is A6061-T6. This aluminum alloy has a 0.2% proof stress of 245 MPa, a Young's modulus of 7.0 ⁇ 10 4 MPa, and a Poisson's ratio of 0.3. Protrusive The web width-thickness ratio j8 is
  • a protrusion having a rectangular cross section is attached to one side of the aluminum plate. From equation (31)
  • Sectional area of the [0185] FIG. 23 (a) is 10047mm 2
  • the cross-sectional area of FIG. 23 (b) is a 5565mm 2.
  • the ratio of the cross-sectional area of the column with protrusions to the cross-sectional area of the column without protrusions is 0.55. Therefore, a 45% lighter weight can be achieved by attaching protrusions.
  • Example 5
  • the type of aluminum alloy is A6061-T6. This aluminum alloy has a 0.2% yield strength of 245 MPa, a Young's modulus of 7. OX 10 4 MPa, and a Poisson's ratio of 0.3. Adopt 0.2% resistance against aluminum for buckling strength of rectangular plate. A protrusion with a rectangular cross section is attached to one side of the rectangular plate.
  • the width-thickness ratio ⁇ of the rectangular plate provided with the protrusions is in the following range.
  • FIG. 26 shows the cross-sectional shapes corresponding to points 0, A, B, and C in FIG. Figure 26 shows the results for a plate width b of 128.56mm.
  • Point C is a cross-sectional shape in which r? Is minimized by the first use of the present invention.
  • the present invention is again applied between the protrusion and the end of the rectangular plate.
  • the results are shown by the broken lines in FIG.
  • the protrusion created by the first use of the present invention may buckle as a column of a T-shaped cross section (a black-painted portion) as shown in FIG. If the protrusion may buckle as a column with a T-shaped cross section, it will be necessary to constrain the movement of the protrusion in the out-of-plane direction of the rectangular plate at several points (black dots in Fig. 27) to prevent this. .
  • s is the distance between adjacent protrusions of the rectangular plate obtained by the first use of the present invention.
  • a board separated by a protrusion newly created by the second use of the present invention (when the protrusion is 1 in the first use of the present invention, between the end of the rectangular plate and the protrusion) The total number of elements.
  • Fig. 26 shows the cross-sectional shape for point D where the value of 7?
  • the cross-sectional area of point D is 0.62 times that of point C.
  • SM490Y steel rectangular plate is subjected to compression.
  • the yield stress of SM49 OY steel is 355 MPa
  • Young's modulus is 2.0 X 10 5 MPa
  • Poisson's ratio is 0.3.
  • the yield stress of steel is adopted for the buckling strength of the rectangular plate.
  • a protrusion with a rectangular cross section is attached to one side of the steel plate.
  • 8 of the rectangular plate provided with the protrusions is in the following range.
  • Figure 28 shows the relationship between r? And j8.
  • Cross-sectional area of a rectangular plate with protrusions, including protrusions
  • the relationship between 7? And ⁇ in the region above this horizon does not buckle.
  • the cross-sectional shape for point ⁇ is shown in Fig. 29 (b).
  • Fig. 29 (a) shows the cross-sectional shape of a rectangular plate without protrusions.
  • the ratio of the cross-sectional area in Fig. 29 (b) to the cross-sectional area in Fig. 29 (a) is 0.50. Therefore, 50% cross-sectional area can be reduced by providing the protrusions.
  • SM490Y steel rectangular plate receives a shear load (load as shown in Fig. 10) in addition to the bending load.
  • the yield stress of SM490Y steel is 355 MPa, Young's modulus is 2. OX 10 5 MPa, and Poisson's ratio is 0.3.
  • the yield stress of steel is used for the buckling strength of the rectangular plate.
  • a protrusion having a rectangular cross section is attached to one side of the steel plate.
  • equation (31) the coefficient c varies depending on the total number s of plate elements delimited by the protrusions.
  • b / t: Width-thickness ratio of rectangular plate with protrusions
  • A Cross-sectional area of a rectangular plate with protrusions, including protrusions
  • r? A / A: Including the protrusion of the rectangular plate with protrusions relative to the cross-sectional area of the rectangular plate without protrusions.
  • A Cross-sectional area of a rectangular plate without protrusions
  • r is the ratio of the bending rigidity of one protrusion to the bending rigidity of the rectangular plate, and is given by Expression (11).
  • Equation (37) Substituting Equation (37) and Equation (41) into Equation (40) and solving for 7?
  • FIG. 30 in the region above the broken line, the rectangular plate with protrusions does not buckle against the shearing force.
  • Figure 31 (b) shows the cross-sectional shape of the rectangular plate with protrusions relative to the dots.
  • Fig. 31 (a) shows the cross-sectional shape of a rectangular plate without projections.
  • the ratio of the cross-sectional area of Fig. 31 (b) to the cross-sectional area of Fig. 31 (a) is 0.54. But Therefore, by providing protrusions, the cross-sectional area can be reduced by 46%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

A thin oblong plate having substantially the same buckling strength as an oblong plate without projections and capable of being produced using less material. A panel structure for a transportation device or panel structure for a building structural member, having the oblong plate, two or more support bodies, and one or more projections, wherein (i) the oblong plate is supported by the two or more support bodies including two support bodies at ends of the plate, (ii) the one or more projections are provided at the oblong plate, in a region sandwiched by two opposite support bodies out of the two or more support bodies, (iii) the width-thickness ratio of the oblong plate is greater than that of the oblong plate without projections, (iv) the sum of the cross-sectional areas of the oblong plate and the one or more projections is smaller than that of the oblong plate without projections, (v) the oblong plate with the one or more projections has substantially the same buckling strength as the oblong plate without projections, (vi) the positions of the projections move in the direction of deformation in concert with buckling deformation of the oblong plate, and the positions of the support bodies do not move when the buckling deformation occurs.

