WO2006106947A1 - Abrasive base inhibited from reacting with fluorine compound and process for producing the same - Google Patents
Abrasive base inhibited from reacting with fluorine compound and process for producing the same Download PDFInfo
- Publication number
- WO2006106947A1 WO2006106947A1 PCT/JP2006/306900 JP2006306900W WO2006106947A1 WO 2006106947 A1 WO2006106947 A1 WO 2006106947A1 JP 2006306900 W JP2006306900 W JP 2006306900W WO 2006106947 A1 WO2006106947 A1 WO 2006106947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium
- phosphate
- polyphosphate
- containing compound
- pyrophosphate
- Prior art date
Links
- 150000002222 fluorine compounds Chemical class 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000011777 magnesium Substances 0.000 claims abstract description 172
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 161
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 160
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 claims abstract description 43
- 238000010438 heat treatment Methods 0.000 claims abstract description 42
- 150000001768 cations Chemical class 0.000 claims abstract description 29
- 229920000388 Polyphosphate Polymers 0.000 claims abstract description 24
- 239000001205 polyphosphate Substances 0.000 claims abstract description 24
- 235000011176 polyphosphates Nutrition 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims description 81
- 229910019142 PO4 Inorganic materials 0.000 claims description 61
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 61
- 239000010452 phosphate Substances 0.000 claims description 61
- 239000001506 calcium phosphate Substances 0.000 claims description 49
- 238000005498 polishing Methods 0.000 claims description 45
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims description 42
- 229910000390 dicalcium phosphate Inorganic materials 0.000 claims description 42
- 229940038472 dicalcium phosphate Drugs 0.000 claims description 42
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 claims description 35
- 239000011734 sodium Substances 0.000 claims description 28
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 22
- 235000019700 dicalcium phosphate Nutrition 0.000 claims description 21
- 229910052708 sodium Inorganic materials 0.000 claims description 21
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 19
- 230000009257 reactivity Effects 0.000 claims description 18
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical group OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 claims description 15
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 claims description 14
- 235000011180 diphosphates Nutrition 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 13
- 229940048084 pyrophosphate Drugs 0.000 claims description 13
- RBLGLDWTCZMLRW-UHFFFAOYSA-K dicalcium;phosphate;dihydrate Chemical compound O.O.[Ca+2].[Ca+2].[O-]P([O-])([O-])=O RBLGLDWTCZMLRW-UHFFFAOYSA-K 0.000 claims description 11
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 claims description 11
- 239000011775 sodium fluoride Substances 0.000 claims description 11
- 235000013024 sodium fluoride Nutrition 0.000 claims description 11
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 239000011591 potassium Substances 0.000 claims description 10
- 229910052700 potassium Inorganic materials 0.000 claims description 10
- VLCINIKIVYNLPT-UHFFFAOYSA-J dicalcium;hydrogen phosphate Chemical compound [Ca+2].[Ca+2].OP(O)([O-])=O.[O-]P([O-])([O-])=O VLCINIKIVYNLPT-UHFFFAOYSA-J 0.000 claims description 8
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 claims description 8
- 229940048086 sodium pyrophosphate Drugs 0.000 claims description 8
- 235000019818 tetrasodium diphosphate Nutrition 0.000 claims description 8
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 8
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 8
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 7
- 235000011010 calcium phosphates Nutrition 0.000 claims description 7
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 7
- 239000000347 magnesium hydroxide Substances 0.000 claims description 7
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 235000019821 dicalcium diphosphate Nutrition 0.000 claims description 6
- 229910000400 magnesium phosphate tribasic Inorganic materials 0.000 claims description 6
- QQFLQYOOQVLGTQ-UHFFFAOYSA-L magnesium;dihydrogen phosphate Chemical compound [Mg+2].OP(O)([O-])=O.OP(O)([O-])=O QQFLQYOOQVLGTQ-UHFFFAOYSA-L 0.000 claims description 6
- 125000005341 metaphosphate group Chemical group 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- MHJAJDCZWVHCPF-UHFFFAOYSA-L dimagnesium phosphate Chemical compound [Mg+2].OP([O-])([O-])=O MHJAJDCZWVHCPF-UHFFFAOYSA-L 0.000 claims description 5
- 229940043256 calcium pyrophosphate Drugs 0.000 claims description 4
- OQZCJRJRGMMSGK-UHFFFAOYSA-M potassium metaphosphate Chemical compound [K+].[O-]P(=O)=O OQZCJRJRGMMSGK-UHFFFAOYSA-M 0.000 claims description 4
- 229940098424 potassium pyrophosphate Drugs 0.000 claims description 4
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical group [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 claims description 4
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- 239000004114 Ammonium polyphosphate Substances 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 235000019826 ammonium polyphosphate Nutrition 0.000 claims description 3
- 229920001276 ammonium polyphosphate Polymers 0.000 claims description 3
- 235000019828 potassium polyphosphate Nutrition 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 235000019830 sodium polyphosphate Nutrition 0.000 claims description 3
- 239000004132 Calcium polyphosphate Substances 0.000 claims description 2
- 235000019827 calcium polyphosphate Nutrition 0.000 claims description 2
- 229910000393 dicalcium diphosphate Inorganic materials 0.000 claims description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 claims description 2
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 claims 5
- 239000002131 composite material Substances 0.000 claims 2
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 claims 1
- 235000001055 magnesium Nutrition 0.000 claims 1
- 150000002681 magnesium compounds Chemical class 0.000 abstract description 10
- 239000004615 ingredient Substances 0.000 abstract 3
- 229940091250 magnesium supplement Drugs 0.000 description 132
- 238000011156 evaluation Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 230000007774 longterm Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229940074371 monofluorophosphate Drugs 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 239000012025 fluorinating agent Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000002076 thermal analysis method Methods 0.000 description 5
- 239000000606 toothpaste Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 239000000551 dentifrice Substances 0.000 description 4
- 229940091249 fluoride supplement Drugs 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000004137 magnesium phosphate Substances 0.000 description 3
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 3
- 229960002261 magnesium phosphate Drugs 0.000 description 3
- 235000010994 magnesium phosphates Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 229940034610 toothpaste Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 208000002925 dental caries Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- XGRSAFKZAGGXJV-UHFFFAOYSA-N 3-azaniumyl-3-cyclohexylpropanoate Chemical compound OC(=O)CC(N)C1CCCCC1 XGRSAFKZAGGXJV-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000238558 Eucarida Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000010210 aluminium Nutrition 0.000 description 1
- DHAHRLDIUIPTCJ-UHFFFAOYSA-K aluminium metaphosphate Chemical compound [Al+3].[O-]P(=O)=O.[O-]P(=O)=O.[O-]P(=O)=O DHAHRLDIUIPTCJ-UHFFFAOYSA-K 0.000 description 1
- ATEWGYWGKZTCRR-UHFFFAOYSA-K aluminum;[hydroxy(oxido)phosphoryl] phosphate Chemical compound [Al+3].OP([O-])(=O)OP([O-])([O-])=O ATEWGYWGKZTCRR-UHFFFAOYSA-K 0.000 description 1
- PYCBFXMWPVRTCC-UHFFFAOYSA-N ammonium metaphosphate Chemical compound N.OP(=O)=O PYCBFXMWPVRTCC-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940075110 dibasic magnesium phosphate Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- CUPFNGOKRMWUOO-UHFFFAOYSA-N hydron;difluoride Chemical compound F.F CUPFNGOKRMWUOO-UHFFFAOYSA-N 0.000 description 1
- RBLWMQWAHONKNC-UHFFFAOYSA-N hydroxyazanium Chemical compound O[NH3+] RBLWMQWAHONKNC-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- PJJZFXPJNUVBMR-UHFFFAOYSA-L magnesium benzoate Chemical compound [Mg+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 PJJZFXPJNUVBMR-UHFFFAOYSA-L 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229960001708 magnesium carbonate Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- OVGXLJDWSLQDRT-UHFFFAOYSA-L magnesium lactate Chemical compound [Mg+2].CC(O)C([O-])=O.CC(O)C([O-])=O OVGXLJDWSLQDRT-UHFFFAOYSA-L 0.000 description 1
- 239000000626 magnesium lactate Substances 0.000 description 1
- 235000015229 magnesium lactate Nutrition 0.000 description 1
- 229960004658 magnesium lactate Drugs 0.000 description 1
- UHNWOJJPXCYKCG-UHFFFAOYSA-L magnesium oxalate Chemical compound [Mg+2].[O-]C(=O)C([O-])=O UHNWOJJPXCYKCG-UHFFFAOYSA-L 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- RHJYKEDKMHDZBL-UHFFFAOYSA-L metaphosphoric acid (hpo3), magnesium salt Chemical compound [Mg+2].[O-]P(=O)=O.[O-]P(=O)=O RHJYKEDKMHDZBL-UHFFFAOYSA-L 0.000 description 1
- AXLHVTKGDPVANO-UHFFFAOYSA-N methyl 2-amino-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound COC(=O)C(N)CNC(=O)OC(C)(C)C AXLHVTKGDPVANO-UHFFFAOYSA-N 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- KFHHGNBIPJDZPH-UHFFFAOYSA-D pentamagnesium [oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O KFHHGNBIPJDZPH-UHFFFAOYSA-D 0.000 description 1
- TWHXWYVOWJCXSI-UHFFFAOYSA-N phosphoric acid;hydrate Chemical compound O.OP(O)(O)=O TWHXWYVOWJCXSI-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229940099402 potassium metaphosphate Drugs 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 229960004711 sodium monofluorophosphate Drugs 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- OKUCEQDKBKYEJY-UHFFFAOYSA-N tert-butyl 3-(methylamino)pyrrolidine-1-carboxylate Chemical compound CNC1CCN(C(=O)OC(C)(C)C)C1 OKUCEQDKBKYEJY-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- LSKHZZSZLMMIMU-UHFFFAOYSA-K tripotassium;hydron;phosphonato phosphate Chemical compound [K+].[K+].[K+].OP([O-])(=O)OP([O-])([O-])=O LSKHZZSZLMMIMU-UHFFFAOYSA-K 0.000 description 1
- MLIKYFGFHUYZAL-UHFFFAOYSA-K trisodium;hydron;phosphonato phosphate Chemical compound [Na+].[Na+].[Na+].OP([O-])(=O)OP([O-])([O-])=O MLIKYFGFHUYZAL-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/24—Phosphorous; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q11/00—Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
- C01B25/327—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
Definitions
- the present invention relates to a polishing base in which reactivity with a fluorine compound is suppressed and a method for producing the same.
- Dicalcium phosphate has been used for many years as a dentifrice polishing base.
- Patent Document 1 an average value force of crystallite size measured by X-ray diffractometry is obtained.
- Hydrocalcium hydrogen phosphate having crystallites of S200-3500 angstroms An abrasive substrate obtained by firing a Japanese product at a temperature of 70 ° C to 1200 ° C is disclosed.
- the invention described in this publication provides a polishing substrate that has a low polishing and high cleaning effect, is stable in a water suspension system, and prevents calcium ions from being eluted by water as much as possible. It is the purpose.
- Patent Document 1 describes a toothpaste containing an abrasive base material and Na monofluorophosphate (MFP) which is a fluorinating agent in Examples.
- MFP Na monofluorophosphate
- DCP dicalcium phosphate
- NaF Na fluoride
- DCP dicalcium phosphate
- Patent Document 1 Japanese Patent Publication No. 7-106970
- Fluorinating agents for dentifrice mainly include Na monofluorophosphate (MFP) and Na fluoride (NaF), and NaF has a wide range of uses because of its rapid efficacy.
- toothpaste bases such as DCP, calcium carbonate, and hydroxylated A1
- NaF reactive with F ions
- the dentifrice was unusable.
- an F ion gradual MFP is used.
- calcium hydrogen phosphate 'anhydrate can be used only in combination with monofluorophosphate Na (MFP).
- MFP monofluorophosphate Na
- DCP dicalcium phosphate
- the present invention is to provide a polishing base that suppresses reactivity with NaF and a method for producing the same.
- a method for producing a polishing base comprising heat-treating a dicalcium calcium phosphate anhydrate in the presence of a magnesium-containing compound and a condensed phosphate,
- the abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate anhydrate,
- the amount of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component) And)
- the said manufacturing method whose heat processing conditions are the range of 100-300 degreeC.
- Magnesium-containing compound strength (1) Magnesium-containing compound contained in dicalcium phosphate anhydrate, (2) Magnesium-containing compound added to dicalcium phosphate anhydrate before heat treatment Or (3) a magnesium-containing compound contained in the anhydrous dibasic calcium phosphate and a magnesium-containing compound added to the anhydrous calcium phosphate before heat treatment [1 ] The manufacturing method of description.
- Anhydrous dibasic calcium phosphate strength obtained by dehydrating a slurry of dicalcium phosphate dihydrate at 80 to 110 ° C.
- the magnesium-containing compound is at least one selected from the group consisting of magnesium hydroxide, primary magnesium phosphate, dibasic magnesium phosphate, tertiary magnesium phosphate, and magnesium pyrophosphate [1] ] To [4].
- the condensed phosphate is pyrophosphate, polyphosphate, metaphosphate or ultraphosphate, and the cationic component constituting the condensed phosphate is sodium, potassium, calcium, magnesium, aluminum, or The production method according to any one of [1] to [5], which is an amorphous.
- the condensed phosphate is a pyrophosphate, and is a pyrophosphate added to dicalcium phosphate prior to heat treatment with pyrophosphate, according to any one of [1] to [5] Production method.
- Pyrophosphate strength Sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, magnesium pyrophosphate and ammonium pyrophosphate group power is at least one selected from [6] or [7] Manufacturing method.
- Polyphosphate strength Sodium polyphosphate, potassium polyphosphate, calcium polyphosphate, ammonium polyphosphate, and at least one kind of group strength including magnesium polyphosphate strength is selected. [9] .
- a method for producing a polishing base comprising mixing a magnesium-containing compound and a condensed phosphate in a dicalcium phosphate non-hydrate that has been heat-treated until no endothermic peak is observed near 130 ° C,
- the abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate anhydrate,
- the amount of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component)
- the production method is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component)
- the magnesium-containing compound is magnesium hydroxide, primary magnesium phosphate, secondary The production method according to [11], which is at least one selected from the group power of magnesium diphosphate, magnesium triphosphate, and magnesium pyrophosphate.
- the condensed phosphate is pyrophosphate, polyphosphate, metaphosphate or ultraphosphate, and the cationic component constituting the condensed phosphate is sodium, potassium, calcium, magnesium, aluminum, or The production method according to [11], which is an amorphous.
- a polishing base which is obtained by the production method according to any one of [1] to [11] and has reduced reactivity with a fluorine compound.
- the above-mentioned polishing base comprising a dibasic calcium phosphate anhydrate as a main component and containing magnesium and condensed phosphate and suppressing reactivity with a fluorine compound.
