WO2007000531A2 - Procede de preparation de particules lipidiques solides, mettant en oeuvre un reacteur membranaire - Google Patents
Procede de preparation de particules lipidiques solides, mettant en oeuvre un reacteur membranaire Download PDFInfo
- Publication number
- WO2007000531A2 WO2007000531A2 PCT/FR2006/050447 FR2006050447W WO2007000531A2 WO 2007000531 A2 WO2007000531 A2 WO 2007000531A2 FR 2006050447 W FR2006050447 W FR 2006050447W WO 2007000531 A2 WO2007000531 A2 WO 2007000531A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- lipid
- membrane
- mixture
- lipids
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 58
- 239000002245 particle Substances 0.000 title claims abstract description 36
- 239000007787 solid Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 26
- 150000002632 lipids Chemical class 0.000 claims abstract description 139
- 239000012071 phase Substances 0.000 claims abstract description 98
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 238000002844 melting Methods 0.000 claims abstract description 22
- 230000008018 melting Effects 0.000 claims abstract description 22
- 239000002105 nanoparticle Substances 0.000 claims abstract description 20
- 239000011148 porous material Substances 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000007791 liquid phase Substances 0.000 claims abstract 2
- 238000002360 preparation method Methods 0.000 claims description 25
- 239000004094 surface-active agent Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000004480 active ingredient Substances 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 8
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 claims description 7
- 235000019441 ethanol Nutrition 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- -1 aliphatic alcohols Chemical class 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 150000005215 alkyl ethers Chemical class 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 229940079593 drug Drugs 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 239000002736 nonionic surfactant Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 239000001993 wax Substances 0.000 claims description 3
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 2
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- 239000004203 carnauba wax Substances 0.000 claims description 2
- 235000013869 carnauba wax Nutrition 0.000 claims description 2
- 239000004359 castor oil Substances 0.000 claims description 2
- 235000019438 castor oil Nutrition 0.000 claims description 2
- 229940082500 cetostearyl alcohol Drugs 0.000 claims description 2
- 229940074979 cetyl palmitate Drugs 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 2
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 claims description 2
- UBHWBODXJBSFLH-UHFFFAOYSA-N hexadecan-1-ol;octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO.CCCCCCCCCCCCCCCCCCO UBHWBODXJBSFLH-UHFFFAOYSA-N 0.000 claims description 2
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 2
- 150000004040 pyrrolidinones Chemical class 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 239000012756 surface treatment agent Substances 0.000 claims description 2
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 claims description 2
- 150000003626 triacylglycerols Chemical class 0.000 claims description 2
- 239000002047 solid lipid nanoparticle Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- 239000008346 aqueous phase Substances 0.000 description 10
- 238000000265 homogenisation Methods 0.000 description 9
- 238000009472 formulation Methods 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 229920001213 Polysorbate 20 Polymers 0.000 description 5
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 5
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229920001664 tyloxapol Polymers 0.000 description 2
- MDYZKJNTKZIUSK-UHFFFAOYSA-N tyloxapol Chemical compound O=C.C1CO1.CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 MDYZKJNTKZIUSK-UHFFFAOYSA-N 0.000 description 2
- 229960004224 tyloxapol Drugs 0.000 description 2
- IQXJCCZJOIKIAD-UHFFFAOYSA-N 1-(2-methoxyethoxy)hexadecane Chemical compound CCCCCCCCCCCCCCCCOCCOC IQXJCCZJOIKIAD-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- QYOVMAREBTZLBT-KTKRTIGZSA-N CCCCCCCC\C=C/CCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO QYOVMAREBTZLBT-KTKRTIGZSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 229940088623 biologically active substance Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229950009789 cetomacrogol 1000 Drugs 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000007908 nanoemulsion Substances 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- HNJXPTMEWIVQQM-UHFFFAOYSA-M triethyl(hexadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](CC)(CC)CC HNJXPTMEWIVQQM-UHFFFAOYSA-M 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2475—Membrane reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0021—Preparation of sols containing a solid organic phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0026—Preparation of sols containing a liquid organic phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/02—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
- B01J2/06—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
Definitions
- the present invention relates to a novel process using a membrane reactor, which makes it possible to prepare solid lipid particles, and in particular particles of nanometric size.
- Solid lipid nanoparticles were developed in the 1990s, as an alternative to nanoparticles made of polymers or natural macromolecules.
- Solid lipid nanoparticles are particles composed of a solid lipid matrix. In aqueous dispersion, they are stabilized by surfactants or polymers. They combine the advantages of polymeric nanoparticles, emulsions and liposomes. Like the polymeric particles, they consist of a solid matrix protecting the active ingredients incorporated in the chemical degradations and offer great flexibility to modify the release profile of the incorporated active ingredients. Like emulsions and liposomes, they consist of well tolerated and biodegradable lipids. The aqueous dispersion can be converted into a dried product by "spray drying" or lyophilization.
- the present invention relates to the preparation of solid lipid particles and in particular nanoparticles with a diameter of less than 1000 nm.
- the main method of preparation of solid lipid nanoparticles is high pressure homogenization.
- the principle of a homogenizer is to push the liquid at high pressure (100-200 bar) through a narrow conduit (of the order of a few microns in diameter). The fluid accelerates over a very short distance at high speed (over 1000 km / h). A very high shear rate and the cavitation forces then allow the formation of submicron-sized particles.
- a pre-emulsion of the lipid mixture containing the active ingredient and the aqueous phase is carried out with a mixer with a high shear rate.
- the high pressure homogenization is then carried out at a temperature above the melting point of the lipid.
- a nanoemulsion is thus obtained which solidifies at room temperature and forms solid lipid nanoparticles.
- the lipid mixture containing the active principle is cooled rapidly (for example by ice or liquid nitrogen). Rapid cooling promotes the homogeneous distribution of the active ingredient in the solid lipid matrix.
- the lipid-solid mixture is then milled to obtain microparticles and then dispersed in an aqueous solution.
- the pre-suspension is then subjected to high pressure homogenization at a temperature equal to or lower than room temperature.
- the patent application EP 0506197 describes the preparation of an aqueous solution of solid lipid nanoparticles, comprising at least one lipid and preferably also at least one surfactant.
- the solid lipid nanoparticles thus obtained have a mean diameter of between 50 and 1000 nm and their concentration in the solution is between 0.01 and 60% by weight.
- An appropriate amount of a solid lipid or a mixture of solid lipids is added in a heated liquid aqueous phase. Vigorous stirring makes it possible to obtain droplets of molten lipids whose diameter is between 50 and 1000 nm.
- the dispersion is cooled until the dispersed lipid droplets solidify and a suspension of solid lipid nanoparticles is obtained.
- US Pat. No. 5,250,236 describes the preparation of solid lipid microspheres whose diameter is less than one micron.
- a molten lipid which may contain an active ingredient, is placed in the presence of a mixture consisting of water, a surfactant and, if possible, a co-surfactant, preheated to a temperature at least equal to the melting temperature of the lipid.
- the microemulsion thus obtained is dispersed in water at a temperature between 2 and 10 degrees C °.
- the lipid microspheres obtained can be washed with water by diafiltration, and lyophilized.
- US Pat. No. 5,188,837 describes the preparation of solid lipid nanoparticles with a phospholipid layer attached to their surface.
- the core of the lipid particle is a solid substance to be delivered, or a substance to be delivered which is dispersed in a solid inert compound, such as a wax.
