WO2007010600A1 - Semiconductor device and its manufacturing method - Google Patents
Semiconductor device and its manufacturing method Download PDFInfo
- Publication number
- WO2007010600A1 WO2007010600A1 PCT/JP2005/013294 JP2005013294W WO2007010600A1 WO 2007010600 A1 WO2007010600 A1 WO 2007010600A1 JP 2005013294 W JP2005013294 W JP 2005013294W WO 2007010600 A1 WO2007010600 A1 WO 2007010600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active region
- semiconductor device
- gate electrode
- region
- type
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
- H10D62/292—Non-planar channels of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/405—Orientations of crystalline planes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/856—Complementary IGFETs, e.g. CMOS the complementary IGFETs having different architectures than each other, e.g. high-voltage and low-voltage CMOS
Definitions
- the present invention relates to a semiconductor device suitable for a CMOS transistor and a method for manufacturing the same.
- CMOS transistor In a CMOS transistor provided, it is desirable to obtain high performance in both an nMOS transistor and a pMOS transistor. However, at present, if the size is the same, the on-current of the pMOS transistor is as low as 1Z2 of the nMOS transistor. Therefore, the switching speed of the pMOS transistor is not enough compared to the nMOS transistor.
- a structure called a strained silicon transistor in which strain is generated in the vicinity of the channel region has been proposed.
- a structure has also been proposed in which strain is generated in the channel region by embedding a SiGe layer in the source / drain region.
- a method has been proposed in which stress is applied to the whole after forming an insulating film covering the pMOS transistor.
- proposals have been made to improve the mobility of charges (holes) by appropriately selecting the crystal orientation of the substrate.
- Patent Document 1 Japanese Patent Laid-Open No. 10-144921
- Patent Document 2 JP-A-5-110104
- Patent Document 3 Japanese Patent Application Laid-Open No. 2004-319704
- Patent Document 4 Japanese Patent Laid-Open No. 4-369843
- An object of the present invention is to provide a semiconductor device capable of improving the characteristics of a p-channel MOS transistor and a method for manufacturing the same.
- a semiconductor device includes a device active region located on a surface of a semiconductor substrate, a gate insulating film and a gate electrode formed on the device active region, and a planar surface of the surface of the device active region.
- a plurality of grooves extending in a direction connecting the source region and the drain region and having a rectangular cross-sectional shape are formed on the surface of the element active region.
- a plurality of grooves extending in the same direction and having a substantially rectangular cross section are formed on the surface of the element active region located on the surface of the semiconductor substrate.
- a gate insulating film and a gate electrode are formed on the element active region.
- the source region and the drain region are arranged at a position sandwiching the gate electrode in plan view on the surface of the element active region, and the direction in which the source region and the drain region are connected and the direction in which the groove extends. Form to match.
- FIG. 1A is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
- FIG. 1B is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1A.
- FIG. 1C is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1B.
- FIG. 1D is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1C.
- FIG. 1E is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1D.
- FIG. 1F is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1E.
- FIG. 2A is a cross-sectional view showing a cross section taken along line II in FIG. 1A.
- FIG. 2B is a cross-sectional view showing a cross section taken along line II in FIG. 1B.
- FIG. 2C is a cross-sectional view showing a cross section taken along line II in FIG. 1C.
- FIG. 2D is a cross-sectional view showing a cross section taken along line II in FIG. 1D.
- FIG. 2E is a cross-sectional view showing a cross section taken along line II in FIG. IE.
- FIG. 2F is a cross-sectional view showing a cross section taken along the line II in FIG. 1F.
- FIG. 3 is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 2F.
- FIG. 4A is a graph showing the results of measurement on an nMOS transistor.
- FIG. 4B is a graph showing the measurement results for the pMOS transistor.
- FIG. 5 is a graph showing the results of the second test.
- FIG. 6A is a photograph showing a TEM (transmission electron microscope) image in the vicinity of groove 4.
- FIG. 6B is an enlarged view showing the vicinity of measurement points (* 1 to * 5) in FIG. 6A.
- FIG. 6C is a diagram showing a result of the third test.
- FIGS. 1A to 1F are cross-sectional views showing a semiconductor device manufacturing method according to an embodiment of the present invention in order.
- 2A to 2F are cross-sectional views showing cross sections taken along line I I in FIGS. 1A to 1F, respectively.
- FIG. 3 is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 2F.
- an element isolation insulating film 2 is selectively formed on the surface of a semiconductor substrate 1 such as a silicon substrate.
- the element active region is partitioned by the element isolation insulating film 2.
- the surface of the semiconductor substrate 1 is crystallographic (0
- the conductivity type of the element active region is set to n-type by forming a well or the like.
- a resist pattern 3 having a line “and space” (LZS) pattern is formed in a portion corresponding to the element active region. That is, a resist pattern 3 is formed in which a portion corresponding to the element active region is processed into a stripe shape. At this time, the direction in which each stripe extends is [1
- dry etching for example, reactive ion etching, is performed using the resist pattern 3 as a mask to form a plurality of grooves 4 having a substantially rectangular cross-sectional shape on the surface of the semiconductor substrate 1.
- the side surface perpendicular to the direction in which the groove 4 extends is 1 0) plane.
- a gate insulating film 5 is formed on the surface of the semiconductor substrate 1 by thermal oxidation or thermal nitridation.
- a polycrystalline silicon film in which boron is introduced over the entire surface is formed.
- the gate electrode 6 is formed by patterning the polycrystalline silicon film.
- the direction in which the gate electrode 6 extends is set to a direction orthogonal to the direction in which each groove 4 extends ([1-1 0] direction). That is, the gate width direction is [1
- the sidewall insulating film 7 and the source Z drain diffusion layer 8 are formed.