- Magnesium content is in the range of 1500 to 5000 ppm, and abundance of condensed phosphate
- the molar ratio of the cation component constituting the condensed phosphate to magnesium is in the range of 0.4 Zn to 12 Zn (provided that , N is the valence of the cationic component). [16].
- the present invention provides a polishing base having an effect of suppressing reactivity with a fluorine compound, comprising heat-treating dicalcium phosphate anhydrate in the presence of a magnesium-containing compound and a condensed phosphate.
- the present invention relates to a method for producing an agent (first embodiment).
- the present invention has an effect of suppressing reactivity with a fluorine compound, including mixing a magnesium-containing compound and a condensed phosphate, which are heat-treated until no endothermic peak is observed at around 130 ° C.
- the present invention relates to a method for producing a polishing base (second embodiment). [0011]
- the first aspect will be described.
- the anhydrous dibasic calcium phosphate used in the method for producing a polishing base of the present invention is not particularly limited as long as it is an anhydrous dibasic calcium phosphate.
- dicalcium phosphate dihydrate can be performed, for example, at 100 to 200 ° C, and particularly preferably in the range of 150 to 170 ° C.
- dibasic calcium phosphate anhydrate used in the manufacturing method of the polishing base of the present invention (3) the dicalcium phosphate dihydrate produced in the above (2) is heated to 80 ° C. or more in the form of a slurry.
- An anhydrous dicalcium phosphate obtained by dehydration can also be mentioned. This heating is preferably performed at 110 ° C. or lower.
- the magnesium-containing compound present together with the dicalcium phosphate anhydrate is contained in (1) the anhydrous calcium phosphate anhydrate containing the magnesium-containing compound.
- This compound is a magnesium-containing compound added to a dicalcium phosphate anhydrous before heat treatment.
- dibasic calcium phosphate anhydrate contains magnesium as an impurity as an impurity.
- the magnesium-containing compound contained in (1) dicalcium phosphate non-hydrate is a magnesium compound contained as an impurity derived from the raw material.
- the magnesium-containing compound in the present invention is a magnesium-containing compound newly added to the dicalcium phosphate anhydrous other than the magnesium compound derived from impurities. This is the magnesium-containing compound added to the dicalcium phosphate phosphate before the heat treatment of (2).
- the magnesium-containing compound in the present invention is both the magnesium-containing compound and the magnesium-containing compound contained in the anhydrous dibasic calcium phosphate of (3) and before the heat treatment. It can also be a magnesium-containing compound added to anhydrous calcium diphosphate.
- the “magnesium-containing compound contained in the dicalcium phosphate anhydrous” in (1) and (3) may be any compound. However, such a magnesium-containing compound is generally magnesium phosphate. However, it may be a magnesium-containing compound other than magnesium phosphate.
- the magnesium-containing compound may be, for example, a solid (powder or granular). it can.
- the magnesium-containing compound is, for example, hydroxyammonium, magnesium chloride, primary magnesium phosphate, secondary magnesium phosphate, tertiary magnesium phosphate, magnesium sulfate, acidic magnesium, nitric acid.
- the magnesium-containing compound is preferably magnesium hydroxide, primary magnesium phosphate, secondary magnesium phosphate, tertiary magnesium phosphate, or magnesium pyrophosphate. Or it is especially preferable that it is tribasic magnesium phosphate.
- the condensed phosphate used in the production method of the present invention can be, for example, pyrophosphate, polyphosphate, metaphosphate or ultraphosphate.
- the cationic component constituting the condensed phosphate can be, for example, sodium, potassium, calcium, magnesium, aluminum, or ammonium.
- the condensed phosphate may preferably be a pyrophosphate, which is, for example, sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, sodium hydrogen pyrophosphate, potassium hydrogen pyrophosphate, pyrophosphoric acid It can be aluminum, aluminum hydrogen pyrophosphate, magnesium pyrophosphate, ammonium pyrophosphate, or a mixture thereof.
- the pyrophosphate is particularly preferably sodium pyrophosphate, preferably sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, magnesium pyrophosphate or ammonium pyrophosphate.
- the condensed phosphate may preferably be a polyphosphate
- examples of the polyphosphate include sodium polyphosphate, potassium polyphosphate, aluminum polyphosphate, magnesium polyphosphate, and ammonium polyphosphate.
- examples of the metaphosphate include sodium metaphosphate, potassium metaphosphate, aluminum metaphosphate, magnesium metaphosphate, and ammonium metaphosphate.
- examples of the ultraphosphate include sodium ultraphosphate, potassium ultraphosphate, aluminum ultraphosphate, magnesium ultraphosphate, and ammonium ultraphosphate.
- the magnesium-containing compound and the condensed phosphate are, for example, a solid (powder or granular form) mixed with dicalcium phosphate anhydrous and then heat-treated.
- aqueous solution or suspension containing the magnesium-containing compound and the condensed phosphate may be mixed with or sprayed with the dibasic calcium phosphate anhydrate, followed by heat treatment.
- the abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate phosphate.
- “As the amount of magnesium” means the total amount of magnesium derived from the magnesium-containing compound and the magnesium-containing compound contained in the anhydrous dibasic calcium phosphate.
- the amount of magnesium derived from magnesium compounds contained as impurities in dibasic calcium phosphate anhydrate is also included.
- the abundance of the magnesium-containing compound is preferably in the range of 1700 to 4000 ppm, more preferably in the range of 2000 to 3000 ppm as the amount of magnesium relative to the dicalcium phosphate phosphate.
- Additive strength of magnesium-containing compounds If the amount of magnesium is less than 1500 ppm, the resulting F stability will not be sufficient. In other words, long-term F stability, which has a low level of F stability in the short term, is significantly reduced. Addition capacity of magnesium-containing compounds If the magnesium content exceeds 5000 ppm, the magnesium-containing compound reacts with F ions, and as a result, the stability tends to be lost.
- the amount of the condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is in the range of 0.4 Zn to 12 Zn (where n is the cation component described above) Valence).
- This molar ratio is preferably in the range of 0.6 Zn to: LOZn, more preferably in the range of 0.7 / n to 8 / n.
- n is a cation component In the case of monovalent compounds such as potassium, potassium and ammonia, it is 1, and the molar ratio is in the range of 0.4-12.
- N is 2 when the cation component is divalent, such as magnesimu, and the molar ratio is in the range of 0.2-6. Furthermore, n is 3 when the cation component is trivalent such as aluminum, and the molar ratio is in the range of 0.4Z3-4.
- the amount of the condensed phosphate added is either short-term or long-term when the molar ratio of the cation component constituting the condensed phosphate to magnesium derived from the magnesium-containing compound is less than 0.4 Zn. F stability is also poor. If this molar specific force exceeds 12Zn, short-term stability is good, but long-term stability tends to decrease.
- the heat treatment conditions of the dicalcium phosphate anhydrous to which the magnesium-containing compound and the condensed phosphate are added are such that the temperature is in the range of 100 to 300 ° C.
- the heating temperature is preferably in the range of 150 to 250 ° C. It is appropriate that the heat treatment is performed at least until the crystal water of the added condensed phosphate hydrate is removed from the heat treatment.
- the heat treatment time is, for example, in the range of 1 to 10 hours. However, it is not limited to this range.
- the second aspect of the present invention includes mixing a magnesium-containing compound and a condensed phosphate with a dicalcium phosphate anhydrous heat-treated until no endothermic peak is observed at around 130 ° C.
- the dicalcium phosphate anhydrate used in the method for producing the polishing base is a dicalcium phosphate anhydrate that has been heat-treated until no endothermic peak is observed at around 130 ° C.
- Such an anhydrous dicalcium phosphate is the same as the anhydrous calcium phosphate (1) to (3) described in the first embodiment of the present invention at 100 to 300 ° C, preferably 150 to 250 ° C. Examples thereof include those heated with C for 1 to 10 hours.
- the conditions for the heat treatment can be appropriately determined so as to obtain a dicalcium phosphate anhydrous that does not show an endothermic peak near 130 ° C as a result of thermal analysis by TG DAT.
- magnesium-containing compound to be added to and mixed with the dicalcium phosphate anhydrous for example, a solid (powder or granular) can be used.
- a solid powder or granular
- Examples of the magnesium-containing compound in this case are the same as in the first embodiment.
- Condensed phosphoric acid used in the second embodiment Examples of the salt are the same as in the first embodiment.
- the magnesium-containing compound and the condensed phosphate are mixed with, for example, a solid (powder or granule) heat-treated dicalcium phosphate anhydrous.
- Mixing can be performed using, for example, a commercially available powder mixing apparatus (for example, a ribbon mixer or a V-type mixer).
- the mixing method is not limited to the above method.
- mixing should be carried out so that the mixture of dibasic phosphate strength succinic anhydride and magnesium-containing compound and condensed phosphate strength is almost evenly mixed.
- it can be determined appropriately in consideration of the particle size, mixing ratio, etc. of the dicalcium phosphate anhydrous, the magnesium-containing compound and the condensed phosphate.
- An aqueous solution or suspension containing the magnesium-containing compound and the condensed phosphate may be mixed or sprayed with the heat-treated dicalcium phosphate anhydrous. In this case, after mixing or mixing after spraying, the mixture is dried.
- the abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate phosphate. “As the amount of magnesium” means the total amount of magnesium derived from the magnesium-containing compound and the magnesium-containing compound contained in the anhydrous dibasic calcium phosphate. The amount of magnesium derived from the magnesium compound contained as an impurity in the heat-treated calcium phosphate anhydrous is also included. The abundance of the magnesium-containing compound is preferably in the range of 1700 to 4000 ppm, more preferably in the range of 2000 to 3000 ppm as the amount of magnesium relative to the dicalcium phosphate anhydrous.
- the amount of the condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is in the range of 0.4 Zn to 12 Zn (where n is the cation component described above) Valence).
- This molar ratio is preferably in the range of 0.6 Zn to: LOZn, more preferably in the range of 0.7 / n to 8 / n.
- n is a cation component In the case of monovalent compounds such as potassium, potassium and ammonia, it is 1, and the molar ratio is in the range of 0.4-12.
- N is 2 when the cation component is divalent, such as magnesimu, and the molar ratio is in the range of 0.2-6. Furthermore, n is 3 when the cation component is trivalent such as aluminum, and the molar ratio is in the range of 0.4Z3-4.
- the amount of the condensed phosphate added is either short-term or long-term when the molar ratio of the cation component constituting the condensed phosphate to magnesium derived from the magnesium-containing compound is less than 0.4 Zn. F stability is also poor. If this molar specific force exceeds 12Zn, short-term stability is good, but long-term stability tends to decrease.
- an abrasive base comprising dibasic calcium phosphate anhydrate as a main component and containing magnesium and a condensed phosphate.
- This polishing base has a suppressed reactivity with a fluorine compound, particularly sodium fluoride.
- the condensed phosphate is the same as that described in the above production method.
- the polishing base of the present invention has a magnesium content in the range of 1500 to 5000 ppm, and the content of the cation component constituting the condensed phosphate is as a molar ratio to the magnesium content of 0.4 Zn to It is in the range of 12Zn.
- the magnesium content is preferably in the range of 1700 to 4000 ppm, more preferably in the range of 2000 to 3000 ppm.
- the magnesium content of the polishing base of the present invention includes the magnesium amount derived from the magnesium-containing compound newly added in the preparation of the polishing base and the magnesium compound contained as an impurity in the dicalcium phosphate anhydrous. This is the total amount of magnesium derived from the product.
- the amount of magnesium derived from the magnesium compound contained as an impurity in dibasic calcium phosphate anhydrate depends on the type of CaO (origin) that is the raw material of the dibasic calcium phosphate anhydrate and the production of dibasic calcium phosphate anhydrate.
- the content of the cation component constituting the condensed phosphate is the content of magnesium (magnesium derived from a magnesium-containing compound newly added in the preparation of the polishing base.
- a molar ratio to the total amount of magnesium derived from the magnesium compound contained as an impurity in the dicalcium phosphate anhydrate) is in the range of 0.4 Zn to 12 Zn, preferably in the range of 0.6 Zn to LOZn. More preferably, it is in the range of 0.7 Zn to 8 Zn.
- Reactivity with fluorine compounds, especially sodium fluoride, is suppressed for a long time because the content of the cation component constituting the condensed phosphate is in the range of 0.4 Zn to 12 Zn as a molar ratio to the magnesium content.
- short-term and long-term F stability is also improved.
- the polishing base of the present invention has a stability with a residual F concentration of 700 ppm or more at 50 ° C. for 30 days in the test method described later in the presence of lOOOppm sodium fluoride. That is, in the present invention, “in which the reactivity with sodium fluoride is suppressed” means that the residual F concentration shows 700 ppm or more in the test under the above conditions.
- the mixed sample was heat-treated in an oven at 200 ° C. for 2 hours to obtain an abrasive base sample 1 of the present invention.
- ICP inductively coupled radio frequency plasma spectroscopy
- the existing amount of the magnesium-containing compound in the polishing base sample 1 obtained by the heat treatment was 3600 ppm as the amount of magnesium with respect to the dicalcium phosphate phosphate non-hydrate. there were.
- the amount of sodium present was 4000 ppm as a result of ICP (inductively coupled radio frequency plasma spectroscopy) analysis as described above.
- the molar ratio of sodium to magnesium was 1.17.
- the sample was mixed by shaking for about 5 minutes by hand, and the mixed sample was heat-treated in an open system for 1 hour in a 230 ° C drier to prepare a comparative sample.
- the abundance of magnesium and sodium in the comparative sample obtained by heat treatment was determined by ICP analysis in the same manner as described above.
- the magnesium content power is 3600 ppm, which is in the range of 500 to 5000 ppm, and the sodium content is 1.17 in a molar ratio with respect to the magnesium content of 0.5 to 9.
- Polishing base 1 based on dicalcium phosphate phosphate as the main component has excellent stability against fluoride fluoride that can be put to practical use with a residual F concentration of 700 ppm or more at 50 ° C for 30 days. It was a thing.
- the present invention wherein the magnesium content is 2310ppm, which is in the range of 1500 to 5000ppm, and the sodium content is 2.42 in terms of a molar ratio to the magnesium content of 0.5-9.
- Abrasive base 2 based on dicalcium phosphate dibasic acid as a main component has excellent residual F concentration with a residual F concentration of 700 ppm or more at 50 ° C for 30 days. I had it.
- Magnesium content power of 2150 ppm which is in the range of 500 to 5000 ppm, and sodium content is 2.93 in a molar ratio with respect to magnesium content of 0.5-9.
- Abrasive base 3 based on dibasic calcium phosphate anhydrate is excellent in practical use for sodium fluoride with a residual F concentration of 700 ppm or more at 50 ° C for 30 days. It was a thing.
- the sodium content is in the range of 0.5 to 9 as a molar ratio to the magnesium content of 3.95, but the magnesium content is outside the range of 1500 to 5000 ppm. 1340ppm.
- the residual F concentration at 50 ° C. for 30 days was 16 ppm, and the inhibitory effect on the reactivity with the fluorine compound was strong.