- the substance to be delivered is mixed, dissolved or dispersed in a molten compound to form a liquid substance that can solidify without changing the substance to be delivered.
- the phospholipid is then added to an aqueous medium to the mixed substance at a temperature above the melting temperature of the substance to form an emulsion.
- the final product is a dispersion of solid microparticles coated with a layer of phospholipid particles, whose hydrophobic side is attached to the surface of the hydrophobic solid core and the hydrophilic side is interfaced with the aqueous solution.
- One of the essential objectives of the present invention is to provide a method for preparing solid lipid particles, and in particular nanoparticles, which is easy and cost-effective to implement on an industrial scale.
- An object of the present invention is to propose a novel method for preparing solid lipid nanoparticles which implements a main step and which is simpler than the methods of the prior art.
- Another essential objective of the present invention is to provide a process for the preparation of solid lipid particles, and in particular solid lipid nanoparticles, which is industrializable, and which allows a control of the size of the nanoparticles obtained, and in particular which allows the Obtaining nanoparticles with a diameter less than 800 nm, preferably 600 nm, and preferably between 100 and 500 nm.
- the subject of the present invention is a process for preparing particles, and in particular nanoparticles, solid lipids, from a first liquid lipid phase A comprising a lipid or a mixture of lipids, and a second phase B liquid in which the lipid or lipid mixture of the first phase A is insoluble or poorly soluble, characterized in that it implements a membrane reactor comprising a porous membrane, in which the second phase B circulates tangentially to the membrane, and the first phase A, maintained before passing through the membrane at a temperature above the melting point of the lipid or lipid mixture, passes through the pores of the membrane, to form droplets which meet the second phase B, and solidify, in contact with this last.
- the second phase B is maintained at a temperature below the melting temperature of the lipid or mixture of lipids constituting the first lipid phase A, so that the droplets of lipid phase A formed solidify in contact with the second phase.
- Figure 1 illustrates, schematically, the method according to the invention at the porous membrane.
- FIG. 2 represents a device for implementing the method according to the invention.
- nanoparticles particles of generally spherical shape, of diameter less than 1 micron, in particular less than 800 nm, preferably 600 nm, and preferably between 100 and 500 nm.
- particle or “nanoparticle” will be used interchangeably, in the knowledge that the invention is more particularly intended for the production of nanoparticles, as defined above.
- solid lipid nanoparticles solid nanoparticles at room temperature, that is to say at a temperature of about 25 ° C.
- the second phase B and the lipid or lipid mixtures will be chosen so that the lipid or lipid mixtures are insoluble at 25 ° C in the second phase B.
- the solid lipid nanoparticles of the invention may comprise a single solid lipid or a solid mixture of lipids. Therefore, the lipid or lipid mixture intended to constitute the matrix of the particle, which corresponds to lipid phase A, preferably has a melting point greater than or equal to 30 ° C., preferably between 30 and 100 ° C. C, and preferably between 40 and 95 ° C, so that the particles formed are solid at room temperature. When a lipid mixture is used, it may contain one or more lipids with a melting temperature below 30 ° C. or above 100 ° C., the essential point being that the lipid mixture has a melting point which is within these limits. .
- solid lipids at such temperatures are: highly saturated alcohols, particularly aliphatic alcohols having from 14 to 30 carbon atoms, such as cetostearyl alcohol; waxes, like carnauba wax; hydrocarbons, such as solid paraffins; synthetic esters, such as cetyl palmitate; fatty acids having from 12 to 30 carbon atoms, such as stearic acid; saturated mono-, di- and triglycerides of fatty acids having 10 to 30 carbon atoms, such as trilaurate glyceryl or castor oil; the gelucire,
- the particles according to the invention consist of a lipid matrix in which at least one substance S can be distributed.
- the lipid matrix can also be associated with at least one surfactant.
- a first lipid phase A consisting of a lipid or a mixture of lipids to which is added, optionally a substance of interest S and / or a surfactant, is heated to a temperature above its melting point, for be in the liquid state.
- the first lipid phase A therefore consists essentially of a lipid or mixture of lipids which corresponds to a value of between 50% and 99% of the total volume, preferably 70% to 98% and preferably 85% to 95% of the total volume.
- the lipid phase A It is then pressurized to pass through the pores of a membrane M porous, as illustrated in FIG. 1.
- a second phase B optionally comprising a surfactant, circulates tangentially along the membrane M.
- the lipid phase A After passing through the membrane M, the lipid phase A, in the form of droplets formed by passing through the pores of the membrane, meets the second phase B. Since the second phase B is at a temperature below the melting point of the lipid or lipids constituting the first phase A, the formed droplets solidify in contact with the phase B to directly form solid lipid nanoparticles.
- the method according to the invention is therefore particularly advantageous because the second phase B can be at room temperature, that is to say at a temperature of the order of 25 ° C., when the lipid mixed with lipids has a melting point greater than 30 ° C.
- the method for manufacturing solid lipid particles, and in particular solid lipid nanoparticles, according to the invention therefore uses a porous membrane for the introduction under pressure of the lipid phase A, brought to a temperature above the melting point of the lipid or lipids it contains in a second phase B which flows on the other side of the membrane, along the latter as shown in FIG. 1.
- the lipid phase A is for example placed in a thermostatically controlled container or container ensuring its passage through the pores of the membrane at the pressure and at the desired temperature.
- the second phase B is also maintained at a given temperature by a thermostatically controlled system.
- membrane is preferably meant a porous element homogeneous throughout its thickness, this is particularly the case of polymeric membranes and ceramic supports. It could also be envisaged to use a non-homogeneous ceramic membrane on its thickness, consisting of a support and a separating layer.
- the maximum average diameter of pores adapted for the preparation of particles in accordance with the invention is preferably between 1 nm and 10 ⁇ m, and preferably between 10 nm and 1 ⁇ m, in the case of the preparation of nanoparticles.
- Any form of membrane can be envisaged: flat membranes, tabular membranes comprising one or more circulation channels, along which circulates the second phase B.
- the lipid phase A and / or the second phase B will contain a surfactant.
- the concentration of surfactant (s) may vary with the type of lipids and surfactants used.
- the mass percentage of surfactants in the final suspension of nanoparticles obtained can be between 0.01 and 20%, preferably between 0.1 and 10%, more preferably between 1 and 5% of the total mass of the nanoparticle suspension. obtained.
- surfactants may be used, of which the hydrophilic / lipophilic HLB (of the English “HLB”: hydrophilic / lipophilic balance) is between 2 and 80. Preferably, the HLB is between 8 and 40.
- the choice of surfactant depends on the solid lipid phase used.
- the following surfactants may be used: cationic surfactants, such as cetyltriethylammonium bromide; anionic surfactants, such as sodium lauryl sulfate; amphoteric surfactants, such as imidazoline hydroxyethyl (VARINE ®); copolymers, such as polyoxyethylenepolyoxypropylene alkyl ether (e.g.
- nonionic surfactants such as polyoxyethylene sorbitan esters (eg TWEEN 20 ®), polyoxyethylene alkyl ether (eg BRIJ 97 ® and CETOMACROGOL 1000 ®), polyoxyethylene esters (eg MYRJ 52 ®), sorbitan esters (eg SPAN 80 ®), sucrose esters (eg WASAG ESTER 7 ®), tyloxapol; and other suitable surfactants, such as lecithins (e.g. Epikyron 200), silicone surfactants, and polyglycerol esters.
