+

WO2007125687A1 - Display apparatus and method for driving the same - Google Patents

Display apparatus and method for driving the same Download PDF

Info

Publication number
WO2007125687A1
WO2007125687A1 PCT/JP2007/054854 JP2007054854W WO2007125687A1 WO 2007125687 A1 WO2007125687 A1 WO 2007125687A1 JP 2007054854 W JP2007054854 W JP 2007054854W WO 2007125687 A1 WO2007125687 A1 WO 2007125687A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
period
potential difference
pixel electrode
voltage
Prior art date
Application number
PCT/JP2007/054854
Other languages
French (fr)
Japanese (ja)
Inventor
Takaji Numao
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007125687A1 publication Critical patent/WO2007125687A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0847Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory without any storage capacitor, i.e. with use of parasitic capacitances as storage elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed

Definitions

  • the present invention relates to a driving method for improving response speed of a liquid crystal display or the like, and a display device therefor.
  • liquid crystal TVs have become inexpensive and have become popular in ordinary homes.
  • the opportunity to display moving images on PCs is increasing.
  • the start of digital terrestrial broadcasting is expected to increase the opportunity to display moving images on mobile devices such as mobile phones. For this reason, technological development to improve the quality of moving images on liquid crystal displays has been actively conducted, and many results have been achieved.
  • FIG. 14 to FIG. 16 show one of the moving image quality improvement techniques of such a liquid crystal TV disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2004-240410).
  • FIG. 14 shows the overall configuration of the above-described liquid crystal TV system.
  • the enhancement conversion unit 32 writes the data to be written based on the input image signal. And the write data is supplied to the liquid crystal controller 34. Further, the input image signal subjected to the double speed conversion by the frame frequency conversion unit 37 is stored in the frame memory 31 and given to the enhancement conversion unit 32 with a delay of one frame time.
  • Write data is supplied from the liquid crystal controller 34 to the liquid crystal display panel 30 via the source driver 36.
  • the scanning lines of the liquid crystal display panel 30 are driven by the gate driver 35 based on the control by the liquid crystal controller 34.
  • the enhancement conversion unit 32 uses the input image signal directly input from the frame frequency conversion unit 37 and the image signal input via the frame memory 31 based on the gradation transition of V ⁇ and both image signals. Then write data is created. As shown in FIG. 15, the enhancement conversion unit 32 outputs write data twice in one frame period. Of these, the write data output during the first image display period is based on the table shown in FIG. Created. The write data output during the second image display period is the input image signal itself that has been double-speed converted by the frame frequency converter 37.
  • the vertical axis represents the previous image data (signal from the frame memory 31), and the horizontal axis represents the current image data (input image signal).
  • the write data output from the emphasis conversion unit 32 is shown at the position where each previous image data and each current image data correspond.
  • FIG. 16 shows a case where the input image signal changes from 0 to 64 gradations in the first frame and changes from 64 to 128 gradations in the next frame using this overshoot drive. Yes.
  • the pixel display state changes from 0 to 64 gradations
  • the emphasis data 150 in which the previous image data 64 and the current image data 128 intersect is selected in the above table in the first image display period. And written to the pixel. Thereafter, the current image data 128 is written as it is in the second image display period.
  • the luminance of the pixel changes abruptly during the first image display period as shown by the solid and broken lines in FIG. 16, and the target gradation is generally displayed during the second image display period. .
  • FIG. 17 shows a configuration of the display panel disclosed in Patent Document 2.
  • the TFT 113 and the pixel are arranged near the intersection of the gate wiring 111 and the source wiring 112.
  • the electrode 114 and the auxiliary capacitor Cs are arranged.
  • a gate wiring 111 is connected to the gate terminal of each TFT 113
  • a source wiring 112 is connected to the source terminal
  • a pixel electrode 114 is connected to the drain terminal.
  • One electrode of the auxiliary capacitance Cs is connected to the pixel electrode 114
  • the auxiliary capacitance line 115 is connected to the other electrode of the auxiliary capacitance Cs.
  • the liquid crystal capacitance C is formed between the pixel electrode 114 and the counter electrode 121, so that the display element is configured.
  • a source signal potential is applied to the source wiring 112
  • an auxiliary capacitance line potential is applied to the storage capacitor line 115
  • a counter common electrode potential is applied to the counter electrode 121.
  • the auxiliary capacitance line potential is an alternating rectangular wave that changes in phase opposite to the source signal potential, centered on OV.
  • the potential shown in FIG. 18B is applied to each of the gate wirings 111 in the Nth to N + 3th rows.
  • the liquid crystal C constituting each pixel Aij in the Nth row to the N + 3th row has the structure shown in FIG.
  • the voltage shown is applied.
  • the effective voltage applied to the LC changes, which improves the response of the liquid crystal molecules.
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-202762 discloses a display device that achieves low power consumption.
  • a different selector 134 is arranged for each auxiliary capacitance wiring Yci, and these selectors 134 select either the voltage Vst (+) or the voltage Vst (-)! /
  • the voltage of the auxiliary capacitance line Yci changes. Specifically, the voltage of the auxiliary capacitance line Yci is changed between the state in which the TFT 113 of the pixel is turned on by the voltage Vdd of the gate line Ysi and the state in which the TFT 113 is not turned on thereafter.
  • the pixel electrode 114 is transferred.
  • the amplitude of the applied voltage can be increased.
  • 180 DZA conversion circuits when the TFT113 is conducting due to the voltage Vdd of the gate wiring Ysi, 180 DZA conversion circuits also generate voltages ⁇ 3 (+) to ⁇ 31 ⁇ (+).
  • the voltage of the auxiliary capacitance line Yci is changed from Vst (one) to Vst (+).
  • the voltage of the pixel electrode 114 is changed from Vsw (+) + ⁇ Vwt (+) to Vsk (+) + ⁇ Vbk (+)!
  • Patent Document 1 JP 2004-240410 (released August 26, 2004)
  • Patent Document 2 JP 2003-279929 (published October 2, 2003)
  • Patent Document 3 JP 2002-202762 (published July 19, 2002)
  • the liquid crystal response speed is improved by the driving method disclosed in Patent Document 2.
  • a 2H cycle voltage is applied to the auxiliary capacitance wiring 115, the power consumption increases.
  • the present invention has been made to solve the above-described problems, and an object thereof is to increase the response speed of a display element such as a liquid crystal while suppressing an increase in cost and power consumption.
  • a display device includes a plurality of scanning lines, a plurality of data lines, and pixels arranged in the vicinity of the intersections, and each pixel is a pixel electrode. And a display device having a counter electrode opposite to the pixel electrode, the display device being disposed between the pixel electrode and the data line and being electrically connected to the scan line by a voltage applied to the scan line.
  • the first active element that is in a non-conductive state and one scan line to be scanned are selected. In the selected period, the first active element is turned on by applying a selection voltage to the scanning line, and the pixel line and the data line force are applied based on the data line force and a predetermined potential applied to the pixel electrode.
  • Control means for applying a display potential difference to the counter electrode, setting the first active element in a non-conductive state during the potential difference changing period, and applying a change potential difference different from the display potential difference between the pixel electrode and the counter electrode
  • the length of the potential difference changing period is set shorter than the length of the non-selection period during which the non-conducting state is maintained.
  • a display device driving method includes a plurality of scanning lines, a plurality of data lines, and pixels arranged in the vicinity of the intersections. Is disposed between the pixel electrode and the data line, and is turned on or off by a voltage applied to the scan line.
  • Applying the selection voltage to the scanning line causes the first active element to be in a conductive state, and in the subsequent non-selection period, based on a predetermined potential applied from the data line to the pixel electrode, versus A display potential difference is provided between the pixel electrode and the first active element in a non-conducting state during a potential difference changing period, and the potential of the potential wiring is changed to change the display potential between the pixel electrode and the counter electrode.
  • a potential difference change period that provides a change potential difference different from the potential difference is provided, and the length of the potential difference change period is shorter than the length of the non-selection period.
  • the length of the potential difference changing period is preferably less than 50% of the length of the non-selection period or the length of one frame period.
  • a change potential difference larger or smaller than the display potential difference between the pixel electrode and the counter electrode is temporarily changed to a gradation level that easily shifts to the target gradation level in the potential difference changing period that occupies a part of the non-selection period.
  • a liquid is applied by applying a voltage in advance based on the data of the previous frame at the end of the display period of the previous frame, which is before the selection period. Power the crystal molecules.
  • the second method powers the liquid crystal molecule by applying a voltage in advance based on the data of the current frame at the beginning of the display period of the current frame after the selection period. In this way, the liquid crystal molecules are made to move easily in advance before the display period of the current frame.
  • the first active element is turned on by the control means, so that the data voltage is applied to the pixel electrode via the data line.
  • the difference between the potential of the pixel electrode and the potential of the counter electrode is given to the display element as a display potential difference.
  • the potential difference between the pixel electrode and the counter electrode is returned from the changed potential difference to the display potential difference, so that the display element has the above-described shifted gradation level force data. Transitions to the target gradation level according to the voltage.
  • the potential difference between the pixel electrode and the counter electrode is returned from the change potential difference to the display potential difference during the non-selection period.
  • the display element shifts the displaced gradation level force to the target gradation level corresponding to the data voltage. Therefore, the display element can be shifted to the target gradation level faster than the conventional driving method.
  • the potential change of each pixel electrode is provided with the second potential difference change period once or a plurality of times in one frame period. It's a little bit. Therefore, compared to the case where the voltage applied to the liquid crystal capacitor is changed every several H, the number of potential changes that increase the potential difference between the pixel electrode and the counter electrode is reduced, so that the increase in power consumption can be suppressed. it can.
  • control means sets the first active element in a non-conducting state in an intermediate period between the potential difference changing period and the subsequent selection period, and the pixel electrode, the counter electrode, It is preferable to provide an adjustment potential difference different from the display potential difference and the change potential difference during the period.
  • the response speed is slow when changing from the low voltage side to the high voltage side.
  • the selection period, the potential difference changing period, and the intermediate period are referred to as a first period, a second period, and a third period, respectively.
  • the change potential difference and adjustment potential difference are V2 and V3, respectively.
  • V2 and V3 By setting V2 and V3 in this way, first, a high voltage is applied to the display element to make the response quicker, and then a desired voltage is applied to the display element. Faster response speed can be obtained and the display can be stabilized.
  • V2 and V3 satisfy the relationship of
  • the response speed is slow when changing from the high voltage side to the low voltage side.
  • the following two cases are considered. It is done.
  • V2 and V3 satisfy the relationship of I V2 I and I V3 I, and the voltage applied to the display element in the second period is the voltage applied to the display element in the third period. This is the case for lowering.
  • V2 and V3 By setting V2 and V3 in this way, first, a low voltage is applied to the display element to make the response quicker, and then the desired voltage is applied to the display element. Faster response speed can be obtained and the display can be stabilized.
  • V2 and V3 satisfy the relationship of I V2 I> I V3 I, and the voltage applied to the display element in the third period is the voltage applied to the display element in the second period. This is the case when making it smaller.
  • the ratio of the intermediate period (third period) to one frame period is preferably less than 50%.
  • the ratio of the potential difference changing period (second period) force to the S1 frame period is preferably less than 50%.
  • the potential changing period may be arranged again after the intermediate period. This is because if the frame frequency is less than 60 Hz and the potential difference change period is only once per frame period, the flicker force of less than 60 Hz will be conspicuous. It is preferable to arrange a plurality of potential change periods in the non-selection period because such flickering force can be avoided.
  • the first configuration includes potential holding means (for example, a capacitor) that is provided in each pixel and holds the potential applied to the potential wiring, and the control means sets the potential applied to the potential wiring.
  • a potential control means is provided for changing the change potential difference or the adjustment potential difference so as to be different from the display potential difference.
  • a second configuration includes a potential holding unit that is provided in each of the pixels and holds a potential applied to a potential wiring, and is arranged between the pixel electrode and the potential holding unit.
  • Two active elements, and the control means sets the first active element in a non-conducting state and the second active element in a conducting state, whereby the change potential difference or the adjustment potential difference becomes the display potential difference. Change to be different.
  • the capacitance between the pixel electrode and the counter electrode is Clc, and the potential holding means is used.
  • the capacity of the capacitor used is Cs, and the potential of the counter electrode is Vcom.
  • the control unit applies the potential VL to the potential wiring Ei in the first period (selection period), thereby applying the potential Va to the pixel electrode.
  • Vb Va + Cs (VS -VL) / (Clc + Cs)...
  • V2 Vb-Vcom
  • Vc Va + Cs (VT-VL) / (Clc + Cs)
  • V3 Vc-Vcom
  • the potential difference V2 or V3 can be changed to be different from the potential difference VI.
  • the capacitance between the pixel electrode and the counter electrode is Clc
  • the capacitance of the capacitor employed as the potential holding means is Cs
  • the potential of the counter electrode is Vcom.
  • the second active element is turned off in the first period (selection period), and the potential Va is applied to the pixel electrode.
  • the potential difference of the capacitor is defined as Vz-VL (the potential force Vz of the terminal on the pixel electrode side of the capacitor and the potential of the terminal on the opposite side is VL), during the second period or the third period. If the second active element is made conductive, the potential Vb of the pixel electrode is
  • Vb (ClcVa + CsVz) / (Clc + Cs) (5)
  • V2 Vb-Vcom
  • V2 is reduced.
  • V3 can be changed to be different from the potential difference VI.
  • the first active element in the third period, the first active element is turned off, the second active element is turned on, and electric charges are supplied from the drive circuit to the data wiring. Thereafter, in the first period, the second active element is turned off and the first active element is turned on.
  • the potential Vb of the pixel electrode in the first period is given to the data line in the third period, assuming that the floating capacity of the data line is Cd, and that the floating capacity exists between the counter electrode. If the voltage is Va and the pixel electrode potential is Vz.
  • Vb (Cd'Va + (Clc + Cs) Vz) Z (Cd + Clc + Cs "(7)
  • the same result can be obtained even when the second active element is arranged between the data line and the drive circuit.
  • the display device according to the present invention is connected to the display element in the second period or the third period after the first period, which is a selection period without using an element externally attached to a panel such as a frame memory.
  • the response speed can be improved.
  • the cost of the display device can be eliminated.
  • the potential applied to the potential wiring is varied. Therefore, it is preferable to set the potential fluctuation force so that it only takes a few times per frame period, since the increase in power consumption can be suppressed.
  • the conduction state of the second active element is controlled in the second configuration.
  • the conduction state of the second active element (for example, a MOS transistor) is determined by, for example, the voltage between the source and the gate terminal. Therefore, the gate terminal voltage may be changed several times during one frame period. For this reason, an increase in power consumption can be suppressed. Therefore, it is preferable.
  • the present invention it is possible to achieve the object of the present invention and to improve the response speed of the display element while suppressing the increase in cost and power consumption of the display device.
  • FIG. 1 is a block diagram showing a configuration of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a circuit configuration of a pixel in the display device.
  • FIG. 3 is a timing chart showing the operation of the display device.
  • FIG. 4 is a diagram showing a change in response speed in the case where the driving method of the first embodiment of the display element provided in the pixel before and after the gradation transition is applied!
  • FIG. 5 is a diagram showing a change in response speed when the driving method of the first embodiment of the display element provided in the pixel before and after the gradation transition is applied!
  • FIG. 6 is a timing chart showing the operation of the display device according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a display device according to a third embodiment of the present invention.
  • FIG. 8 is a timing chart showing the operation of the display device of FIG.
  • FIG. 9 is a block diagram showing a configuration of a display device according to a fourth embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a circuit configuration of a pixel in the display device of FIG.
  • FIG. 11 is a timing chart showing the operation of the display device of FIG.
  • FIG. 12 is a circuit diagram showing another circuit configuration of the pixel in the display device of FIG.
  • FIG. 13 is a cross-sectional view showing the structure of the pixel in FIG.
  • FIG. 14 is a block diagram showing a configuration of a conventional display device.
  • FIG. 15 is a diagram showing gradation data stored in a table used for overshoot driving in the display device of FIG.
  • 16 is a diagram showing a change in gradation within one frame in the display device of FIG.
  • FIG. 17 is a circuit diagram showing a configuration of a display panel of another conventional display device.
  • FIG. 18 (a) is a waveform diagram showing a change in potential applied to each part of the display device of FIG.
  • FIG. 18 (b) is a waveform diagram showing a change in potential applied to the gate wiring of the display device of FIG.
  • FIG. 18 (c) is a waveform diagram showing a change in voltage applied to the liquid crystal in each pixel of the display device of FIG.
  • FIG. 19 is a circuit diagram showing a configuration of a display panel of still another conventional display device.
  • FIG. 20 (a) is a waveform diagram showing a change in voltage applied to the pixel electrode of the display device of FIG.
  • FIG. 20 (b) is a waveform diagram showing a change in potential of the storage capacitor line of the display device of FIG.
  • FIG. 22 is a timing chart showing still another operation of the display device according to the first embodiment of the present invention.
  • FIG. 23 is a graph showing changes in liquid crystal transmission characteristics according to the timing chart of FIG.
  • FIG. 24 is a diagram comparing response times of drive waveforms of the display device according to the related art and the first embodiment.
  • FIG. 26 is a timing chart showing another operation for setting the potential change of the potential wiring of the display device according to the first embodiment of the present invention larger.
  • FIG. 27 is a timing chart showing still another operation for setting a larger potential change in the potential wiring of the display device according to the first embodiment of the present invention.
  • ⁇ 28] is a timing chart showing another operation of the display device according to the second embodiment of the present invention.
  • FIG. 29 is a timing chart showing still another operation of the display device according to the second embodiment of the present invention.
  • FIG. 30 is a block diagram showing a configuration of a display device according to a fifth embodiment of the present invention.
  • FIG. 31 is a circuit diagram showing a circuit configuration of a pixel and an analog switch in the display device.
  • FIG. 1 shows a display device 1 used in the present embodiment.
  • the display device 1 includes a source driver circuit 2, a gate driver circuit 3, and a temperature.
  • a sensor 8, a display panel 9, and a potential wiring drive circuit 10 are provided.
  • the pixel Aij is arranged in the vicinity of the intersection of the gate wiring Gi and the source wiring 3 ⁇ 4.
  • the thin film transistor TFT (Thin Film Transistor) 16 which is the first active element, and the display element LC And a capacitor Cs as potential holding means.
  • the gate terminal of the TFT 16 is connected to the gate wiring Gi, the source terminal is connected to the source wiring layer, and the drain terminal is connected to the pixel electrode 17.
  • the pixel electrode 17 serves as one terminal of the display element and the capacitor, and the other terminal of the display element LC is connected to a common electrode COM (counter electrode) disposed facing the pixel electrode 17 to be connected to the capacitor.
  • the other terminal of Cs is connected to potential wiring Ei.
  • a liquid crystal display element is assumed as the display element LC.
  • other electro-optical elements for example, an electoric chromic element and an organic EL element
  • an electoric chromic element and an organic EL element also have the means of the present invention. Applicable.
  • the source driver circuit 2 includes an m-bit shift register 4, an m X 6-bit register 5, an m X 6-bit latch 6 and m 6-bit D / A conversion circuits (D / A in the figure). Have 7! /
  • a start pulse SP is input to the head of the m-bit shift register 4.
  • the start pulse SP is transferred in the shift register 4 at the timing of the clock elk and output to the register 5 as the timing pulse SSP.
  • the m X 6-bit register 5 holds the input 6-bit data Dx at the position of the corresponding source wiring Sj by the timing pulse SSP sent from the shift register 4.
  • the latch 6 fetches the held m ⁇ 6-bit data Dx at the timing of the latch pulse LP and outputs it to the DZA conversion circuit 7.
  • the DZA conversion circuit 7 applies a potential (analog data Daij) corresponding to the input 6-bit data Dx to the source wiring Sj. This data Daij is supplied from the source driver circuit 2 to the source wiring example at the timing shown in FIG.
  • the gate driver circuit 3 (control means) includes a shift register 11 and an output circuit 12 (consisting of a logic circuit and a buffer).