- TFC Tosohichi's Finechem Co., Ltd. product DCP—C 100g, Mg (PO) ⁇ 8 ⁇ 0 (No. 3 Magnesium phosphate) 1.
- Magnesium and sodium abundances were determined by ICP analysis as described above.
- the F stability evaluation and composition analysis of this sample were performed in the same manner as described above. The results are shown in Table 2.
- Patent Document 1 From the above results, it can be seen from Patent Document 1 that the polishing agent I described in the Examples is much more stable against sodium fluoride than the polishing base of the present invention. It can be seen that there is no stability against low and practical levels of fluorinated agents.
- Patent Document 1 sodium monofluorophosphate is used as a fluorine agent, and its stability against sodium fluoride has been tested.
- the heating conditions were 150 ° C. and 2 hours.
- this condition is changed to 230 ° C, which is slightly higher than the processing temperature of Example 1 above, and when the amount of applied force of Z or Mg (PO) ⁇ 8 ⁇ 0 (tertiary magnesium phosphate) is increased.
- Patent Document 1 the polishing agent I described in the Examples is still stable against sodium fluoride even when the temperature of the heat treatment and the amount of tribasic magnesium phosphate are changed. It can be seen that even if these polishing agents I are further modified compared to the polishing base of the present invention, the polishing agents I are further modified so that they do not have a practical level of stability to fluorine agents.
- TFC product DCP-C Mg concentration: 1630ppm
- sodium pyrophosphate 4.21wt% calorie put in screw cap type plastic container (0.3L), mix in the same way as in Example 1, then 230 ° C
- heat treatment was performed for 1 hour to obtain an abrasive sample.
- Evaluation of F stability of this sample was performed in the same manner as in Example 1 above. Magnesium and sodium abundances were determined by ICP analysis as described above. The results are shown in Table 4.
- TFC product DCP-A (Mg concentration: 1710 ppm) 30 g of sodium pyrophosphate is added to a screw cap type plastic container (0.3 L) and mixed in the same manner as in Example 1, then 230 ° C. In the dryer, heat treatment was performed for 1 hour to obtain an abrasive sample. Evaluation of F stability of this sample was performed in the same manner as in Example 1 above. Magnesium and sodium abundances were determined by ICP analysis as described above. The results are shown in Table 5.
- Dibasic calcium phosphate anhydrate was synthesized in the same manner as in Example 1. Second synthesized The Mg concentration of the anhydrous calcium phosphate was 1850 ppm.
- the polishing base of the present invention can be used as a polishing base for brushing teeth.
- FIG. 1 Thermal analysis of anhydrous dibasic calcium phosphate after heat treatment in Example 5 (TG).
- FIG. 2 shows the result of thermal analysis (TG DTA) of dicalcium phosphate phosphate before heat treatment in Example 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Geology (AREA)
- Birds (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cosmetics (AREA)
Abstract
An abrasive base which is inhibited from reacting with NaF; and a process for producing the abrasive base. The process for abrasive base production comprises heating anhydrous calcium secondary phosphate in the presence of a magnesium compound and a polyphosphate. The amount of the magnesium compound to be present in terms of magnesium amount is in the range of 1,500-5,000 ppm of the anhydrous calcium secondary phosphate. The amount of the polyphosphate to be present is such that the molar ratio of the cation ingredient as a component of the polyphosphate to the magnesium in the magnesium compound is from 0.4/n to 12/n (wherein n is the valence of the cation ingredient). The heating is conducted at a temperature in the range of 100-300°C. The abrasive base contains magnesium and a polyphosphate and comprises, as the main component, anhydrous calcium secondary phosphate inhibited from reacting with a fluorine compound. The magnesium content is 1,500-5,000 ppm and the molar ratio of the cation ingredient contained as a component of the polyphosphate to the magnesium contained is from 0.4/n to 12/n.
Description
明 細 書 Specification
フッ素化合物との反応性を抑制した研磨基剤及びその製造方法 技術分野 Polishing base with reduced reactivity with fluorine compound and method for producing the same
[0001] 本発明は、フッ素化合物との反応性を抑制した研磨基剤およびその製造方法に関 する。 [0001] The present invention relates to a polishing base in which reactivity with a fluorine compound is suppressed and a method for producing the same.
背景技術 Background art
[0002] 歯磨用研磨基剤として、長年、第二リン酸カルシウム (DCP)が使用されている。特 公平 7— 106970号公報 (特許文献 1)には、 X線回折法により測定した結晶子の大 きさの平均値力 S200〜3500オングストロームである結晶子を有するリン酸水素カルシ ゥム ·無水和物を 70°C〜1200°Cの温度で焼成してなる研磨基材が開示されている。 この公報に記載の発明は、低研磨一高清掃効果を有する上、水懸濁系において安 定であり、水によるカルシウムイオンの溶出が可及的に防止された研磨基材を提供 することを目的とするものである。 [0002] Dicalcium phosphate (DCP) has been used for many years as a dentifrice polishing base. In Japanese Patent Publication No. 7-106970 (Patent Document 1), an average value force of crystallite size measured by X-ray diffractometry is obtained. Hydrocalcium hydrogen phosphate having crystallites of S200-3500 angstroms An abrasive substrate obtained by firing a Japanese product at a temperature of 70 ° C to 1200 ° C is disclosed. The invention described in this publication provides a polishing substrate that has a low polishing and high cleaning effect, is stable in a water suspension system, and prevents calcium ions from being eluted by water as much as possible. It is the purpose.
[0003] また、近年、歯磨中に虫歯防止用としてフッ素剤が多用されている。特許文献 1は、 実施例にぉ 、て、この研磨基材とフッ素剤であるモノフルォロリン酸 Na (MFP)を含む 練り歯磨きを記載している。しかし、第二リン酸カルシウム(DCP)は、フッ素剤、中でも フッ化 Na(NaF)の Fイオンと反応し、 Fの虫歯予防効果を損なってしまう。そめのため 、フッ素剤としてフッ化 Naを配合する歯磨きにおいては、第二リン酸カルシウム (DCP )は、フッ化 Naとの反応性が低いシリカ剤にとって代られている。 [0003] Further, in recent years, fluorinated agents are frequently used in toothpastes for preventing caries. Patent Document 1 describes a toothpaste containing an abrasive base material and Na monofluorophosphate (MFP) which is a fluorinating agent in Examples. However, dicalcium phosphate (DCP) reacts with F ions of fluorinating agent, especially Na fluoride (NaF), and impairs F's caries prevention effect. For this reason, dicalcium phosphate (DCP) is replaced by a silica agent with low reactivity with Na fluoride in toothpastes containing Na fluoride as a fluorinating agent.
[0004] 特許文献 1 :特公平 7— 106970号公報 [0004] Patent Document 1: Japanese Patent Publication No. 7-106970
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 歯磨用のフッ素剤は、主に、モノフルォロリン酸 Na(MFP)とフッ化 Na(NaF)があり、 NaFは速効力があることから、使用されている範囲が広い。一方、上述のように、シリ 力以外の歯磨基剤(DCP、炭酸 Ca,水酸化 A1など)は、 NaFとの反応性 (Fイオンとの反 応性)が高いため、 NaFをフッ素剤として含む歯磨剤には使用できな力つた。そのた め、シリカ以外の歯磨基剤を使用する場合は、 Fイオン徐方性の MFPが使用される。
特許文献 1に記載のように、リン酸水素カルシウム '無水和物は、モノフルォロリン酸 N a (MFP)との組み合わせでしか使用できない。し力し、 NaFの方が MFPに比べて速効 力があるため、実際には、 NaFとシリカ剤とを組み合わせた歯磨が主流になっている。 [0005] Fluorinating agents for dentifrice mainly include Na monofluorophosphate (MFP) and Na fluoride (NaF), and NaF has a wide range of uses because of its rapid efficacy. On the other hand, as described above, toothpaste bases (such as DCP, calcium carbonate, and hydroxylated A1) other than siri force are highly reactive with NaF (reactive with F ions) and therefore contain NaF as a fluorine agent. The dentifrice was unusable. For this reason, when using a dentifrice base other than silica, an F ion gradual MFP is used. As described in Patent Document 1, calcium hydrogen phosphate 'anhydrate can be used only in combination with monofluorophosphate Na (MFP). However, since NaF is faster than MFP, in practice, toothpaste combining NaF and silica is the mainstream.
[0006] このような状況下、フッ素剤である NaFとの反応性が低ぐ長期間、 NaFを安定的に 維持できる第二リン酸カルシウム (DCP)の開発力 長年にわたり試みられている。し かし、長年の努力にも関わらず、これまで実用に供し得るほどの安定性を有するもの は知られていない。 [0006] Under such circumstances, the development ability of dicalcium phosphate (DCP) capable of stably maintaining NaF for a long period of time when the reactivity with NaF, which is a fluorinating agent, is low. However, in spite of many years of efforts, no one has been known that has sufficient stability to be put to practical use.
[0007] そこで、本発明は、 NaFに対する反応性を抑制した研磨基剤及びその製造方法を 提供することにある。 [0007] Therefore, the present invention is to provide a polishing base that suppresses reactivity with NaF and a method for producing the same.
課題を解決するための手段 Means for solving the problem
[0008] 上記課題を解決する本発明は、以下のとおりである。 [0008] The present invention for solving the above problems is as follows.
[ 1 ]第二リン酸カルシウム無水和物をマグネシウム含有ィ匕合物及び縮合リン酸塩の 存在下で加熱処理することを含む、研磨基剤の製造方法であって、 [1] A method for producing a polishing base, comprising heat-treating a dicalcium calcium phosphate anhydrate in the presence of a magnesium-containing compound and a condensed phosphate,
マグネシウム含有ィ匕合物の存在量は、第二リン酸カルシウム無水和物に対してマグ ネシゥム量として 1500〜5000ppmの範囲であり、 The abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate anhydrate,
縮合リン酸塩の存在量が、マグネシウム含有ィ匕合物のマグネシウムに対する縮合リ ン酸塩を構成するカチオン成分のモル比が 0. 4Zn〜12Znの範囲(但し、 nは上記 カチオン成分の価数である)であり、かつ The amount of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component) And)
加熱処理条件が、 100〜300°Cの範囲である前記製造方法。 The said manufacturing method whose heat processing conditions are the range of 100-300 degreeC.
[2]マグネシウム含有ィ匕合物力 (1)第二リン酸カルシウム無水和物に含まれているマ グネシゥム含有化合物、(2)加熱処理前に第二リン酸カルシウム無水和物に添加され たマグネシウム含有ィ匕合物、または (3)第二リン酸カルシウム無水和物に含まれて ヽ るマグネシウム含有ィ匕合物及び加熱処理前に第二リン酸カルシウム無水和物に添カロ されたマグネシウム含有ィ匕合物である [1]に記載の製造方法。 [2] Magnesium-containing compound strength (1) Magnesium-containing compound contained in dicalcium phosphate anhydrate, (2) Magnesium-containing compound added to dicalcium phosphate anhydrate before heat treatment Or (3) a magnesium-containing compound contained in the anhydrous dibasic calcium phosphate and a magnesium-containing compound added to the anhydrous calcium phosphate before heat treatment [1 ] The manufacturing method of description.
[3]前記第二リン酸カルシウム無水和物力 第二リン酸カルシウム二水和物を 100〜 200°Cで脱水して得たものである [1]に記載の製造方法。 [3] Anhydrous dicalcium phosphate dibasic acid The production method according to [1], obtained by dehydrating dicalcium phosphate dihydrate at 100 to 200 ° C.
[4]前記第二リン酸カルシウム無水和物力 第二リン酸カルシウム二水和物のスラリ 一を 80〜110°Cで脱水して得たものである [1]に記載の製造方法。
[5]マグネシウム含有ィ匕合物が、水酸化マグネシウム、第一リン酸マグネシウム、第二 リン酸マグネシウム、第三リン酸マグネシウム、及びピロリン酸マグネシウム力 なる群 力 選ばれる少なくとも 1種である [1]〜 [4]の 、ずれかに記載の製造方法。 [4] Anhydrous dibasic calcium phosphate strength The production method according to [1], obtained by dehydrating a slurry of dicalcium phosphate dihydrate at 80 to 110 ° C. [5] The magnesium-containing compound is at least one selected from the group consisting of magnesium hydroxide, primary magnesium phosphate, dibasic magnesium phosphate, tertiary magnesium phosphate, and magnesium pyrophosphate [1] ] To [4].
[6]縮合リン酸塩がピロリン酸塩、ポリリン酸塩、メタリン酸塩またはウルトラリン酸塩で あり、縮合リン酸塩を構成するカチオン成分が、ナトリウム、カリウム、カルシウム、マグ ネシゥム、アルミニウム、またはアンモ-ゥムである [1]〜 [5]のいずれかに記載の製 造方法。 [6] The condensed phosphate is pyrophosphate, polyphosphate, metaphosphate or ultraphosphate, and the cationic component constituting the condensed phosphate is sodium, potassium, calcium, magnesium, aluminum, or The production method according to any one of [1] to [5], which is an amorphous.
[7]縮合リン酸塩がピロリン酸塩であり、かつピロリン酸塩力 加熱処理する前に、第 二リン酸カルシウムに添加されたピロリン酸塩である [1]〜 [5]のいずれかに記載の 製造方法。 [7] The condensed phosphate is a pyrophosphate, and is a pyrophosphate added to dicalcium phosphate prior to heat treatment with pyrophosphate, according to any one of [1] to [5] Production method.
[8]ピロリン酸塩力 ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸カルシウム、ピ 口リン酸マグネシウム及びピロリン酸アンモ-ゥム力 成る群力 選ばれる少なくとも 1 種である [6]または [7]に記載の製造方法。 [8] Pyrophosphate strength Sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, magnesium pyrophosphate and ammonium pyrophosphate group power is at least one selected from [6] or [7] Manufacturing method.
[9]縮合リン酸塩がポリリン酸塩であり、かつポリリン酸塩力 加熱処理する前に、第 二リン酸カルシウムに添加されたポリリン酸塩である [1]〜 [5]の 、ずれかに記載の 製造方法。 [9] The condensed phosphate according to any one of [1] to [5], wherein the condensed phosphate is a polyphosphate, and is a polyphosphate added to dicalcium phosphate before heat treatment for polyphosphate. The manufacturing method.
[10]ポリリン酸塩力 ポリリン酸ナトリウム、ポリリン酸カリウム、ポリリン酸カルシウム、 ポリリン酸アンモ-ゥム及び、ポリリン酸マグネシウム力も成る群力も選ばれる少なくと も 1種である [9]に記載の製造方法。 [10] Polyphosphate strength Sodium polyphosphate, potassium polyphosphate, calcium polyphosphate, ammonium polyphosphate, and at least one kind of group strength including magnesium polyphosphate strength is selected. [9] .