- ion implantation of p-type impurities is performed.
- an interlayer insulating film 9 is formed on the entire surface, and the contact hole 10 reaching the gate electrode 6 and the source Z drain diffusion layer are formed on the interlayer insulating film.
- a contact hole 11 reaching 8 is formed.
- contact plugs 12 are embedded in the contact holes 10 and 11.
- a wiring 13 connected to the contact plug 12 is formed on the interlayer insulating film 9.
- the interlayer insulating film 14, the wiring 15, the interlayer insulating film 16, the conductive plug 17, the wiring 18, the interlayer insulating film 19, the cover film 20, and the like are formed, and the semiconductor device is formed. Finalize.
- a trench 4 is formed in an element active region, and a gate electrode 6 made of polycrystalline silicon having boron introduced therein is embedded.
- a lateral compressive stress acts on the convex portion located between the adjacent grooves 4.
- high mobility of holes can be obtained. That is, a high on-current can be obtained and a fast switching speed can be obtained.
- the internal stress can be adjusted relatively easily, it is easy to adjust the on-current.
- the thickness of the gate electrode 6 is 150 nm
- the width of the groove 4 is 70 nm
- the width of the convex portion is 80 nm.
- the depth of the groove 4 was 15 nm, 25 nm, and 35 nm.
- the current value per unit length (1 m) of the channel region the current value increased in the force pMOS transistor in which the current value did not increase in the nMOS transistor. This means that there is a factor that increases the current value in addition to the increase in the area of the channel region. This is considered to be due to the presence of compressive stress as described above.
- the characteristic value (C VZl) obtained by normalizing the product of the gate capacitance and the applied voltage by the on-current and the depth of the groove 4 was obtained.
- the gate width is 20. O ⁇ m and the gate length is 0.3 m.
- the characteristic value (CVZI) corresponds to the response time. The smaller this value, the higher the response speed (switching speed).
- Vg is the gate voltage
- Vth is the threshold voltage
- I is the on-current.
- FIG. 6A is a photograph showing a TEM (transmission electron microscope) image in the vicinity of the groove 4
- FIG. 6B is an enlarged view showing the vicinity of the measurement points (* 1 to * 5) in FIG. 6A. The result is shown in FIG. 6C.
- the width of the groove 4 is preferably equal to or smaller than the width of the convex portion located between the adjacent grooves 4.
- the material of the gate electrode is not limited to polycrystalline silicon.
- any material can be used as long as a lateral compressive stress acts on the channel region.
- a SiGe film or a SiC film may be used.
- a pure metal film or an alloy film having a work function substantially equal to that of p + Si may be used.
- a silicide film formed by siliciding the polycrystalline silicon film as a whole may be used. In this case, for example, a nickel silicide film, a platinum silicide film, or the like can be used.
- nMOS transistor it is said that high charge (electron) mobility can be obtained when a lateral tensile stress acts on the channel region. This can also be understood from the fact that in the first and second tests, the result was that mobility was not improved. Therefore, when high mobility is to be obtained also for the nMOS transistor, a lateral tensile stress is applied to the convex portion located between the adjacent grooves 4 as the material of the gate electrode. It is only necessary to select one that acts, or to have a structure in which tensile stress acts without forming the groove 4 in the channel region of the nMOS transistor.
- the groove is formed at the same time and the gate electrode is formed at a different time.
- the formation of the groove 4 may cause a damage layer on the surface of the element active region.
- a sacrificial oxide film on the surface of the element active region after the formation of the trench 4 and remove the sacrificial oxide film by wet etching.
- the electric field tends to concentrate on the corners of the convex portions, the corners of the convex portions are rounded as the sacrificial oxide film is formed and removed. As a result, even better characteristics can be obtained than when the electric field is less concentrated.
- a silicon substrate having a (100) surface is mainly used.
- One reason for this is that the hole mobility is smaller than the electron mobility in the (100) plane.
- a groove is formed in a silicon substrate having a (100) surface, and the wall surface of the groove is defined as a (110) surface.
- the hole mobility is larger than the electron mobility. This improves the characteristics of the pMOS transistor.
- the stress acts on the channel as the gate electrode is embedded, the hole mobility is further increased.
- the characteristics of the pMOS transistor can be improved in the silicon substrate having the (100) surface.
- a groove is formed in a (110) plane silicon substrate, and the wall surface of the groove is defined as a (100) plane.
- a groove is formed in a (100) surface silicon substrate, and the wall surface of this groove is (
- the surface of the channel is parallel to the direction connecting the source and the drain.
- Patent Document 2 describes a method of forming irregularities with an isosceles triangle section on the surface of a substrate by wet etching for the purpose of miniaturization.
- the unevenness of the isosceles triangle section cannot apply sufficient stress to the element active region. For this reason, with the technique described in Patent Document 2, if the on-current in the pMOS transistor is increased as in the present invention, the effect cannot be obtained.
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
明 細 書 Specification
半導体装置及びその製造方法 Semiconductor device and manufacturing method thereof
技術分野 Technical field
[0001] 本発明は、 CMOSトランジスタに好適な半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device suitable for a CMOS transistor and a method for manufacturing the same.
背景技術 備えた CMOSトランジスタにおいては、 nMOSトランジスタ及び pMOSトランジスタの 双方において、高い性能が得られることが望ましい。しかしながら、現状では、サイズ が同一であれば、 pMOSトランジスタにおけるオン電流は、 nMOSトランジスタの 1Z 2程度と低い。このため、 pMOSトランジスタのスイッチング速度は、 nMOSトランジス タと比較すると十分とは 、えな 、。 Background Art In a CMOS transistor provided, it is desirable to obtain high performance in both an nMOS transistor and a pMOS transistor. However, at present, if the size is the same, the on-current of the pMOS transistor is as low as 1Z2 of the nMOS transistor. Therefore, the switching speed of the pMOS transistor is not enough compared to the nMOS transistor.