  • the gate driver circuit 3 includes a start pulse YI shown in FIG. 3 and a clock y shown in FIG. ck is input.
  • the input start pulse YI is transferred through the shift register 11 at the timing of the clock yck and output from each output stage.
  • the logic circuit of the output circuit 12 performs a logical product operation (AND) on the pulse output from each output stage of the shift register 11 and the control signal SL input from the external force.
  • the logical product pulse is output as a gate signal VGi (only VG1 to VG4 are shown in the figure) to each gate wiring Gi as shown in FIG. 3 through the buffer of the output circuit 12.
  • the H-level selection voltage GH is applied as the gate signal VG1 to the gate line G1 for a period of time 2t0 to 4t0.
  • the TFTs 16 in the pixels Alj (Al 1 to Alm) connected to the gate wiring G1 are turned on.
  • data Dalj is supplied from the source wiring line to the liquid crystal element LC via the TFT 16.
  • the potential wiring drive circuit 10 includes a shift register 13 and an analog switch circuit 14.
  • the selection register Z I and the clock yck shown in FIG. 3 are input to the shift register 13.
  • the input selection pulse ZI is transferred through the shift register 13 at the timing of the clock yck and output from each output stage.
  • the analog switch circuit 14 performs a logical operation with the control signal SE shown in FIG. 3 into which the noise output from each output stage of the shift register 13 and the external force are also input.
  • the potential VEi shown in FIG. 3 obtained from the calculation result (only VE1 to VE4 is shown in the figure) is applied to each potential wiring Ei.
  • analog switch circuit 14 outputs the potentials shown in Table 1 below so that the voltage applied to the display element LC becomes an alternating current.
  • each potential line Ei is applied to the potential VSa until the time 2 tO when the control signal SE is low.
  • the force potential wiring E1 to which the potential VSb is applied to each potential wiring Ei from time 2t0 is the selection period which is the first period (time 2t0 to 4t0), and therefore the potential VLb is applied.
  • VLb V Sb.
  • the second period time 6t0 to 12t0
  • the potential VTb is applied to the potential wiring Ei.
  • the third period (after time 12t0), which is an intermediate period thereafter, the potential VSb is applied to the potential wiring Ei.
  • the potential VAlj of the pixel electrode 17 of the pixel Alj becomes the potential Valj at the time 2t0 to 4tO, becomes the potential Vblj at the time 6t0 to 12t0, and becomes the potential Vclj after the time 12t0. It becomes.
  • the potential VAlj of the pixel electrode 17 is set to the force potential Vclj that should be returned to the potential Valj after the time 12t0 for the following reason.
  • a stray capacitance exists between the gate wiring Gi and the pixel electrode 17 shown in FIG. Therefore, the voltage of the pixel electrode 17 in the selection period in which the gate wiring Gi is at the potential GH and the same voltage in the non-selection period in which the gate wiring Gi is at the potential GL are used for the gate wiring Gi passing through the stray capacitance.
  • the voltage of the pixel electrode 17 slightly changes due to the influence of the voltage change. In order to correct this variation, the potential V A lj of the pixel electrode 17 is set to the potential Vc 1 j instead of the potential Valj.
  • FIG. 4 shows a change in the response speed of the display element LC before and after the gradation transition.
  • the response speed for transitioning to the same gradation becomes slower as the gradation before transition becomes closer to 0 (response time Tl).
  • the gradation level increases as the absolute value of the applied voltage increases.
  • This response time Ta + Tb can be made shorter than the response time T1 when the transition is made directly from the gray level before transition shown in FIG. Therefore, the response speed can be improved by adopting the first configuration described above.
  • the voltage applied to the display element LC of the pixel Alj in this second period is expressed by the following equation (2):
  • the capacitance of the display element LC is Clc
  • the capacitance of the capacitor Cs is Cs
  • the potential of the common electrode COM is the common potential Vcom.
  • the length of the second period is shorter than the length of the third period.
  • a gradation voltage that should originally transition to the third period is applied to the display element LC.
  • the ratio of the second period to one frame period is less than 50%.
  • the ratio of the second period to the non-selection period may be less than 50%.
  • the voltage is applied to the display element LC as follows. (1) Apply the selection voltage GH (ON voltage) to the gate wiring Gi, turn on the pixel TFT16, and apply the desired voltage to the display element LC. (2) The potential applied to the other electrode of the capacitor Cs is changed by the potential wiring Ei, and the voltage applied to the display element LC of the pixel Aij is changed (to a voltage at which the liquid crystal can move easily). Hold for several tens of H. (3) Then change the potential applied to the other electrode of capacitor Cs by potential wiring Ei The voltage applied to the display element LC of the pixel Aij is returned to a desired voltage.
  • FIG. 21 and FIG. 22 show this drive waveform. Specifically, FIG. 21 shows the gate signals VG1 and VG2, the potentials VE1 and VE2, the source signals VS1 and VS2 output to the source wirings SI and S2, respectively, and the counter electrode potential Vcom. Yes.
  • FIG. 22 shows the gate signal VG1, the potential VE1, the source signals VS1 and VS2, the potential VA11 of the pixel electrode 17 of the pixel All, and the potential VA12 of the pixel electrode 17 of the pixel A12! /
  • the voltages (potentials VA11, VA12) applied to the pixels All, A12 are part of one frame period (part of the non-selection period). ) (Absolute value) greater than the voltage output to the source wiring SI, S2 during the period of
  • the above period is referred to as a potential difference change period or an OS period.
  • FIG. 23 shows a comparison of the effect of this potential difference change period with a conventional drive waveform that does not have a potential difference change period.
  • “Cs—Typel 1/2 frame OS” in FIG. 23 shows the drive waveform when the potentials VA11 and VA12 shown in FIG. 22 are applied to the pixel electrode 17, and “REF” is the conventional drive.
  • the drive waveform by the method is shown.
  • 0 gradation voltage V0 is applied until time 0 [s]
  • 64 gradation voltage V64 is applied.
  • the amplitude of the potential VE1 in FIG. 22 is set as the maximum amplitude at which the black level does not float when a voltage having the same value as the counter electrode potential Vcom is applied to the source wiring S1.
  • the 64-gradation voltage V64 is determined by adjusting the voltage applied to the source wiring S1 so as to give the same average luminance as the conventional driving method with the amplitude of the potential VE1.
  • the response waveform (luminance) of the liquid crystal varies within one frame period as “measured data” shown in FIG. Therefore, to simplify the explanation, the average value of the response waveform is obtained and the response time is calculated.
  • FIG. 24 shows the response time force determined in this way, the case of applying the present embodiment, the case of a conventional drive waveform to which OS drive is not applied, and the case of the drive waveform by the drive method of Patent Document 3, respectively. It shows how it changes.
  • FIG. 24 shows the response time for the conventional drive waveform (drive waveform W1), the response time for the drive waveform (drive waveform W2) according to the drive method of Patent Document 3, and the present embodiment.
  • the response times for three types of drive waveforms W3 to W5 (“lZ2 frame OS”, “1Z4 frame OS”, “1 Z8 frame OS") are shown.
  • the potential difference change period occupies the 1Z2 frame period.
  • the potential difference change period occupies the 1Z4 frame period.
  • the potential difference change period occupies the 1Z8 frame period.
  • the response speed of drive waveform W2 is slightly improved compared to drive waveform W1.
  • the response speed of drive waveforms W3 to W4 is improved compared to drive waveform W2. Therefore, it is clear that the effect of improving the response speed is obtained by this embodiment.
  • a gradation (“0” gradation) having the smallest potential difference from the common electrode COM is given to the pixel A12 so that the potential change of the potential wiring Ei can be set larger.
  • the potential VA12 needs to reverse its polarity from 1 V (0) to + V (0) within one frame period. Therefore, the potential VE1 of the potential wiring E1 and the source signal VS2 (and the counter electrode voltage Vcom) of the source wiring S2 are adjusted.
  • the actual measurement data shown in FIG. 23 fluctuates within one frame period. This is because the voltage applied to the liquid crystal changes during the potential difference change period and other periods (selection period and intermediate period). For this reason, when the frame frequency is less than 60 Hz, this luminance variation is recognized by the user as a flickering force. In order to avoid this, as shown in FIG. 27, it is preferable that the potential difference VA12 is provided with a potential difference change period multiple times in one frame period.
  • the response speed can be improved by using the present embodiment. Also time If the first configuration described above is used, it is not necessary to use a frame memory, and the cost increase factor can be suppressed. In addition, if the potential of the potential wiring Ei is changed several times in one frame period, the response speed is improved, so that the power consumption can be reduced and the effect is clear.
  • the temperature sensor 8 shown in FIG. 1 is provided to change the length of the second period and the voltage VTb applied to the potential wiring Ei during that period depending on the temperature.
  • Valj Vblj
  • Vc lj ⁇ Vcom ⁇ Vb lj ⁇ Vcom Va lj ⁇ Vcom
  • FIG. 6 shows the timing of the data Daij supplied from the source driver circuit 3 to the source wiring Sj.
  • the gate driver circuit 3 receives the start pulse YI and the clock yck shown in FIG. As a result, as shown in FIG. 6, the gate signal VGi (only VG1 to VG4 are shown in FIG. 6) is given to each gate wiring Gi. That is, during the time 8t0 to: LOtO, the selection voltage GH is applied as the gate signal VG1 to the gate wiring G1. As a result, the TFT 16 in the pixel Alj (All to Alm) connected to the gate wiring G1 is turned on. During this time, the data Dalj is also supplied to the liquid crystal element LC via the TFT 16 as the source wiring Sj force.
  • the selection wiring ZI, the clock yck, and the control signal SE shown in FIG. 6 are given to the potential wiring drive circuit 10.
  • potential VEi (only VE1 to VE4 are shown) is applied to each potential wiring Ei. It is done.
  • the potential VLb is applied to the potential wiring E1 because the time 8t0 to 10t0 is the first period.
  • the second period after time 10t0 continues until immediately before the potential VLa is applied to the potential wiring E1.
  • the potential VSb is applied to the potential wiring E1.
  • the third period thereafter time 2t0 to 8t0
  • the potential VTb is applied to the potential wiring E1.
  • the first period follows the third period
  • the second period further follows the first period.
  • the potential Vclj ′ is applied to the pixel electrode 17 of the pixel Alj at times 2t0 to 8t0, the time 8t0 to: the potential Valj is applied to LOtO, and the potential Vblj is applied after time 10t0.
  • the response characteristics before and after the transition of the display element LC are as shown in FIG.
  • the capacitance of the display element LC is Clc
  • the capacitance of the capacitor Cs is Cs
  • the potential of the common electrode COM is the common potential Vcom.
  • the length of the third period is shorter than the length of the second period.
  • the ratio of the third period to one frame period is less than 50%.
  • the display element LC is given a gradation voltage that should be transited in the second period.
  • a voltage is applied to the display element LC as follows. (1) Apply the selection voltage GH (ON voltage) to the gate wiring Gi, turn on the pixel TFT16, and apply the desired voltage to the display element LC. At this time, the liquid crystal element LC is actually The applied voltage is a voltage close to a desired voltage, and then becomes a desired voltage after the voltage of the gate wiring Gi is changed. (2) After that, the potential applied to the other electrode of the capacitor Cs is changed by the potential wiring Ei, and the voltage applied to the display element LC of the pixel Aij is changed (to a voltage at which the liquid crystal can move easily). (3) Hold the state for several H to several tens of H and return to the desired voltage.
  • FIG. 28 shows this drive waveform.
  • FIG. 28 shows the gate signal VG1, the potential VE1, the source signals VS1 and VS2, and the potentials VA11 and VA12.
  • Al l, VA12 is the source wiring S during part of one frame period (part of the non-selection period).
  • this period is referred to as a potential difference change period, it may be referred to as an intermediate period.
  • FIG. 7 shows the display device 15 used in the present embodiment.
  • components having the same functions as those in the display device 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • Data Daij from the source driver circuit 3 is supplied to the source wiring Sj at the timing shown in FIG. Further, the gate driver circuit 3 is input with the start pulse YI and the clock y ck shown in FIG. As shown in FIG. 8, a gate signal VGi (only VG1 to VG4 are shown in FIG. 8) is output to each gate wiring Gi.
  • the H level selection voltage GH is applied to the gate line G1 as the gate signal VG1.
  • the TFT 16 in the pixel Alj (A11 to Alm) connected to the gate wiring G1 is turned on.
  • data Dalj is supplied from the source wiring Sj to the liquid crystal element LC via the TFT 16.
  • the potential Vclj ′ is applied to the pixel electrode 17 of the pixel Alj from time 4t0 to 8t0, the potential Valj is applied from time 8t0 to: LOtO, and the potential Vblj is applied from time 10t0 to 12t0.
  • the potential Vclj ′ is applied at time 12t0 to 16t0.
  • the response characteristics before and after the transition of the display element LC are as shown in FIG.
  • the total length of the third period is shorter than the total length of the second period.
  • the ratio of the third period to one frame period is less than 50%.
  • a gradation voltage that should originally transition to the second period is applied to the display element LC.
  • the third period a gradation voltage larger than the gradation that should be displayed is given. Therefore, as the voltage application time becomes longer, the gray scale display error may increase, so the ratio of the third period to one frame period is less than 50%.
  • the potential of the potential wiring Ei is changed every 2H in this embodiment, it is preferably changed every several H to several tens of H.
  • Fig. 29 shows a drive waveform in the case of driving in this way in line inversion drive.
  • FIG. 29 shows the gate signals VG1, VG2, the source signal VSj output to the arbitrary source wiring Sj, the counter electrode potential Vcom, and the four types of potentials VExl to VEx4. Is shown.
  • the potential VExl is the potential of the potential wiring E4k (k is 0 and a positive integer)
  • the potential VEx2 is the potential of the potential wiring E4k + 1
  • the potential VEx3 is the potential of the potential wiring E4k + 2
  • the potential V Ex4 is the potential of the potential wiring E4k + 3.
  • FIG. 9 shows the display device 18 used in the present embodiment.
  • components having the same functions as those in the display device 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the display device 18 includes a source driver circuit 2, a display panel 19, and a gate driver circuit 20.
  • the pixel Aij is disposed in the vicinity of the intersection of the gate wiring Gi and the source wiring 3 ⁇ 4.
  • the TFT 16 as the first active element, the display element LC, and the capacitor as the potential holding means It consists of Cs and TF T23, which is the second active element.
  • the gate terminal of the TFT 16 is connected to the gate line Gi, the source terminal is connected to the source line 2, and the drain terminal is connected to the pixel electrode 17.
  • a TFT 23 is disposed between the pixel electrode 17 and one terminal 24 of the capacitor Cs. That is, the control wiring Pi is connected to the gate terminal of the TFT 23, the pixel electrode 17 is connected to the source terminal, and one terminal 24 of the capacitor Cs is connected to the drain terminal.
  • the potential wiring Ei is connected to the other terminal of the capacitor Cs, and the other terminal of the display element LC is connected to the common electrode COM.
  • a liquid crystal display element is assumed as the display element LC.
  • the method of the present invention can be applied to other electro-optical elements (for example, an electochromic element and an organic EL element). Is possible.
  • the gate driver circuit 20 includes a shift register 21 and an output circuit 22 (consisting of a logic circuit and a buffer).
  • start pulse YI and the clock yck shown in the figure are input to the gate driver circuit 20.
  • This input start pulse YI is the shift register at the timing of the clock yck. Is output from each output stage.
  • the logic circuit of the output circuit 22 performs a logical AND operation (AND) on the pulse output from each output stage of the shift register 21 and the control signal SL input from the outside.
  • the pulse of the logical product is output as a gate signal VGi (only VG1 to VG3 are shown in the figure) to each gate wiring Gi as shown in FIG.
  • the logic circuit of the output circuit 22 is different from the generation of the selection voltage VGi by the pulse output from each output stage of the shift register 21 and the control signal SL input from the outside ( AND).
  • the logical product pulse is output as a potential VPi (only VP 1 to VP 3 are shown in the figure) to each control wiring Pi as shown in FIG. 11 through the buffer of the output circuit 22.
  • the potential VP1 changes from the low level GL to the high level GH and from the high level GH to the low level GL in the same phase as the selection voltage VG3.
  • the period between time t0 and time 2t0 is the first period.
  • an H-level selection voltage GH is applied as a gate signal to the gate wiring G1, and the TFT 16 in the pixel Alj is turned on.
  • the data voltage Val is applied from the source wiring Sj to the pixel electrode 17, and the voltage Vd is applied to the common electrode COM and the potential wiring Ei.
  • the data voltage Val is applied to the pixel electrode 17 of the pixel Alj, and the voltage Val ⁇ Vd is applied to the display element LC.
  • the period between time 2tO and 3tO is the second period.
  • the L level non-selection voltage GL is applied to the gate wiring G1 as the gate signal VG1, and the TFT 16 in the pixel Alj is turned off.
  • the period from time 3t0 to tf + t0 is the third period.
  • this third period between the times 3t0 and 4t0, as shown in FIG. 11, when the H-level selection voltage GH is applied to the control wiring P1, the TFT 23 in the pixel Alj is turned on. .
  • the pixel electrode 17 and one terminal 24 of the capacitor Cs are short-circuited, and the potential of the pixel electrode 17 changes to Vxl.
  • the potential of the pixel electrode 17 is maintained until the TFT 16 is turned on next time.
  • Vxl (Clc -Val + Cs- (VO-Ve)) / (Clc + Cs)
  • Clc is the capacitance between the pixel electrode 17 and the common electrode COM.
  • Cs is the capacitance of the capacitor Cs, and
  • VO is the potential of the pixel electrode 17 before time tO (this is also the potential of one terminal 24 of the capacitor Cs).
  • Vxl -Vd (Clc-Val + Cs- (VO-Ve)) / (Clc + Cs) — Vd
  • Table 2 shows changes in the voltage applied to the display element LC when the ratio between Clc and Cs is changed and the voltages Vd and Ve applied to the common electrode COM as the common electrode potential Vcom are both 0. .
  • Va, Vx, Vb, Vc, and Vz represent the potential of the pixel electrode 17 shown in FIG.
  • the selection voltage GH is applied to the gate wiring G1 and the control wiring P1 at the time of the next frame +1; 0 to £ + 2 tO.
  • the TFTs 16 and 23 in the pixel Alj are turned on.
  • the data voltage Vbl (VAlj) is applied to the source wiring Sj force pixel electrode 17 and one terminal 24 of the capacitor Cs.
  • the voltage Vd (Vcom, VEi) is applied to the common electrode COM and the potential wiring Ei.
  • the voltage Vbl ⁇ Vd is applied to the display element LC.
  • the voltage Vbl given by the source wiring Sj force is held in the pixel electrode 17 as it is without using the second configuration described above. Then, the second configuration is used in the next frame.
  • the TFT 23 as the second active element is disposed between the pixel electrode 17 and the terminal 24 of the capacitor Cs.
  • the voltage of the previous frame is held by the capacitor Cs.
  • the display element LC may hold the voltage of the previous frame instead of the capacitor Cs.
  • the display element LC may be divided into two, and the voltage of the previous frame may be held on one side.
  • the pixel Aij shown in FIG. 12 includes a TFT 16 (first active element), a display element LC1, a capacitor Cs, a display element LC2 (potential holding means), and a TFT 25 (second active element). ing.
  • the gate terminal of the TFT 16 is connected to the gate wiring Gi
  • the source terminal is connected to the source wiring S j
  • the drain terminal is connected to the pixel electrode 17 of the display element LC1.
  • a TFT 25 is disposed between the pixel electrode 17 and the pixel electrode 26 of the display element LC2.
  • a control wiring Pi is connected to the gate terminal of the TFT 25, a pixel electrode 17 is connected to the source terminal, and a pixel electrode 26 is connected to the drain terminal.
  • the terminals facing the pixel electrodes 17 and 26 of the display elements LCI and LC2 are connected to the counter electrode COM.
  • the other terminal of the capacitor Cs is connected to the potential wiring Ei.
  • the display elements LCI and LC2 may be configured by dividing the pixel electrode into multiple parts within one pixel Aij as shown in FIG. By dividing the pixel Aij in this way and applying a voltage to each of the divided areas, the visual dependence can be corrected. Further, the holding capacitor Cs can be divided into two, and one can be used as a potential holding means.
  • FIG. 30 shows a display device 51 used in the present embodiment.
  • the display device 51 constituent elements having the same functions as those of the constituent elements in the display device 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the display device 51 includes a source driver circuit 52, a display panel 53, and a gate driver circuit 3.
  • Each pixel Aij is arranged in the vicinity of the intersection of the gate wiring Gi and the source wiring 3 ⁇ 4.
  • the first active element TFT16, the display element LC, and the potential holding means are used. It consists of a capacitor Cs.
  • the gate driver circuit 3 includes a shift register 11 and an output circuit 12 (configured by a logic circuit and a buffer circuit (logic Z buffer circuit 54)). Since this gate driver circuit 3 has the same configuration as the gate driver circuit 3 of FIG. 1 shown in the first embodiment, the description thereof is omitted here.
  • the source driver circuit 52 further includes an analog switch 53 (AZS in the figure) added to the next stage of the DZ A conversion circuit 7 of the source driver circuit 2 of FIG. 1 shown in the first embodiment.
  • the analog switch 53 includes a TFT 55 connected between the DZA conversion circuit 7 and the source wiring Sj.
  • a control signal HP is supplied to the control terminal of the TFT 55 as shown in FIG. That is, as shown in FIG. 32, the control is performed while the gate lines G1 to G3 are in the selection period, that is, while the gate voltages VGi to VGe + 2 (selection voltage GH) are applied to the gate lines G1 to G3. There is a period during which the signal HP is at the selection voltage GH.
  • the voltage V a corresponding to the data Daj is output from the DZA conversion circuit 7 to the source wiring Sj.
  • the potential of the pixel electrode 17 at this time is Vz.
  • the TFT 55 is turned off to apply the non-selection voltage GL of the control signal HP to the gate wiring Gi.
  • Vb (Cd'Va + (Clc + Cs) Vz) Z (Cd + Clc + Cs "(7)
  • Table 3 shows the potential difference between the pixel electrode potential and the common electrode potential, considering that the potential of each pixel electrode 17 is different for each frame with reference to the potential of the common electrode COM.
  • (1), (2), and (3) indicate the first, second, and third frames, respectively.
  • Table 3 shows that the potential difference changes in the third frame. Specifically, the voltage Vb converges to 2V (10th frame), which is a force stable state where the voltage Vb changes from 2.5 to 2.5V.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention.
  • Industrial applicability Since the display device of the present invention can suppress an increase in cost and power consumption by increasing the response speed without using a frame memory, it can be suitably applied particularly to a mopile type display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