[11] 130°C付近に吸熱ピークを示さなくなるまで加熱処理した第二リン酸カルシウム 無水和物にマグネシウム含有化合物及び縮合リン酸塩を混合することを含む、研磨 基剤の製造方法であって、 [11] A method for producing a polishing base, comprising mixing a magnesium-containing compound and a condensed phosphate in a dicalcium phosphate non-hydrate that has been heat-treated until no endothermic peak is observed near 130 ° C,
マグネシウム含有ィ匕合物の存在量は、第二リン酸カルシウム無水和物に対してマグ ネシゥム量として 1500〜5000ppmの範囲であり、 The abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate anhydrate,
縮合リン酸塩の存在量が、マグネシウム含有ィ匕合物のマグネシウムに対する縮合リ ン酸塩を構成するカチオン成分のモル比が 0. 4Zn〜12Znの範囲(但し、 nは上記 カチオン成分の価数である)である前記製造方法。 The amount of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component) The production method.
[12]マグネシウム含有ィ匕合物が、水酸化マグネシウム、第一リン酸マグネシウム、第
二リン酸マグネシウム、第三リン酸マグネシウム、及びピロリン酸マグネシウム力 なる 群力 選ばれる少なくとも 1種である [ 11 ]に記載の製造方法。 [12] The magnesium-containing compound is magnesium hydroxide, primary magnesium phosphate, secondary The production method according to [11], which is at least one selected from the group power of magnesium diphosphate, magnesium triphosphate, and magnesium pyrophosphate.
[13]縮合リン酸塩がピロリン酸塩、ポリリン酸塩、メタリン酸塩またはウルトラリン酸塩 であり、縮合リン酸塩を構成するカチオン成分が、ナトリウム、カリウム、カルシウム、マ グネシゥム、アルミニウム、またはアンモ-ゥムである [11]に記載の製造方法。 [13] The condensed phosphate is pyrophosphate, polyphosphate, metaphosphate or ultraphosphate, and the cationic component constituting the condensed phosphate is sodium, potassium, calcium, magnesium, aluminum, or The production method according to [11], which is an amorphous.
[14]研磨基剤がフッ素化合物との反応性を抑制したものである [1]〜[13]のいず れかに記載の製造方法。 [14] The production method according to any one of [1] to [13], wherein the polishing base suppresses reactivity with a fluorine compound.
[15] [1]〜 [11]のいずれかに記載の製造方法によって得られる、フッ素化合物との 反応性を抑制した研磨基剤。 [15] A polishing base, which is obtained by the production method according to any one of [1] to [11] and has reduced reactivity with a fluorine compound.
[16]第二リン酸カルシウム無水和物を主成分とする研磨基剤であって、マグシゥム および縮合リン酸塩を含有し、フッ素化合物との反応性を抑制したものである前記研 磨基剤。 [16] The above-mentioned polishing base comprising a dibasic calcium phosphate anhydrate as a main component and containing magnesium and condensed phosphate and suppressing reactivity with a fluorine compound.
[17]マグネシウムの含有量が 1500〜5000ppmの範囲であり、縮合リン酸塩の存在 量力 マグネシウムに対する縮合リン酸塩を構成するカチオン成分のモル比が 0. 4 Zn〜12Znの範囲である(但し、 nは上記カチオン成分の価数である) [16]に記載 の研磨基剤。 [17] Magnesium content is in the range of 1500 to 5000 ppm, and abundance of condensed phosphate The molar ratio of the cation component constituting the condensed phosphate to magnesium is in the range of 0.4 Zn to 12 Zn (provided that , N is the valence of the cationic component). [16].
[ 18]フッ素化合物がフッ化ナトリウムである [ 15]〜 [ 17]の 、ずれかに記載の研磨 基剤。 [18] The polishing base according to any one of [15] to [17], wherein the fluorine compound is sodium fluoride.
発明の効果 The invention's effect
[0009] 本発明によれば、実用に耐え得る程度の NaFに対する反応性を抑制した研磨基剤 を提供することができる。 [0009] According to the present invention, it is possible to provide a polishing base in which the reactivity to NaF that can withstand practical use is suppressed.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明は、第二リン酸カルシウム無水和物をマグネシウム含有ィ匕合物及び縮合リン 酸塩の存在下で加熱処理することを含む、フッ素化合物との反応性を抑制する効果 を有する研磨基剤の製造方法に関する (第一の態様)。 [0010] The present invention provides a polishing base having an effect of suppressing reactivity with a fluorine compound, comprising heat-treating dicalcium phosphate anhydrate in the presence of a magnesium-containing compound and a condensed phosphate. The present invention relates to a method for producing an agent (first embodiment).
さらに本発明は、 130°C付近に吸熱ピークを示さなくなるまで加熱処理した第 にマグネシウム含有ィ匕合物及び縮合リン酸塩を混合することを含む、フッ素化合物と の反応性を抑制する効果を有する研磨基剤の製造方法に関する (第二の態様)。
[0011] 以下、第一の態様について説明する。 Furthermore, the present invention has an effect of suppressing reactivity with a fluorine compound, including mixing a magnesium-containing compound and a condensed phosphate, which are heat-treated until no endothermic peak is observed at around 130 ° C. The present invention relates to a method for producing a polishing base (second embodiment). [0011] Hereinafter, the first aspect will be described.
本発明の研磨基剤の製造方法に用いる第二リン酸カルシウム無水和物は、第二リ ン酸カルシウム無水和物であれば特に制限はない。例えば、(1)水酸ィ匕カルシウムと リン酸とを、第二リン酸カルシウム無水和物が生成する温度である、例えば、約 80°C で反応させ、生成した第二リン酸カルシウム無水和物を分離乾燥することで得られた もの、(2)水酸ィ匕カルシウムとリン酸とを第二リン酸カルシウム二水和物が生成する温 度である約 40°Cで反応させ、生成した第二リン酸カルシウム二水和物を分離乾燥し た後に、脱水して得られた第二リン酸カルシウム無水和物などを挙げることができる。 第二リン酸カルシウム二水和物の脱水は、例えば、 100〜200°Cで行うことが出来、 特に、 150〜170°Cの範囲で行うことが好ましい。さらに、本発明の研磨基剤の製造 方法に用いる第二リン酸カルシウム無水和物としては、(3)上記(2)で生成した第二 リン酸カルシウム二水和物をスラリーのまま、 80°C以上に加熱することで脱水して得ら れる第二リン酸カルシウム無水和物を挙げることも出来る。この加熱は、好ましくは 11 0°C以下で行う。 The anhydrous dibasic calcium phosphate used in the method for producing a polishing base of the present invention is not particularly limited as long as it is an anhydrous dibasic calcium phosphate. For example, (1) a reaction between calcium hydroxide and phosphoric acid at a temperature at which dibasic calcium phosphate anhydrate is formed, for example, at about 80 ° C, and the resulting dicalcium phosphate anhydrate is separated and dried. (2) Reacting calcium hydroxide and phosphoric acid at about 40 ° C, the temperature at which dicalcium phosphate dihydrate is generated, Examples include dicalcium phosphate anhydrous obtained by separating and drying the Japanese product and then dehydrating it. The dehydration of dicalcium phosphate dihydrate can be performed, for example, at 100 to 200 ° C, and particularly preferably in the range of 150 to 170 ° C. Further, as the dibasic calcium phosphate anhydrate used in the manufacturing method of the polishing base of the present invention, (3) the dicalcium phosphate dihydrate produced in the above (2) is heated to 80 ° C. or more in the form of a slurry. An anhydrous dicalcium phosphate obtained by dehydration can also be mentioned. This heating is preferably performed at 110 ° C. or lower.
[0012] 本発明の方法の熱処理の際に、第二リン酸カルシウム無水和物とともに存在するマ グネシゥム含有ィ匕合物は、(1)第二リン酸カルシウム無水和物に含まれて 、るマグネ シゥム含有ィ匕合物、(2)加熱処理前に第二リン酸カルシウム無水和物に添加されたマ グネシゥム含有ィ匕合物、または (3)第二リン酸カルシウム無水和物に含まれて 、るマグ ネシゥム含有ィ匕合物及び加熱処理前に第二リン酸カルシウム無水和物に添加された マグネシウム含有ィ匕合物である。第二リン酸カルシウム無水和物には、一般に、原料 に由来するマグネシウムが不純物として含有されている。(1)の第二リン酸カルシウム 無水和物に含まれているマグネシウム含有ィ匕合物は、原料に由来する不純物として 含有されるマグネシウムの化合物である。さらに、本発明におけるマグネシウム含有 化合物は、不純物に由来するマグネシウム化合物以外の、新たに第二リン酸カルシ ゥム無水和物に添加されたマグネシウム含有ィ匕合物である。これが、(2)の加熱処理 前に第二リン酸カルシウム無水和物に添加されたマグネシウム含有ィ匕合物である。さ らに、本発明におけるマグネシウム含有ィ匕合物は、この両者、即ち、(3)の第二リン酸 カルシウム無水和物に含まれているマグネシウム含有ィ匕合物及び加熱処理前に第
二リン酸カルシウム無水和物に添加されたマグネシウム含有ィ匕合物であることもでき る。(1)及び (3)における、「第二リン酸カルシウム無水和物に含まれているマグネシゥ ム含有化合物」は、どのような化合物であってもよい。但し、そのようなマグネシウム含 有化合物は、一般には、リン酸マグネシウムである。但し、リン酸マグネシウム以外の マグネシウム含有ィ匕合物であってもよ 、。 In the heat treatment of the method of the present invention, the magnesium-containing compound present together with the dicalcium phosphate anhydrate is contained in (1) the anhydrous calcium phosphate anhydrate containing the magnesium-containing compound. (2) Magnesium-containing compound added to dicalcium phosphate anhydrate before heat treatment, or (3) Magnesium-containing compound contained in dicalcium phosphate anhydrate This compound is a magnesium-containing compound added to a dicalcium phosphate anhydrous before heat treatment. In general, dibasic calcium phosphate anhydrate contains magnesium as an impurity as an impurity. The magnesium-containing compound contained in (1) dicalcium phosphate non-hydrate is a magnesium compound contained as an impurity derived from the raw material. Furthermore, the magnesium-containing compound in the present invention is a magnesium-containing compound newly added to the dicalcium phosphate anhydrous other than the magnesium compound derived from impurities. This is the magnesium-containing compound added to the dicalcium phosphate phosphate before the heat treatment of (2). In addition, the magnesium-containing compound in the present invention is both the magnesium-containing compound and the magnesium-containing compound contained in the anhydrous dibasic calcium phosphate of (3) and before the heat treatment. It can also be a magnesium-containing compound added to anhydrous calcium diphosphate. The “magnesium-containing compound contained in the dicalcium phosphate anhydrous” in (1) and (3) may be any compound. However, such a magnesium-containing compound is generally magnesium phosphate. However, it may be a magnesium-containing compound other than magnesium phosphate.
[0013] マグネシウム含有ィ匕合物を、第二リン酸カルシウム無水和物に新たに添加する場 合、マグネシウム含有ィ匕合物はとして、例えば、固体 (粉末または顆粒状)のものを用 いることができる。この場合、マグネシウム含有ィ匕合物は、例えば、水酸ィ匕マグネシゥ ム、塩化マグネシウム、第一リン酸マグネシウム、第二リン酸マグネシウム、第三リン酸 マグネシウム、硫酸マグネシウム、酸ィ匕マグネシウム、硝酸マグネシウム、炭酸マグネ シゥム、酢酸マグネシウム、安息香酸マグネシウム、乳酸マグネシウム、ォレイン酸マ グネシゥム、しゅう酸マグネシウム、ステアリン酸マグネシウム、ピロリン酸マグネシウム またはコハク酸マグネシウムなどであることができ、これらの混合物であることもできる 。但し、マグネシウム含有ィ匕合物は水酸ィ匕マグネシウム、第一リン酸マグネシウム、第 二リン酸マグネシウム、第三リン酸マグネシウム、又はピロリン酸マグネシウムであるこ とが好ましぐ第二リン酸マグネシウム、又は第三リン酸マグネシウムであることが特に 好ましい。 [0013] When a magnesium-containing compound is newly added to dicalcium phosphate anhydrate, the magnesium-containing compound may be, for example, a solid (powder or granular). it can. In this case, the magnesium-containing compound is, for example, hydroxyammonium, magnesium chloride, primary magnesium phosphate, secondary magnesium phosphate, tertiary magnesium phosphate, magnesium sulfate, acidic magnesium, nitric acid. Magnesium, magnesium carbonate, magnesium acetate, magnesium benzoate, magnesium lactate, magnesium oleate, magnesium oxalate, magnesium stearate, magnesium pyrophosphate or magnesium succinate, or a mixture of these. it can . However, the magnesium-containing compound is preferably magnesium hydroxide, primary magnesium phosphate, secondary magnesium phosphate, tertiary magnesium phosphate, or magnesium pyrophosphate. Or it is especially preferable that it is tribasic magnesium phosphate.
[0014] 本発明の製造方法で用いる縮合リン酸塩は、例えば、ピロリン酸塩、ポリリン酸塩、 メタリン酸塩またはウルトラリン酸塩であることができる。さらに、縮合リン酸塩を構成す るカチオン成分は、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、アルミ- ゥム、またはアンモニゥムであることかできる。 [0014] The condensed phosphate used in the production method of the present invention can be, for example, pyrophosphate, polyphosphate, metaphosphate or ultraphosphate. Further, the cationic component constituting the condensed phosphate can be, for example, sodium, potassium, calcium, magnesium, aluminum, or ammonium.
[0015] 縮合リン酸塩は、好ましくはピロリン酸塩であることができ、ピロリン酸塩は、例えば、 ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸カルシウム、ピロリン酸水素ナトリム 、ピロリン酸水素カリウム、ピロリン酸アルミニウム、ピロリン酸水素アルミニウム、ピロリ ン酸マグネシウムまたはピロリン酸アンモニゥムなどであることができ、これらの混合物 であることもできる。但し、ピロリン酸塩はピロリン酸ナトリウム、ピロリン酸カリウム、ピロ リン酸カルシウム、ピロリン酸マグネシウムまたはピロリン酸アンモ-ゥムであることが 好ましぐピロリン酸ナトリウムであることが特に好ましい。
[0016] さらに縮合リン酸塩は、好ましくはポリリン酸塩であることができ、ポリリン酸塩として は、例えば、ポリリン酸ナトリウム、ポリリン酸カリウム、ポリリン酸アルミニウム、ポリリン 酸マグネシウム、ポリリン酸アンモ-ゥム等を挙げることができる。また、メタリン酸塩と しては、例えば、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸アルミニウム、メタリ ン酸マグネシウム、メタリン酸アンモ-ゥム等を挙げることができる。また、ウルトラリン 酸塩としては、例えば、ウルトラリン酸ナトリウム、ウルトラリン酸カリウム、ウルトラリン酸 アルミニウム、ウルトラリン酸マグネシウム、ウルトラリン酸アンモ-ゥム等を挙げること ができる。 [0015] The condensed phosphate may preferably be a pyrophosphate, which is, for example, sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, sodium hydrogen pyrophosphate, potassium hydrogen pyrophosphate, pyrophosphoric acid It can be aluminum, aluminum hydrogen pyrophosphate, magnesium pyrophosphate, ammonium pyrophosphate, or a mixture thereof. However, the pyrophosphate is particularly preferably sodium pyrophosphate, preferably sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, magnesium pyrophosphate or ammonium pyrophosphate. [0016] Further, the condensed phosphate may preferably be a polyphosphate, and examples of the polyphosphate include sodium polyphosphate, potassium polyphosphate, aluminum polyphosphate, magnesium polyphosphate, and ammonium polyphosphate. Can be mentioned. Examples of the metaphosphate include sodium metaphosphate, potassium metaphosphate, aluminum metaphosphate, magnesium metaphosphate, and ammonium metaphosphate. Examples of the ultraphosphate include sodium ultraphosphate, potassium ultraphosphate, aluminum ultraphosphate, magnesium ultraphosphate, and ammonium ultraphosphate.
[0017] マグネシウム含有ィ匕合物および縮合リン酸塩は、例えば、固体 (粉末または顆粒状 )のものを第二リン酸カルシウム無水和物と混合し、次いで、加熱処理される。あるい は、マグネシウム含有ィ匕合物および縮合リン酸塩を含む水溶液または懸濁液を、第 二リン酸カルシウム無水和物に、混合または噴霧した後に、加熱処理してもよい。 [0017] The magnesium-containing compound and the condensed phosphate are, for example, a solid (powder or granular form) mixed with dicalcium phosphate anhydrous and then heat-treated. Alternatively, an aqueous solution or suspension containing the magnesium-containing compound and the condensed phosphate may be mixed with or sprayed with the dibasic calcium phosphate anhydrate, followed by heat treatment.
[0018] マグネシウム含有化合物の存在量は、第二リン酸カルシウム無水和物に対してマグ ネシゥム量として 1500〜5000ppmの範囲とする。「マグネシウム量として」とは、第 二リン酸カルシウム無水和物に含まれているマグネシウム含有ィ匕合物及びマグネシ ゥム含有化合物に由来するマグネシウムの合計量を意味する。第二リン酸カルシウム 無水和物に不純物として含まれるマグネシウム化合物に由来するマグネシウム量も 含まれる。マグネシウム含有ィ匕合物の存在量は、第二リン酸カルシウム無水和物に 対してマグネシウム量として、好ましくは 1700〜4000ppmの範囲であり、より好まし くは 2000〜3000ppmの範囲である。マグネシウム含有化合物の添カ卩量力 マグネ シゥム量として 1500ppm未満では、得られる F安定性が十分でなくなる。即ち、短期 間での F安定性のレベルが低ぐ長期の F安定性も著しく低下する。マグネシウム含 有化合物の添カ卩量力 マグネシウム量として 5000ppmを超えるとマグネシウム含有 化合物が Fイオンと反応し結果として安定性が失われる傾向がある。 [0018] The abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate phosphate. “As the amount of magnesium” means the total amount of magnesium derived from the magnesium-containing compound and the magnesium-containing compound contained in the anhydrous dibasic calcium phosphate. The amount of magnesium derived from magnesium compounds contained as impurities in dibasic calcium phosphate anhydrate is also included. The abundance of the magnesium-containing compound is preferably in the range of 1700 to 4000 ppm, more preferably in the range of 2000 to 3000 ppm as the amount of magnesium relative to the dicalcium phosphate phosphate. Additive strength of magnesium-containing compounds If the amount of magnesium is less than 1500 ppm, the resulting F stability will not be sufficient. In other words, long-term F stability, which has a low level of F stability in the short term, is significantly reduced. Addition capacity of magnesium-containing compounds If the magnesium content exceeds 5000 ppm, the magnesium-containing compound reacts with F ions, and as a result, the stability tends to be lost.
[0019] 縮合リン酸塩の存在量は、マグネシウム含有ィ匕合物のマグネシウムに対する縮合リ ン酸塩を構成するカチオン成分のモル比が 0. 4Zn〜12Znの範囲(但し、 nは上記 カチオン成分の価数である)とする。このモル比は、好ましくは 0.6Zn〜: LOZnの範 囲であり、より好ましくは、 0.7/n〜8/nの範囲である。 nは、カチオン成分がナトリウ
ム、カリウム、アンモ-ゥムなどの 1価の場合、 1であり、上記モル比は、 0. 4〜12の範 囲となる。また、 nは、カチオン成分がマグネシムゥなどの 2価の場合、 2であり、上記 モル比は、 0. 2〜6の範囲となる。さらに、 nは、カチオン成分がアルミニウムなどの 3 価の場合、 3であり、上記モル比は、 0. 4Z3〜4の範囲となる。 [0019] The amount of the condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is in the range of 0.4 Zn to 12 Zn (where n is the cation component described above) Valence). This molar ratio is preferably in the range of 0.6 Zn to: LOZn, more preferably in the range of 0.7 / n to 8 / n. n is a cation component In the case of monovalent compounds such as potassium, potassium and ammonia, it is 1, and the molar ratio is in the range of 0.4-12. N is 2 when the cation component is divalent, such as magnesimu, and the molar ratio is in the range of 0.2-6. Furthermore, n is 3 when the cation component is trivalent such as aluminum, and the molar ratio is in the range of 0.4Z3-4.
[0020] 縮合リン酸塩の添加量は、マグネシウム含有ィ匕合物に由来するマグネシウムに対 する縮合リン酸塩を構成するカチオン成分のモル比が、 0.4Zn未満では、短期及び 長期のいずれの F安定性も劣る。このモル比力 12Znを超える場合、短期安定性は 良好であるが、長期安定性が低下する傾向にある。 [0020] The amount of the condensed phosphate added is either short-term or long-term when the molar ratio of the cation component constituting the condensed phosphate to magnesium derived from the magnesium-containing compound is less than 0.4 Zn. F stability is also poor. If this molar specific force exceeds 12Zn, short-term stability is good, but long-term stability tends to decrease.
[0021] 本発明の製造方法では、マグネシウム含有ィ匕合物および縮合リン酸塩を添加した 第二リン酸カルシウム無水和物の加熱処理条件は、温度が 100〜300°Cの範囲であ る。加熱温度は、好ましくは 150〜250°Cの範囲である。加熱処理は、加熱処理より 、少なくとも、添加した縮合リン酸塩水和物の結晶水が脱離するまで行うことが適当で ある。加熱処理時間は、この点を考慮しつつ、例えば、 1〜10時間の範囲で行われ る。ただし、この範囲に限定されない。 [0021] In the production method of the present invention, the heat treatment conditions of the dicalcium phosphate anhydrous to which the magnesium-containing compound and the condensed phosphate are added are such that the temperature is in the range of 100 to 300 ° C. The heating temperature is preferably in the range of 150 to 250 ° C. It is appropriate that the heat treatment is performed at least until the crystal water of the added condensed phosphate hydrate is removed from the heat treatment. In consideration of this point, the heat treatment time is, for example, in the range of 1 to 10 hours. However, it is not limited to this range.
[0022] 以下、第二の態様について説明する。 [0022] The second aspect will be described below.
本発明の第二の態様では、 130°C付近に吸熱ピークを示さなくなるまで加熱処理し た第二リン酸カルシウム無水和物にマグネシウム含有ィ匕合物及び縮合リン酸塩を混 合することを含む。 The second aspect of the present invention includes mixing a magnesium-containing compound and a condensed phosphate with a dicalcium phosphate anhydrous heat-treated until no endothermic peak is observed at around 130 ° C.
[0023] この研磨基剤の製造方法に用いる第二リン酸カルシウム無水和物は、 130°C付近 に吸熱ピークを示さなくなるまで加熱処理した第二リン酸カルシウム無水和物である 。このような第二リン酸カルシウム無水和物は、本発明の第一の態様において説明し た(1)〜(3)の第二リン酸カルシウム無水和物を 100〜300°C、好ましくは 150〜25 0°Cで 1〜10時間、加熱処理したものを挙げることができる。加熱処理の条件は、 TG DATによる熱分析の結果、 130°C付近に吸熱ピークを示さない第二リン酸カルシ ゥム無水和物が得られるように適宜決定できる。 [0023] The dicalcium phosphate anhydrate used in the method for producing the polishing base is a dicalcium phosphate anhydrate that has been heat-treated until no endothermic peak is observed at around 130 ° C. Such an anhydrous dicalcium phosphate is the same as the anhydrous calcium phosphate (1) to (3) described in the first embodiment of the present invention at 100 to 300 ° C, preferably 150 to 250 ° C. Examples thereof include those heated with C for 1 to 10 hours. The conditions for the heat treatment can be appropriately determined so as to obtain a dicalcium phosphate anhydrous that does not show an endothermic peak near 130 ° C as a result of thermal analysis by TG DAT.
[0024] 第二リン酸カルシウム無水和物に添加混合されるマグネシウム含有ィ匕合物として、 例えば、固体 (粉末または顆粒状)のものを用いることができる。この場合のマグネシ ゥム含有化合物の例は、第一の態様と同様である。第二の態様で用いる縮合リン酸
塩の例も、第一の態様と同様である。 [0024] As the magnesium-containing compound to be added to and mixed with the dicalcium phosphate anhydrous, for example, a solid (powder or granular) can be used. Examples of the magnesium-containing compound in this case are the same as in the first embodiment. Condensed phosphoric acid used in the second embodiment Examples of the salt are the same as in the first embodiment.
[0025] マグネシウム含有ィ匕合物および縮合リン酸塩は、例えば、固体 (粉末または顆粒状 )のものを加熱処理した第二リン酸カルシウム無水和物と混合する。混合は、例えば、 市販の粉体混合装置 (例えばリボンミキサー、 V型混合器)を用いて行うことができる。 但し、混合方法は上記方法に限定されるものではない。また、混合は、第二リン酸力 ルシゥム無水和物とマグネシウム含有ィ匕合物および縮合リン酸塩力 ほぼ均一に混 ざるように行えば良ぐ使用する混合装置の種類や混合条件、さらには、第二リン酸 カルシウム無水和物、マグネシウム含有ィ匕合物および縮合リン酸塩の粒度や混合比 等を考慮して適宜決定できる。 [0025] The magnesium-containing compound and the condensed phosphate are mixed with, for example, a solid (powder or granule) heat-treated dicalcium phosphate anhydrous. Mixing can be performed using, for example, a commercially available powder mixing apparatus (for example, a ribbon mixer or a V-type mixer). However, the mixing method is not limited to the above method. In addition, mixing should be carried out so that the mixture of dibasic phosphate strength succinic anhydride and magnesium-containing compound and condensed phosphate strength is almost evenly mixed. In addition, it can be determined appropriately in consideration of the particle size, mixing ratio, etc. of the dicalcium phosphate anhydrous, the magnesium-containing compound and the condensed phosphate.
[0026] マグネシウム含有ィ匕合物および縮合リン酸塩を含む水溶液または懸濁液を、加熱 処理した第二リン酸カルシウム無水和物に、混合または噴霧した後に混合することも できる。この場合には、混合または噴霧した後の混合後に、混合物を乾燥する。 [0026] An aqueous solution or suspension containing the magnesium-containing compound and the condensed phosphate may be mixed or sprayed with the heat-treated dicalcium phosphate anhydrous. In this case, after mixing or mixing after spraying, the mixture is dried.
[0027] マグネシウム含有化合物の存在量は、第二リン酸カルシウム無水和物に対してマグ ネシゥム量として 1500〜5000ppmの範囲とする。「マグネシウム量として」とは、第 二リン酸カルシウム無水和物に含まれているマグネシウム含有ィ匕合物及びマグネシ ゥム含有ィ匕合物に由来するマグネシウムの合計量を意味する。加熱処理した第二リ ン酸カルシウム無水和物に不純物として含まれるマグネシウム化合物に由来するマ グネシゥム量も含まれる。マグネシウム含有ィ匕合物の存在量は、第二リン酸カルシゥ ム無水和物に対してマグネシウム量として、好ましくは 1700〜4000ppmの範囲であ り、より好ましくは 2000〜3000ppmの範囲である。マグネシウム含有化合物の添カロ 量力 マグネシウム量として 1500ppm未満では、得られる F安定性が十分でなくなる 。即ち、短期間での F安定性のレベルが低ぐ長期の F安定性も著しく低下する。マグ ネシゥム含有化合物の添カ卩量力 マグネシウム量として 5000ppmを超えるとマグネ シゥム含有ィ匕合物が Fイオンと反応し結果として安定性が失われる傾向がある。 [0027] The abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate phosphate. “As the amount of magnesium” means the total amount of magnesium derived from the magnesium-containing compound and the magnesium-containing compound contained in the anhydrous dibasic calcium phosphate. The amount of magnesium derived from the magnesium compound contained as an impurity in the heat-treated calcium phosphate anhydrous is also included. The abundance of the magnesium-containing compound is preferably in the range of 1700 to 4000 ppm, more preferably in the range of 2000 to 3000 ppm as the amount of magnesium relative to the dicalcium phosphate anhydrous. Calorific power of magnesium-containing compounds If the magnesium content is less than 1500 ppm, the F stability obtained will be insufficient. In other words, long-term F stability with a low level of F stability in a short period of time is significantly reduced. Additive strength of magnesium-containing compounds When the magnesium content exceeds 5000 ppm, the magnesium-containing compound reacts with F ions, and as a result, the stability tends to be lost.
[0028] 縮合リン酸塩の存在量は、マグネシウム含有ィ匕合物のマグネシウムに対する縮合リ ン酸塩を構成するカチオン成分のモル比が 0. 4Zn〜12Znの範囲(但し、 nは上記 カチオン成分の価数である)とする。このモル比は、好ましくは 0.6Zn〜: LOZnの範 囲であり、より好ましくは、 0.7/n〜8/nの範囲である。 nは、カチオン成分がナトリウ
ム、カリウム、アンモ-ゥムなどの 1価の場合、 1であり、上記モル比は、 0. 4〜12の範 囲となる。また、 nは、カチオン成分がマグネシムゥなどの 2価の場合、 2であり、上記 モル比は、 0. 2〜6の範囲となる。さらに、 nは、カチオン成分がアルミニウムなどの 3 価の場合、 3であり、上記モル比は、 0. 4Z3〜4の範囲となる。 [0028] The amount of the condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is in the range of 0.4 Zn to 12 Zn (where n is the cation component described above) Valence). This molar ratio is preferably in the range of 0.6 Zn to: LOZn, more preferably in the range of 0.7 / n to 8 / n. n is a cation component In the case of monovalent compounds such as potassium, potassium and ammonia, it is 1, and the molar ratio is in the range of 0.4-12. N is 2 when the cation component is divalent, such as magnesimu, and the molar ratio is in the range of 0.2-6. Furthermore, n is 3 when the cation component is trivalent such as aluminum, and the molar ratio is in the range of 0.4Z3-4.
[0029] 縮合リン酸塩の添加量は、マグネシウム含有ィ匕合物に由来するマグネシウムに対 する縮合リン酸塩を構成するカチオン成分のモル比が、 0.4Zn未満では、短期及び 長期のいずれの F安定性も劣る。このモル比力 12Znを超える場合、短期安定性は 良好であるが、長期安定性が低下する傾向にある。 [0029] The amount of the condensed phosphate added is either short-term or long-term when the molar ratio of the cation component constituting the condensed phosphate to magnesium derived from the magnesium-containing compound is less than 0.4 Zn. F stability is also poor. If this molar specific force exceeds 12Zn, short-term stability is good, but long-term stability tends to decrease.
[0030] 本発明によれば、第二リン酸カルシウム無水和物を主成分とし、マグネシウムおよ び縮合リン酸塩を含有する研磨基剤が提供される。この研磨基剤は、フッ素化合物、 特に、フッ化ナトリウムとの反応性が抑制されたものである。縮合リン酸塩は前述の製 造方法で説明したものと同様である。 [0030] According to the present invention, there is provided an abrasive base comprising dibasic calcium phosphate anhydrate as a main component and containing magnesium and a condensed phosphate. This polishing base has a suppressed reactivity with a fluorine compound, particularly sodium fluoride. The condensed phosphate is the same as that described in the above production method.
[0031] 本発明の研磨基剤は、マグネシウムの含有量が 1500〜5000ppmの範囲であり、 縮合リン酸塩を構成するカチオン成分の含有量がマグネシウムの含有量に対するモ ル比として 0. 4Zn〜12Znの範囲である。 [0031] The polishing base of the present invention has a magnesium content in the range of 1500 to 5000 ppm, and the content of the cation component constituting the condensed phosphate is as a molar ratio to the magnesium content of 0.4 Zn to It is in the range of 12Zn.
[0032] マグネシウムの含有量は、好ましくは 1700〜4000ppmの範囲であり、より好ましく は 2000〜3000ppmの範囲である。本発明の研磨基剤のマグネシウム含有量は、 研磨基剤の調製に際して新たに添加したマグネシウム含有ィ匕合物に由来するマグネ シゥム量と、第二リン酸カルシウム無水和物に不純物として含まれるマグネシウム化 合物に由来するマグネシウム量の合計である。第二リン酸カルシウム無水和物に不 純物として含まれるマグネシウム化合物に由来するマグネシウム量は、第二リン酸カ ルシゥム無水和物の原料である CaOの種類(産地)や第二リン酸カルシウム無水和 物の製造方法および条件により変化する力 一般には、 500〜1500ppmの範囲で ある。上記マグネシウムの含有量が、 1500ρρπ!〜 5000ppmの範囲外では、得られ る F安定性が十分でなくなる。即ち、短期間での F安定性のレベルが低ぐ長期の F安 定性も著しく低下する。 [0032] The magnesium content is preferably in the range of 1700 to 4000 ppm, more preferably in the range of 2000 to 3000 ppm. The magnesium content of the polishing base of the present invention includes the magnesium amount derived from the magnesium-containing compound newly added in the preparation of the polishing base and the magnesium compound contained as an impurity in the dicalcium phosphate anhydrous. This is the total amount of magnesium derived from the product. The amount of magnesium derived from the magnesium compound contained as an impurity in dibasic calcium phosphate anhydrate depends on the type of CaO (origin) that is the raw material of the dibasic calcium phosphate anhydrate and the production of dibasic calcium phosphate anhydrate. Force varying with method and conditions Generally in the range of 500-1500 ppm. The magnesium content is 1500ρρπ! Outside the range of ~ 5000ppm, the F stability obtained is not sufficient. In other words, long-term F stability with a low level of F stability in the short term is also significantly reduced.
[0033] 縮合リン酸塩を構成するカチオン成分の含有量は、マグネシウムの含有量 (研磨基 剤の調製に際して新たに添加したマグネシウム含有ィ匕合物に由来するマグネシウム
量と、第二リン酸カルシウム無水和物に不純物として含まれるマグネシウム化合物に 由来するマグネシウム量の合計)に対するモル比として、 0. 4Zn〜12Znの範囲で あり、好ましくは 0.6Zn〜: LOZnの範囲であり、より好ましくは、 0.7Zn〜8Znの範 囲である。縮合リン酸塩を構成するカチオン成分の含有量がマグネシウムの含有量 に対するモル比として 0. 4Zn〜12Znの範囲であることで、フッ素化合物、特に、フ ッ化ナトリウムとの反応性が長期間抑制され、短期及び長期の F安定性も良好となる。 [0033] The content of the cation component constituting the condensed phosphate is the content of magnesium (magnesium derived from a magnesium-containing compound newly added in the preparation of the polishing base. And a molar ratio to the total amount of magnesium derived from the magnesium compound contained as an impurity in the dicalcium phosphate anhydrate) is in the range of 0.4 Zn to 12 Zn, preferably in the range of 0.6 Zn to LOZn. More preferably, it is in the range of 0.7 Zn to 8 Zn. Reactivity with fluorine compounds, especially sodium fluoride, is suppressed for a long time because the content of the cation component constituting the condensed phosphate is in the range of 0.4 Zn to 12 Zn as a molar ratio to the magnesium content. In addition, short-term and long-term F stability is also improved.
[0034] 本発明の研磨基剤は、後述する試験方法において、 lOOOppmのフッ化ナトリウム と共存させて、 50°C、 30日における、残存 F濃度が 700ppm以上の安定性を有するも のである。即ち、本発明において「フッ化ナトリウムとの反応性が抑制されたもの」とは 、上記条件における試験において、残存 F濃度が 700ppm以上を示すものであること を意味する。 [0034] The polishing base of the present invention has a stability with a residual F concentration of 700 ppm or more at 50 ° C. for 30 days in the test method described later in the presence of lOOOppm sodium fluoride. That is, in the present invention, “in which the reactivity with sodium fluoride is suppressed” means that the residual F concentration shows 700 ppm or more in the test under the above conditions.
実施例 Example
[0035] 以下本発明を実施例によりさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[0036] 実施例 1 [0036] Example 1
[第二リン酸カルシウム無水和物の調製] [Preparation of anhydrous dibasic calcium phosphate]
ステンレス製 3Lの容器に 1200gの水を入れ、攪拌しながら 40°Cまで昇温した。 40°C 昇温後、 75%リン酸と 120g-CaO/L石灰乳を同時に添カ卩した。この時、反応液の pHは 4.0付近一定となる様に調整した。規定量のリン酸を添加し終えたら、スラリー pHを 6 付近に調整した。 pH調整後、スラリーを 93°Cまで加熱し、 1時間熟成を行ない無水化 を行なった。無水化後、スラリーを G4濾紙でろ過し、ケークを分取し、 70°Cで一晩乾 燥し、第二リン酸カルシウム無水和物のサンプル 300gを得た。第二リン酸カルシウム 無水和物のサンプル中の Mg量は 1250ppmであった。 1200 g of water was placed in a 3 L stainless steel container and heated to 40 ° C while stirring. After heating at 40 ° C, 75% phosphoric acid and 120g-CaO / L lime milk were added simultaneously. At this time, the pH of the reaction solution was adjusted to be constant around 4.0. When the specified amount of phosphoric acid had been added, the slurry pH was adjusted to around 6. After adjusting the pH, the slurry was heated to 93 ° C and aged for 1 hour for dehydration. After dehydration, the slurry was filtered with G4 filter paper, the cake was separated, and dried overnight at 70 ° C. to obtain a 300 g sample of anhydrous dicalcium phosphate. The amount of Mg in the dibasic calcium phosphate non-hydrate sample was 1250 ppm.
[0037] [マグネシウム含有ィ匕合物及びピロリン酸ナトリウムの添加] [0037] [Addition of magnesium-containing compound and sodium pyrophosphate]
上記第二リン酸カルシウム無水和物のサンプル 100gに対して、 Mg(OH)を 0. 72wt Mg (OH) 0.72 wt to 100 g sample of dibasic calcium phosphate anhydrate
2 2
%、及び Na P 0 - 10H 0を 2. 75wt%添カ卩し、スクリューキャップ式プラスチック容器(1 % And Na P 0-10H 0 with 2. 75wt% and screw cap type plastic container (1
4 2 7 2 4 2 7 2
L)に入れ、約 5分間手で振って混合した。 Mg(OH)の添加量は、マグネシウム 3000 L) and mixed by shaking for about 5 minutes by hand. The amount of Mg (OH) added is 3000 mg of magnesium.
2 2
ppm相当であった。混合後の試料を 200°Cの乾燥器中で 2時間、開放系で熱処理し て、本発明の研磨基剤サンプル 1を得た。
[0038] 上記加熱処理により得られた研磨基剤サンプル 1のマグネシウム含有化合物の存 在量は、 ICP (誘導結合高周波プラズマ分光)分析の結果、第二リン酸カルシウム無 水和物に対するマグネシウム量として 3600ppmであった。また、ナトリウムの存在量 は、上記と同様に ICP (誘導結合高周波プラズマ分光)分析の結果、 4000ppmであ つた。マグネシウムに対するナトリウムのモル比は 1. 17であった。 It was equivalent to ppm. The mixed sample was heat-treated in an oven at 200 ° C. for 2 hours to obtain an abrasive base sample 1 of the present invention. [0038] As a result of ICP (inductively coupled radio frequency plasma spectroscopy) analysis, the existing amount of the magnesium-containing compound in the polishing base sample 1 obtained by the heat treatment was 3600 ppm as the amount of magnesium with respect to the dicalcium phosphate phosphate non-hydrate. there were. The amount of sodium present was 4000 ppm as a result of ICP (inductively coupled radio frequency plasma spectroscopy) analysis as described above. The molar ratio of sodium to magnesium was 1.17.
[0039] 上記第二リン酸カルシウム無水和物のサンプル 30gに対して、水酸化マグネシウム を 0.24wt%、 Na P O · 10Η Οを 2. 75wt%を添カ卩し、スクリューキャップ式プラスチック [0039] 0.24wt% magnesium hydroxide and 2.75wt% Na P O · 10Η per 30g sample of the above dibasic calcium phosphate anhydrate, and screw cap type plastic
4 2 7 2 4 2 7 2
容器 (0. 3L)に入れ、約 5分間手で振って混合し、混合後の試料を 230°Cの乾燥器 中で 1時間、開放系で熱処理して、本発明の研磨基剤サンプル 2を得た。加熱処理 により得られた研磨基剤サンプル 2のマグネシウム及びナトリウムの存在量は、上記と 同様に ICP分析により求めた。 Place in a container (0.3 L), shake by hand for about 5 minutes to mix, heat the sample after mixing in an oven at 230 ° C for 1 hour, Got. The abundance of magnesium and sodium in the abrasive base sample 2 obtained by the heat treatment was determined by ICP analysis in the same manner as described above.
[0040] 上記第二リン酸カルシウム無水和物のサンプル 30gに対して、 Mg (PO ) ·8Η 0 0.5 [0040] With respect to 30 g of the above dibasic calcium phosphate anhydrate sample, Mg (PO) · 8Η 0 0.5
3 4 2 2 3 4 2 2
6wt%および Na P O · 10Η O 3.1wt% を添カ卩し、スクリューキャップ式プラスチック容器 Add 6wt% and Na P O · 10% O 3.1wt%, screw cap type plastic container
4 2 7 2 4 2 7 2
(0.3L)に入れ、約 5分間手で振って混合し、混合後の試料を 230°Cの乾燥器中で 1時 間、開放系で熱処理して、本発明の研磨基剤サンプル 3を得た。加熱処理により得ら れた研磨基剤サンプル 3のマグネシウム及びナトリウムの存在量は、上記と同様に IC P分析により求めた。 (0.3L), shake for about 5 minutes by hand, and mix the sample after heat treatment in an oven at 230 ° C for 1 hour in an open system. Obtained. The abundances of magnesium and sodium in the polishing base sample 3 obtained by the heat treatment were determined by ICP analysis in the same manner as described above.
[0041] 尚、比較のため、上記第二リン酸カルシウム無水和物のサンプル 30gに対して、 Na [0041] For comparison, a 30 g sample of the dibasic calcium phosphate anhydrate
4 Four
Ρ〇 · 10Η〇のみを 2· 75wt%を添カ卩し、スクリューキャップ式プラスチック容器(0. 3Add only 75〇 · 10Η〇 to 2.75wt% and screw cap type plastic container (0.3
2 7 2 2 7 2
L)に入れ、約 5分間手で振って混合し、混合後の試料を 230°Cの乾燥器中で 1時間、 開放系で熱処理して、比較サンプルも作成した。加熱処理により得られた比較サンプ ルのマグネシウム及びナトリウムの存在量は、上記と同様に ICP分析により求めた。 The sample was mixed by shaking for about 5 minutes by hand, and the mixed sample was heat-treated in an open system for 1 hour in a 230 ° C drier to prepare a comparative sample. The abundance of magnesium and sodium in the comparative sample obtained by heat treatment was determined by ICP analysis in the same manner as described above.
[0042] [F安定性評価方法] [0042] [F stability evaluation method]
100mlのスクリュウ一キャップ付きポリエチレン製容器に評価試料 4.89g、 42%グリセリ ン溶液 45g、フッ化ナトリム 0.1 lgを加え、シエイカーで 5分攪拌の後、所定温度に設定 した恒温器内に静置する。この試料を所定時間(日)後に、ろ過、固液分離し、ろ液 中の F濃度を、 Fイオン電極を用いて測定する。この方法により、上記研磨基剤サンプ ル 1、 2、 3及び比較サンプルの F安定性評価を行い、結果を表 1に示す。
[0043] [表 1] Add 4.89 g of evaluation sample, 45 g of 42% glycerin solution, 0.1 lg of sodium fluoride to a 100 ml polyethylene cap with a screw cap, stir in a shaker for 5 minutes, and then place in a thermostat set to the specified temperature . The sample is filtered, separated into solid and liquid after a predetermined time (days), and the F concentration in the filtrate is measured using an F ion electrode. By this method, F stability evaluation of the above polishing base samples 1, 2, 3 and the comparative sample was performed. [0043] [Table 1]
[0044] マグネシウムの含有量力 500〜5000ppmの範囲である 3600ppmであり、ナトリ ゥムの含有量がマグネシウムの含有量に対するモル比として 0. 5〜9の範囲である 1 . 17である本発明の第二リン酸カルシウム無水和物を主成分とする研磨基剤 1は、 5 0°C、 30日における、残存 F濃度が 700ppm以上の極めて優れた、実用に供し得るフ ッ化ナトリムに対する安定性を有するものであった。 [0044] According to the present invention, the magnesium content power is 3600 ppm, which is in the range of 500 to 5000 ppm, and the sodium content is 1.17 in a molar ratio with respect to the magnesium content of 0.5 to 9. Polishing base 1 based on dicalcium phosphate phosphate as the main component has excellent stability against fluoride fluoride that can be put to practical use with a residual F concentration of 700 ppm or more at 50 ° C for 30 days. It was a thing.