[0003] そこで、 pMOSトランジスタの性能を向上させるベぐ種々の検討がなされている。 [0003] Therefore, various studies have been made to improve the performance of pMOS transistors.
例えば、チャネル領域の近傍に歪を生じさせた歪シリコントランジスタとよばれる構造 が提案されている。また、ソース/ドレイン領域に SiGe層を埋め込むことにより、チヤ ネル領域に歪を発生させるという構造も提案されている。更に、 pMOSトランジスタを 覆う絶縁膜を形成した後に、全体に応力を印加するという方法も提案されている。ま た、基板の結晶方位を適当に選択することにより、電荷 (正孔)の移動度を向上させよ うとする提案もされている。 For example, a structure called a strained silicon transistor in which strain is generated in the vicinity of the channel region has been proposed. A structure has also been proposed in which strain is generated in the channel region by embedding a SiGe layer in the source / drain region. Furthermore, a method has been proposed in which stress is applied to the whole after forming an insulating film covering the pMOS transistor. In addition, proposals have been made to improve the mobility of charges (holes) by appropriately selecting the crystal orientation of the substrate.
[0004] しかしながら、いずれの提案によっても、 pMOSトランジスタにおいて十分なオン電 流を得ることは困難である。また、オン電流を適切に調整することも困難である。また 、これらの構造等を完成させるために要する工程数、時間及びコストの上昇が極めて 大きいという問題点もある。 [0004] However, according to any proposal, it is difficult to obtain a sufficient on-current in the pMOS transistor. It is also difficult to adjust the on-current appropriately. In addition, there is a problem that the number of processes, time and cost required for completing these structures are extremely large.
[0005] 特許文献 1 :特開平 10— 144921号公報 Patent Document 1: Japanese Patent Laid-Open No. 10-144921
特許文献 2:特開平 5 - 110104号公報 Patent Document 2: JP-A-5-110104
特許文献 3:特開 2004 - 319704号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 2004-319704
特許文献 4:特開平 4— 369843号公報 Patent Document 4: Japanese Patent Laid-Open No. 4-369843
発明の開示 [0006] 本発明の目的は、 pチャネル MOSトランジスタの特性を向上させることができる半 導体装置及びその製造方法を提供することにある。 Disclosure of the invention An object of the present invention is to provide a semiconductor device capable of improving the characteristics of a p-channel MOS transistor and a method for manufacturing the same.
[0007] 本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明 の諸態様に想到した。 [0007] As a result of intensive studies to solve the above-mentioned problems, the inventors of the present application have come up with the following aspects of the invention.
[0008] 本発明に係る半導体装置には、半導体基板の表面に位置する素子活性領域と、 前記素子活性領域上に形成されたゲート絶縁膜及びゲート電極と、前記素子活性 領域の表面の、平面視で前記ゲート電極を挟む位置に形成されたソース領域及びド レイン領域と、が設けられている。そして、前記素子活性領域の表面には、前記ソー ス領域と前記ドレイン領域とを結ぶ方向に延び、断面形状が矩形である複数の溝が 形成されている。 [0008] A semiconductor device according to the present invention includes a device active region located on a surface of a semiconductor substrate, a gate insulating film and a gate electrode formed on the device active region, and a planar surface of the surface of the device active region. A source region and a drain region, which are formed at positions sandwiching the gate electrode as viewed, are provided. A plurality of grooves extending in a direction connecting the source region and the drain region and having a rectangular cross-sectional shape are formed on the surface of the element active region.
[0009] 本発明に係る半導体装置の製造方法では、半導体基板の表面に位置する素子活 性領域の表面に、互いに同一の方向に延び、断面形状が実質的に矩形である複数 の溝を形成した後に、前記素子活性領域上にゲート絶縁膜及びゲート電極を形成す る。次に、前記素子活性領域の表面の、平面視で前記ゲート電極を挟む位置に、ソ ース領域及びドレイン領域を、当該ソース領域と当該ドレイン領域とを結ぶ方向と前 記溝が延びる方向とがー致するように形成する。 In the method for manufacturing a semiconductor device according to the present invention, a plurality of grooves extending in the same direction and having a substantially rectangular cross section are formed on the surface of the element active region located on the surface of the semiconductor substrate. Thereafter, a gate insulating film and a gate electrode are formed on the element active region. Next, the source region and the drain region are arranged at a position sandwiching the gate electrode in plan view on the surface of the element active region, and the direction in which the source region and the drain region are connected and the direction in which the groove extends. Form to match.
図面の簡単な説明 Brief Description of Drawings
[0010] [図 1A]図 1Aは、本発明の実施形態に係る半導体装置の製造方法を示す断面図で ある。 FIG. 1A is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
[図 1B]図 1Bは、図 1Aに引き続き、半導体装置の製造方法を示す断面図である。 FIG. 1B is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1A.
[図 1C]図 1Cは、図 1Bに引き続き、半導体装置の製造方法を示す断面図である。 FIG. 1C is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1B.
[図 1D]図 1Dは、図 1Cに引き続き、半導体装置の製造方法を示す断面図である。 FIG. 1D is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1C.
[図 1E]図 1Eは、図 1Dに引き続き、半導体装置の製造方法を示す断面図である。 FIG. 1E is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1D.
[図 1F]図 1Fは、図 1Eに引き続き、半導体装置の製造方法を示す断面図である。 FIG. 1F is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 1E.