To enhance the response speed of a display element, such as a liquid crystal or the like, while suppressing the increase of cost and power consumption. Each of pixels (Aij) has a TFT (active element) that is located between an pixel electrode and a source wire (Si) and that is rendered conductive or nonconductive by an voltage applied to a gate wire (Gj). Each pixel (Aij) also has a capacitor that holds the potential of a potential wire (Ei) between the pixel electrode and the potential wire (Ei). During a selection interval in which a gate wire (Gj) to be scanned is selected, a selection voltage is applied to that gate wire (Gj), thereby rendering the TFT of the corresponding pixel conductive, thereby providing a potential difference between the pixel electrode and the opposed electrode based on a predetermined potential to be applied from the source wire (Si) to the pixel electrode. During the following interval, a gate driver circuit (3) renders the TFT nonconductive and a potential wire driving circuit (10) changes the potential of the potential wire (Ei), thereby providing, between the pixel electrode and the opposed electrode, a potential difference that is greater or smaller than the foregoing potential difference during the selection interval.

Description

明 細 書  Specification
表示装置およびその駆動方法  Display device and driving method thereof
技術分野  Technical field
[0001] 本発明は液晶ディスプレイ等の応答速度を改善するための駆動方法、およびその 表示装置に関するものである。  The present invention relates to a driving method for improving response speed of a liquid crystal display or the like, and a display device therefor.
背景技術  Background art
[0002] 近年、液晶 TVが低価格ィ匕し一般家庭にも普及してきた。また、ブロードバンド通信 の普及により PCでも動画像を表示する機会が増えている。更に、地上波デジタル放 送の開始により、携帯電話等の携帯機器でも動画像を表示する機会が増えると予想 される。このため、液晶ディスプレイの動画像の画質を改善するための技術開発が活 発に行われており、多くの成果を上げている。  In recent years, liquid crystal TVs have become inexpensive and have become popular in ordinary homes. In addition, with the spread of broadband communications, the opportunity to display moving images on PCs is increasing. Furthermore, the start of digital terrestrial broadcasting is expected to increase the opportunity to display moving images on mobile devices such as mobile phones. For this reason, technological development to improve the quality of moving images on liquid crystal displays has been actively conducted, and many results have been achieved.
[0003] 図 14ないし図 16は、特許文献 1 (特開 2004— 240410号公報)に示された、この ような液晶 TVの動画質改善技術の 1つを示している。  FIG. 14 to FIG. 16 show one of the moving image quality improvement techniques of such a liquid crystal TV disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2004-240410).
[0004] 図 14は、上記の液晶 TVのシステムの全体構成を示している。このシステムにおい ては、入力画像信号が、そのフレーム周波数がフレーム周波数変換部 37で 2倍に変 換 (倍速変換)された後、その入力画像信号に基づいて強調変換部 32で書き込みデ ータが算出され、当該書き込みデータが液晶コントローラ 34に供給される。また、フレ ーム周波数変換部 37で倍速変換された入力画像信号は、フレームメモリ 31に蓄えら れ、 1フレーム時間遅延して強調変換部 32に与えられる。  FIG. 14 shows the overall configuration of the above-described liquid crystal TV system. In this system, after the input image signal has its frame frequency converted to double (double speed conversion) by the frame frequency conversion unit 37, the enhancement conversion unit 32 writes the data to be written based on the input image signal. And the write data is supplied to the liquid crystal controller 34. Further, the input image signal subjected to the double speed conversion by the frame frequency conversion unit 37 is stored in the frame memory 31 and given to the enhancement conversion unit 32 with a delay of one frame time.
[0005] 書き込みデータは、液晶コントローラ 34からソースドライバ 36を介して液晶表示パ ネル 30に供給される。また、液晶表示パネル 30の走査線は液晶コントローラ 34によ る制御に基づいて、ゲートドライバ 35によって駆動される。  Write data is supplied from the liquid crystal controller 34 to the liquid crystal display panel 30 via the source driver 36. The scanning lines of the liquid crystal display panel 30 are driven by the gate driver 35 based on the control by the liquid crystal controller 34.
[0006] 強調変換部 32は、フレーム周波数変換部 37から直接入力した入力画像信号と、フ レームメモリ 31を経由して入力された画像信号を用 Vヽ、両画像信号の階調遷移に基 づいて書き込みデータを作成する。この強調変換部 32からは、図 15に示すように、 1 フレーム期間に書き込みデータが 2回出力される。このうち、第 1画像表示期間に出 力される書き込みデータは ROM33に格納された図 15に示すテーブルに基づいて 作成される。また、第 2画像表示期間に出力される書き込みデータは、フレーム周波 数変換部 37で倍速変換された入力画像信号そのものである。 [0006] The enhancement conversion unit 32 uses the input image signal directly input from the frame frequency conversion unit 37 and the image signal input via the frame memory 31 based on the gradation transition of V ヽ and both image signals. Then write data is created. As shown in FIG. 15, the enhancement conversion unit 32 outputs write data twice in one frame period. Of these, the write data output during the first image display period is based on the table shown in FIG. Created. The write data output during the second image display period is the input image signal itself that has been double-speed converted by the frame frequency converter 37.
[0007] 上記のテーブルにおいて、縦軸が前画像データ(フレームメモリ 31からの信号)で あり、横軸が現画像データ (入力画像信号)である。そして、各前画像データと各現画 像データとが対応する位置には、強調変換部 32から出力される書き込みデータが示 されている。 In the above table, the vertical axis represents the previous image data (signal from the frame memory 31), and the horizontal axis represents the current image data (input image signal). The write data output from the emphasis conversion unit 32 is shown at the position where each previous image data and each current image data correspond.
[0008] このように、画像信号に強調変換処理を施して液晶表示パネル 30を駆動すること は、オーバーシュート駆動と呼ばれている。  [0008] As described above, driving the liquid crystal display panel 30 by performing enhancement conversion processing on an image signal is called overshoot driving.
[0009] 図 16は、このオーバーシュート駆動を用いて、入力画像信号が最初のフレームで 0 力も 64階調へ変化し、次のフレームで 64階調から 128階調に変化する場合を示して いる。図 16に示すように、 0から 64階調へ画素の表示状態が変化する場合、まず、 第 1画像表示期間で上記のテーブルから前画像データ 0,現画像データ 64が交差 する強調データ 118が選ばれ、画素に書き込まれる。その後、第 2画像表示期間で 現画像データ 64がそのまま書き込まれる。  FIG. 16 shows a case where the input image signal changes from 0 to 64 gradations in the first frame and changes from 64 to 128 gradations in the next frame using this overshoot drive. Yes. As shown in FIG. 16, when the pixel display state changes from 0 to 64 gradations, first, the emphasis data 118 in which the previous image data 0 and the current image data 64 intersect from the above table in the first image display period. Selected and written to the pixel. Thereafter, the current image data 64 is written as it is in the second image display period.
[0010] また、 64階調から 128階調へ画素の表示状態が変化する場合、第 1画像表示期間 で上記のテーブルにおいて、前画像データ 64,現画像データ 128が交差する強調 データ 150が選ばれて画素に書き込まれる。その後、第 2画像表示期間で現画像デ ータ 128がそのまま書き込まれる。その結果、画素の輝度は、図 16において示す実 線や破線のように、第 1画像表示期間で急激に変化し、第 2画像表示期間では概ね 目的とする階調が表示された状態となる。  [0010] When the display state of a pixel changes from 64 gradations to 128 gradations, the emphasis data 150 in which the previous image data 64 and the current image data 128 intersect is selected in the above table in the first image display period. And written to the pixel. Thereafter, the current image data 128 is written as it is in the second image display period. As a result, the luminance of the pixel changes abruptly during the first image display period as shown by the solid and broken lines in FIG. 16, and the target gradation is generally displayed during the second image display period. .
[0011] 一方で、図 16において一点鎖線で示される 1フレームに画像データを 1回書き込む 場合は、第 2画像表示期間になっても目的とする階調に到達していない。  On the other hand, when the image data is written once in one frame indicated by the alternate long and short dash line in FIG. 16, the target gradation is not reached even in the second image display period.
[0012] このように、上記のオーバーシュート駆動方法では、階調が大きく変化する場合に 目的とする階調表示を可能にするものの、画像データを保持するためのフレームメモ リ 31が必要になる。そこで、このようなフレームメモリを必要としない駆動方法が特許 文献 2 (特開 2003 - 279929号公報)に示されて ヽる。  As described above, the overshoot driving method described above enables the target gradation display when the gradation changes greatly, but requires the frame memory 31 to hold the image data. . Therefore, a driving method that does not require such a frame memory is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2003-279929).
[0013] 図 17は、特許文献 2に開示された表示パネルの構成を示している。この表示パネ ルにいては、ゲート配線 111とソース配線 112とが交差する付近に、 TFT113と画素 電極 114と補助容量 Csとが配置されて 、る。各 TFT113のゲート端子にはゲート配 線 111が接続され、ソース端子にはソース配線 112が接続され、ドレイン端子には画 素電極 114が接続されて 、る。画素電極 114には補助容量 Csの一方の電極が接続 され、補助容量 Csの他方の電極には補助容量線 115が接続されている。また、画素 電極 114と対向電極 121の間に液晶容量 C が形成されることにより、表示素子が構 FIG. 17 shows a configuration of the display panel disclosed in Patent Document 2. In this display panel, the TFT 113 and the pixel are arranged near the intersection of the gate wiring 111 and the source wiring 112. The electrode 114 and the auxiliary capacitor Cs are arranged. A gate wiring 111 is connected to the gate terminal of each TFT 113, a source wiring 112 is connected to the source terminal, and a pixel electrode 114 is connected to the drain terminal. One electrode of the auxiliary capacitance Cs is connected to the pixel electrode 114, and the auxiliary capacitance line 115 is connected to the other electrode of the auxiliary capacitance Cs. Further, the liquid crystal capacitance C is formed between the pixel electrode 114 and the counter electrode 121, so that the display element is configured.
LC  LC
成される。  Made.
[0014] 図 18 (a)に示すように、ソース配線 112にはソース信号電位が与えられ、補助容量 線 115には補助容量線電位が与えられ、対向電極 121には対向共通電極電位が与 えられる。補助容量線電位は、 OVを中心にソース信号電位と逆相に変化する交流の 矩形波である。また、第 N行〜第 N + 3行の各ゲート配線 111には、それぞれ図 18 ( b)に示す電位が与えられる。  As shown in FIG. 18 (a), a source signal potential is applied to the source wiring 112, an auxiliary capacitance line potential is applied to the storage capacitor line 115, and a counter common electrode potential is applied to the counter electrode 121. available. The auxiliary capacitance line potential is an alternating rectangular wave that changes in phase opposite to the source signal potential, centered on OV. Further, the potential shown in FIG. 18B is applied to each of the gate wirings 111 in the Nth to N + 3th rows.
[0015] この結果、第 N行〜第 N + 3行の各画素 Aijを構成する液晶 C には、図 18 ( に  As a result, the liquid crystal C constituting each pixel Aij in the Nth row to the N + 3th row has the structure shown in FIG.
LC  LC
示す電圧が印加される。  The voltage shown is applied.
[0016] 特許文献 2において、この表示パネルでは、液晶容量 C に印加される電圧が 1H In Patent Document 2, in this display panel, the voltage applied to the liquid crystal capacitor C is 1H.
LC  LC
毎に変化するものの、液晶容量 C 力 の 2H周期で変化する電圧では応答しないと  Although it changes every time, it must respond with a voltage that changes in 2H cycle of the liquid crystal capacitance C force.
LC  LC
されている。しかし、このように電圧を印加することで、静止画と動画で液晶 C  Has been. However, by applying voltage in this way, the liquid crystal C
LCに印 カロされる実効電圧が変化し、液晶分子の応答性が改善するとしている。  The effective voltage applied to the LC changes, which improves the response of the liquid crystal molecules.
[0017] また、特許文献 3 (特開 2002— 202762号公報)には、低消費電力化を図る表示 装置が示されている。 [0017] Patent Document 3 (Japanese Patent Laid-Open No. 2002-202762) discloses a display device that achieves low power consumption.
[0018] この表示装置では、図 19に示すように、補助容量配線 Yci (i= l, 2, 3, · ··, m)毎 に異なる電圧を印加できるようにして、ソース配線 Sj (j = l, 2, 3, · ··, n)の振幅を抑 えることにより消費電力の低下を実現している。具体的には、補助容量配線 Yci毎に 異なるセレクタ 134が配置されており、これらのセレクタ 134が電圧 Vst ( + )または電 圧 Vst ( - )の一方を選択して!/、る。  In this display device, as shown in FIG. 19, a different voltage can be applied to each auxiliary capacitance wiring Yci (i = l, 2, 3,..., M), and the source wiring Sj (j = Reduction of power consumption by suppressing the amplitude of l, 2, 3, ..., n). Specifically, a different selector 134 is arranged for each auxiliary capacitance wiring Yci, and these selectors 134 select either the voltage Vst (+) or the voltage Vst (-)! /
[0019] このような構成により、図 20 (a)に示すように、補助容量配線 Yciの電圧が変化する 。具体的には、ゲート配線 Ysiの電圧 Vddで画素の TFT113が導通した状態と、その 後の TFT113の非導通の状態とで、補助容量配線 Yciの電圧を変化させる。  With such a configuration, as shown in FIG. 20 (a), the voltage of the auxiliary capacitance line Yci changes. Specifically, the voltage of the auxiliary capacitance line Yci is changed between the state in which the TFT 113 of the pixel is turned on by the voltage Vdd of the gate line Ysi and the state in which the TFT 113 is not turned on thereafter.
[0020] この結果、 DZA変換回路 180から出力された電圧の振幅により、画素電極 114へ 印加される電圧の振幅を大きくすることができる。例えば、図 20 (b)に示すように、ゲ ート配線 Ysiの電圧 Vddによって TFT113が導通しているとき、 DZA変換回路 180 カも電圧¥3 (+ )〜¥31^( + )が出カされる。その後、補助容量配線 Yciの電圧を Vs t (一)から Vst ( + )へ変化させる。これにより、画素電極 114の電圧を Vsw( + ) + Δ Vwt ( + )〜Vsk ( + ) + Δ Vbk ( + )へ変化させて!/、る。 As a result, due to the amplitude of the voltage output from the DZA conversion circuit 180, the pixel electrode 114 is transferred. The amplitude of the applied voltage can be increased. For example, as shown in Fig. 20 (b), when the TFT113 is conducting due to the voltage Vdd of the gate wiring Ysi, 180 DZA conversion circuits also generate voltages ¥ 3 (+) to ¥ 31 ^ (+). Mosquito After that, the voltage of the auxiliary capacitance line Yci is changed from Vst (one) to Vst (+). As a result, the voltage of the pixel electrode 114 is changed from Vsw (+) + ΔVwt (+) to Vsk (+) + ΔVbk (+)!
特許文献 1 :特開 2004— 240410 (2004年 8月 26日公開)  Patent Document 1: JP 2004-240410 (released August 26, 2004)
特許文献 2:特開 2003 - 279929 (2003年 10月 2曰公開)  Patent Document 2: JP 2003-279929 (published October 2, 2003)
特許文献 3:特開 2002— 202762 (2002年 7月 19曰公開)  Patent Document 3: JP 2002-202762 (published July 19, 2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] 特許文献 1に示される表示装置によれば、液晶の応答性が改善できる。しかし、こ の表示装置ではフレームメモリ 31等を必要とするため、前記システムのコストアップを 招く。 [0021] According to the display device disclosed in Patent Document 1, the response of the liquid crystal can be improved. However, since this display device requires the frame memory 31 and the like, the cost of the system is increased.
[0022] また、特許文献 2に示された駆動方法により液晶応答速度が改善する。しかし、補 助容量配線 115に 2H周期の電圧を印加すれば消費電力が増大する。  In addition, the liquid crystal response speed is improved by the driving method disclosed in Patent Document 2. However, if a 2H cycle voltage is applied to the auxiliary capacitance wiring 115, the power consumption increases.
[0023] また、特許文献 3に示された駆動方法によれば、消費電力を抑える効果が得られる 。しかし、 DZA変換回路自体の出力振幅を広げた場合と比べ、オン電圧とオフ電圧 との差電圧が広がらな 、ので、応答速度を改善する効果は少な 、。  [0023] According to the driving method disclosed in Patent Document 3, an effect of suppressing power consumption can be obtained. However, compared with the case where the output amplitude of the DZA conversion circuit itself is expanded, the difference voltage between the on-voltage and the off-voltage is not widened, so the effect of improving the response speed is small.
[0024] これらコストアップ要因や消費電力増大要因は、液晶表示装置をモパイル用途に 用いる場合、特に好ましくない。  [0024] These cost increase factors and power consumption increase factors are particularly undesirable when the liquid crystal display device is used for mopile applications.
[0025] 本発明は、上記課題を解決するためになされたものであり、コストや消費電力の増 大を抑えながら、液晶等の表示素子の応答速度を高めることを目的とする。  [0025] The present invention has been made to solve the above-described problems, and an object thereof is to increase the response speed of a display element such as a liquid crystal while suppressing an increase in cost and power consumption.
課題を解決するための手段  Means for solving the problem
[0026] 本発明に係る表示装置は、上記課題を解決するために、複数の走査線と、複数の データ線と、その交差する付近に配置されている画素とを備え、各画素が画素電極と その画素電極に対向する対向電極とを有する表示素子を含んでいる表示装置であ つて、上記画素電極と上記データ線との間に配置され、上記走査線に印加される電 圧によって導通または非導通状態となる第 1能動素子と、走査すべき一走査線が選 択される選択期間に、当該走査線へ選択電圧を印加することによって上記第 1能動 素子を導通状態とし、上記データ線力 上記画素電極へ与えられる所定の電位に基 づいて上記画素電極と上記対向電極との間に表示電位差を与え、電位差変更期間 に、上記第 1能動素子を非導通状態とし、上記画素電極と上記対向電極との間に上 記表示電位差と異なる変更電位差を与える制御手段とを備え、上記電位差変更期 間の長さが、上記非導通状態が維持される非選択期間の長さより短く設定されている ことを特徴としている。 In order to solve the above problems, a display device according to the present invention includes a plurality of scanning lines, a plurality of data lines, and pixels arranged in the vicinity of the intersections, and each pixel is a pixel electrode. And a display device having a counter electrode opposite to the pixel electrode, the display device being disposed between the pixel electrode and the data line and being electrically connected to the scan line by a voltage applied to the scan line. The first active element that is in a non-conductive state and one scan line to be scanned are selected. In the selected period, the first active element is turned on by applying a selection voltage to the scanning line, and the pixel line and the data line force are applied based on the data line force and a predetermined potential applied to the pixel electrode. Control means for applying a display potential difference to the counter electrode, setting the first active element in a non-conductive state during the potential difference changing period, and applying a change potential difference different from the display potential difference between the pixel electrode and the counter electrode And the length of the potential difference changing period is set shorter than the length of the non-selection period during which the non-conducting state is maintained.
[0027] 本発明に係る表示装置の駆動方法は、上記課題を解決するために、複数の走査 線と、複数のデータ線と、その交差する付近に配置されている画素とを備え、各画素 が画素電極とその画素電極に対向する対向電極とを有する表示素子と、上記画素 電極と上記データ線との間に配置され、上記走査線に印加される電圧によって導通 または非導通状態となる能動素子とを含む表示装置を駆動する駆動方法であって、 上記各画素に設けられた電位保持手段に電位配線に付与された電位を保持させ、 走査すべき一走査線が選択される選択期間に、当該走査線へ選択電圧を印加する ことによって上記第 1能動素子を導通状態とし、その後の非選択期間に、上記データ 線から上記画素電極へ与えられる所定の電位に基づいて上記画素電極と上記対向 電極との間に表示電位差を与え、電位差変更期間に、上記第 1能動素子を非導通 状態とし、上記電位配線の電位を変化させることで、上記画素電極と上記対向電極と の間に上記表示電位差と異なる変更電位差を与える電位差変更期間を設け、上記 電位差変更期間の長さを上記非選択期間の長さより短くすることを特徴としている。  In order to solve the above-described problem, a display device driving method according to the present invention includes a plurality of scanning lines, a plurality of data lines, and pixels arranged in the vicinity of the intersections. Is disposed between the pixel electrode and the data line, and is turned on or off by a voltage applied to the scan line. A driving method for driving a display device including an element, wherein a potential holding unit provided in each pixel holds a potential applied to a potential wiring, and a scanning line to be scanned is selected in a selection period. Applying the selection voltage to the scanning line causes the first active element to be in a conductive state, and in the subsequent non-selection period, based on a predetermined potential applied from the data line to the pixel electrode, versus A display potential difference is provided between the pixel electrode and the first active element in a non-conducting state during a potential difference changing period, and the potential of the potential wiring is changed to change the display potential between the pixel electrode and the counter electrode. A potential difference change period that provides a change potential difference different from the potential difference is provided, and the length of the potential difference change period is shorter than the length of the non-selection period.
[0028] 特に、上記電位差変更期間の長さを、上記非選択期間の長さまたは 1フレーム期 間の長さの 50%未満とすることが好まし 、。  [0028] In particular, the length of the potential difference changing period is preferably less than 50% of the length of the non-selection period or the length of one frame period.
[0029] 上記の構成では、電位差変更期間において、制御手段によって、第 1能動素子が 非導通状態にあるとき、画素電極と対向電極との間に表示電位差より大きい変更電 位差または小さい変更電位差が与えられる。これにより、表示素子が、非選択期間の 一部を占める電位差変更期間に、一旦目的の階調レベルに遷移しやすい階調レべ ルにまで変移する。具体的には、第 1の方法は、選択期間の前である前フレームの 表示期間の最後に、前フレームのデータを基に、予め電圧を印加することによって液 晶分子を動力しておく。一方、第 2の方法は、選択期間の後である現フレームの表示 期間の最初に、現フレームのデータを基に、予め電圧を印加することによって液晶分 子を動力しておく。このようにして、現フレームの表示期間の前に、予め液晶分子を 動き易い状態にしておく。 In the above configuration, during the potential difference change period, when the first active element is in a non-conducting state by the control means, a change potential difference larger or smaller than the display potential difference between the pixel electrode and the counter electrode. Is given. As a result, the display element is temporarily changed to a gradation level that easily shifts to the target gradation level in the potential difference changing period that occupies a part of the non-selection period. Specifically, in the first method, a liquid is applied by applying a voltage in advance based on the data of the previous frame at the end of the display period of the previous frame, which is before the selection period. Power the crystal molecules. On the other hand, the second method powers the liquid crystal molecule by applying a voltage in advance based on the data of the current frame at the beginning of the display period of the current frame after the selection period. In this way, the liquid crystal molecules are made to move easily in advance before the display period of the current frame.
[0030] 選択期間において、制御手段によって、第 1能動素子が導通状態となるので、デー タ線を介してデータ電圧が画素電極に印加される。これにより、画素電極の電位と対 向電極の電位との差が表示電位差として表示素子に与えられる。このとき、第 1の方 法では、選択期間に、画素電極と対向電極との間の電位差が、変更電位差から表示 電位差へ戻されることにより、表示素子は、上記の変移した階調レベル力 データ電 圧に応じた目的の階調レベルにまで遷移する。第 2の方法では、非選択期間に、画 素電極と対向電極との間の電位差が、変更電位差から表示電位差に戻される。これ により、表示素子は、上記の変位した階調レベル力もデータ電圧に応じた目的の階 調レベルにまで遷移する。それゆえ、従来の駆動方法に比べて、より速く目的の階調 レベルまで表示素子を遷移させることができる。  [0030] In the selection period, the first active element is turned on by the control means, so that the data voltage is applied to the pixel electrode via the data line. Thereby, the difference between the potential of the pixel electrode and the potential of the counter electrode is given to the display element as a display potential difference. At this time, in the first method, during the selection period, the potential difference between the pixel electrode and the counter electrode is returned from the changed potential difference to the display potential difference, so that the display element has the above-described shifted gradation level force data. Transitions to the target gradation level according to the voltage. In the second method, the potential difference between the pixel electrode and the counter electrode is returned from the change potential difference to the display potential difference during the non-selection period. As a result, the display element shifts the displaced gradation level force to the target gradation level corresponding to the data voltage. Therefore, the display element can be shifted to the target gradation level faster than the conventional driving method.
[0031] また、各走査線に、非選択期間に電位差変更期間が設定されるので、各画素電極 の電位変化は、 1フレーム期間に 1回または複数回第 2電位差変更期間が設けられ ること〖こなる。それゆえ、数 H毎に液晶容量へ印加する電圧を変える場合と比べ、画 素電極と対向電極との間の電位差を増大させる電位変化回数が少なくなるので、消 費電力の増大を抑えることができる。  In addition, since a potential difference change period is set in each scanning line in the non-selection period, the potential change of each pixel electrode is provided with the second potential difference change period once or a plurality of times in one frame period. It's a little bit. Therefore, compared to the case where the voltage applied to the liquid crystal capacitor is changed every several H, the number of potential changes that increase the potential difference between the pixel electrode and the counter electrode is reduced, so that the increase in power consumption can be suppressed. it can.
[0032] 上記表示装置において、上記制御手段は、上記電位差変更期間とその後の上記 選択期間との間の中間期間に、上記第 1能動素子を非導通状態とし、上記画素電極 と上記対向電極との間に上記表示電位差および上記変更電位差と異なる調整電位 差を与えることが好ましい。  [0032] In the display device, the control means sets the first active element in a non-conducting state in an intermediate period between the potential difference changing period and the subsequent selection period, and the pixel electrode, the counter electrode, It is preferable to provide an adjustment potential difference different from the display potential difference and the change potential difference during the period.
[0033] この構成において、低電圧側から高電圧側に変化するとき応答速度が遅ぐ高電 圧側から低電圧側に変化するとき応答速度が早い表示素子を用いる場合、以下の 2 つの場合が考えられる。ここでは、便宜上、選択期間、電位差変更期間、中間期間を それぞれ第 1期間、第 2期間、第 3期間と称する。また、変更電位差、調整電位差を それぞれ V2、 V3とする。 [0034] まず、第 1の場合は、 V2と V3とが I V2 I > I V3 Iという関係を満たし、第 2期間 に表示素子へ印加される電圧が、第 3期間に表示素子へ印加される電圧より大きくな る場合である。 [0033] In this configuration, the response speed is slow when changing from the low voltage side to the high voltage side. When using a display element having a fast response speed when changing from the high voltage side to the low voltage side, the following two cases may occur. Conceivable. Here, for convenience, the selection period, the potential difference changing period, and the intermediate period are referred to as a first period, a second period, and a third period, respectively. The change potential difference and adjustment potential difference are V2 and V3, respectively. [0034] First, in the first case, V2 and V3 satisfy the relationship I V2 I> I V3 I, and the voltage applied to the display element in the second period is applied to the display element in the third period. This is when the voltage is greater than
[0035] このように V2, V3を設定することにより、まず、高電圧を表示素子へ印加して、その 応答がより早い状態とし、次に所望の電圧を表示素子へ印カロして、通常より早い応答 速度を得て、表示を安定させることができる。  [0035] By setting V2 and V3 in this way, first, a high voltage is applied to the display element to make the response quicker, and then a desired voltage is applied to the display element. Faster response speed can be obtained and the display can be stabilized.
[0036] 第 2の場合は、 V2と V3とが | V2 |く | V3 |という関係を満たし、第 3期間に表示 素子へ印加される電圧が、第 2期間に表示素子へ印加される電圧より大きくする場合 である。 [0036] In the second case, V2 and V3 satisfy the relationship of | V2 | | | V3 |, and the voltage applied to the display element in the third period is the voltage applied to the display element in the second period. This is the case when making it larger.
[0037] 第 3期間が終われば次のフレームの第 1期間であるので、第 2期間に表示素子へ 所望の電圧を印カロして、表示を安定させたのち、第 3期間で一旦高電圧を印加し、そ の応答がより早い状態とし、再び第 1期間として、次のフレームの応答を早めることが できる。  [0037] Since the first period of the next frame is completed when the third period ends, a desired voltage is applied to the display element in the second period to stabilize the display, and then a high voltage is temporarily applied in the third period. Is applied to make the response quicker, and the response of the next frame can be accelerated as the first period again.
[0038] 逆に、高電圧側から低電圧側に変化するとき応答速度が遅ぐ低電圧側から高電 圧側に変化するとき応答速度が早い表示素子を用いる場合、以下の 2つのケースが 考えられる。  [0038] On the contrary, the response speed is slow when changing from the high voltage side to the low voltage side. When using a display element with a fast response speed when changing from the low voltage side to the high voltage side, the following two cases are considered. It is done.
[0039] 第 1の場合は、 V2と V3とが I V2 Iく I V3 Iという関係を満たし、第 2期間に表示 素子へ印加される電圧が、第 3期間に表示素子へ印加される電圧より低くする場合 である。  [0039] In the first case, V2 and V3 satisfy the relationship of I V2 I and I V3 I, and the voltage applied to the display element in the second period is the voltage applied to the display element in the third period. This is the case for lowering.
[0040] このように V2, V3を設定することにより、まず、表示素子へ低電圧を印加して、その 応答がより早い状態とし、次に表示素子へ所望の電圧を印カロして、通常より早い応答 速度を得て、表示を安定させることができる。  [0040] By setting V2 and V3 in this way, first, a low voltage is applied to the display element to make the response quicker, and then the desired voltage is applied to the display element. Faster response speed can be obtained and the display can be stabilized.
[0041] 第 2の場合は、 V2と V3とが I V2 I > I V3 Iという関係を満たし、第 3期間に表示 素子へ印加される電圧が、第 2期間に表示素子へ印加される電圧より小さくする場合 である。 [0041] In the second case, V2 and V3 satisfy the relationship of I V2 I> I V3 I, and the voltage applied to the display element in the third period is the voltage applied to the display element in the second period. This is the case when making it smaller.
[0042] 第 3期間が終われば次のフレームの第 1期間であるので、第 2期間に表示素子へ 所望の電圧を印カロして、表示を安定させた後、第 3期間で一旦低電圧を印カロして、 その応答がより早い状態とし、再び第 1期間として、次のフレームの応答を早めること ができる。 [0042] Since the first period of the next frame is completed when the third period ends, a desired voltage is applied to the display element in the second period to stabilize the display, and then a low voltage is temporarily applied in the third period. To make the response quicker, and again in the first period to speed up the response of the next frame. Can do.
[0043] 上記表示装置において、電位差変更期間 (第 2期間)で表示を安定させる場合、中 間期間(第 3期間)が 1フレーム期間に占める比率は 50%未満であることが好ましい。  In the above display device, when the display is stabilized in the potential difference change period (second period), the ratio of the intermediate period (third period) to one frame period is preferably less than 50%.
[0044] これは、静止画像を表示させたとき、第 3期間の表示が不安定になりやすいので、 その不安定な表示状態が占める割合を減らし、静止画像を表示させたときも表示品 位を保っためである。  [0044] This is because when the still image is displayed, the display in the third period is likely to be unstable. Therefore, the proportion of the unstable display state is reduced, and the display quality is also displayed when the still image is displayed. Is to keep.
[0045] 逆に、中間期間 (第 3期間)で表示を安定させる場合、電位差変更期間 (第 2期間) 力 S1フレーム期間に占める比率は 50%未満とすることが好ましい。  Conversely, when the display is stabilized in the intermediate period (third period), the ratio of the potential difference changing period (second period) force to the S1 frame period is preferably less than 50%.
[0046] これは、静止画像を表示させたとき、第 2期間の表示が不安定になりやすいので、 その不安定な表示状態が占める割合を減らし、静止画像を表示させたときも表示品 位を保っためである。  [0046] This is because when the still image is displayed, the display in the second period is likely to be unstable. Therefore, the proportion of the unstable display state is reduced, and the display quality is also displayed when the still image is displayed. Is to keep.
[0047] また、上記電位差変更期間と中間期間とを持つ場合、中間期間の後に、再度電位 変更期間を配置しても良い。これは、フレーム周波数が 60Hz未満で電位差変更期 間が 1フレーム期間に 1回しかないと、 60Hz未満のフリツ力が目立ってしまうためであ る。上記非選択期間に複数の電位変更期間を配置すれば、そのようなフリツ力を避け ることができるので、好ましい。  [0047] When the potential difference changing period and the intermediate period are included, the potential changing period may be arranged again after the intermediate period. This is because if the frame frequency is less than 60 Hz and the potential difference change period is only once per frame period, the flicker force of less than 60 Hz will be conspicuous. It is preferable to arrange a plurality of potential change periods in the non-selection period because such flickering force can be avoided.
[0048] 本発明の表示装置において画素電極と対向電極との間に与える電位差を各期間 で異ならせる構成としては下記の 2つの構成がある。  [0048] In the display device of the present invention, there are the following two configurations for differentiating the potential difference applied between the pixel electrode and the counter electrode in each period.
[0049] 第 1の構成は、上記各画素に設けられて電位配線に付与された電位を保持する電 位保持手段 (例えばコンデンサ)とを備え、上記制御手段が、上記電位配線に与える 電位を変化させることにより、上記変更電位差または上記調整電位差を上記表示電 位差と異なるように変化させる電位制御手段を有している。  [0049] The first configuration includes potential holding means (for example, a capacitor) that is provided in each pixel and holds the potential applied to the potential wiring, and the control means sets the potential applied to the potential wiring. A potential control means is provided for changing the change potential difference or the adjustment potential difference so as to be different from the display potential difference.
[0050] 第 2の構成は、上記各画素に設けられて電位配線に付与された電位を保持する電 位保持手段とを備え、上記画素電極と上記電位保持手段との間に配置された第 2能 動素子を備え、上記制御手段が、上記第 1の能動素子を非導通状態とし、上記第 2 能動素子を導通状態とすることにより、上記変更電位差または上記調整電位差を上 記表示電位差とは異なるように変化させる。  [0050] A second configuration includes a potential holding unit that is provided in each of the pixels and holds a potential applied to a potential wiring, and is arranged between the pixel electrode and the potential holding unit. Two active elements, and the control means sets the first active element in a non-conducting state and the second active element in a conducting state, whereby the change potential difference or the adjustment potential difference becomes the display potential difference. Change to be different.
[0051] ここでは、上記画素電極と対向電極の間に容量を Clcとし、上記電位保持手段とし て採用するコンデンサの容量を Csとし、対向電極の電位を Vcomとする。 [0051] Here, the capacitance between the pixel electrode and the counter electrode is Clc, and the potential holding means is used. The capacity of the capacitor used is Cs, and the potential of the counter electrode is Vcom.
[0052] 上記の第 1の構成によれば、制御手段によって、第 1期間 (選択期間)に電位配線 Eiに電位 VLを与えることで、画素電極へ電位 Vaを与える。このことにより、表示素子 へ電圧 VI =Va— Vcomを与えることができる。 [0052] According to the first configuration, the control unit applies the potential VL to the potential wiring Ei in the first period (selection period), thereby applying the potential Va to the pixel electrode. As a result, the voltage VI = Va- Vcom can be applied to the display element.
[0053] そして、第 2期間に電位配線 Eiの電位を VSに変化させれば、画素電極の電位 Vb は、電荷保存の法則によって、 [0053] Then, if the potential of the potential wiring Ei is changed to VS in the second period, the potential Vb of the pixel electrode is determined by the law of charge conservation.
Clc (Va— Vcom) +Cs (Va-VL)  Clc (Va— Vcom) + Cs (Va-VL)
= Clc (Vb-Vcom) +Cs (Vb-VS)  = Clc (Vb-Vcom) + Cs (Vb-VS)
という関係が導かれる。この関係から、電位 Vbは、  The relationship is derived. From this relationship, the potential Vb is
Vb=Va+Cs (VS -VL) / (Clc + Cs) …ひ)  Vb = Va + Cs (VS -VL) / (Clc + Cs)…
と表される。これにより、表示素子へ付与される電位差 V2は、  It is expressed. As a result, the potential difference V2 applied to the display element is
V2=Vb-Vcom  V2 = Vb-Vcom
=Va-Vcom + Cs (VS— VL) / (Clc + Cs) · · · (2)  = Va-Vcom + Cs (VS— VL) / (Clc + Cs) · · · (2)
と表される。  It is expressed.
[0054] また、第 3期間に電位配線 Eiの電位を VTに変化させれば、画素電極の電位 Vcは 、 | 様に、  [0054] Further, if the potential of the potential wiring Ei is changed to VT in the third period, the potential Vc of the pixel electrode becomes
Clc (Va— Vcom) +Cs (Va-VL)  Clc (Va— Vcom) + Cs (Va-VL)
= Clc (Vc Vcom) +Cs (Vc- VT)  = Clc (Vc Vcom) + Cs (Vc- VT)
という関係が導かれる。この関係から、電位 Vcは、  The relationship is derived. From this relationship, the potential Vc is
Vc=Va + Cs (VT-VL) / (Clc + Cs) … )  Vc = Va + Cs (VT-VL) / (Clc + Cs)…)
と表される。これにより、表示素子へ付与される電位差 V3は、  It is expressed. As a result, the potential difference V3 applied to the display element is
V3=Vc-Vcom  V3 = Vc-Vcom
= Va - Vcom + Cs ( VT - VL) / (Clc + Cs) "- (4)  = Va-Vcom + Cs (VT-VL) / (Clc + Cs) "-(4)
と表される。  It is expressed.
[0055] 即ち、電位配線 Eiの電位を電位 VLから電位 VSや VTへ変化させることで、上記電 位差 V2または V3を電位差 VIとは異なるよう変化させることができる。  That is, by changing the potential of the potential wiring Ei from the potential VL to the potential VS or VT, the potential difference V2 or V3 can be changed to be different from the potential difference VI.
[0056] なお、応答速度改善のためには、第 2期間の電圧 V2と第 3期間の電圧との電位差 をより大きくすることが好ましい。そのためには、最も実行電圧の低い画素では、電圧 V2と電圧 V3とが、対向電極の電位を基準として、逆極性となるほど電圧 VSと電圧 V Tとの差を広げることが好ま 、。 [0056] In order to improve the response speed, it is preferable to increase the potential difference between the voltage V2 in the second period and the voltage in the third period. To do this, the pixel with the lowest effective voltage It is preferable to increase the difference between the voltage VS and the voltage VT as V2 and voltage V3 are opposite in polarity with respect to the potential of the counter electrode.
[0057] また、 i番目の走査線に対応した画素 (Aij)の第 1期間のタイミングと、 k(i≠k)番目 の走査線に対応した画素 (Akj)の第 1期間のタイミングとは異なる。このため、画素( Aij)に対応した電位配線 (Ei)と、画素 (Akj)に対応した電位配線 (Ek)では第 2期 間と第 3期間となるタイミングが異なる。従って、各電位配線 (Ei)毎に駆動回路を配 置することが好ましい。これは、複数の電位配線 Eiを短絡させて 1つの駆動回路に接 続されるのではなぐ図 1に示すように、電位配線 Eiの各々が電位配線駆動回路 10 に接続されているということである。なお、各電位配線 Eiが 1つのアナログスィッチ回 路 14に繋がっている力 このアナログスィッチ回路 14は、各電位配線 Ei毎に 1つず つ接続されるアナログスィッチを備えて 、る。  [0057] The timing of the first period of the pixel (Aij) corresponding to the i-th scanning line and the timing of the first period of the pixel (Akj) corresponding to the k (i ≠ k) -th scanning line Different. For this reason, the timing of the second period and the third period differs between the potential wiring (Ei) corresponding to the pixel (Aij) and the potential wiring (Ek) corresponding to the pixel (Akj). Therefore, it is preferable to arrange a drive circuit for each potential wiring (Ei). This is because a plurality of potential wirings Ei are not short-circuited and connected to one drive circuit, but each potential wiring Ei is connected to a potential wiring drive circuit 10 as shown in FIG. is there. Note that each potential wiring Ei is connected to one analog switch circuit 14. This analog switch circuit 14 includes an analog switch connected to each potential wiring Ei.
[0058] 第 2の構成でも、画素電極と対向電極との間に容量を Clcとし、上記電位保持手段 として採用するコンデンサの容量を Csとし、対向電極の電位を Vcomとする。  Also in the second configuration, the capacitance between the pixel electrode and the counter electrode is Clc, the capacitance of the capacitor employed as the potential holding means is Cs, and the potential of the counter electrode is Vcom.
[0059] 上記の第 2の構成によれば、第 1期間 (選択期間)に第 2能動素子を非導通状態と して、画素電極へ電位 Vaを与える。このことにより、コンデンサの電位を保持し、表示 素子へ電圧 VI =Va— Vcomを与えることができる。  [0059] According to the second configuration described above, the second active element is turned off in the first period (selection period), and the potential Va is applied to the pixel electrode. As a result, the potential of the capacitor can be maintained and the voltage VI = Va-Vcom can be applied to the display element.
[0060] そこで、コンデンサの電位差を Vz— VLとして(当該コンデンサの画素電極側の端 子の電位力Vzであり、反対側の端子の電位が VLである)、第 2期間または第 3期間 に第 2能動素子を導通状態とすれば、画素電極の電位 Vbは、  [0060] Therefore, the potential difference of the capacitor is defined as Vz-VL (the potential force Vz of the terminal on the pixel electrode side of the capacitor and the potential of the terminal on the opposite side is VL), during the second period or the third period. If the second active element is made conductive, the potential Vb of the pixel electrode is
Clc (Va— Vcom) +Cs (Vz-VL)  Clc (Va— Vcom) + Cs (Vz-VL)
= Clc (Vb Vcom) + Cs ( Vb— VL)  = Clc (Vb Vcom) + Cs (Vb— VL)
という関係が導かれる。この関係から、電位 Vbは、  The relationship is derived. From this relationship, the potential Vb is
Vb = (Clc · Va + Cs · Vz) / (Clc + Cs) · · · ( 5)  Vb = (ClcVa + CsVz) / (Clc + Cs) (5)
と表される。従って、表示素子へ電位差 V2 (または V3)は、  It is expressed. Therefore, the potential difference V2 (or V3) to the display element is
V2=Vb-Vcom  V2 = Vb-Vcom
= (Clc · Va + Cs · Vz) / (Clc + Cs) _ Vconr " (6)  = (Clc · Va + Cs · Vz) / (Clc + Cs) _ Vconr "(6)
と表される。  It is expressed.
[0061] 即ち、第 2能動素子を非導通状態から導通状態へ変化させることで、電位差 V2ま たは V3を電位差 VIとは異なるよう変化させることができる。 That is, by changing the second active element from the non-conductive state to the conductive state, the potential difference V2 is reduced. Alternatively, V3 can be changed to be different from the potential difference VI.
[0062] また、上記第 2の構成の変形例として、第 2能動素子が、データ線と、そのデータ線 を駆動するための駆動回路との間に配置される構成もある。 [0062] As a modification of the second configuration, there is a configuration in which the second active element is arranged between a data line and a drive circuit for driving the data line.
[0063] 上記の構成では、第 3期間に上記第 1能動素子を非導通状態とし、上記第 2能動 素子を導通状態とし、駆動回路から電荷をデータ配線に供給する。その後、第 1期間 に上記第 2能動素子を非導通状態とし、第 1の能動素子を導通状態とする。 In the above configuration, in the third period, the first active element is turned off, the second active element is turned on, and electric charges are supplied from the drive circuit to the data wiring. Thereafter, in the first period, the second active element is turned off and the first active element is turned on.
[0064] この場合、第 1期間の画素電極の電位 Vbは、データ線の浮遊容量を Cdとして、そ れら浮遊容量が対向電極との間に存在すると見なし、第 3期間にデータ線へ与えた 電圧を Vaとし、画素電極の電位を Vzとすると。 [0064] In this case, the potential Vb of the pixel electrode in the first period is given to the data line in the third period, assuming that the floating capacity of the data line is Cd, and that the floating capacity exists between the counter electrode. If the voltage is Va and the pixel electrode potential is Vz.
[0065] Cd (Va-Vcom) +Clc (Vz-Vcom) +Cs (Vz— VL) [0065] Cd (Va-Vcom) + Clc (Vz-Vcom) + Cs (Vz— VL)
= Cd (Vb-Vcom) +Clc (Vb-Vcom) +Cs (Vb—VL)  = Cd (Vb-Vcom) + Clc (Vb-Vcom) + Cs (Vb—VL)
という関係が導かれる。この関係から、電位 Vbは、  The relationship is derived. From this relationship, the potential Vb is
Vb= (Cd'Va+ (Clc + Cs)Vz)Z(Cd+Clc + Cs "(7)  Vb = (Cd'Va + (Clc + Cs) Vz) Z (Cd + Clc + Cs "(7)
で表される。  It is represented by
[0066] このように、データ配線と駆動回路との間に第 2能動素子を配置しても、同様な結果 が得られる。  As described above, the same result can be obtained even when the second active element is arranged between the data line and the drive circuit.
発明の効果  The invention's effect
[0067] 以上のように、本発明に係る表示装置は、フレームメモリ等のパネルに外付けする 素子を用いることなぐ選択期間である第 1期間後の第 2期間または第 3期間に表示 素子へ印加される電圧を変化させ、応答速度を改善できる。し力も、表示装置のコス トアップ要因を排除できる。  [0067] As described above, the display device according to the present invention is connected to the display element in the second period or the third period after the first period, which is a selection period without using an element externally attached to a panel such as a frame memory. By changing the applied voltage, the response speed can be improved. In addition, the cost of the display device can be eliminated.
[0068] また、表示素子へ印加する電圧を変化させる構成として、上記の第 1の構成では電 位配線へ印加する電位を変動させている。そこで、この電位変動力 1フレーム周期 に数回で済むよう設定することで、消費電力の増加を抑えられるので好ま 、。  [0068] Further, as a configuration for changing the voltage applied to the display element, in the first configuration described above, the potential applied to the potential wiring is varied. Therefore, it is preferable to set the potential fluctuation force so that it only takes a few times per frame period, since the increase in power consumption can be suppressed.
[0069] また、表示素子へ印加する電圧を変化させる構成として、上記の第 2の構成では第 2能動素子の導通状態を制御している。第 2能動素子 (例えば MOSトランジスタ)の 導通状態は、例えば、そのソース'ゲート端子間電圧で決まるので、ゲート端子電圧 を 1フレーム期間に数回変化させれば良い。このため、消費電力の増加を抑えられる ので好ましい。 [0069] As a configuration for changing the voltage applied to the display element, the conduction state of the second active element is controlled in the second configuration. The conduction state of the second active element (for example, a MOS transistor) is determined by, for example, the voltage between the source and the gate terminal. Therefore, the gate terminal voltage may be changed several times during one frame period. For this reason, an increase in power consumption can be suppressed. Therefore, it is preferable.
[0070] このように本発明によれば、本発明の目的を達し、表示装置のコストアップや消費 電力を抑えつつ、表示素子の応答速度を改善できると 、う効果を奏する。  As described above, according to the present invention, it is possible to achieve the object of the present invention and to improve the response speed of the display element while suppressing the increase in cost and power consumption of the display device.
図面の簡単な説明  Brief Description of Drawings
[0071] [図 1]本発明の第 1の実施の形態に係る表示装置の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of a display device according to a first embodiment of the present invention.
[図 2]上記表示装置における画素の回路構成を示す回路図である。  FIG. 2 is a circuit diagram showing a circuit configuration of a pixel in the display device.
[図 3]上記表示装置の動作を示すタイミングチャートである。  FIG. 3 is a timing chart showing the operation of the display device.
[図 4]階調が遷移する前後の上記画素に設けられた表示素子の第 1の実施の形態の 駆動方法が適用されて!、な 、場合の応答速度の変化を示す図である。  FIG. 4 is a diagram showing a change in response speed in the case where the driving method of the first embodiment of the display element provided in the pixel before and after the gradation transition is applied!
[図 5]階調が遷移する前後の上記画素に設けられた表示素子の第 1の実施の形態の 駆動方法が適用されて!、る場合の応答速度の変化を示す図である。  FIG. 5 is a diagram showing a change in response speed when the driving method of the first embodiment of the display element provided in the pixel before and after the gradation transition is applied!
[図 6]本発明の第 2の実施の形態に係る表示装置の動作を示すタイミングチャートで ある。  FIG. 6 is a timing chart showing the operation of the display device according to the second embodiment of the present invention.
[図 7]本発明の第 3の実施の形態に係る表示装置の構成を示すブロック図である。  FIG. 7 is a block diagram showing a configuration of a display device according to a third embodiment of the present invention.
[図 8]図 7の表示装置の動作を示すタイミングチャートである。  8 is a timing chart showing the operation of the display device of FIG.
[図 9]本発明の第 4の実施の形態に係る表示装置の構成を示すブロック図である。  FIG. 9 is a block diagram showing a configuration of a display device according to a fourth embodiment of the present invention.
[図 10]図 9の表示装置における画素の回路構成を示す回路図である。  10 is a circuit diagram showing a circuit configuration of a pixel in the display device of FIG.
[図 11]図 9の表示装置の動作を示すタイミングチャートである。  FIG. 11 is a timing chart showing the operation of the display device of FIG.
[図 12]図 9の表示装置における画素の他の回路構成を示す回路図である。  12 is a circuit diagram showing another circuit configuration of the pixel in the display device of FIG.
[図 13]図 12の画素の構造を示す断面図である。  FIG. 13 is a cross-sectional view showing the structure of the pixel in FIG.
[図 14]従来の表示装置の構成を示すブロック図である。  FIG. 14 is a block diagram showing a configuration of a conventional display device.
[図 15]図 14の表示装置においてオーバーシュート駆動を行うために用いられるテー ブルに格納される階調データを示す図である。  FIG. 15 is a diagram showing gradation data stored in a table used for overshoot driving in the display device of FIG.
[図 16]図 14の表示装置における 1フレーム内における階調の変化を示す図である。  16 is a diagram showing a change in gradation within one frame in the display device of FIG.
[図 17]従来の他の表示装置の表示パネルの構成を示す回路図である。  FIG. 17 is a circuit diagram showing a configuration of a display panel of another conventional display device.
[図 18(a)]図 17の表示装置の各部に与えられる電位の変化を示す波形図である。  FIG. 18 (a) is a waveform diagram showing a change in potential applied to each part of the display device of FIG.
[図 18(b)]図 17の表示装置のゲート配線に与えられる電位の変化を示す波形図であ る。 [図 18(c)]図 17の表示装置の各画素における液晶に印加される電圧の変化を示す波 形図である。 FIG. 18 (b) is a waveform diagram showing a change in potential applied to the gate wiring of the display device of FIG. FIG. 18 (c) is a waveform diagram showing a change in voltage applied to the liquid crystal in each pixel of the display device of FIG.
[図 19]従来のさらに他の表示装置の表示パネルの構成を示す回路図である。  FIG. 19 is a circuit diagram showing a configuration of a display panel of still another conventional display device.
[図 20(a)]図 19の表示装置の画素電極に印加される電圧の変化を示す波形図である  FIG. 20 (a) is a waveform diagram showing a change in voltage applied to the pixel electrode of the display device of FIG.
[図 20(b)]図 19の表示装置の補助容量線の電位の変化を示す波形図である。 FIG. 20 (b) is a waveform diagram showing a change in potential of the storage capacitor line of the display device of FIG.
圆 21]本発明の第 1の実施の形態に係る表示装置の他の動作を示すタイミングチヤ ートである。 21] A timing chart showing another operation of the display device according to the first embodiment of the present invention.
圆 22]本発明の第 1の実施の形態に係る表示装置のさらに他の動作を示すタイミン グチャートである。 FIG. 22 is a timing chart showing still another operation of the display device according to the first embodiment of the present invention.
[図 23]図 22のタイミングチャートによる液晶透過特性の変化を示すグラフである。  FIG. 23 is a graph showing changes in liquid crystal transmission characteristics according to the timing chart of FIG.
[図 24]従来技術および第 1の実施の形態に係る表示装置の駆動波形の応答時間を 比較した図である。 FIG. 24 is a diagram comparing response times of drive waveforms of the display device according to the related art and the first embodiment.
圆 25]本発明の第 1の実施の形態に係る表示装置の電位配線の電位変化をより大き く設定するための動作を示すタイミングチャートである。 25] A timing chart showing an operation for setting a larger potential change of the potential wiring of the display device according to the first embodiment of the present invention.
圆 26]本発明の第 1の実施の形態に係る表示装置の電位配線の電位変化をより大き く設定するための他の動作を示すタイミングチャートである。 FIG. 26 is a timing chart showing another operation for setting the potential change of the potential wiring of the display device according to the first embodiment of the present invention larger.
圆 27]本発明の第 1の実施の形態に係る表示装置の電位配線の電位変化をより大き く設定するためのさらに他の動作を示すタイミングチャートである。 27] FIG. 27 is a timing chart showing still another operation for setting a larger potential change in the potential wiring of the display device according to the first embodiment of the present invention.
圆 28]本発明の第 2の実施の形態に係る表示装置の他の動作を示すタイミングチヤ ートである。 圆 28] is a timing chart showing another operation of the display device according to the second embodiment of the present invention.
圆 29]本発明の第 2の実施の形態に係る表示装置のさらに他の動作を示すタイミン グチャートである。 FIG. 29 is a timing chart showing still another operation of the display device according to the second embodiment of the present invention.
圆 30]本発明の第 5の実施の形態に係る表示装置の構成を示すブロック図である。 圆 31]上記表示装置における画素およびアナログスィッチの回路構成を示す回路図 である。 FIG. 30 is a block diagram showing a configuration of a display device according to a fifth embodiment of the present invention. [31] FIG. 31 is a circuit diagram showing a circuit configuration of a pixel and an analog switch in the display device.
[図 32]図 30の表示装置の動作を示すタイミングチャートである。  32 is a timing chart showing the operation of the display device of FIG.
符号の説明 1 表示装置 Explanation of symbols 1 Display device
2 ソースドライバ回路  2 Source driver circuit
3 ゲートドライバ回路 (制御手段)  3 Gate driver circuit (control means)
10 電位配線駆動回路 (電位制御手段)  10 Potential wiring drive circuit (potential control means)
15 表示装置  15 Display device
16 TFT (第 1能動素子)  16 TFT (first active element)
17 画素電極  17 Pixel electrode
18 表示装置  18 Display device
25 TFT (第 2能動素子)  25 TFT (second active element)
51 表示装置  51 Display device
52 ソースドライバ回路 (制御手段)  52 Source driver circuit (control means)
53 アナログスィッチ  53 Analog switches
55 TFT (第 2能動素子)  55 TFT (second active element)
Aij 画素  Aij pixel
COM 共通電極(対向電極)  COM common electrode (counter electrode)
Cs コンデンサ (電位保持手段)  Cs capacitor (potential holding means)
Ei 電位配線  Ei potential wiring
Gi ゲート配線 (走査線)  Gi gate wiring (scanning line)
Pi 制御配線  Pi control wiring
LC 表示素子  LC display element
Sj ソース配線 (データ線)  Sj Source wiring (data line)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0073] 本発明の実施の形態について図 1ないし図 13および図 21ないし図 32に基づいて 説明すれば、以下の通りである。  [0073] Embodiments of the present invention will be described below with reference to Figs. 1 to 13 and Figs. 21 to 32.
[0074] 〔実施の形態 1〕 [Embodiment 1]
本実施の形態 1では、前述の第 1の構成を実現する表示装置について説明する。  In the first embodiment, a display device that realizes the first configuration described above will be described.
[0075] 図 1は、本実施の形態で用いる表示装置 1を示している。 FIG. 1 shows a display device 1 used in the present embodiment.
[0076] 図 1に示すように、表示装置 1は、ソースドライバ回路 2、ゲートドライバ回路 3、温度 センサ 8、表示パネル 9および電位配線駆動回路 10を備えて 、る。 [0076] As shown in FIG. 1, the display device 1 includes a source driver circuit 2, a gate driver circuit 3, and a temperature. A sensor 8, a display panel 9, and a potential wiring drive circuit 10 are provided.
[0077] 表示パネル 9は、 n本のゲート配線 Gi(i= l〜n)と、 n本の電位配線 Ei (i= l〜n)と 、 m本のソース配線 Sj (j = l〜m)と、 n X m個の画素 Aijとを含んでいる。画素 Aijは、 ゲート配線 Giとソース配線 ¾とが交差する付近に配置されており、図 2に示すように、 第 1能動素子である薄膜トランジスタの TFT (Thin Film Transistor) 16と、表示素子 L Cと、電位保持手段であるコンデンサ Csとから構成される。 [0077] The display panel 9 includes n gate wirings Gi (i = l to n), n potential wirings Ei (i = l to n), and m source wirings Sj (j = l to m ) And n X m pixels Aij. The pixel Aij is arranged in the vicinity of the intersection of the gate wiring Gi and the source wiring ¾. As shown in FIG. 2, the thin film transistor TFT (Thin Film Transistor) 16 which is the first active element, and the display element LC And a capacitor Cs as potential holding means.
[0078] TFT16のゲート端子はゲート配線 Giに接続され、ソース端子はソース配線 ¾に接 続され、ドレイン端子は画素電極 17へ接続される。この画素電極 17が表示素子とコ ンデンサの一方の端子となっており、表示素子 LCの他方端子は、画素電極 17に対 向して配置される共通電極 COM (対向電極)に接続され、コンデンサ Csの他方端子 は電位配線 Eiに接続される。 The gate terminal of the TFT 16 is connected to the gate wiring Gi, the source terminal is connected to the source wiring layer, and the drain terminal is connected to the pixel electrode 17. The pixel electrode 17 serves as one terminal of the display element and the capacitor, and the other terminal of the display element LC is connected to a common electrode COM (counter electrode) disposed facing the pixel electrode 17 to be connected to the capacitor. The other terminal of Cs is connected to potential wiring Ei.
[0079] なお、本実施の形態では表示素子 LCとして液晶表示素子を想定して 、るが、その 他の電気光学素子 (例えばエレクト口クロミック素子、有機 EL素子)でも、本発明の手 段が適用可能である。 In the present embodiment, a liquid crystal display element is assumed as the display element LC. However, other electro-optical elements (for example, an electoric chromic element and an organic EL element) also have the means of the present invention. Applicable.
[0080] ソースドライバ回路 2は、 mビットのシフトレジスタ 4、 m X 6ビットのレジスタ 5、 m X 6 ビットのラッチ 6および m個の 6ビット D/A変換回路(図中、 D/A) 7を有して!/、る。  [0080] The source driver circuit 2 includes an m-bit shift register 4, an m X 6-bit register 5, an m X 6-bit latch 6 and m 6-bit D / A conversion circuits (D / A in the figure). Have 7! /
[0081] このソースドライバ回路 2においては、まず、 mビットのシフトレジスタ 4の先頭へスタ ートパルス SPが入力される。そのスタートパルス SPは、クロック elkのタイミングでシフ トレジスタ 4内を転送され、レジスタ 5にタイミングパルス SSPとして出力される。 m X 6 ビットのレジスタ 5は、シフトレジスタ 4から送られてくるタイミングパルス SSPにより、入 力された 6ビットのデータ Dxを対応するソース配線 Sjの位置に保持する。ラッチ 6は、 この保持された m X 6ビットのデータ Dxをラッチパルス LPのタイミングで取り込み、 D ZA変換回路 7へ出力する。 DZA変換回路 7は、入力された 6ビットのデータ Dxに 対応した電位 (アナログのデータ Daij)をソース配線 Sjに与える。このデータ Daijは、 このソースドライバ回路 2から図 3に示すタイミングでソース配線 ¾へ供給される。  In the source driver circuit 2, first, a start pulse SP is input to the head of the m-bit shift register 4. The start pulse SP is transferred in the shift register 4 at the timing of the clock elk and output to the register 5 as the timing pulse SSP. The m X 6-bit register 5 holds the input 6-bit data Dx at the position of the corresponding source wiring Sj by the timing pulse SSP sent from the shift register 4. The latch 6 fetches the held m × 6-bit data Dx at the timing of the latch pulse LP and outputs it to the DZA conversion circuit 7. The DZA conversion circuit 7 applies a potential (analog data Daij) corresponding to the input 6-bit data Dx to the source wiring Sj. This data Daij is supplied from the source driver circuit 2 to the source wiring example at the timing shown in FIG.
[0082] ゲートドライバ回路 3 (制御手段)は、シフトレジスタ 11および出力回路 12 (論理回 路とバッファとで構成される)を含んで 、る。  The gate driver circuit 3 (control means) includes a shift register 11 and an output circuit 12 (consisting of a logic circuit and a buffer).
[0083] このゲートドライバ回路 3には、図 3に示すスタートパルス YIと、同図に示すクロック y ckとが入力される。この入力されたスタートパルス YIは、クロック yckのタイミングでシ フトレジスタ 11内を転送されて各出力段から出力される。出力回路 12の論理回路は 、シフトレジスタ 11の各出力段から出力されたパルスと外部力 入力された制御信号 SLとで論理積演算 (AND)を行う。その論理積のパルスは、出力回路 12のバッファ を経て、図 3に示すように各ゲート配線 Giへゲート信号 VGi (同図には VG1〜VG4 のみを示す)として出力される。 The gate driver circuit 3 includes a start pulse YI shown in FIG. 3 and a clock y shown in FIG. ck is input. The input start pulse YI is transferred through the shift register 11 at the timing of the clock yck and output from each output stage. The logic circuit of the output circuit 12 performs a logical product operation (AND) on the pulse output from each output stage of the shift register 11 and the control signal SL input from the external force. The logical product pulse is output as a gate signal VGi (only VG1 to VG4 are shown in the figure) to each gate wiring Gi as shown in FIG. 3 through the buffer of the output circuit 12.
[0084] これにより、時間 2t0〜4t0の間、ゲート配線 G1にゲート信号 VG1として Hレベル の選択電圧 GHが印加される。この結果、ゲート配線 G1に接続された画素 Alj (Al l 〜Alm)における TFT16が ON状態となる。そして、この間、データ Daljがソース配 線 ¾から TFT16を介して液晶素子 LCに供給される。  Accordingly, the H-level selection voltage GH is applied as the gate signal VG1 to the gate line G1 for a period of time 2t0 to 4t0. As a result, the TFTs 16 in the pixels Alj (Al 1 to Alm) connected to the gate wiring G1 are turned on. During this time, data Dalj is supplied from the source wiring line to the liquid crystal element LC via the TFT 16.
[0085] また、電位配線駆動回路 10 (電位制御手段)は、シフトレジスタ 13およびアナログ スィッチ回路 14から構成される。このシフトレジスタ 13には、図 3に示す選択パルス Z Iとクロック yckとが入力される。この入力された選択パルス ZIは、クロック yckのタイミ ングでシフトレジスタ 13内を転送されて各出力段から出力される。アナログスィッチ回 路 14は、シフトレジスタ 13の各出力段から出力されるノ ルスと外部力も入力された図 3に示す制御信号 SEとで論理演算を行う。その演算結果で得られた図 3に示す電位 VEi (同図には VE1〜VE4のみを示す)は、各電位配線 Eiへ与えられる。  In addition, the potential wiring drive circuit 10 (potential control means) includes a shift register 13 and an analog switch circuit 14. The selection register Z I and the clock yck shown in FIG. 3 are input to the shift register 13. The input selection pulse ZI is transferred through the shift register 13 at the timing of the clock yck and output from each output stage. The analog switch circuit 14 performs a logical operation with the control signal SE shown in FIG. 3 into which the noise output from each output stage of the shift register 13 and the external force are also input. The potential VEi shown in FIG. 3 obtained from the calculation result (only VE1 to VE4 is shown in the figure) is applied to each potential wiring Ei.
[0086] なお、このアナログスィッチ回路 14では、表示素子 LCへ印加される電圧が交流と なるように以下の表 1に示す電位を出力する。  Note that the analog switch circuit 14 outputs the potentials shown in Table 1 below so that the voltage applied to the display element LC becomes an alternating current.
[0087] [表 1]  [0087] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
これにより、図 3に示す電位 VE1〜VE4のように、制御信号 SEがローである時間 2 tOまでは各電位配線 Ei〖こ電位 VSaが付与される。また、時間 2t0から各電位配線 Ei に電位 VSbが付与される力 電位配線 E1については、第 1期間(時間 2t0〜4t0)で ある選択期間となるので電位 VLbが付与される。なお、本実施の形態では VLb=V Sbとする。また、その後の電位差変更期間である第 2期間(時間 6t0〜12t0)では、 電位 VTbが電位配線 Eiへ付与される。そして、その後の中間期間である第 3期間( 時間 12t0以降)では、電位 VSbが電位配線 Eiへ付与される。 As a result, like the potentials VE1 to VE4 shown in FIG. 3, each potential line Ei is applied to the potential VSa until the time 2 tO when the control signal SE is low. Further, the force potential wiring E1 to which the potential VSb is applied to each potential wiring Ei from time 2t0 is the selection period which is the first period (time 2t0 to 4t0), and therefore the potential VLb is applied. In this embodiment, VLb = V Sb. In the second period (time 6t0 to 12t0), which is the subsequent potential difference change period, the potential VTb is applied to the potential wiring Ei. Then, in the third period (after time 12t0), which is an intermediate period thereafter, the potential VSb is applied to the potential wiring Ei.
[0089] この結果、画素 Aljの画素電極 17の電位 VAljは、図 3に示すように、時間 2t0〜4 tOに電位 Valjとなり、時間 6t0〜12t0に電位 Vbljとなり、時間 12t0以降に電位 Vc ljとなる。 As a result, as shown in FIG. 3, the potential VAlj of the pixel electrode 17 of the pixel Alj becomes the potential Valj at the time 2t0 to 4tO, becomes the potential Vblj at the time 6t0 to 12t0, and becomes the potential Vclj after the time 12t0. It becomes.
[0090] ここで、本実施の形態では、画素電極 17の電位 VAljを時間 12t0以降に電位 Va ljに戻すべきである力 電位 Vcljとするのは次の理由による。図 2に示すゲート配線 Giと画素電極 17との間には、浮遊容量が存在する。このため、ゲート配線 Giが電位 GHである選択期間の画素電極 17の電圧と、その後のゲート配線 Giが電位 GLであ る非選択期間の同電圧とでは、浮遊容量を通したゲート配線 Giの電圧変化の影響 により、画素電極 17の電圧が多少変化する。この変化量の補正のため、画素電極 1 7の電位 V A ljを電位 Va ljではなく電位 Vc 1 jとする。  Here, in the present embodiment, the potential VAlj of the pixel electrode 17 is set to the force potential Vclj that should be returned to the potential Valj after the time 12t0 for the following reason. A stray capacitance exists between the gate wiring Gi and the pixel electrode 17 shown in FIG. Therefore, the voltage of the pixel electrode 17 in the selection period in which the gate wiring Gi is at the potential GH and the same voltage in the non-selection period in which the gate wiring Gi is at the potential GL are used for the gate wiring Gi passing through the stray capacitance. The voltage of the pixel electrode 17 slightly changes due to the influence of the voltage change. In order to correct this variation, the potential V A lj of the pixel electrode 17 is set to the potential Vc 1 j instead of the potential Valj.
[0091] ここで、図 4に、階調が遷移する前後の表示素子 LCの応答速度の変化を示す。  Here, FIG. 4 shows a change in the response speed of the display element LC before and after the gradation transition.
[0092] 図 4に示すように、この表示素子 LCは、遷移前の階調が 0に近 、ほど、同じ階調に 遷移するための応答速度が遅くなる(応答時間 Tl)。なお、本表示素子 LCは印加す る電圧の絶対値が大き 、ほど、階調レベルが大きくなる。  As shown in FIG. 4, in the display element LC, the response speed for transitioning to the same gradation becomes slower as the gradation before transition becomes closer to 0 (response time Tl). In this display element LC, the gradation level increases as the absolute value of the applied voltage increases.
[0093] そこで、上記第 2期間に画素電極へ付与される電位 Vbljと、上記第 3期間に画素 電極へ付与される電位 Vc ljとの間に、 [0093] Therefore, between the the potential Vblj applied to the pixel electrode in the second period, the potential Vc lj applied to the third period to the pixel electrode,
I Vblj -Vcom I > I Vclj -Vcom |  I Vblj -Vcom I> I Vclj -Vcom |
という関係を成立させる。このことにより、画素 Aljの遷移前の階調レベルが 0階調で あつたとしても、図 5の(1)に示すように、この第 2期間に画素 Aljへ 255階調に応じ た電圧を印加できる (応答時間 Ta)。そして、階調レベルを一旦高階調側に遷移させ てから、図 5の(2)に示すように、目的とする階調へ向けて遷移させられるので (応答 時間 Tb)、応答時間が Ta+Tbとなる。  The relationship is established. As a result, even if the gradation level before transition of the pixel Alj is 0 gradation, as shown in (1) of FIG. 5, a voltage corresponding to 255 gradations is applied to the pixel Alj during this second period. Can be applied (response time Ta). Then, once the gradation level is shifted to the higher gradation side, as shown in (2) of Fig. 5, the transition is made toward the target gradation (response time Tb). Tb.
[0094] この応答時間 Ta+Tbは、図 4に示す遷移前の階調レベルから直接遷移させたとき の応答時間 T1より小さくできる。従って、前述の第 1の構成を採用すれば、応答速度 を改善できる。 [0095] この第 2期間に画素 Aljの表示素子 LCへ印加される電圧は、(2)式より、 [0094] This response time Ta + Tb can be made shorter than the response time T1 when the transition is made directly from the gray level before transition shown in FIG. Therefore, the response speed can be improved by adopting the first configuration described above. [0095] The voltage applied to the display element LC of the pixel Alj in this second period is expressed by the following equation (2):
Vblj— Vcom  Vblj— Vcom
=Valj -Vcom+Cs (VTb-VLb) / (Clc + Cs)  = Valj -Vcom + Cs (VTb-VLb) / (Clc + Cs)
と表される。ここで、表示素子 LCの容量は Clcであり、コンデンサ Csの容量は Csであ り、共通電極 COMの電位は共通電位 Vcomであるとする。  It is expressed. Here, the capacitance of the display element LC is Clc, the capacitance of the capacitor Cs is Cs, and the potential of the common electrode COM is the common potential Vcom.
[0096] また、第 3期間に画素 Aljの表示素子 LCへ印加される電圧は (4)式より、 [0096] Further, the voltage applied to the display element LC of the pixel Alj in the third period is expressed by the following equation (4):
Vc上;)一 Vcom  On Vc;) one Vcom
=Valj -Vcom+Cs (VSb-VLb) / (Clc + Cs)  = Valj -Vcom + Cs (VSb-VLb) / (Clc + Cs)
と表される。  It is expressed.
[0097] 時間 2t0以降の Valj— Vcomを正電圧とすれば、  [0097] If Valj—Vcom after 2t0 is positive,
| Vblj -Vcom I I Vclj -Vcom |  | Vblj -Vcom I I Vclj -Vcom |
= Cs (VTb-VSb) / (Clc + Cs)  = Cs (VTb-VSb) / (Clc + Cs)
という関係が成り立つ。即ち、  This relationship holds. That is,
I Vblj -Vcom I > I Vclj -Vcom |  I Vblj -Vcom I> I Vclj -Vcom |
と 、う関係が成り立つためには、 VTb > VSbであることが必要である。  In order for the relationship to hold, it is necessary that VTb> VSb.
[0098] なお、本実施の形態では第 2期間の長さは第 3期間の長さより短い。  [0098] In the present embodiment, the length of the second period is shorter than the length of the third period.
これは、図 4と図 5との比較力 判る通り、本実施の形態では、表示素子 LCへ第 3期 間に本来遷移すべき階調電圧を与えている。  As can be seen from the comparative power of FIG. 4 and FIG. 5, in the present embodiment, a gradation voltage that should originally transition to the third period is applied to the display element LC.
[0099] このため、第 2期間では本来表示すべき階調より大きな階調電圧を与えていること になる。従って、その電圧印加時間が長くなるほど、階調表示誤差が大きくなる可能 性があるので、第 2期間が 1フレーム期間に占める割合は 50%未満としている。ある いは、第 2期間が非選択期間に占める割合は 50%未満としてもよい。  [0099] For this reason, in the second period, a gradation voltage larger than the gradation to be originally displayed is given. Therefore, as the voltage application time becomes longer, the gradation display error may increase, so the ratio of the second period to one frame period is less than 50%. Alternatively, the ratio of the second period to the non-selection period may be less than 50%.
[0100] 以上のように、本実施の形態では、次のようにして表示素子 LCに電圧を印加して いる。(1)ゲート配線 Giに選択電圧 GH (ON電圧)を印加し、画素 TFT16を導通状 態とし、表示素子 LCに所望の電圧を印加する。(2)電位配線 Eiによってコンデンサ Csの他方の電極に与えられる電位を変化させ、画素 Aijの表示素子 LCに印加され る電圧を (液晶が動きやすい電圧に)変化させ、その状態を数 H〜数十 H保持し、 (3 )その後、電位配線 Ei〖こよってコンデンサ Csの他方の電極に与えられる電位を変化 させ、画素 Aijの表示素子 LCに印加される電圧を所望の電圧に戻す。 [0100] As described above, in the present embodiment, the voltage is applied to the display element LC as follows. (1) Apply the selection voltage GH (ON voltage) to the gate wiring Gi, turn on the pixel TFT16, and apply the desired voltage to the display element LC. (2) The potential applied to the other electrode of the capacitor Cs is changed by the potential wiring Ei, and the voltage applied to the display element LC of the pixel Aij is changed (to a voltage at which the liquid crystal can move easily). Hold for several tens of H. (3) Then change the potential applied to the other electrode of capacitor Cs by potential wiring Ei The voltage applied to the display element LC of the pixel Aij is returned to a desired voltage.
[0101] 図 21および図 22は、この駆動波形を示している。具体的には、図 21は、前述のゲ ート信号 VG1, VG2と、電位 VE1, VE2と、ソース配線 SI, S2にそれぞれ出力され るソース信号 VS1, VS2と、対向電極電位 Vcomを示している。また、図 22は、ゲー ト信号 VG1と、電位 VE1と、ソース信号 VS1, VS2と、画素 Al lの画素電極 17の電 位 VA11と、画素 A12の画素電極 17の電位 VA12とを示して!/、る。  [0101] FIG. 21 and FIG. 22 show this drive waveform. Specifically, FIG. 21 shows the gate signals VG1 and VG2, the potentials VE1 and VE2, the source signals VS1 and VS2 output to the source wirings SI and S2, respectively, and the counter electrode potential Vcom. Yes. FIG. 22 shows the gate signal VG1, the potential VE1, the source signals VS1 and VS2, the potential VA11 of the pixel electrode 17 of the pixel All, and the potential VA12 of the pixel electrode 17 of the pixel A12! /
[0102] このような駆動波形に基づけば、図 22に示すように、画素 Al l, A12に印加される 電圧 (電位 VA11, VA12)は、 1フレーム期間の一部(非選択期間の一部)の期間に ソース配線 SI, S2に出力される電圧より(絶対値で)大きい。ここで、上記の期間を 電位差変更期間または OS期間と称する。  [0102] Based on such a drive waveform, as shown in FIG. 22, the voltages (potentials VA11, VA12) applied to the pixels All, A12 are part of one frame period (part of the non-selection period). ) (Absolute value) greater than the voltage output to the source wiring SI, S2 during the period of Here, the above period is referred to as a potential difference change period or an OS period.
[0103] 図 23は、この電位差変更期間の効果を電位差変更期間を持たない従来の駆動波 形との比較を示している。  FIG. 23 shows a comparison of the effect of this potential difference change period with a conventional drive waveform that does not have a potential difference change period.
[0104] 図 23における" Cs— Typel 1/2フレーム OS"は、図 22〖こ示す電位 VA11, VA 12が画素電極 17に付与された場合の駆動波形を示し、 "REF"は従来の駆動方法 による駆動波形を示す。図 23に示すように、時間 0[s]まで 0階調電圧 V0が印加され 、その後 64階調電圧 V64が印加される。また、図 22の電位 VE1の振幅は、ソース配 線 S1へ対向電極電位 Vcomと同じ値の電圧を印加したときに、黒レベルが浮いてこ ない最大振幅として設定される。また、 64階調電圧 V64は、上記電位 VE1の振幅で 、従来の駆動方法と同じ平均輝度を与えるように、ソース配線 S1の印加電圧を調整 することによって決められる。  [0104] “Cs—Typel 1/2 frame OS” in FIG. 23 shows the drive waveform when the potentials VA11 and VA12 shown in FIG. 22 are applied to the pixel electrode 17, and “REF” is the conventional drive. The drive waveform by the method is shown. As shown in FIG. 23, 0 gradation voltage V0 is applied until time 0 [s], and then 64 gradation voltage V64 is applied. Also, the amplitude of the potential VE1 in FIG. 22 is set as the maximum amplitude at which the black level does not float when a voltage having the same value as the counter electrode potential Vcom is applied to the source wiring S1. The 64-gradation voltage V64 is determined by adjusting the voltage applied to the source wiring S1 so as to give the same average luminance as the conventional driving method with the amplitude of the potential VE1.
[0105] また、本実施の形態によれば、液晶の応答波形 (輝度)は、図 23に示す"実測デー タ"のように、 1フレーム期間内で変動する。そこで、説明を簡単にするために、その 応答波形の平均値を求めて、応答時間を算出する。  Further, according to the present embodiment, the response waveform (luminance) of the liquid crystal varies within one frame period as “measured data” shown in FIG. Therefore, to simplify the explanation, the average value of the response waveform is obtained and the response time is calculated.
[0106] 図 24は、このように定めた応答時間力 本実施の形態を適用した場合と、 OS駆動 を適用しない従来の駆動波形、および特許文献 3の駆動方法による駆動波形の場合 で、それぞれどのように変化するかを示している。  [0106] FIG. 24 shows the response time force determined in this way, the case of applying the present embodiment, the case of a conventional drive waveform to which OS drive is not applied, and the case of the drive waveform by the drive method of Patent Document 3, respectively. It shows how it changes.
[0107] 図 24には、従来技術の駆動波形 (駆動波形 W1)についての応答時間、特許文献 3の駆動方法による駆動波形 (駆動波形 W2)についての応答時間、および本実施の 形態の 3種類の駆動波形 W3〜W5 ("lZ2フレーム OS"、 "1Z4フレーム OS"、 "1 Z8フレーム OS")についての応答時間が示されている。駆動波形 W3は、電位差変 更期間が 1Z2フレーム期間を占める。駆動波形 W4は、電位差変更期間が 1Z4フ レーム期間を占める。駆動波形 W5は、電位差変更期間が 1Z8フレーム期間を占め る。 FIG. 24 shows the response time for the conventional drive waveform (drive waveform W1), the response time for the drive waveform (drive waveform W2) according to the drive method of Patent Document 3, and the present embodiment. The response times for three types of drive waveforms W3 to W5 ("lZ2 frame OS", "1Z4 frame OS", "1 Z8 frame OS") are shown. In the drive waveform W3, the potential difference change period occupies the 1Z2 frame period. In the drive waveform W4, the potential difference change period occupies the 1Z4 frame period. In the drive waveform W5, the potential difference change period occupies the 1Z8 frame period.
[0108] 図 24に示すように、駆動波形 W2が駆動波形 W1に比べて若干応答速度が改善し ている。しかし、駆動波形 W3〜W4が駆動波形 W2に比べて、より応答速度が改善し ている。それゆえ、本実施の形態により、応答速度の改善効果が得られていることが 明らかである。  [0108] As shown in Fig. 24, the response speed of drive waveform W2 is slightly improved compared to drive waveform W1. However, the response speed of drive waveforms W3 to W4 is improved compared to drive waveform W2. Therefore, it is clear that the effect of improving the response speed is obtained by this embodiment.
[0109] また、図 24に示す結果から、電位差変更期間 (OS期間)が短いほど応答時間が短 くなり、応答速度が高くなつていることがわかる。これは、同じ輝度を与えるように、電 位差変更期間が短いほど電位配線 Eiの電位変化 (Cs電圧)を大きくすることができ、 同じ平均輝度でも、より大きな電圧を液晶へ印加できるためと考えられる。  [0109] From the results shown in FIG. 24, it can be seen that the shorter the potential difference change period (OS period), the shorter the response time and the higher the response speed. This is because the potential change (Cs voltage) of the potential wiring Ei can be increased as the potential difference change period is shortened to give the same brightness, and a larger voltage can be applied to the liquid crystal even with the same average brightness. Conceivable.
[0110] そこで、電位配線 Eiの電位変化をより大きく設定できるように、最も共通電極 COM との電位差が小さい階調("0"階調)を画素 A12に与える。このため、図 25および図 26〖こ示すよう〖こ、電位 VA12が 1フレーム期間内で一 V (0)から +V (0)まで極性反 転する必要がある。このため、電位配線 E1の電位 VE1とソース配線 S2のソース信号 VS2 (および対向電極電圧 Vcom)を調整する。  Therefore, a gradation (“0” gradation) having the smallest potential difference from the common electrode COM is given to the pixel A12 so that the potential change of the potential wiring Ei can be set larger. For this reason, as shown in FIGS. 25 and 26, the potential VA12 needs to reverse its polarity from 1 V (0) to + V (0) within one frame period. Therefore, the potential VE1 of the potential wiring E1 and the source signal VS2 (and the counter electrode voltage Vcom) of the source wiring S2 are adjusted.
[0111] このような調整により、より大きな電圧を電位差変更期間に印加することができる。そ れゆえ、より大きな応答時間の改善効果が得られる。  [0111] With such adjustment, a larger voltage can be applied during the potential difference change period. Therefore, a greater response time improvement effect can be obtained.
[0112] なお、上記の結果は、垂直配向モードの液晶に対して得られたものである。  [0112] The above results were obtained for the liquid crystal in the vertical alignment mode.
[0113] また、図 23に示す実測データは、 1フレーム期間内で変動している。これは、電位 差変更期間とそれ以外の期間 (選択期間および中間期間)で液晶へ印加される電圧 が変化するためである。このため、フレーム周波数が 60Hz未満の場合、この輝度変 動がユーザにフリツ力として認識されてしまう。これを避けるためには、図 27に示すよ うに、電位 VA12に 1フレーム期間に複数回電位差変更期間を設けることが好ましい  [0113] The actual measurement data shown in FIG. 23 fluctuates within one frame period. This is because the voltage applied to the liquid crystal changes during the potential difference change period and other periods (selection period and intermediate period). For this reason, when the frame frequency is less than 60 Hz, this luminance variation is recognized by the user as a flickering force. In order to avoid this, as shown in FIG. 27, it is preferable that the potential difference VA12 is provided with a potential difference change period multiple times in one frame period.
[0114] このように、本実施の形態を用いれば応答速度を改善することができる。また、時間 前述の第 1の構成を用いれば、フレームメモリを用いる必要がないので、コストアップ 要因を抑えられる。また、電位配線 Eiの電位を 1フレーム周期に数回変化させれば 応答速度が改善されるので、低消費電力化を図ることでき、その効果は明らかである [0114] Thus, the response speed can be improved by using the present embodiment. Also time If the first configuration described above is used, it is not necessary to use a frame memory, and the cost increase factor can be suppressed. In addition, if the potential of the potential wiring Ei is changed several times in one frame period, the response speed is improved, so that the power consumption can be reduced and the effect is clear.
[0115] なお、図 1に示す温度センサ 8は、温度によって第 2期間の長さやその期間に電位 配線 Eiへ印加する電圧 VTbを変化させるために設けられて 、る。 Note that the temperature sensor 8 shown in FIG. 1 is provided to change the length of the second period and the voltage VTb applied to the potential wiring Ei during that period depending on the temperature.
[0116] なお、本実施の形態では VLb=VSbである力 VLb= VTbとすることも可能である 。後者の場合、 Valj =Vbljとなり、  [0116] In the present embodiment, a force VLb = VSb, where VLb = VTb, may be used. In the latter case, Valj = Vblj
Vc上;)一 Vcom  On Vc;) one Vcom
=Valj -Vcom+Cs (VSb-VLb) / (Clc + Cs)  = Valj -Vcom + Cs (VSb-VLb) / (Clc + Cs)
=Vblj -Vcom+Cs (VSb-VTb) / (Clc + Cs)  = Vblj -Vcom + Cs (VSb-VTb) / (Clc + Cs)
となる。  It becomes.
[0117] これは VTb >VSbであれば、  [0117] If VTb> VSb,
Vc lj― Vcom < Vb lj― Vcom = Va lj― Vcom  Vc lj― Vcom <Vb lj― Vcom = Va lj― Vcom
となり、時間 12t0以降画素 Aijへ印加される電圧力 選択期間に書き込んだ電圧より 小さくなることを意味する。  This means that the voltage applied to the pixel Aij after the time 12t0 becomes smaller than the voltage written in the selection period.
[0118] 逆に言えば、同じ電圧を時間 12t0以降画素 Aijへ印加するためには、ソースドライ バ 2から画素 Aijへ書き込む電圧の振幅を大きくする必要がある。 In other words, in order to apply the same voltage to the pixel Aij after the time 12t0, it is necessary to increase the amplitude of the voltage written from the source driver 2 to the pixel Aij.
[0119] 〔実施の形態 2〕 [Embodiment 2]
本実施の形態 1では、前述の第 1の構成を実現する表示装置 1の別の構成につい て説明する。  In the first embodiment, another configuration of the display device 1 that realizes the first configuration described above will be described.
[0120] 本実施の形態でも、図 1に示す表示装置 1を用いるので、その詳しい説明を省略す る。  [0120] Since the display device 1 shown in Fig. 1 is also used in this embodiment, a detailed description thereof will be omitted.
[0121] なお、図 6に、このソースドライバ回路 3からソース配線 Sjへ供給されるデータ Daij のタイミングを示す。  FIG. 6 shows the timing of the data Daij supplied from the source driver circuit 3 to the source wiring Sj.
[0122] また、ゲートドライバ回路 3には、図 6に示すスタートパルス YIとクロック yckとが入力 される。その結果、図 6に示すように、各ゲート配線 Giには、ゲート信号 VGi (図 6では VG1〜VG4のみを示す)が与えられる。 [0123] 即ち、時間 8t0〜: LOtOの間、ゲート配線 G1にゲート信号 VG1として選択電圧 GH が印加される。この結果、ゲート配線 G1に接続された画素 Alj (Al l〜Alm)にお ける TFT16が ON状態となる。そして、この間、データ Daljがソース配線 Sj力も TFT 16を介して液晶素子 LCに供給される。 [0122] The gate driver circuit 3 receives the start pulse YI and the clock yck shown in FIG. As a result, as shown in FIG. 6, the gate signal VGi (only VG1 to VG4 are shown in FIG. 6) is given to each gate wiring Gi. That is, during the time 8t0 to: LOtO, the selection voltage GH is applied as the gate signal VG1 to the gate wiring G1. As a result, the TFT 16 in the pixel Alj (All to Alm) connected to the gate wiring G1 is turned on. During this time, the data Dalj is also supplied to the liquid crystal element LC via the TFT 16 as the source wiring Sj force.
[0124] また、電位配線駆動回路 10には、図 6に示す選択パルス ZIとクロック yckと制御信 号 SEとが与えられる。電位配線駆動回路 10で、実施の形態 1の場合と同様な処理 が行われる結果、図 6に示すように、電位 VEi (同図には VE1〜VE4のみを示す)が 各電位配線 Eiへ与えられる。  Further, the selection wiring ZI, the clock yck, and the control signal SE shown in FIG. 6 are given to the potential wiring drive circuit 10. As a result of processing similar to that in the first embodiment performed in the potential wiring drive circuit 10, as shown in FIG. 6, potential VEi (only VE1 to VE4 are shown) is applied to each potential wiring Ei. It is done.
[0125] なお、アナログスィッチ 14で行われる論理演算は、表示素子 LCへ印加される電圧 が交流となるように前記の表 1に示す電位を出力する。  [0125] Note that the logical operation performed in the analog switch 14 outputs the potential shown in Table 1 so that the voltage applied to the display element LC becomes an alternating current.
[0126] 即ち、本実施の形態では、図 6に示すように、電位配線 E1については、時間 8t0〜 10t0が第 1期間となるので、電位 VLbが付与される。時間 10t0以降の第 2期間は、 次に電位配線 E1へ電位 VLaを付与する直前まで続く。この第 2期間では、電位配線 E1へ電位 VSbが付与される。その後の第 3期間では(時間 2t0〜8t0)、電位配線 E 1に電位 VTbが付与される。これは、換言すれば、本実施の形態では、第 1期間が第 3期間に続き、第 2期間がさらに第 1期間の後に続くことを表す。  That is, in the present embodiment, as shown in FIG. 6, the potential VLb is applied to the potential wiring E1 because the time 8t0 to 10t0 is the first period. The second period after time 10t0 continues until immediately before the potential VLa is applied to the potential wiring E1. In this second period, the potential VSb is applied to the potential wiring E1. In the third period thereafter (time 2t0 to 8t0), the potential VTb is applied to the potential wiring E1. In other words, in this embodiment, the first period follows the third period, and the second period further follows the first period.
[0127] この結果、画素 Aljの画素電極 17には、時間 2t0〜8t0に電位 Vclj 'が印加され、 時間 8t0〜: LOtOに電位 Valjが付与され、時間 10t0以降に電位 Vbljが付与される  As a result, the potential Vclj ′ is applied to the pixel electrode 17 of the pixel Alj at times 2t0 to 8t0, the time 8t0 to: the potential Valj is applied to LOtO, and the potential Vblj is applied after time 10t0.
[0128] 本実施の形態でも、表示素子 LCの遷移前後の応答特性が図 4に示すようになる。 Also in the present embodiment, the response characteristics before and after the transition of the display element LC are as shown in FIG.
[0129] そこで、この第 3期間に画素電極へ印加される電位 Vclj 'と、その後第 2期間に画 素電極へ印加される電位 Vb ljとの間に、 [0129] Therefore, between the potential Vclj ′ applied to the pixel electrode in the third period and the potential Vblj applied to the pixel electrode in the second period,
I Vblj -Vcom I < I Vclj ' -Vcom |  I Vblj -Vcom I <I Vclj '-Vcom |
という関係を成立させる。このことにより、画素 Aljの遷移前の階調レベルが 0階調で あつたとしても、図 5の(1)に示すように、この第 3期間に画素 Aljへ 255階調に応じ た電圧を印加できる (応答期間 Ta)。そして、階調レベルを一旦高階調側に遷移させ てから、図 5の(2)に示すように、目的とする階調へ向けて遷移させられるので (応答 速度 Tb)、応答時間が Ta+Tbとなる。 [0130] この応答時間 Ta+Tbが図 4に示す遷移前の階調レベルから直接遷移させたとき の応答時間 T1より小さくできる。従って、前述の第 1の構成を採用すれば、応答速度 を改善できる。 The relationship is established. As a result, even if the gradation level before the transition of the pixel Alj is 0 gradation, a voltage corresponding to 255 gradations is applied to the pixel Alj during this third period as shown in (1) of FIG. Can be applied (response period Ta). Then, once the gradation level is shifted to the higher gradation side, as shown in (2) of Fig. 5, the transition is made toward the target gradation (response speed Tb). Tb. [0130] This response time Ta + Tb can be made shorter than the response time T1 when the transition is made directly from the gray level before transition shown in FIG. Therefore, the response speed can be improved by adopting the first configuration described above.
[0131] この第 2期間に画素 Aljの表示素子 LCへ印加される電圧は、(2)式より、  [0131] The voltage applied to the display element LC of the pixel Alj in this second period is expressed by the following equation (2):
Vblj — Vcom  Vblj — Vcom
=Valj ' -Vcom+Cs (VSb-VLa) / (Clc + Cs)  = Valj '-Vcom + Cs (VSb-VLa) / (Clc + Cs)
と表される。ここで、表示素子 LCの容量は Clcであり、コンデンサ Csの容量は Csであ り、共通電極 COMの電位は共通電位 Vcomであるとする。  It is expressed. Here, the capacitance of the display element LC is Clc, the capacitance of the capacitor Cs is Cs, and the potential of the common electrode COM is the common potential Vcom.
[0132] また、第 3期間に画素 Aljの表示素子 LCへ印加される電圧は (4)式より、 [0132] Further, the voltage applied to the display element LC of the pixel Alj in the third period is expressed by the following equation (4):
Vcij —Vcom  Vcij —Vcom
=Valj ' -Vcom+Cs (VTb-VLa) / (Clc + Cs)  = Valj '-Vcom + Cs (VTb-VLa) / (Clc + Cs)
と表される。  It is expressed.
[0133] そこで、 Valj,一 Vcomを正電圧とすれば、  [0133] So if Valj, one Vcom is a positive voltage,
I Vblj ' -Vcom I I Vclj ' -Vcom |  I Vblj '-Vcom I I Vclj' -Vcom |
= Cs (VSb-VTb) Z (Clc + Cs)  = Cs (VSb-VTb) Z (Clc + Cs)
という関係が成り立つ。即ち、  This relationship holds. That is,
I Vblj ' -Vcom I < I Vclj ' -Vcom |  I Vblj '-Vcom I <I Vclj' -Vcom |
という関係が成り立つためには、 VSbく VTbであることが必要である。  In order for this relationship to hold, it must be VSb and VTb.
[0134] なお、本実施の形態では第 3期間の長さは第 2期間の長さより短い。特に、本実施 の形態では、第 3期間が 1フレーム期間に占める割合は 50%未満とする。これは、図 4と図 5との比較力も判る通り、本実施の形態では、表示素子 LCへ第 2期間に本来遷 移すべき階調電圧を与えて ヽる。  [0134] Note that in the present embodiment, the length of the third period is shorter than the length of the second period. In particular, in the present embodiment, the ratio of the third period to one frame period is less than 50%. As can be seen from the comparison between FIG. 4 and FIG. 5, in this embodiment, the display element LC is given a gradation voltage that should be transited in the second period.
[0135] このため、第 3期間では本来表示すべき階調より大きな階調電圧を与えていること になる。従って、その電圧印加時間が長くなるほど、階調表示誤差が大きくなる可能 性があるので、第 3期間が 1フレーム期間に占める割合は 50%未満としている。  [0135] For this reason, in the third period, a gradation voltage larger than the gradation that should be displayed is given. Therefore, as the voltage application time becomes longer, the gray scale display error may increase, so the ratio of the third period to one frame period is less than 50%.
[0136] 以上のように、本実施の形態では、次のようにして表示素子 LCに電圧を印加して いる。(1)ゲート配線 Giに選択電圧 GH (ON電圧)を印加し、画素 TFT16を導通状 態とし、表示素子 LCに所望の電圧を印加する。このとき、実際には、液晶素子 LCに 印加される電圧は、所望の電圧に近い電圧であり、その後ゲート配線 Giの電圧が変 化した後、所望の電圧となる。(2)その後、電位配線 Ei〖こよってコンデンサ Csの他方 の電極に与えられる電位を変化させ、画素 Aijの表示素子 LCに印加される電圧を( 液晶が動きやすい電圧に)変化させる。(3)その状態を数 H〜数十 H保持して、その 所望の電圧に戻す。 [0136] As described above, in the present embodiment, a voltage is applied to the display element LC as follows. (1) Apply the selection voltage GH (ON voltage) to the gate wiring Gi, turn on the pixel TFT16, and apply the desired voltage to the display element LC. At this time, the liquid crystal element LC is actually The applied voltage is a voltage close to a desired voltage, and then becomes a desired voltage after the voltage of the gate wiring Gi is changed. (2) After that, the potential applied to the other electrode of the capacitor Cs is changed by the potential wiring Ei, and the voltage applied to the display element LC of the pixel Aij is changed (to a voltage at which the liquid crystal can move easily). (3) Hold the state for several H to several tens of H and return to the desired voltage.
[0137] この駆動波形を図 28に示す。図 28には、前述のゲート信号 VG1と、電位 VE1と、 ソース信号 VS1, VS2と、電位 VA11, VA12とが示されている。  FIG. 28 shows this drive waveform. FIG. 28 shows the gate signal VG1, the potential VE1, the source signals VS1 and VS2, and the potentials VA11 and VA12.
[0138] 図 28に示すように、本実施の形態でも、画素 Al l, A12に印加される電圧 (電位 VAs shown in FIG. 28, in this embodiment, the voltage applied to the pixels All, A12 (potential V
Al l, VA12)は、 1フレーム期間の一部(非選択期間の一部)の期間にソース配線 SAl l, VA12) is the source wiring S during part of one frame period (part of the non-selection period).
1, S2に出力される電圧より(絶対値で)大きい。 1, It is larger (in absolute value) than the voltage output to S2.
[0139] なお、この期間を電位差変更期間と称するが、中間期間と称しても差し支えない。 [0139] Although this period is referred to as a potential difference change period, it may be referred to as an intermediate period.
[0140] このように駆動することにより、図 28に示すように、電位配線 E1の電位 VE1の変化 回数が少なくなる(1フレーム期間に 1回)。このため、より消費電力を低減することが できるので、好ましい。 By driving in this way, as shown in FIG. 28, the number of changes of the potential VE1 of the potential wiring E1 is reduced (once per frame period). For this reason, since power consumption can be reduced more, it is preferable.
[0141] このように、前述の第 1の構成を用いれば、フレームメモリを用いる必要がないので 、コストアップ要因を抑えられる。また、 1フレーム周期に数回、電位配線 Eiの電位を 変化させれば応答速度が改善できるので、低消費電力化でき、その効果は明らかで ある。  [0141] As described above, if the first configuration described above is used, it is not necessary to use a frame memory, so that the cost increase factor can be suppressed. In addition, if the potential of the potential wiring Ei is changed several times in one frame period, the response speed can be improved, so that the power consumption can be reduced and the effect is obvious.
[0142] 〔実施の形態 3〕  [0142] [Embodiment 3]
本実施の形態 3では、前述の第 1の構成を実現する表示装置のさらに別の構成に ついて説明する。  In the third embodiment, another configuration of the display device that realizes the first configuration described above will be described.
[0143] 図 7は、本実施の形態で用いる表示装置 15を示している。なお、表示装置 15にお いて、実施の形態 1の表示装置 1における構成要素と同一の機能を有する構成要素 については同一の符号を付記してその説明を省略する。  FIG. 7 shows the display device 15 used in the present embodiment. In the display device 15, components having the same functions as those in the display device 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0144] 図 7に示すように、表示装置 15は、表示装置 1と同様、ソースドライバ回路 2、ゲート ドライバ回路 3、温度センサ 8および表示パネル 9を備えているが、電位配線駆動回 路 10を備えていないことが表示装置 1と異なる。その代わりに、表示装置 15において は、電位配線 E4k— 3と電位配線 E4k— 2 (k= l〜m/4の整数, mは 8以上の 4の 倍数)が電位配線 Eaへ接続され、電位配線 E4k— 1と電位配線 E4kが電位配線 Eb へ接続されている。 As shown in FIG. 7, the display device 15 includes a source driver circuit 2, a gate driver circuit 3, a temperature sensor 8, and a display panel 9 as in the display device 1, but includes a potential wiring drive circuit 10 It differs from the display device 1 that it is not equipped with. Instead, in the display device 15, the potential wiring E4k-3 and the potential wiring E4k-2 (k = integer of l to m / 4, m is 8 or more of 4 Multiple) is connected to the potential wiring Ea, and the potential wiring E4k-1 and the potential wiring E4k are connected to the potential wiring Eb.
[0145] ソースドライバ回路 3からのデータ Daijは、図 8に示すタイミングでソース配線 Sjへ 供給される。また、ゲートドライバ回路 3には、図 8に示すスタートパルス YIとクロック y ckと力入力される。図 8に示すように、各ゲート配線 Giには、ゲート信号 VGi (図 8で は VG1〜VG4のみを示す)が出力される。  Data Daij from the source driver circuit 3 is supplied to the source wiring Sj at the timing shown in FIG. Further, the gate driver circuit 3 is input with the start pulse YI and the clock y ck shown in FIG. As shown in FIG. 8, a gate signal VGi (only VG1 to VG4 are shown in FIG. 8) is output to each gate wiring Gi.
[0146] 即ち、時間 8t0〜10t0の間、ゲート配線 G1にゲート信号 VG1として Hレベルの選 択電圧 GHが印加される。この結果、ゲート配線 G1に接続された画素 Alj (A11〜A lm)における TFT16が ON状態となる。そして、この間、データ Daljがソース配線 Sj から TFT16を介して液晶素子 LCに供給される。  That is, for a period of time 8t to 0t0, the H level selection voltage GH is applied to the gate line G1 as the gate signal VG1. As a result, the TFT 16 in the pixel Alj (A11 to Alm) connected to the gate wiring G1 is turned on. During this time, data Dalj is supplied from the source wiring Sj to the liquid crystal element LC via the TFT 16.
[0147] このとき、電位配線 E1には、図 8の電位配線 Eaの電位 VSbが付与される力 本実 施の形態では電位 VSb=VLとなっており、この期間が第 1期間となる。更に、電位配 線 E1には、図 8に示電位 VSbと電位 VTbが交互に印加される。このうち、電位 VSb や電位 VSaが付与されて ヽる期間が画素 Aljの第 2期間であり、電位 VTbや電位 V Taが付与されている期間が画素 Aljの第 3期間である。  At this time, the potential at which the potential VSb of the potential wiring Ea in FIG. 8 is applied to the potential wiring E1 is VSb = VL in this embodiment, and this period is the first period. Further, the potential VSb and the potential VTb shown in FIG. 8 are alternately applied to the potential wiring E1. Among these, the period in which the potential VSb and the potential VSa are applied is the second period of the pixel Alj, and the period in which the potential VTb and the potential VTa are applied is the third period of the pixel Alj.
[0148] この結果、画素 Aljの画素電極 17には、時間 4t0〜8t0まで電位 Vclj 'が印加さ れ、時間 8t0〜: LOtOまで電位 Valjが付与され、時間 10t0〜12t0まで電位 Vbljが 付与され、時間 12t0〜16t0で電位 Vclj 'が付与される。  As a result, the potential Vclj ′ is applied to the pixel electrode 17 of the pixel Alj from time 4t0 to 8t0, the potential Valj is applied from time 8t0 to: LOtO, and the potential Vblj is applied from time 10t0 to 12t0. The potential Vclj ′ is applied at time 12t0 to 16t0.
[0149] 本実施の形態でも、表示素子 LCの遷移前後の応答特性が図 4に示すようになる。  Also in the present embodiment, the response characteristics before and after the transition of the display element LC are as shown in FIG.
[0150] そこで、周期的に印加される第 3期間の画素電極電位 Vcljと、第 2期間の画素電 極電位 Vbljとの間に、  [0150] Therefore, between the pixel electrode potential Vclj in the third period and the pixel electrode potential Vblj in the second period, which are periodically applied,
I Vblj -Vcom I < I Vclj -Vcom |  I Vblj -Vcom I <I Vclj -Vcom |
の関係を成立させる。このことにより、画素 Aljの遷移前の階調レベルが 0階調であつ たとしても、図 5の(1)に示すように、この第 3期間に画素 Aljへ 255階調に向け遷移 し、その後第 2期間で図 5の(2)に示すように、目的とする階調へ向け遷移する。これ を繰り返すことで、図 4に示す遷移前の階調レベルから直接遷移させたときの応答時 間 T1より、より早い応答時間が実現できる。  The relationship is established. As a result, even if the gradation level before transition of the pixel Alj is 0 gradation, as shown in (1) of FIG. 5, the transition to the pixel Alj toward 255 gradation is performed during this third period. Then, in the second period, as shown in (2) of FIG. 5, the transition to the target gradation is made. By repeating this, a response time faster than the response time T1 when the transition is made directly from the gray level before the transition shown in FIG. 4 can be realized.
[0151] なお、本実施の形態では第 3期間の合計の長さは第 2期間の合計の長さより短い。 特に本実施の形態では第 3期間が 1フレーム期間に占める割合は 50%未満とする。 これは、図 4と図 5との比較力 判る通り、本実施の形態では、表示素子 LCへ第 2期 間に本来遷移すべき階調電圧を与えている。 [0151] In the present embodiment, the total length of the third period is shorter than the total length of the second period. In particular, in this embodiment, the ratio of the third period to one frame period is less than 50%. As can be seen from the comparative power of FIG. 4 and FIG. 5, in the present embodiment, a gradation voltage that should originally transition to the second period is applied to the display element LC.
[0152] このため、第 3期間では、本来表示すべき階調より大きな階調電圧を与えていること になる。従って、その電圧印加時間が長くなるほど、階調表示誤差が大きくなる可能 性があるので、第 3期間が 1フレーム期間に占める割合は 50%未満としている。 [0152] For this reason, in the third period, a gradation voltage larger than the gradation that should be displayed is given. Therefore, as the voltage application time becomes longer, the gray scale display error may increase, so the ratio of the third period to one frame period is less than 50%.
[0153] なお、本実施の形態では電位配線 Eiの電位を 2H毎に変化させて 、るが、数 H〜 数十 H毎に変化させることが好ましい。 [0153] Note that although the potential of the potential wiring Ei is changed every 2H in this embodiment, it is preferably changed every several H to several tens of H.
[0154] 図 29は、ライン反転駆動において、このように駆動した場合の駆動波形を示してい る。 [0154] Fig. 29 shows a drive waveform in the case of driving in this way in line inversion drive.
[0155] 具体的には、図 29は、前述のゲート信号 VG1, VG2と、任意のソース配線 Sjに出 力されるソース信号 VSjと、対向電極電位 Vcomと、 4種類の電位 VExl〜VEx4とを 示している。  Specifically, FIG. 29 shows the gate signals VG1, VG2, the source signal VSj output to the arbitrary source wiring Sj, the counter electrode potential Vcom, and the four types of potentials VExl to VEx4. Is shown.
[0156] 電位 VExlは電位配線 E4k (kは 0および正の整数)の電位であり、電位 VEx2は電 位配線 E4k+ 1の電位であり、電位 VEx3は電位配線 E4k+ 2の電位であり、電位 V Ex4は電位配線 E4k+ 3の電位である。  [0156] The potential VExl is the potential of the potential wiring E4k (k is 0 and a positive integer), the potential VEx2 is the potential of the potential wiring E4k + 1, the potential VEx3 is the potential of the potential wiring E4k + 2, and the potential V Ex4 is the potential of the potential wiring E4k + 3.
[0157] この構成では、表示装置 15の外部力も電位配線 Eiに電位を与えればよいので、電 位配線 Eiを駆動するための回路を必要としない。それゆえ、表示装置 15の歩留りを 向上させることができる。  In this configuration, since the external force of the display device 15 only needs to apply a potential to the potential wiring Ei, a circuit for driving the potential wiring Ei is not required. Therefore, the yield of the display device 15 can be improved.
[0158] なお、本実施の形態では、外部から電位配線 Eiに 4種類の電位 VE4k〜VE4k+ 3を与えると説明した。しかし、実際の駆動においては、 10〜20種類の電位を用いる ことが、各電位配線 Eiの電位変化の回数を少なくすることから、好ましい。また、これ により、画素 Aijの電圧変更期間を 1フレームの期間の 1Z2未満とは言え長くするこ とができる。これにより、応答速度が改善されるので、好ましい。  [0158] Note that in this embodiment, it has been described that four types of potentials VE4k to VE4k + 3 are applied to the potential wiring Ei from the outside. However, in actual driving, it is preferable to use 10 to 20 kinds of potentials because the number of potential changes in each potential wiring Ei is reduced. In addition, this makes it possible to lengthen the voltage change period of the pixel Aij, although it is less than 1Z2 of one frame period. This is preferable because the response speed is improved.
[0159] このことにより、本発明の構成の第 1の手段を用いれば、フレームメモリを用いる必 要がないので、コストアップ要因を抑えられる。また、 1フレーム周期に電位配線 Eiの 電位が変化する回数が制限されるので、応答速度を改善しながら、低消費電力化を 図ることができ、その効果は明らかである。 [0160] 〔実施の形態 4〕 [0159] With this, if the first means of the configuration of the present invention is used, it is not necessary to use a frame memory, so that the cost increase factor can be suppressed. In addition, since the number of times the potential of the potential wiring Ei changes in one frame period is limited, the power consumption can be reduced while improving the response speed, and the effect is clear. [Embodiment 4]
本実施の形態 4では、本発明の構成の第 2の手段を実現する表示装置について説 明する。  In the fourth embodiment, a display device that realizes the second means of the configuration of the present invention will be described.
[0161] 図 9は、本実施の形態で用いる表示装置 18を示している。なお、表示装置 18にお いて、実施の形態 1の表示装置 1における構成要素と同一の機能を有する構成要素 については同一の符号を付記してその説明を省略する。  FIG. 9 shows the display device 18 used in the present embodiment. In the display device 18, components having the same functions as those in the display device 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0162] 図 9に示すように、表示装置 18は、ソースドライバ回路 2、表示パネル 19およびゲ ートドライバ回路 20を備えている。  As shown in FIG. 9, the display device 18 includes a source driver circuit 2, a display panel 19, and a gate driver circuit 20.
[0163] 表示パネル 19は、 n本のゲート配線 Gi(i= l〜n)と、便宜上図示を省略した n本の 電位配線 Ei (i= l〜n)と、 n本の制御配線 Pi (i= l〜n)と、 m本のソース配線 Sj (j = l〜m)と、 nX m個の画素 Aijとを含んでいる。画素 Aijは、ゲート配線 Giとソース配線 ¾とが交差する付近に配置されており、図 10に示すように、第 1能動素子である TFT 16と、表示素子 LCと、電位保持手段であるコンデンサ Csと、第 2能動素子である TF T23とから構成される。  [0163] The display panel 19 includes n gate wirings Gi (i = l to n), n potential wirings Ei (i = l to n) not shown for convenience, and n control wirings Pi ( i = l to n), m source wirings Sj (j = l to m), and nX m pixels Aij. The pixel Aij is disposed in the vicinity of the intersection of the gate wiring Gi and the source wiring ¾. As shown in FIG. 10, the TFT 16 as the first active element, the display element LC, and the capacitor as the potential holding means It consists of Cs and TF T23, which is the second active element.
[0164] TFT16のゲート端子は、ゲート配線 Giに接続され、ソース端子はソース配線 ¾に 接続され、ドレイン端子は画素電極 17へ接続される。この画素電極 17とコンデンサ C sの一方端子 24との間には TFT23が配置されている。即ち、この TFT23のゲート端 子には制御配線 Piが接続され、ソース端子には画素電極 17が接続され、ドレイン端 子にはコンデンサ Csの一方の端子 24が接続されている。また、コンデンサ Csの他方 の端子には電位配線 Eiが接続され、表示素子 LCの他方端子は共通電極 COMに 接続されている。  The gate terminal of the TFT 16 is connected to the gate line Gi, the source terminal is connected to the source line 2, and the drain terminal is connected to the pixel electrode 17. A TFT 23 is disposed between the pixel electrode 17 and one terminal 24 of the capacitor Cs. That is, the control wiring Pi is connected to the gate terminal of the TFT 23, the pixel electrode 17 is connected to the source terminal, and one terminal 24 of the capacitor Cs is connected to the drain terminal. In addition, the potential wiring Ei is connected to the other terminal of the capacitor Cs, and the other terminal of the display element LC is connected to the common electrode COM.
[0165] なお、本実施の形態では表示素子 LCとして液晶表示素子を想定しているが、その 他の電気光学素子 (例えばエレクト口クロミック素子、有機 EL素子)でも、本発明の手 段が適用可能である。  [0165] In the present embodiment, a liquid crystal display element is assumed as the display element LC. However, the method of the present invention can be applied to other electro-optical elements (for example, an electochromic element and an organic EL element). Is possible.
[0166] ゲートドライバ回路 20は、シフトレジスタ 21および出力回路 22 (論理回路とバッファ とで構成される)を含んで 、る。  [0166] The gate driver circuit 20 includes a shift register 21 and an output circuit 22 (consisting of a logic circuit and a buffer).
[0167] このゲートドライバ回路 20には、スタートパルス YIと、同図に示すクロック yckとが入 力される。この入力されたスタートパルス YIは、クロック yckのタイミングでシフトレジス タ 21内を転送されて各出力段から出力される。 [0167] The start pulse YI and the clock yck shown in the figure are input to the gate driver circuit 20. This input start pulse YI is the shift register at the timing of the clock yck. Is output from each output stage.
[0168] 出力回路 22の論理回路は、シフトレジスタ 21の各出力段から出力されたパルスと 外部から入力された制御信号 SLとで論理積演算 (AND)を行う。その論理積のパル スは、出力回路 22のノ ッファを経て、図 11に示すように各ゲート配線 Giへゲート信 号 VGi (同図には VG1〜VG3のみを示す)として出力される。  [0168] The logic circuit of the output circuit 22 performs a logical AND operation (AND) on the pulse output from each output stage of the shift register 21 and the control signal SL input from the outside. The pulse of the logical product is output as a gate signal VGi (only VG1 to VG3 are shown in the figure) to each gate wiring Gi as shown in FIG.
[0169] また、出力回路 22の論理回路は、シフトレジスタ 21の各出力段から出力されたパ ルスと外部から入力された制御信号 SLとで、選択電圧 VGiの生成と異なる論理積演 算 (AND)を行う。その論理積のパルスは、出力回路 22のバッファを経て、図 11に示 すように各制御配線 Piへ電位 VPi (同図には VP 1〜VP3のみを示す)として出力さ れる。電位 VP1は、選択電圧 VG3と同じ位相で、ローレベル GLからハイレベル GH に変ィ匕し、ハイレベル GHからローレベル GLに変化する。  [0169] Further, the logic circuit of the output circuit 22 is different from the generation of the selection voltage VGi by the pulse output from each output stage of the shift register 21 and the control signal SL input from the outside ( AND). The logical product pulse is output as a potential VPi (only VP 1 to VP 3 are shown in the figure) to each control wiring Pi as shown in FIG. 11 through the buffer of the output circuit 22. The potential VP1 changes from the low level GL to the high level GH and from the high level GH to the low level GL in the same phase as the selection voltage VG3.
[0170] 図 11に示すように、時間 t0〜2t0の間が第 1期間である。この第 1期間では、ゲート 配線 G1にゲート信号として Hレベルの選択電圧 GHが印加され、画素 Aljにおける TFT16が ON状態となる。そして、この間、データ電圧 Valがソース配線 Sjから画素 電極 17へ印加され、共通電極 COMおよび電位配線 Eiに電圧 Vdが印加される。こ の結果、画素 Aljの画素電極 17には上記のデータ電圧 Valが印加され、表示素子 LCには電圧 Val— Vdが印加される。  [0170] As shown in FIG. 11, the period between time t0 and time 2t0 is the first period. In this first period, an H-level selection voltage GH is applied as a gate signal to the gate wiring G1, and the TFT 16 in the pixel Alj is turned on. During this time, the data voltage Val is applied from the source wiring Sj to the pixel electrode 17, and the voltage Vd is applied to the common electrode COM and the potential wiring Ei. As a result, the data voltage Val is applied to the pixel electrode 17 of the pixel Alj, and the voltage Val−Vd is applied to the display element LC.
[0171] 次に、時間 2tO〜3tOの間が第 2期間である。この第 2期間では、図 11に示すように 、ゲート配線 G1にゲート信号 VG1として Lレベルの非選択電圧 GLが印加され、画素 Aljにおける TFT16が OFF状態となる。  [0171] Next, the period between time 2tO and 3tO is the second period. In this second period, as shown in FIG. 11, the L level non-selection voltage GL is applied to the gate wiring G1 as the gate signal VG1, and the TFT 16 in the pixel Alj is turned off.
[0172] 更に、時間 3t0〜tf+t0までが第 3期間である。この第 3期間のうち、時間 3t0〜4t 0の間には、図 11に示すように、制御配線 P1に Hレベルの選択電圧 GHが印加され ることにより、画素 Aljにおける TFT23が ON状態となる。この結果、画素電極 17とコ ンデンサ Csの一方の端子 24とが短絡され、画素電極 17の電位が Vxlに変化する。 この画素電極 17の電位は、次に TFT16が ON状態となるまで維持される。  [0172] Furthermore, the period from time 3t0 to tf + t0 is the third period. In this third period, between the times 3t0 and 4t0, as shown in FIG. 11, when the H-level selection voltage GH is applied to the control wiring P1, the TFT 23 in the pixel Alj is turned on. . As a result, the pixel electrode 17 and one terminal 24 of the capacitor Cs are short-circuited, and the potential of the pixel electrode 17 changes to Vxl. The potential of the pixel electrode 17 is maintained until the TFT 16 is turned on next time.
[0173] そこで、時間 3t0以降の画素電極 17の電位 Vxlは、(5)式から、  [0173] Therefore, the potential Vxl of the pixel electrode 17 after time 3t0 is obtained from the equation (5):
Vxl = (Clc -Val + Cs- (VO-Ve) ) / (Clc + Cs)  Vxl = (Clc -Val + Cs- (VO-Ve)) / (Clc + Cs)
と表される。上式において、 Clcは画素電極 17と共通電極 COMとの間の容量はであ り、 Csはコンデンサ Csの容量であり、 VOは時間 tO以前の画素電極 17の電位(これ はコンデンサ Csの一方の端子 24の電位でもある)である。 It is expressed. In the above equation, Clc is the capacitance between the pixel electrode 17 and the common electrode COM. Cs is the capacitance of the capacitor Cs, and VO is the potential of the pixel electrode 17 before time tO (this is also the potential of one terminal 24 of the capacitor Cs).
[0174] 表示素子 LCに印加される電圧は、(6)式から、 [0174] The voltage applied to the display element LC is calculated from the equation (6):
Vxl -Vd= (Clc-Val + Cs- (VO-Ve) ) / (Clc + Cs)— Vd  Vxl -Vd = (Clc-Val + Cs- (VO-Ve)) / (Clc + Cs) — Vd
と表される。  It is expressed.
[0175] そこで、 Clcと Csとの比を変化させ、共通電極電位 Vcomとして共通電極 COMに 与えられる電圧 Vd, Veを共に 0としたときの表示素子 LCの印加電圧の変化を表 2に 示す。  [0175] Therefore, Table 2 shows changes in the voltage applied to the display element LC when the ratio between Clc and Cs is changed and the voltages Vd and Ve applied to the common electrode COM as the common electrode potential Vcom are both 0. .
[0176] [表 2]  [0176] [Table 2]
Figure imgf000031_0001
Figure imgf000031_0001
[0177] ここで、表 2において、 Va, Vx, Vb, Vc, Vzはそれぞれ図 11に示した画素電極 1 7の電位を表す。 Here, in Table 2, Va, Vx, Vb, Vc, and Vz represent the potential of the pixel electrode 17 shown in FIG.
[0178] 表 2に示すように、現フレームの書き込み電圧 Va—Vdと同じ電圧を第 1期間に書き 込んでも、前フレームの印加電圧 VO— Veによって、第 2期間の印加電圧 Vx— Vdが 変化することが判る。即ち、 Clc : Cs= l : lのとき、表 2の(1)から判る通り、前フレーム の印加電圧 VO— Veが 2Vであれば、現フレームの第 2期間の印加電圧 Vx—Vdが 2Vになる。  [0178] As shown in Table 2, even if the same voltage as the write voltage Va-Vd of the current frame is written in the first period, the applied voltage Vx- Vd in the second period is determined by the applied voltage VO- Ve of the previous frame. You can see that it changes. That is, when Clc: Cs = l: l, as can be seen from (1) of Table 2, if the applied voltage VO-Ve of the previous frame is 2V, the applied voltage Vx-Vd of the second period of the current frame is 2V. become.
[0179] し力し、表 2の(2)から判る通り、前フレームの印加電圧 VO—Veが 3Vであれば、現 フレームの第 2期間の印加電圧 Vx—Vdがー 1. 5Vになる。この印加電圧 Vx—Vd は、  [0179] As can be seen from (2) of Table 2, if the applied voltage VO-Ve in the previous frame is 3V, the applied voltage Vx-Vd in the second period of the current frame is -1.5V. . This applied voltage Vx—Vd is
I VO—Ve I I Va-Vd | /3  I VO—Ve I I Va-Vd | / 3
の値が大きいほど、大きくなる。 [0180] また、表 2の(3)から判る通り、前フレームの印加電圧 VO—Veが IVであれば、現フ レームの第 2期間の印加電圧 Vx—Vdがー 2. 5Vになる。 The larger the value, the larger. [0180] As can be seen from (3) of Table 2, if the applied voltage VO-Ve in the previous frame is IV, the applied voltage Vx-Vd in the second period of the current frame is -2.5V.
[0181] このように、前述の第 2の構成を用いれば、現フレームに比較して前フレームの印 加電圧の絶対値が小さいとき、現フレームの印加電圧の絶対値が大きくなる。逆に、 現フレームに比較して前フレームの印加電圧の絶対値が大き 、とき、現フレームの印 加電圧の絶対値力 、さくなる。  [0181] As described above, when the above-described second configuration is used, when the absolute value of the applied voltage of the previous frame is smaller than that of the current frame, the absolute value of the applied voltage of the current frame becomes large. On the contrary, when the absolute value of the applied voltage of the previous frame is larger than that of the current frame, the absolute value of the applied voltage of the current frame becomes small.
[0182] このことにより、フレームメモリを用いなくてもオーバーシュート駆動と同等の効果が 期待できるので、コストアップ要因なく応答速度の改善が可能となる。  [0182] This makes it possible to expect the same effect as the overshoot drive without using a frame memory, and thus the response speed can be improved without causing a cost increase.
[0183] なお、本実施の形態では、図 11に示すように、次のフレームの時間 +1;0〜 £+ 2 tOで、ゲート配線 G1および制御配線 P1に選択電圧 GHを印加することにより、画素 Aljにおける TFT16, 23を ON状態とする。そして、この間、図 11に示すように、ソー ス配線 Sj力 画素電極 17およびコンデンサ Csの一方の端子 24へデータ電圧 Vbl ( VAlj)を印加する。また、図 11に示すように、共通電極 COMおよび電位配線 Eiに 電圧 Vd (Vcom, VEi)が印加される。  In the present embodiment, as shown in FIG. 11, the selection voltage GH is applied to the gate wiring G1 and the control wiring P1 at the time of the next frame +1; 0 to £ + 2 tO. The TFTs 16 and 23 in the pixel Alj are turned on. During this time, as shown in FIG. 11, the data voltage Vbl (VAlj) is applied to the source wiring Sj force pixel electrode 17 and one terminal 24 of the capacitor Cs. In addition, as shown in FIG. 11, the voltage Vd (Vcom, VEi) is applied to the common electrode COM and the potential wiring Ei.
[0184] この結果、表示素子 LCには電圧 Vbl—Vdが印加される。これは、表 2から判る通 り、このフレームでは、前述の第 2の構成を用いず、ソース配線 Sj力 与えられた電圧 Vblがそのまま画素電極 17に保持される。そして、次のフレームで上記の第 2の構 成を用いる。  As a result, the voltage Vbl−Vd is applied to the display element LC. As can be seen from Table 2, in this frame, the voltage Vbl given by the source wiring Sj force is held in the pixel electrode 17 as it is without using the second configuration described above. Then, the second configuration is used in the next frame.
[0185] この結果、 2フレームに 1回ではある力 上記オーバーシュート駆動と同等の効果が 期待できる。また、画素電極の電位が変化するのは 1フレームに 1回程度なので消費 電力を上げずに高速応答化できる。  As a result, a force that is once every two frames can be expected to have the same effect as the overshoot drive. In addition, since the potential of the pixel electrode changes only once per frame, high-speed response can be achieved without increasing power consumption.
[0186] なお、 Cls : Cs = l : lの場合、第 3期間に画素電極 17に与えたい電圧 Vb—Vdの 3 倍の電圧をソースドライバ回路 2から供給する必要がある。このように、その必要性に 応じると、ソースドライバ回路 2の出力電圧が増大してしまうので、それに伴って消費 電力が増大することが懸念される。しかし、表 2の(4)〜(6)や(7)〜(9)のように Cls : Csの比率 1 : 0. 5または 1 : 0. 2 (あるいはそれ以外の比率)に調整することで、その 消費電力の増大を抑えることができる。その結果、消費電力の増大を抑えつつ、応 答速度を高速ィ匕できるので、好ましい。 [0187] また、図 10に示す画素 Aijの回路構成においは、画素電極 17とコンデンサ Csの一 方の端子 24との間に第 2能動素子である TFT23が配置されている。これにより、前 フレームの電圧がコンデンサ Csによって保持される。し力し、前フレームの電圧を保 持するのは、コンデンサ Csでなく表示素子 LCであっても良い。更に、表示素子 LCを 2分割して、一方に前フレームの電圧を保持しても良い。 Note that when Cls: Cs = l: l, it is necessary to supply from the source driver circuit 2 a voltage three times the voltage Vb−Vd that is to be applied to the pixel electrode 17 in the third period. As described above, according to the necessity, the output voltage of the source driver circuit 2 increases, and there is a concern that the power consumption increases accordingly. However, as shown in Table 2, (4) to (6) and (7) to (9), adjust the Cls: Cs ratio to 1: 0.5 or 1: 0.2 (or other ratio). Thus, the increase in power consumption can be suppressed. As a result, the response speed can be increased while suppressing an increase in power consumption, which is preferable. In the circuit configuration of the pixel Aij shown in FIG. 10, the TFT 23 as the second active element is disposed between the pixel electrode 17 and the terminal 24 of the capacitor Cs. As a result, the voltage of the previous frame is held by the capacitor Cs. However, the display element LC may hold the voltage of the previous frame instead of the capacitor Cs. Further, the display element LC may be divided into two, and the voltage of the previous frame may be held on one side.
[0188] 例えば、図 12に示す画素 Aijは、 TFT16 (第 1能動素子)、表示素子 LC1と、コン デンサ Csと、表示素子 LC2 (電位保持手段)および TFT25 (第 2能動素子)を有して いる。  [0188] For example, the pixel Aij shown in FIG. 12 includes a TFT 16 (first active element), a display element LC1, a capacitor Cs, a display element LC2 (potential holding means), and a TFT 25 (second active element). ing.
[0189] なお、 TFT16のゲート端子はゲート配線 Giに接続され、ソース端子はソース配線 S jに接続され、ドレイン端子は表示素子 LC1の画素電極 17へ接続される。この画素電 極 17と表示素子 LC2の画素電極 26との間には TFT25が配置されている。この TFT 25のゲート端子には制御配線 Piが接続され、ソース端子には画素電極 17が接続さ れ、ドレイン端子には画素電極 26が接続されている。  Note that the gate terminal of the TFT 16 is connected to the gate wiring Gi, the source terminal is connected to the source wiring S j, and the drain terminal is connected to the pixel electrode 17 of the display element LC1. A TFT 25 is disposed between the pixel electrode 17 and the pixel electrode 26 of the display element LC2. A control wiring Pi is connected to the gate terminal of the TFT 25, a pixel electrode 17 is connected to the source terminal, and a pixel electrode 26 is connected to the drain terminal.
[0190] また、表示素子 LCI, LC2のそれぞれの画素電極 17, 26と対向する端子は対向 電極 COMに接続されて ヽる。コンデンサ Csの他方の端子は電位配線 Ei〖こ接続され ている。  [0190] The terminals facing the pixel electrodes 17 and 26 of the display elements LCI and LC2 are connected to the counter electrode COM. The other terminal of the capacitor Cs is connected to the potential wiring Ei.
[0191] なお、表示素子 LCI, LC2は画素電極を図 13のように 1画素 Aij内で多分割して 構成すれば良い。このように画素 Aijを分割し、分割されたそれぞれの領域に電圧を 印加することで、視覚依存性を補正できる。また、保持容量 Csを 2分割して、一方を 電位保持手段とすることもできる。  [0191] The display elements LCI and LC2 may be configured by dividing the pixel electrode into multiple parts within one pixel Aij as shown in FIG. By dividing the pixel Aij in this way and applying a voltage to each of the divided areas, the visual dependence can be corrected. Further, the holding capacitor Cs can be divided into two, and one can be used as a potential holding means.
[0192] このように、本発明の構成の第 2の手段でも、開口率を落とすことなく必要な電位保 持手段を形成することができる。  [0192] As described above, even with the second means having the configuration of the present invention, a necessary potential holding means can be formed without reducing the aperture ratio.
[0193] 〔実施の形態 5〕  [Embodiment 5]
本実施の形態 5では、前述の第 2の構成を実現する表示装置の別の構成にっ 、て 説明する。  In the fifth embodiment, another configuration of the display device that realizes the above-described second configuration will be described.
[0194] 図 30は、本実施の形態で用いる表示装置 51を示している。なお、表示装置 51に おいて、実施の形態 1の表示装置 1における構成要素と同一の機能を有する構成要 素については同一の符号を付記してその説明を省略する。 [0195] 図 30に示すように、表示装置 51は、ソースドライバ回路 52、表示パネル 53および ゲートドライバ回路 3を備えている。 FIG. 30 shows a display device 51 used in the present embodiment. In the display device 51, constituent elements having the same functions as those of the constituent elements in the display device 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 30, the display device 51 includes a source driver circuit 52, a display panel 53, and a gate driver circuit 3.
[0196] 表示パネル 53は、 n本のゲート配線 Gi(i= l〜n)と、便宜上図示を省略した n本の 電位配線 Ei (i= l〜n)と、 n本の制御配線 Pi (i= l〜n)と、 m本のソース配線 Sj (j = l〜m)と、 nX m個の画素 Aijとを含んでいる。各画素 Aijは、ゲート配線 Giとソース配 線 ¾とが交差する付近に配置されており、図 31に示すように、第 1能動素子である T FT16と、表示素子 LCと、電位保持手段であるコンデンサ Csとから構成される。  [0196] The display panel 53 includes n gate wirings Gi (i = l to n), n potential wirings Ei (i = l to n) not shown for convenience, and n control wirings Pi ( i = l to n), m source wirings Sj (j = l to m), and nX m pixels Aij. Each pixel Aij is arranged in the vicinity of the intersection of the gate wiring Gi and the source wiring ¾. As shown in FIG. 31, the first active element TFT16, the display element LC, and the potential holding means are used. It consists of a capacitor Cs.
[0197] ゲートドライバ回路 3は、シフトレジスタ 11および出力回路 12 (論理回路およびバッ ファ回路 (論理 Zバッファ回路 54)によって構成される)を含んでいる。このゲートドラ ィバ回路 3も実施の形態 1で示した図 1のゲートドライバ回路 3と同じ構成であるので、 ここではその説明を省略する。  [0197] The gate driver circuit 3 includes a shift register 11 and an output circuit 12 (configured by a logic circuit and a buffer circuit (logic Z buffer circuit 54)). Since this gate driver circuit 3 has the same configuration as the gate driver circuit 3 of FIG. 1 shown in the first embodiment, the description thereof is omitted here.
[0198] ソースドライバ回路 52は、実施の形態 1で示した図 1のソースドライバ回路 2の DZ A変換回路 7の次段に付加されるアナログスィッチ 53 (図中 AZS)をさらに含んでい る。このアナログスィッチ 53は、図 31に示すように、 DZA変換回路 7とソース配線 Sj との間に接続された TFT55からなる。  [0198] The source driver circuit 52 further includes an analog switch 53 (AZS in the figure) added to the next stage of the DZ A conversion circuit 7 of the source driver circuit 2 of FIG. 1 shown in the first embodiment. . As shown in FIG. 31, the analog switch 53 includes a TFT 55 connected between the DZA conversion circuit 7 and the source wiring Sj.
[0199] この TFT55の制御端子には、図 32に示すように、制御信号 HPが供給される。即 ち、図 32に示すように、ゲート配線 G1〜G3が選択期間となる間、即ち、ゲート配線 G1〜G3にゲート電圧 VGi〜VGi+ 2 (選択電圧 GH)が印加されている間に、制御 信号 HPが選択電圧 GHとなる期間が設けられる。  A control signal HP is supplied to the control terminal of the TFT 55 as shown in FIG. That is, as shown in FIG. 32, the control is performed while the gate lines G1 to G3 are in the selection period, that is, while the gate voltages VGi to VGe + 2 (selection voltage GH) are applied to the gate lines G1 to G3. There is a period during which the signal HP is at the selection voltage GH.
[0200] これにより、制御信号が選択電圧 GHとなる期間では、データ Dajに対応した電圧 V aが DZA変換回路 7からソース配線 Sjへ出力される。このときの画素電極 17の電位 を Vzとする。次に、 TFT55を非導通状態とすることで、ゲート配線 Giに制御信号 HP の非選択電圧 GLを印加する。  Thus, during the period when the control signal is at the selection voltage GH, the voltage V a corresponding to the data Daj is output from the DZA conversion circuit 7 to the source wiring Sj. The potential of the pixel electrode 17 at this time is Vz. Next, the TFT 55 is turned off to apply the non-selection voltage GL of the control signal HP to the gate wiring Gi.
[0201] この結果、ソース配線 Sjの電位 VSjは、画素 Aijの電位 VAijとして予め与えられた 電位 Vzおよび先に DZA変換回路 7から与えられた電位 Vaに基づけば、(7)式より  As a result, if the potential VSj of the source wiring Sj is based on the potential Vz given in advance as the potential VAij of the pixel Aij and the potential Va previously given from the DZA conversion circuit 7,
Vb= (Cd'Va+ (Clc + Cs)Vz)Z(Cd+Clc + Cs "(7) Vb = (Cd'Va + (Clc + Cs) Vz) Z (Cd + Clc + Cs "(7)
となる電圧 Vbへ変化する。 [0202] このとき、画素 Aijを構成する液晶 LCへ印加される電圧は、 The voltage changes to Vb. [0202] At this time, the voltage applied to the liquid crystal LC constituting the pixel Aij is
Vb— Vcom  Vb— Vcom
= (Cd-Va+ (Clc + Cs) Vz/ (Cd + Clc + Cs) -Vcom  = (Cd-Va + (Clc + Cs) Vz / (Cd + Clc + Cs) -Vcom
= (Cd (Va-Vcom) + (Clc + Cs) (Vz— Vcom) )  = (Cd (Va-Vcom) + (Clc + Cs) (Vz— Vcom))
/ (Cd+Clc + Cs)  / (Cd + Clc + Cs)
となる。  It becomes.
[0203] そこで、各画素電極 17の電位が共通電極 COMの電位を基準にフレーム毎【 することを考慮して、画素電極電位と共通電極電位との電位差を表 3に示す。  [0203] Therefore, Table 3 shows the potential difference between the pixel electrode potential and the common electrode potential, considering that the potential of each pixel electrode 17 is different for each frame with reference to the potential of the common electrode COM.
[0204] [表 3] [0204] [Table 3]
Figure imgf000035_0001
Figure imgf000035_0001
[0205] 表 3において、(1)、 (2)、 (3)がそれぞれ第 1、第 2、第 3フレームを示している。表 3より、第 3フレームで電位差が変化していることがわかる。具体的には、電圧 Vbが士 IVから 2. 5Vに変化する力 安定状態である 2V (第 10フレーム)へ収束していく。  [0205] In Table 3, (1), (2), and (3) indicate the first, second, and third frames, respectively. Table 3 shows that the potential difference changes in the third frame. Specifically, the voltage Vb converges to 2V (10th frame), which is a force stable state where the voltage Vb changes from 2.5 to 2.5V.
[0206] このように、本実施の形態では、電位差が変化したとき、定常状態 (電位差が変化し ない状態)より大きな電圧 (または小さな電圧)が液晶 LCに与えられる。これにより、フ レームメモリを用いないオーバーシュート駆動を実現することができる。その結果、コ ストアップの要因が排除されるので、応答速度を改善することができ、その効果は明 らかである。  As described above, in this embodiment, when the potential difference changes, a voltage (or a small voltage) larger than the steady state (state where the potential difference does not change) is applied to the liquid crystal LC. As a result, overshoot driving without using a frame memory can be realized. As a result, the cost increase factor is eliminated, so that the response speed can be improved and the effect is clear.
[0207] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性 本発明の表示装置は、フレームメモリを用いることなく応答速度を高めることにより、 コストや消費電力の増大を抑えることができるので、特にモパイル型の表示装置に好 適に適用できる。 [0207] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention. Industrial applicability Since the display device of the present invention can suppress an increase in cost and power consumption by increasing the response speed without using a frame memory, it can be suitably applied particularly to a mopile type display device.

Claims

請求の範囲 The scope of the claims
[1] 複数の走査線と、複数のデータ線と、その交差する付近に配置されて 、る画素とを 備え、各画素が画素電極とその画素電極に対向する対向電極とを有する表示素子 を含む表示装置であって、  [1] A display element comprising a plurality of scanning lines, a plurality of data lines, and pixels arranged in the vicinity of the plurality of scanning lines, each pixel having a pixel electrode and a counter electrode facing the pixel electrode. A display device comprising:
上記画素電極と上記データ線との間に配置され、上記走査線に印加される電圧に よって導通または非導通状態となる第 1能動素子と、  A first active element disposed between the pixel electrode and the data line and rendered conductive or non-conductive by a voltage applied to the scan line;
走査すべき一走査線が選択される選択期間に、当該走査線へ選択電圧を印加す ることによって上記第 1能動素子を導通状態とし、上記データ線から上記画素電極へ 与えられる所定の電位に基づいて上記画素電極と上記対向電極との間に表示電位 差を与え、  In a selection period in which one scanning line to be scanned is selected, the first active element is turned on by applying a selection voltage to the scanning line, and is set to a predetermined potential supplied from the data line to the pixel electrode. A display potential difference is provided between the pixel electrode and the counter electrode,
電位差変更期間に、上記第 1能動素子を非導通状態とし、上記画素電極と上記対 向電極との間に上記表示電位差と異なる変更電位差を与える制御手段とを備え、 上記電位差変更期間の長さは、上記非導通状態が維持される非選択期間の長さ より短く設定されていることを特徴とする表示装置。  A control means for setting the first active element in a non-conducting state during the potential difference changing period and providing a changed potential difference different from the display potential difference between the pixel electrode and the counter electrode; and a length of the potential difference changing period. Is set shorter than the length of the non-selection period during which the non-conducting state is maintained.
[2] 上記制御手段は、上記電位差変更期間とその後の上記選択期間との間の中間期 間に、上記第 1能動素子を非導通状態とし、上記画素電極と上記対向電極との間に 上記表示電位差および上記変更電位差と異なる調整電位差を与えることを特徴とす る請求項 1記載の表示装置。  [2] The control means causes the first active element to be in a non-conducting state during an intermediate period between the potential difference changing period and the subsequent selection period, and between the pixel electrode and the counter electrode. 2. The display device according to claim 1, wherein an adjustment potential difference different from the display potential difference and the changed potential difference is given.
[3] 上記制御手段は、上記電位差変更期間の長さを 1フレーム期間の 50%未満とする ことを特徴とする請求項 1または 2記載の表示装置。 [3] The display device according to [1] or [2], wherein the control means sets the length of the potential difference changing period to less than 50% of one frame period.
[4] 上記制御手段は、上記中間期間の後、再度電位差変更期間を設けることを特徴と する請求項 2記載の表示装置。 4. The display device according to claim 2, wherein the control means provides a potential difference changing period again after the intermediate period.
[5] 上記第 1能動素子が非導通状態となる間に、上記画素電極の電位を上記対向電 極の電位を基準として極性変化させることを特徴とする請求項 1、 2、 3または 4記載 の表示装置。 5. The polarity of the pixel electrode is changed with reference to the potential of the counter electrode while the first active element is in a non-conducting state. Display device.
[6] 上記各画素に設けられて電位配線に付与された電位を保持する電位保持手段と を備え、  [6] A potential holding unit that is provided in each of the pixels and holds the potential applied to the potential wiring.
上記制御手段は、上記電位配線に与える電位を変化させることにより、上記変更電 位差または上記調整電位差を上記表示電位差と異なるように変化させる電位制御手 段を有していることを特徴とする請求項 1、 2、 3または 4記載の表示装置。 The control means changes the potential applied to the potential wiring to change the change power. 5. The display device according to claim 1, further comprising a potential control means for changing a potential difference or the adjustment potential difference to be different from the display potential difference.
[7] 上記電位配線の各々に駆動回路が接続されて ヽることを特徴とする請求項 5記載 の表示装置。 7. The display device according to claim 5, wherein a driving circuit is connected to each of the potential wirings.
[8] 上記各画素に設けられて電位配線に付与された電位を保持する電位保持手段と を備え、  [8] A potential holding unit that is provided in each pixel and holds a potential applied to the potential wiring,
上記画素電極と上記電位保持手段との間に配置された第 2能動素子を備え、 上記制御手段は、上記非選択期間に、上記第 2能動素子を導通状態とすることに より、上記変更電位差または上記調整電位差を上記表示電位差とは異なるように変 化させることを特徴とする請求項 1、 2、 3または 4記載の表示装置。  A second active element disposed between the pixel electrode and the potential holding means; and the control means sets the second active element in a conductive state during the non-selection period to thereby change the changed potential difference. The display device according to claim 1, 2, 3 or 4, wherein the adjustment potential difference is changed to be different from the display potential difference.
[9] 上記各データ線と、その各データ線を駆動する駆動回路との間に配置された第 2 能動素子を備え、 [9] A second active element arranged between each data line and a drive circuit that drives each data line,
上記制御手段は、上記第 1能動素子を非導通状態とし、上記第 2能動素子を導通 状態とし、上記駆動回路から電荷を上記データ配線に供給した後、上記第 2能動素 子を非導通状態とし、上記第 1能動素子を導通状態とすることを特徴とする請求項 1 記載の表示装置。  The control means sets the first active element in a non-conductive state, sets the second active element in a conductive state, supplies charge from the drive circuit to the data wiring, and then sets the second active element in a non-conductive state. The display device according to claim 1, wherein the first active element is in a conductive state.
[10] 複数の走査線と、複数のデータ線と、その交差する付近に配置されて 、る画素とを 備え、各画素が画素電極とその画素電極に対向する対向電極とを有する表示素子と [10] A display element comprising a plurality of scanning lines, a plurality of data lines, and a pixel disposed in the vicinity of the plurality of scanning lines, each pixel having a pixel electrode and a counter electrode facing the pixel electrode;
、上記画素電極と上記データ線との間に配置され、上記走査線に印加される電圧に よって導通または非導通状態となる能動素子とを含む表示装置を駆動する駆動方法 であって、 A driving method for driving a display device including an active element that is disposed between the pixel electrode and the data line and is turned on or off by a voltage applied to the scan line,
上記各画素に設けられた電位保持手段に電位配線に付与された電位を保持させ 走査すべき一走査線が選択される選択期間に、当該走査線へ選択電圧を印加す ることによって上記第 1能動素子を導通状態とし、上記データ線から上記画素電極へ 与えられる所定の電位に基づいて上記画素電極と上記対向電極との間に表示電位 差を与え、  The potential holding means provided in each pixel holds the potential applied to the potential wiring, and the selection voltage is applied to the scanning line during the selection period in which one scanning line to be scanned is selected. An active element is made conductive, and a display potential difference is applied between the pixel electrode and the counter electrode based on a predetermined potential applied from the data line to the pixel electrode.
その後の非選択期間に、上記第 1能動素子を非導通状態とし、上記電位配線の電 位を変化させることで、上記画素電極と上記対向電極との間に上記表示電位差と異 なる変更電位差を与える電位差変更期間を設け、 In the subsequent non-selection period, the first active element is made non-conductive, and the potential wiring By changing the position, a potential difference changing period is provided between the pixel electrode and the counter electrode to give a changed potential difference different from the display potential difference.
上記電位差変更期間の長さを上記非選択期間の長さより短くすることを特徴とする 表示装置の駆動方法。  A method for driving a display device, wherein a length of the potential difference changing period is shorter than a length of the non-selection period.
上記電位差変更期間の長さを、上記非選択期間の長さまたは 1フレーム期間の長 さの 50%未満とすることを特徴とする請求項 10記載の表示装置の駆動方法。  11. The display device driving method according to claim 10, wherein the length of the potential difference change period is less than 50% of the length of the non-selection period or the length of one frame period.
PCT/JP2007/054854 2006-04-27 2007-03-12 Display apparatus and method for driving the same WO2007125687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-124484 2006-04-27
JP2006124484 2006-04-27

Publications (1)

Publication Number Publication Date
WO2007125687A1 true WO2007125687A1 (en) 2007-11-08

Family

ID=38655224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054854 WO2007125687A1 (en) 2006-04-27 2007-03-12 Display apparatus and method for driving the same

Country Status (1)

Country Link
WO (1) WO2007125687A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055325A (en) * 2000-07-27 2002-02-20 Samsung Electronics Co Ltd Liquid crystal display device using swing common electrode and driving method thereof
JP2005208600A (en) * 2003-12-26 2005-08-04 Nec Corp Liquid crystal display device, driving method and driving circuit thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055325A (en) * 2000-07-27 2002-02-20 Samsung Electronics Co Ltd Liquid crystal display device using swing common electrode and driving method thereof
JP2005208600A (en) * 2003-12-26 2005-08-04 Nec Corp Liquid crystal display device, driving method and driving circuit thereof

Similar Documents

Publication Publication Date Title
CN101191923B (en) Liquid crystal display system capable of improving display quality and related driving method
US7330180B2 (en) Circuit and method for driving a capacitive load, and display device provided with a circuit for driving a capacitive load
CN101460989B (en) display device
CN100543829C (en) Device and method for driving liquid crystal display device
US20070057887A1 (en) Display device and drive method of same
KR20050002428A (en) Liquid Crystal Display Device and Method of Driving The Same
JPH11119734A (en) Drive circuit of liquid crystal display device and liquid crystal display device
JP7253332B2 (en) Display device and display controller
JP2007148369A (en) Display control circuit, display control method, and display circuit
JP2007279539A (en) Driver circuit, and display device and its driving method
WO2009101877A1 (en) Display apparatus and method for driving the same
JP2003114659A (en) Liquid crystal drive
JP2002244623A (en) System and circuit for driving liquid crystal display device
WO2014162791A1 (en) Drive device, drive method, display device and display method
JP4639702B2 (en) Liquid crystal display device and driving method of liquid crystal display device
US7999778B2 (en) Apparatus and method for driving LCD
US8564521B2 (en) Data processing device, method of driving the same and display device having the same
JP2000180826A (en) Liquid crystal display device drive method
JPH11352464A (en) Liquid crystal display device and liquid crystal panel
WO2013024776A1 (en) Display device and drive method for same
KR101386569B1 (en) Apparatus and method for improving response speed of liquid crystal display
KR20050106125A (en) Active matrix displays and drive control methods
JP2806718B2 (en) Display device driving method and driving circuit
WO2007125687A1 (en) Display apparatus and method for driving the same
CN109697965B (en) Low-power thin film transistor liquid crystal display control chip and driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07738326

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载