[0045] マグネシウムの含有量が 1500〜5000ppmの範囲である 2310ppmであり、ナトリ ゥムの含有量がマグネシウムの含有量に対するモル比として 0. 5〜9の範囲である 2 . 42である本発明の第二リン酸カルシウム無水和物を主成分とする研磨基剤 2は、 5 0°C、 30日における、残存 F濃度が 700ppm以上の極めて優れた、実用に供し得るフ ッ化ナトリムに対する安定性を有するものであった。 [0045] The present invention, wherein the magnesium content is 2310ppm, which is in the range of 1500 to 5000ppm, and the sodium content is 2.42 in terms of a molar ratio to the magnesium content of 0.5-9. Abrasive base 2 based on dicalcium phosphate dibasic acid as a main component has excellent residual F concentration with a residual F concentration of 700 ppm or more at 50 ° C for 30 days. I had it.
[0046] マグネシウムの含有量力 500〜5000ppmの範囲である 2150ppmであり、ナトリ ゥムの含有量がマグネシウムの含有量に対するモル比として 0. 5〜9の範囲である 2 . 93である本発明の第二リン酸カルシウム無水和物を主成分とする研磨基剤 3は、 5 0°C、 30日における、残存 F濃度が 700ppm以上の極めて優れた、実用に供し得るフ ッ化ナトリムに対する安定性を有するものであった。 [0046] Magnesium content power of 2150 ppm, which is in the range of 500 to 5000 ppm, and sodium content is 2.93 in a molar ratio with respect to magnesium content of 0.5-9. Abrasive base 3 based on dibasic calcium phosphate anhydrate is excellent in practical use for sodium fluoride with a residual F concentration of 700 ppm or more at 50 ° C for 30 days. It was a thing.
[0047] 比較サンプルは、ナトリウムの含有量はマグネシウムの含有量に対するモル比とし て 0. 5〜9の範囲である 3. 95であるが、マグネシウムの含有量が 1500〜5000ppm の範囲外である 1340ppmである。その結果、 50°C、 30日における残存 F濃度が 16p pmであり、フッ素化合物との反応性に対する抑制効果は示さな力つた。 [0047] In the comparative sample, the sodium content is in the range of 0.5 to 9 as a molar ratio to the magnesium content of 3.95, but the magnesium content is outside the range of 1500 to 5000 ppm. 1340ppm. As a result, the residual F concentration at 50 ° C. for 30 days was 16 ppm, and the inhibitory effect on the reactivity with the fluorine compound was strong.
[0048] 比較例 1 [0048] Comparative Example 1
特許文献 1の実施例に記載された、研磨剤 Iの F安定性評価を行った。 The F stability evaluation of the abrasive I described in Examples of Patent Document 1 was performed.
TFC (東ソ一'ファインケム (株))製品 DCP— C 100gに対して、 Mg (PO ) · 8Η 0 (第
3リン酸マグネシウム)を 1. 12wt%添カ卩し、スクリューキャップ式プラスチック容器(1L) に入れ、実施例 1と同様に混合した後、 150°C乾燥器中で 2時間熱処理を行ない、研 磨剤サンプルを得た。マグネシウム及びナトリウムの存在量は、上記と同様に ICP分 析により求めた。このサンプルの F安定性評価及び組成分析を上記と同様に行った。 結果を表 2に示す。 TFC (Tosohichi's Finechem Co., Ltd.) product DCP—C 100g, Mg (PO) · 8Η 0 (No. 3 Magnesium phosphate) 1. Add 12 wt% to a screw cap plastic container (1 L), mix in the same manner as in Example 1, and heat-treat in a 150 ° C dryer for 2 hours. An abrasive sample was obtained. Magnesium and sodium abundances were determined by ICP analysis as described above. The F stability evaluation and composition analysis of this sample were performed in the same manner as described above. The results are shown in Table 2.
[0049] [表 2] [0049] [Table 2]
[0050] 上記結果から、特許文献 1にお!/ヽては、実施例に記載された研磨剤 Iは、フッ化ナト リウムに対する安定性は、本発明の研磨基剤に比べて、はるかに低ぐ実用できるレ ベルのフッ素剤に対する安定性は有さないことが分かる。尚、特許文献 1の実施例に おいては、フッ素剤としてモノフルォロリン酸ナトリムを使用しており、フッ化ナトリウム に対する安定性は試験されて 、な 、。 [0050] From the above results, it can be seen from Patent Document 1 that the polishing agent I described in the Examples is much more stable against sodium fluoride than the polishing base of the present invention. It can be seen that there is no stability against low and practical levels of fluorinated agents. In the examples of Patent Document 1, sodium monofluorophosphate is used as a fluorine agent, and its stability against sodium fluoride has been tested.
[0051] 比較例 2 [0051] Comparative Example 2
特許文献 1の実施例に記載された研磨剤 Iの調製では、加熱条件は、 150°C、 2時 間であった。この条件を、上記実施例 1の処理温度よりやや高い 230°Cに変更した場 合、及び Zまたは Mg (PO ) · 8Η 0 (第 3リン酸マグネシウム)の添力卩量を増加した場 In the preparation of abrasive I described in the example of Patent Document 1, the heating conditions were 150 ° C. and 2 hours. When this condition is changed to 230 ° C, which is slightly higher than the processing temperature of Example 1 above, and when the amount of applied force of Z or Mg (PO) · 8 Η 0 (tertiary magnesium phosphate) is increased.
3 4 2 2 3 4 2 2
合に、 F安定性評価結果にどのような影響があるかについても試験を行った。結果を 表 3に示す。 In addition, tests were also conducted to see what effect F evaluation results have. The results are shown in Table 3.
[0052] [表 3] 添加量 熱処理 F安定性 (残存 F-ppm) 重量部 温度 (°c) 時間(hr) 50。C x 7日 50。C x 30日[0052] [Table 3] Addition amount Heat treatment F stability (residual F-ppm) Weight part Temperature (° c) Time (hr) 50 C x 7 days 50. C x 30 days
1 1 . 12 1 50 2 1 93 151 1 .12 1 50 2 1 93 15
2 2. 24 1 50 2 298 1 352 2. 24 1 50 2 298 1 35
3 4. 7 1 50 2 1 88 1 283 4. 7 1 50 2 1 88 1 28
4 1 . 12 230 2 484 3704 1. 12 230 2 484 370
5 2. 24 230 2 474 3575 2. 24 230 2 474 357
6 4. 7 230 2 444 1 82
[0053] 上記結果から、特許文献 1においては、実施例に記載された研磨剤 Iについて、加 熱処理の温度及び第 3リン酸マグネシウムの添加量を変化させても、依然として、フッ 化ナトリウムに対する安定性は、本発明の研磨基剤に比べて、はるかに低ぐこれら 研磨剤 Iをさらに改変したものであっても、実用できるレベルのフッ素剤に対する安定 性は有さないことが分かる。 6 4. 7 230 2 444 1 82 [0053] From the above results, in Patent Document 1, the polishing agent I described in the Examples is still stable against sodium fluoride even when the temperature of the heat treatment and the amount of tribasic magnesium phosphate are changed. It can be seen that even if these polishing agents I are further modified compared to the polishing base of the present invention, the polishing agents I are further modified so that they do not have a practical level of stability to fluorine agents.
[0054] 実施例 2 [0054] Example 2
TFC製品 DCP- C (Mg濃度: 1630ppm)30gに対してピロリン酸ナトリウムを 4.21wt%カロ え、スクリューキャップ式プラスチック容器 (0.3L)にいれ、実施例 1と同様に混合した 後、 230°C乾燥器中で、一時間熱処理を行ない、研磨剤サンプルを得た。このサンプ ルの F安定性評価を上記実施例 1と同様に行なった。マグネシウム及びナトリウムの 存在量は、上記と同様に ICP分析により求めた。結果を表 4に示す。 TFC product DCP-C (Mg concentration: 1630ppm) per 100g of sodium pyrophosphate 4.21wt% calorie, put in screw cap type plastic container (0.3L), mix in the same way as in Example 1, then 230 ° C In the dryer, heat treatment was performed for 1 hour to obtain an abrasive sample. Evaluation of F stability of this sample was performed in the same manner as in Example 1 above. Magnesium and sodium abundances were determined by ICP analysis as described above. The results are shown in Table 4.
[0056] 実施例 3 [0056] Example 3
TFC製品 DCP- A(Mg濃度: 1710ppm)30gに対してピロリン酸ナトリウムを 3.82wt%カロ え、スクリューキャップ式プラスチック容器 (0.3L)にいれ、実施例 1と同様に混合した 後、 230°C乾燥器中で、一時間熱処理を行ない、研磨剤サンプルを得た。このサンプ ルの F安定性評価を上記実施例 1と同様に行なった。マグネシウム及びナトリウムの存 在量は、上記と同様に ICP分析により求めた。結果を表 5に示す。 TFC product DCP-A (Mg concentration: 1710 ppm) 30 g of sodium pyrophosphate is added to a screw cap type plastic container (0.3 L) and mixed in the same manner as in Example 1, then 230 ° C. In the dryer, heat treatment was performed for 1 hour to obtain an abrasive sample. Evaluation of F stability of this sample was performed in the same manner as in Example 1 above. Magnesium and sodium abundances were determined by ICP analysis as described above. The results are shown in Table 5.
実施例 4 Example 4
[第二リン酸カルシウム無水和物の調製] [Preparation of anhydrous dibasic calcium phosphate]
実施例 1と同様の方法で第二リン酸カルシウム無水和物を合成した。合成した第二
リン酸カルシウム無水和物の Mg濃度は、 1850ppmであった。 Dibasic calcium phosphate anhydrate was synthesized in the same manner as in Example 1. Second synthesized The Mg concentration of the anhydrous calcium phosphate was 1850 ppm.
[0059] [F安定性評価サンプルの調製] [0059] [Preparation of F stability evaluation sample]
上記第二リン酸カルシウム無水和物 30gに対して水酸化マグネシウムを 0.24wt% トリポリリン酸 Na(Na P 0 )添加量条件を下表の様に変えて、スクリューキャップ式プ Change the amount of 0.24 wt% sodium tripolyphosphate (Na P 0) addition of magnesium hydroxide to 30 g of the above dibasic calcium phosphate anhydride as shown in the table below.
5 3 10 5 3 10
ラスチック容器 (0.3L)にいれ、実施例 1と同様に混合した後、 200°C乾燥器中で、 2時 間熱処理を行ない、研磨剤サンプルを得た。このサンプルの F安定性評価を前述と 同様に行なった。結果を表 6に示す。 After placing in a plastic container (0.3 L) and mixing in the same manner as in Example 1, heat treatment was performed in a 200 ° C drier for 2 hours to obtain an abrasive sample. The F stability evaluation of this sample was performed as described above. The results are shown in Table 6.
[0060] [表 6] [0060] [Table 6]
※Mg, Naの分析;に P (誘導結合高周波プラズマ分光)分析 * Mg, Na analysis; P (inductively coupled plasma spectroscopy) analysis
[0061] 実施例 5 [0061] Example 5
[第二リン酸カルシウム無水和物の加熱処理] [Heat treatment of anhydrous dibasic calcium phosphate]
実施例 4で合成した第二リン酸カルシウム無水和物 (Mg濃度、 1850ppm) 1500gをス テンレス製バットに入れ、 230°C乾燥器中で 1時間、開放系で熱処理を行い、加熱処 理第二リン酸カルシウム無水和物を得た。加熱処理後の第二リン酸カルシウム無水 和物の熱分析 (TG DTA)の結果を図 1に示し、加熱処理前の第二リン酸カルシゥ ム無水和物の熱分析 (TG— DTA)の結果を図 2に示す。図 1および 2から分力るよう に、加熱処理前の第二リン酸カルシウム無水和物は、約 130°C付近に吸熱ピークが 見られるのに対して、加熱処理後の第二リン酸カルシウム無水和物では、この吸熱ピ ークが見らな力つた。 1500 g of dibasic calcium phosphate anhydrate (Mg concentration, 1850 ppm) synthesized in Example 4 was placed in a stainless steel vat and heat-treated in an open system for 1 hour in a 230 ° C drier, and then heat treated dicalcium phosphate. An hydrate was obtained. Figure 1 shows the thermal analysis (TG DTA) results of the dicalcium phosphate anhydrate after heat treatment, and Fig. 1 shows the thermal analysis (TG-DTA) results of the dicalcium phosphate anhydrate before heat treatment. Shown in 2. As shown in Figs. 1 and 2, the dicalcium phosphate anhydrate before heat treatment has an endothermic peak around 130 ° C, whereas the dicalcium phosphate anhydrate after heat treatment has an endothermic peak. This endothermic peak was powerful.
[0062] [F安定化評価サンプルの調整] [0062] [Adjustment of F stabilization evaluation sample]
上記加熱処理第二リン酸カルシウム無水和物 30gに対して、 Mg (PO ) ·8Η 0 0.56 For 30g of the above heat-treated dicalcium phosphate anhydrate, Mg (PO) 8Η 0 0.56
3 4 2 2 wt%および Na P O · 10Η O 3.1wt% をカ卩え、スクリューキャップ式プラスチック容器 (0.
3L)に入れ、約 5分間手で振って混合し、研磨剤サンプルを得た。 このサンプルの F 安定性評価を、実施例 1に示した F安定性評価方法と同様の方法で行った。マグネ シゥム及びナトリウムの存在量は、上記と同様 ICP分析により求めた。結果を表 7に示 す。 3 4 2 2 wt% and Na PO10Η O 3.1 wt% 3L) and mixed by shaking for about 5 minutes by hand to obtain an abrasive sample. The F stability evaluation of this sample was performed by the same method as the F stability evaluation method shown in Example 1. The abundance of magnesium and sodium was determined by ICP analysis as described above. The results are shown in Table 7.
[0063] [表 7] [0063] [Table 7]
産業上の利用可能性 Industrial applicability
[0064] 本発明の研磨基剤は、歯磨き用の研磨基剤として利用可能である。 [0064] The polishing base of the present invention can be used as a polishing base for brushing teeth.
図面の簡単な説明 Brief Description of Drawings
[0065] [図 1]実施例 5における加熱処理後の第二リン酸カルシウム無水和物の熱分析 (TG [0065] [FIG. 1] Thermal analysis of anhydrous dibasic calcium phosphate after heat treatment in Example 5 (TG
DTA)の結果。 DTA) results.
[図 2]実施例 5における加熱処理前の第二リン酸カルシウム無水和物の熱分析 (TG DTA)の結果。
FIG. 2 shows the result of thermal analysis (TG DTA) of dicalcium phosphate phosphate before heat treatment in Example 5.
Claims
[1] 第二リン酸カルシウム無水和物をマグネシウム含有化合物及び縮合リン酸塩の存在 下で加熱処理することを含む、研磨基剤の製造方法であって、 [1] A method for producing a polishing base, comprising heat-treating dicalcium phosphate anhydrous in the presence of a magnesium-containing compound and a condensed phosphate,
マグネシウム含有ィ匕合物の存在量は、第二リン酸カルシウム無水和物に対してマグ ネシゥム量として 1500〜5000ppmの範囲であり、 The abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate anhydrate,
縮合リン酸塩の存在量が、マグネシウム含有ィ匕合物のマグネシウムに対する縮合リ ン酸塩を構成するカチオン成分のモル比が 0. 4Zn〜12Znの範囲(但し、 nは上記 カチオン成分の価数である)であり、かつ The amount of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component) And)
加熱処理条件が、 100〜300°Cの範囲である前記製造方法。 The said manufacturing method whose heat processing conditions are the range of 100-300 degreeC.
[2] マグネシウム含有ィ匕合物力 (1)第二リン酸カルシウム無水和物に含まれているマグ ネシゥム含有ィ匕合物、(2)加熱処理前に第二リン酸カルシウム無水和物に添加された マグネシウム含有ィ匕合物、または (3)第二リン酸カルシウム無水和物に含まれて 、る マグネシウム含有ィ匕合物及び加熱処理前に第二リン酸カルシウム無水和物に添加さ れたマグネシウム含有化合物である請求項 1に記載の製造方法。 [2] Magnesium-containing compound strength (1) Magnesium-containing compound contained in dicalcium phosphate anhydrate, (2) Magnesium contained in dicalcium phosphate anhydrate before heat treatment Or (3) the magnesium-containing compound contained in the anhydrous calcium phosphate and the magnesium-containing compound added to the anhydrous calcium phosphate before the heat treatment. 1. The production method according to 1.
[3] 前記第二リン酸カルシウム無水和物力 第二リン酸カルシウム二水和物を 100〜20 0°Cで脱水して得たものである請求項 1に記載の製造方法。 [3] The method according to claim 1, wherein the dicalcium phosphate dihydrate is obtained by dehydrating dicalcium phosphate dihydrate at 100 to 200 ° C.
[4] 前記第二リン酸カルシウム無水和物力 第二リン酸カルシウム二水和物のスラリーを 80〜110°Cで脱水して得たものである請求項 1に記載の製造方法。 [4] The method according to claim 1, wherein the anhydrous calcium phosphate dihydrate is obtained by dehydrating a slurry of dicalcium phosphate dihydrate at 80 to 110 ° C.
[5] マグネシウム含有ィ匕合物力 水酸化マグネシウム、第一リン酸マグネシウム、第二リン 酸マグネシウム、第三リン酸マグネシウム、及びピロリン酸マグネシウム力 なる群から 選ばれる少なくとも 1種である請求項 1〜4のいずれか 1項に記載の製造方法。 [5] Magnesium-containing composite strength is at least one selected from the group consisting of magnesium hydroxide, primary magnesium phosphate, secondary magnesium phosphate, tertiary magnesium phosphate, and magnesium pyrophosphate. 5. The production method according to any one of 4 above.
[6] 縮合リン酸塩がピロリン酸塩、ポリリン酸塩、メタリン酸塩またはウルトラリン酸塩であり 、縮合リン酸塩を構成するカチオン成分が、ナトリウム、カリウム、カルシウム、マグネ シゥム、アルミニウム、またはアンモ-ゥムである請求項 1〜5のいずれ力 1項に記載 の製造方法。 [6] The condensed phosphate is pyrophosphate, polyphosphate, metaphosphate or ultraphosphate, and the cationic component constituting the condensed phosphate is sodium, potassium, calcium, magnesium, aluminum, or The manufacturing method according to claim 1, which is ammonia.
[7] 縮合リン酸塩がピロリン酸塩であり、かつピロリン酸塩力 加熱処理する前に、第二リ ン酸カルシウムに添加されたピロリン酸塩である請求項 1〜5のいずれか 1項に記載 の製造方法。
[7] The condensed phosphate according to any one of claims 1 to 5, wherein the condensed phosphate is pyrophosphate, and is pyrophosphate added to calcium diphosphate before heat treatment. The manufacturing method of description.
[8] ピロリン酸塩力 ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸カルシウム、ピロリ ン酸マグネシウム及びピロリン酸アンモ-ゥム力 成る群力 選ばれる少なくとも 1種 である請求項 6または 7に記載の製造方法。 [8] The pyrophosphoric acid strength Sodium pyrophosphate, potassium pyrophosphate, calcium pyrophosphate, magnesium pyrophosphate and ammonium pyrophosphate group power are at least one selected from the production method according to claim 6 or 7. .
[9] 縮合リン酸塩がポリリン酸塩であり、かつポリリン酸塩力 加熱処理する前に、第二リ ン酸カルシウムに添加されたポリリン酸塩である請求項 1〜5のいずれか 1項に記載 の製造方法。 [9] The condensed phosphate according to any one of claims 1 to 5, wherein the condensed phosphate is a polyphosphate and is a polyphosphate added to dicalcium phosphate prior to heat treatment of polyphosphate. The manufacturing method of description.
[10] ポリリン酸塩力 ポリリン酸ナトリウム、ポリリン酸カリウム、ポリリン酸カルシウム、ポリリ ン酸アンモ-ゥム及び、ポリリン酸マグネシウム力も成る群力も選ばれる少なくとも 1種 である請求項 9に記載の製造方法。 [10] The production method according to claim 9, wherein the polyphosphate strength is at least one selected from the group strength including sodium polyphosphate, potassium polyphosphate, calcium polyphosphate, ammonium polyphosphate, and magnesium polyphosphate strength.
[11] 130°C付近に吸熱ピークを示さなくなるまで加熱処理した第二リン酸カルシウム無水 和物にマグネシウム含有化合物及び縮合リン酸塩を混合することを含む、研磨基剤 の製造方法であって、 [11] A method for producing a polishing base, comprising mixing a magnesium-containing compound and a condensed phosphate with a dicalcium phosphate phosphate that has been heat-treated until no endothermic peak is exhibited in the vicinity of 130 ° C.
マグネシウム含有ィ匕合物の存在量は、第二リン酸カルシウム無水和物に対してマグ ネシゥム量として 1500〜5000ppmの範囲であり、 The abundance of the magnesium-containing compound is in the range of 1500 to 5000 ppm as a magnesium amount with respect to the dicalcium phosphate anhydrate,
縮合リン酸塩の存在量が、マグネシウム含有ィ匕合物のマグネシウムに対する縮合リ ン酸塩を構成するカチオン成分のモル比が 0. 4Zn〜12Znの範囲(但し、 nは上記 カチオン成分の価数である)である前記製造方法。 The amount of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium of the magnesium-containing compound is 0.4 Zn to 12 Zn (where n is the valence of the cation component) The production method.
[12] マグネシウム含有ィ匕合物力 水酸化マグネシウム、第一リン酸マグネシウム、第二リン 酸マグネシウム、第三リン酸マグネシウム、及びピロリン酸マグネシウム力 なる群から 選ばれる少なくとも 1種である請求項 11に記載の製造方法。 [12] The magnesium-containing composite strength is at least one selected from the group consisting of magnesium hydroxide, primary magnesium phosphate, secondary magnesium phosphate, tertiary magnesium phosphate, and magnesium pyrophosphate. The manufacturing method as described.
[13] 縮合リン酸塩がピロリン酸塩、ポリリン酸塩、メタリン酸塩またはウルトラリン酸塩であり[13] the condensed phosphate is pyrophosphate, polyphosphate, metaphosphate or ultraphosphate
、縮合リン酸塩を構成するカチオン成分が、ナトリウム、カリウム、カルシウム、マグネ シゥム、アルミニウム、またはアンモ-ゥムである請求項 11に記載の製造方法。 12. The production method according to claim 11, wherein the cation component constituting the condensed phosphate is sodium, potassium, calcium, magnesium, aluminum, or ammonium.
[14] 研磨基剤がフッ素化合物との反応性を抑制したものである請求項 1〜13のいずれか[14] The polishing base according to any one of claims 1 to 13, wherein the polishing base has a suppressed reactivity with a fluorine compound.
1項に記載の製造方法。 The manufacturing method according to 1.
[15] 請求項 1〜14のいずれか 1項に記載の製造方法によって得られる、フッ素化合物と の反応性を抑制した研磨基剤。 [15] A polishing base, which is obtained by the production method according to any one of claims 1 to 14 and suppresses reactivity with a fluorine compound.
[16] 第二リン酸カルシウム無水和物を主成分とする研磨基剤であって、マグシゥムおよび
縮合リン酸塩を含有し、フッ素化合物との反応性を抑制したものである前記研磨基剤 [16] A polishing base mainly composed of dibasic calcium phosphate anhydrate, comprising magnesium and The polishing base comprising a condensed phosphate and having reduced reactivity with a fluorine compound
[17] マグネシウムの含有量が 1500〜5000ppmの範囲であり、縮合リン酸塩の存在量が 、マグネシウムに対する縮合リン酸塩を構成するカチオン成分のモル比が 0. 4/n〜 12Znの範囲(但し、 nは上記カチオン成分の価数である)請求項 16に記載の研磨 基剤。 [17] Magnesium content is in the range of 1500 to 5000 ppm, and the presence of condensed phosphate is such that the molar ratio of the cation component constituting the condensed phosphate to magnesium is in the range of 0.4 / n to 12Zn ( The polishing base according to claim 16, wherein n is a valence of the cationic component.
[18] フッ素化合物がフッ化ナトリウムである請求項 15〜 17のいずれか 1項に記載の研磨 基剤。
[18] The polishing base according to any one of claims 15 to 17, wherein the fluorine compound is sodium fluoride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007511187A JP5443687B2 (en) | 2005-04-04 | 2006-03-31 | Polishing base with reduced reactivity with fluorine compound and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005107056 | 2005-04-04 | ||
JP2005-107056 | 2005-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006106947A1 true WO2006106947A1 (en) | 2006-10-12 |
Family
ID=37073497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/306900 WO2006106947A1 (en) | 2005-04-04 | 2006-03-31 | Abrasive base inhibited from reacting with fluorine compound and process for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5443687B2 (en) |
WO (1) | WO2006106947A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007145287A1 (en) * | 2006-06-16 | 2007-12-21 | Mandom Corporation | Oral stain remover and oral composition |
WO2014188067A1 (en) * | 2013-05-20 | 2014-11-27 | Kemira Oyj | Antiscalant composition and its use |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62287966A (en) * | 1986-06-06 | 1987-12-14 | Lion Corp | Polishing base material |
JPH035312A (en) * | 1989-05-13 | 1991-01-11 | Hoechst Ag | Method and apparatus for producing dicalcium phosphate |
JPH08165108A (en) * | 1994-12-08 | 1996-06-25 | Tosoh Akzo Corp | Coagulated crystals of calcium hydrogenphosphate dihydrate and its production |
JP2001278760A (en) * | 2000-03-29 | 2001-10-10 | Tosoh Corp | Fluorine-containing toothpaste polishing composition and toothpaste using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5852209A (en) * | 1981-09-19 | 1983-03-28 | Lion Corp | Dentifrice composition |
JP2003226627A (en) * | 2002-02-01 | 2003-08-12 | Tosoh Corp | Toothpaste composition |
-
2006
- 2006-03-31 WO PCT/JP2006/306900 patent/WO2006106947A1/en active Application Filing
- 2006-03-31 JP JP2007511187A patent/JP5443687B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62287966A (en) * | 1986-06-06 | 1987-12-14 | Lion Corp | Polishing base material |
JPH035312A (en) * | 1989-05-13 | 1991-01-11 | Hoechst Ag | Method and apparatus for producing dicalcium phosphate |
JPH08165108A (en) * | 1994-12-08 | 1996-06-25 | Tosoh Akzo Corp | Coagulated crystals of calcium hydrogenphosphate dihydrate and its production |
JP2001278760A (en) * | 2000-03-29 | 2001-10-10 | Tosoh Corp | Fluorine-containing toothpaste polishing composition and toothpaste using the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007145287A1 (en) * | 2006-06-16 | 2007-12-21 | Mandom Corporation | Oral stain remover and oral composition |
US8992894B2 (en) | 2006-06-16 | 2015-03-31 | Mandom Corporation | Oral stain remover and oral composition |
WO2014188067A1 (en) * | 2013-05-20 | 2014-11-27 | Kemira Oyj | Antiscalant composition and its use |
CN105229225A (en) * | 2013-05-20 | 2016-01-06 | 凯米罗总公司 | Antifouland compositions and uses thereof |
CN105229225B (en) * | 2013-05-20 | 2017-05-03 | 凯米罗总公司 | Antiscalant composition and its use |
Also Published As
Publication number | Publication date |
---|---|
JP5443687B2 (en) | 2014-03-19 |
JPWO2006106947A1 (en) | 2008-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Marchat et al. | Cadmium fixation by synthetic hydroxyapatite in aqueous solution—Thermal behaviour | |
Kannan et al. | Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures | |
JP2010100521A (en) | Single-phase carbonate-substituted hydroxyapatite composition | |
CA2493224A1 (en) | Alkali metal hydrogen phosphates as precursors for phosphate-containing electrochemical active materials | |
US20150017256A1 (en) | Condensed iron (iii) phosphate | |
US20090087369A1 (en) | Fluoroapatite dried particles and adsorption apparatus | |
AU2006263624A1 (en) | Biomedical materials | |
US20090060814A1 (en) | Method of producing fluoroapatite, fluoroapatite, and adsorption apparatus | |
Kannan et al. | Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites | |
CN114348982A (en) | Ferrous manganous phosphate, ferrous manganous lithium phosphate, preparation methods thereof, lithium ion battery and electric equipment | |
JPH0249248B2 (en) | ||
JP2013545703A (en) | Method for producing ammonium sulfate nitrate | |
WO2006106947A1 (en) | Abrasive base inhibited from reacting with fluorine compound and process for producing the same | |
KR102736714B1 (en) | Method for producing annealing separator, annealing separator and grain-oriented electromagnetic steel sheet | |
Tomazic et al. | Ion incorporation into octacalcium phosphate hydrolyzates | |
JP4330182B2 (en) | Synthesis method of carbonated hydrocalumite | |
CN118495494A (en) | Preparation method of battery-grade titanium-doped ferric phosphate | |
JP2000264626A (en) | Production of calcium-aluminum-based layered double hydroxide | |
JP3867234B2 (en) | Slightly soluble condensed melamine phosphate and method for producing the same | |
JP4638979B2 (en) | Silica-containing apatite | |
Veilleux et al. | Synthesis of new apatite phases by spray pyrolysis and their characterization | |
SU1730034A1 (en) | Method of producing calcium hydroxylapatite | |
JPH04182318A (en) | Production of ferrite material of low chlorine content | |
WO2017094196A1 (en) | Beta zeolite and method for producing same | |
JP2594251B2 (en) | Manufacturing method of dicalcium phosphate dihydrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007511187 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06730848 Country of ref document: EP Kind code of ref document: A1 |