[図 2A]図 2Aは、図 1A中の I—I線に沿った断面を示す断面図である。 FIG. 2A is a cross-sectional view showing a cross section taken along line II in FIG. 1A.
[図 2B]図 2Bは、図 1B中の I—I線に沿った断面を示す断面図である。 FIG. 2B is a cross-sectional view showing a cross section taken along line II in FIG. 1B.
[図 2C]図 2Cは、図 1C中の I—I線に沿った断面を示す断面図である。 FIG. 2C is a cross-sectional view showing a cross section taken along line II in FIG. 1C.
[図 2D]図 2Dは、図 1D中の I—I線に沿った断面を示す断面図である。 [図 2E]図 2Eは、図 IE中の I— I線に沿った断面を示す断面図である。 FIG. 2D is a cross-sectional view showing a cross section taken along line II in FIG. 1D. FIG. 2E is a cross-sectional view showing a cross section taken along line II in FIG. IE.
[図 2F]図 2Fは、図 1F中の I— I線に沿った断面を示す断面図である。 FIG. 2F is a cross-sectional view showing a cross section taken along the line II in FIG. 1F.
[図 3]図 3は、図 2Fに引き続き、半導体装置の製造方法を示す断面図である。 FIG. 3 is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 2F.
[図 4A]図 4Aは、 nMOSトランジスタについての測定の結果を示すグラフである。 [FIG. 4A] FIG. 4A is a graph showing the results of measurement on an nMOS transistor.
[図 4B]図 4Bは、 pMOSトランジスタについての測定の結果を示すグラフである。 FIG. 4B is a graph showing the measurement results for the pMOS transistor.
[図 5]図 5は、第 2の試験の結果を示すグラフである。 FIG. 5 is a graph showing the results of the second test.
[図 6A]図 6Aは、溝 4近傍の TEM (透過型電子顕微鏡)像を示す写真である。 FIG. 6A is a photograph showing a TEM (transmission electron microscope) image in the vicinity of groove 4.
[図 6B]図 6Bは、図 6A中の測定点( * 1〜 * 5)の近傍を拡大して示す図である。 FIG. 6B is an enlarged view showing the vicinity of measurement points (* 1 to * 5) in FIG. 6A.
[図 6C]図 6Cは、第 3の試験の結果を示す図である。 FIG. 6C is a diagram showing a result of the third test.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。伹 し、ここでは、便宜上、半導体装置の断面構造については、その製造方法と共に説 明する。図 1A乃至図 1Fは、本発明の実施形態に係る半導体装置の製造方法をェ 程順に示す断面図である。また、図 2A乃至図 2Fは、夫々図 1A乃至図 1F中の I I 線に沿った断面を示す断面図である。また、図 3は、図 2Fに引き続き、半導体装置の 製造方法を示す断面図である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, here, for convenience, the cross-sectional structure of the semiconductor device will be described together with its manufacturing method. 1A to 1F are cross-sectional views showing a semiconductor device manufacturing method according to an embodiment of the present invention in order. 2A to 2F are cross-sectional views showing cross sections taken along line I I in FIGS. 1A to 1F, respectively. FIG. 3 is a cross-sectional view showing a method for manufacturing the semiconductor device, following FIG. 2F.
[0012] 本実施形態では、先ず、図 1A及び図 2Aに示すように、シリコン基板等の半導体基 板 1の表面に素子分離絶縁膜 2を選択的に形成する。素子分離絶縁膜 2により、素 子活性領域が区画される。半導体基板 1の表面は、結晶学上の (0 In this embodiment, first, as shown in FIGS. 1A and 2A, an element isolation insulating film 2 is selectively formed on the surface of a semiconductor substrate 1 such as a silicon substrate. The element active region is partitioned by the element isolation insulating film 2. The surface of the semiconductor substrate 1 is crystallographic (0
0 1)面とする。なお、素子活性領域の導電型は、ゥエルの形成等により n型としておく 0 1) Surface. Note that the conductivity type of the element active region is set to n-type by forming a well or the like.
[0013] 次に、図 1B及び図 2Bに示すように、素子活性領域に相当する部分に、ライン'アン ド 'スペース(LZS)パターンが存在するレジストパターン 3を形成する。つまり、素子 活性領域に相当する部分が縞状に加工されたレジストパターン 3を形成する。このと き、各縞が延びる方向は、 [1 Next, as shown in FIGS. 1B and 2B, a resist pattern 3 having a line “and space” (LZS) pattern is formed in a portion corresponding to the element active region. That is, a resist pattern 3 is formed in which a portion corresponding to the element active region is processed into a stripe shape. At this time, the direction in which each stripe extends is [1
1 0]方向とする。次いで、レジストパターン 3をマスクとしてドライエッチング、例え ば反応性イオンエッチングを行うことにより、半導体基板 1の表面に、断面形状が実 質的に矩形の複数の溝 4を形成する。溝 4の自身が延びる方向と直交する側面は、 ( 1 0)面となる。 1 0] direction. Next, dry etching, for example, reactive ion etching, is performed using the resist pattern 3 as a mask to form a plurality of grooves 4 having a substantially rectangular cross-sectional shape on the surface of the semiconductor substrate 1. The side surface perpendicular to the direction in which the groove 4 extends is 1 0) plane.
[0014] その後、図 1C及び図 2Cに示すように、レジストパターン 3を除去する。 Thereafter, as shown in FIGS. 1C and 2C, the resist pattern 3 is removed.