- nonionic surfactants such as polyoxyethylene sorbitan esters (eg TWEEN 20 ®), polyoxyethylene alkyl ether (eg BRIJ 97 ® and CETOMACROGOL 1000 ®), polyoxyethylene esters (eg MYRJ 52 ®), sorbitan esters (eg SPAN 80 ®), sucrose esters (eg WASAG ESTER 7 ®),
- nonionic surfactants are used. More preferably, the surfactants are selected from the group of polyoxyethylene alkyl ethers and sorbitan esters.
- the surfactants whose HLB is less than or equal to 7 and in the second phase B, which is preferably aqueous surfactants whose HLB is greater than or equal to 7, will preferably be used.
- a mixture of different surfactants can also be used.
- the second phase B intended to constitute the continuous phase of the suspension of solid lipid particles prepared according to the present invention, consists essentially of water, or a mixture of water and one or more solvents.
- nonaqueous polar liquid for example chosen from alcohols, such as ethyl alcohol, glycerol, propylene glycol; and pyrrolidones, such as N-methyl pyrrolidone and 2-pyrrolidone.
- the lipid phase A contains, advantageously, a substance S in solution or in suspension in the lipid or mixture of lipids.
- the substance to be incorporated S can be any substance soluble or dispersible in the lipid or the mixture of lipids chosen.
- the substance S can be a biologically active substance, for example a molecule that can be used as a drug active ingredient or as a precursor of a drug active ingredient, or a contrast agent or a biological reagent.
- the substance S can also be a pigment, an ink, a lubricant, a surface treatment agent. It is also possible to use as substance S a mixture of the above substances.
- the amount of substance S is a function of its solubility in the lipid phase.
- substances which can be incorporated in the lipid phase A there may be mentioned as an example of vitamin, vitamin A, as an example of anti-inflammatory agent, indomethacin; as an example of vitamin E antioxidant.
- the concentration of the solid lipid nanoparticles obtained in the solution is between 0.01 and 80%, preferably between 5 and 45%, more preferably between 10 and 30% (percent mass of nanoparticles relative to the total mass nanoparticles + continuous phase).
- the particle size obtained is controlled by appropriate choice of membrane-bound parameters and process parameters.
- a person skilled in the art will be able to choose, depending on the desired size, on the one hand the material of the membrane used and on the other hand its porosity and its diameter. pores.
- Different types of membranes can be used: ceramic membranes, mineral or organic membranes, for example.
- a wide range of pore diameter may be used: nanofiltration membranes which have a pore diameter of less than 1 ⁇ m, ultrafiltration membranes which have a pore diameter of between 1 and 100 nm or microfiltration membranes which have a pore diameter of between 0.1 and 10 microns.
- the choice of membranes implemented will play on the size (d) of the particles and on the flow (J) of the lipid phase A.
- membranes with a diameter pores is as homogeneous as possible.
- the method according to the invention despite its simplicity, is suitable for the preparation of different types of solid lipid particles. In addition, it allows to prepare large volumes continuously and is therefore ideally suited to industrialization.
- the method according to the invention has a very good adaptability, it allows to adjust the size of the particles. For example, to change the size of the particles obtained, one can modify the formulation, and / or change the pressure to be applied to the lipid phase A, and / or change the tangential flow rate of the second phase B.
- Example 1 illustrate the invention but are not limiting in nature.
- the experimental setup used in this example is shown in FIG. 2. It comprises: a first pressurized container 1 containing the lipid phase A, and connected to a nitrogen bottle 2 and equipped with a manometer 3; this container 1 is heated to a temperature above the melting point of the lipid, for example by means of a bath Ii whose temperature is regulated by a thermostat I 2 , a second container 4, containing the second phase B, and equipped with a stirrer 5 and connected to a pump 6; this second container 4 is kept at a constant temperature, for example by means of a bath 4] whose temperature is regulated by a thermostat 4 2 , a tangential filtration module 7 equipped with two gauges 8 and 9 and a valve 10 , connected to the first and second containers so that the second phase B flows tangentially to the membrane and the lipid phase A passes through the membrane to join the second phase B.
- the assembly is performed in a closed circuit, it is ie at the outlet of the membrane, the colloidal suspension is remixed to the second phase B. It could also be envisaged to carry out the assembly in open circuit and to put at the outlet of the membrane an evacuation circuit to a another container, the flow being controllable by a valve.
- the membrane used is a Kerasep membrane (Orelis, France) with a pore diameter of 0.1 ⁇ m.
- the effective membrane surface is 7.5 ⁇ 10 -3 m 2.
- the tangential velocity is equal to 1.68 ms -1 for the second phase B and the transmembrane pressure equal to 6 bar for the lipid phase A.
- the preparation is evaluated in term average particle diameter, measured on a Zetasizer (France), and the lipid phase flow.
- composition of the lipid phase A and the second aqueous phase B are as follows:
- Lipid phase A 300 g of Gelucire at a temperature of 65 ° C.
- Aqueous phase B 1.2 L water + 2.04 g Tween 20 at a temperature of 60 ° C.
- Lipid phase A 300 g Gelucire at a temperature of 65 ° C.
- Aqueous phase B 1.2 L water + 2.04 g Tween 20 + 2.04 g Epikuron 200 at a temperature of 60 ° C
- Lipid phase A 300 g Gelucire + 3 g Span 80 at a temperature of 65 ° C
- Aqueous phase B 1.2 L water + 2.04 g Tween 20 at a temperature of 60 ° C.
- Lipid phase A 300 g Gelucire +31.25 g Lipoid S100 (2%) at a temperature of 65 ° C.
- Aqueous phase B 1.2 L water +31.25 g Tyloxapol (2%) at a temperature of 60 ° C.
- the results obtained are shown in Table 1.
- the lipid phase flow is high (up to 0.27 g).
- the average diameter of the particles can be modified by the choice of the formulation (mean diameter between 175 and 260 nm) .Table 1
- the experimental setup is shown in FIG. 2.
- the membrane used is a Kerasep membrane (Orelis, France) with a pore diameter of 0.1 ⁇ m.
- the useful membrane surface is 7.5 10 ⁇ 3 m 2 .
- the tangential velocity is equal to 1.68 ms -1 for the aqueous phase B and the transmembrane pressure equal to 6 bar for the lipid phase A.
- the lipid phase contains 300 g of Gelucire at a temperature of 65 ° C., and the aqueous phase 1, 2 L water and 2.04 g Tween 20 at a temperature of 60 ° C.
- the preparation is evaluated in terms of average particle diameter, measured on a Zetasizer (France), and the lipid phase flow.
- the results obtained are reported in Table 2.
- the lipid phase flows are again high (up to 0.26 m 3 / hm 2 ).
- the average diameter of the particles can be modified by the choice of the temperature of the aqueous phase (mean diameter between 70 and 190 nm).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
L'invention concerne un procédé de préparation de particules, et en particulier de nanoparticules, lipidiques solides, à partir d'une première phase A lipidique liquide comportant un lipide ou un mélange de lipides, et une deuxième phase B liquide dans laquelle le lipide ou le mélange de lipides de la première phase A est insoluble ou peu soluble, ledit procédé mettant en œuvre un réacteur membranaire comportant une membrane poreuse, dans lequel la deuxième phase B, circule tangentiellement à la membrane, et la première phase A, maintenue avant passage à travers la membrane à une température supérieure au point de fusion du lipide ou du mélange de lipides, traverse les pores de la membrane, pour former des gouttelettes qui viennent rencontrer la deuxième phase B, caractérisée à ce que la deuxième phase B est maintenue à une température inférieure à la température de fusion du lipide ou mélange de lipides constitutifs de la première phase lipidique A, de façon à ce que les gouttelettes de phase lipidique A formées, se solidifient au contact de la deuxième phase B.