Description

明 細 書  Specification
輸送機器用パネル構造又は建造物用構造部材用パネル構造、並びに、 その製造方法  PANEL STRUCTURE FOR TRANSPORT EQUIPMENT OR PANEL STRUCTURE FOR STRUCTURAL MEMBER FOR BUILDING AND ITS MANUFACTURING METHOD
技術分野  Technical field
[0001] 本発明は、主に、輸送機器用パネル構造又は建造物用構造部材用パネル構造、 並びに、その製造方法に関する。  TECHNICAL FIELD [0001] The present invention mainly relates to a panel structure for a transport device or a panel structure for a structural member for a building, and a manufacturing method thereof.
背景技術  Background art
[0002] 様々な分野にぉ 、て、省資源化や製造コスト削減の観点から、より少な 、材料で構 造物を製造することが求められている。とりわけ、大量の材料を必要とする大型の構 造物、例えば、建造物や輸送機器の分野では、より少ない材料で構造物を製造する ことによる省資源化や製造コスト削減への寄与が大きい。  [0002] In various fields, from the viewpoint of resource saving and manufacturing cost reduction, it is required to manufacture a structure with fewer materials. In particular, in the field of large structures that require a large amount of materials, for example, in the field of buildings and transportation equipment, manufacturing structures with fewer materials greatly contributes to resource saving and manufacturing cost reduction.
[0003] しかしながらその一方で、このような大型の構造物には、高い強度を維持し、高い 安全レベルを達成することが求められる。例えば、これらの構造物には、構造物を構 成する部材が、圧縮荷重や曲げ荷重に対して、所定の座屈強度を有することが求め られる。  However, on the other hand, such a large structure is required to maintain high strength and achieve a high safety level. For example, for these structures, the members constituting the structure are required to have a predetermined buckling strength against compressive loads and bending loads.
[0004] 構造物を構成する部材が圧縮荷重を受けるとき、圧縮荷重がある値に達すると、最 初真直ぐであった部材は、図 1 (a)に示されるように、突然横方向に曲がってしまう。こ の部材全体が座屈する現象を部材座屈と呼ぶ。部材を構成する長方形板が薄 、場 合には、圧縮荷重がある値に達すると、部材座屈が起こる前に、図 1 (b)に示すように 長方形板が面外方向に突然変形してしまう。このように、部材を構成する長方形板が 座屈する現象を板座屈と呼ぶ。  [0004] When the members constituting the structure receive a compressive load, when the compressive load reaches a certain value, the member that was initially straight is suddenly bent in the lateral direction as shown in Fig. 1 (a). End up. This phenomenon that the entire member buckles is called member buckling. If the rectangular plate constituting the member is thin, when the compression load reaches a certain value, the rectangular plate suddenly deforms in the out-of-plane direction as shown in Fig. 1 (b) before the member buckling occurs. End up. In this way, the phenomenon in which the rectangular plates constituting the member buckle is called plate buckling.
[0005] 構造物を構成する部材が曲げ荷重を受けるときも、部材座屈と板座屈が存在する。  [0005] When a member constituting a structure receives a bending load, member buckling and plate buckling exist.
ただし各座屈の変形パターンは、圧縮荷重を受けるときの変形パターンとは異なる。 通常の部材設計では、板座屈が生じると、部材座屈強度が低下するので、部材座屈 が起こる前に板座屈が起こらないように板の断面寸法が決定される。  However, the deformation pattern of each buckling is different from the deformation pattern when receiving a compressive load. In normal member design, if plate buckling occurs, the member buckling strength decreases. Therefore, before the member buckling occurs, the cross-sectional dimensions of the plate are determined so that plate buckling does not occur.
[0006] 部材を構成する長方形板を薄肉化することにより部材の材料を削減することができ るが、長方形板を単に薄肉化すると、長方形板が、面内方向に作用する圧縮荷重や 曲げ荷重に対して板座屈を起こしやすくなるといった問題が生じる。 [0006] The material of the member can be reduced by reducing the thickness of the rectangular plate constituting the member. However, if the rectangular plate is simply reduced in thickness, the rectangular plate has a compressive load acting in the in-plane direction. The problem that it becomes easy to raise | generate a board buckling with respect to a bending load arises.
[0007] そこで従来は、長方形板に対して図 2に示すようなリブ(中間支持体)と称する支持 体を取り付け、長方形板が座屈するときリブの位置を移動させないようにすることによ り、長方形板の座屈強度を上げていた。  Therefore, conventionally, by attaching a support body called a rib (intermediate support body) as shown in FIG. 2 to a rectangular plate, the position of the rib is not moved when the rectangular plate is buckled. The buckling strength of the rectangular plate was increased.
[0008] しかし、長方形板にリブが備えられた状態から、座屈強度を低減させることなく長方 形板をさらに薄肉化する技術はな力 た。ましてや、リブが備えられていない場合に 、座屈強度を低減させることなく長方形板を薄肉化する技術はな力つた。  However, since the rectangular plate is provided with ribs, there has been no technology for further thinning the rectangular plate without reducing the buckling strength. In addition, when a rib is not provided, the technology for thinning a rectangular plate without reducing the buckling strength has been strong.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、突起を備えていない長方形板と実質的に同じ座屈強度を満たしつつよ り少な ヽ材料で製造可能な薄肉化された長方形板を提供することを主目的とする。 課題を解決するための手段 [0009] The main object of the present invention is to provide a thinned rectangular plate that can be manufactured with a smaller number of saddle materials while satisfying substantially the same buckling strength as a rectangular plate not provided with a protrusion. Means for solving the problem
[0010] 本発明者らは、上記課題を解決すべく鋭意研究を行ったところ、長方形板に突起 を備えることにより、突起を備えていない長方形板と実質的に同じ座屈強度を満たし つつ、従来の突起を有さない長方形板と比べて、長方形板の幅厚比を大きく且つ突 起及び長方形板の合計断面積を小さくできることを見出し、本発明を完成するに至つ た。 [0010] The inventors of the present invention conducted intensive research to solve the above-described problems. As a result, by providing protrusions on the rectangular plate, while satisfying substantially the same buckling strength as the rectangular plate without protrusions, The present inventors have found that the width-thickness ratio of the rectangular plate can be increased and the total cross-sectional area of the protrusion and the rectangular plate can be reduced as compared with the conventional rectangular plate having no protrusions, and the present invention has been completed.
[0011] 即ち、本発明は、以下の輸送機器用パネル構造又は建造物用構造部材用パネル 構造およびその製造方法に関する。  [0011] That is, the present invention relates to the following panel structure for transport equipment or panel structure for a structural member for building, and a method for producing the same.
〔項 1〕長方形板、 2以上の支持体、及び 1以上の突起を備える輸送機器用パネル構 造又は建造物用構造部材用パネル構造であって、  [Claim 1] A panel structure for a transportation equipment or a structural member for a building comprising a rectangular plate, two or more supports, and one or more protrusions,
(i)長方形板は、長方形板の端部の 2つの支持体を含む 2以上の支持体により 支持され  (i) The rectangular plate is supported by two or more supports, including two supports at the ends of the rectangular plate.
(ii) 1以上の突起は、 2以上の支持体のうち向かい合う 2つの支持体により挟ま れる領域にぉ ヽて長方形板に備えられ、  (ii) The one or more protrusions are provided on the rectangular plate across a region sandwiched by two opposing supports out of the two or more supports,
(iii)長方形板の幅厚比が、突起を備えて 、な 、長方形板の幅厚比よりも大きく  (iii) The width-thickness ratio of the rectangular plate is larger than the width-thickness ratio of the rectangular plate, provided with protrusions.
(iv)長方形板及び 1以上の突起の合計断面積が、突起を備えて!/、な!/、長方形 板の断面積よりも小さぐ且つ、 (iv) The total cross-sectional area of the rectangular plate and one or more protrusions is provided with protrusions! /, NA! /, rectangle Smaller than the cross-sectional area of the plate and
(V) 1以上の突起が備えられた長方形板が、突起を備えていない長方形板と実 質的に同じ座屈強度を有し、  (V) A rectangular plate with one or more protrusions has substantially the same buckling strength as a rectangular plate without protrusions,
(vi)前記突起は長方形板の座屈変形に合わせて変形方向に位置が移動し、前 記支持体は座屈変形時に位置が移動しな 、、  (vi) The position of the protrusion moves in the deformation direction in accordance with the buckling deformation of the rectangular plate, and the position of the support does not move during the buckling deformation,
輸送機器用パネル構造又は建造物用構造部材用パネル構造。 Panel structure for transportation equipment or structural member for buildings.
〔項 2〕長方形板の端部の支持体と中間の支持体の間、中間の支持体を 2以上有す る場合にはさらに中間の支持体と中間の支持体の間に各々 1以上の突起が備えられ る、項 1に記載のパネル構造。 [Claim 2] When there are two or more intermediate supports between the support at the end of the rectangular plate and the intermediate support, more than one each between the intermediate support and the intermediate support. Item 2. The panel structure according to Item 1, wherein a protrusion is provided.
〔項 3〕 1以上の突起が、向かい合う 2の支持体に平行に備えられている、項 1に記載 のパネル構造。  [Claim 3] The panel structure according to item 1, wherein one or more protrusions are provided in parallel to the two opposing supports.
〔項 4〕前記突起が、支持体と支持体の間に等間隔で備えられる項 1に記載のパネル 構造。  [Item 4] The panel structure according to item 1, wherein the protrusions are provided at equal intervals between the support and the support.
〔項 5〕前記長方形板が、金属、榭脂、及び繊維強化樹脂からなる群より選択される少 なくとも 1種の材料からなり、且つ、前記突起が、金属、榭脂、及び繊維強化樹脂から なる群より選択される少なくとも 1種の材料力もなる、項 1に記載のパネル構造。  [Item 5] The rectangular plate is made of at least one material selected from the group consisting of metal, resin, and fiber reinforced resin, and the protrusion is made of metal, resin, and fiber reinforced resin. Item 2. The panel structure according to Item 1, which also has at least one material force selected from the group consisting of:
〔項 6〕前記長方形板が、金属からなり、且つ、前記突起が、金属及び繊維強化榭脂 力もなる群より選択される少なくとも 1種の材料力もなる、項 5に記載のパネル構造。 〔項 7〕前記長方形板及び前記突起が同種の材料力もなる、項 1に記載のパネル構 造。 [Item 6] The panel structure according to Item 5, wherein the rectangular plate is made of metal, and the protrusion has at least one material force selected from the group of metal and fiber reinforced grease. [Item 7] The panel structure according to item 1, wherein the rectangular plate and the protrusion have the same material force.
〔項 8〕前記金属が、鉄、アルミニウム、及びマグネシウム力 なる群より選択される少 なくとも 1種、或いは、これをベースとする合金である、項 5に記載のパネル構造。 〔項 9〕前記合金が、鋼鉄、ステンレス鋼及びアルミニウム合金力 なる群より選択され る、項 8に記載のパネル構造。  [Item 8] The panel structure according to Item 5, wherein the metal is at least one selected from the group consisting of iron, aluminum, and magnesium, or an alloy based thereon. [Item 9] The panel structure according to item 8, wherein the alloy is selected from the group consisting of steel, stainless steel, and aluminum alloy force.
〔項 10〕建造物が建物又は橋梁である、項 1に記載のパネル構造。  [Claim 10] The panel structure according to item 1, wherein the building is a building or a bridge.
〔項 11〕構造部材が柱又は桁である、項 1に記載のパネル構造。  [Item 11] The panel structure according to item 1, wherein the structural member is a column or a girder.
〔項 12〕輸送機器が、自動車、鉄道車両、船舶、飛行機及び宇宙機からなる群より選 択される少なくとも 1種である、項 1に記載のパネル構造。 〔項 13〕(I)長方形板を、長方形板の端部の 2つの支持体を含む 2以上の支持体で支 持する工程、及び、 [Claim 12] The panel structure according to item 1, wherein the transportation device is at least one selected from the group consisting of an automobile, a railway vehicle, a ship, an airplane, and a spacecraft. [Item 13] (I) A step of supporting a rectangular plate with two or more supports including two supports at the end of the rectangular plate; and
(II) 1以上の突起を、 2以上の支持体のうち向かい合う 2の支持体により挟まれ る領域にぉ 、て長方形板に備える工程、  (II) a step of providing one or more protrusions on a rectangular plate in a region sandwiched by two opposing supports out of two or more supports;
(ここで、工程 (I)及び (Π)は如何なる順序でおこなわれてもよぐ同時におこなわれ てもよ!/、)を包含する、項 1に記載のパネル構造の製造方法。  Item 2. The method for producing a panel structure according to Item 1, comprising (wherein steps (I) and (ii) may be performed in any order or simultaneously! /)).
〔項 14〕長方形板の一部と突起を構成する T形の押し出し形材同士を接合する工程 を含む、項 1に記載のパネル構造の製造方法。 [Item 14] The method for manufacturing a panel structure according to item 1, including a step of joining a part of the rectangular plate and a T-shaped extruded shape member constituting the protrusion.
〔項 15〕前記突起が、向かい合う 2の支持体により挟まれる領域において、向かい合う 2の支持体に平行で、且つ、等間隔で前記長方形板に備え付けられ、前記長方形板 が圧縮又は曲げの面内荷重を突起に沿う方向に受けるとき、下記式(22)で 7?力 ^未 満である、項 1〜12のいずれかに記載の輸送機器用パネル構造又は建造物用構造 部材用パネル構造:  [Item 15] In the region sandwiched between the two opposing supports, the rectangular plate is provided on the rectangular plate at an equal interval parallel to the opposing two supports, and the rectangular plate is in the plane of compression or bending. When the load is received in the direction along the protrusion, the transport device panel structure or building structure member panel structure according to any one of Items 1 to 12, which is less than 7?
[数 1] [Number 1]
Figure imgf000007_0001
Figure imgf000007_0001
H2H3+ H,(H3 2-1) + H H 2 H 3 + H, (H 3 2 -1) + H
ξ = (17)  ξ = (17)
H、 - Hi  H,-Hi
β
Figure imgf000007_0002
、 β、 = π
β
Figure imgf000007_0002
, Β, = π
12(1- μ )σ  12 (1-μ) σ
β0≤β≤ο4β0 ξ = ^ β - = β 0 ≤β≤ο 4 β 0 ξ = ^ β-=
Figure imgf000007_0003
であり、さらに
Figure imgf000007_0003
And further
Ε:長方形板のヤング率  Ε: Young's modulus of rectangular plate
Ε :突起のヤング率  Ε: Young's modulus of protrusion
Τ:突起無し長方形板の板厚  Τ: Thickness of rectangular plate without protrusions
b:突起無し長方形板、又は、突起付き長方形板の板幅 b :突起によって区切られた板要素の幅 b:突起の高さ b: The width of the rectangular plate without protrusions or the rectangular plate with protrusions b: The width of the plate elements delimited by the protrusions b: Height of protrusion
2  2
b:長方形板の両面に突起がある場合、両面の突起の先端間の寸法  b: If there are protrusions on both sides of the rectangular plate, the dimension between the ends of the protrusions on both sides
3  Three
b:長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 b b: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b
4 2 4 2
c:圧縮を受けるとき 1、曲げを受けるとき 1. 25  c: When subjected to compression 1, When subjected to bending 1. 25
2  2
c:突起付き長方形板が圧縮を受ける場合 s、曲げを受ける場合  c: When a rectangular plate with protrusions is subjected to compression s, When subjected to bending
[0014] [数 2]
Figure imgf000008_0001
[0014] [Equation 2]
Figure imgf000008_0001
[0015] c:圧縮を受けるとき 1、曲げを受けるとき(s— 2) Zs  [0015] c: when subjected to compression 1, when subjected to bending (s—2) Zs
5  Five
C :突起の断面二次モーメントに関係する係数  C: Coefficient related to the projecting moment of inertia
31  31
c :突起の断面積に関係する係数  c: Coefficient related to the cross-sectional area of the protrusion
32  32
k:突起無し長方形板の座屈係数であり、圧縮を受けるとき 4,曲げを受けるとき 23. k: Buckling coefficient of a rectangular plate without protrusions, when subjected to compression, 4 when subjected to bending 23.
0 0
9  9
n=E ZE :長方形板のヤング率に対する突起のヤング率の比  n = E ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
s:突起によって区切られた板要素の総数  s: Total number of plate elements separated by protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
t:突起の付根の厚さ  t: Thickness of protrusion root
2  2
β:突起付き長方形板の幅厚比  β: Width / thickness ratio of rectangular plate with protrusions
β  β
0:突起無し長方形板の幅厚比  0: Width / thickness ratio of rectangular plate without protrusions
β :突起によって区切られた板要素の幅厚比  β: Width / thickness ratio of plate elements delimited by protrusions
β : bに関する幅厚比  β: width-thickness ratio for b
3 4  3 4
η:突起無し長方形板の断面積に対する、突起付き長方形板の、突起を含めた断面 積の比  η: Ratio of the cross-sectional area of the rectangular plate with protrusions to the cross-sectional area of the rectangular plate without protrusions, including the protrusions
IX:長方形板のポアソン比  IX: Poisson's ratio of rectangular plate
ξ:突起付き長方形板の板厚に対する突起の付根の厚さの比  ξ: Ratio of the thickness of the base of the projection to the thickness of the rectangular plate with the projection
σ:圧縮または曲げを受ける、突起無し長方形板または突起付き長方形板の座屈強 度。  σ: Buckling strength of a rectangular plate without protrusions or a rectangular plate with protrusions that is subjected to compression or bending.
[0016] 以下、本発明をより詳細に説明する。なお、本書において、図面を用いて本発明を 説明することがあるが、図面及びその説明は本発明を何ら限定するものではない。 [0016] Hereinafter, the present invention will be described in more detail. In this document, the present invention is described with reference to the drawings. The drawings and the description thereof are not intended to limit the present invention in any way.
[0017] 本発明の特徴は、図 16、 19、 22、 24、 25、 28、 30などに示されるように、各 s (突 起によって区切られた板要素の総数)について |8 (幅厚比)と 7? (突起無し長方形板 の断面積に対する、突起付き長方形板の、突起を含めた断面積の比)の関係式を作 成可能としたことであり、このような図示が可能になったことにより、 r?を最小にする sと βを容易に求めることができるようになった。具体的には、本発明の輸送機器用パネ ル構造又は建造物用構造部材用パネル構造は、次のように得ることができる。  [0017] As shown in FIGS. 16, 19, 22, 24, 25, 28, 30, etc., the feature of the present invention is that for each s (total number of plate elements delimited by protrusions), | 8 (width thickness Ratio) and 7? (Ratio of the cross-sectional area of the rectangular plate with protrusions to the cross-sectional area of the rectangular plate without protrusions). As a result, s and β that minimize r? Can be easily obtained. Specifically, the panel structure for transportation equipment or the panel structure for structural members for buildings of the present invention can be obtained as follows.
[0018] 突起を備えていない長方形板の座屈強度 σを満たす幅厚比 13 1S 式 (2)より決ま  [0018] Width / thickness ratio satisfying buckling strength σ of rectangular plate without protrusions 13 1S Determined from Eq. (2)
0  0
る。  The
[0019] β と sを式(26)に代入して、 13 の取り得る値の範囲が決まる。 s、 β および j8 の  [0019] Substituting β and s into equation (26), the range of possible values of 13 is determined. of s, β and j8
0 1 0 3 各値を式(17)に代入して、この式より と β の関係を得る。さらに、 s、 β および  0 1 0 3 Substituting each value into equation (17), we obtain the relationship between and β from this equation. In addition, s, β and
1 3 を式(22)に代入して、 ηと の関係を得る。式(14)を用いて、 7?と j8の関係を得る 。 j8の取り得る値の範囲は式(27)で与えられる。得られた関係から、図 16、 19、 22 、 24、 25、 28、 30などの ηと βの関係を示すグラフを作成し、 ηが 1未満となる s及 び ι8を選択して、本発明の輸送機器用パネル構造又は建造物用構造部材用パネル 構造を得ることができる。  Substituting 1 3 into equation (22), we get the relationship with η. Using equation (14), we get the relationship between 7? And j8. The range of possible values for j8 is given by equation (27). From the obtained relationships, create graphs showing the relationship between η and β as shown in Figures 16, 19, 22, 24, 25, 28, 30 and so on, and select s and ι8 where η is less than 1, The panel structure for transportation equipment or the structural member panel for buildings of the invention can be obtained.
[0020] 本発明では、実施例 5の図 27に示すように、前述の計算によって創出された突起 の、長方形板の面外方向の移動を場合によっては数箇所 (例えば、 0, 1 , 2または 3 箇所、長方形板の長さに比例して拘束する箇所は増加し得る)で拘束することにより 、隣接する突起との間又は突起とそれに隣接する端部の支持体との間で同様の計算 を行なって、新たな突起を形成し (実施例 5の図 26の点 D)、さらに断面積の低減 (さら なる薄肉化)を行なうことができる。  [0020] In the present invention, as shown in Fig. 27 of the fifth embodiment, the protrusions created by the above-described calculation may move several times in the out-of-plane direction of the rectangular plate (for example, 0, 1, 2). Or three places, the number of places restrained in proportion to the length of the rectangular plate can be increased), and the same between the adjacent protrusions or between the protrusions and the adjacent end support By performing calculation, a new protrusion can be formed (point D in FIG. 26 of Example 5), and the cross-sectional area can be further reduced (further thinning).
[0021] 従来、リブ (中間支持体)を長方形板に設けることで薄肉化を達成していたが、従来 のパネル構造の設計では、特定のリブ (中間支持体)を設けた場合の薄肉化の程度 が特定のポイントで明らかにされていただけであるので、それ以上の薄肉化を達成す るための手段は知られていなかった。  [0021] Conventionally, thinning has been achieved by providing a rib (intermediate support) on a rectangular plate, but in the conventional panel structure design, thinning is achieved when a specific rib (intermediate support) is provided. Since the degree of this was only clarified at a specific point, no means for achieving further thinning was known.
[0022] 一方、本発明では、 7?が最小となる sと βが明らかであるので、リブの設置のみでは 達成することができない程度の、長方形板と突起 (必要に応じてさらに中間支持体)の 合計断面積の最小化を達成することができる。 On the other hand, in the present invention, since s and β at which 7? Is minimized are obvious, rectangular plates and protrusions that cannot be achieved only by installing ribs (if necessary, further intermediate supports) )of Minimization of the total cross-sectional area can be achieved.
[0023] 実際の設計では、 7?を最小化する以外に、圧縮を受ける突起付き長方形板では、 設計条件として与えられる圧縮力に耐えるために、 ηに対して下限値の条件、すな わち式(35) (実施例 6の図 28の一点長鎖線の水平線)を考慮する必要がある。また、 曲げを受ける突起付き長方形板では、せん断力に対して座屈しない条件、すなわち 式(39) (実施例 7の図 30において右上がりの破線)、及びせん断降伏しない条件、す なわち式 (42) (実施例 7の図 30には現れて 、な 、;)を考慮する必要がある。  [0023] In an actual design, in addition to minimizing 7 ?, in the case of a rectangular plate with protrusions subjected to compression, in order to withstand the compressive force given as a design condition, a lower limit condition for η, that is, It is necessary to consider the equation (35) (the one-dot long chain horizontal line in FIG. 28 of Example 6). In addition, in the rectangular plate with projections subjected to bending, the condition that does not buckle against the shearing force, that is, the equation (39) (the broken line rising to the right in FIG. 30 of Example 7) and the condition that the shear yield does not occur, that is, the equation (42) (Appears in FIG. 30 of Example 7, which needs to be considered).
[0024] これらの条件は、圧縮または曲げを受ける長方形板の設計では必須である。従来 は、 7?と j8の関係が知られていな力つたので、実施例 6及び実施例 7で示されるよう な長方形板の断面形状を見出すことができな力つた。  [0024] These conditions are essential in the design of rectangular plates that are subject to compression or bending. Conventionally, since the relationship between 7? And j8 has not been known, the cross-sectional shape of the rectangular plate as shown in Example 6 and Example 7 cannot be found.
[0025] 本発明の輸送機器用パネル構造又は建造物用構造部材用パネル構造 (以下、本 発明パネル構造と称することもある)は、基本的に、長方形板、 2以上の支持体及び 1 以上の突起から構成される。 2以上の支持体は、長方形板の対抗する辺 (端部)に 1 対の支持体を備え、さらに中間支持体を 1以上備え得るので、「2以上の支持体」とし ている。中間支持体の数は、長方形板のサイズと材質、及びパネル構造の製造条件 などにより決まる力 例えば以下のような考え方で中間支持体の数を適切に設定する ことができる。  [0025] The transport device panel structure or the structural member panel structure of the present invention (hereinafter also referred to as the present invention panel structure) basically includes a rectangular plate, two or more supports and one or more. Consists of protrusions. Two or more supports are provided as “two or more supports” because they can be provided with a pair of supports on opposite sides (ends) of the rectangular plate and further provided with one or more intermediate supports. The number of intermediate supports is a force determined by the size and material of the rectangular plate and the manufacturing conditions of the panel structure. For example, the number of intermediate supports can be set appropriately based on the following concept.