[0015] 続いて、図 1D及び図 2Dに示すように、熱酸ィ匕又は熱窒化等により半導体基板 1の 表面にゲート絶縁膜 5を形成する。次に、全面にボロンが導入された多結晶シリコン 膜を形成する。多結晶シリコン膜の形成に当たっては、アモルファス状のシリコン膜を 形成した後に、 580°C乃至 620°Cの熱処理によりこれを結晶化させることが好ましい 。次いで、多結晶シリコン膜をパターユングすることにより、ゲート電極 6を形成する。 このとき、ゲート電極 6が延びる方向(ゲート幅方向)を、各溝 4が延びる方向([1 - 1 0]方向)に対して直交する方向とする。即ち、ゲート幅方向を [1 Subsequently, as shown in FIGS. 1D and 2D, a gate insulating film 5 is formed on the surface of the semiconductor substrate 1 by thermal oxidation or thermal nitridation. Next, a polycrystalline silicon film in which boron is introduced over the entire surface is formed. In forming the polycrystalline silicon film, it is preferable to crystallize the amorphous silicon film by heat treatment at 580 ° C. to 620 ° C. after forming the amorphous silicon film. Next, the gate electrode 6 is formed by patterning the polycrystalline silicon film. At this time, the direction in which the gate electrode 6 extends (gate width direction) is set to a direction orthogonal to the direction in which each groove 4 extends ([1-1 0] direction). That is, the gate width direction is [1
1 0]方向とする。次いで、サイドウォール絶縁膜 7及びソース Zドレイン拡散層 8を形 成する。ソース Zドレイン拡散層 8の形成に当たっては、 p型不純物のイオン注入を 行う。 1 0] direction. Next, the sidewall insulating film 7 and the source Z drain diffusion layer 8 are formed. In forming the source Z drain diffusion layer 8, ion implantation of p-type impurities is performed.
[0016] その後、図 1E及び図 2Eに示すように、全面に層間絶縁膜 9を形成し、この層間絶 縁膜に、ゲート電極 6まで到達するコンタクトホール 10、及びソース Zドレイン拡散層 Thereafter, as shown in FIGS. 1E and 2E, an interlayer insulating film 9 is formed on the entire surface, and the contact hole 10 reaching the gate electrode 6 and the source Z drain diffusion layer are formed on the interlayer insulating film.
8まで到達するコンタクトホール 11を形成する。 A contact hole 11 reaching 8 is formed.
[0017] 続いて、図 1F及び図 2Fに示すように、コンタクトホール 10及び 11内にコンタクトプ ラグ 12を埋め込む。次いで、層間絶縁膜 9上に、コンタクトプラグ 12に接続される配 線 13を形成する。 Subsequently, as shown in FIGS. 1F and 2F, contact plugs 12 are embedded in the contact holes 10 and 11. Next, a wiring 13 connected to the contact plug 12 is formed on the interlayer insulating film 9.
[0018] その後、図 3に示すように、層間絶縁膜 14、配線 15、層間絶縁膜 16、導電性ブラ グ 17、配線 18、層間絶縁膜 19及びカバー膜 20等を形成して半導体装置を完成さ せる。 Thereafter, as shown in FIG. 3, the interlayer insulating film 14, the wiring 15, the interlayer insulating film 16, the conductive plug 17, the wiring 18, the interlayer insulating film 19, the cover film 20, and the like are formed, and the semiconductor device is formed. Finalize.
[0019] このような方法により形成された pMOSトランジスタでは、素子活性領域に溝 4が形 成され、その内側にボロンが導入された多結晶シリコン力 なるゲート電極 6が埋め 込まれている。この結果、隣り合う溝 4の間に位置する凸部には、横方向の圧縮応力 が作用する。このため、正孔の高い移動度が得られる。つまり、高いオン電流が得ら れ、速いスイッチング速度が得られる。また、内部応力の調整も比較的容易であるた め、オン電流の調整も容易である。 [0020] 更に、溝 4のゲート電極 6と接する面のほとんどが(1 In a pMOS transistor formed by such a method, a trench 4 is formed in an element active region, and a gate electrode 6 made of polycrystalline silicon having boron introduced therein is embedded. As a result, a lateral compressive stress acts on the convex portion located between the adjacent grooves 4. For this reason, high mobility of holes can be obtained. That is, a high on-current can be obtained and a fast switching speed can be obtained. Also, since the internal stress can be adjusted relatively easily, it is easy to adjust the on-current. [0020] Further, most of the surface of the groove 4 that contacts the gate electrode 6 is (1
1 0)面であるため、より一層高い移動度が得られる。 Since it is a (1 0) plane, higher mobility can be obtained.
[0021] 次に、本願発明者が行った試験について説明する。 Next, a test conducted by the inventor will be described.
[0022] (第 1の試験) [0022] (First test)
第 1の試験では、溝 4の深さと特性との関係について検証した。ここでは、ゲート電 極 6の厚さ(凸部の頂部を基準とした厚さ)を 150nmとし、溝 4の幅を 70nm、凸部の 幅を 80nmとした。また、溝 4の深さは、 15nm、 25nm、 35nmとした。そして、このよう な構造の nMOSトランジスタ及び pMOSトランジスタにつ!/、て、ソース Zドレイン拡散 層 8に IVの電圧を印加してオン電流を測定した。この結果を図 4A及び図 4Bに示す 。図 4Aは、 nMOSトランジスタについての測定の結果を示すグラフであり、図 4Bは、 pMOSトランジスタについての測定の結果を示すグラフである。 In the first test, the relationship between the depth of the groove 4 and the characteristics was verified. Here, the thickness of the gate electrode 6 (thickness with respect to the top of the convex portion) is 150 nm, the width of the groove 4 is 70 nm, and the width of the convex portion is 80 nm. The depth of the groove 4 was 15 nm, 25 nm, and 35 nm. Then, for the nMOS transistor and the pMOS transistor having such a structure, an on-current was measured by applying a voltage IV to the source Z drain diffusion layer 8. The results are shown in FIGS. 4A and 4B. FIG. 4A is a graph showing the measurement results for the nMOS transistor, and FIG. 4B is a graph showing the measurement results for the pMOS transistor.
