+

WO2007018783A2 - Polymerisation de fluoropolymeres au moyen de tensioactifs non fluores - Google Patents

Polymerisation de fluoropolymeres au moyen de tensioactifs non fluores Download PDF

Info

Publication number
WO2007018783A2
WO2007018783A2 PCT/US2006/024704 US2006024704W WO2007018783A2 WO 2007018783 A2 WO2007018783 A2 WO 2007018783A2 US 2006024704 W US2006024704 W US 2006024704W WO 2007018783 A2 WO2007018783 A2 WO 2007018783A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymerization
reactor
monomer
surfactant
Prior art date
Application number
PCT/US2006/024704
Other languages
English (en)
Other versions
WO2007018783A3 (fr
Inventor
Mehdi Durali
Lotfi Hedhli
Ramin Amin-Sanayei
Original Assignee
Arkema Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema Inc. filed Critical Arkema Inc.
Priority to EP06773949.0A priority Critical patent/EP1922340B1/fr
Priority to CN2006800294282A priority patent/CN101243108B/zh
Priority to JP2008526003A priority patent/JP5106396B2/ja
Priority to ES06773949.0T priority patent/ES2611988T3/es
Priority to KR1020087003228A priority patent/KR101298057B1/ko
Priority to US11/995,593 priority patent/US8697822B2/en
Publication of WO2007018783A2 publication Critical patent/WO2007018783A2/fr
Publication of WO2007018783A3 publication Critical patent/WO2007018783A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine

Definitions

  • the present invention relates to a method for the polymerization in an aqueous medium of monomers, and especially of fluoromonomers, using non-fluorinated surfactants; and the fluoropolymers formed therefrom.
  • the method of the polymerization uses one or more non-fluorinated surfactants selected from the group consisting of polyvinylphosphonic acid, polyacrylic acids, polyvinyl sulfonic acid, and salts thereof.
  • non-fluorinated surfactants selected from the group consisting of polyvinylphosphonic acid, polyacrylic acids, polyvinyl sulfonic acid, and salts thereof.
  • the use of polyvinylphosphonic acid, polyacrylic acids, polyvinyl sulfonic acid as surfactants in aqueous free radical polymerization is also novel.
  • Fluoropolymers are primarily produced via heterogeneous polymerization reactions, including suspension, emulsion and microemulsion systems. Generally, each of these reactions requires at least one monomer and a radical initiator in a suitable reaction medium.
  • emulsion polymerizations of halogen- containing monomers generally require a surfactant capable of emulsifying both the reactants and the reaction products for the duration of the polymerization reaction.
  • the surfactant of choice in the synthesis of fluoropolymers is generally a perfluoroalkyl surfactant.
  • the most common perfluoroalkyl surfactant in the production of halogenated polymers is ammonium perfluorooctanoate (AFPO).
  • Fluorosurfactants are expensive, specialized materials, however. In addition, because of their high stability, they tend to persist in the environment. Because of their resistance to chemical degradation, fluoroalkyl surfactants have the potential to accumulate in the environment and in organisms. Also, the high degree of fluorination of the surfactant avoids atom transfer between a growing polymer chain and the surfactant during polymerization, which will result in lowered molecular weights in the product and likely inhibition of the reaction. New polymerization processes are needed that utilize non-perfluoroalkyl surfactants or reduced amounts of perfluoroalkyl surfactants.
  • Patent US 2 559 752 assigned to E. I. du Pont de Nemours relates to an "Aqueous colloidal dispersions of polymers".
  • Stable aqueous colloidal dispersions of polymerized ethylenically unsaturated, organic compounds are obtained by carrying out the polymerization in the presence of a H 2 O-soluble polymerization initiator, such as an alkali persulfate or an aliphatic azo compound (cf. U.S. patent 2,471,959, CA. 43, 6002g), and a polyfluorinated ionizable dispersing agent (I).
  • the I is taken from various groups of compounds including:
  • polyvinyl phosphonic acid, polyacrylic acids, polyvinyl sulfonic acid or their salts could be used as surfactants in the aqueous-based synthesis of polymers, and especially of fluorinated polymers, and thereby eliminate or significantly reduce the use of fluorinated surfactants.
  • the invention relates to a process for preparing a fluoropolymer in an aqueous reaction medium comprising: a) forming an aqueous emulsion comprising at least one radical initiator, at least one non-flourinated surfactants, and at least one fluoromonomer, and b) initiating polymerization of said fluoromonomer, wherein said non-fluorinated surfactant is selected from the group consisting of polyvinylphosphonic acid, polyacrylic acid, polyvinyl sulfonic acid, and the salts thereof.
  • the invention further relates to a fluoropolymer resin formed in an aqueous medium using non-fluorinated surfactant selected from the group consisting of polyvinylphosphonic acid, polyacrylic acid, polyvinyl sulfonic acid, and the salts thereof.
  • the invention relates to the polymerization of fluoropolymers using as the surfactant polyvinylphosphonic acid, polyacrylic acids, and/or polyvinyl sulfonic acid, and the salts thereof.
  • a polymerization reaction is carried out by charging a reactor with water (preferably deionized water), at least one non- fluorinated surfactant, at least one monomer, preferably at least one fluoromonomer, and optionally, a chain-transfer agent and an antifoulant. Air may be purged from the reactor prior to the introduction of the fluoromonomer. Water is added to the reactor before bringing the reactor to the desired starting temperature, but the other materials may be added before or after bringing the reactor to temperature. At least one radical initiator is added to start and maintain the polymerization reaction. Additional monomer may be optionally added to replenish monomer that is consumed, and the other materials may be optionally added during the course of the polymerization to maintain the reaction and control the final product properties.
  • surfactant means a type of molecule which has both hydrophobic and hydrophilic portions, which allows it to stabilize and disperse hydrophobic molecules and aggregates of hydrophobic molecules in aqueous systems.
  • the poly acids of the invention include the acid, as well as the fully or partially neutralized acids, preferably as the ammonium or sodium salts.
  • Polyacrylic acid includes both polyacrylic acid and polymethacrylic acid.
  • the polyacrylic acid, polyvinyl sulfonic acid and polyvinyl phosphonic acid surfactants are used at from 0.001-2 wt%, preferably 0.001-0.5 wt %, base on total monomer.
  • alkyl phosphonic acid, polyphosphonic acid, polyacrylic acid, and polyvinyl sulfonic acid surfactants and their salts of the invention are all water-soluble or water-dispersible, low molecular weight molecules.
  • the polyvinyl phosphonic acid, polyacrylic acid, and polyvinyl sulfonic acid surfactants of the invention includes copolymers of the acids with one or more other ethylenically unsaturated monomers, and the copolymer itself must be water soluble or water dispersible.
  • Other co-surfactants can also be used with polyvinyl phosphonic acid, polyacrylic acid, and polyvinyl sulfonic acid surfactants of the invention.
  • Preferred co-surfactants are non-fluorinated hydrocarbon surfactants, a siloxane surfactant or a combination thereof.
  • the monomers useful in the aqueous-based polymerization of the invention using polyvinyl phosphonic acid, polyacrylic acid, and polyvinyl sulfonic acid surfactants are any ethylenically unsaturated monomers.
  • Useful monomers include, but are not limited to acrylic acid and acrylic esters such as alkyl(meth) acrylates, vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, maleic esters such as dimethyl maleate, diethyl maleate, di-n-propyl maleate, diisopropyl maleate, di-2-methoxyethyl maleate, fumaric esters such as dimethyl fumarate, diethyl fumarate, di-n-propyl fumarate, diisopropyl fumarate, styrene, vinyltoluene, alpha-methylstyrene and acrylonitrile. anhydrides, vinyl esters, alpha- o
  • fluoromonomer or the expression “fluorinated monomer” means a polymerizable alkene which contains at least one fluorine atom, fluoroalkyl group, or fluoroalkoxy group attached to the double bond of the alkene that undergoes polymerization.
  • fluoropolymer means a polymer formed by the polymerization of at least one fluoromonomer, and it is inclusive of homopolymers, copolymers, terpolymers and higher polymers which are thermoplastic in their nature, meaning they are capable of being formed into useful pieces by flowing upon the application of heat, such as is done in molding and extrusion processes.
  • the fluoropolymer preferably contains at least 50 mole percent of one or more flouromonomers.
  • the thermoplastic polymers typically exhibit a crystalline melting point.
  • Fluoromonomers useful in the practice of the invention include, for example, vinylidene fluoride (VF 2 ), tetrafluoroethylene (TFE), trifiuoroethylene, chlorotrifluoroethylene (CTFE), hexafluoropropene (HFP), vinyl fluoride, hexafluoroisobutylene, perfluorobutylethylene (PFBE), pentafluoropropene, 3,3,3- trifluoiO-l-propene, 2-trifluoiOmethyl-3,3,3-trifluoropropene a fluorinated vinyl ether, a fluorinated allyl ether, a non-fluorinated allyl ether, a fluorinated dioxole, and combinations thereof.
  • VF 2 vinylidene fluoride
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • HFP hexafluoropropene
  • Especially preferred copolymers made by the process of the invention are copolymers comprising from about 71 to about 99 weight percent VDF 5 and correspondingly from about 1 to about 29 percent TFE; from about 71 to 99 weight percent VDF, and correspondingly from about 1 to 29 percent HFP (such as disclosed in U.S. Pat. No. 3,178,399); and from about 71 to 99 weight percent VDF, and correspondingly from about 1 to 29 weight percent trifluoroethylene.
  • Especially preferred terpolymers are the terpolymer of VDF, HFP and TFE, and the terpolymer of VDF, trifluoroethene, and TFE.
  • the especially preferred terpolymers have at least 10 weight percent VDF, and the other comonomers may be present in varying portions, but together they comprise up to 90 weight percent of the terpolymer.
  • initiator and the expressions "radical initiator” and “free radical initiator” refer to a chemical that is capable of providing a source of free radicals, either induced spontaneously, or by exposure to heat or light. Examples of initiators include peroxides, peroxydicarbonates and azo compounds. The term expression also includes redox systems useful in providing a source of free radicals.
  • radical and the expression “free radical” refer to a chemical species that contains at least one unpaired electron.
  • the radical initiator is added to the reaction mixture in an amount sufficient to initiate and maintain the polymerization reaction at a desired reaction rate.
  • the order of addition may vary according to the desired process and latex emulsion characteristics.
  • the radical initiator may comprise a persulfate salt, such as sodium persulfate, potassium persulfate, or ammonium persulfate.
  • a persulfate salt such as sodium persulfate, potassium persulfate, or ammonium persulfate.
  • the amount of persulfate salt added to the reaction mixture is from about 0.005 to about 1.0 weight percent.
  • the radical initiator may comprise an organic peroxide such as an alkyl, dialkyl, or diacyl peroxide, peroxydicarbonates, and peroxy esters in an amount from about 0.5 to about 2.5 weight percent on total monomer.
  • organic peroxide such as an alkyl, dialkyl, or diacyl peroxide, peroxydicarbonates, and peroxy esters in an amount from about 0.5 to about 2.5 weight percent on total monomer.
  • Chain-transfer agents are added to the polymerization to regulate the molecular weight of the product. They may added to a polymerization in a single portion at the beginning of the reaction, or incrementally or continuously throughout the reaction.
  • the amount and mode of addition of chain-transfer agent depend on the activity of the particular chain-transfer agent employed, and on the desired molecular weight of the polymer product.
  • the amount of chain-transfer agent added to the polymerization reaction is preferably from about 0.05 to about 5 weight percent, more preferably from about 0.1 to about 2 weight percent based on the total weight of monomer added to the reaction mixture.
  • chain transfer agents useful in the present invention include, but are not limited to oxygenated compounds such as alcohols, carbonates, ketones, esters, and ethers may serve as chain-transfer agents; halocarbons and hydrohalocarbons, such as chlorocarbons, hydrochlorocarbons, chlorofluorocarbons and hydrochlorofluorocarbons; ethane and propane.
  • the polymerization reaction mixture may optionally contain a buffering agent to maintain a controlled pH throughout the polymerization reaction.
  • the pH is preferably controlled within the range of from about 4 to about 8, to minimize undesirable color development in the product.
  • Buffering agents may comprise an organic or inorganic acid or alkali metal salt thereof, or base or salt of such organic or inorganic acid, that has at least one pK a value and/or pK b value in the range of from about 4 to about 10, preferably from about 4.5 to about 9.5.
  • Preferred buffering agents in the practice of the invention include, for example, phosphate buffers and acetate buffers.
  • a "phosphate buffer” is a salt or salts of phosphoric acid.
  • An “acetate buffer” is a salt of acetic acid.
  • Buffering agents are preferably employed where potassium persulfate is employed as the radical initiator.
  • a preferred buffering agent for use with persulfate radical initiators is sodium acetate.
  • a preferred amount of sodium acetate buffer is from about 50 wt.% to about 150 wt.%, based on the weight of persulfate initiator added to the reaction.
  • the addition of a paraffin wax or hydrocarbon oil to the reaction serves as an antifouling to minimize or prevent polymer adhesions to the reactor components. Any long chain saturated hydrocarbon wax or oil can perform this function.
  • the amount of oil or wax added to the reactor is an amount which serves to minimize the formation of polymer adhesions to the reactor components. The amount is generally proportional to the interior surface area of the reactor and may vary from about 1 to about 40 mg per square centimeter of reactor interior surface area.
  • the amount of paraffin wax or hydrocarbon oil is preferably about 5 mg/cm 2 of the reactor interior surface area.
  • the temperature used for polymerization may vary from 20-160 degrees Celsius, depending on the initiator system chosen.
  • the polymerization temperature is preferably from 35-130 degrees Celsius, and most preferably from 65-130 degrees Celsius. In one embodiment, the temperature is varied during the reaction.
  • the pressure used for polymerization may vary from 280-20,000 kPa, depending on the capabilities of the reaction equipment, the initiator system chosen, and the monomer selection.
  • the polymerization pressure is preferably from 2,000- 11,000 kPa, and most preferably from 2,750-6,900 IdPa.
  • the polymerization occurs under stirring.
  • the stirring may be constant, or may be varied to optimize process conditions during the course of the polymerization. In one embodiment, both multiple stirring speeds and multiple temperatures are used for controlling the reaction.
  • a pressurized polymerization reactor equipped with a stirrer and heat control means is charged with water, preferably deionized water, one or more of the surfactants of the invention and at least one fluoromonomer.
  • the mixture may optionally contain one or more of an additional non-fluorinated surfactant, a buffering agent, an antifoulant and a chain- transfer agent for molecular weight regulation of the polymer product.
  • air Prior to introduction of the monomer or monomers, air is preferably removed from the reactor in order to obtain an oxygen-free environment for the polymerization reaction.
  • the order in which the polymerization components are assembled may be varied, provided that the surfactant of the invention is present in the aqueous reaction medium prior to the initiation of the polymerization of the fluoromonomer.
  • water, initiator, surfactant and optionally antifoulant, chain transfer agent and buffer are charged to the reactor, and the reactor heated to the desired reaction temperature.
  • the monomer(s) is then fed into the reactor, preferably at a rate which provides an essentially constant pressure.
  • the monomer and initiator can be fed to the reactor, along with one or more of the optional ingredients.
  • Other variations for fluoropolymer polymerization processes are anticipated, as known in the art.
  • the reactor pressure is primarily regulated by controlling the feed of gaseous monomer to the reaction.
  • the reaction pressure is typically from about 280 to about 20,000 IdPa, preferably from about 2,000 to about 11,000 IcPa, more preferably from about 2,750 to about 6,900 kPa.
  • the monomer feed is terminated when the desired weight of monomer has been fed to the reactor. Additional radical initiator is optionally added, and the reaction is allowed to react out for a suitable amount of time.
  • the reactor pressure drops as the monomer within the reactor is consumed.
  • the reactor Upon completion of the polymerization reaction, the reactor is brought to ambient temperature and the residual unreacted monomer is vented to atmospheric pressure.
  • the aqueous reaction medium containing the polymer (fluoropolymer) is then recovered from the reactor as a latex.
  • the latex consists of a stable mixture of the reaction components, i.e., water, surfactant, initiator (and/or decomposition products of the initiator) and fluoropolymer solids. Generally, the latex contains from about 10 to about 50 weight percent polymer solids.
  • the polymer in the latex is in the form of small particles having a size range of from about 30 nm to about 500 nm.
  • the product of the polymerization is a latex which can be used in that form, usually after filtration of solid byproducts from the polymerization process, or which can be coagulated to isolate the solids, which may then be washed and dried.
  • the latex can be stabilized by the addition of further surfactant, which may be the same or a different ionic surfactant, or may be of a different type, such as an non-ionic surfactant.
  • the latex may be coagulated mechanically or by the addition of salts or acids, and then isolated by well-known means such as by filtration. Once isolated, solid product can be purified by washing or other techniques, and it may be dried for use as a powder, which can be further process into granules.
  • Vinylidene fluoride homopolymer was made using polyacrylic acid surfactant with potassium persulfate initiator.
  • the experiments were carried out in a 25 ml reactor (Endeavor reactor from Argonaut) in which were added 480 micro liter of a 0.25 wt % aqueous surfactant solution (i.e 300 ppm) and 250 micro liter of a 1 wt % aqueous solution of potassium persulfate (i.e 625 ppm). Then deionized water was added to bring the total reactor charge to 4 g. The reactor was purged with nitrogen gas. The reactor was sealed, and agitation is started at 500 rpm. Agitation was maintained throughout the experiment.
  • the reactor was heated to 83 0 C.
  • the reactor was charged with vinylidene fluoride till the pressure reached was 490 psi.
  • the reaction temperature was held at 83 0 C, and the reaction pressure was maintained at 490 psi by adding vinylidene fluoride as needed.
  • the amount of VF 2 consumed reached the desired level the VF 2 feed was stopped.
  • agitation was continued and the temperature was maintained.
  • the agitation and heating were discontinued.
  • Table 1 The Examples are summarized in Table 1.
  • Table 1 Examples of polyacrylic acid used as surfactant in VDF polymerization.
  • Coag latex coagulated.
  • L7210 is a surfactant from Rhodia and was used as received
  • Polyvinylidene Fluoride was made using Poly Acrylic Acid Surfactant and Potassium Persulfate (KPS) Initiator. Deionized water was used. Reagents were of ACS reagent grade quality unless stated otherwise. Polyacrylic acid was received as a 45 wt% solution. To a 7.5 liter, stainless steel reactor was added 4030 g of water, 4 g of paraffin wax, 100.0 g of an aqueous surfactant solution 1.26 wt% in polyacrylic acid, and 100 g of an aqueous initiator solutionl.2 wt.% in potassium persulfate and 0.72 wt.% in sodium acetate.
  • KPS Potassium Persulfate
  • the mixture was purged with argon and agitated for 0.5 hours.
  • the reactor was sealed, agitation was continued, and the reactor was heated to 121 degrees Celsius.
  • the reactor was charged with 362 g of vinylidene fluoride to a pressure of 4454 kPa.17 g of initiator solution was first charged at 240 g/hr followed by a steady feed of initiator solution at a rate of about 60.0 g/h.
  • the reaction temperature was held at 121 degrees Celsius, and the reaction pressure was maintained at 4480 kPa by adding as needed vinylidene fluoride. After 1.65 hours, the feed of vinylidene fluoride was stopped. An amount of vinylidene fluoride, 2202 g, had been added to the reactor.
  • Polyvinylidene Fluoride was made using Poly Acrylic Acid Surfactant and Potassium Persulfate (KPS) Initiator. Deionized water was used. Reagents were of ACS reagent grade quality unless stated otherwise. Polyacrylic acid was received as a 45 wt% solution. To a 7.5 liter, stainless steel reactor was added 4330 g of water, 4 g of paraffin wax, and 100.0 g of an aqueous surfactant solution 1.31 wt% in polyacrylic acid. The mixture was purged with argon and agitated for 0.5 hours. The reactor was sealed, agitation was continued, and the reactor was heated to 121 degrees Celsius.
  • KPS Potassium Persulfate
  • the reactor was charged with 362 g of vinylidene fluoride to a pressure of 4454 kPa.19 g of an aqueous initiator solutionl.2 wt.% in potassium persulfate and 0.72 wt.% in sodium acetate was first charged at 120 g/hr followed by a steady feed of initiator solution at a rate of about 60.0 g/h. After 75 min into the run, initiator solution feed rate was dropped to 36 g/h and maintained throughout the rest of the reaction. The reaction temperature was held at 121 degrees Celsius, and the reaction pressure was maintained at 4480 kPa by adding as needed vinylidene fluoride. After 1.87 hours, the feed of vinylidene fluoride was stopped.
  • Polyvinylidene Fluoride was made using Poly Acrylic Acid Surfactant and Potassium Persulfate (KPS) Initiator. Deionized water was used. Reagents were of ACS reagent grade quality unless stated otherwise. Polyacrylic acid was received as a 45 wt% solution. To a 7.5 liter, stainless steel reactor was added 4330 g of water, 4 g of paraffin wax, and 100.0 g of an aqueous surfactant solution 0.63 wt% in polyacrylic acid. The mixture was purged with argon and agitated for 0.5 hours. The reactor was sealed, agitation was continued, and the reactor was heated to 121 degrees Celsius.
  • KPS Potassium Persulfate
  • the reactor was charged with 432 g of vinylidene fluoride to a pressure of 4454 IdPa.13 g of an aqueous initiator solution 1.2 wt.% in potassium persulfate and 0.72 wt.% in sodium acetate was first charged at 72g/hr followed by a steady feed of initiator solution at a rate of about 36.0 g/h. After 90 min into the run, initiator solution feed rate was dropped to 24 g/h and maintained throughout the run. The reaction temperature was held at 121 degrees Celsius, and the reaction pressure was maintained at 4480 IcPa by adding as needed vinylidene fluoride. After 1.87 hours, the feed of vinylidene fluoride was stopped.
  • Poly vinylidene Fluoride was made using a mixed polyacrylic acid and T-5863 Polysiloxane surfactant and Potassium Persulfate (KPS) as Initiator. Deionized water was used. Reagents were of ACS reagent grade quality unless stated otherwise. Polyacrylic acid was received as a 45 wt% solution and T-5863 was 100% pure.
  • KPS Potassium Persulfate
  • the reactor was charged with 478 g of vinylidene fluoride to a pressure of 4454 lcPa.64 g of initiator solution was first charged at 36 g/hr followed by a steady feed of initiator solution throughout the reaction.
  • the reaction temperature was held at 121 degrees Celsius, and the reaction pressure was maintained at 4480 IdPa by adding as needed vinylidene fluoride. After 2.6 hours, the feed of vinylidene fluoride was stopped. An amount of vinylidene fluoride, 2200 g, had been added to the reactor. For a period of 0.3 hours, agitation was continued, the temperature was maintained, and the feed of aqueous initiator solution was continued.
  • Table 2 PVDF polymerization reactions using Polyacrylic acid as the sole surfactant. All concentrations are on VDF.
  • Polysiloxane mixed surfactants All concentrations are on VDF.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

L'invention concerne un procédé de polymérisation dans un milieu aqueux de monomères, notamment de fluoromonomères, au moyen de tensioactifs non fluorés; ainsi que les fluoropolymères ainsi formés. Plus précisément, le procédé de polymérisation utilise au moins un tensioactif non fluoré choisi dans le groupe formé d'acide polyvinylphosphonique, d'acides polyacryliques, d'acide polyvinyl-sulfonique, et de leurs sels. En outre, l'invention concerne l'utilisation de l'acide polyvinylphosphonique, des acides polyacryliques, de l'acide polyvinyl-sulfonique comme tensioactifs en polymérisation radicalaire aqueuse qui est nouvelle.
PCT/US2006/024704 2005-08-08 2006-06-26 Polymerisation de fluoropolymeres au moyen de tensioactifs non fluores WO2007018783A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06773949.0A EP1922340B1 (fr) 2005-08-08 2006-06-26 Polymerisation de fluoropolymeres au moyen de tensioactifs non fluores
CN2006800294282A CN101243108B (zh) 2005-08-08 2006-06-26 使用非氟化的表面活性剂聚合含氟聚合物
JP2008526003A JP5106396B2 (ja) 2005-08-08 2006-06-26 非フッ素化界面活性剤を用いたフルオロポリマーの重合
ES06773949.0T ES2611988T3 (es) 2005-08-08 2006-06-26 Polimerización de fluoropolímeros usando tensioactivos no fluorados
KR1020087003228A KR101298057B1 (ko) 2005-08-08 2006-06-26 비불소화 계면활성제를 사용하는 플루오로중합체의 중합
US11/995,593 US8697822B2 (en) 2005-08-08 2006-06-26 Polymerization of fluoropolymers using non-fluorinated surfactants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70646405P 2005-08-08 2005-08-08
US60/706,464 2005-08-08

Publications (2)

Publication Number Publication Date
WO2007018783A2 true WO2007018783A2 (fr) 2007-02-15
WO2007018783A3 WO2007018783A3 (fr) 2007-04-05

Family

ID=37727793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/024704 WO2007018783A2 (fr) 2005-08-08 2006-06-26 Polymerisation de fluoropolymeres au moyen de tensioactifs non fluores

Country Status (7)

Country Link
US (1) US8697822B2 (fr)
EP (1) EP1922340B1 (fr)
JP (1) JP5106396B2 (fr)
KR (1) KR101298057B1 (fr)
CN (1) CN101243108B (fr)
ES (1) ES2611988T3 (fr)
WO (1) WO2007018783A2 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293940A (zh) * 2007-04-29 2008-10-29 上海远东氟材料技术有限公司 拒水拒油的含氟丙烯酸阳离子/非离子表面活性剂乳液的制备方法
EP1945684A4 (fr) * 2005-11-10 2010-09-22 Arkema Inc Fluoropolymeres ramifies
EP2611840A4 (fr) * 2010-09-01 2014-02-12 Arkema Inc Procédé de fabrication de polymères fluorés à l'aide de monomères fonctionnalisés par acide
EP2686354A4 (fr) * 2011-03-16 2014-10-15 Arkema Inc Synthèse de fluoropolymères contenant du 2,3,3,3-tétrafluoropropène
EP3059265A1 (fr) 2015-02-23 2016-08-24 3M Innovative Properties Company Polymères fluorés durcissables au peroxyde pouvant être obtenus par polymérisation avec des émulsifiants non fluorés
US11643484B2 (en) * 2015-03-16 2023-05-09 Arkema Inc. Modified fluoropolymers
WO2023227846A1 (fr) 2022-05-24 2023-11-30 Arkema France Dispositif électrochimique comprenant un séparateur contenant du pvdf et une composition électrolytique à viscosité élevée ou à haute polarité
WO2024052626A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition sous forme de poudre à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
WO2024052627A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
WO2024052623A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
WO2024052625A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
WO2024052624A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition sous forme de poudre à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
WO2024052628A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition sous forme de poudre à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
US12018105B2 (en) 2018-05-09 2024-06-25 3M Innovative Properties Company Fluoropolymers with very low amounts of a fluorinated alkanoic acid or its salts
EP4194474A4 (fr) * 2020-08-05 2024-08-21 Daikin Industries, Ltd. Procédé de fabrication de dispersion aqueuse d'élastomère fluoré
WO2025008597A1 (fr) 2023-07-06 2025-01-09 Arkema France Liant sous forme de poudre pour la préparation d'une électrode dans un procédé sans solvant

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721741B2 (ja) * 2009-12-18 2015-05-20 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア フッ化ビニリデンポリマーの分散系の製造方法
EP2638083B1 (fr) 2010-11-09 2019-04-10 The Chemours Company FC, LLC Polymérisation aqueuse de monomères fluorés faisant intervenir un agent de polymérisation comprenant un tensioactif hydrocarboné pour réduire le comportement telogene
EP3539995B1 (fr) 2010-11-09 2020-12-30 The Chemours Company FC, LLC Polymérisation aqueuse de fluoromonomère à l'aide d'un agent tensioactif d'hydrocarbure
WO2012064846A1 (fr) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Nucléation en polymérisation en milieu aqueux de fluoromonomère
US9175110B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing melt extrusion and exposure to oxygen source to reduce discoloration
US9175115B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing heating and oxygen source to reduce discoloration
US8785516B2 (en) * 2012-05-09 2014-07-22 E I Du Pont De Nemours And Company Fluoropolymer dispersion treatment employing ultraviolet light and oxygen source to reduce fluoropolymer resin discoloration
US9175112B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Drying wet fluoropolymer resin and exposing to oxygen source to reduce discoloration
US9574027B2 (en) 2013-03-11 2017-02-21 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing sorbent to reduce fluoropolymer resin discoloration
JP6526637B2 (ja) * 2013-09-30 2019-06-05 アーケマ・インコーポレイテッド 熱安定化されたポリフッ化ビニリデンポリマー組成物
WO2015081055A1 (fr) 2013-11-26 2015-06-04 E. I. Du Pont De Nemours And Company Utilisation d'oxydes de polyalkylène servant de nucléation dans la polymérisation aqueuse d'un monomère fluoré
CN104530291B (zh) * 2014-12-17 2016-08-24 中昊晨光化工研究院有限公司 三氟氯乙烯改性聚全氟乙丙烯树脂及其制备方法
US10504509B2 (en) 2015-05-27 2019-12-10 Google Llc Providing suggested voice-based action queries
EP3689916B1 (fr) * 2017-09-28 2023-12-27 AGC Inc. Procédé de production de polytétrafluoroéthylène modifié, procédé de production de poudre de polytétrafluoroéthylène modifié et procédé de production de corps poreux étiré
JP7031679B2 (ja) * 2017-09-28 2022-03-08 Agc株式会社 変性ポリテトラフルオロエチレン、成形物、延伸多孔体の製造方法
US11485804B2 (en) * 2017-10-17 2022-11-01 Solvay Specialty Polymers Italy S.P.A. Method for the synthesis of fluoropolymers
WO2019208707A1 (fr) * 2018-04-27 2019-10-31 Agc株式会社 Procédé de production de polytétrafluoroéthylène modifié, procédé de production d'une poudre de polytétrafluoréthylène modifié, et procédé de production de corps poreux étiré
JP2022512330A (ja) 2018-12-06 2022-02-03 アーケマ・インコーポレイテッド フッ素-熱可塑性エラストマーブレンド
WO2020162512A1 (fr) * 2019-02-05 2020-08-13 ダイキン工業株式会社 Procédé de production de polymère de tétrafluoroéthylène et composition
JP7552585B2 (ja) * 2019-03-27 2024-09-18 Agc株式会社 含フッ素重合体の製造方法、水性分散液および含フッ素重合体組成物
EP3767710A1 (fr) 2019-07-15 2021-01-20 Arkema France Formulation de suspension de pvdf à base d'eau pour anodes de graphite-silicium
EP4053181A4 (fr) * 2019-10-29 2024-03-06 Agc Inc. Procédé de production d'une dispersion aqueuse de polytétrafluoroéthylène
EP3989308A1 (fr) 2020-10-20 2022-04-27 Arkema Inc. Procédé de fabrication d'une électrode pour batterie entièrement à semiconducteurs
EP4438632A1 (fr) 2023-03-29 2024-10-02 Arkema France Poly(fluorure de vinylidène) pour applications d'alimentation d'eau de haute pureté
EP4458869A1 (fr) 2023-05-03 2024-11-06 Arkema, Inc. Procédé de production de copolymères de fluorure de polyvinylidène

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404111A (en) * 1965-04-01 1968-10-01 Ashland Oil Inc Emulsion polymerization in the presence of a hydrocarbon latex extender oil
US3644259A (en) * 1969-10-24 1972-02-22 Goodrich Co B F Method for making breathable polyvinyl chloride film
US3931131A (en) * 1973-12-18 1976-01-06 Kureha Kagaku Kogyo Kabushiki Kaisha Process and apparatus for suspension polymerization
JPS5174934A (ja) * 1974-12-26 1976-06-29 Nippon Catalytic Chem Ind Kinzokuhyomenshoryososeibutsu
JPS604201B2 (ja) * 1977-05-07 1985-02-02 日本ペイント株式会社 水性重合体の製造方法
US4598111A (en) * 1982-03-18 1986-07-01 Glasurit America, Inc. Coating composition containing cross-linked microparticles
JPS58206603A (ja) * 1982-05-27 1983-12-01 Nippon Paint Co Ltd アクリルエマルシヨン
US4670505A (en) * 1985-08-23 1987-06-02 Hercules Incorporated Polyacrylate dispersions
DE4192711T1 (fr) * 1990-10-30 1992-12-10
DE4402409A1 (de) * 1994-01-27 1995-08-03 Wacker Chemie Gmbh Redispergierbare Dispersionspulverzusammensetzung, Verfahren zu deren Herstellung und deren Verwendung
BE1009667A3 (fr) * 1995-09-25 1997-06-03 Solvay Procede et dispositif de controle de la qualite de latex de polymeres vinyliques halogenes.
US6166141A (en) * 1996-06-11 2000-12-26 Central Glass Company, Limited Fluorine-containing resin for preparing paint
JP3876495B2 (ja) * 1997-09-12 2007-01-31 ユニマテック株式会社 撥水撥油剤およびその製造法
US6512063B2 (en) * 2000-10-04 2003-01-28 Dupont Dow Elastomers L.L.C. Process for producing fluoroelastomers
US7279522B2 (en) * 2001-09-05 2007-10-09 3M Innovative Properties Company Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant
US7276254B2 (en) 2002-05-07 2007-10-02 Xerox Corporation Emulsion/aggregation polymeric microspheres for biomedical applications and methods of making same
ATE338073T1 (de) 2002-05-22 2006-09-15 3M Innovative Properties Co Prozess zur reduzierung des gehaltes an fluorierten emulgatoren in wässrigen fluorpolymer-dispersionen
US6841616B2 (en) 2003-03-28 2005-01-11 Arkema Inc. Polymerization of halogen-containing monomers using siloxane surfactant
US6869997B2 (en) * 2003-05-06 2005-03-22 Arkema, Inc. Polymerization of fluoromonomers using a 3-allyloxy-2-hydroxy-1-propanesulfonic acid salt as surfactant
MXPA06003119A (es) * 2003-09-25 2006-05-31 Laurel Products Llc Dispersiones de politetrafluoroetileno de alta estabilidad y metodo para obtener las mismas.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1945684A4 (fr) * 2005-11-10 2010-09-22 Arkema Inc Fluoropolymeres ramifies
CN101293940A (zh) * 2007-04-29 2008-10-29 上海远东氟材料技术有限公司 拒水拒油的含氟丙烯酸阳离子/非离子表面活性剂乳液的制备方法
EP2611840A4 (fr) * 2010-09-01 2014-02-12 Arkema Inc Procédé de fabrication de polymères fluorés à l'aide de monomères fonctionnalisés par acide
EP2686354A4 (fr) * 2011-03-16 2014-10-15 Arkema Inc Synthèse de fluoropolymères contenant du 2,3,3,3-tétrafluoropropène
EP3059265A1 (fr) 2015-02-23 2016-08-24 3M Innovative Properties Company Polymères fluorés durcissables au peroxyde pouvant être obtenus par polymérisation avec des émulsifiants non fluorés
US10875948B2 (en) 2015-02-23 2020-12-29 3M Innovative Properties Company Peroxide curable fluoropolymers obtainable by polymerization with non-fluorinated emulsifiers
US11643484B2 (en) * 2015-03-16 2023-05-09 Arkema Inc. Modified fluoropolymers
US12018105B2 (en) 2018-05-09 2024-06-25 3M Innovative Properties Company Fluoropolymers with very low amounts of a fluorinated alkanoic acid or its salts
EP4194474A4 (fr) * 2020-08-05 2024-08-21 Daikin Industries, Ltd. Procédé de fabrication de dispersion aqueuse d'élastomère fluoré
WO2023227846A1 (fr) 2022-05-24 2023-11-30 Arkema France Dispositif électrochimique comprenant un séparateur contenant du pvdf et une composition électrolytique à viscosité élevée ou à haute polarité
FR3136119A1 (fr) 2022-05-24 2023-12-01 Arkema France Dispositif électrochimique comprenant un séparateur contenant du PVDF et une composition électrolytique à viscosité élevée ou à haute polarité
WO2024052625A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
FR3139575A1 (fr) 2022-09-09 2024-03-15 Arkema France Composition à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
WO2024052624A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition sous forme de poudre à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
WO2024052628A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition sous forme de poudre à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
FR3139572A1 (fr) 2022-09-09 2024-03-15 Arkema France Composition sous forme de poudre à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
FR3139570A1 (fr) 2022-09-09 2024-03-15 Arkema France Composition à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
FR3139571A1 (fr) 2022-09-09 2024-03-15 Arkema France Composition sous forme de poudre à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
WO2024052623A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
FR3139574A1 (fr) 2022-09-09 2024-03-15 Arkema France Composition sous forme de poudre à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
FR3139573A1 (fr) 2022-09-09 2024-03-15 Arkema France Composition à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
WO2024052627A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
WO2024052626A1 (fr) 2022-09-09 2024-03-14 Arkema France Composition sous forme de poudre à base d'au moins un polymère fluoré et d'au moins un polymère hydrophile pour revêtement de séparateur
WO2025008597A1 (fr) 2023-07-06 2025-01-09 Arkema France Liant sous forme de poudre pour la préparation d'une électrode dans un procédé sans solvant
FR3150810A1 (fr) 2023-07-06 2025-01-10 Arkema France Liant sous forme de poudre pour la préparation d’une électrode dans un procédé sans solvant

Also Published As

Publication number Publication date
US20090221776A1 (en) 2009-09-03
WO2007018783A3 (fr) 2007-04-05
JP5106396B2 (ja) 2012-12-26
JP2009504841A (ja) 2009-02-05
ES2611988T3 (es) 2017-05-11
EP1922340A4 (fr) 2009-06-03
KR101298057B1 (ko) 2013-08-20
US8697822B2 (en) 2014-04-15
CN101243108A (zh) 2008-08-13
EP1922340A2 (fr) 2008-05-21
KR20080032170A (ko) 2008-04-14
CN101243108B (zh) 2012-08-22
EP1922340B1 (fr) 2016-12-28

Similar Documents

Publication Publication Date Title
US8697822B2 (en) Polymerization of fluoropolymers using non-fluorinated surfactants
US8124699B2 (en) Polymerization of fluoropolymers using alkyl phosphonate surfactants
US9434837B2 (en) Method of producing fluoropolymers using acid-functionalized monomers
JP5112303B2 (ja) フルオロポリマーの水性製造方法
JP5588679B2 (ja) フルオロポリエーテル酸または塩および短鎖フッ素系界面活性剤を含む重合剤を用いるフッ素化モノマーの水性重合
JP5368480B2 (ja) フルオロポリマーの製造方法
EP1963380B1 (fr) Dispersion fluoropolymère et procédé de préparation associé
US9447256B2 (en) Method of producing fluoropolymers using alkyl sulfate surfactants
EP1475395A1 (fr) Polymérisation de fluoromonomères en présence d'un sel d'acide 3-allyloxy-2-hydroxy-1-propane sulfonique comme surfactant
EP2089463A1 (fr) Procédé en phase aqueuse servant à fabriquer des polymères fluorés
US20070142513A1 (en) Surfactant, method of producing a fluoropolymer, fluoropolymer aqueous dispersion
EP2274345B1 (fr) Polymérisation de polymères fluorés à l'aide de polycaprolactone
JP3547182B2 (ja) 弗化ビニリデンポリマーの製造法
JP6840073B2 (ja) フルオロポリマー分散系の製造方法
JP2009029853A (ja) フルオロポリマーの製造方法
JP2009029854A (ja) 含フッ素(メタ)アクリルポリマー及びフルオロポリマーの製造方法
JP2009029724A (ja) カルボン酸誘導体、カルボン酸誘導体の製造方法
JP2009029852A (ja) フルオロポリマーの製造方法
JP2009029722A (ja) スルホン酸エステル化合物、スルホン酸エステル化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029428.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 706/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087003228

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008526003

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006773949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006773949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11995593

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载