Description
NOUVEAU PROCEDE DE PREPARATION DE PARTICULES LIPIDIQUES SOLIDES, METTANT EN OEUVRE UN REACTEUR MEMBRANAIRE
La présente invention est relative à un nouveau procédé mettant en œuvre un réacteur membranaire, qui permet de préparer des particules lipidiques solides, et en particulier des particules de taille nanométrique.
Depuis quelques années, les systèmes colloïdaux sont de plus en plus utilisés en agrochimie, en cosmétologie et surtout en pharmacie. Dans ce domaine, les systèmes dont la taille est inférieure au micron sont utilisés comme systèmes thérapeutiques, tels que les liposomes, les microémulsions et les nanoparticules. Ces différentes formes ont été développées pour améliorer les performances des médicaments et véhiculer les principes actifs dans l'organisme vers des cellules cibles afin d'améliorer l'effet thérapeutique et/ou de diminuer l'effet toxique.
Les nanoparticules lipidiques solides ont été développées dans les années 90, comme une alternative aux nanoparticules constituées de polymères ou de macromolécules naturelles. Les nanoparticules lipidiques solides sont des particules composées d'une matrice lipidique solide. En dispersion aqueuse, elles sont stabilisées par des tensioactifs ou des polymères. Elles associent les avantages des nanoparticules polymériques, des émulsions et des liposomes. Comme les particules polymériques, elles sont constituées d'une matrice solide protégeant les principes actifs incorporés des dégradations chimiques et offrent une grande flexibilité pour modifier le profil de relargage des principes actifs incorporés. Comme les émulsions et les liposomes, elles sont constituées de lipides bien tolérés et biodégradables. La dispersion aqueuse peut être transformée en produit séché par « spray drying » ou lyophilisation.
La présente invention a trait à la préparation de particules lipidiques solides et en particulier de nanoparticules de diamètre inférieur à 1000 nm.
La méthode principale de préparation des nanoparticules lipidiques solides est l'homogénéisation haute pression. Le principe d'un homogénéisateur est de pousser le liquide à forte pression (100-200 bars) à travers un étroit conduit (de l'ordre de quelques microns de diamètre). Le fluide accélère sur une très courte distance à grande vitesse (plus de 1000 km/h). Un taux de cisaillement très élevé et les forces de cavitation permettent alors la formation de particules de taille submicronique.
Deux techniques d'homogénéisation existent : l'homogénéisation à chaud et l'homogénéisation à froid. L'homogénéisation à chaud est réalisée à une température au dessus du point de fusion du lipide et peut donc être considérée comme l'homogénéisation d'une émulsion. Une pré-émulsion du mélange lipidique contenant le principe actif et de la phase aqueuse est réalisée avec un mélangeur à fort taux de cisaillement. L'homogénéisation haute pression est ensuite réalisée à une température au dessus du point de fusion du lipide. On obtient ainsi une nanoémulsion, qui en solidifiant à température ambiante, forme des nanoparticules lipidiques solides.
En ce qui concerne l'homogénéisation à froid, le mélange lipidique contenant le principe actif est refroidi rapidement (par exemple par de la glace ou de l'azote liquide). Le refroidissement rapide favorise la distribution homogène du principe actif dans la matrice lipidique solide. Le mélange lipide-solide est ensuite broyé jusqu'à l'obtention de microparticules, puis dispersé dans une solution aqueuse. La pré-suspension est ensuite soumise à l'homogénéisation haute pression à une température égale ou inférieure à la température ambiante.
Par exemple, la demande de brevet EP 0506197 décrit la préparation d'une solution aqueuse de nanoparticules lipidiques solides, comprenant au moins un lipide et de façon préférentielle aussi au moins un tensioactif. Les nanoparticules lipidiques solides ainsi obtenues ont un diamètre moyen compris entre 50 et 1000 nm et leur concentration dans la solution est comprise entre 0,01 et 60 % en masse. Une quantité appropriée d'un lipide solide ou un mélange de lipides solides est ajoutée dans une phase aqueuse liquide chauffée. Une agitation vigoureuse permet d'obtenir des gouttelettes de lipides fondus dont le diamètre est compris entre 50 et 1000 nm. Enfin, la dispersion est refroidie jusqu'à ce que les gouttelettes de lipides dispersées se solidifient et qu'une suspension de nanoparticules lipidiques solides soit obtenue.
Le brevet US 5,250,236 décrit la préparation de microsphères lipidiques solides dont le diamètre est inférieur au micron. Un lipide fondu, qui peut contenir un principe actif, est mis en présence d'un mélange constitué d'eau, d'un tensioactif, et si possible un co-tensioactif, préchauffé à une température au moins égale à la température de fusion du lipide. La microémulsion ainsi obtenue est dispersée dans
l'eau à une température comprise entre 2 et 10 degré C°. Les microsphères lipidiques obtenues peuvent être lavées avec de l'eau par diafiltration, et lyophilisées.
Enfin, le brevet US 5,188,837 décrit la préparation de nanoparticules lipidiques solides avec une couche de phospholipide fixée à leur surface. Le cœur de la particule lipidique est une substance solide à délivrer, ou bien une substance à délivrer qui est dispersée dans un composé inerte solide, tel qu'une cire. La substance à délivrer est mélangée, dissoute ou dispersée dans un composé fondu pour former une substance liquide qui peut solidifier sans changement de la substance à délivrer. Le phospholipide est ensuite ajouté à un milieu aqueux à la substance mélangée, à une température supérieure à la température de fusion de la substance pour former une émulsion. Il faut ensuite homogénéiser l'émulsion à une température supérieure à la température de fusion jusqu'à l'obtention d'une préparation homogène, puis refroidir rapidement la préparation à température ambiante ou au dessous du point de fusion du composé fondu. Dispersé dans une solution aqueuse, le produit final est une dispersion de microparticules solides recouvertes d'une couche de particules phospholipides, dont le côté hydrophobe est fixé à la surface du cœur solide hydrophobe et le côté hydrophile est en interface avec la solution aqueuse.
L'un des objectifs essentiels de la présente invention est de fournir un procédé de préparation de particules lipidiques solides, et en particulier de nanoparticules, qui soit aisé et rentable à mettre en oeuvre à l'échelle industrielle.
Un objectif de la présente invention est de proposer une nouvelle méthode de préparation de nanoparticules lipidiques solides qui mette en œuvre une étape principale et qui soit plus simple que les méthodes de l'art antérieur.
Un autre objectif essentiel de la présente invention est de fournir un procédé de préparation de particules lipidiques solides, et en particulier de nanoparticules lipidiques solides, qui soit industrialisable, et qui permette un contrôle de la taille des nanoparticules obtenues, et en particulier qui permette l'obtention de nanoparticules d'un diamètre inférieur à 800 nm, préférentiellement à 600 nm, et de préférence compris entre 100 et 500 nm. Dans ce contexte, la présente invention a pour objet un procédé de préparation de particules, et en particulier de nanoparticules, lipidiques solides, à partir d'une première phase A lipidique liquide comportant un lipide ou un mélange de lipides, et une deuxième phase B liquide dans laquelle le lipide ou le
mélange de lipides de la première phase A est insoluble ou peu soluble, caractérisé en ce qu'il met en œuvre un réacteur membranaire comportant une membrane poreuse, dans lequel la deuxième phase B, circule tangentiellement à la membrane, et la première phase A, maintenue avant passage à travers la membrane à une température supérieure au point de fusion du lipide ou du mélange de lipides, traverse les pores de la membrane, pour former des gouttelettes qui viennent rencontrer la deuxième phase B, et se solidifient, au contact de cette dernière. La deuxième phase B est maintenue à une température inférieure à la température de fusion du lipide ou mélange de lipides constitutifs de la première phase lipidique A, de façon à ce que les gouttelettes de phase lipidique A formées, se solidifient au contact de la deuxième phase B.
La description qui suit, en référence aux figures annexées va permettre de mieux comprendre l'invention.
La figure 1 illustre, schématiquement, le procédé selon l'invention au niveau de la membrane poreuse.
La figure 2 représente un dispositif de mise en œuvre du procédé conforme à l'invention.
Le procédé selon l'invention permet la fabrication, en grande quantité, de particules, et en particulier de nanoparticules de nature essentiellement lipidique. Par nanoparticules, on entend des particules de forme généralement sphérique, de diamètre inférieur à 1 microns, en particulier inférieur à 800 nm, préférentiellement à 600 nm, et de préférence compris entre 100 et 500 nm. Dans la suite de la description, on utilisera indifféremment, le terme « particule », ou « nanoparticule », en sachant que l'invention est plus particulièrement destinée à la production de nanoparticules, telles que définies ci-dessus.
Par nanoparticules lipidiques solides, on entend des nanoparticules solides à température ambiante, c'est-à-dire à une température voisine de 25 °C.
Dans le cadre de l'invention, dire qu'un lipide ou mélange de lipides est peu soluble dans la deuxième phase B signifie que, lorsque le lipide ou mélange de lipides en question est introduit dans la deuxième phase B à 250C, moins de 10 % de la masse totale de lipide(s) introduit(s) se solubilise dans la deuxième phase B. De façon avantageuse, la deuxième phase B et le lipide ou les mélanges de lipides seront
choisis de façon à ce que le lipide ou les mélanges de lipides soient insolubles à 25°C dans la deuxième phase B.
La notion de solubilité à laquelle on se réfère est, par exemple, définie dans la PHARMACOPEE EUROPEENNE 5ème édition.
Les nanoparticules lipidiques solides de l'invention peuvent comprendre un seul lipide solide ou un mélange solide de lipides. Par conséquent, le lipide ou le mélange de lipides destiné à constituer la matrice de la particule, qui correspond à la phase lipidique A, présente de préférence un point de fusion supérieur ou égal à 300C, de préférence compris entre 30 et 1000C, et préférentiellement entre 40 et 95°C, afin que les particules formées soient solides à température ambiante. Quand un mélange de lipides est utilisé, il peut contenir un ou plusieurs lipides avec une température de fusion inférieure 300C ou supérieure à 100°C, l'essentiel étant que le mélange de lipides présente une température de fusion qui est dans ces limites.
Des exemples de lipides solides à de telles températures sont : les alcools fortement saturés, en particulier les alcools aliphatiques ayant entre 14 et 30 atomes de carbone, tel que l'alcool cétostearilique ; les cires, comme la cire de carnauba; les hydrocarbures , comme les paraffines solides; les esters synthétiques, comme le palmitate de cétyl; les acides gras ayant entre 12 et 30 atomes de carbone, comme l'acide stéarique; les mono-, di- et triglycérides saturés en acides gras ayant entre 10 et 30 atomes de carbone, tels que le glycéryl de trilaurate ou l'huile de ricin ; la gélucire,
Les particules selon l'invention sont constituées d'une matrice lipidique dans laquelle peut être répartie au moins une substance S. La matrice lipidique peut également être associée à au moins un tensio-actif.
Le principe de l'invention est le suivant. Une première phase lipidique A, constituée d'un lipide ou d'un mélange de lipides auquel est ajoutée, éventuellement une substance d'intérêt S et/ou un tensio-actif, est chauffée à une température supérieure à son point de fusion, pour se trouver à l'état liquide. La première phase lipidique A est donc constituée essentiellement d'un lipide ou mélange de lipides qui correspond à une valeur comprise de 50 à 99 % du volume total, de préférence de 70 à 98 %, préférentiellement de 85 à 95 % du volume total de la phase lipidique A. Elle est alors mise sous pression pour passer à travers les pores d'une membrane M
poreuse, comme cela est illustré figure 1. Une deuxième phase B comportant éventuellement un tensioactif, circule tangentiellement, le long de la membrane M. Après avoir traverser la membrane M, la phase lipidique A, sous la forme de gouttelettes formées par passage à travers les pores de la membrane, vient rencontrer la deuxième phase B. Etant donné que la deuxième phase B est à température inférieure au point de fusion du lipide ou des lipides constitutifs de la première phase A, les gouttelettes formées se solidifient au contact de la phase B pour former directement des nanoparticules lipidiques solides. Le procédé selon l'invention est donc particulièrement avantageux car la deuxième phase B peut se trouver à température ambiante, c'est-à-dire à une température de l'ordre de 25°C, lorsque le lipide en mélange des lipides présente un point de fusion supérieur à 300C.
Le procédé de fabrication de particules lipidiques solides, et en particulier de nanoparticules lipidiques solides, selon l'invention utilise donc une membrane poreuse pour l'introduction sous pression de la phase lipidique A, portée à une température supérieure au point de fusion du lipide ou des lipides qu'elle contient dans une deuxième phase B qui circule de l'autre côté de la membrane, le long de cette dernière comme illustré Fig. 1. La phase lipidique A est par exemple placée dans un récipient ou conteneur sous pression thermostaté assurant son passage à travers les pores de la membrane à la pression et à la température désirée. De façon avantageuse, la deuxième phase B est elle aussi maintenue à une température donnée par un système thermostaté.
Par membrane, on entend de préférence un élément poreux homogène sur toute son épaisseur, c'est notamment le cas des membranes de nature polymérique et des supports céramiques. Il pourrait également être envisagé d'utiliser une membrane céramique non homogène sur son épaisseur, constituée d'un support et d'une couche séparatrice.
Le diamètre moyen maximum de pores adapté pour la préparation de particules conformes à l'invention est, de préférence, compris entre 1 nm et 10 μm, et préférentiellement compris entre 10 nm et 1 μm, dans le cas de la préparation de nanoparticules.
Dans le cas d'une membrane comportant un support et une couche séparatrice, c'est le diamètre de pore de la couche séparatrice qui est déterminant.
Cette couche séparatrice se trouvera en contact avec la deuxième phase B qui circulera tangentiellement à la surface de cette dernière.
Toute forme de membrane peut être envisagée : des membranes planes, des membranes tabulaires comportant un ou plusieurs canaux de circulation, le long desquels circule la deuxième phase B.
Bien qu'il existe des lipides solides pour lesquels une préparation selon l'invention peut être réalisée sans ajout de tensioactif, dans la plupart des cas, il sera préférable, d'utiliser un tensioactif. Aussi, de façon avantageuse, la phase lipidique A et/ou la deuxième phase B, contiendra un tensio-actif.
La concentration en tensioactif(s) peut varier avec le type de lipides et de tensioactifs utilisés. Le pourcentage massique de tensioactifs dans la suspension finale de nanoparticules obtenues peut être compris entre 0,01 et 20%, de façon préférentielle entre 0,1 et 10%, plus préférentiellement entre 1 et 5% de la masse totale de la suspension de nanoparticules obtenue.
Une grande variété de tensioactifs peut être utilisée, dont le HLB hydrophile/lipophile (de l'anglais « HLB » : hydrophilic/lipophilic balance) est compris entre 2 et 80. De façon préférentielle, le HLB est comprise entre 8 et 40. Le choix du tensioactif dépend de la phase lipidique solide utilisée. Par exemple, les tensioactifs suivants peuvent être utilisés: les tensioactifs cationiques, tels que le bromide de cétyltriéthylammonium; les tensioactifs anioniques, tels que le lauryl sulfate de sodium; les tensioactifs amphotères, comme l'hydroxyéthyl d'imidazoline (VARINE ®); des copolymères, comme le polyoxyéthylènepolyoxypropylène alkyl éther (e.g. PLURONIC F68 ®); des tensioactifs non-ioniques, comme les esters de polyoxyéthylène sorbitanne (e.g. TWEEN 20 ®), le polyoxyéthylène alkyl éther (e.g. BRIJ 97 ® et CETOMACROGOL 1000 ®), les esters de polyoxyéthylène (e.g. MYRJ 52 ® ), les esters de sorbitanne (e.g. SPAN 80 ®), les esters de sucrose (e.g. WASAG ESTER 7 ®), le tyloxapol ; et d'autres tensioactifs adaptés, comme les lecithines (e.g. Epikyron 200), les tensioactifs de silicone, et les esters de polyglycérol.
De façon préférentielle, des tensioactifs non-ioniques sont utilisés. De façon plus préférentielle, les tensioactifs sont choisis dans le groupe des éthers de polyoxyéthylène alkyl et des esters de sorbitanne.
On utilisera dans la phase lipidique A préférentiellement les tensioactifs dont le HLB est inférieur ou égal à 7, et dans la deuxième phase B qui est, de préférence, aqueuse les tensioactifs dont le HLB est supérieur ou égal à 7.
Un mélange de différents tensioactifs peut aussi être utilisé.
De façon avantageuse, la deuxième phase B, destinée à constituer la phase continue de la suspension de particules lipidiques solides préparée selon la présente invention, est essentiellement constituée d'eau, ou d'un mélange d'eau et d'un ou plusieurs solvants liquide non-aqueux polaire, par exemple choisis parmi les alcools, tels que l'alcool éthylique, le glycérol, le propylène glycol ; et les pyrrolidones, comme le N-méthyl pyrrolidone et le 2-pyrrolidone.
La phase lipidique A contient, avantageusement, une substance S en solution ou en suspension dans le lipide ou mélange de lipides. La substance à incorporer S peut être n'importe quelle substance soluble ou dispersible dans le lipide ou le mélange de lipides choisis. La substance S peut être une substance biologiquement active, par exemple une molécule utilisable comme principe actif de médicament ou comme précurseur d'un principe actif de médicament, ou encore un produit de contraste ou un réactif biologique. La substance S peut également être un pigment, une encre, un lubrifiant, un agent de traitement de surface. On peut également utiliser en tant que substance S un mélange des substances ci-dessus. La quantité de substance S est fonction de sa solubilité dans la phase lipidique. En tant que substances pouvant être incorporées à la phase lipidique A, on peut citer comme exemple de vitamine, la vitamine A, comme exemple d'agent anti-inflammatoire, l'indométhacine ; comme exemple d'agent antioxydant la vitamine E.
Au final, la concentration des nanoparticules lipidiques solides obtenues dans la solution, selon le procédé de l'invention, est comprise entre 0,01 et 80%, de façon préférentielle entre 5 et 45%, plus préférentiellement entre 10 et 30% (pourcentage massique des nanoparticules par rapport à la masse totale nanoparticules + phase continue).
La taille des particules obtenues est contrôlée par un choix approprié des paramètres liés à la membrane et des paramètres du procédé. En particulier, l'homme du métier sera à même de choisir, en fonction de la dimension souhaitée, d'un part le matériau de la membrane mis en œuvre et d'autre part sa porosité et son diamètre de
pores. Différents types de membranes peuvent être utilisées : des membranes céramiques, membranes minérales ou organiques par exemple. Egalement, une large gamme de diamètre de pores peut être utilisée : des membranes de nanofiltration qui présentent un diamètre de pores inférieur à lnm, des membranes d'ultrafïltration qui présentent un diamètre de pores compris entre 1 et 100 nm ou des membranes de microfiltration qui présentent un diamètre de pores compris entre 0.1 et 10 μm. Le choix des membranes mises en œuvre va jouer sur la taille (d) des particules et sur le flux (J) de la phase lipidique A. Bien entendu, afin d'obtenir des particules de taille homogène, on utilisera des membranes dont le diamètre de pores est le plus homogène possible.
Il est également possible, pour contrôler la taille des particules obtenues, de jouer sur les paramètres du procédé qui sont la pression (P) de la phase lipidique A et la vitesse tangentielle (U) de la deuxième phase B. Une large gamme de pression et de vitesse tangentielle peut être envisagée. Typiquement, une pression de 0,1 bar à 50 bars, de préférence de 0,3 à 15 bars, pour la phase lipidique A sera utilisée. En général, une vitesse tangentielle de 0,001 à 20 m.s"1, de préférence de 0,01 à 10 m.s"1, pour la deuxième phase B sera utilisée.
Par ailleurs, il est possible de jouer sur la longueur de la membrane, ou plus généralement sur la surface membranaire traversée par la phase lipidique A, pour augmenter le rendement de production.
Il est également possible de disposer plusieurs réacteurs ou modules membranaires en parallèle.
Au vu de ce qui précède, il apparaît que le procédé selon l'invention, malgré sa simplicité, est adapté à la préparation de différents types de particules lipidiques solides. De plus, il permet de préparer des volumes importants en continu et il est donc parfaitement adapté à une industrialisation. Le procédé selon l'invention présente une très bonne adaptabilité, il permet d'ajuster la taille des particules. Par exemple, pour changer la taille des particules obtenues, on pourra modifier la formulation, et/ou changer la pression à appliquer sur la phase lipidique A, et/ou changer la vitesse tangentielle de circulation de la deuxième phase B.
Les exemples qui suivent permettent d'illustrer l'invention mais n'ont aucun caractère limitatif.
Exemple 1
Le montage expérimental utilisé dans cet exemple est représenté sur la Figure 2. Il comprend : un premier récipient pressurisé 1 contenant la phase lipidique A, et relié à une bouteille 2 d'azote et équipé d'un manomètre 3 ; ce récipient 1 est chauffé à une température supérieure au point de fusion du lipide, par exemple grâce à un bain Ii dont la température est régulé par un thermostat I2, un deuxième récipient 4, contenant la deuxième phase B, et équipé d'un agitateur 5 et relié à une pompe 6 ; ce deuxième récipient 4 est maintenu à une température constante, par exemple grâce à un bain 4] dont la température est régulée par un thermostat 42, un module de filtration de tangentielle 7 équipé de deux manomètres 8 et 9 et d'une vanne 10, relié au premier et au deuxième récipient de façon à ce que la deuxième phase B s'écoule tangentiellement à la membrane et la phase lipidique A traverse la membrane pour rejoindre la deuxième phase B. Le montage est réalisé en circuit fermé, c'est-à- dire qu'en sortie de la membrane, la suspension colloïdale est remélangée à la deuxième phase B. Il pourrait également être envisagé de réaliser le montage en circuit ouvert et de mettre en sortie de la membrane un circuit d'évacuation vers un autre récipient, l'écoulement pouvant être contrôlé par une vanne.
La membrane utilisée est une membrane Kerasep (Orelis, France) de diamètre de pores 0,1 μm. La surface membranaire utile est de 7,5 10"3 m2. La vitesse tangentielle est égale 1,68 m.s"1 pour la deuxième phase B et la pression transmembranaire égale à 6 bar pour la phase lipidique A. La préparation est évaluée en terme de diamètre moyen de particules, mesuré sur un Zetasizer (France), et du flux de phase lipidique.
Différentes formulations ont été testées. Pour ces différentes formulations, la composition de la phase lipidique A et de la deuxième phase aqueuse B sont les suivante :
Formulation 1
Phase lipidique A =300 g de Gelucire à la température de 65 0C
Phase aqueuse B =1,2 L eau + 2,04 g Tween 20 à la température de 60 0C
Formulation 2
Phase lipidique A =300 g Gelucire à la température de 65 0C
Phase aqueuse B =1,2 L eau +2,04 g Tween 20 +2,04 g Epikuron 200 à la température de 60 °C
Formulation 3
Phase lipidique A =300 g Gelucire + 3 g Span 80 à la température de 65 °C Phase aqueuse B =1,2 L eau +2,04 g Tween 20 à la température de 60 0C
Formulation 4
Phase lipidique A =300 g Gelucire +31,25 g Lipoid S100 (2%) à la température de 65 0C
Phase aqueuse B =1,2 L eau +31,25 g Tyloxapol (2%) à la température de 60 °C Les résultats obtenus sont reportés dans le Tableau 1. Le flux de phase lipidique est élevé (jusqu'à 0,27 m3/h.m2), ce qui confirme les potentialités de ce procédé pour une application industrielle. Le diamètre moyen des particules peut être modifié par le choix de la formulation (diamètre moyen entre 175 et 260 nm).Tableau 1
Le montage expérimental est représenté sur la Figure 2. La membrane utilisée est une membrane Kerasep (Orelis, France) de diamètre de pores 0,1 μm. La surface membranaire utile est de 7,5 10~3 m2. La vitesse tangentielle est égale 1,68 m.s"1 pour la phase aqueuse B et la pression transmembranaire égale à 6 bar pour la phase lipidique A. La phase lipidique contient 300 g de Gelucire à la température de 65 0C, et la phase aqueuse 1 ,2 L eau et 2,04 g Tween 20 à la température de 60 °C. La préparation est évaluée en terme de diamètre moyen de particules, mesuré sur un Zetasizer (France), et du flux de phase lipidique. Tableau 2
Les résultats obtenus sont reportés dans le Tableau 2. Les flux de phase lipidique sont de nouveau élevés (jusqu'à 0,26 m3/h.m2). Le diamètre moyen des particules peut être modifié par le choix de la température de la phase aqueuse (diamètre moyen entre 70 et 190 nm).
Claims
REVENDICATIONS :
1 - Procédé de préparation de particules, et en particulier de nanoparticules, lipidiques solides, à partir d'une première phase A lipidique liquide comportant un lipide ou un mélange de lipides, et une deuxième phase B liquide dans laquelle le lipide ou le mélange de lipides de la première phase A est insoluble ou peu soluble, ledit procédé mettant en œuvre un réacteur membranaire comportant une membrane poreuse, dans lequel la deuxième phase B, circule tangentiellement à la membrane, et la première phase A, maintenue avant passage à travers la membrane à une température supérieure au point de fusion du lipide ou du mélange de lipides, traverse les pores de la membrane, pour former des gouttelettes qui viennent rencontrer la deuxième phase B, caractérisée à ce que la deuxième phase B est maintenue à une température inférieure à la température de fusion du lipide ou mélange de lipides constitutifs de la première phase lipidique A, de façon à ce que les gouttelettes de phase lipidique A formées, se solidifient au contact de la deuxième phase B.
2 - Procédé de préparation selon la revendication 1 caractérisé en ce que le lipide ou le mélange de lipides constitutif de la phase lipidique A présente un point de fusion supérieur ou égal à 300C, de préférence un point de fusion compris entre 30 et 1000C, et préférentiellement compris entre 40 et 95°C.
3 - Procédé de préparation selon la revendication 2 caractérisé en ce que le lipide ou les lipides de la phase lipidique A sont choisis parmi : les alcools aliphatiques ayant entre 14 et 30 atomes de carbone, tel que l'alcool cétostearilique ; les cires, comme la cire de carnauba; les hydrocarbures, comme les paraffines solides; les esters synthétiques, comme le palmitate de cétyl ; les acides gras ayant entre 12 et 30 atomes de carbone, comme l'acide stéarique ; les mono-, di- et triglycérides saturés en acides gras ayant entre 10 et 30 atomes de carbone, tels que le glycéryl de trilaurate ou l'huile de ricin ; la gelucire.
4 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce que la deuxième phase B est aqueuse.
5 - Procédé selon la revendication 4, caractérisé en ce que la deuxième phase B est essentiellement constituée d'eau, ou d'un mélange d'eau et d'un ou plusieurs solvants liquide non-aqueux polaire, par exemple choisis parmi les alcools, tels que
l'alcool éthylique, le glycérol, le propylène glycol ; et les pyrrolidones, comme le N- méthyl pyrrolidone et le 2-pyrrolidone.
6 - Procédé de préparation selon l'une des revendications 1 à 5, caractérisé en ce que la température de la deuxième phase B correspond à la température ambiante, de l'ordre de 25°C.
7 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce qu'au moins un tensioactif est contenu dans la phase lipidique A et/ou la deuxième phase B.
8 - Procédé de préparation selon la revendication précédente caractérisé en ce que au moins un tensio-actif non-ionique, par exemple choisi dans le groupe des éthers de polyoxyéthylène alkyl et des esters de sorbitanne, est utilisé.
9 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce que la phase lipidique A contient une substance S en solution ou en suspension dans le lipide ou mélange de lipides, de préférence choisie parmi un principe actif de médicament, un produit de contraste, un réactif biologique, un pigment, une encre, un lubrifiant, un agent de traitement de surface.
10 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce que les particules formées présentent un diamètre inférieur à 600 nm, préférentiellement à 500 nm, et de préférence compris entre 200 et 350 nm.
11 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce que la membrane utilisée présente un diamètre de pores compris entre 1 nm et 10 μm, de préférence compris entre 10 nm et 1 μm.
12 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce qu'une pression de 0,1 bar à 50 bar, de préférence de 0,3 à 15 bar, est appliquée sur la phase lipidique A.
13 - Procédé de préparation selon l'une des revendications précédentes caractérisé en ce que la deuxième phase B circule le long de la membrane, à une vitesse tangentielle de 0,001 à 20 m.s" ι, de préférence de 0,01 à 10 m.s" \
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0504883 | 2005-05-16 | ||
FR0504883A FR2885538B1 (fr) | 2005-05-16 | 2005-05-16 | Nouveau procede de preparation de particules lipidiques solides, mettant en oeuvre un reacteur membranaire |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007000531A2 true WO2007000531A2 (fr) | 2007-01-04 |
WO2007000531A3 WO2007000531A3 (fr) | 2007-03-08 |
Family
ID=35708837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2006/050447 WO2007000531A2 (fr) | 2005-05-16 | 2006-05-16 | Procede de preparation de particules lipidiques solides, mettant en oeuvre un reacteur membranaire |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2885538B1 (fr) |
WO (1) | WO2007000531A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013105101A1 (fr) * | 2012-01-13 | 2013-07-18 | Department Of Biotechnology | Nanoparticules lipidiques solides encapsulant un médicament hydrophile/amphiphile et leur procédé de préparation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1967173A1 (fr) * | 2007-03-06 | 2008-09-10 | Peter Greven Hautschutz GmbH & Co. KG | Produit de nettoyage de la peau avec des particules comprenant de l'huile de ricin hydrogenée |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4251195A (en) * | 1975-12-26 | 1981-02-17 | Morishita Jinta Company, Limited | Apparatus for making miniature capsules |
US5662932A (en) * | 1993-05-18 | 1997-09-02 | Pharmos Corporation | Solid fat nanoemulsions |
WO2001045830A1 (fr) * | 1999-12-22 | 2001-06-28 | University Of Leeds | Membrane de rotation |
WO2003014196A1 (fr) * | 2001-08-03 | 2003-02-20 | Akzo Nobel N.V. | Procede de preparation de dispersions |
WO2003078043A2 (fr) * | 2002-03-13 | 2003-09-25 | Appleton Papers Inc. | Microcapsules uniformes |
WO2006067307A1 (fr) * | 2004-12-21 | 2006-06-29 | Universite Claude Bernard Lyon I | Nouveau procede de preparation de particules dont au moins la surface peripherique est de nature polymerique, mettant en oeuvre un reacteur membranaire |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU658608B2 (en) * | 1991-03-25 | 1995-04-27 | Astellas Pharma Europe B.V. | Topical preparation containing a suspension of solid lipid particles |
-
2005
- 2005-05-16 FR FR0504883A patent/FR2885538B1/fr not_active Expired - Fee Related
-
2006
- 2006-05-16 WO PCT/FR2006/050447 patent/WO2007000531A2/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4251195A (en) * | 1975-12-26 | 1981-02-17 | Morishita Jinta Company, Limited | Apparatus for making miniature capsules |
US5662932A (en) * | 1993-05-18 | 1997-09-02 | Pharmos Corporation | Solid fat nanoemulsions |
WO2001045830A1 (fr) * | 1999-12-22 | 2001-06-28 | University Of Leeds | Membrane de rotation |
WO2003014196A1 (fr) * | 2001-08-03 | 2003-02-20 | Akzo Nobel N.V. | Procede de preparation de dispersions |
WO2003078043A2 (fr) * | 2002-03-13 | 2003-09-25 | Appleton Papers Inc. | Microcapsules uniformes |
WO2006067307A1 (fr) * | 2004-12-21 | 2006-06-29 | Universite Claude Bernard Lyon I | Nouveau procede de preparation de particules dont au moins la surface peripherique est de nature polymerique, mettant en oeuvre un reacteur membranaire |
Non-Patent Citations (6)
Title |
---|
CHARCOSSET C ET AL: "The membrane emulsification process: A review" JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, WILEY & SONS, CHICHESTER, GB, vol. 79, no. 3, 23 janvier 2004 (2004-01-23), pages 209-218, XP002300936 ISSN: 0268-2575 * |
CHARCOSSET ET AL: "Preparation of nanoparticles with a membrane contactor" JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL, vol. 266, no. 1-2, 1 décembre 2005 (2005-12-01), pages 115-120, XP005118392 ISSN: 0376-7388 * |
CHARCOSSET ET AL: "Preparation of solid lipid nanoparticles using a membrane contactor" JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 108, no. 1, 2 novembre 2005 (2005-11-02), pages 112-120, XP005123757 ISSN: 0168-3659 * |
JOSCELYNE S M ET AL: "Membrane emulsification - a literature review" JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 169, no. 1, avril 2000 (2000-04), pages 107-117, XP004191135 ISSN: 0376-7388 * |
S. SUGIURA, M. NAKAJIMA, J. TONG, H. NABETANI, M. SEKI: "Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique" JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 227, 2000, pages 95-103, XP002366586 * |
VLADISAVLJEVIC G T ET AL: "Recent developments in manufacturing emulsions and particulate products using membranes" ADVANCES IN COLLOID AND INTERFACE SCIENCE, ELSEVIER, vol. 113, no. 1, 17 mars 2005 (2005-03-17), pages 1-20, XP004781055 ISSN: 0001-8686 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013105101A1 (fr) * | 2012-01-13 | 2013-07-18 | Department Of Biotechnology | Nanoparticules lipidiques solides encapsulant un médicament hydrophile/amphiphile et leur procédé de préparation |
Also Published As
Publication number | Publication date |
---|---|
FR2885538B1 (fr) | 2007-08-10 |
WO2007000531A3 (fr) | 2007-03-08 |
FR2885538A1 (fr) | 2006-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2376218B1 (fr) | Procede de preparation de nanoparticules lipidiques | |
FR2916974A1 (fr) | Procede de preparation de nanoparticules lipidiques | |
EP2039352A1 (fr) | Nanocapsules lipidiques à cýur aqueux pour l'encapsulation de molécules hydrophiles et/ou lipophiles | |
FR2916973A1 (fr) | Nanocapsules a coeur lipidique chargees en actif(s) hydrosoluble(s) ou hydrodispersible(s) | |
EP1003488A1 (fr) | Procede de preparation de nanocapsules de type vesiculaire | |
EP1102581A1 (fr) | Composition a liberation prolongee de principe actif apte a former une micro-emulsion | |
WO2014041001A1 (fr) | Procede alternatif de microencapsulation de principes actifs | |
FR3073415B1 (fr) | Systeme auto-emulsionnable solide et son procede de fabrication par impression en 3 dimensions | |
WO2007000531A2 (fr) | Procede de preparation de particules lipidiques solides, mettant en oeuvre un reacteur membranaire | |
CA2541009C (fr) | Compositions de particules lipidiques solides monodisperses | |
Kukizaki | Preparation of solid lipid microcapsules via solid-in-oil-in-water dispersions by premix membrane emulsification | |
EP2265364B1 (fr) | Nouveau procede de fabrication de nanocapsules, en l'absence de solvant organique, et nanocapsules ainsi obtenues | |
EP3024566B1 (fr) | Nanoparticules lipidiques multicompartimentées | |
FR2943545A1 (fr) | Nanoparticules lipidiques solides encapsulant du minoxidil et suspension aqueuse les contenant. | |
WO2004060358A2 (fr) | Procede d'encapsulation d'un principe actif liposoluble par preparation d'une emulsion pit et emulsion obtenue | |
EP1830949B1 (fr) | Nouveau procede de preparation de particules dont au moins la surface peripherique est de nature polymerique, mettant en oeuvre un reacteur membranaire | |
FR2964332A1 (fr) | Nanodispersions inverses stables | |
Heurtault et al. | Nanoparticules lipidiques | |
FR2956594A1 (fr) | Nouveau procede de preparation de liposomes, mettant en oeuvre un reacteur membranaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06794432 Country of ref document: EP Kind code of ref document: A2 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06794432 Country of ref document: EP Kind code of ref document: A2 |