[0023] 図 4A及び図 4Bに示すように、 nMOSトランジスタ及び pMOSトランジスタの!/、ずれ においても、溝 4を深くするほど電流値が増加した。この要因の一つは、ゲート電極 6 と半導体基板 1とが対向する領域が増カロしたことである。つまり、溝 4が深くなるほど、 チャネル領域の面積が増加して 、るのである。 [0023] As shown in FIGS. 4A and 4B, even when the nMOS transistor and the pMOS transistor were shifted from each other! /, The current value increased as the groove 4 was deepened. One of the factors is an increase in the area where the gate electrode 6 and the semiconductor substrate 1 face each other. That is, the deeper the groove 4, the larger the area of the channel region.
[0024] 一方、チャネル領域の単位長さ(1 m)当たりの電流値に関しては、 nMOSトラン ジスタでは、電流値の増加は生じなかった力 pMOSトランジスタでは、電流値が増 カロした。これは、チャネル領域の面積の増加以外にも、電流値を増加させる要因が 存在することを意味している。この要因は、上述のような圧縮応力の存在であると考え られる。 On the other hand, regarding the current value per unit length (1 m) of the channel region, the current value increased in the force pMOS transistor in which the current value did not increase in the nMOS transistor. This means that there is a factor that increases the current value in addition to the increase in the area of the channel region. This is considered to be due to the presence of compressive stress as described above.
[0025] (第 2の試験) [0025] (second test)
第 2の試験では、ゲート容量と印加電圧との積をオン電流で規格化した特性値 (C VZl)と溝 4の深さとの関係を求めた。ここでは、ゲート幅を 20. O ^ m,ゲート長を 0. 3 mとした。この結果を図 5に示す。なお、特性値 (CVZI)は応答時間に相当する ものであり、この値が小さいほど応答速度 (スイッチング速度)が速ぐ特性が高いこと を示す。図 5において、 Vgはゲート電圧、 Vthは閾値電圧、 I はオン電流である。 In the second test, the relationship between the characteristic value (C VZl) obtained by normalizing the product of the gate capacitance and the applied voltage by the on-current and the depth of the groove 4 was obtained. Here, the gate width is 20. O ^ m and the gate length is 0.3 m. The result is shown in FIG. The characteristic value (CVZI) corresponds to the response time. The smaller this value, the higher the response speed (switching speed). In Fig. 5, Vg is the gate voltage, Vth is the threshold voltage, and I is the on-current.
on on
[0026] 図 5に示すように、 nMOSトランジスタにおいては、段差 (溝 4の深さ)が大きくなつて も特性値はほとんど変化しな力つた力 pMOSトランジスタにおいては、段差が大きく なるほど特性値力 、さくなつた。そして、図 5に示す結果より、段差が 50nm程度以上 となれば、 pMOSトランジスタにおいて nMOSトランジスタと比べて遜色のない特性 値が得られると考えられる。 [0026] As shown in FIG. 5, in the nMOS transistor, even if the level difference (depth of the groove 4) is large, the force with the characteristic value hardly changed. In the pMOS transistor, the level difference is large. The value of the characteristic value From the results shown in FIG. 5, it is considered that a characteristic value comparable to that of an nMOS transistor can be obtained in a pMOS transistor if the step is about 50 nm or more.
[0027] (第 3の試験) [0027] (Third test)
第 3の試験では、溝 4の周辺にどのような内部応力が作用しているかを調査した。こ こでは、極微電子線回折により、図 6A及び図 6Bに示す 5つの測定点( * 1〜 * 5)に おいて、横方向及び縦方向(厚さ方向)に作用している応力を測定した。図 6Aは、溝 4近傍の TEM (透過型電子顕微鏡)像を示す写真であり、図 6Bは、図 6A中の測定 点( * 1〜 * 5)の近傍を拡大して示す図である。この結果を図 6Cに示す。 In the third test, the internal stress acting around the groove 4 was investigated. Here, the stress acting in the horizontal and vertical directions (thickness direction) is measured at the five measurement points (* 1 to * 5) shown in Fig. 6A and Fig. 6B by micro electron diffraction. did. 6A is a photograph showing a TEM (transmission electron microscope) image in the vicinity of the groove 4, and FIG. 6B is an enlarged view showing the vicinity of the measurement points (* 1 to * 5) in FIG. 6A. The result is shown in FIG. 6C.
[0028] 図 6Cに示すように、各測定点(* 1〜* 5)における横方向の応力はすべて圧縮応 力であった。このうち、特に溝 4の底の角、上端の角の近傍に位置する測定点(* 2、 * 4)では、他の測定点よりも高い圧縮応力が作用していた。一方、縦方向の応力に 関しては、溝 4の底よりも低い位置にある測定点(* 1、 * 2)では圧縮応力が作用し ていたのに対し、底よりも高い位置にある測定点(* 3〜* 5)では引張応力が作用し ていた。 [0028] As shown in FIG. 6C, all of the lateral stresses at the measurement points (* 1 to * 5) were compressive stresses. Of these, particularly at the measurement points (* 2, * 4) located near the bottom corner and the top corner of the groove 4, higher compressive stress was applied than at the other measurement points. On the other hand, regarding the stress in the vertical direction, the measurement point (* 1, * 2) at a position lower than the bottom of the groove 4 was subjected to compressive stress, whereas the measurement was at a position higher than the bottom. At points (* 3 to * 5), tensile stress was acting.