[0026] 圧縮を受ける長方形板の場合、中間支持体を長方形板に溶接で取り付ける場合、 溶接の作業性より、隣接する中間支持体と中間支持体との間隔は、一般に 300mm 以上が必要である。また、曲げを受ける長方形板の場合、圧縮応力を受ける、長方 形板の板幅の半分から上の領域に最大 2つの中間支持体が設けられる。 1つの中間 支持体が設けられる場合、実施例 2の図 18 (b)に示すように、長方形板の上端から 板幅の 0. 2倍の位置に設けられる。 2つの中間支持体が設けられる場合、実施例 2 の図 18 (c)に示すように、長方形板の上端力も板幅の 0. 14倍及び 0. 36倍の位置 に設けられる。  [0026] In the case of a rectangular plate subjected to compression, when the intermediate support is attached to the rectangular plate by welding, the distance between adjacent intermediate supports is generally required to be 300 mm or more due to the workability of welding. . In the case of a rectangular plate subjected to bending, a maximum of two intermediate supports are provided in the region above half the width of the rectangular plate that receives compressive stress. When one intermediate support is provided, as shown in FIG. 18 (b) of Example 2, it is provided at a position 0.2 times the plate width from the upper end of the rectangular plate. When two intermediate supports are provided, as shown in FIG. 18 (c) of Example 2, the upper end force of the rectangular plate is also provided at a position 0.14 times and 0.36 times the plate width.
[0027] 本発明において、 1以上の突起が備えられた長方形板は、突起を備えていない長 方形板と実質的に同じ座屈強度を有する。パネル構造の設計の場合、得られた数値 は、製造上切り上げが行なわれ得る。例えば必要な座屈強度を有する長方形板の厚 さ及び突起の厚さがそれぞれ 7. 3mm, 9. 3mmと計算された場合、四捨五入してそ れぞれ 7mm、 9mmとすると必要な座屈強度が得られなくなるため、それぞれ 8mm、 10mmの様に切り上げをして寸法を決定することがある。この場合、 ηの値はやゃ大 きくなる。「実質的に同じ座屈強度」は、このような設計上あるいは実用上の要請から 、座屈強度がやや大きくなつてもよいことを意味する。 In the present invention, a rectangular plate provided with one or more protrusions has substantially the same buckling strength as a rectangular plate not provided with protrusions. In the case of a panel structure design, the numerical values obtained can be rounded up for manufacturing. For example, the thickness of a rectangular plate with the required buckling strength When the thickness and the thickness of the protrusion are calculated to be 7.3 mm and 9.3 mm, respectively, rounding to 7 mm and 9 mm respectively will not provide the required buckling strength. The dimensions may be determined by rounding up. In this case, the value of η becomes large. “Substantially the same buckling strength” means that the buckling strength may be slightly increased from such a design or practical requirement.
[0028] 図 3に、本発明パネル構造の概略図を示す。 FIG. 3 shows a schematic diagram of the panel structure of the present invention.
[0029] 図 3 (a)は、長方形板がリブ(中間支持体)を備えている場合の本発明パネル構造 の概略図である。従来、長方形板にリブを取り付け、リブの位置を移動させないように することにより、長方形板の座屈強度を上げていたが、リブを備える長方形板を、座 屈強度を低減させることなく更に薄肉化する技術はな力つた。本発明によれば、図 3 ( a)に示すようにリブを備える長方形板に 1以上の突起を備えることにより、該長方形 板を、座屈強度を低減させることなく更に薄肉化することができる。  FIG. 3 (a) is a schematic view of the panel structure of the present invention in the case where the rectangular plate is provided with a rib (intermediate support). Conventionally, the buckling strength of the rectangular plate has been increased by attaching ribs to the rectangular plate so that the position of the ribs is not moved. However, the rectangular plate with ribs is made thinner without reducing the buckling strength. The technology to make it was a great effort. According to the present invention, as shown in FIG. 3 (a), by providing one or more protrusions on a rectangular plate having ribs, the rectangular plate can be further thinned without reducing buckling strength. .
[0030] 曲げを受ける長方形板の場合、長方形板の板幅の半分から下の領域は引張応力 を受ける。引張応力は座屈を起こさせないので、実施例 2の図 18 (b)と図 18 (c)に示 すように、リブは、長方形板の板幅の半分から下に設ける必要がない。したがって、 突起を長方形板に備える場合に対しても、実施例 2の図 20 (b)に示すように、長方形 板の板幅の半分から下の突起は省略できる可能性が高い。なお、圧縮を受ける長方 形板の場合、長方形板の板幅の全領域に圧縮応力が作用するので、等間隔にリブ 又は突起を設けるのが好まし 、。  [0030] In the case of a rectangular plate subjected to bending, a region below half the width of the rectangular plate is subjected to tensile stress. Since the tensile stress does not cause buckling, as shown in FIGS. 18 (b) and 18 (c) of Example 2, the rib does not need to be provided below half of the plate width of the rectangular plate. Therefore, even when the protrusions are provided on the rectangular plate, as shown in FIG. 20 (b) of Example 2, there is a high possibility that the protrusions from the half of the plate width of the rectangular plate can be omitted. In the case of a rectangular plate subjected to compression, it is preferable to provide ribs or protrusions at equal intervals because compressive stress acts on the entire region of the rectangular plate width.
[0031] 図 3 (b)は、長方形板がリブを備えていない場合の本発明パネル構造の概略図で ある。従来は、リブを備えていない長方形板を、座屈強度を低減させることなく薄肉化 する技術はな力つた。本発明では、図 3 (b)に示すように、リブを備えていない長方形 板に 1以上の突起を備えることにより、該長方形板を、座屈強度を低減させることなく 薄肉化することができる。  [0031] Fig. 3 (b) is a schematic view of the panel structure of the present invention when the rectangular plate is not provided with a rib. Conventionally, the technology for thinning a rectangular plate without ribs without reducing the buckling strength has been strong. In the present invention, as shown in FIG. 3 (b), by providing one or more protrusions on a rectangular plate not provided with ribs, the rectangular plate can be thinned without reducing buckling strength. .
[0032] リブと本発明における突起とは異なり、リブは、断面寸法が大きいため、長方形板に 数多く設けることができないか、或いは、長方形板に数多く設けることができたとして も大量の材料が必要となる。一方、本発明における突起は、断面寸法が比較的小さ いため、長方形板に数多く設けることができ、数多く設けた場合でも材料が少なくて すむ。 [0032] Unlike ribs and protrusions in the present invention, ribs have a large cross-sectional dimension, so that a large number of materials are required even if a large number of ribs cannot be provided on a rectangular plate, or many can be provided on a rectangular plate. It becomes. On the other hand, since the projections in the present invention have a relatively small cross-sectional dimension, a large number of protrusions can be provided on a rectangular plate. I'm sorry.
[0033] 座屈変形のパターンにおいてもリブと本発明における突起とは異なる。リブが 2の支 持体の間において長方形板に備えられる場合、長方形板が所定以上の圧縮荷重を 受けると、リブを節としてリブと各支持体との間で座屈が起きる。このとき、リブの位置 は移動しない(図 4 (a) )。このように、リブはそれ自体の位置を移動しないことにより長 方形板の座屈強度を高め、支持体として機能する。一方、突起が 2の支持体の間に お!ヽて長方形板に備えられる場合、長方形板が所定以上の大きな圧縮荷重を受け ると、支持体と支持体との間で座屈が起きる。このとき、突起の位置は長方形板の座 屈変形に合わせて移動する(図 4 (b) )。複数の突起を長方形板に設けた場合も、同 様に、支持体と支持体との間で座屈が起こり、突起の位置は長方形板の座屈変形に 合わせて移動する。(図 4 (c) )。 2の支持体の間にリブと突起の両方が備えられる場 合には、リブを節としてリブと各支持体との間で座屈が起こる。このとき、リブの位置は 移動しないが、突起の位置は長方形板の座屈変形に合わせて移動する(図 4 (d) )。 これが、「 (vi)前記突起は長方形板の座屈変形に合わせて変形方向に位置が移動 し、前記支持体は座屈変形時に位置が移動しな 、」の意味である。  [0033] Also in the buckling deformation pattern, the rib and the protrusion in the present invention are different. When the rib is provided on the rectangular plate between the two supporting bodies, when the rectangular plate is subjected to a compressive load exceeding a predetermined level, buckling occurs between the rib and each support using the rib as a node. At this time, the rib position does not move (Fig. 4 (a)). Thus, the ribs increase the buckling strength of the rectangular plate by not moving its own position, and function as a support. On the other hand, when the projection is provided on the rectangular plate between the two supports, if the rectangular plate is subjected to a large compressive load exceeding a predetermined level, buckling occurs between the support and the support. At this time, the position of the protrusion moves according to the buckling deformation of the rectangular plate (Fig. 4 (b)). Similarly, when a plurality of protrusions are provided on a rectangular plate, buckling occurs between the support and the position of the protrusions move in accordance with the buckling deformation of the rectangular plate. (Figure 4 (c)). When both ribs and protrusions are provided between the two supports, buckling occurs between the ribs and each support using the rib as a node. At this time, the position of the rib does not move, but the position of the protrusion moves according to the buckling deformation of the rectangular plate (Fig. 4 (d)). This means that “(vi) the position of the protrusion moves in the deformation direction in accordance with the buckling deformation of the rectangular plate, and the position of the support does not move during the buckling deformation”.
[0034] 長方形板は、特に限定されな!ヽが、金属、繊維強化金属、榭脂、繊維強化榭脂等 の輸送機器又は建造物の分野において使用される材料力も作られている。  [0034] The rectangular plate is not particularly limited, but the material force used in the field of transportation equipment or building such as metal, fiber reinforced metal, resin, fiber reinforced resin is also made.
[0035] 金属としては、輸送機器又は建造物の分野において使用される金属を広く使用で き、特に限定されないが、例えば、鉄、アルミニウム、及びマグネシウム力もなる群より 選択される少なくとも一種、或いは、これをベースとする(例えば、 50重量%以上含 有する)合金が好適に使用される。合金としては、特に、鋼鉄、ステンレス鋼、アルミ -ゥム合金等を好適に用いることができる力 これらに限定されない。輸送機器用パ ネル構造における長方形板には、特に、リン添加鋼、 BH (Bake— Hardening)鋼、 超深絞り高強度鋼、アルミニウム合金等を好適に使用することができる。建造物用構 造部材用パネル構造における長方形板には、特に、鋼鉄、ステンレス鋼、アルミ-ゥ ム合金等を好適に使用することができる。  [0035] As the metal, a metal used in the field of transportation equipment or buildings can be widely used, and is not particularly limited. For example, at least one selected from the group consisting of iron, aluminum, and magnesium force, or An alloy based on this (for example, containing 50% by weight or more) is preferably used. The alloy is not particularly limited to a force that can suitably use steel, stainless steel, aluminum alloy, and the like. In particular, phosphorus-added steel, BH (Bake-Hardening) steel, ultra-deep drawn high-strength steel, aluminum alloy, etc. can be suitably used for the rectangular plate in the panel structure for transportation equipment. In particular, steel, stainless steel, aluminum alloy, etc. can be suitably used for the rectangular plate in the structural member panel structure for buildings.
[0036] 榭脂としては、可塑剤、充填材、着色剤等を適当に配合した、熱可塑性榭脂、ェン ジニアリングプラスチック、熱硬化性榭脂等の合成又は天然榭脂を用いることができ る。合成又は天然榭脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビュル、ポリ 酢酸ビュル、 ABS (Acrylonitrile Butadiene Styrene)榭脂、 AS (Acrylonitril e Styrene)榭脂、 AES ( Acrylonitrile Ethylene Styrene)榭脂、 AAS (Acryl onitrile Acrylate Styrene)榭脂、アクリル(酸)榭脂、ポリアミド、ポリカーボネート 、ポリアセタール、変性ポリフエ-レンエーテル、ポリブチレンテレフタレート、 GF—P ET榭脂、ポリフエ-レンスルファイド、サルホン系榭脂、ポリエーテルエーテルケトン、 ポリアリレート、ポリアミドイミド、熱可塑性ポリイミド、ポリエーテルイミド、フッ素榭脂、 フエノール榭脂、ポリウレタン、不飽和ポリエステル榭脂及びエポキシ榭脂からなる群 より選択される少なくとも 1種、或いは、これをベースとする(50重量%以上含有する) 混合榭脂を用いることができ、特に、ポリプロピレン、アクリル (酸)榭脂、フエノール榭 脂、ポリウレタン、不飽和ポリエステル榭脂、エポキシ榭脂を好適に用いることができ る。 [0036] As the resin, it is possible to use a synthetic or natural resin such as thermoplastic resin, engineering plastic, thermosetting resin, and the like appropriately mixed with plasticizer, filler, colorant and the like. Can The Synthetic or natural fats include polyethylene, polypropylene, polychlorinated butyl, polyacetic acid butyl, ABS (Acrylonitrile Butadiene Styrene) rosin, AS (Acrylonitril e Styrene) rosin, AES (Acrylonitrile Ethylene Styrene) rosin, AAS (Acrylonitrile). Nitrile Acrylate Styrene), acrylic (acid) resin, polyamide, polycarbonate, polyacetal, modified polyphenylene ether, polybutylene terephthalate, GF—P ET resin, polyphenylene sulfide, sulfone-based resin, polyether At least one selected from the group consisting of ether ketone, polyarylate, polyamideimide, thermoplastic polyimide, polyetherimide, fluorine resin, phenol resin, polyurethane, unsaturated polyester resin, and epoxy resin, or this -Based mixed fat (containing 50% by weight or more) It can be used, in particular, polypropylene, acrylic (acid) 榭脂, phenol 榭 fat, polyurethane, unsaturated polyester 榭脂, Ru can be suitably used epoxy 榭脂.
[0037] 前記金属又は前記榭脂を繊維で強化した繊維強化金属又は繊維強化榭脂もまた 、長方形板の材料として用いることができる。繊維強化金属又は繊維強化榭脂として は、金属又は樹脂に繊維を常法により分散させたものを用いることもできるし、繊維か らなる不織布又は織布を常法により金属又は樹脂で固めたものを用いることもできる 。繊維強化金属又は繊維強化樹脂に用いられる繊維としては、例えば、ガラス繊維、 炭素繊維、炭化ケィ素繊維、チラノ繊維、ボロン繊維、ァラミド繊維、ポリアリレート繊 維、高強度ポリエチレン繊維、アルミナ繊維、アモルファス金属繊維、鋼繊維、ステン レス鋼繊維等が挙げられ、特に、ガラス繊維、炭素繊維、ァラミド繊維が好ましい。こ こで、 1種の繊維を単独で用いてもよいし、 2種以上の繊維を組み合わせて用いても よい。  [0037] A fiber-reinforced metal or fiber-reinforced resin obtained by reinforcing the metal or the resin with fibers can also be used as a material for the rectangular plate. As the fiber reinforced metal or fiber reinforced resin, it is possible to use a metal or resin in which fibers are dispersed by a conventional method, or a non-woven fabric or woven fabric made of fibers solidified with a metal or resin by a conventional method. Can also be used. Examples of the fiber used for the fiber reinforced metal or fiber reinforced resin include glass fiber, carbon fiber, silicon carbide fiber, Tyranno fiber, boron fiber, aramid fiber, polyarylate fiber, high strength polyethylene fiber, alumina fiber, and amorphous fiber. Metal fibers, steel fibers, stainless steel fibers and the like can be mentioned, and glass fibers, carbon fibers and aramid fibers are particularly preferable. Here, one type of fiber may be used alone, or two or more types of fibers may be used in combination.
[0038] 長方形板には、図 5に示すように、長方形板の幅方向に、全体的又は部分的にわ ずかに湾曲した曲面長方形板も含まれる。曲面部分の曲率半径 Rは、特に限定され ないが、 b2ZTに対して、例えば 0. 05倍以上、好ましくは 0. 1倍以上、より好ましくは 0. 2倍以上である。ここで、 bは曲面長方形板の幅、 Tは曲面長方形板の厚さである 。また、本発明における長方形板には、表面がわずかに波うつている或いは表面が わずかに粗!ヽ略板状長方形板も包含される。 [0039] 支持体は、特に限定されないが、金属、繊維強化金属、榭脂、繊維強化榭脂等の 輸送機器又は建造物の分野において使用される材料から作られている。金属、繊維 強化金属、榭脂、繊維強化榭脂等については、長方形板と同様のものを好適に使用 することができる。支持体の形状は特に限定されな 、。 [0038] As shown in FIG. 5, the rectangular plate includes a curved rectangular plate that is slightly curved in whole or in part in the width direction of the rectangular plate. The radius of curvature R of the curved surface portion is not particularly limited, but is, for example, 0.05 times or more, preferably 0.1 times or more, more preferably 0.2 times or more with respect to b 2 ZT. Where b is the width of the curved rectangular plate and T is the thickness of the curved rectangular plate. Further, the rectangular plate in the present invention includes a substantially plate-shaped rectangular plate having a slightly wavy surface or a slightly rough surface. [0039] The support is not particularly limited, but is made of a material used in the field of transportation equipment or building such as metal, fiber reinforced metal, greaves, and fiber reinforced greaves. About a metal, a fiber reinforced metal, a resin, a fiber reinforced resin etc., the thing similar to a rectangular plate can be used conveniently. The shape of the support is not particularly limited.
[0040] 突起は、特に限定されないが、金属、繊維強化金属、榭脂、繊維強化榭脂等の輸 送機器又は建造物の分野において使用される材料からなる材片である。金属、繊維 強化金属、榭脂、繊維強化榭脂等については、長方形板と同様のものを用いること ができる。  [0040] The protrusion is not particularly limited, but is a piece of material made of a material used in the field of transport equipment or building such as metal, fiber reinforced metal, resin, fiber reinforced resin. About a metal, a fiber reinforced metal, a resin, a fiber reinforced resin etc., the thing similar to a rectangular board can be used.
[0041] 突起の材料は、長方形板の材料と異なってもよいが、突起と長方形板との一体性、 突起を長方形板に備えるときの条件設定の容易さ等の観点力 長方形板の材料と同 じであることが望ましい。例えば長方形板が金属の場合、突起は金属または炭素繊 維が好ましく例示され、長方形板と突起が同種の金属からなるのが好ましい。  [0041] The material of the protrusion may be different from the material of the rectangular plate, but the viewpoint power such as the integrity of the protrusion and the rectangular plate, the ease of setting conditions when the protrusion is provided on the rectangular plate, and the material of the rectangular plate It is desirable to be the same. For example, when the rectangular plate is a metal, the protrusion is preferably a metal or carbon fiber, and the rectangular plate and the protrusion are preferably made of the same metal.
[0042] 突起の形状は、例えば、矩形、台形、楕円形、山形、 L形、 T形等の断面を有する 形状であるが、これらに限定されない。  [0042] The shape of the protrusion is, for example, a shape having a cross section such as a rectangle, a trapezoid, an ellipse, a mountain, an L shape, and a T shape, but is not limited thereto.
[0043] 本発明パネル構造にぉ 、て、 (i)長方形板は、長方形板の端部の 2つの支持体を 含む 2以上の支持体により支持されて 、る。  [0043] In the panel structure of the present invention, (i) the rectangular plate is supported by two or more supports including two supports at the end of the rectangular plate.
[0044] ここで「支持」は、少なくとも一時的に支えることを意味する。また「支持」は、必ずし も固定することを意味しないが、当該分野では通常高い安全性が求められるため、通 常、融接、圧接、ろう付け、ボルト接合、接着等による固定、ネジ、ボルト、フック、ヒン ジ等の補助具を用いた固定、嵌合等の部材の形状を利用した固定等により行なわれ ることが望ま U、。長方形板の素材がアルミニウム又はアルミニウム合金の場合には、 摩擦攪拌接合 (FSW)などの接合により突起を有する長方形板の製造、及び Z又は 突起を有する長方形板と支持体の結合を行なうことができる。また、圧延、押出成形 等の成形技術により、長方形板が 2以上の支持体と一体化された状態で存在する場 合も、長方形板が 2以上の支持体により「支持」されている場合に含まれる。例えば、 図 23 (a)及び図 23 (b)に示されるように角柱を一体ィ匕した場合がこれに該当する。  Here, “support” means to support at least temporarily. “Support” does not necessarily mean fixing, but usually high safety is required in this field, so it is usually fixed by fusion welding, pressure welding, brazing, bolting, bonding, etc., screw, It is desirable to be done by fixing using bolts, hooks, hinges and other auxiliary tools, fixing using the shape of members such as fitting U, etc. When the material of the rectangular plate is aluminum or an aluminum alloy, it is possible to manufacture a rectangular plate having projections by bonding such as friction stir welding (FSW) and to bond the rectangular plate having projections or projections to the support. . In addition, when a rectangular plate is integrated with two or more supports by a molding technique such as rolling or extrusion, or when the rectangular plate is “supported” by two or more supports. included. For example, this is the case when prisms are integrated as shown in Fig. 23 (a) and Fig. 23 (b).
[0045] 長方形板は、如何なる状態で 2以上の支持体により支持されて 、てもよ 、。一例と して、図 6 (a)に、 1の長方形板が 2の支持体により支持される場合 (I型)、図 6 (b)に、 2の長方形板が 2の支持体により支持される場合 (箱型)の断面概略図を示す。また、 図 7に、長方形板が、長方形板の端部に位置する 2の支持体によって支持される幾 つかのパターンを示す。図 8に、長方形板が、長方形板の端部に位置する 2以上の 支持体とリブ(中間支持体)によって支持される幾つ力のパターンを示す。ただし、図 6、 7及び 8において、突起は省略されている。 [0045] The rectangular plate may be supported by two or more supports in any state. As an example, in Fig. 6 (a), when the rectangular plate 1 is supported by the support 2 (type I), Fig. 6 (b) FIG. 2 shows a schematic cross-sectional view when a rectangular plate of 2 is supported by a support of 2 (box type). Figure 7 also shows several patterns in which a rectangular plate is supported by two supports located at the ends of the rectangular plate. Figure 8 shows the pattern of forces in which a rectangular plate is supported by two or more supports and ribs (intermediate supports) located at the ends of the rectangular plate. However, the projections are omitted in FIGS.
[0046] 本発明パネル構造において、(ii) l以上の突起は、 2以上の支持体のうち向かい合 う 2の支持体により挟まれる領域において長方形板に備えられる。 [0046] In the panel structure of the present invention, (ii) the l or more protrusions are provided on the rectangular plate in a region sandwiched by two of the two or more supports facing each other.
[0047] ここで「向かい合う」とは、平行又はほぼ平行に対面していることを意味する。 Here, “facing” means facing in parallel or almost in parallel.
[0048] 「向かい合う 2つの支持体により挟まれる領域」とは、向かい合う 2の支持体のうち一 方の支持体と他方の支持体との間の長方形板上の領域を意味する。向かい合う 2の 支持体としては、例えば図 8の上下の支持体の組み合わせ、上又は下の支持体と中 間支持体の組み合わせ、および 2つの中間支持体の組み合わせが例示される。向か い合う 2つの支持体は、互いに平行ないし実質的に平行の位置関係にある。「向かい 合う 2の支持体により挟まれる領域」としては、例えば図 8の長方形板 1、長方形板 2、 長方形板 3が挙げられる。輸送機器用パネル構造の場合、「向かい合う 2の支持体に より挟まれる領域」には、衝突時に向かい合って長方形板を支持することが想定され る 2の部材により挟まれる領域も含まれる。例えば、自動車のフードは、平常時には 車体のフロント部分の部品(例えば、フロントフェンダー、フレーム等)に軽く接した状 態であっても、衝突時に衝突荷重を受け、これらの部品間で強く挟まれて支持される ことがある。このように、支持体によって少なくとも一時的に挟まれることが想定される 長方形板上の領域も、「向かい合う 2の支持体により挟まれる領域」に含まれる。 [0048] The "region sandwiched between two opposing supports" means a region on a rectangular plate between one support and the other support of the two supports facing each other. Examples of the two supports facing each other include a combination of upper and lower supports in FIG. 8, a combination of upper and lower supports and an intermediate support, and a combination of two intermediate supports. The two supports facing each other are in parallel or substantially parallel to each other. Examples of the “region sandwiched between two opposing supports” include rectangular plate 1, rectangular plate 2, and rectangular plate 3 in FIG. In the case of a panel structure for transportation equipment, the “region sandwiched between two opposing supports” includes the region sandwiched by two members that are supposed to support the rectangular plate facing each other in the event of a collision. For example, even if the hood of an automobile is in a state where it is lightly in contact with the parts of the front part of the vehicle body (for example, front fender, frame, etc.) during normal times, it receives a collision load at the time of collision and is strongly sandwiched between these parts. May be supported. Thus, the region on the rectangular plate that is assumed to be sandwiched at least temporarily by the support is also included in the “region sandwiched by the two opposing supports”.
[0049] 本書では、長方形板の端部より内側の領域に備えられる支持体を「リブ(中間の支 持体)」と呼ぶ。「リブ」は、長方形板を支持して 、ることから、本発明における「支持体 」に含まれる。よって、例えば、端部に支持体を有する長方形板にさらにリブが備えら れている場合、「向かい合う 2の支持体により挟まれる領域」は、端部の各支持体とリ ブにより挟まれる領域、及び Z又は、リブとリブにより挟まれる領域を意味する。  [0049] In this document, the support provided in the region inside the end of the rectangular plate is referred to as a "rib (intermediate support)". Since the “rib” supports the rectangular plate, it is included in the “support” in the present invention. Thus, for example, when a rectangular plate having a support at the end portion is further provided with a rib, the “region sandwiched between the two support members facing each other” is the region sandwiched between each support member at the end portion and the rib. , And Z or a region sandwiched between ribs.
[0050] 突起は、融接、圧接、ろう付け、ボルト接合、接着等の常法により長方形板に備える ことができる。また、突起と長方形板との一体性の観点から、突起は、圧延、押出成 形等の成形技術によって長方形板と一体化した状態で長方形板に備えられることが 望ましい。突起は、図 9に示すように、長方形板の片面に備えられてもよいし(図 9 (a) )、両面に備えられてもよい(図 9 (b)及び図 9 (c) )。 [0050] The protrusion can be provided on the rectangular plate by a conventional method such as fusion welding, pressure welding, brazing, bolt joining, or adhesion. In addition, from the viewpoint of unity between the protrusion and the rectangular plate, the protrusion is rolled, extruded, It is desirable that the rectangular plate be provided in an integrated state with the rectangular plate by a molding technique such as shape. As shown in FIG. 9, the protrusion may be provided on one side of the rectangular plate (FIG. 9 (a)) or may be provided on both sides (FIG. 9 (b) and FIG. 9 (c)).
[0051] 突起は、向かい合う 2の支持体に実質的に平行に備えられることが望ましい。このよ うに平行に備えられることにより、突起には、突起に沿う方向だけに力が作用するた めに、突起が平行に備えられていない場合と比べて、長方形板の座屈強度が高くな る。 [0051] It is desirable that the protrusions be provided substantially parallel to the two opposing supports. By being provided in parallel as described above, since the force acts on the protrusion only in the direction along the protrusion, the buckling strength of the rectangular plate is higher than when the protrusion is not provided in parallel. The
[0052] 突起は、 2の支持体の間に実質的に等間隔に備えられることが望ましい。このように 等間隔に備えられることにより、図 10に示すように、長方形板がせん断荷重を受ける 場合、せん断荷重に対する長方形板の座屈強度を最大にすることができる。  [0052] It is desirable that the protrusions are provided at substantially equal intervals between the two supports. As shown in FIG. 10, when the rectangular plate receives a shearing load, the buckling strength of the rectangular plate against the shearing load can be maximized by being provided at equal intervals.
[0053] 図 11に、 1以上の突起が長方形板に備えられる幾つかのパターンを示す。 [0053] FIG. 11 shows several patterns in which one or more protrusions are provided on a rectangular plate.
[0054] 本発明パネル構造にお!、て、 (iii)長方形板の幅厚比は、突起を備えて!/、な!、長方 形板の幅厚比よりも大きい。 [0054] In the panel structure of the present invention, (iii) the width-thickness ratio of the rectangular plate is provided with protrusions! /,!, Greater than the width-thickness ratio of the rectangular plate.
[0055] 設計者は、突起を備えて 、な 、長方形板の座屈強度を満たす幅厚比を、後述の式 [0055] The designer is provided with a protrusion, and the width-thickness ratio satisfying the buckling strength of the rectangular plate
(2)で求めることできる。  (2) can be obtained.
[0056] 本発明パネル構造において、(iv)長方形板及び 1以上の突起の合計断面積は、 突起を備えて 、な 、長方形板の断面積よりも小さ 、。 [0056] In the panel structure of the present invention, (iv) the total cross-sectional area of the rectangular plate and the one or more protrusions is smaller than the cross-sectional area of the rectangular plate provided with the protrusions.
[0057] さらに、本発明のパネル構造において、(V) 1以上の突起が備えられた長方形板は[0057] Further, in the panel structure of the present invention, (V) a rectangular plate provided with one or more protrusions is
、突起を備えた長方形板が、突起を備えていない長方形板と実質的に同じ座屈強度 を有する。 The rectangular plate with protrusions has substantially the same buckling strength as the rectangular plate without protrusions.
[0058] ここで突起を備えた長方形板が、突起を備えていない長方形板と実質的に同じ座 屈強度とは、設計者が任意に定めた座屈強度である。しかし、設計者は、座屈強度 を、材料の降伏応力または 0. 2%耐カ(明確な降伏点を持たない材料の場合)より 大きく設定することができないので、一般には、座屈強度に材料の降伏応力または 0 . 2%耐カ(明確な降伏点を持たな 、材料の場合)が用いられる場合が多!、。  Here, the buckling strength substantially the same as the rectangular plate provided with the protrusions is the buckling strength arbitrarily determined by the designer. However, the designer cannot generally set the buckling strength to be greater than the yield stress of the material or 0.2% resistance (for materials that do not have a clear yield point). Often, the material yield stress or 0.2% resistance (for materials that do not have a clear yield point) is used!
[0059] このように、本発明パネル構造では、長方形板の幅厚比が、突起を備えて 、な ヽ長 方形板の幅厚比よりも大きく且つ長方形板及び 1以上の突起の合計断面積が、突起 を備えていない長方形板の断面積よりも小さいだけでなぐ 1以上の突起が備えられ た長方形板が、突起を備えていない長方形板と実質的に同じ座屈強度を有している 。つまり、本発明パネル構造では、突起を有する長方形板が、突起を備えていない 長方形板と実質的に同じ座屈強度を有しつつ、長方形板の幅厚比が高められ (すな わち、長方形板がある一定の幅に対して薄肉化され)、且つ、突起を含む長方形板 の断面積が低減されている。突起を含む長方形板の断面積が低減されることは、より 少な 、材料で突起を有する長方形板を製造できることを意味して 、る。 Thus, in the panel structure of the present invention, the rectangular plate has a width-thickness ratio that is larger than the width-thickness ratio of the rectangular plate, and has a total cross-sectional area of the rectangular plate and one or more protrusions. Is provided with one or more protrusions that are just smaller than the cross-sectional area of a rectangular plate without protrusions. The rectangular plate has substantially the same buckling strength as the rectangular plate having no protrusion. In other words, in the panel structure of the present invention, the rectangular plate having protrusions has substantially the same buckling strength as the rectangular plate having no protrusions, and the width-thickness ratio of the rectangular plates is increased (that is, The rectangular plate is thinned to a certain width), and the cross-sectional area of the rectangular plate including the protrusion is reduced. Reducing the cross-sectional area of the rectangular plate including the protrusions means that a rectangular plate having the protrusions can be manufactured with less material.
[0060] 本発明の輸送機器用パネル構造は、特に限定されないが、自動車、自動二輪車、 鉄道車両、船舶、飛行機、宇宙機等の輸送機器に適用され得る。自動車、鉄道車両 、船舶、飛行機、宇宙機は、高速で移動可能な輸送機器であり、衝突により大きな圧 縮荷重及び Z又は曲げ荷重を面内方向に受ける可能性が高 、ため、高 、座屈強度 が求められることから、本発明は、特に、これらの高速で移動可能な輸送機器に適用 され得る。  [0060] The transport device panel structure of the present invention is not particularly limited, but can be applied to transport devices such as automobiles, motorcycles, railway vehicles, ships, airplanes, and spacecrafts. Automobiles, railway vehicles, ships, airplanes, and spacecraft are transportation equipment that can move at high speed, and are highly likely to receive large compression loads and Z or bending loads in the in-plane direction due to collisions. Since the bending strength is required, the present invention can be applied particularly to these high-speed movable transportation equipment.
[0061] 本発明の建造物用構造部材用パネル構造は、特に限定されないが、建物、橋梁等 の建造物に適用され得る。  [0061] The panel structure for a structural member for a building of the present invention is not particularly limited, but can be applied to a building such as a building or a bridge.
[0062] 本発明は (I)長方形板を、長方形板の端部の 2つの支持体を含む 2以上の支持体 で支持する工程、及び、(Π) 1以上の突起を、 2以上の支持体のうち向かい合う 2の 支持体により挟まれる領域において長方形板に備える工程、を包含する、本発明の 輸送機器用パネル構造又は建造物用構造部材用パネル構造の製造方法を提供す る。ここで、工程 (I)及び (Π)は如何なる順序で行われてもよぐ同時に行われてもよ い。  [0062] The present invention includes (I) a step of supporting a rectangular plate with two or more supports including two supports at the end of the rectangular plate, and (i) one or more protrusions with two or more supports. There is provided a method for producing a panel structure for a transportation device or a panel structure for a structural member for a building according to the present invention, comprising a step of preparing a rectangular plate in a region sandwiched by two opposing supports in the body. Here, the steps (I) and (ii) may be performed in any order or at the same time.
[0063] 工程 (I)では、例えば、融接、圧接、ろう付け、ボルト接合、接着等の当該分野にお いて行われる溶接法又は接合法によって、或いは、ネジ、ボルト、フック、ヒンジ等の 補助具を用いて、長方形板を、 2以上の支持体に固定することができるが、これらに 限定されない。また、圧延、押出成形等の当該分野において行われる成形によって 長方形板と支持体を一体化することにより、長方形板を支持体で支持してもよい。長 方形板及び支持体については、前述のとおりである。  [0063] In the step (I), for example, a welding method or a joining method performed in the relevant field such as fusion welding, pressure welding, brazing, bolt joining, adhesion or the like, or screws, bolts, hooks, hinges, etc. The rectangular plate can be fixed to two or more supports using an auxiliary tool, but is not limited thereto. Further, the rectangular plate may be supported by the support by integrating the rectangular plate and the support by molding performed in the field such as rolling or extrusion. The rectangular plate and the support are as described above.
[0064] 工程 (Π)では、例えば、融接、圧接、ろう付け、ボルト接合、接着等の当該分野にお いて行われる溶接法又は接合法により、 1以上の突起を、 2以上の支持体のうち向か い合う 2の支持体により挟まれる領域において長方形板に備えることができる力 これ らに限定されない。また、圧延、押出成形等の当該分野において行われる成形によ つて長方形板と突起を一体ィ匕することにより、突起を長方形板に備えてもよい。突起 については、前述のとおりである。 [0064] In the step (ii), for example, one or more protrusions are formed on two or more supports by a welding method or a joining method performed in the relevant field such as fusion welding, pressure welding, brazing, bolt joining, or adhesion. Heading out The force that can be provided to the rectangular plate in the region sandwiched between the two supporting members is not limited to these. Further, the projection may be provided on the rectangular plate by integrally forming the projection and the rectangular plate by molding performed in this field such as rolling or extrusion molding. The protrusions are as described above.
[0065] あるいは、図 21(c)に示されるように、突起と長方形板の一部を構成する T形の部材 と、支持体 (ある!ヽは支持体と長方形板の一部を構成する T形の部材)を摩擦攪拌接 合 (FSW)などの適当な方法で連結することにより長方形板と突起を同時に形成する ことも可能である。この方法は、長方形板と突起ないし中間支持体の材質がアルミ二 ゥム又はアルミニウム合金力もなる場合に特に有用である。  [0065] Alternatively, as shown in FIG. 21 (c), a T-shaped member that forms part of the protrusion and the rectangular plate, and a support (there is a part of the support and the rectangular plate) It is also possible to form the rectangular plate and the protrusion at the same time by connecting the T-shaped member) by an appropriate method such as friction stir welding (FSW). This method is particularly useful when the material of the rectangular plate and the projections or intermediate support is aluminum or aluminum alloy.
[0066] 次に、本発明の 1つの実施形態を示す。  [0066] Next, one embodiment of the present invention will be described.
[0067] 本発明の 1つの実施形態において、下記式:  [0067] In one embodiment of the invention, the following formula:
7? =A /A  7? = A / A
1 0  Ten
(ここで、突起を備えていない長方形板と実質的に同じ座屈強度を有する突起を備え る長方形板の断面積を A、及び、所定の座屈強度を有するが突起を備えていない 従来の長方形板の断面積を Aとする)  (Here, A is the cross-sectional area of a rectangular plate with protrusions having substantially the same buckling strength as a rectangular plate without protrusions, and a conventional plate with a predetermined buckling strength but without protrusions. (A is the cross-sectional area of the rectangular plate)
0  0
において r?が約 0. 95以下、好ましくは約 0. 9以下、より好ましくは約 0. 8以下、より 好ましくは約 0. 7以下、より好ましくは約 0. 6以下、より好ましくは約 0. 5以下となるよ うに 1以上の突起が長方形板に備えられた輸送機器用パネル構造又は建造物用構 造部材用パネル構造を提供する。  Is about 0.95 or less, preferably about 0.9 or less, more preferably about 0.8 or less, more preferably about 0.7 or less, more preferably about 0.6 or less, more preferably about 0. To provide a panel structure for transportation equipment or a structural member panel for a building in which one or more protrusions are provided on a rectangular plate so as to be 5 or less.
[0068] 実施例 1では、突起を 5備える長方形板によって、中間支持体を 1備える長方形板 より、さらに 31%断面積を減少させ得ることが記載され、実施例 2では、突起を 3備え る長方形板によって、中間支持体を 2備える長方形板より、さらに 16%断面積を減少 させ得ることが記載されて!、る。  [0068] In Example 1, it is described that a rectangular plate with 5 protrusions can further reduce the cross-sectional area by 31% compared to a rectangular plate with 1 intermediate support. In Example 2, 3 protrusions are provided. It is described that the rectangular plate can further reduce the cross-sectional area by 16% than the rectangular plate with two intermediate supports! RU
[0069] 輸送機器又は建造物の分野で用いられる長方形板は、精密機械や家電などの分 野で用いられる長方形板と比べて寸法が大きぐ大量の材料を必要とする。当該分 野において材料を低減できることは、製造コスト削減や省資源'省エネルギーの観点 力 非常に有意義なことである。  [0069] Rectangular plates used in the field of transportation equipment or buildings require a large amount of material that is larger in size than rectangular plates used in fields such as precision machinery and home appliances. The ability to reduce materials in this area is very meaningful in terms of reducing manufacturing costs and saving resources.
[0070] また、使用される材料を少なくすることは、輸送機器を軽量ィ匕することができるので 、燃料の削減、又は、積載量の増加につながる。さら〖こ、使用される材料を少なくす ることは、建造物を軽量ィ匕することができるので、地盤耐力が弱い場所での建造物の 建設を可能にし、地震荷重の低減、及び工事作業性の向上につながる。 [0070] Also, reducing the amount of material used can reduce the weight of the transport equipment. , Leading to fuel reduction or increased loading capacity. Furthermore, reducing the amount of materials used can reduce the weight of the building, allowing construction of the building in areas where the ground strength is weak, reducing seismic loads, and construction work. It leads to improvement of sex.
[0071] 図 12に示す、圧縮または曲げを受ける 4辺単純支持された突起無し長方形板の座 屈強度は次式で与えられる。  [0071] The buckling strength of the rectangular plate without protrusions, which is simply supported on four sides and subjected to compression or bending, as shown in FIG. 12, is given by the following equation.
[0072] [数 3] び = 。 [0072] [Equation 3] and =.
12(1 - )  12 (1-)
[0073] ここに、 [0073] where
σ:圧縮または曲げを受ける、突起無し長方形板の座屈強度  σ: Buckling strength of a rectangular plate without protrusions subjected to compression or bending
k:突起無し長方形板の座屈係数であり、圧縮を受けるとき 4、曲げを受けるとき 23. k: Buckling coefficient of a rectangular plate without protrusions 4 when subjected to compression and 23 when subjected to bending.
0 0
9  9
E :長方形板のヤング率  E: Young's modulus of rectangular plate
IX:長方形板のポアソン比  IX: Poisson's ratio of rectangular plate
β =bZT:突起無し長方形板の幅厚比  β = bZT: Width / thickness ratio of rectangular plate without protrusions
0  0
b:突起無し長方形板の板幅  b: Width of rectangular plate without protrusions
T:突起無し長方形板の板厚  T: Thickness of rectangular plate without protrusions
式(1)より、突起無し長方形板の座屈強度 σを満たす幅厚比 β が次式で与えられる  From equation (1), the width-thickness ratio β satisfying the buckling strength σ of the rectangular plate without protrusions is given by
[0074] [数 4]
Figure imgf000019_0001
[0074] [Equation 4]
Figure imgf000019_0001
[0075] 突起無し長方形板の座屈強度 σに対して任意の値を設定することができる。しかし 、突起無し長方形板の座屈強度 σを、材料の降伏応力または 0. 2%耐カ(明確な降 伏点を持たない材料の場合)より大きく設定することはできない。したがって、一般に は、突起無し長方形板の座屈強度 σに材料の降伏応力または 0. 2%耐カ(明確な 降伏点を持たな!、材料の場合)が設定される場合が多 ヽ。  [0075] An arbitrary value can be set for the buckling strength σ of the rectangular plate without protrusions. However, the buckling strength σ of the rectangular plate without protrusions cannot be set larger than the yield stress of the material or 0.2% resistance (in the case of a material having no clear yield point). Therefore, in general, the buckling strength σ of the rectangular plate without protrusions is often set to the yield stress of the material or 0.2% resistance (with no clear yield point !, for the material).
[0076] 図 13に示すように、等間隔に突起が付けられた長方形板力 辺単純支持され、圧 縮または曲げを受けるとき、その座屈強度は次式で与えられる。 [0076] As shown in FIG. 13, the rectangular plate force with protrusions at equal intervals is simply supported, and the pressure When subjected to shrinkage or bending, its buckling strength is given by:
[0077] [数 5]
Figure imgf000020_0001
[0077] [Equation 5]
Figure imgf000020_0001
[0078] ここに、 [0078] where
σ:圧縮または曲げを受ける、突起付き長方形板の座屈強度  σ: Buckling strength of protruding rectangular plate subjected to compression or bending
k:突起付き長方形板の、圧縮又は曲げに対する座屈係数  k: Buckling coefficient against compression or bending of rectangular plate with protrusions
E :長方形板のヤング率  E: Young's modulus of rectangular plate
IX:長方形板のポアソン比  IX: Poisson's ratio of rectangular plate
β =bZt:突起付き長方形板の幅厚比  β = bZt: Width-thickness ratio of rectangular plate with protrusions
b:突起付き長方形板の板幅  b: Width of rectangular plate with protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
突起付き長方形板の、圧縮又は曲げに対する座屈係数 kは次式で与えられる(大 倉一郎:鋼構造設計学の基礎、東洋書店、 PP. 223— 264、 2004および大食一郎、 北村幸嗣、赤崎圭輔、卯瀧高久、ビッグ'ラズロ 'ゲルゲリ、三河克己:新しいアルミ- ゥム合金製補剛桁の提案、構造工学論文集、 Vol. 51 A, pp. 203— 210、 2005)。  The buckling coefficient k of a rectangular plate with protrusions for compression or bending is given by the following formula (Ichiro Okura: Fundamental of Structural Design of Steel, Toyo Shoten, PP. 223-264, 2004 and Ichiro Oshoku, Kogo Kitamura, Shinsuke Akasaki, Takahisa Tsuji, Big 'Lazzro' Gergeri, Katsumi Mikawa: Proposal of a new aluminum alloy stiffening girder, Journal of Structural Engineering, Vol. 51 A, pp. 203-210, 2005).
[0079] 園 [0079] Garden
1 2Vi r (4) 1 2 Vi r (4)
l + sd  l + sd
[0080] ここに、 [0080] where
k:突起付き長方形板の、圧縮又は曲げに対する座屈係数  k: Buckling coefficient against compression or bending of rectangular plate with protrusions
s:突起によって区切られた板要素の総数  s: Total number of plate elements separated by protrusions
r:長方形板の曲げ剛性に対する一つの突起の曲げ剛性の比  r: Ratio of the bending stiffness of one protrusion to the bending stiffness of a rectangular plate
δ:長方形板の断面積に対する一つの突起の断面積の比  δ: Ratio of the cross-sectional area of one protrusion to the cross-sectional area of the rectangular plate
c:圧縮を受けるとき 2、曲げを受けるとき 10. 62  c: 2 when subjected to compression, 10. 62 when subjected to bending
c:圧縮を受けるとき 1、曲げを受けるとき 1. 25  c: When subjected to compression 1, When subjected to bending 1. 25
2  2
式 (4)は、突起付き長方形板が圧縮を受けるとき、 sが 2以上 (突起が 1つ以上)で成 立し、曲げを受けるとき、 sが 3以上 (突起が 2つ以上)で成立する。 [0081] 式 (4)は、 r=0、 δ =0のとき、突起無し長方形板の座屈係数と等しくなるので次式 が成立する。 Equation (4) holds when s is 2 or more (1 or more protrusions) when a rectangular plate with protrusions is compressed, and when s is 3 or more (2 or more protrusions) when subjected to bending. To do. [0081] Equation (4) is equal to the buckling coefficient of the rectangular plate without protrusions when r = 0 and δ = 0, and therefore, the following equation is established.
[0082] [数 7] [0082] [Equation 7]
k0 =cxi\ + c2) (5) k 0 = c x i \ + c 2 ) (5)
[0083] rと δは、それぞれ次式で与えられる。 [0083] r and δ are given by the following equations, respectively.
[0084] [数 8] [0084] [Equation 8]
Db Db
δ-^- (7)  δ-^-(7)
Ebt  Ebt
[0085] ここに、 [0085] where
E:長方形板のヤング率  E: Young's modulus of rectangular plate
E:突起のヤング率  E: Young's modulus of protrusion
D = EtV{12(l— ^ 2) }:長方形板の板曲げ剛性 D = EtV {12 (l— ^ 2 )}: Plate bending rigidity of rectangular plate
I:一つの突起の断面二次モーメント  I: Sectional secondary moment of one protrusion
A:一つの突起の断面積  A: Cross section of one protrusion
2  2
b:突起付き長方形板の板幅  b: Width of rectangular plate with protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
μ:長方形板のポアソン比  μ: Poisson's ratio of rectangular plate
式 (6)と式(7)に示すように、長方形板のヤング率 Εと突起のヤング率 Εを考慮する ことにより、長方形板の材料と突起の材料が異なる場合も扱える。長方形板の材料と 突起の材料が同一のときは、 Ε=Εである。  As shown in Eqs. (6) and (7), considering the Young's modulus 長方形 of the rectangular plate and the Young's modulus 突起 of the protrusion, it is possible to handle cases where the material of the rectangular plate and the material of the protrusion are different. When the material of the rectangular plate and the material of the protrusion are the same, Ε = Ε.
Iと Αは、それぞれ次式で与えられる。  I and Α are given by the following equations, respectively.
2  2
[0086] [数 9]  [0086] [Equation 9]
/ = ^ (8) / = ^ (8)
A2 = c32t2b4 (9) A 2 = c 32 t 2 b 4 (9)
[0087] ここに、 [0087] where
t:突起の付根の厚さ (表 1参照) b:長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 b (表 b:突起の高さ (表 1参照) t: Thickness of the root of the protrusion (see Table 1) b: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b (Table b: Height of protrusions (see Table 1)
2  2
b:長方形板の両面に突起がある場合、両面の突起の先端間の寸法 (表 1参照)b: If there are protrusions on both sides of the rectangular plate, the dimensions between the protrusions on both sides (see Table 1)
3 Three
c :突起の断面二次モーメントに関係する係数 (表 1参照) c: Coefficient related to the projecting moment of inertia (see Table 1)
31  31
c :突起の断面積に関係する係数 (表 1参照) c: Coefficient related to the cross-sectional area of the protrusion (see Table 1)
32  32
下記に表 1を示す。  Table 1 is shown below.
[表 1] [table 1]
Figure imgf000022_0002
Figure imgf000022_0002
Figure imgf000022_0001
Figure imgf000022_0001
ここで、表 1の突起の断面形状が台形の場合の Θは、台形の斜辺の傾斜角を表す 。表 1で与えられた断面形状と異なる断面形状に対する係数 c の値は、一般の構造  Here, when the cross-sectional shape of the protrusion in Table 1 is a trapezoid, Θ represents the inclination angle of the hypotenuse of the trapezoid. The value of the coefficient c for cross-sectional shapes different from those given in Table 1 is the general structure
31  31
力学の教科書に記載されて 、る断面二次モーメントの公式を用いて容易に求めるこ とができる。ただし注意することは、長方形板の片面に突起がある場合は、長方形板 の表面の位置に関する断面二次モーメントであり、長方形板の両面に突起がある場 合は、長方形板の板厚中央の位置に関する断面二次モーメントである。係数 C は突 起の断面積に関する係数であり、一般の数学の公式集を用いて容易に求めることが できる。 It can be easily obtained by using the formula of the moment of inertia described in the textbook of mechanics. However, it should be noted that if there is a protrusion on one side of the rectangular plate, it is the moment of inertia of the cross section with respect to the position of the surface of the rectangular plate. Cross-sectional second moment with respect to position. Coefficient C is sudden This is a coefficient related to the cross-sectional area of the origin, and can be easily obtained by using general mathematical formulas.
[0090] 図 14を参照して,突起付き長方形板の板幅 bは、突起によって区切られた板要素 の幅 bおよび板要素の総数 sと次の関係を持つ。  [0090] Referring to FIG. 14, the plate width b of the rectangular plate with protrusions has the following relationship with the width b of the plate elements divided by the protrusions and the total number s of plate elements.
b = sb (10)  b = sb (10)
式 (8)を式 (6)に代入して、さらに式(10)を用いると、 rは次式となる。  Substituting equation (8) into equation (6) and using equation (10), r becomes
[0091] [数 10] [0091] [Equation 10]
12(1 - ) (" )  12 (1-) (")
[0092] ここに、 [0092] where
n=E ZE:長方形板のヤング率に対する突起のヤング率の比  n = E ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
E:長方形板のヤング率  E: Young's modulus of rectangular plate
E:突起のヤング率  E: Young's modulus of protrusion
β =b Zt:突起によって区切られた板要素の幅厚比  β = b Zt: Width / thickness ratio of the plate elements delimited by protrusions
β =b / :  β = b /:
3 4 2 bに関する幅厚比  Width-thickness ratio for 3 4 2 b
4  Four
ξ =t Zt:突起付き長方形板の板厚に対する突起の付根の厚さの比  ξ = t Zt: Ratio of protrusion root thickness to protrusion rectangular plate thickness
2  2
b:突起によって区切られた板要素の幅  b: Width of plate element delimited by protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
b:長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 b (表 b: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b (Table
4 2 34 2 3
1参照) 1)
b:突起の高さ (表  b: Height of protrusion (table
2 1参照)  (See 2 1)
b:長方形板の両面に突起がある場合、両面の突起の先端間の寸法 (表  b: When there are protrusions on both sides of the rectangular plate, the dimension between the tips of the protrusions on both sides (table
3 1参照) t:突起の付根の厚さ (表  3 See 1) t: Thickness of protrusion root (Table
2 1参照)  (See 2 1)
c :突起の断面二次モーメントに関係する係数 (表 1参照)  c: Coefficient related to the projecting moment of inertia (see Table 1)
31  31
S:突起によって区切られた板要素の総数  S: Total number of plate elements separated by protrusions
μ:長方形板のポアソン比  μ: Poisson's ratio of rectangular plate
式(9)を式(7)に代入して,さらに式(10)を用いると、 δは次式になる。  Substituting equation (9) into equation (7) and using equation (10), δ becomes
[0093] [数 11] S= nC^2 (12) [0093] [Equation 11] S = nC ^ 2 (12)
 ,
[0094] に、 [0094]
n=EiZE:長方形板のヤング率に対する突起のヤング率の比 n = E i ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
E:長方形板のヤング率  E: Young's modulus of rectangular plate
E :突起のヤング率  E: Young's modulus of protrusion
β =b Zt:突起によって区切られた板要素の幅厚比  β = b Zt: Width / thickness ratio of the plate elements delimited by protrusions
β =b / : bに関する幅厚比  β = b /: width-thickness ratio for b
3 4 2 4  3 4 2 4
ξ =t Zt:突起付き長方形板の板厚に対する突起の付根の厚さの比  ξ = t Zt: Ratio of protrusion root thickness to protrusion rectangular plate thickness
2  2
b :突起によって区切られた板要素の幅  b: Width of plate element delimited by protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
b :長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 b (表 b :突起の高さ (表 1参照)  b: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b (Table b: Height of protrusions (see Table 1)
2  2
b :長方形板の両面に突起がある場合、両面の突起の先端間の寸法 (表 1参照) b: When there are protrusions on both sides of the rectangular plate, the dimension between the ends of the protrusions on both sides (see Table 1)
3 Three
t :突起の付根の厚さ (表 1参照)  t: Thickness of protrusion root (see Table 1)
2  2
c :突起の断面積に関係する係数 (表 1参照)  c: Coefficient related to the cross-sectional area of the protrusion (see Table 1)
32  32
S:突起によって区切られた板要素の総数  S: Total number of plate elements separated by protrusions
式( 11)と式( 12)を式 (4)に代入して次式を得る。  Substituting Equation (11) and Equation (12) into Equation (4), we obtain
[0095] [数 12] [0095] [Equation 12]
k = c、 (13)
Figure imgf000024_0001
k = c, (13)
Figure imgf000024_0001
ここで、式(10)より、突起付き長方形板の幅厚比 βと突起によって区切られた板要 素の幅厚比 j8 は次の関係を持つ。  Here, from equation (10), the width-thickness ratio β of the rectangular plate with protrusions and the width-thickness ratio j8 of the plate elements separated by the protrusions have the following relationship.
β =3β (14) β =bZt:突起付き長方形板の幅厚比 β = 3β (14) β = bZt: Width-thickness ratio of rectangular plate with protrusions
ι8 = 71;:突起によって区切られた板要素の幅厚比  ι8 = 71 ;: Width / thickness ratio of plate elements delimited by protrusions
b:突起付き長方形板の板幅  b: Width of rectangular plate with protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
b:突起によって区切られた板要素の幅  b: Width of plate element delimited by protrusions
s:突起によって区切られた板要素の総数  s: Total number of plate elements separated by protrusions
突起無し長方形板の座屈強度と突起付き長方形板の座屈強度を等しく置く。すな わち式(1)と式(3)を等しく置 、て次式を得る。  The buckling strength of the rectangular plate without protrusions is set equal to that of the rectangular plate with protrusions. In other words, the following equation is obtained by placing the equations (1) and (3) equally.
[0097] [数 13]
Figure imgf000025_0001
Figure imgf000025_0003
[0097] [Equation 13]
Figure imgf000025_0001
Figure imgf000025_0003
[0098] に、 [0098]
k:突起付き長方形板の、圧縮又は曲げに対する座屈係数  k: Buckling coefficient against compression or bending of rectangular plate with protrusions
k:突起無し長方形板の座屈係数であり、圧縮を受けるとき  k: Buckling coefficient of a rectangular plate without protrusions, when subjected to compression
0 4、曲げを受けるとき 23. 0 4, when subjected to bending 23.
9 9
β =bZt:突起付き長方形板の幅厚比  β = bZt: Width-thickness ratio of rectangular plate with protrusions
β =bZT:突起無し長方形板の幅厚比  β = bZT: Width / thickness ratio of rectangular plate without protrusions
0  0
β =b Zt:突起によって区切られた板要素の幅厚比  β = b Zt: Width / thickness ratio of the plate elements delimited by protrusions
S:突起によって区切られた板要素の総数  S: Total number of plate elements separated by protrusions
τ:突起無し長方形板の板厚  τ: Thickness of the rectangular plate without protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
b:突起無し長方形板の板幅、又は、突起付き長方形板の板幅  b: The width of the rectangular plate without protrusions or the width of the rectangular plate with protrusions
b:突起によって区切られた板要素の幅  b: Width of plate element delimited by protrusions
式( 13)を式( 15)に代入して次式を得る。  Substituting equation (13) into equation (15), we obtain
[0099] [数 14] c
Figure imgf000025_0002
[0100] 式(5)を式(16)に代入し、 ξについて解いて次式を得る。
[0099] [Equation 14] c
Figure imgf000025_0002
[0100] Substituting Equation (5) into Equation (16) and solving for ξ, we obtain
[0101] [数 15]
Figure imgf000026_0001
[0101] [Equation 15]
Figure imgf000026_0001
[0102] ここに、  [0102] Here,
ξ =t Zt:突起付き長方形板の板厚に対する突起の付根の厚さの比 ξ = t Zt: Ratio of protrusion root thickness to protrusion rectangular plate thickness
[0103] [数 16] [0103] [Equation 16]
η^ - μ^ηβΐ  η ^-μ ^ ηβΐ
H、  H,
Hつ
Figure imgf000026_0002
H
Figure imgf000026_0002
[0104] n=E ZE:長方形板のヤング率に対する突起のヤング率の比  [0104] n = E ZE: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
E:長方形板のヤング率  E: Young's modulus of rectangular plate
E :突起のヤング率  E: Young's modulus of protrusion
β =bZT:突起無し長方形板の幅厚比  β = bZT: Width / thickness ratio of rectangular plate without protrusions
0  0
β =b Zt:突起によって区切られた板要素の幅厚比  β = b Zt: Width / thickness ratio of the plate elements delimited by protrusions
β =b / : bに関する幅厚比  β = b /: width-thickness ratio for b
3 4 2 4  3 4 2 4
t :突起の付根の厚さ (表  t: Thickness of protrusion root (table
2 1参照)  (See 2 1)
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
μ:長方形板のポアソン比  μ: Poisson's ratio of rectangular plate
c :突起の断面二次モーメントに関係する係数 (表 1参照)  c: Coefficient related to the projecting moment of inertia (see Table 1)
31  31
c :突起の断面積に関係する係数 (表  c: Coefficient related to the cross-sectional area of the protrusion (Table
32 1参照)  32 1)
c :圧縮を受けるとき  c: When compressed
2 1、曲げを受けるとき 1. 25  2 1. When bending 1.25
b:突起無し長方形板の板幅、又は、突起付き長方形板の板幅  b: The width of the rectangular plate without protrusions or the width of the rectangular plate with protrusions
T:突起無し長方形板の板厚  T: Thickness of rectangular plate without protrusions
b :突起によって区切られた板要素の幅 b:長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 b (表 b:突起の高さ (表 1参照) b: Width of plate element delimited by protrusions b: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b (Table b: Height of protrusions (see Table 1)
2  2
b:長方形板の両面に突起がある場合,両面の突起の先端間の寸法 (表 1参照) b: If there are protrusions on both sides of the rectangular plate, the dimensions between the protrusions on both sides (see Table 1)
3 Three
S:突起によって区切られた板要素の総数  S: Total number of plate elements separated by protrusions
突起無し長方形板の断面積 Aおよび突起付き長方形板の突起を含めた断面積 A  Cross-sectional area A of the rectangular plate without protrusions and cross-sectional area A including the protrusions of the rectangular plate with protrusions A
0  0
がそれぞれ次式で与えられる。  Are given by the following equations.
[0105] [数 17]  [0105] [Equation 17]
A = sb、T ( 1 8)  A = sb, T (1 8)
[0106] [数 18] [0106] [Equation 18]
Αλ = sbxt + \s - 1)!-, = sb}t + (s - l)c32b4t. ( 1 9) Α λ = sb x t + \ s-1)!-, = Sb } t + (s-l) c 32 b 4 t. (1 9)
[0107] 突起無し長方形板の断面積 Aに対する突起付き長方形板の、突起を含めた断面 [0107] Cross-sectional area of the rectangular plate without protrusions The cross-section including the protrusions of the rectangular plate with protrusions relative to A
0  0
積 Aの比 7?が次式で与えられる。  The ratio of product A is 7?
[0108] [数 19]
Figure imgf000027_0001
[0108] [Equation 19]
Figure imgf000027_0001
[0109] この式に式( 15)を代入して次式を得る。 [0109] By substituting equation (15) into this equation, the following equation is obtained.
[0110] [数 20] [0110] [Equation 20]
(21 )(twenty one )
Figure imgf000027_0002
Figure imgf000027_0002
[0111] さらに、この式に式(13)を代入し、式(5)を用いて次式を得る c [0111] Further, substituting equation (13) into this equation, the following equation is obtained using equation (5) c
[0112] [数 21] [0112] [Equation 21]
= 1= 1
Figure imgf000027_0003
Figure imgf000027_0003
式 ( 1 5 ) において、  In equation (15),
k > [0113] であるから次式が成立する。 k> [0113] Therefore, the following equation holds.
[0114] [数 22] [0114] [Equation 22]
β - ^≥βο (23)  β-^ ≥βο (23)
[0115] 突起付き長方形板の座屈強度は、突起で区切られた板要素の座屈強度を超すこと はできない。したがって突起付き長方形板の、圧縮又は曲げに対する座屈係数 kは 次の制限を受ける。 [0115] The buckling strength of the rectangular plate with protrusions cannot exceed the buckling strength of the plate elements separated by the protrusions. Therefore, the buckling coefficient k for compression or bending of the rectangular plate with protrusions is subject to the following restrictions.
[0116] [数 23]  [0116] [Equation 23]
k≤kx (24) k≤k x (24)
[0117] ここに、 [0117] Here,
k:突起で区切られた板要素の、圧縮又は曲げに対する座屈係数を、突起付き長方 形板全体の座屈係数として表したものであり、突起付き長方形板が圧縮を受ける場 合 4s2、曲げを受ける場合 8. 4sV (2. Is— 2) (大食一郎:鋼構造設計学の基礎、 東洋書店、 PP. 223— 264、 2004及び大食一郎、北村幸嗣、赤崎圭輔、卯瀧高久 、ビッグ'ラズ口'ゲルゲリ、三河克己:新しいアルミニウム合金製補剛桁の提案、構造 工学論文集、 Vol. 51 A, pp. 203- 210, 2005)。 k: The buckling coefficient of a plate element separated by protrusions against compression or bending is expressed as the buckling coefficient of the entire rectangular plate with protrusions. When the rectangular plate with protrusions is compressed 4s 2 4. 4sV (2. Is— 2) (Ochiro Ichiro: Fundamentals of Steel Structural Design, Toyo Shoten, PP. 223-264, 2004) and Ochiro Ichiro, Kitamura Kosuke, Akasaki Kosuke, Tsuji Takahisa, Big 'Razguchi' Gergeri, Katsumi Mikawa: Proposal of a new aluminum alloy stiffening girder, Structural Engineering Papers, Vol. 51 A, pp. 203-210, 2005).
[0118] 式(15)を式(24)に代入して次式を得る。  [0118] Substituting equation (15) into equation (24), the following equation is obtained.
[0119] [数 24]  [0119] [Equation 24]
β = ^≤ β (25)  β = ^ ≤ β (25)
[0120] ここに、 [0120] Here,
c:突起付き長方形板が圧縮を受ける場合 s、曲げを受ける場合  c: When a rectangular plate with protrusions is subjected to compression s, When subjected to bending
4  Four
[0121] [数 25]
Figure imgf000028_0001
[0121] [Equation 25]
Figure imgf000028_0001
[0122] 式(23)と(25)から j8 と j8が取り得る値の範囲は次の通りである。  The range of values that j8 and j8 can take from equations (23) and (25) is as follows.
[0123] [数 26]
Figure imgf000028_0002
[0123] [Numerical 26]
Figure imgf000028_0002
β0≤β < ο4β0 (27) 突起は、突起付き長方形板の座屈強度未満で、座屈を起こしてはいけない。したが つて突起を、圧縮を受ける自由突出板と見なせば、突起は次式を満たさなければな らない。 β 0 ≤β <ο 4 β 0 (27) The protrusion should be less than the buckling strength of the rectangular plate with protrusions and should not buckle. Therefore, if the protrusion is regarded as a free protruding plate subjected to compression, the protrusion must satisfy the following equation.
[0125] [数 27]  [0125] [Equation 27]
0.425^-2E 0.425 ^ - 2 E
1 ≥び, (28) 1 ≥ (28)
12(1 -  12 (1-
[0126] ここに、 [0126] where
E :突起のヤング率  E: Young's modulus of protrusion
μ :突起のポアソン比  μ: Poisson's ratio of protrusion
β =b Zt :突起の幅厚比  β = b Zt: Protrusion width-thickness ratio
2 2 22  2 2 22
b :突起の高さ (表 1参照)  b: Projection height (see Table 1)
2  2
t :突起の平均厚さ (表 1参照)  t: Average thickness of protrusion (see Table 1)
22  twenty two
σ :突起に生じる応力  σ: Stress generated in the protrusion
式(28)の左辺は、圧縮を受ける自由突出板の座屈強度である(大倉一郎:鋼構造 設計学の基礎,東洋書店, pp. 223- 264) oまた、突起の平均厚さ t は、突起の断  The left side of equation (28) is the buckling strength of the free protruding plate subjected to compression (Okura Ichiro: Fundamental Design of Steel Structure, Toyo Shoten, pp. 223-264) o The average thickness t of the protrusion is , Protrusion breakage
22  twenty two
面積 (長方形板の両面に突起がある場合は、片側の突起の断面積)を突起の高さ b  The area (if there are protrusions on both sides of the rectangular plate, the sectional area of the protrusion on one side) is the height of the protrusion b
2 で除したものである。  Divided by 2.
[0127] 突起に生じる応力 σ は、長方形板に生じるひずみと突起に生じるひずみが等しい という条件から、次式で与えられる。  [0127] The stress σ generated in the protrusion is given by the following equation under the condition that the strain generated in the rectangular plate is equal to the strain generated in the protrusion.
[0128] [数 28] [0128] [Equation 28]
σι = nc5a (Z9) σ ι = nc 5 a (Z9)
[0129] ここに、 [0129] where
σ :突起に生じる応力  σ: Stress generated in the protrusion
σ:圧縮または曲げを受ける、突起付き長方形板の座屈強度  σ: Buckling strength of protruding rectangular plate subjected to compression or bending
η=Ε ΖΕ :長方形板のヤング率に対する突起のヤング率の比  η = Ε ΖΕ: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
Ε :長方形板のヤング率  Ε: Young's modulus of rectangular plate
Ε :突起のヤング率  Ε: Young's modulus of protrusion
c :圧縮を受けるとき 1、曲げを受けるとき (s— 2) Zs s:突起によって区切られた板要素の総数 c: When subjected to compression 1, when subjected to bending (s— 2) Zs s: Total number of plate elements separated by protrusions
突起に生じる応力 σェは、突起の材料の降伏応力または 0. 2%耐カ(明確な降伏 点を持たない材料の場合)より大きくなれない。したがって、突起に生じる応力 σ は 次の制限を受ける。  The stress σe generated on the protrusion cannot be greater than the yield stress of the protrusion material or 0.2% resistance (for materials that do not have a clear yield point). Therefore, the stress σ generated in the protrusion is subject to the following restrictions.
[0130] [数 29] [0130] [Equation 29]
σ]≤σ (30) σ ] ≤σ (30)
[0131] ここに、 [0131] Here,
σ :突起に生じる応力  σ: Stress generated in the protrusion
σ :突起の材料の降伏応力または 0. 2%耐カ(明確な降伏点を持たな 、材料の場 σ: Yield stress of material of protrusion or 0.2% resistance (material field without a clear yield point)
11 11
合)  Combined)
長方形板の材料と突起の材料が同一のとき、式 (30)は常に成立している。長方形 板の材料と異なる材料を突起に用いる場合、材料によっては式 (30)を満足しな!ヽ材 料があるので、突起に選択した材料が式(30)を満足することを確認しなければなら ない。  Equation (30) always holds when the material of the rectangular plate and the material of the protrusion are the same. If a material different from that of the rectangular plate is used for the projection, depending on the material, equation (30) may not be satisfied! Because there are some materials, it must be confirmed that the material selected for the projection satisfies equation (30). I must.
[0132] 式(29)を式(28)に代入して、長方形板の突起の幅厚比 13 は次式を満たさなけれ ばならない  [0132] Substituting equation (29) into equation (28), the width-thickness ratio 13 of the protrusions on the rectangular plate must satisfy the following equation:
[0133] [数 30]
Figure imgf000030_0001
[0133] [Equation 30]
Figure imgf000030_0001
[0134]  [0134]
β =b /t :突起の幅厚比  β = b / t: Protrusion width-thickness ratio
2 2 22  2 2 22
b:突起の高さ (表 1参照)  b: Projection height (see Table 1)
2  2
t :突起の平均厚さ (表 1参照)  t: Average thickness of protrusion (see Table 1)
22  twenty two
c:圧縮を受けるとき 1、曲げを受けるとき (s— 2) Zs  c: When subjected to compression 1, when subjected to bending (s— 2) Zs
5  Five
S:突起によって区切られた板要素の総数  S: Total number of plate elements separated by protrusions
E :長方形板のヤング率  E: Young's modulus of rectangular plate
μ :突起のポアソン比  μ: Poisson's ratio of protrusion
σ:圧縮または曲げを受ける、突起付き長方形板の座屈強度 以上より、突起の断面寸法は、式 (30)と式 (31)を満たすようなものでなければなら ない。 σ: Buckling strength of protruding rectangular plate subjected to compression or bending From the above, the cross-sectional dimensions of the protrusions must satisfy Equation (30) and Equation (31).
[0135] ここで、ヤング率及びポアソン比については、 JISの規格等を参考にして求めること ができる。代表例として、金属材料のヤング率 Eとポアソン比 については、 JIS Z 2241 「金属材料引張試験方法」の規格に従って求めることができる。また、プラス チックのヤング率 Eとポアソン比 については、 JIS K 7113 「プラスチックの引張 試験方法」の規格に従って求めることができる。炭素繊維強化樹脂のヤング率 Eとポ ァソン比 については、 JIS K 7073 「炭素繊維強化プラスチックの引張試験方 法」の規格に従って求めることができる。  [0135] Here, the Young's modulus and Poisson's ratio can be obtained with reference to JIS standards and the like. As a representative example, the Young's modulus E and Poisson's ratio of a metal material can be determined according to the standard of JIS Z 2241 “Metal material tensile test method”. The Young's modulus E and Poisson's ratio of the plastic can be determined according to the standard of JIS K 7113 “Plastic tensile test method”. The Young's modulus E and Poisson's ratio of the carbon fiber reinforced resin can be obtained according to the standard of JIS K 7073 “Tensile test method for carbon fiber reinforced plastic”.
[0136] 長方形板及び突起の厚さ、幅、高さは、例えば、ノギス、マイクロメータ、レーザ変位 センサ、マイクロスコープ等の計測器具を用いて、常法により測定される。また、長方 形板及び突起として市販されている材料を用いる場合には、多くの場合、カタログや 説明書にヤング率、ポアソン比、厚さ等が記載されているので、それらの値を用いる ことちでさる。  [0136] The thickness, width, and height of the rectangular plate and the protrusion are measured by a conventional method using a measuring instrument such as a caliper, a micrometer, a laser displacement sensor, and a microscope. In addition, when using commercially available materials for rectangular plates and protrusions, Young's modulus, Poisson's ratio, thickness, etc. are often described in catalogs and instructions, so use those values. Say it with a word.
発明の効果  The invention's effect
[0137] 本発明によれば、突起を備えていない長方形板と実質的に同じ座屈強度を有しつ つより少ない材料で製造可能な薄肉化された長方形板を提供することができる。  [0137] According to the present invention, it is possible to provide a thinned rectangular plate having substantially the same buckling strength as that of a rectangular plate not provided with protrusions and capable of being manufactured with less material.
[0138] 具体的には、本発明に従って 1以上の突起を長方形板に備えることにより、突起を 備えていない長方形板と実質的に同じ座屈強度を満たしつつ、長方形板の幅厚比 を、突起を備えていない長方形板の幅厚比よりも大きく且つ突起を含む長方形板の 断面積を、突起を備えていない長方形板の断面積よりも小さくすることが可能になつ た。  [0138] Specifically, by providing the rectangular plate with one or more protrusions according to the present invention, the width-thickness ratio of the rectangular plate is satisfied while satisfying substantially the same buckling strength as that of the rectangular plate without the protrusions. It is possible to make the cross-sectional area of the rectangular plate including the protrusion larger than the width-thickness ratio of the rectangular plate not including the protrusion and smaller than the cross-sectional area of the rectangular plate not including the protrusion.
[0139] 本発明の輸送機器用パネル構造又は建造物用構造部材用パネル構造は、突起を 備えていない長方形板と実質的に同じ座屈強度を満たし、且つ、従来のものと比べ てより少な!/、材料で製造することができる。  [0139] The panel structure for a transportation device or the structural member for a building of the present invention satisfies substantially the same buckling strength as a rectangular plate not provided with a projection, and is less than the conventional one. ! / Can be manufactured with materials.
[0140] さらに、本発明の輸送機器用パネル構造又は建造物用構造部材用パネル構造に おいて特定の条件をみたすように突起を長方形板に備えることにより、長方形板及び 突起の合計断面積を、従来の突起を有さない長方形板の断面積の約 0. 4〜約 0. 6 倍にまで低減することが可能である。 [0140] Furthermore, by providing protrusions on the rectangular plate so as to satisfy specific conditions in the panel structure for transportation equipment or the panel structure for structural members of the present invention, the total cross-sectional area of the rectangular plate and the protrusion can be increased. , About 0.4 to about 0.6 of the cross-sectional area of a rectangular plate without conventional protrusions It is possible to reduce by a factor of two.
[0141] 本発明は、リブよりも断面寸法が小さい突起を用いているため、断面寸法が大きい リブを備えることが設計上困難なパネル構造にも適用可能である。  [0141] Since the present invention uses protrusions having a smaller cross-sectional dimension than the ribs, the present invention can be applied to a panel structure in which it is difficult to design a rib having a large cross-sectional dimension.
図面の簡単な説明  Brief Description of Drawings
[0142] [図 1]図(a)は部材座屈、図(b)は板座屈を表す。 [0142] Fig. 1 (a) shows member buckling, and Fig. (B) shows plate buckling.
[図 2]長方形板にリブと称する支持体が取り付けられた、従来の構造部材用パネル構 造。  [FIG. 2] A conventional panel structure for a structural member, in which a support called a rib is attached to a rectangular plate.
[図 3]長方形板がリブを備えて ヽる場合又は長方形板がリブを備えて!/ヽな!ヽ場合の本 発明の構造部材用パネル構造。図(a)は、リブを備える長方形板に 1以上の突起を 備える、本発明の構造部材用パネル構造であり、図 (b)は、リブを備えていない長方 形板に 1以上の突起を備える、本発明の構造部材用パネル構造である。  [FIG. 3] The structural member panel structure of the present invention when the rectangular plate is provided with ribs or when the rectangular plate is provided with ribs. Fig. (A) is a panel structure for a structural member of the present invention having one or more protrusions on a rectangular plate having ribs. Fig. (B) is one or more protrusions on a rectangular plate having no ribs. It is the panel structure for structural members of this invention provided with these.
[図 4]図(a)は、リブを備える長方形板の座屈変形パターン、図 (b)は、突起を備える 長方形板の座屈変形パターン、図(c)は、複数の突起が設けられた長方形板の座屈 変形パターン、 (d)は、リブと突起が備えられた長方形板の座屈変形パターンを表 す。  [Fig. 4] Fig. (A) is a buckling deformation pattern of a rectangular plate with ribs, Fig. (B) is a buckling deformation pattern of a rectangular plate with protrusions, and Fig. (C) is a plurality of protrusions. (D) shows the buckling deformation pattern of a rectangular plate with ribs and protrusions.
[図 5]長方形板の幅方向に、全体的又は部分的にわずかに湾曲した曲面長方形板。  [Fig. 5] A curved rectangular plate that is slightly curved in whole or in part in the width direction of the rectangular plate.
[図 6]図 (a)は、 1の長方形板が 2の支持体により支持される場合 (I型断面)の断面概 略図、図 (b)は、 2の長方形板が 2の支持体により支持される場合 (箱型断面)の断面 概略図を表す。  [Fig. 6] Fig. (A) is a schematic cross-sectional view of the case where 1 rectangular plate is supported by 2 supports (type I cross section), and Fig. 6 (b) is that 2 rectangular plates are supported by 2 supports. A schematic cross-sectional view when supported (box-shaped cross section) is shown.
[図 7]長方形板が、長方形板の端部に位置する 2の支持体によって支持される幾つ かのパターンを示す。  [Fig. 7] The rectangular plate shows several patterns supported by two supports located at the ends of the rectangular plate.
[図 8]長方形板が、長方形板の端部に位置する 2以上の支持体とリブ(中間支持体) よって支持される幾つかのパターンを示す。  [FIG. 8] A rectangular plate shows several patterns supported by two or more supports and ribs (intermediate supports) located at the end of the rectangular plate.
[図 9]図 (a)は、長方形板の片面に突起が備えられ、図 (b)は、長方形板の両面に、 異なる位置に突起が備えられ、図(c)は、長方形板の両面に、同じ位置に突起が備 えられている。  [Fig. 9] Fig. (A) is provided with protrusions on one side of the rectangular plate, Fig. (B) is provided with protrusions on both sides of the rectangular plate, and Fig. (C) is shown on both sides of the rectangular plate. Are provided with protrusions at the same position.
[図 10]等間隔に突起が設けられた長方形板がせん断荷重を受けている。  [Fig. 10] A rectangular plate with protrusions at equal intervals is subjected to a shear load.
[図 11] 1以上の突起が長方形板に備えられている幾つかのノターンを示す。 [図 12]圧縮または曲げを受ける、 4辺単純支持された長方形板。図(a)は、 4辺単純 支持された長方形板が圧縮を受ける場合を示し、図 (b)は、 4辺単純支持された長方 形板が曲げを受ける場合を示す。 [Fig. 11] Shows several turns that have one or more protrusions on a rectangular plate. [Fig.12] Four-sided simply supported rectangular plate subjected to compression or bending. Fig. (A) shows the case where a rectangular plate supported simply by 4 sides is subjected to compression, and Fig. (B) shows the case where a rectangular plate supported simply by 4 sides is subjected to bending.
圆 13]圧縮または曲げを受ける、等間隔に突起が付けられた長方形板。図 (a)は、等 間隔に突起が付けられた長方形板が圧縮を受ける場合を示し、図 (b)は、等間隔に 突起が付けられた長方形板が曲げを受ける場合を示す。 圆 13] A rectangular plate with protrusions at equal intervals, subject to compression or bending. Figure (a) shows the case where rectangular plates with projections at equal intervals are subjected to compression, and Fig. (B) shows the case where rectangular plates with projections at equal intervals are bent.
[図 14]突起の位置。図(a)は、長方形板の片面に突起がある場合の bと bを示し、図( b)は、長方形板の両面に突起がある場合の bと bを示す。  [Fig.14] Location of protrusion. Figure (a) shows b and b when there are protrusions on one side of the rectangular plate, and Figure (b) shows b and b when there are protrusions on both sides of the rectangular plate.
[図 15]「アルミニウム合金土木構造物設計'製作指針案」によるアルミニウム合金ゥェ ブの断面形状。図(a)は、突起又はリブ(中間支持体)が備えられていないアルミニゥ ム合金ウェブの断面形状を示し、図 (b)は、 1リブ(中間支持体)が備えられたアルミ- ゥム合金ウェブの断面形状を示す。  [Figure 15] Cross-sectional shape of aluminum alloy web according to “Aluminum alloy civil engineering design 'production guidelines”. Figure (a) shows the cross-sectional shape of an aluminum alloy web without protrusions or ribs (intermediate support), and Figure (b) shows aluminum with one rib (intermediate support). The cross-sectional shape of an alloy web is shown.
[図 16]曲げを受ける突起付きアルミニウム合金ウェブの ηと eの関係。  [Fig.16] Relationship between η and e of aluminum alloy web with protrusions subjected to bending.
[図 17]本発明の適用によって得られた、 5突起が備えられたアルミニウム合金ウェブ の断面形状。  FIG. 17 is a cross-sectional shape of an aluminum alloy web having 5 protrusions obtained by applying the present invention.
[図 18]「道路橋示方書 ·同解説 I共通編 II鋼橋編」による鋼ウェブの断面形状。図( a)は、突起又はリブ(中間支持体)が備えられていない鋼ウェブの断面形状を示し、 図 (b)は、 1リブ(中間支持体)が備えられた鋼ウェブの断面形状を示し、図 (c)は、 2 リブ(中間支持体)が備えられた鋼ウェブの断面形状を示す。  [Fig.18] Cross section of steel web according to “Road Bridge Specification / Common Explanation I Common Section II Steel Bridge Section”. Figure (a) shows the cross-sectional shape of a steel web without protrusions or ribs (intermediate support), and Figure (b) shows the cross-sectional shape of a steel web with one rib (intermediate support). Figure (c) shows the cross-sectional shape of a steel web with two ribs (intermediate support).
圆 19]曲げを受ける突起付き鋼ゥ ブの ηと βの関係。 [19] Relationship between η and β of steel hub with protrusions subjected to bending.
圆 20]本発明の適用によって得られた鋼ウェブの断面形状。図(a)は、本発明の適 用によって得られた 6突起が備えられた鋼ウェブの断面形状を示し、図(b)は、図(a) において、ウェブの板幅の半分から下の突起を削除したウェブの断面形状を示す。 [20] A cross-sectional shape of a steel web obtained by applying the present invention. Fig. (A) shows the cross-sectional shape of a steel web provided with 6 projections obtained by applying the present invention. Fig. (B) shows the half of the width of the web in the figure (a). The cross-sectional shape of the web from which the protrusions have been removed is shown.
[図 21]アルミニウム桁の断面形状。図(a)は、突起無しアルミニウム桁の一般断面形 状を示し、図 (b)は、突起無しアルミニウム桁の最終断面形状を示し、図(c)は、突起 付きアルミニウム桁の断面形状を示す。 [Fig.21] Cross section of aluminum beam. Figure (a) shows the general cross-sectional shape of the aluminum girder without protrusions, Figure (b) shows the final cross-sectional shape of the aluminum girder without protrusions, and Figure (c) shows the cross-sectional shape of the aluminum girder with protrusions. .
[図 22]曲げを受ける突起付きアルミニウム合金ウェブの ηと eの関係。  [Fig. 22] Relationship between η and e of aluminum alloy web with protrusions subjected to bending.
[図 23]アルミニウム柱の断面形状。図(a)は、突起無しアルミニウム柱の断面形状を 示し、図 (b)は、突起付きアルミニウム柱の断面形状を示す。 [Fig.23] Cross section of aluminum column. Figure (a) shows the cross-sectional shape of an aluminum column without protrusions. Figure (b) shows the cross-sectional shape of the aluminum column with protrusions.
[図 24]圧縮を受ける突起付きアルミニウム合金板の ηと βの関係  [Fig.24] Relationship between η and β of aluminum alloy plate with protrusions subjected to compression
[図 25]圧縮を受ける突起付きアルミニウム合金板の ηと βの関係。  [Fig.25] Relationship between η and β of aluminum alloy plate with protrusions subjected to compression.
[図 26]図 25の点 0、 A、 B、 C、 Dに対応するアルミニウム合金板の断面形状。  [FIG. 26] Sectional shape of aluminum alloy plate corresponding to points 0, A, B, C, D in FIG.
[図 27]本発明の 2回の適用によって得られたパネル構造。  FIG. 27 is a panel structure obtained by applying the present invention twice.
[図 28]圧縮を受ける突起付き鋼板の ηと βの関係。  [Fig.28] Relationship between η and β of steel plates with protrusions subjected to compression.
[図 29]圧縮を受ける鋼板の断面形状。図(a)は、突起が備えられていない鋼板の断 面形状を示し、図 (b)は、突起が備えられた鋼板の断面形状を示す。  [Fig.29] Cross-sectional shape of steel plate subjected to compression. Fig. (A) shows the cross-sectional shape of a steel plate without projections, and Fig. (B) shows the cross-sectional shape of a steel plate with projections.
[図 30]曲げを受ける鋼板の ηと eの関係。 [Fig.30] Relationship between η and e of steel plate subjected to bending.
[図 31]曲げを受ける鋼板の断面形状。図(a)は、突起が備えられていない鋼板の断 面形状を示し、図 (b)は、突起が備えられた鋼板の断面形状を示す。  [Fig.31] Cross-sectional shape of steel plate subjected to bending. Fig. (A) shows the cross-sectional shape of a steel plate without projections, and Fig. (B) shows the cross-sectional shape of a steel plate with projections.
符号の説明 Explanation of symbols
A:突起無し長方形板の断面積 A: Cross-sectional area of a rectangular plate without protrusions
0  0
A:突起付き長方形板の、突起を含めた断面積  A: Cross-sectional area of a rectangular plate with protrusions, including protrusions
A:一つの突起の断面積 A: Cross section of one protrusion
2  2
D :長方形板の曲げ剛性  D: Bending rigidity of rectangular plate
E :長方形板のヤング率 E: Young's modulus of rectangular plate
E :突起のヤング率 E: Young's modulus of protrusion
H :変数 H: Variable
H :変数 H: Variable
2  2
H :変数  H: Variable
3  Three
I:一つの突起の断面二次モーメント  I: Sectional secondary moment of one protrusion
P:長方形板に作用する圧縮力 P: Compressive force acting on the rectangular plate
Q :長方形板に作用するせん断力 Q: Shear force acting on rectangular plate
R:曲面長方形板の局率半径 R: Locality radius of curved rectangular plate
T:突起無し長方形板の板厚 T: Thickness of rectangular plate without protrusions
a :長方形板の長さ a: Length of rectangular plate
b :突起無し長方形板の板幅、又は、突起付き長方形板の板幅 :突起によって区切られた板要素の幅 b: The width of the rectangular plate without protrusions or the width of the rectangular plate with protrusions : Width of plate element delimited by protrusions
b :突起の高さ b: Height of protrusion
2  2
b :長方形板の両面に突起がある場合、両面の突起の先端間の寸法 b: If there are protrusions on both sides of the rectangular plate, the dimension between the ends of the protrusions on both sides
3  Three
b :長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 bb: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b
4 2 3 c :係数 4 2 3 c: Coefficient
c :係数 c: Coefficient
2  2
c :係数 c: Coefficient
4  Four
c :係数 c: Coefficient
5  Five
c :係数 c: Coefficient
31  31
c :係数 c: Coefficient
32  32
k:突起付き長方形板の、圧縮又は曲げに対する座屈係数 k: Buckling coefficient against compression or bending of rectangular plate with protrusions
k:突起無し長方形板の座屈係数 k: Buckling coefficient of rectangular plate without protrusions
0  0
k:突起で区切られた板要素の座屈係数を、突起付き長方形板全体の座屈係数とし て表したもの k: The buckling coefficient of a plate element separated by protrusions, expressed as the buckling coefficient of the entire rectangular plate with protrusions
k:突起付き長方形板の、せん断に対する座屈係数 k: Buckling coefficient for shear of rectangular plate with protrusions
2  2
n:長方形板のヤング率に対する突起のヤング率の比 n: Ratio of Young's modulus of protrusion to Young's modulus of rectangular plate
r:長方形板の曲げ剛性に対する一つの突起の曲げ剛性の比 r: Ratio of the bending stiffness of one protrusion to the bending stiffness of a rectangular plate
s:突起によって区切られた板要素の総数 s: Total number of plate elements separated by protrusions
s :本発明の 1回目の使用によって、突起によって区切られた板要素の総数 s :本発明の 1回目の使用によって得られた、長方形板の隣り合う突起との間を (本発s: Total number of plate elements delimited by protrusions by the first use of the present invention s: Between adjacent protrusions of the rectangular plate obtained by the first use of the present invention (this
2 2
明の 1回目の使用において突起力^の場合は、長方形板の端部と突起との間を)、本 発明の 2回目の使用によって新たに創出された突起によって区切られた板要素の総 数 The total number of plate elements delimited by the projections newly created by the second use of the present invention (in the case of projection force ^ in the first use of light, between the edge of the rectangular plate and the projection)
t:突起付き長方形板の板厚 t: Thickness of rectangular plate with protrusions
t :突起の付根の厚さ t: Thickness of the root of the protrusion
2  2
t :突起の平均厚さ t: Average thickness of protrusion
22  twenty two
β:突起付き長方形板の幅厚比 β: Width / thickness ratio of rectangular plate with protrusions
β :突起無し長方形板の幅厚比 18 突起によって区切られた板要素の幅厚比 β: Width-thickness ratio of rectangular plate without protrusions 18 Width-thickness ratio of plate elements delimited by protrusions
β  β
2:突起の幅厚比  2: Protrusion width-thickness ratio
β : bに関する幅厚比  β: width-thickness ratio for b
3 4  3 4
δ:長方形板の断面積に対する一つの突起の断面積の比  δ: Ratio of the cross-sectional area of one protrusion to the cross-sectional area of the rectangular plate
η:突起無し長方形板の断面積に対する、突起付き長方形板の、突起を含めた断面 積の比  η: Ratio of the cross-sectional area of the rectangular plate with protrusions to the cross-sectional area of the rectangular plate without protrusions, including the protrusions
μ:長方形板のポアソン比  μ: Poisson's ratio of rectangular plate
μ :突起のポアソン比  μ: Poisson's ratio of protrusion
ξ:突起付き長方形板の板厚に対する突起の付根の厚さの比  ξ: Ratio of the thickness of the base of the projection to the thickness of the rectangular plate with the projection
σ :長方形板の降伏応力  σ: Yield stress of rectangular plate
0  0
σ:圧縮または曲げを受ける、突起無し長方形板または突起付き長方形板の座屈強 度  σ: Buckling strength of a rectangular plate with or without protrusions subjected to compression or bending
σ :突起に生じる応力  σ: Stress generated in the protrusion
σ :突起の材料の降伏応力または 0. 2%耐カ(明確な降伏点を持たな 、材料の場 σ: Yield stress of material of protrusion or 0.2% resistance (material field without a clear yield point)
11 11
合)  Combined)
 The
0:長方形板のせん断降伏応力  0: Shear yield stress of rectangular plate
Θ:突起の断面形状が台形の場合,台形の斜辺の傾斜角  Θ: If the cross-sectional shape of the protrusion is trapezoidal, the angle of inclination of the hypotenuse of the trapezoid
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0144] 以下、本発明の実施例を示すが、この実施例は本発明をより容易に理解するため の説明であって、本発明を何ら限定するものではな 、。  [0144] Examples of the present invention will be described below, but these examples are for explanation of the present invention more easily and are not intended to limit the present invention in any way.
実施例 1  Example 1
[0145] 「アルミニウム合金土木構造物設計'製作指針案」(平成 10年 12月、(社)日本アル ミニゥム協会(旧(社)軽金属協会)、 p. 91)において、アルミニウム合金桁のウェブ( 曲げを受ける長方形板)に 1リブ(中間支持体)を設ける場合に対して規定がある。ァ ルミ-ゥム合金の種類が A6061— Τ6の場合、リブが備えられていないウェブの幅厚 比は 65以下、リブが 1つ備えられているウェブの幅厚比は 90以下に制限されている 。したがって、リブが備えられていないウェブの幅厚比 j8 を 65とする。  [0145] In "Aluminum Alloy Civil Engineering Design 'Proposal for Production Guidelines" (December 1998, Japan Aluminum Association (formerly Light Metals Association), p. 91), an aluminum alloy girder web ( There are provisions for the case where one rib (intermediate support) is provided on a rectangular plate to be bent. When the aluminum alloy type is A6061——6, the width / thickness ratio of a web without ribs is limited to 65 or less, and the width / thickness ratio of a web with one rib is limited to 90 or less. Yes. Therefore, the width-thickness ratio j8 of a web without ribs is set to 65.
0  0
[0146] 「アルミニウム合金土木構造物設計'製作指針案」では、リブの断面寸法は、同指針 の p. 101の式(6. 6. 7)で決定される。ここで、式(6.6. 7)において、 aZb (aは長方 形板の長さ、 bは長方形板の幅である)の値を 1. 5とする。ウェブの幅厚比が 90であ り、幅厚比 10の矩形断面のリブをウェブの片面に備える場合に対するウェブの断面 形状を図 15 (b)に示す。他方、リブが備えられていないウェブの断面形状を図 15 (a) に示す。図 15はウェブの幅 bが 1300mmに対する結果である。図 15 (a)の断面形状 の面積に対する、図 15 (b)の断面形状の面積の比は 0. 820である。すなわち、「ァ ルミ-ゥム合金土木構造物設計'製作指針案」では、 1リブをウェブに備えることによ つて、 18%断面積を減らすことができる。 [0146] In "Aluminum Alloy Civil Structure Design 'Production Guidelines", the cross-sectional dimensions of the ribs are the same P. 101 (6. 6. 7). Here, in the formula (6.6.7), the value of aZb (a is the length of the rectangular plate and b is the width of the rectangular plate) is 1.5. Figure 15 (b) shows the cross-sectional shape of the web when the width-thickness ratio of the web is 90 and a rib having a rectangular cross-section with a width-thickness ratio of 10 is provided on one side of the web. On the other hand, Fig. 15 (a) shows the cross-sectional shape of a web without ribs. Figure 15 shows the results for a web width b of 1300 mm. The ratio of the area of the cross-sectional shape of Fig. 15 (b) to the area of the cross-sectional shape of Fig. 15 (a) is 0.820. In other words, in the “Armium alloy civil engineering structure design 'production guideline draft”, it is possible to reduce the cross-sectional area by 18% by providing one rib on the web.
[0147] 次に、幅厚比 13 が 65の突起無しウェブに対して本発明を適用する。突起は幅厚比 Next, the present invention is applied to a web without protrusions having a width-thickness ratio 13 of 65. Protrusion is width to thickness ratio
0  0
10の矩形断面とし、アルミニウム合金板の片面に備えるので j8 = 10である。  Since it has 10 rectangular cross sections and is provided on one side of the aluminum alloy plate, j8 = 10.
3  Three
[0148] 式(27)より、突起が備えられたウェブの幅厚比 βは次の範囲で存在する。  [0148] From the equation (27), the width-thickness ratio β of the web provided with the protrusions exists in the following range.
[0149] [数 31]
Figure imgf000037_0001
[0149] [Equation 31]
Figure imgf000037_0001
[0150] 7?と j8の関係を図 16に示す。 s = 6、 β = 173. 8のとき、 ηは最 /J、値 0. 565をとる 。このときのウェブの断面形状を図 17に示す。本発明(突起を 5備えることによってゥ エブの断面積を減らす)によって、「アルミニウム合金土木構造物設計'製作指針案」 (リブ(中間支持体)を 1備えることによってウェブの断面積を減らす)より、さらに 31 % ウェブの断面積を減らすことができる。  [0150] Figure 16 shows the relationship between 7? And j8. When s = 6, β = 173.8, η takes the maximum value / J and takes the value 0.565. The cross-sectional shape of the web at this time is shown in FIG. According to the present invention (by reducing the cross-sectional area of the web by providing five protrusions), "Aluminum alloy civil engineering structure design 'production guideline draft" (by reducing the cross-sectional area of the web by providing one rib (intermediate support)) Furthermore, the cross-sectional area of the web can be further reduced by 31%.
実施例 2  Example 2
[0151] 「道路橋示方書 ·同解説 I共通編 II鋼橋編」(平成 14年 3月、(社)日本道路協会 、 p.293)において、鋼桁のウェブ(曲げを受ける長方形板)に 1リブ(中間支持体)及 び 2リブを設ける場合に対して規定がある。鋼の種類が SM490Yの場合、リブが備え られて 、な 、ウェブの幅厚比は 123以下、リブが 1つ備えられて 、るウェブの幅厚比 は 209以下、リブが 2つ備えられているウェブは 294以下に制限されている。したがつ て、リブが備えられていないウェブの幅厚比 j8 を 123とする。  [0151] In the “Road Bridge Specification / Summary I Common Section II Steel Bridge Section” (March 2002, Japan Road Association, p.293), steel girder web (rectangular plate subject to bending) There are provisions for 1 rib (intermediate support) and 2 ribs. When the steel type is SM490Y, ribs are provided, the web width / thickness ratio is 123 or less, one rib is provided, the web width / thickness ratio is 209 or less, and two ribs are provided. The web is limited to 294 or less. Therefore, the width / thickness ratio j8 of the web without ribs is set to 123.
0  0
[0152] 「道路橋示方書 ·同解説 I共通編 II鋼橋編」では、リブの断面寸法は、同示方書 の p. 304の式(10. 4. 8)で決定される。ここで、式(10.4. 8)【こお!ヽて、 a/b (aiま 長方形板の長さ、 bは長方形板の幅である)の値を 1. 5とする。ウェブの幅厚比が 20 9であり、幅厚比 14の矩形断面のリブを 1つウェブの片面に備える場合に対するゥェ ブの断面形状を図 18 (b)、ウェブの幅厚比が 294であり、幅厚比 14の矩形断面のリ ブを 2つウェブの片面に備える場合に対するウェブの断面形状を図 18 (c)に示す。 他方、リブが備えられていないウェブの断面形状を図 18 (a)に示す。図 18はウェブ の幅 bが 2829mmに対する結果である。図 18 (a)の断面形状の面積に対する、図 1 8 (b)の断面形状の面積の比は 0. 627であり、図 18 (a)の断面形状の面積に対する 、図 18 (c)の断面形状の面積の比は 0. 464である。すなわち、「道路橋示方書'同 解説 I共通編 Π鋼橋編」では、 1リブをウェブに備えることによって、 37%断面積を 減らすことができ、 2リブをウェブに備えることによって、 54%断面積を減らすことでき る。 [0152] In the “Road Bridge Specification / Summary I Common Section II Steel Bridge Section”, the cross-sectional dimensions of the ribs are determined by the formula (10.4.8) on page 304 of the same specification. Where the formula (10.4.8) [Koo! The value of the length of the rectangular plate (b is the width of the rectangular plate) is 1.5. Figure 18 (b) shows the cross-sectional shape of the web when the width-thickness ratio of the web is 209, and one rectangular cross-section rib with a width-thickness ratio of 14 is provided on one side of the web. FIG. 18 (c) shows the cross-sectional shape of the web when two rectangular cross-section ribs with a width-thickness ratio of 14 are provided on one side of the web. On the other hand, FIG. 18 (a) shows a cross-sectional shape of a web without ribs. Figure 18 shows the results for a web width b of 2829 mm. The ratio of the area of the cross-sectional shape of FIG. 18 (b) to the area of the cross-sectional shape of FIG. 18 (a) is 0.627, and the ratio of the area of the cross-sectional shape of FIG. 18 (a) to that of FIG. The ratio of the cross-sectional area is 0.464. In other words, in the “Road Bridge Specification Manual” in the same description I Common Edition 」Steel Bridge Edition, it is possible to reduce the cross-sectional area by 37% by providing 1 rib on the web, and 54% by providing 2 rib on the web. The cross-sectional area can be reduced.
[0153] 次に、幅厚比 )8 力 の突起無しウェブに対して本発明を適用する。突起は幅厚  [0153] Next, the present invention is applied to a web without protrusions having a width-thickness ratio of 8 forces. The protrusion is wide and thick
0  0
比 14の矩形断面とし、アルミニウム合金板の片面に備えるので j8 = 14である。  Since it has a rectangular cross section with a ratio of 14 and is provided on one side of the aluminum alloy plate, j8 = 14.
3  Three
[0154] 式(27)より、突起が備えられたウェブの幅厚比 eは次の範囲で存在する。  [0154] From the equation (27), the width-thickness ratio e of the web provided with the protrusions exists in the following range.
[0155]
Figure imgf000038_0001
[0155]
Figure imgf000038_0001
[0156] 7?と j8の関係を図 19に示す。 s = 7、 β = 378. 6のとき、 ηは最 /J、値 0. 452をとる 。このときのウェブの断面形状を図 20 (a)に示す。  [0156] Figure 19 shows the relationship between 7? And j8. When s = 7 and β = 378.6, η takes the maximum value / J and takes the value 0.452. The cross-sectional shape of the web at this time is shown in FIG. 20 (a).
[0157] ウェブは曲げを受ける長方形板であるため、長方形板の板幅の半分から下の領域 は引張応力を受ける。引張応力は座屈を起こさせないので、図 18 (b)と図 18 (c)に 示すように、「道路橋示方書'同解説 I共通編 II鋼橋編」では、ウェブの板幅の半分 から下にリブが設けられていない。突起をウェブに備える場合に対しても、ウェブの板 幅の半分から下の突起は削除しても問題が無いと予想される。図 20 (a)において、ゥ エブの板幅の半分力も下の突起を削除したウェブの断面形状を図 20 (b)に示す。図 18 (a)の断面形状の面積に対する、図 20 (b)の断面形状の面積は 0. 389である。 [0157] Since the web is a rectangular plate that is subjected to bending, the region below half the width of the rectangular plate is subjected to tensile stress. Since the tensile stress does not cause buckling, as shown in Fig. 18 (b) and Fig. 18 (c), in the `` Road Bridge Specification Manual '', the same explanation I Common edition II Steel Bridge edition, half of the web width of the web There are no ribs on the bottom. Even in the case where the protrusion is provided on the web, it is expected that there is no problem if the protrusion below the half of the web width is deleted. In Fig. 20 (a), the cross-sectional shape of the web is shown in Fig. 20 (b), where the projection below the half of the web width is removed. The area of the cross-sectional shape of FIG. 20 (b) is 0.389 with respect to the area of the cross-sectional shape of FIG. 18 (a).
[0158] 本発明(突起を 3備えることによってウェブの断面積を減らす)によって、「道路橋示 方書 '同解説 I共通編 Π鋼橋編」(リブ(中間支持体)を 2備えることによってウェブ の断面積を減らす)より、さらに 16% ( = 100 X {0. 464 - 0. 389 } /0. 464)ウェブ の断面積を減らすことができる。 [0158] By providing two ribs (intermediate supports) according to the present invention (reducing the cross-sectional area of the web by providing three protrusions), the "Road Bridge Specification Manual", the same explanation, I Common Edition, Steel Bridge Edition, is provided. web The cross-sectional area of the web can be further reduced by 16% (= 100 X {0. 464-0. 389} / 0. 464).
実施例 3  Example 3
[0159] 支間 20mの道路橋に、 H形断面のアルミニウム桁を適用する。桁の幅と高さは、そ れぞれ 400mm、 1400mmである。桁のウェブに、本発明に記載された突起を設け ることによる軽量ィ匕の効果を以下に示す。  [0159] An aluminum girder with an H-shaped section will be applied to a 20m highway bridge. The width and height of the girders are 400mm and 1400mm, respectively. The effect of light weight by providing the projection described in the present invention on the girder web is shown below.
[0160] 桁に要求される断面二次モーメントは 1. 3 X 101C)mm4である。桁の断面形状は図 21 (a)であるから、断面二次モーメントは次式で表わされる。 [0160] The required cross-sectional second moment for the girder is 1.3 X 10 1C) mm 4 . Since the cross-sectional shape of the girder is shown in Fig. 21 (a), the cross-sectional secondary moment is expressed by the following equation.
[0161] [数 33]  [0161] [Equation 33]
40Q X 14Q03 (400 - T)b3 ≥140Q X 14Q0 3 (400-T) b 3 ≥1 .
12 12  12 12
[0162] アルミニウム合金の種類は A6061— T6である。このアルミニウム合金の 0. 2%耐 力は 245MPaであり、ヤング率は 7. 0 X 104MPa、ポアソン比は 0. 3である。突起の ないウェブの幅厚比 j8 は,式(2)より、 [0162] The type of aluminum alloy is A6061-T6. This aluminum alloy has a 0.2% yield strength of 245 MPa, a Young's modulus of 7.0 X 10 4 MPa, and a Poisson's ratio of 0.3. The width-to-thickness ratio j8 of the web without protrusions is
0  0
[0163] [数 34]
Figure imgf000039_0001
[0163] [Numerical 34]
Figure imgf000039_0001
[0164] したがって、ウェブの板厚 Tは、 [0164] Therefore, the web thickness T is
[0165] [数 35] [0165] [Equation 35]
Γ =上 Γ = top
78.6  78.6
[0166] 最初の式とこの式より、最初の式において等号が成立するとき、 b = 1350mm, T= 17. 2mmを得る。そして、桁のフランジの厚さは、(1400— 1350) Z2 = 25mmにな る。これらより、突起無し桁の断面形状は図 21 (b)になる。 From the first equation and this equation, when the equal sign holds in the first equation, b = 1350 mm, T = 17.2 mm is obtained. And the thickness of the girder flange is (1400-1350) Z2 = 25mm. As a result, the cross-sectional shape of the projectionless girder is shown in Fig. 21 (b).
[0167] 矩形断面の突起をウェブの片面に付ける。式 (31)より、  [0167] A protrusion having a rectangular cross section is attached to one side of the web. From equation (31),
[0168] [数 36]
Figure imgf000039_0002
[0169] 式(31)において、ウェブが曲げを受ける場合、係数 cは、突起によって区切られ
[0168] [Equation 36]
Figure imgf000039_0002
[0169] In equation (31), when the web is subjected to bending, the coefficient c is delimited by the protrusions.
5  Five
た板要素の総数 sによって異なるが、 cを 1とすることにより、 13 の上限値を低く抑え  Depending on the total number of plate elements s, by setting c to 1, the upper limit of 13 is kept low.
5 2  5 2
ている。したがって、 j8 =10とすれば、矩形断面の突起であるから j8 =10である。  ing. Therefore, if j8 = 10, the projection has a rectangular cross section, so j8 = 10.
2 3  twenty three
[0170] 式(27)より、突起が備えられたウェブの幅厚比 βは次の範囲で存在する。  [0170] From the equation (27), the width-thickness ratio β of the web provided with the protrusions exists in the following range.
[0171] [数 37]
Figure imgf000040_0001
[0171] [Equation 37]
Figure imgf000040_0001
[0172] 7?と j8の関係を図 22に示す。 s = 6、 β =210. 1、 ξ =1. 359のとき、 ηは最 /J、値 0. 538となる。した力 Sつて、 [0172] Figure 22 shows the relationship between 7? And j8. When s = 6, β = 210.1, ξ = 1.359, η is the maximum / J and the value is 0.538. Force S
t=b/ β =1350/210. 1 = 6.4mm → 8mm  t = b / β = 1350/210. 1 = 6.4mm → 8mm
b =b/s= 1350/6 = 225mm  b = b / s = 1350/6 = 225mm
t = ^t=l. 359X8 = llmm
Figure imgf000040_0002
t = ^ t = l.359X8 = llmm
Figure imgf000040_0002
以上より、突起付き桁の断面形状は図 21 (c)になる。  From the above, the cross-sectional shape of the girders with protrusions is as shown in Fig. 21 (c).
[0173] 図 21(c)の断面形状の断面二次モーメントは、 1. 334X10lc>mm4であり,要求さ れる断面二次モーメント 1. 3X1010mm4より大きい。 [0173] The cross-sectional secondary moment of the cross-sectional shape of Fig. 21 (c) is 1. 334X10 lc> mm 4, which is larger than the required cross-sectional secondary moment of 1.3X10 10 mm 4 .
[0174] 図 21 (b)の断面積は 43220mm2であり、図 21 (c)の断面積は 36795mm2である。 Sectional area of the [0174] FIG. 21 (b) is 43220mm 2, the cross-sectional area shown in FIG. 21 (c) is 36795mm 2.
突起無し桁の断面積に対する、突起付き桁の断面積の比は 0. 85である。したがつ て,突起を付けることによって 15%の軽量ィ匕になる。  The ratio of the cross-sectional area of the girders with protrusions to the cross-sectional area of the girders without protrusions is 0.85. Therefore, by attaching a protrusion, the weight is reduced to 15%.
[0175] 図 21 (c)の断面は大きいため、押出しはできない。しかし、 T形の押出形材を摩擦 撹拌接合 (FSW)することにより、図 21(c)の断面形状を有する桁を得ることができる 実施例 4 [0175] Since the cross section of Fig. 21 (c) is large, extrusion is not possible. However, a girder having the cross-sectional shape of Fig. 21 (c) can be obtained by friction stir welding (FSW) of a T-shaped extruded profile Example 4
[0176] 支間 4mの柱に、箱形断面のアルミニウム形材を適用する。箱形断面の内寸は 280 mm X 280mmである。本発明に記載された突起を設けることによる軽量ィ匕の効果を 以下に示す。  [0176] Box-shaped aluminum profile is applied to the 4m span column. The inner dimension of the box section is 280 mm X 280 mm. The effect of light weight by providing the projections described in the present invention is shown below.
[0177] アルミニウム合金の種類は A6061— T6である。このアルミニウム合金の 0. 2%耐 力は 245MPaであり、ヤング率は 7. 0X104MPa、ポアソン比は 0. 3である。突起の ないウェブの幅厚比 j8 は、式(2)より、 [0177] The type of aluminum alloy is A6061-T6. This aluminum alloy has a 0.2% proof stress of 245 MPa, a Young's modulus of 7.0 × 10 4 MPa, and a Poisson's ratio of 0.3. Protrusive The web width-thickness ratio j8 is
0  0
[0178] [数 38]  [0178] [Equation 38]
[0179] したがって、
Figure imgf000041_0001
0 )は、 280Z32.1 = 8. 7mmになるの で、突起無しの柱の断面形状は図 23 (a)になる。
[0179] Therefore,
Figure imgf000041_0001
0) is 280Z32.1 = 8.7mm, so the cross-sectional shape of the column without protrusions is shown in Fig. 23 (a).
[0180] 矩形断面の突起をアルミニウム板の片面に付ける。式(31)より、 [0180] A protrusion having a rectangular cross section is attached to one side of the aluminum plate. From equation (31)
[0181] [数 39]
Figure imgf000041_0002
[0181] [Equation 39]
Figure imgf000041_0002
[0182] したがって、 β =10とすれば、矩形断面の突起であるから j8 =10である。 [0182] Therefore, if β = 10, it is a projection with a rectangular cross section, so j8 = 10.
2 3  twenty three
式(27)より、突起が備えられたウェブの幅厚比 βは次の範囲で存在する。  From equation (27), the width-thickness ratio β of the web provided with the protrusions exists in the following range.
[0183] [数 40] [0183] [Equation 40]
32.1 </?< 32.15-  32.1 </? <32.15-
[0184] 7?と j8の関係を図 24に示す。 s = 3、 β =87.8、 ξ =1. 514のとき、 ηは最 /J、値 0 . 558となる。した力 Sつて、[0184] Figure 24 shows the relationship between 7? And j8. When s = 3, β = 87.8, and ξ = 1.514, η is the maximum / J and the value is 0.558. Force S
Figure imgf000041_0003
Figure imgf000041_0003
b =b/s = 280/3 = 93. 3mm  b = b / s = 280/3 = 93.3 mm
t = ξί=1. 514X3. 2=4.8mm → 5. Omm  t = ξί = 1. 514X3. 2 = 4.8mm → 5. Omm
2  2
b = β t = β ξί=10Χ1. 514X3. 2=48. 5mm  b = β t = β ξί = 10Χ1. 514X3. 2 = 48.5 mm
2 2 2 2  2 2 2 2
以上より、突起付きの柱の断面形状は図 23(b)になる。  From the above, the cross-sectional shape of the column with protrusions is as shown in FIG.
[0185] 図 23 (a)の断面積は 10047mm2、図 23 (b)の断面積は 5565mm2である。突起無 し柱の断面積に対する、突起付き柱の断面積の比は 0. 55である。したがって、突起 を付けることによって 45%の軽量ィ匕になる。 Sectional area of the [0185] FIG. 23 (a) is 10047mm 2, the cross-sectional area of FIG. 23 (b) is a 5565mm 2. The ratio of the cross-sectional area of the column with protrusions to the cross-sectional area of the column without protrusions is 0.55. Therefore, a 45% lighter weight can be achieved by attaching protrusions.
[0186] 柱の細長比(=柱の長さ Z柱の断面の回転半径)は建築基準法で 140以下と規定 されている。図 23(b)に示す断面の回転半径は 107mmである。柱の長さは 4000m mであるので、細長比 =4000Z107 = 37となり、軽量化しても規定を満たしている。 実施例 5 [0186] The slenderness ratio of columns (= column length Z turning radius of section of column) is stipulated as 140 or less by the Building Standard Law. The turning radius of the cross section shown in Fig. 23 (b) is 107 mm. Since the length of the column is 4000 mm, the slenderness ratio = 4000 Z107 = 37, which satisfies the regulations even if the weight is reduced. Example 5
[0187] 圧縮を受けるアルミニウム合金の長方形板に、本発明を 2回適用した例を次に示す  [0187] An example in which the present invention is applied twice to a rectangular aluminum alloy plate subjected to compression is shown below.
[0188] アルミニウム合金の種類は A6061— T6である。このアルミニウム合金の 0. 2%耐 力は 245MPaであり、ヤング率は 7. O X 104MPa、ポアソン比は 0. 3である。長方形 板の座屈強度にアルミニウムの 0. 2%耐カを採用する。矩形断面の突起を長方形板 の片面に付ける。 [0188] The type of aluminum alloy is A6061-T6. This aluminum alloy has a 0.2% yield strength of 245 MPa, a Young's modulus of 7. OX 10 4 MPa, and a Poisson's ratio of 0.3. Adopt 0.2% resistance against aluminum for buckling strength of rectangular plate. A protrusion with a rectangular cross section is attached to one side of the rectangular plate.
[0189] 式(31)より、  [0189] From equation (31),
[0190] [数 41]
Figure imgf000042_0001
[0190] [Equation 41]
Figure imgf000042_0001
[0191] したがって、 j8 = 10とすれば,矩形断面の突起であるから j8 = 10である。  Therefore, if j8 = 10, it is a projection having a rectangular cross section, so j8 = 10.
2 3 圧縮を受ける場合、突起無し長方形板の幅厚比 )8  2 3 When subjected to compression, the width-thickness ratio of the rectangular plate without protrusions) 8
0は、式 (2)より、  0 is obtained from equation (2)
[0192] [数 42]
Figure imgf000042_0002
[0192] [Equation 42]
Figure imgf000042_0002
[0193] 式 (27)より、突起が備えられた長方形板の幅厚比 βは次の範囲で存在する。  [0193] From equation (27), the width-thickness ratio β of the rectangular plate provided with the protrusions is in the following range.
[0194] [数 43] [0194] [Equation 43]
32.1 < ^ < 32.1.?1 32.1 <^ <32.1. ? 1
[0195] ここで、 sは、本発明の 1回目の使用によって、突起によって区切られた板要素の総 数である。 [0195] where s is the total number of plate elements delimited by the protrusions in the first use of the present invention.
[0196] ηと Βの関係を図 25に実線で示す。図 25の点 0、 A、 B、 Cの各点に対応する断面 形状を図 26に示す。図 26は板幅 bが 1285. 6mmに対する結果である。点 Oは、突 起無し長方形板の最大幅厚比 j8 = 32. 1に対する断面形状である。点 Aと点 Bは突  [0196] The relationship between η and Β is shown by the solid line in Fig. 25. FIG. 26 shows the cross-sectional shapes corresponding to points 0, A, B, and C in FIG. Figure 26 shows the results for a plate width b of 128.56mm. Point O is the cross-sectional shape for the maximum width-thickness ratio j8 = 32.1 of the rectangular plate without protrusions. Point A and point B suddenly
0  0
起の総数は違うが、 r?の値は同じ 0. 566である。点 Cは、本発明の 1回目の使用によ つて r?が最小になる断面形状である。  The total number of occurrences is different, but the value of r? Is the same 0.566. Point C is a cross-sectional shape in which r? Is minimized by the first use of the present invention.
[0197] 図 26の点 Aの断面図において、突起と長方形板の端部の間に、再度、本発明を適 用した結果を、図 25に破線で示す。この場合、本発明の 1回目の使用によって創出 された突起は、場合によっては、図 27に示すように、 T形断面(黒く塗られた部分)の 柱として座屈する可能性がある。突起が T形断面の柱として座屈する可能性がある場 合には、これを防ぐために、突起の、長方形板の面外方向の移動を数箇所(図 27の 黒点)で拘束する必要が生じる。 [0197] In the sectional view of point A in Fig. 26, the present invention is again applied between the protrusion and the end of the rectangular plate. The results are shown by the broken lines in FIG. In this case, the protrusion created by the first use of the present invention may buckle as a column of a T-shaped cross section (a black-painted portion) as shown in FIG. If the protrusion may buckle as a column with a T-shaped cross section, it will be necessary to constrain the movement of the protrusion in the out-of-plane direction of the rectangular plate at several points (black dots in Fig. 27) to prevent this. .
[0198] 幅厚比 βに対して、図 25の破線が存在する範囲は次のとおりである。  [0198] The range where the broken line in Fig. 25 exists with respect to the width-thickness ratio β is as follows.
[0199] [数 44] [0199] [Equation 44]
Figure imgf000043_0001
Figure imgf000043_0001
[0200] ここで、 sは、本発明の 1回目の使用によって得られた、長方形板の隣り合う突起との  [0200] Here, s is the distance between adjacent protrusions of the rectangular plate obtained by the first use of the present invention.
2  2
間を (本発明の 1回目の使用において突起が 1の場合は、長方形板の端部と突起と の間を)、本発明の 2回目の使用によって新たに創出された突起によって区切られた 板要素の総数である。  A board separated by a protrusion newly created by the second use of the present invention (when the protrusion is 1 in the first use of the present invention, between the end of the rectangular plate and the protrusion) The total number of elements.
[0201] 本発明が 2回使用された場合、 1回目と 2回目の本発明の使用によって創出された 全ての突起によって区切られた板要素の総数 sは次式で与えられる。  [0201] When the present invention is used twice, the total number s of plate elements delimited by all protrusions created by the first and second use of the present invention is given by the following equation.
[0202] [数 45] [0202] [Equation 45]
= 2 ( 3 2 ) = 2 (3 2)
[0203] 図 25において、 7?の値が最小になる点 Dに対する断面形状を図 26に示す。点 Dの 断面積は点 Cの断面積の 0. 62倍である。このように、本発明を繰返し使用すること により、長方形板の断面積をさらに減らすことができる。  [0203] In Fig. 25, Fig. 26 shows the cross-sectional shape for point D where the value of 7? The cross-sectional area of point D is 0.62 times that of point C. Thus, by repeatedly using the present invention, the cross-sectional area of the rectangular plate can be further reduced.
実施例 6  Example 6
[0204] SM490Yの鋼製の長方形板が圧縮を受ける場合に対する実施例を示す。 SM49 OYの鋼の降伏応力は 355MPaであり、ヤング率は 2. 0 X 105MPa、ポアソン比は 0 . 3である。長方形板の座屈強度に鋼の降伏応力を採用する。矩形断面の突起を鋼 板の片面に付ける。 [0204] An embodiment for the case where a SM490Y steel rectangular plate is subjected to compression will be described. The yield stress of SM49 OY steel is 355 MPa, Young's modulus is 2.0 X 10 5 MPa, Poisson's ratio is 0.3. The yield stress of steel is adopted for the buckling strength of the rectangular plate. A protrusion with a rectangular cross section is attached to one side of the steel plate.
[0205] 式(31)より、  [0205] From the equation (31),
[0206] [数 46]
Figure imgf000043_0002
[0207] したがって、 j8 =14とすれば,矩形断面の突起であるから |8 =14である c
[0206] [Equation 46]
Figure imgf000043_0002
[0207] Therefore, if j8 = 14, because it is of rectangular cross-section projection | 8 = a 14 c
2 3  twenty three
[0208] 圧縮を受ける場合、突起無し長方形板の幅厚比 β [0208] Width-thickness ratio β of projection-free rectangular plate when subjected to compression
0は、式 (2)より、  0 is obtained from equation (2)
[0209] [数 47]
Figure imgf000044_0001
[0209] [Equation 47]
Figure imgf000044_0001
[0210] 式 (27)より、突起が備えられた長方形板の幅厚比 |8は次の範囲で存在する。 [0210] From equation (27), the width-thickness ratio | 8 of the rectangular plate provided with the protrusions is in the following range.
[0211] [数 48] [0211] [Equation 48]
45.1<^<45.1  45.1 <^ <45.1
[0212] r?と j8の関係を図 28に示す。 [0212] Figure 28 shows the relationship between r? And j8.
[0213] 次に、板幅 bが 1128mmの長方形板に P = 5000kNの圧縮力が作用して!/、るとき 、長方形板の断面積が最小となる形状を、図 28を用いて求める。 [0213] Next, when a compressive force of P = 5000 kN is applied to a rectangular plate having a plate width b of 1128 mm, the shape that minimizes the cross-sectional area of the rectangular plate is obtained using FIG.
[0214] 長方形板が座屈を起こさない条件は次のとおりである。  [0214] The conditions under which the rectangular plate does not buckle are as follows.
[0215] [数 49] [0215] [Equation 49]
P  P
(3 3) Ding (3 3)
[0216] [0216]
Ρ:長方形板に作用する圧縮力  Ρ: Compression force acting on the rectangular plate
Α:突起付き長方形板の、突起を含めた断面積  Α: Cross-sectional area of a rectangular plate with protrusions, including protrusions
σ:圧縮を受ける、突起無し長方形板または突起付き長方形板の座屈強度 式(20)より、 A = 7? Α (ここで、 Aは突起無し長方形板の断面積)であるから、こ  σ: Buckling strength of a rectangular plate without projections or a rectangular plate with projections, A = 7? Α (where A is the cross-sectional area of the rectangular plate without projections).
1 0 0  1 0 0
れを式(33)に代入して次式を得る。  Substituting this into equation (33) gives the following equation:
[0217] [数 50] (34) [0217] [number 50] ( 34)
[0218] であるから、これを式(34)に代入して次式を得る。 [0218] Since this is substituted into the equation (34), the following equation is obtained.
Figure imgf000044_0002
Figure imgf000044_0002
[0219] [数 51] [0219] [Equation 51]
P ( P (
>—T (3 5)  > —T (3 5)
b  b
び—— [0220] 式(35)に、 P = 5000kN、 σ = 355MPa、 b = 1128mm、 β =45. 1を代入して ο -— [0220] Substituting P = 5000kN, σ = 355MPa, b = 1128mm, β = 45.1 into equation (35) ο
、次式を得ることがでさる。  The following equation can be obtained.
[0221] [数 52] [0221] [Equation 52]
η > 0.50 η = 0. 50の水平線(一点長鎖線)を図 28に示す。この水平線より上の領域の 7?と βの関係が座屈を起こさない。そして、この水平線が ηと βの関係に交わる点 A ( r? = 0. 50、 β = 112. 1)で突起付き長方形板の断面積が最小になる。点 Αに対する 断面形状を図 29 (b)に示す。突起が備えられていない長方形板の断面形状を図 29 (a)に示す。図 29 (a)の断面積に対する、図 29 (b)の断面積の比は 0. 50である。し たがって、突起を備えることにより 50%断面積を減らすことができる。  FIG. 28 shows a horizontal line (single-point long chain line) where η> 0.50 η = 0.50. The relationship between 7? And β in the region above this horizon does not buckle. Then, at the point A (r? = 0.50, β = 112.1) where this horizontal line intersects the relationship between η and β, the cross-sectional area of the rectangular plate with protrusions is minimized. The cross-sectional shape for point 形状 is shown in Fig. 29 (b). Fig. 29 (a) shows the cross-sectional shape of a rectangular plate without protrusions. The ratio of the cross-sectional area in Fig. 29 (b) to the cross-sectional area in Fig. 29 (a) is 0.50. Therefore, 50% cross-sectional area can be reduced by providing the protrusions.
実施例 7  Example 7
[0223] SM490Yの鋼製の長方形板が曲げ荷重の他にせん断荷重(図 10に示すような荷 重)を受ける場合に対する実施例を示す。 SM490Yの鋼の降伏応力は 355MPaで あり、ヤング率は 2. O X 105MPa、ポアソン比は 0. 3である。長方形板の座屈強度に 鋼の降伏応力を採用する。矩形断面の突起を鋼板の片面に付ける。 [0223] An example is shown for the case where a SM490Y steel rectangular plate receives a shear load (load as shown in Fig. 10) in addition to the bending load. The yield stress of SM490Y steel is 355 MPa, Young's modulus is 2. OX 10 5 MPa, and Poisson's ratio is 0.3. The yield stress of steel is used for the buckling strength of the rectangular plate. A protrusion having a rectangular cross section is attached to one side of the steel plate.
[0224] 式(31)より、  [0224] From equation (31),
[0225] [数 53]
Figure imgf000045_0001
[0225] [Equation 53]
Figure imgf000045_0001
[0226] 式(31)において、係数 cは、突起によって区切られた板要素の総数 sによって異な  [0226] In equation (31), the coefficient c varies depending on the total number s of plate elements delimited by the protrusions.
5  Five
るが、 cを 1とすることにより、 13 の上限値を低く抑えている。したがって、 13 = 14と However, by setting c to 1, the upper limit of 13 is kept low. So 13 = 14 and
5 2 2 すれば,矩形断面の突起であるから j8 = 14である。 5 2 2, j8 = 14 because the protrusion has a rectangular cross section.
3  Three
[0227] 曲げを受ける場合、突起無し長方形板の幅厚比 β は、式 (2)より、  [0227] When subjected to bending, the width-thickness ratio β of the rectangular plate without protrusions is
0  0
[0228] [数 54]
Figure imgf000045_0002
[0228] [Equation 54]
Figure imgf000045_0002
[0229] 式 (27)より、突起が備えられた長方形板の幅厚比 βは次の範囲で存在する。 [0230] [数 55]
Figure imgf000046_0001
[0229] From equation (27), the width-thickness ratio β of the rectangular plate provided with the protrusions is in the following range. [0230] [Equation 55]
Figure imgf000046_0001
[0231] ηと βの関係を実線で図 30に示す。  [0231] The relationship between η and β is shown in Fig. 30 by a solid line.
[0232] 次に、板幅 bが 2537mmの長方形板に Q = 1000kNのせん断力が作用するとき、 長方形板の断面積が最小となる形状を、図 30を用いて求める。 [0232] Next, when a shearing force of Q = 1000kN is applied to a rectangular plate having a plate width b of 2537mm, the shape that minimizes the cross-sectional area of the rectangular plate is obtained using FIG.
[0233] せん断力 Qに対して、突起付き長方形板が座屈を起こさない条件は次式で与えら れる。  [0233] With respect to the shearing force Q, the condition that the rectangular plate with protrusions does not buckle is given by the following equation.
[0234] [数 56]  [0234] [Numerical 56]
( 3 6 ) (3 6)
[0235] \1 [0235] \ 1
Q :長方形板に作用するせん断力  Q: Shear force acting on rectangular plate
b :突起無し長方形板の板幅、又は、突起付き長方形板の板幅  b: The width of the rectangular plate without protrusions or the width of the rectangular plate with protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
k:突起付き長方形板の、せん断に対する座屈係数  k: Buckling coefficient for shear of rectangular plate with protrusions
2  2
E :長方形板のヤング率  E: Young's modulus of rectangular plate
μ:長方形板のポアソン比  μ: Poisson's ratio of rectangular plate
β =b/t:突起付き長方形板の幅厚比  β = b / t: Width-thickness ratio of rectangular plate with protrusions
式(19)より、 btは次式で与えられる。  From equation (19), bt is given by
[0236] [数 57]
Figure imgf000046_0002
[0236] [Equation 57]
Figure imgf000046_0002
[0237]  [0237]
b :突起無し長方形板の板幅、又は、突起付き長方形板の板幅  b: The width of the rectangular plate without protrusions or the width of the rectangular plate with protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
A:突起付き長方形板の、突起を含めた断面積  A: Cross-sectional area of a rectangular plate with protrusions, including protrusions
s:突起によって区切られた板要素の総数 c :突起の断面積に関係する係数 (表 1参照) s: Total number of plate elements separated by protrusions c: Coefficient related to the cross-sectional area of the protrusion (see Table 1)
32  32
b:長方形板の片面に突起がある場合 b、長方形板の両面に突起がある場合 b (表 b: When there are protrusions on one side of the rectangular plate b, when there are protrusions on both sides of the rectangular plate b (Table
4 2 34 2 3
1参照) 1)
b:突起の高さ (表 1参照)  b: Projection height (see Table 1)
2  2
b:長方形板の両面に突起がある場合、両面の突起の先端間の寸法 (表 1参照) b: If there are protrusions on both sides of the rectangular plate, the dimension between the ends of the protrusions on both sides (see Table 1)
3 Three
t:突起の付根の厚さ (表 1参照)  t: Thickness of the root of the protrusion (see Table 1)
2  2
r? =A /A:突起無し長方形板の断面積に対する、突起付き長方形板の、突起を含 r? = A / A: Including the protrusion of the rectangular plate with protrusions relative to the cross-sectional area of the rectangular plate without protrusions.
1 0 Ten
めた断面積の比  Ratio of cross-sectional area
A:突起無し長方形板の断面積  A: Cross-sectional area of a rectangular plate without protrusions
0  0
β  β
0:突起無し長方形板の幅厚比  0: Width / thickness ratio of rectangular plate without protrusions
β =b /t: bに関する幅厚比  β = b / t: width-thickness ratio for b
3 4 2 4  3 4 2 4
ξ =t /t:突起付き長方形板の板厚に対する突起の付根の厚さの比  ξ = t / t: Ratio of the thickness of the root of the projection to the thickness of the rectangular plate with the projection
2  2
突起付き長方形板の、せん断に対する座屈係数 k  Buckling factor k for shear of rectangular plate with protrusions
2は次式で与えられる(大食一郎 2 is given by the following formula (Ichiro Oshoku
、北村幸嗣、赤崎圭輔、卯瀧高久、ビッグ ·ラズロ ·ゲルゲリ、三河克己:新しいアルミ -ゥム合金製補剛桁の提案、構造工学論文集、 Vol. 51 A, pp. 203-210, 2005, Yukiaki Kitamura, Keisuke Akasaki, Takahisa Tsuji, Big Laszlo Gergeri, Katsumi Mikawa: Proposal of a new aluminum-um alloy stiffening girder, Journal of Structural Engineering, Vol. 51 A, pp. 203-210, 2005
)o ) o
[0238] [数 58] k2 = 3.78(1 + 0.81(1.52 + rs 5 f5 (3 8) [0238] [Equation 58] k 2 = 3.78 (1 + 0.81 (1.52 + rs 5 f 5 (3 8)
[0239] ここに、 rは、長方形板の曲げ剛性に対する一つの突起の曲げ剛性の比であり、式(1 1)で与えられる。 [0239] Here, r is the ratio of the bending rigidity of one protrusion to the bending rigidity of the rectangular plate, and is given by Expression (11).
[0240] 式(37)を式(36)に代入して、 につ!/、て解!、て次式を得る。  [0240] Substituting equation (37) into equation (36), and solving!
[0241] [数 59] J 2ll-/i2 ?2 (i-lk, ?, 2l [0241] [Equation 59] J 2ll- / i 2 ? 2 (i-lk,?, 2 l
ζ (39) ζ (39)
[0242] 他方、せん断力 Qに対して、突起付き長方形板は、せん断降伏しない次の条件も 満たさなければならな ヽ。  [0242] On the other hand, for shear force Q, the rectangular plate with protrusions must also satisfy the following conditions that do not yield shear.
[0243] [数 60]
Figure imgf000048_0001
[0243] [Equation 60]
Figure imgf000048_0001
[0244] ここに、 [0244] Here,
Q :長方形板に作用するせん断力  Q: Shear force acting on rectangular plate
b :突起無し長方形板の板幅、又は、突起付き長方形板の板幅  b: The width of the rectangular plate without protrusions or the width of the rectangular plate with protrusions
t:突起付き長方形板の板厚  t: Thickness of rectangular plate with protrusions
 The
0:長方形板のせん断降伏応力  0: Shear yield stress of rectangular plate
せん断降伏応力 τ は次式で与えられる。  The shear yield stress τ is given by
0  0
[0245] [数 61]
Figure imgf000048_0002
[0245] [Equation 61]
Figure imgf000048_0002
[0246] ここに、  [0246] Here,
 The
0:長方形板のせん断降伏応力  0: Shear yield stress of rectangular plate
σ  σ
0:長方形板の降伏応力  0: Yield stress of rectangular plate
式(37)と式 (41)を式 (40)に代入して、 7?について解いて次式を得る。  Substituting Equation (37) and Equation (41) into Equation (40) and solving for 7?
[0247] [数 62]
Figure imgf000048_0003
[0247] [Numerical 62]
Figure imgf000048_0003
[0248] 式(38)、式(39)及び式(42)に、 β = 110. 3、E= 2. 0 X 105MPa、 μ = 0. 3、 ο [0248] In Equation (38), Equation (39) and Equation (42), β = 110.3, E = 2.0 X 10 5 MPa, μ = 0.3, ο
σ = 355MPa、 Q = 1000kN、 b = 2537mm、 j8 = 14、n= l、c = 3、 c = 1を σ = 355MPa, Q = 1000kN, b = 2537mm, j8 = 14, n = l, c = 3, c = 1
0 3 31 32 代入して、 ηと の関係を得る。式(39)が与える ηと eの関係を破線で図 30に示す 。式 (42)が与える ηと eの関係は、式(39)が与える ηと eの関係より下に位置する ので図 30に描いてない。 0 3 31 32 Substituting to get the relation with η. The relationship between η and e given by Equation (39) is shown in Fig. 30 by a broken line. The relationship between η and e given by Eq. (42) is located below the relationship between η and e given by Eq.
[0249] 図 30において、破線より上の領域で、突起付き長方形板が、せん断力に対して座 屈を起こさない。 s = 5の実線と s = 5の破線が交わる点 A =0. 543、 β = 231. 2 )で突起付き長方形板の断面積が最小になる。点 Αに対する突起付き長方形板の断 面形状を図 31 (b)に示す。突起が備えられていない長方形板の断面形状を図 31 (a )に示す。図 31 (a)の断面積に対する図 31 (b)の断面積の比は 0. 54である。したが つて、突起を備えることにより 46%断面積を減らすことができる。 In FIG. 30, in the region above the broken line, the rectangular plate with protrusions does not buckle against the shearing force. At the point A = 0.543, β = 231.2) where the solid line of s = 5 and the broken line of s = 5 intersect, the cross-sectional area of the rectangular plate with protrusions is minimized. Figure 31 (b) shows the cross-sectional shape of the rectangular plate with protrusions relative to the dots. Fig. 31 (a) shows the cross-sectional shape of a rectangular plate without projections. The ratio of the cross-sectional area of Fig. 31 (b) to the cross-sectional area of Fig. 31 (a) is 0.54. But Therefore, by providing protrusions, the cross-sectional area can be reduced by 46%.

Claims

請求の範囲 The scope of the claims
[1] 長方形板、 2以上の支持体、及び 1以上の突起を備える輸送機器用パネル構造又 は建造物用構造部材用パネル構造であって、  [1] A transport device panel structure or a structural member panel structure comprising a rectangular plate, two or more supports, and one or more protrusions,
(i)長方形板は、長方形板の端部の 2つの支持体を含む 2以上の支持体により 支持され  (i) The rectangular plate is supported by two or more supports, including two supports at the ends of the rectangular plate.
(ii) 1以上の突起は、 2以上の支持体のうち向かい合う 2つの支持体により挟ま れる領域にぉ ヽて長方形板に備えられ、  (ii) The one or more protrusions are provided on the rectangular plate across a region sandwiched by two opposing supports out of the two or more supports,
(iii)長方形板の幅厚比が、突起を備えて 、な 、長方形板の幅厚比よりも大きく  (iii) The width-thickness ratio of the rectangular plate is larger than the width-thickness ratio of the rectangular plate, provided with protrusions.
(iv)長方形板及び 1以上の突起の合計断面積が、突起を備えて!/、な!/、長方形 板の断面積よりも小さぐ且つ、 (iv) The total cross-sectional area of the rectangular plate and the one or more protrusions is provided with protrusions! /, NA! /, and is smaller than the cross-sectional area of the rectangular plate;
(V) 1以上の突起が備えられた長方形板が、突起を備えていない長方形板と実 質的に同じ座屈強度を有し、  (V) A rectangular plate with one or more protrusions has substantially the same buckling strength as a rectangular plate without protrusions,
(vi)前記突起は長方形板の座屈変形に合わせて変形方向に位置が移動し、前 記支持体は座屈変形時に位置が移動しな 、、  (vi) The position of the protrusion moves in the deformation direction in accordance with the buckling deformation of the rectangular plate, and the position of the support does not move during the buckling deformation,
輸送機器用パネル構造又は建造物用構造部材用パネル構造。  Panel structure for transportation equipment or structural member for buildings.
[2] 長方形板の端部の支持体と中間の支持体の間、中間の支持体を 2以上有する場 合にはさらに中間の支持体と中間の支持体の間に各々 1以上の突起が備えられる、 請求項 1に記載のパネル構造。 [2] When two or more intermediate supports are provided between the support at the end of the rectangular plate and the intermediate support, one or more protrusions are further provided between the intermediate support and the intermediate support. The panel structure according to claim 1, which is provided.
[3] 1以上の突起が、向かい合う 2の支持体に平行に備えられている、請求項 1に記載 のパネル構造。 [3] The panel structure according to claim 1, wherein the one or more protrusions are provided in parallel to the two opposing supports.
[4] 前記突起が、支持体と支持体の間に等間隔で備えられる請求項 1に記載のパネル 構造。  [4] The panel structure according to [1], wherein the protrusions are provided at equal intervals between the support and the support.
[5] 前記長方形板が、金属、榭脂、及び繊維強化樹脂からなる群より選択される少なく とも 1種の材料からなり、且つ、前記突起が、金属、榭脂、及び繊維強化樹脂からなる 群より選択される少なくとも 1種の材料からなる、請求項 1に記載のパネル構造。  [5] The rectangular plate is made of at least one material selected from the group consisting of metal, resin, and fiber reinforced resin, and the protrusion is made of metal, resin, and fiber reinforced resin. 2. The panel structure according to claim 1, comprising at least one material selected from the group.
[6] 前記長方形板が、金属からなり、且つ、前記突起が、金属及び繊維強化樹脂から なる群より選択される少なくとも 1種の材料力もなる、請求項 5に記載のパネル構造。 6. The panel structure according to claim 5, wherein the rectangular plate is made of metal, and the protrusion has at least one material force selected from the group consisting of metal and fiber reinforced resin.
[7] 前記長方形板及び前記突起が同種の材料からなる、請求項 1に記載のパネル構 造。 7. The panel structure according to claim 1, wherein the rectangular plate and the protrusion are made of the same material.
[8] 前記金属が、鉄、アルミニウム、及びマグネシウム力 なる群より選択される少なくと も 1種、或いは、これをベースとする合金である、請求項 5に記載のパネル構造。  8. The panel structure according to claim 5, wherein the metal is at least one selected from the group consisting of iron, aluminum, and magnesium, or an alloy based thereon.
[9] 前記合金が、鋼鉄、ステンレス鋼及びアルミニウム合金力もなる群より選択される、 請求項 8に記載のパネル構造。 9. The panel structure according to claim 8, wherein the alloy is selected from the group consisting of steel, stainless steel, and aluminum alloy force.
[10] 建造物が建物又は橋梁である、請求項 1に記載のパネル構造。 [10] The panel structure according to claim 1, wherein the building is a building or a bridge.
[11] 構造部材が柱又は桁である、請求項 1に記載のパネル構造。 [11] The panel structure according to claim 1, wherein the structural member is a column or a girder.
[12] 輸送機器が、自動車、鉄道車両、船舶、飛行機及び宇宙機からなる群より選択され る少なくとも 1種である、請求項 1に記載のパネル構造。 12. The panel structure according to claim 1, wherein the transportation device is at least one selected from the group consisting of an automobile, a railway vehicle, a ship, an airplane, and a spacecraft.
[13] (I)長方形板を、長方形板の端部の 2つの支持体を含む 2以上の支持体で支 持する工程、及び、 [13] (I) a step of supporting the rectangular plate by two or more supports including two supports at the end of the rectangular plate; and
(II) 1以上の突起を、 2以上の支持体のうち向かい合う 2の支持体により挟まれ る領域にぉ 、て長方形板に備える工程、  (II) a step of providing one or more protrusions on a rectangular plate in a region sandwiched by two opposing supports out of two or more supports;
(ここで、工程 (I)及び (Π)は如何なる順序でおこなわれてもよぐ同時におこなわれ てもよ!/、)を包含する、請求項 1に記載のパネル構造の製造方法。  2. The method for producing a panel structure according to claim 1, comprising: (wherein steps (I) and (i) may be performed in any order or simultaneously! /).
[14] 長方形板の一部と突起を構成する T形の押し出し形材同士を接合する工程を含む、 請求項 1に記載のパネル構造の製造方法。 [14] The method for manufacturing a panel structure according to claim 1, comprising a step of joining a part of the rectangular plate and a T-shaped extruded member constituting the protrusion.
PCT/JP2007/060382 2006-05-22 2007-05-21 Panel structure for transportation device or panel structure for building structural member, and method of producing the same WO2007136039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008516687A JPWO2007136039A1 (en) 2006-05-22 2007-05-21 PANEL STRUCTURE FOR TRANSPORTATION EQUIPMENT OR PANEL STRUCTURE FOR STRUCTURAL MEMBER FOR BUILDING AND ITS MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006141491 2006-05-22
JP2006-141491 2006-05-22

Publications (1)

Publication Number Publication Date
WO2007136039A1 true WO2007136039A1 (en) 2007-11-29

Family

ID=38723352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060382 WO2007136039A1 (en) 2006-05-22 2007-05-21 Panel structure for transportation device or panel structure for building structural member, and method of producing the same

Country Status (2)

Country Link
JP (1) JPWO2007136039A1 (en)
WO (1) WO2007136039A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509550A (en) * 2009-10-29 2013-03-14 アーケル・エンジニアリング・アンド・テクノロジー・アクティーゼルスカブ Supports fixed by ribs
CN112900742A (en) * 2021-01-15 2021-06-04 西南交通大学 I-shaped beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254225A (en) * 1975-10-28 1977-05-02 Mitsui Keikinzoku Kako Combination shape material in aluminium
JPH0670927U (en) * 1993-03-18 1994-10-04 新日本製鐵株式会社 Metal expanded profile
JP2006037577A (en) * 2004-07-29 2006-02-09 Hitachi Zosen Corp Stiffening girder and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254225A (en) * 1975-10-28 1977-05-02 Mitsui Keikinzoku Kako Combination shape material in aluminium
JPH0670927U (en) * 1993-03-18 1994-10-04 新日本製鐵株式会社 Metal expanded profile
JP2006037577A (en) * 2004-07-29 2006-02-09 Hitachi Zosen Corp Stiffening girder and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509550A (en) * 2009-10-29 2013-03-14 アーケル・エンジニアリング・アンド・テクノロジー・アクティーゼルスカブ Supports fixed by ribs
CN112900742A (en) * 2021-01-15 2021-06-04 西南交通大学 I-shaped beam

Also Published As

Publication number Publication date
JPWO2007136039A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
Lim et al. Ultimate strength of bolted moment-connections between cold-formed steel members
CN103518025B (en) External tensile structural members with energy absorption
US20110250383A1 (en) Shear compliant hexagonal meso-structures having high shear strength and high shear strain
EP2554438A1 (en) Vehicle component
EP3564025B1 (en) Exterior panel and method for manufacturing exterior panel
KR20200037398A (en) Absence of hollow
KR102365534B1 (en) hollow member
KR101840022B1 (en) Vibration control damper system using concrete filled three-dimensional truss structure
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
CN221316652U (en) Support for a cabin floor of a civil aircraft, support assembly and civil aircraft
JP2020050332A (en) Elongate structures, structural assemblies with elongate structures and methods for supporting structural load
Ibrahim et al. Mechanical testing of adhesive, self-piercing rivet, and hybrid jointed aluminum under tension loading
JP5176855B2 (en) Folded panel structure and building structure
US6871903B2 (en) Structural element and body structure including the same
WO2007136039A1 (en) Panel structure for transportation device or panel structure for building structural member, and method of producing the same
Hancock Portal frames composed of cold-formed channel-and Z-sections
Nguyen et al. Enhanced static response of sandwich panels with honeycomb cores through the use of stepped facings
JP6961984B2 (en) Column structure
JP5037031B2 (en) Wall panel fixing structure and building
CN218581007U (en) Connecting beam structure
JP2000045562A (en) Structure of a buckling restrained bracing member formed in a cross shape
JP6268998B2 (en) End structure of steel member
JP6325286B2 (en) Bridge reinforcement structure and bridge reinforcement method
Fliegener et al. Loading points for industrial scale sandwich structures–A numerical and experimental design study
JP2007216754A (en) Vehicle body structure and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743816

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008516687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743816

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载