[0029] なお、溝 4の幅は、隣り合う溝 4間に位置する凸部の幅以下であることが好ましい。 [0029] Note that the width of the groove 4 is preferably equal to or smaller than the width of the convex portion located between the adjacent grooves 4.
これは、チャネル領域に効果的に応力を作用させるためである。 This is because stress is effectively applied to the channel region.
[0030] また、ゲート電極の材料は多結晶シリコンに限定されない。 pMOSトランジスタにお いては、チャネル領域に横方向の圧縮応力が作用する材料であればよい。例えば、 SiGe膜、 SiC膜等を用いてもよい。また、仕事関数的に p+Siとほぼ同等の仕事関数 を有する純金属膜又は合金膜を用いてもよい。また、多結晶シリコン膜を全体にわた つてシリサイド化することにより形成されたシリサイド膜を用いてもよい。この場合、例 えばニッケルシリサイド膜、白金シリサイド膜等を用いることができる。 [0030] The material of the gate electrode is not limited to polycrystalline silicon. In the pMOS transistor, any material can be used as long as a lateral compressive stress acts on the channel region. For example, a SiGe film or a SiC film may be used. Further, a pure metal film or an alloy film having a work function substantially equal to that of p + Si may be used. Further, a silicide film formed by siliciding the polycrystalline silicon film as a whole may be used. In this case, for example, a nickel silicide film, a platinum silicide film, or the like can be used.
[0031] また、 nMOSトランジスタに関しては、チャネル領域に横方向の引張応力が作用し ている場合に電荷 (電子)の高い移動度が得られるといわれている。このことは、第 1 及び第 2の試験において、移動度が向上するという結果が得られな力つたことからも 理解できる。従って、 nMOSトランジスタについても高い移動度を得ようとする場合に は、ゲート電極の材料として隣り合う溝 4の間に位置する凸部に横方向の引張応力が 作用するものを選択したり、 nMOSトランジスタのチャネル領域に溝 4を形成せずに 引張応力が作用するような構造としたりすればよい。 [0031] In addition, with regard to the nMOS transistor, it is said that high charge (electron) mobility can be obtained when a lateral tensile stress acts on the channel region. This can also be understood from the fact that in the first and second tests, the result was that mobility was not improved. Therefore, when high mobility is to be obtained also for the nMOS transistor, a lateral tensile stress is applied to the convex portion located between the adjacent grooves 4 as the material of the gate electrode. It is only necessary to select one that acts, or to have a structure in which tensile stress acts without forming the groove 4 in the channel region of the nMOS transistor.
[0032] nMOSトランジスタを pMOSトランジスタと並行して形成する場合には、例えば、溝 の形成を同時に行 、、ゲート電極の形成をずらして行えばょ 、。 [0032] When the nMOS transistor is formed in parallel with the pMOS transistor, for example, the groove is formed at the same time and the gate electrode is formed at a different time.
[0033] また、溝 4の形成によって、素子活性領域の表面にダメージ層が生じることがある。 Further, the formation of the groove 4 may cause a damage layer on the surface of the element active region.
このため、溝 4の形成後に、素子活性領域の表面に犠牲酸化膜を形成し、この犠牲 酸ィ匕膜をウエットエッチングにより除去することが好ましい。つまり、犠牲酸化膜中にダ メージ層を取り込んで、犠牲酸化膜の除去によってダメージ層をも除去することが好 ましい。また、凸部の角には電界が集中しやすいが、この犠牲酸化膜の形成及び除 去に伴って、凸部の角が丸められる。この結果、電界が集中しにくぐより一層良好な 特性が得られるようにもなる。 Therefore, it is preferable to form a sacrificial oxide film on the surface of the element active region after the formation of the trench 4 and remove the sacrificial oxide film by wet etching. In other words, it is preferable to incorporate a damage layer into the sacrificial oxide film and remove the damaged layer by removing the sacrificial oxide film. In addition, although the electric field tends to concentrate on the corners of the convex portions, the corners of the convex portions are rounded as the sacrificial oxide film is formed and removed. As a result, even better characteristics can be obtained than when the electric field is less concentrated.
[0034] ここで、本発明の概要について説明する。 [0034] Here, an outline of the present invention will be described.
[0035] 従来、表面が(100)面のシリコン基板が主に用いられている。し力し、 pMOSトラン ジスタの性能を向上させることが困難である。この原因の一つとして、(100)面では 正孔の移動度が電子の移動度よりも小さ 、と 、うことが挙げられる。 Conventionally, a silicon substrate having a (100) surface is mainly used. However, it is difficult to improve the performance of pMOS transistors. One reason for this is that the hole mobility is smaller than the electron mobility in the (100) plane.
[0036] これに対し、上述の実施形態では、表面が(100)面のシリコン基板に溝を形成し、 この溝の壁面を(110)面として 、る。 (110)面では正孔の移動度が電子の移動度よ りも大きい。このため、 pMOSトランジスタの特性が向上する。また、ゲート電極の埋 め込みに伴って応力がチャネルに作用するため、正孔の移動度がより一層増加する On the other hand, in the above-described embodiment, a groove is formed in a silicon substrate having a (100) surface, and the wall surface of the groove is defined as a (110) surface. On the (110) plane, the hole mobility is larger than the electron mobility. This improves the characteristics of the pMOS transistor. In addition, since the stress acts on the channel as the gate electrode is embedded, the hole mobility is further increased.
[0037] このように、表面が(100)面のシリコン基板において、 pMOSトランジスタの特性を 向上させることができる。 [0037] Thus, the characteristics of the pMOS transistor can be improved in the silicon substrate having the (100) surface.
[0038] なお、 nMOSトランジスタの特性を向上させることも可能である。この場合、例えば、 表面が(110)面のシリコン基板に溝を形成し、この溝の壁面を(100)面とする。 (10[0038] It is possible to improve the characteristics of the nMOS transistor. In this case, for example, a groove is formed in a (110) plane silicon substrate, and the wall surface of the groove is defined as a (100) plane. (Ten
0)面では電子の移動度が正孔の移動度よりも大きい。このため、 nMOSトランジスタ の特性が向上する。表面が(100)面のシリコン基板に溝を形成し、この溝の壁面を(On the 0) plane, the mobility of electrons is larger than the mobility of holes. This improves the characteristics of the nMOS transistor. A groove is formed in a (100) surface silicon substrate, and the wall surface of this groove is (
001)面としてもよい。 001) plane.
[0039] このように、本発明では、チャネルの表面に、ソースとドレインとを結ぶ方向と平行に 延びる溝(凹凸)を形成し、その間にゲート電極を埋め込むことにより、ゲート幅方向 に応力を発生させ、電荷の移動度を向上させることができる。 As described above, in the present invention, the surface of the channel is parallel to the direction connecting the source and the drain. By forming an extending groove (unevenness) and embedding a gate electrode therebetween, stress can be generated in the gate width direction, and the mobility of charges can be improved.
[0040] なお、特許文献 2には、微細化を目的として、ウエットエッチングにより、基板の表面 に断面が二等辺三角形の凹凸を形成するという方法が記載されている。しかしながら 、断面が二等辺三角形の凹凸では、素子活性領域に十分な応力を作用させることが できない。このため、特許文献 2に記載の技術では、本願発明のように、 pMOSトラン ジスタにおけるオン電流を増加させると 、う効果は得られな 、。 [0040] Note that Patent Document 2 describes a method of forming irregularities with an isosceles triangle section on the surface of a substrate by wet etching for the purpose of miniaturization. However, the unevenness of the isosceles triangle section cannot apply sufficient stress to the element active region. For this reason, with the technique described in Patent Document 2, if the on-current in the pMOS transistor is increased as in the present invention, the effect cannot be obtained.
産業上の利用可能性 Industrial applicability
[0041] 以上詳述したように、本発明によれば、チャネル領域に適切な応力が作用するため 、オン電流を増カロさせることができると共に、その調整も容易である。更に、この調整 自体に新たな材料等は必要とされな!/、。 [0041] As described above in detail, according to the present invention, since an appropriate stress acts on the channel region, the on-current can be increased and the adjustment thereof is easy. Furthermore, no new materials are required for this adjustment!
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/013294 WO2007010600A1 (en) | 2005-07-20 | 2005-07-20 | Semiconductor device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/013294 WO2007010600A1 (en) | 2005-07-20 | 2005-07-20 | Semiconductor device and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007010600A1 true WO2007010600A1 (en) | 2007-01-25 |
Family
ID=37668489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/013294 WO2007010600A1 (en) | 2005-07-20 | 2005-07-20 | Semiconductor device and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007010600A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0575121A (en) * | 1991-09-18 | 1993-03-26 | Fujitsu Ltd | Semiconductor device |
JPH09199726A (en) * | 1995-11-15 | 1997-07-31 | Nec Corp | Semiconductor device |
JP2004172389A (en) * | 2002-11-20 | 2004-06-17 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
-
2005
- 2005-07-20 WO PCT/JP2005/013294 patent/WO2007010600A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0575121A (en) * | 1991-09-18 | 1993-03-26 | Fujitsu Ltd | Semiconductor device |
JPH09199726A (en) * | 1995-11-15 | 1997-07-31 | Nec Corp | Semiconductor device |
JP2004172389A (en) * | 2002-11-20 | 2004-06-17 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI413216B (en) | Method for manufacturing a stressed MOS device | |
CN1956222B (en) | Semiconductor device and method for fabricating the same | |
US8946034B2 (en) | Strained semiconductor device and method of making the same | |
JP5580355B2 (en) | Semiconductor device | |
CN100461456C (en) | Semiconductor device and its manufacturing method | |
US20080296702A1 (en) | Integrated circuit structures with multiple FinFETs | |
US20070023795A1 (en) | Semiconductor device and method of fabricating the same | |
US8178929B2 (en) | Semiconductor device and method for fabricating the same | |
US20080064173A1 (en) | Semiconductor device, cmos device and fabricating methods of the same | |
JP5184831B2 (en) | Method for forming fin-type transistor | |
JP2007329295A (en) | Semiconductor and manufacturing method thereof | |
CN113224162A (en) | Method of forming an integrated circuit device | |
CN102569366B (en) | High-k metal gate electrode structures | |
US8741721B2 (en) | Semiconductor device and manufacturing method thereof | |
US20080054366A1 (en) | CMOS semiconductor device having tensile and compressive stress films | |
US7898036B2 (en) | Semiconductor device and process for manufacturing the same | |
JP2010157588A (en) | Semiconductor device and method of manufacturing same | |
JP5286416B2 (en) | Semiconductor device and manufacturing method thereof | |
KR20090020847A (en) | Method for manufacturing MOS transistor having strained channel and MOS transistor produced by | |
US20130292779A1 (en) | Semiconductor device and semiconductor device production process | |
CN110718548B (en) | Semiconductor Devices | |
KR20070101058A (en) | How to Form a Fin Field Effect Transistor | |
TWI744333B (en) | Semiconductor device and method of forming the same | |
JP2010141102A (en) | Semiconductor device and method of manufacturing the same | |
WO2007010600A1 (en) | Semiconductor device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05766365 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |