+

WO2006035703A1 - Macro inspection apparatus and macro inspection method - Google Patents

Macro inspection apparatus and macro inspection method Download PDF

Info

Publication number
WO2006035703A1
WO2006035703A1 PCT/JP2005/017616 JP2005017616W WO2006035703A1 WO 2006035703 A1 WO2006035703 A1 WO 2006035703A1 JP 2005017616 W JP2005017616 W JP 2005017616W WO 2006035703 A1 WO2006035703 A1 WO 2006035703A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
substrate holder
holder
macro inspection
inspection apparatus
Prior art date
Application number
PCT/JP2005/017616
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Okahira
Nobuo Fujisaki
Hiroshi Kato
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2006537713A priority Critical patent/JP4729499B2/en
Priority to CN2005800015913A priority patent/CN1906476B/en
Publication of WO2006035703A1 publication Critical patent/WO2006035703A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to a macro inspection apparatus used for appearance inspection of a large substrate such as a glass substrate, and a macro inspection method using the macro inspection apparatus.
  • a transparent substrate eg, a master glass substrate, hereinafter simply referred to as a glass substrate
  • a substrate appearance inspection device enables inspection of defects on the glass substrate by irradiating a macro illumination light with an upward force while the substrate holder holding the glass substrate is raised at a predetermined angle. Is used.
  • a macro inspection apparatus described in Patent Document 1 below includes a substrate holder that is a rectangular frame-shaped frame cover having an opening slightly smaller than a rectangular glass substrate; and the substrate holder is directed toward an observer. And a biaxial rotation mechanism that enables vertical rotation for raising the substrate to a predetermined angle and horizontal rotation for swinging / reversing the substrate holder.
  • the peripheral portion of the back surface of the substrate is supported on the upper surface of the substrate holder.
  • an alignment mechanism is provided for holding and positioning the glass substrate.
  • the alignment mechanism includes a plurality of reference pins that regulate the reference positions of two adjacent sides of the glass substrate that is fixed along two adjacent sides of the rectangular opening of the substrate holder;
  • a pressing pin that is provided along the other two adjacent sides of the rectangular opening of the substrate holder and is movable toward the reference pins. With the glass substrate placed on the substrate holder, the pressing pins are pressed against the glass substrate side, so that the two sides of the glass substrate are pressed against the respective reference pins. Positioned at the reference position.
  • a macro inspection apparatus described in Patent Document 2 includes a substrate holder that holds a glass substrate, and a push-up drive unit that is coupled to a central portion of the substrate holder, and includes a front end portion and a rear end portion of the substrate holder.
  • the substrate holder is rotated to the front side or the back side.
  • the substrate holder is rotated to the front side and macro illumination is performed from above to visually observe the front surface, and the back is illuminated and back surface illumination is performed to visually observe the back surface. Can be done.
  • the macro inspection apparatus shown in Patent Document 3 below is an inspection apparatus for visually inspecting a very small wafer substrate of 200 mm and 300 mm compared to an FPD glass substrate (2000 mm).
  • This macro inspection apparatus includes a robot having a wrist portion that can be rotated by twisting at the tip of an arm that is rotatably connected to a base in a horizontal direction.
  • a wafer holder that holds and rotates the wafer substrate is attached to the tip of the wrist.
  • the wafer substrate is conveyed by the wafer loading / unloading machine, gripped by the wafer holder, and twisted to rotate the wrist to rotate the wafer substrate to the front side or the back side to control the posture. Visual observation of the front and back surfaces is possible.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-306153
  • Patent Document 2 Japanese Patent Laid-Open No. 11-94752
  • Patent Document 3 JP-A-8-125004
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce a burden imposed on a substrate holder driving mechanism that rotates and swings the substrate holder. Another objective is to prevent the equipment from becoming large.
  • the present invention has been made in view of the above circumstances.
  • the substrate holder supported by the substrate holder drive mechanism so as to rotate and swing freely can be quickly stopped at the substrate transfer position, thereby smoothly transferring the substrate.
  • the purpose is to improve inspection efficiency by shortening the tact time.
  • Another object of the present invention is to shorten the tact time and improve the inspection efficiency by quickly positioning the substrate on the substrate holder.
  • a macro inspection apparatus that supports a substrate holder in a cantilever manner with an articulated arm robot is being put into practical use so that the posture of the substrate holder can be freely controlled.
  • a small and lightweight substrate such as a wafer substrate
  • the influence of the vibration of the substrate holder when the substrate holder is stopped is small, and the connection Since the load applied to the location is small, it can be handled without any problems.
  • substrate holders that hold large glass substrates for FPDs tend to be large and heavy.
  • the present invention has been made in view of the above circumstances, and reduces the burden on the drive unit of a substrate holder drive mechanism (inspection robot equipped with a multi-joint arm robot) that moves the substrate holder.
  • the present invention employs the following means.
  • the macro inspection apparatus of the present invention includes: a substrate holder that holds a substrate to be inspected; a macro illumination optical system that irradiates the substrate with illumination light; and the substrate holder that supports the substrate light
  • a substrate holder driving mechanism for controlling the posture of the substrate holder in a state illuminated by the substrate; a substrate transport mechanism for delivering the substrate to and from the substrate holder; and the substrate delivered on the substrate holder
  • a substrate floating mechanism that causes the substrate to float above the substrate holder by blowing air to the substrate holder; and the substrate floating mechanism positions the substrate in a floating position by the substrate floating mechanism.
  • a substrate positioning mechanism; and a substrate fixing mechanism for fixing the substrate positioned by the substrate positioning mechanism to the substrate holder.
  • the substrate carrying mechanism places the substrate on the substrate holder waiting at the substrate delivery position.
  • the substrate placed in this manner also raises the force on the substrate holder by blowing air from the substrate floating mechanism.
  • the substrate fixing mechanism After the substrate in the floating state is positioned at the reference position by the substrate positioning mechanism, it is fixed by the substrate fixing mechanism.
  • the substrate holder drive mechanism controls the posture of the substrate holder so that the observer can perform macro observation and control the movement of the substrate so that it is easy. Do. Therefore, according to this macro inspection apparatus, the substrate can be quickly positioned on the substrate holder, so that the tact time can be shortened. This makes it possible to improve the efficiency of inspection.
  • the substrate positioning mechanism may be provided at a position other than the substrate holder.
  • the substrate holder can be reduced in size and weight by the amount that the substrate positioning mechanism is not provided on the substrate holder. Therefore, the substrate holder can be moved quickly, and the inspection time can be shortened.
  • the substrate holder driving mechanism for controlling the posture of the substrate holder can be reduced in size, and the entire macro inspection apparatus can be reduced in size and weight.
  • the substrate positioning mechanism may perform the positioning by sandwiching the substrate from its periphery.
  • a positioning member fixed at a position where the substrate positioning mechanism contacts the substrate when the reference position is reached; and a biasing device that biases the substrate toward the positioning member.
  • a first cutout that avoids interference with the substrate positioning mechanism may be formed in the substrate holder.
  • the holding portion is formed on the substrate holder. Interference with the substrate holder due to the notch can be avoided.
  • the substrate positioning mechanism is provided on the substrate holder and is fixed to a position that contacts the substrate when the reference position is reached; provided at a position other than the substrate holder; And an urging device that urges the substrate toward the positioning member.
  • the substrate can be positioned at the reference position by placing the substrate holder on the substrate holder waiting at the substrate delivery position and then pressing the substrate against the positioning member by the biasing device.
  • the urging device is provided outside the substrate holder, the substrate holder can be reduced in weight compared to the case where the urging device is provided on the substrate holder.
  • the board holder drive mechanism is downsized. Therefore, the entire macro inspection apparatus can be reduced in size.
  • the substrate positioning mechanism may be provided with a positioning member that contacts when the position reaches the reference position.
  • the substrate holder is tilted by the substrate holder driving mechanism in a state where the substrate is lifted by the substrate floating mechanism and air is blown up by the substrate floating mechanism. Then, the substrate moves by its own weight along the inclination of the substrate holder, and the movement is stopped by contacting the positioning member, and the positioning to the reference position is completed. In this way, components that move the substrate for positioning on the substrate holder can be omitted.
  • the outer dimension when the substrate holder is viewed from the front may be smaller than the outer dimension when the substrate is viewed from the front / J.
  • the apparatus may further include a stationary mechanism that stops the substrate holder that has moved to the substrate transfer position with respect to the substrate transport mechanism.
  • the substrate holder that has moved to the delivery position is stopped by a stationary mechanism that is waiting in advance, compared with a case where the substrate holder is simply stopped at the delivery position in a cantilevered state, The swing of the substrate holder can be suppressed or prevented. As a result, the substrate holder can be stopped very quickly at a predetermined position, so that the substrate transfer operation at the substrate transfer position can be performed quickly. Therefore, it is possible to reduce the loss time unnecessary for the substrate inspection, and it is possible to greatly reduce the tact time of the substrate inspection and improve the inspection efficiency.
  • the stationary mechanism may include an elastic body that abuts against the substrate holder when the delivery position is reached and attenuates vibration of the substrate holder.
  • the stationary mechanism is a spring fixed at a fixed position so that the axis is substantially perpendicular to the substrate holder.
  • a spring may be further provided, and the elastic body may be provided on the spring.
  • a second notch is formed in a side portion of the substrate holder; and the stationary mechanism is provided with a locking portion for locking to the second notch of the substrate holder when the delivery position is reached. May be.
  • the stationary mechanism may include clamping means for clamping the substrate holder when reaching the delivery position.
  • a rotating member that has a recess for receiving the substrate holder when the stationary mechanism reaches the delivery position, and that rotates along a direction in which the substrate faces the delivery position;
  • a rotation restricting member that stops the rotation member at a rotation position when the received substrate holder reaches the delivery position.
  • the stationary mechanism may move between a receiving position for receiving the substrate holder that has reached the transfer position and a retracted position separated from the receiving position force.
  • the stationary mechanism may horizontally move between the receiving position and the retracted position.
  • the stationary mechanism may rotate between the receiving position and the retracted position.
  • the substrate holder driving mechanism force One side of the substrate holder is supported so that the substrate holder can rotate around a first axis parallel to the one side; and the first axis is the center of rotation.
  • a weight located on the side opposite to the position of the substrate holder may be provided on the substrate holder.
  • the load applied to the substrate holder drive mechanism (that is, the rotation moment of the substrate holder) is compared to the case where no weight is provided. Can be reduced.
  • the substrate holder driving mechanism can be reduced in size, so that the entire macro inspection apparatus can be reduced in size. It is also possible to employ an articulated arm robot as the substrate holder drive mechanism.
  • the holder driving mechanism supports the substrate holder so as to be rotatable about a second axis perpendicular to the first axis and parallel to a plane formed by the substrate holder;
  • the center of gravity position, the intersection between the first axis and the second axis, and the center of gravity of the weight may be arranged on a substantially straight line.
  • the load acting on the substrate holder drive mechanism ie, the rotational moment of the substrate holder
  • the substrate holder driving mechanism can be reliably reduced in size, so that the entire macro inspection apparatus can be reduced in size.
  • the holder driving mechanism supports the substrate holder so as to be rotatable around a second axis perpendicular to the first axis and parallel to a plane formed by the substrate holder; In this case, a pair of weights are provided so as to be close to each other with the second axis being sandwiched therebetween. The rotational moment around the second axis can be reduced.
  • the macro inspection method of the present invention includes a substrate holder stop step of stopping the substrate holder at a delivery position of the substrate to be inspected; a substrate placement step of placing the substrate on the substrate holder; and the substrate A substrate floating step of blowing air to the substrate holder to lift the substrate; positioning the substrate in a floating state at a reference position on the substrate holder; and substrate positioning step A substrate fixing step of fixing the subsequent substrate to the substrate holder.
  • the substrate can be quickly positioned on the substrate holder, the tact time can be shortened and the inspection efficiency can be improved.
  • the positioning may be performed by sandwiching the substrate from its periphery.
  • the substrate holder is provided with a positioning member that abuts when the substrate reaches the reference position; and the substrate holder is configured to abut the substrate in a floating state against the positioning member in the substrate positioning step. It may be inclined.
  • the substrate holder is tilted by the substrate holder driving mechanism, the substrate holder is tilted.
  • the substrate moves along the oblique direction and stops moving by contacting the positioning member, and positioning to the reference position is completed. In this way, the components that move the substrate for positioning on the substrate holder can be omitted.
  • the substrate holder may be stopped by attenuating vibration of the substrate holder moved to the delivery position.
  • the substrate holder since the substrate holder is stopped by attenuating the vibration of the substrate holder that has moved to the delivery position, it is extremely quicker than when the substrate holder is simply stopped at the delivery position in a cantilevered state. Can be stationary. Therefore, the substrate transfer operation at the substrate transfer position can be performed quickly. Therefore, it is possible to reduce a loss time unnecessary for the substrate inspection, and it is possible to greatly reduce the tact time of the substrate inspection and improve the inspection efficiency.
  • the substrate holder may be stopped by holding the substrate holder moved to the delivery position.
  • the substrate holder may be stopped by locking the substrate holder moved to the delivery position at a fixed position.
  • the rotational moment of the substrate holder may be offset by a weight that generates a rotational moment that balances the rotational moment.
  • the rotational moment due to the substrate holder balances with the rotational moment due to the weight, so that the load applied to the drive mechanism for controlling the posture of the substrate holder (i.e. (Rotation moment) can be reduced.
  • the drive mechanism can be reduced in size, so that the entire macro inspection apparatus can be reduced in size. It is also possible to employ an articulated arm robot as the drive mechanism.
  • the substrate can be quickly positioned on the substrate holder, the tact time can be shortened and the inspection efficiency can be improved. become.
  • the substrate positioning mechanism is installed at a position other than the substrate holder.
  • the substrate holder can be reduced in size and weight as much as the substrate positioning mechanism is not provided on the substrate holder. Therefore, the burden imposed on the substrate holder driving mechanism can be reduced, so that the substrate holder driving mechanism can be reduced in size, and the entire macro inspection apparatus can be reduced in size and weight.
  • the burden on the substrate holder driving mechanism can be reduced, so that a macro inspection apparatus using an articulated arm robot as the driving mechanism can be realized. become.
  • FIG. 1 is a side view showing a schematic configuration of a macro inspection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a plan view when the substrate holder provided in the macro inspection apparatus is in a horizontal position, and is a view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view of the substrate supporting portion provided in the macro inspection apparatus, taken along lines III-III and IV-IV in FIG.
  • the right side of the drawing shows a cross-sectional view of the substrate support at the position of the suction portion, and the left side of the drawing shows a cross-sectional view of the substrate support at the position of the support pin
  • FIG. 4 is a side view of the macro inspection apparatus corresponding to FIG. 1 and showing a state in which the lift pins are lifted to support the substrate.
  • FIG. 5 is a plan view showing a transfer robot provided in the macro inspection apparatus.
  • FIG. 6 is a view showing a main part of a macro inspection apparatus according to a second embodiment of the present invention, and is a plan view corresponding to FIG.
  • FIG. 7 is a diagram showing a main part of a macro inspection apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a side view for explaining another example of the stationary mechanism.
  • FIG. 9 is a side view for explaining another example of the stationary mechanism.
  • FIG. 10 is a side view for explaining another example of the stationary mechanism.
  • FIG. 11 is a side view for explaining another example of the stationary mechanism.
  • FIG. 12 is a side view for explaining another example of the stationary mechanism.
  • FIG. 13 is a side view for explaining another example of the stationary mechanism.
  • FIG. 14 is a view showing another example of the substrate holder of the macro inspection apparatus, and is a plan view corresponding to FIG. 2.
  • FIG. 15 is a side view of the substrate holder.
  • FIG. 16 is a view showing the substrate holder of the macro inspection apparatus according to the fourth embodiment of the present invention, and is a plan view corresponding to FIG. 2.
  • FIG. 17 is a side view of the substrate holder.
  • FIG. 18 is a plan view for explaining another example of the substrate holder.
  • FIG. 19 is a plan view for explaining another example of the substrate holder.
  • FIG. 20 is a side view of the substrate holder.
  • FIG. 21 is a plan view for explaining another example of the substrate holder.
  • FIG. 22 is a side view of the substrate holder.
  • Inspection robot substrate holder drive mechanism, articulated arm robot
  • Alignment means substrate positioning mechanism
  • FIG. 1 is a side view showing a schematic configuration of the macro inspection apparatus according to the first embodiment of the present invention.
  • the macro inspection apparatus 1 includes an apparatus main body 2 that is disposed in a clean room and has a side wall that surrounds a space whose upper surface and lower surface are open.
  • a filter (not shown) for increasing the cleanliness in the apparatus main body 2 is attached to the upper surface of the apparatus main body 2.
  • a macro illumination optical system for example, a light source 3 for macro illumination such as a metal halide lamp and a sodium lamp, and an optical axis of illumination light emitted from the light source 3 are provided.
  • Reflective mirror 4 is installed on the upper part of the apparatus body 2. Below the reflecting mirror 4, a Fresnel lens 5 that converges the illumination light of the light source 3 and guides it to the substrate W is disposed.
  • the Fresnel lens 5 converts divergent light from the light source 3 into convergent light. Further, the transmission type liquid crystal scattering plate force having a scattering function for changing the divergent light from the light source 3 to a uniform surface light source is disposed in the vicinity of the Fresnel lens 5.
  • the macro illumination optical system may illuminate the entire transparent substrate such as a liquid crystal display or a plasma display as a whole, or it may partially illuminate and scan the illumination light in one or two dimensions. Good.
  • Substrate W is a transparent substrate for a flat panel display (FPD) formed of a transparent flat plate, and is horizontally arranged by a substrate transfer device (transfer robot) as shown by a virtual line in FIG. Is loaded onto the substrate holder 6.
  • FPD flat panel display
  • FP substrate transfer device
  • FP There is a multi-chamfered master glass substrate capable of producing a plurality of rectangular panels for D, the outer shape is formed in a rectangular shape, and a rectangular pattern region is formed slightly inside the periphery.
  • a portion between the substrate periphery and the rectangular pattern is referred to as a “substrate periphery”.
  • the substrate holder 6 has a rectangular frame-shaped holder body 7 in which a rectangular opening 8 smaller than the outer shape of the substrate W is formed.
  • the holder body 7 forms an opening 8 by connecting both ends of a pair of long side portions 7a and 7b parallel to each other by a pair of short side portions 7c and 7d.
  • the size of the opening 8 is smaller than the outer dimension of the substrate W and is formed in a rectangular size slightly larger than the rectangular pattern region. Then, the peripheral edge of the back surface of the substrate W is supported by the peripheral edge on the inner peripheral side of the holder body 7.
  • a plurality of suction portions (substrate fixing mechanisms) 9 are arranged at predetermined intervals in a region overlapping the substrate W at the inner peripheral edge of the holder body 7.
  • suction parts 9 protrude slightly from the upper surface of the holder body 7 and are arranged so as to be substantially flush with the upper surface of the holder body 7 during suction; a through-hole formed in this suction node And a suction fluid pump connected via a vent pipe (not shown).
  • the suction unit 9 When the substrate W is positioned, the suction unit 9 is provided with, for example, the above-mentioned passage as a substrate floating means that floats the substrate W by blowing air to reduce contact resistance (friction resistance) to the substrate holder 6.
  • An exhaust fluid pump that blows out air is connected to the trachea via a switching valve (not shown).
  • a switching valve (not shown).
  • compressed air can be blown out from each of the suction pads 9, and suction and blowing can be selectively performed by switching the valve.
  • all the suction units 9 may have a configuration capable of suction and blowing (substrate floating mechanism), but only a part of the suction units 9 may be provided.
  • a blowing part having a nozzle hole for air blowing may be provided in the holder body 7 as a substrate floating means, and air suction and air blowing may be provided in different systems.
  • each substrate support portion 10 is made of metal, and as shown in the left and right views of FIG. 3, the cross-sectional shape thereof is a vertically long bar shape (bar shape) whose height is longer than the width. It is smaller and lighter than the holder body 7. Details of these substrate supports 10 Similarly, as shown in the left and right views of FIG. 3, the narrow cross-sectional shape has a vertically long hexagonal shape, and at least the upper end and the lower end are illuminated with the illumination light transmitted through the substrate W.
  • inclined surfaces 10b and 10d for reflecting the illumination light toward the outside of the observation field are formed.
  • inclined surfaces 10b and 10b are formed on both the upper end and the lower end of each substrate support portion 10.
  • a suction portion (substrate fixing mechanism) 11 (the right side of FIG. And a support pin 12 (left figure in FIG. 3) that abuts against the back surface of the substrate W are vertically projected.
  • These suction portions 11 and support pins 12 may be arranged alternately on the same substrate support portion 10 as shown in FIG. 2, or the suction portions 12 may be placed on all the substrate support portions 10. Alternatively, the support pins 12 or the suction portions 11 may be arranged alternately on each substrate support portion 10.
  • the suction part 11 includes a rod 11a standing on the upper surface of the substrate support part 10, and a suction pad 1 lb attached to the tip of the rod 11a.
  • An air circulation hole (not shown) is formed in the rod 1 la and the suction pad 1 lb, and the suction fluid pump is connected to the air circulation hole via a vent pipe (not shown). .
  • the suction portion 11 as the substrate floating means for reducing the contact resistance (friction resistance) to the substrate holder 6 by floating the substrate W by blowing air when positioning the substrate W, for example, the vent pipe An exhaust fluid pump that blows out air through a switching valve is connected (not shown above). Thereby, compressed air can be blown out from the suction pad l ib, and suction and blowing can be performed alternatively by switching the valve.
  • all the suction units 11 may have a configuration capable of sucking and blowing, or only a part of the suction units 11 may be provided.
  • a blow-up portion having a nozzle hole for air blowing may be provided in the holder body 7, and the single air suction and the air blowing may be provided in different systems.
  • the support pin 12 includes a rod 12b erected on the upper surface of the substrate support 10 and a reduced hardness with less wear resistance than a glass substrate such as Teflon (registered trademark) at the tip of the rod 12b.
  • a substantially spherical contact portion 12a having a frictional force is provided.
  • the height of the upper end position of the suction part 11 and the upper end position of the support pin 12 are both adjusted to be approximately equal to the upper surface position of the suction part 9.
  • FIGS. 1 and 2 as a substrate holder driving mechanism for rotating the substrate holder 6, for example, it can freely move in multiple directions (directions A, B, C, and D in the figure).
  • one long side portion 7 a of the holder body 7 is connected to the tip arm 16 of the inspection robot 15.
  • the inspection robot 15 is controlled by a control device (not shown), for example, from a substrate delivery position where the substrate holder 6 is held in a horizontal position as shown by a virtual line in FIG. Rotate the substrate holder 6 in the direction of arrow A to the angle, rotate the substrate holder 6 in the direction of arrow C around the axis of the tip arm 16 (Fig. 2), or move the substrate holder 6 in the direction of arrow B (Fig. 1)
  • the substrate holder 6 can be moved up and down or moved in the direction of arrow D (Fig. 2).
  • the substrate holder 6 can be moved up, down, left, and right with the substrate holder 6 raised to an angle suitable for observation under macro illumination.
  • the macro illumination light can be scanned over the entire surface.
  • a uniaxial substrate holder drive mechanism that rotates or swings the substrate holder 6 in the direction of arrow A as the inspection robot 15 or a substrate holder 6 is installed.
  • a biaxial substrate holder drive mechanism that rotates in the direction of arrow A and arrow C may be used.
  • an opening (not shown) is formed in the apparatus body 2 so as to correspond to the position of the front surface of the substrate holder 6 when it is raised, so that the external appearance of the substrate W when it is raised is observed. Can be visually observed.
  • a frame 17 is arranged around the substrate holder 6 in a state in which the posture of the substrate holder 6 is horizontally controlled at the substrate delivery position in order to receive the substrate W.
  • the frame 17 is attached to the main body 2 of the apparatus body 2 so as to surround the holder body 7 along each side 7a, 7b, 7c, 7d of the holder body 7 except for the range in which the inspection robot 15 can swing. It is fixed against.
  • a plurality of alignment means 20 serving as a substrate positioning mechanism for positioning the substrate W at a reference position on the holder body 7 are provided on the upper portion of the frame 17.
  • the peripheral force of the main body 7 is also attached separately.
  • Two of these alignment means 20 are provided on the frame 17 at a position facing the long side portions 7a, 7b and the short side portion 7d of the holder body 7, and are arranged at positions facing the short side portion 7c of the substrate holder W.
  • Each alignment means 20 disposed on the short side 7d side and the long side 7a, 7b side is provided to face each corner of the substrate W.
  • the alignment means 20 arranged on the short side portion 7c side is provided so as to face the vicinity of the center of the left short side of the substrate W.
  • Each alignment means 20 includes a drive unit that also has a constant force of a cylinder 21 fixed to the frame 17, and a pressing member that also has a constant force of a rod-shaped pressing pin 22 that is supported by the cylinder 21 so as to advance and retreat.
  • a cylindrical contact portion 22a which is a friction reducing material having a smaller hardness than a glass substrate such as Teflon (registered trademark) and having excellent wear resistance.
  • Each pressing pin 22 is arranged slightly above the upper surface position of the substrate holder 6, and an alignment position (reference position) where the contact portion 22 a of the pressing pin 22 is pressed against the side surface of the glass substrate W; As indicated by an imaginary line in FIG. 2, the abutting portion 22a of the pressing pin 22 is movable to a retracted position separated from the holder body 7 by force.
  • the alignment means 20 is not limited to the cylinder drive configuration, and for example, a configuration in which the contact portion 22a is advanced and retracted via a link mechanism (pressing member) in a motor (drive portion) may be adopted.
  • the holder body 7 is formed so that the outer dimension of the holder body 7 is slightly smaller than the outer dimension of the substrate W so that the peripheral edge of the substrate W slightly protrudes from the holder body 7, and the substrate W protrudes from the holder body 7.
  • the abutting portion 22a of each pressing pin 22 may be pressed against the periphery of
  • a lift device 24 is disposed below the substrate holder 6 whose posture is horizontally controlled. As shown in FIG. 5, the lift device 24 is arranged in a plurality of locations so that the substrate support portions 10 of the substrate holder 6 and the comb-like fingers 31 of the substrate transfer robot 28 do not interfere with each other when viewed in plan. As shown in FIG. 1, a lift pin support bar 26 for supporting these lift pins 25 and an actuator section 27 for raising and lowering the lift pin support bar 26 are provided.
  • Each lift pin 25 has a lift position that protrudes to a position higher than the upper surface position of the substrate holder 6 as shown in FIG. 4, and a retreat that is lower than the lower surface position of the substrate holder 6 as shown in FIG. It can move to the avoidance position.
  • a substantially spherical contact portion made of an antifriction material having a hardness smaller than that of a glass substrate such as Teflon (registered trademark) and having excellent wear resistance.
  • FIG. 5 shows the transfer robot 28.
  • the transfer robot 28 is used when a substrate W is loaded into the substrate holder 6 or when the substrate W is unloaded from the substrate holder 6 and includes an articulated arm robot.
  • a robot hand 30 is attached to the tip arm 29 of the transfer robot 28.
  • the robot hand 30 includes a plurality of fingers 31 arranged in a comb-like shape, and suction portions 32 are arranged at equal intervals on the upper surface of each finger 31 to hold the substrate W by suction.
  • the robot hand 30 has a shape of the finger 31 so as to avoid the alignment means 20 and the lift pins 25 when inserted above the substrate holder 6 through the substrate inlet 2a of the apparatus body 2. And the arrangement is set.
  • the inspection robot 15 causes the substrate holder 6 to stand by at a horizontal substrate transfer position suitable for loading and unloading the substrate W.
  • the transfer robot 28 sucks and holds one substrate W from a cassette (not shown), takes it out, transfers it to the upper side of the substrate holder 6, and then releases the suction to the substrate W.
  • the lift device 24 drives the actuator unit 27 and moves the lift pins 25 above the fingers 31 of the transfer robot 28 to receive the substrate W.
  • the lift pins 25 at this time are arranged so as not to interfere with the holder main body 7, the substrate support portions 10, and the comb-like fingers 31 of the transfer robot 28.
  • each alignment means 20 is driven to project each pressing pin 22 toward the substrate W.
  • the substrate W is sandwiched between the pressing pins 22 and aligned at the reference position.
  • the compressed air supply from the suction portions 9 and 11 is stopped, and the substrate W is placed on the holder body 7 and each substrate support portion 10. Thereafter, suction is started by the suction units 8 and 11, and the positioned substrate W is sucked and held.
  • the alignment means 20 arranged on one side across the diagonal of the holder body 7 is set for positioning reference, and the contact portion 22a of the reference alignment means 20 is set as the holder.
  • the alignment means 20 fixed to the reference position of the main body 7 and arranged on the other side is set for substrate pressing, and the substrate W is brought into contact with the reference alignment means 20 by the contact portion 22a of the pressing alignment means 20. You may make it position by pressing on the contact part 22a.
  • the inspection port bot 15 observes the substrate holder 6 from the horizontal position as shown by the solid line in FIG. Make the person get up like a power.
  • the substrate W is illuminated from above by the illumination light from the light source 3, and a macro inspection is performed by an observer.
  • the inspection robot 15 may swing the substrate holder 6 in the vertical direction or the horizontal direction at a minute angle so as to perform the macro inspection while changing the incident angle of the illumination light with respect to the substrate W. .
  • the inspection robot 15 may invert the substrate W so that the back surface of the substrate W faces the illumination direction.
  • a knock light device (not shown) may be provided so that the substrate W is observed while illuminating it from the back side.
  • the substrate holder 6 is returned to the horizontal position, and the suction holding by the suction portions 9 and 11 is released.
  • the actuator 27 of the lift device 25 is driven again, the lift pin 25 is raised, and the substrate W is transferred from the substrate holder 6 onto the lift pin 25.
  • the transfer robot 28 moves the robot hand 30 horizontally to insert the finger 31 between the holder body 7 and the substrate W, and lifts the robot hand 30 to lift the substrate W from the lift pin 25. After the substrate W is sucked and held by the sucking unit 32, the robot hand 30 is moved backward and carried out toward the cassette.
  • the macro inspection apparatus 1 of the present embodiment includes the substrate holder 6 that holds the substrate W to be inspected; the light source (macro illumination optical system) 3 that irradiates the substrate W with illumination light; An inspection robot (substrate holder drive mechanism) 15 that supports the substrate holder 6 and controls the posture of the substrate holder 6 while the substrate W is illuminated by illumination light; and transfers the substrate W between the substrate holder 6
  • a substrate floating mechanism having the switching valve and the exhaust fluid pump; an alignment means (substrate positioning mechanism) 20 for positioning the substrate W in a floating state by the substrate floating mechanism at a reference position on the substrate holder 6;
  • This alignment hand Comprises; more positioning wafer W on the 20 suction portion for fixing to the substrate holder 6 (substrate fixing mechanism) 9, 11 and.
  • the alignment means 20 that functions as a positioning mechanism for aligning the substrates W is provided separately from the substrate holder 6, and thus is driven on the substrate holder 6. It is not necessary to provide the aligning means 20 having a portion.
  • the width of the holder body 7 can be reduced by the space for arranging the aligning means 20, and the substrate holder 6 can be reduced in weight.
  • the load on the inspection robot 5 that drives the substrate holder 6 can be reduced by the light weight of the substrate holder 6.
  • a small multi-joint arm robot can be used as the inspection robot 15.
  • the macro inspection apparatus 1 can be reduced in size and the installation space of the clean room can be reduced.
  • the holder body 7 is pressed because the outer dimension of the holder body 7 is slightly smaller than the outer dimension of the substrate W so that the peripheral edge of the substrate W slightly protrudes from the holder body 7. Interference between the pressing pin 22 and the holder body 7 can be prevented when the pressing pin 22 of the aligning means 20 moves forward and backward. Further, since the contact portion 22a attached to the tip of the pressing pin 22 can be enlarged, even if the holder body 7 is slightly displaced in the vertical direction, these contact portions 22a can be reliably brought into contact with the substrate W and pressed. Furthermore, the outer dimensions of the holder body 7 can be reduced within the outer dimensions of the board, and further light weight can be achieved.
  • a reference pin 42a which is a reference alignment means (reference substrate positioning mechanism) is provided on the upper surface of the short side portion 7c.
  • a reference pin 42b is fixed on the upper surface of the short side portion 7c.
  • Each reference pin 42a is disposed at a position corresponding to the corner of the substrate W, and the reference pin 42b is disposed at a position corresponding to the central portion of the left edge of the substrate W.
  • a frame 44 and a frame 45 are attached to the apparatus main body 2 along the long side portion 7b and the short side portion 7d of the holder main body 7, and the substrate W is attached to each reference pin on the frames 44, 45.
  • 4 Pressing alignment means (pressing board positioning mechanism) 2 0 for pressing against 2a and 42b are provided two by two.
  • the long side 7b and the short side 7d of the substrate holder body 7 are notched at positions corresponding to the pressing alignment means 20 so that the notches 43a and 43b are recessed from the outer peripheral surface of the substrate holder body 7 toward the opening 8. Is formed. These notches 43a and 43b are notched to a position where they enter into the inside of the substrate W by several millimeters, as shown in FIG.
  • the respective frames provided along the long side portion 7a and the short side portion 7c of the holder body 7 are omitted from the configuration described in the first embodiment.
  • the positioning alignment means 20 having a driving portion such as a cylinder fixed to the omitted frame is replaced with reference pins 42a and 42b having no driving portion.
  • notches 43a and 43b are provided in the holder body 7 at positions facing the pressing alignment means 20.
  • the configuration other than the points described above is the same as the configuration of the first embodiment, and a duplicate description is omitted.
  • the supply of compressed air from the suction portions 9 and 11 is stopped and the substrate W is placed on the holder body 7 and each substrate support portion 10. Thereafter, suction is started by the suction portions 9 and 11, and the positioned substrate W is sucked and held.
  • the manufacturing cost of the apparatus is reduced. Can be reduced. Furthermore, since the frames arranged along the long side 7a and the short side 7c of the holder body 7 can be reduced, the inspection robot 15 and the transfer robot 28 interfere with the frame, so that the inspection The operation of the robot 15 and the transport robot 28 is expanded.
  • the notches 43a and 43b are formed in the holder main body 7, interference between the pressing pin 22 and the holder main body 7 can be prevented when the pressing pin 22 of the pressing aligning means 20 advances and retreats.
  • the size of the contact portion 22a attached to the tip of the pressing pin 22 can be increased, so that even if the holder body 7 is slightly displaced in the vertical direction, it contacts the substrate W, The substrate W can be reliably pressed.
  • the reference pins 42a and 42b are fixed to the holder body 7, and only the pressing alignment means 20 is provided with a drive mechanism, so that all alignment means are provided with a drive mechanism as in the first embodiment. Compared to, positioning control is simplified.
  • the present invention is not limited to the second embodiment and can be widely applied.
  • the present invention is not limited to the second embodiment and can be widely applied.
  • the substrate W when the substrate W is carried in, the substrate W is transferred to the substrate holder 6 by the lift pins 25, and then the substrate W is floated by blowing air from the suction portions 9 and 11 that function as the substrate floating mechanism.
  • the inspection robot 15 is driven, and the holder body 7 is first inclined so that the long side portion 7b is slightly higher than the long side portion 7a.
  • the floating substrate W moves to the long side portion 7a side along the holder body 7 due to its own weight, and comes into contact with the reference pin 42a to determine the lower position of the substrate W.
  • the inspection robot 15 is driven to tilt the holder body 7 so that the short side portion 7b is slightly higher than the short side portion 7c.
  • the substrate W that has floated is moved to the short side portion 7c while being in contact with the two reference pins 42a, and the right side of the substrate W is determined by contacting the reference pins 42b.
  • the holder body 7 by tilting the holder body 7 slightly so that the reference pins 42a and 42b are at the bottom, it is possible to position the substrate W by contacting the reference pins 42a and 42b by its own weight. Become.
  • the drive unit that does not need to be configured can be constituted only by inexpensive reference pins 42a and 42b having no drive mechanism. In this case, the cost can be further reduced, and all the frames for attaching the aligning means can be omitted from the periphery of the holder body 7, and the entire apparatus can be reduced in size. Other effects are the same as in the first embodiment.
  • the inspection robot 15 When the articulated arm robot is used to align the substrate W, the inspection robot 15 has a holder body so that the corners of the long side portion 7a and the short side portion 7c are lowest at a time. 7 may be inclined, and the substrate W may be moved toward the reference pins 42a, 42a, 42b provided on both sides of the holder body 7 by its own weight. In this case, the substrate W can be adjusted IJ with one action.
  • the substrate holder 6 is finely moved by the inspection robot 15. You may drive it so that it may swing small. As the substrate holder 6 shakes, the substrate W moves and aligns quickly. In this case, it is not always necessary to float by blowing air.
  • the lifting mechanism 24 is removed from the lifting device 24, and the lifting device 24 is fixed as shown in FIG.
  • the position may be fixed.
  • the length of the lift pin 25 is set so that the tip 27a is fixed at a position lower than the lower surface of the substrate holder 6 in the horizontal position.
  • the tip of the lift pin 25 protrudes from the upper surface of the substrate holder 6, so that the substrate W is transferred onto the lift pin 25 by the transfer robot 28, and after the transfer robot 28 is retracted, the inspection robot 28 By raising the substrate holder 8, the substrate W can be transferred from the transfer robot 28 to the inspection robot 15. Thereafter, when the inspection robot (articulated robot) 15 raises the substrate holder 6, the substrate W is transferred from the lift pins 25 to the substrate holder 6. The positioning, suction, and macro observation of the substrate W are performed in the same manner as described above.
  • the suction holding of the substrate W is released at a position slightly higher than the lift pins 25, and then the substrate holder 6 is lowered to a position lower than the tip of the lift pins 25.
  • the substrate W can be carried out by the transfer robot 28.
  • the inspection robot 15 is also used as the lifting function of the lift device that moves up and down horizontally with the substrate W placed on the transfer position of the substrate W. This eliminates the need to provide a mechanism for raising and lowering the lift pins 25. As a result, the apparatus can be reduced in size and weight. Other effects are the same as in the first embodiment.
  • the short side of the substrate holder 6 may be attached to the tip arm 16 of the inspection robot (articulated robot) 15.
  • the notches 43a and 43b may be omitted from the substrate holder 6 shown in FIG. Further, notches 43a and 43b may be formed in the substrate holder 6 shown in FIG. [0067] [Third embodiment]
  • a third embodiment of the macro inspection apparatus of the present invention will be described below with reference to the drawings.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • an inspection articulated arm robot (inspection robot 15) is employed as a substrate holder driving mechanism for rotating and swinging the substrate holder 6. Then, the substrate holder 6 supported by the inspection robot 15 so as to be rotatable and swingable is quickly stopped at the substrate transfer position to smoothly transfer the substrate W, thereby reducing the tact time and inspecting efficiency.
  • a stationary mechanism 50 is provided. Except for the provision of the stationary mechanism 50, the second embodiment is the same as the first embodiment, and a duplicate description is omitted.
  • the stationary mechanism 50 has a stagger function for restricting the substrate holder 6 to the substrate delivery position, and is disposed on the front end side (free end side) of the substrate holder 6.
  • the stationary mechanism 50 further has a stationary function that absorbs the impact of the substrate holder 6 and suppresses the vibration.
  • a stationary mechanism 50 shown in FIG. 7 includes a stopper 53 attached to a distal end portion (upper end portion) of a support column 51 erected in the vertical direction, for example, a rubber-based elastic body 52 such as rubber or sponge.
  • the upper surface of the elastic body 52 is a contact portion 54.
  • the stationary mechanism 50 is provided below the front end of the holder body 7 disposed at the substrate transfer position. When the holder body 7 is disposed at the substrate delivery position where the holder body 7 is held in a horizontal position, the lower surface of the tip end portion comes into contact with the contact portion 54 of the stopper 53.
  • the substrate holder 6 is a substrate between the transfer robot 28 when the inspection robot 15 carries in the substrate W and when the substrate W after macro inspection is carried out. It is moved to the delivery position.
  • the substrate holder 6 is moved (rotated) by the inspection robot 15 to the horizontal angle of the substrate delivery position even when a predetermined angular force is observed by macro observation, the bottom surface of the tip of the holder body 7 is in contact with the contact portion of the stagger Abuts 54. As a result, the holder main body 7 quickly stops at the substrate transfer position without causing vibration at the tip. At this time, the inspection robot 15 is rotated at a high speed. The holder body 7 is gently brought into contact with the stopper 53 by slowing down the rotation just before the board transfer position, so that the impact force of the holder body 7 against the stopper 53 is reduced and the substrate holder 6 is moved at high speed. The time required for delivery of the substrate W can be reduced.
  • a vibration sensor may be used to determine whether or not the holder body 7 that has moved to the substrate delivery position is stationary. For example, a determination may be made based on whether or not a predetermined time has passed. May be.
  • the transfer robot 28 is driven and controlled to transfer the substrate W from the substrate holder 6.
  • the stationary mechanism 50 supports the tip of the holder body 7 to stop the swing of the substrate holder 6.
  • the support of the substrate holder 6 is not limited to the tip, but other locations. May be adopted. Specifically, with respect to the center of gravity of the substrate holder 6, if the holder body 7 is on the opposite side of the support location by the drive arm 16, that is, between the position of the center of gravity and the position of the tip. good.
  • the drive of the holder body 7 with respect to the center of gravity of the substrate holder 6 moved to the substrate delivery position. Since the side opposite to the place where the arm 16 is supported is held by the stopper 53, the substrate holder 6 can be stopped very quickly when the substrate delivery Lf is placed, and the substrate W can be transferred at the substrate delivery position. It is possible to make it happen promptly.
  • the loss time unnecessary for the inspection of the substrate W can be reduced, the tact time of the inspection of the substrate W can be greatly shortened, and the inspection efficiency can be improved.
  • the substrate holder 6 can be supported horizontally and accurately, and the substrate W can be delivered smoothly.
  • the stationary mechanism 50 for example, it is preferable that the column 51 can be expanded and contracted so that the height position of the contact portion 54 can be adjusted up and down. In this case, it is possible to improve the accuracy of the height position of the abutment portion 54 in the substrate delivery Lf standing. In addition, it is possible to easily cope with changes in the board delivery position.
  • the abutment part 54 is provided with an attracting part or a magnet, the bottom surface of the holder body 7 is vacuum-adsorbed! / ⁇ is attracted by magnetic force, so that the substrate holder 6 can be stopped at the substrate transfer position more quickly and reliably.
  • the stationary mechanism 50 is not limited to the structure described above, and various structures can be applied.
  • a stationary mechanism 50 shown in FIG. 8 is an example in which a vibration damping unit 55 that also has a damper and a spring force is provided at the tip of a column 51.
  • a stationary mechanism 50 shown in FIG. 9 is an example in which an engaging portion 57 having an engaging pin 56 as an abutting portion is provided at the distal end portion of a support column 51.
  • the engagement pin 56 protrudes toward the holder body 7 and can be engaged with an engagement groove 7e formed at the tip of the holder body 7.
  • the engaging pin 56 has a cylindrical shape with a hemispherical tip, and is inserted into the hole of the engaging portion 57 while being connected to a coil panel (not shown). As a result, the engaging pin 56 is provided so as to be able to appear and retract with respect to the hole.
  • the engagement pin 56 engages with the engagement groove 7e of the holder body 7. As a result, the substrate holder 6 can be quickly stopped at the substrate delivery position.
  • a stationary mechanism 50 shown in FIG. 10 includes a fixed bracket 61 and a movable bracket 62 that are formed in a U-shape in a side view and are connected to one end side so as to be rotatable with respect to the distal end portion of a column 51. And a drive mechanism (not shown) for rotating the.
  • the fixed bracket 61 is fixed to the support column 51, and an elastic body 64 is provided on the other end opposite to the connection side with the movable bracket 62, and the surface thereof is a contact portion 65.
  • An elastic body 66 is also provided at the other end portion of the movable bracket 62, and the surface thereof serves as a clamping portion 67.
  • the holder main body 7 is moved to the substrate delivery position in a state where the movable bracket 62 is disposed at the position indicated by the phantom line in FIG.
  • the movable bracket 62 is rotated clockwise (in the direction of the arrow ⁇ in the figure) by the drive mechanism.
  • This The front end of the rudder body 7 is sandwiched between the abutment portion 65 of the fixed bracket 61 and the sandwiching portion 67 of the movable bracket 62, so that the substrate holder 6 can be quickly stopped at the substrate delivery position. .
  • the stationary mechanism 50 shown in FIG. 11 includes a support bracket 71 that is rotatably supported at the tip end portion of the support column 51.
  • the support bracket 71 is formed in a V shape when viewed from the side, and the inner surface forming the V shape is a contact portion 72.
  • the stationary mechanism 50 shown in FIG. 12 includes a moving mechanism 75 at the lower part.
  • This moving mechanism 75 moves the stopper 53 linearly along a rail (not shown), so that the contact portion 54 with which the substrate holder 6 abuts is placed below the tip of the holder body 7 disposed at the substrate delivery position. It is possible to dispose a position (a position indicated by an imaginary line in the figure) that deviates from the direction position.
  • the stopper 53 moves to the substrate delivery position side only when the holder body 7 moves to the substrate delivery Lf standing position, and the holder body 7 comes into contact with the contact portion 54. To be stationary.
  • the stationary mechanism 50 is configured such that the stopper 53 is moved to the retracted position (virtual in the figure) by the moving mechanism 75 when it is not necessary so that the stopper 53 does not interfere with the holder body 7 during inspection. To the position indicated by the line).
  • the mechanism for moving the stopper 53 to the retracted position when it is not necessary is not limited to linearly moving horizontally, but the stopper 53 is arcuate in plan view by rotating around a predetermined axis. You may employ
  • the column 51 constituting the stocker 53 is divided in the middle, and the stocker 53 above the divided part is rotatably connected to the lower part.
  • the support column 51 forms a straight line, and the holder main body 7 comes into contact with and rests on the contact portion 54.
  • the support column 51 is bent at the connecting portion and retracted when it is not necessary so that the stopper 53 does not interfere with the holder body 7 at the time of inspection.
  • the stopper 53 moves to the position (position indicated by the phantom line in the figure).
  • the force substrate holder described by taking the macro inspection apparatus 1 including the substrate holder 6 formed in a frame shape as an example is not limited to the frame shape.
  • the substrate holder 81 shown in these drawings includes a holder body 83 in which a plurality of elongated substrate support portions 82 are arranged in a comb-tooth shape. Similar suction portions 84 are arranged with a space therebetween. In the substrate holder 81, the substrate W placed on the holder main body 83 is vacuum-sucked and held by the suction portions 84 on the substrate support portions 82.
  • the weight can be reduced and the outer dimensions can be reduced as compared with the frame-shaped substrate holder. Furthermore, it can be made still quickly.
  • a fourth embodiment of the macro inspection apparatus of the present invention will be described below with reference to the drawings.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • 16 and 17 are a plan view and a side view of another substrate holder, respectively.
  • an inspection articulated arm robot (inspection robot 15) is employed as a drive mechanism for rotating and swinging the substrate holder 6, and the load on the drive unit of the inspection robot 15 is reduced.
  • the balance weight 90 is provided for the purpose of reducing the size of the apparatus and reducing the size of the entire apparatus. Except for the provision of the non-weight weight 90, the second embodiment is the same as the first embodiment, and a duplicate description is omitted.
  • the tip arm 16 of the inspection robot 15 employing the inspection articulated arm robot is centered on the connection axis X. It is connected so that it can rotate.
  • the substrate holder 6 is cantilevered by the inspection robot 15.
  • the inspection robot 15 moves the substrate holder 6 from the position where the posture is held horizontally as shown by the phantom line in FIG. 1 to the position where it rises to a predetermined inclination angle as shown by the solid line in FIG. It can be swung or rotated.
  • a pair of balance weights 90 are attached to the substrate holder 6 at the connection side end to which the tip arm 16 of the inspection robot 15 is connected. These balance weights 90 are supported at the tip of a support arm 91 fixed in the vicinity of both sides of the substrate holder 6, and are arranged on the opposite side of the substrate holder 6 with respect to the connecting axis X with the tip arm 16. Has been.
  • balance weights 90 are provided separately on both sides of the center axis Y of the substrate holder 6 that passes through the connection point with the tip arm 16, and the shim is also connected to the substrate Ruda 6 is placed on the opposite side of the center of gravity G.
  • the rotational moment generated by the weight of the substrate holder 6 is reduced on the connecting shaft X by the rotational moment generated by the weight of the balance weight 90.
  • the weight and arrangement of the lance weight 90 may be set so that the rotational moment generated by the weight of the substrate holder 6 is substantially balanced and offset.
  • the center of gravity G with respect to the connection axis X with the tip arm 16 is formed at the end of the inspection robot 15 on the connection side with the tip arm 16. Since the balance weight 90 is provided on the opposite side, the rotational moment around the connecting axis X caused by the weight of the substrate holder 6 can be reduced by the rotational moment around the connecting axis X caused by the weight of the lance weight 90. .
  • each balance weight 90 is provided separately on both sides of the center axis Y of the substrate holder 6 that passes through the connection point with the tip arm 16, so that each balance with respect to the connection point with the tip arm 16 is provided.
  • the balance of the rotational moment by the weight 91 can also be balanced, whereby the substrate holder 6 can be smoothly rotated about the central axis Y.
  • the balance weight 90 may be positionally adjustable along the central axis Y of the substrate holder 6 that passes through the connection point with the tip arm 16 of the inspection robot 15. In this case, by adjusting the position of the nourishment weight 90, the balance of the rotational moment on the connecting shaft X can be controlled with higher accuracy in accordance with the change in the weight of the holder body 7 and the inclination angle.
  • the attachment position of the balance weight 90 is not limited to the position of the present embodiment as long as the rotational moment about the connecting axis X can be reduced. Another example in which the mounting position of the balance weight 90 is different will be described below.
  • FIG. 18 shows a case where a pair of balance weights 90 are arranged close to the connecting portion 7f. In this case, the moment of inertia of the substrate holder 6 around the central axis Y can be minimized, and the substrate holder 6 can be smoothly rotated about the central axis Y.
  • FIGS. 19 and 20 show a support arm 91 in which a connecting portion 7f to which the tip arm 16 is connected is extended to the opposite side of the holder body 7 with respect to the connecting axis X, and the support arm 91.
  • the case with one balance weight 90 supported by is shown.
  • the tolerance weight 90 is disposed on the central axis Y of the substrate holder 6.
  • the moment of inertia of the substrate holder 6 around the central axis Y can be further reduced, and the substrate holder 6 can be rotated more smoothly around the central axis Y.
  • the drive arm 16 is connected so as to be substantially orthogonal to the connecting portion 7f of the holder body 7 so that the tip arm 16 does not interfere with the support arm 91 and the balance weight 90. It is preferable to limit the range of movement as much as possible.
  • the macro inspection apparatus 1 including the substrate holder 6 formed in a frame shape has been described as an example.
  • the substrate holder is not limited to the frame shape. is there.
  • FIG. 21 and FIG. 22 show the same substrate holder 81 as that shown in FIG. 14, and a plurality of elongated substrate support portions 82 are arranged in a comb-like shape, on the upper surface of each substrate support portion 82.
  • Each of the adsorbing portions 84 is provided at a distance from each other.
  • balance weights 90 is attached to the substrate holder 81 via a pair of support arms 91 at the connection side end portion between the tip arm 16 and the connection portion 83a of the holder body 83.
  • These balance weights 90 force are arranged on the opposite side of the center of gravity G of the substrate holder 81 with the connecting axis X as a boundary.
  • the rotational moment generated by the weight of the substrate holder 81 and the rotational moment generated by the weight of the lance weight 90 are substantially balanced and offset around the connecting axis X.
  • the substrate holder 81 having the above-described structure, a smaller and lighter weight can be achieved as compared with the frame-shaped substrate holder.
  • the size of the apparatus can be reduced.
  • the tact time can be shortened and the inspection efficiency can be improved.
  • the substrate holder when the substrate positioning mechanism is provided at a position other than the substrate holder, the substrate holder can be reduced in size and weight by the amount that the substrate positioning mechanism is not provided on the substrate holder. it can. Therefore, the burden imposed on the substrate holder driving mechanism can be reduced, so that the substrate holder driving mechanism can be reduced in size, and the entire macro inspection apparatus can be reduced in size and weight.
  • the burden on the substrate holder driving mechanism can be reduced, so that a macro inspection apparatus using an articulated arm robot can be realized as the driving mechanism. Become.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A macro inspection apparatus is provided with a substrate holder for holding a substrate to be inspected; a macro illuminating optical system for projecting illuminating light on the substrate; a substrate holder driving mechanism for supporting the substrate holder and controlling the position of the substrate holder under the condition where the substrate is illuminated by the illuminating light; a substrate transfer mechanism for transferring and receiving the substrate to and from the substrate holder; a substrate floating mechanism for floating the substrate from the substrate holder by blowing air to the substrate transferred onto the substrate holder; a substrate positioning mechanism for positioning the substrate being floated by the substrate floating mechanism at a reference position on the substrate holder; and a substrate fixing mechanism for fixing the substrate positioned by the substrate positioning mechanism on the substrate holder.

Description

明 細 書  Specification
マクロ検査装置及びマクロ検査方法  Macro inspection apparatus and macro inspection method
技術分野  Technical field
[0001] 本発明は、ガラス基板等の大型基板の外観検査に用いられるマクロ検査装置と、こ のマクロ検査装置を用いたマクロ検査方法とに関する。  The present invention relates to a macro inspection apparatus used for appearance inspection of a large substrate such as a glass substrate, and a macro inspection method using the macro inspection apparatus.
本出願は、特願 2004— 279990号と、特願 2004— 279991号と、特願 2004— 2 79992号とを基礎出願とし、それらの内容を取り込むものとする。  This application is based on Japanese Patent Application No. 2004-279990, Japanese Patent Application No. 2004-2799991, and Japanese Patent Application No. 2004-279992, and the contents thereof are incorporated.
背景技術  Background art
[0002] 液晶ディスプレイ(LCD)などのフラットパネルディスプレイ(FPD)の製造工程では 、各製造工程で製造される透明基板 (例えばマスターガラス基板。以降、単にガラス 基板と呼ぶ)の外観を目視で検査 (マクロ検査)する検査工程がある。この検査工程 では、ガラス基板を保持した基板ホルダを所定角度に立ち上げた状態で上方力ゝらマ クロ照明光を照射することにより同ガラス基板上の欠陥検査を可能にする、基板外観 検査装置が用いられる。  [0002] In the manufacturing process of flat panel displays (FPD) such as liquid crystal displays (LCDs), the appearance of a transparent substrate (eg, a master glass substrate, hereinafter simply referred to as a glass substrate) manufactured in each manufacturing process is visually inspected. There is an inspection process (macro inspection). In this inspection process, a substrate appearance inspection device enables inspection of defects on the glass substrate by irradiating a macro illumination light with an upward force while the substrate holder holding the glass substrate is raised at a predetermined angle. Is used.
[0003] 下記特許文献 1に記載のマクロ検査装置は、矩形状のガラス基板よりも若干小さな 開口部を有する矩形枠状のフレームカゝらなる基板ホルダと;この基板ホルダを観察者 側に向けるように所定の角度に立ち上げるための上下方向の回転、及び基板ホルダ を揺動 ·反転させるための左右方向の回転を可能にする 2軸回転機構と;を備えて!/、 る。このマクロ検査装置では、基板ホルダの上面で、基板裏面の周縁部を支持する。 基板ホルダの上面には、ガラス基板を挟持して位置決めを行う整列機構が設けられ ている。この整列機構は、基板ホルダの矩形開口部の互いに隣接する 2辺に沿って 固定されるガラス基板の、互いに隣接する 2辺の基準位置を規制する複数本の基準 ピンと;これら基準ピンと対向し、基板ホルダの矩形開口部の互いに隣接する他の 2 辺に沿って設けられ、前記各基準ピン側に移動可能な押し付けピンと;を備えている 。基板ホルダ上にガラス基板を載置した状態で、各押し付けピンをガラス基板側に押 し付けることにより、ガラス基板の 2辺がそれぞれの基準ピンに押し当てられ、その結 果、基板ホルダ上の基準位置に位置決めされる。 [0004] 下記特許文献 2に記載のマクロ検査装置は、ガラス基板を保持する基板ホルダと、 この基板ホルダの中央部に連結された押し上げ駆動部とを備え、基板ホルダの前端 部と後端部とを持ち替えることにより、基板ホルダを表面側又は裏面側に回動させて いる。このマクロ検査装置では、基板ホルダを表面側に回動させるとともに上方から マクロ照明を行うことで表面の目視観察を行い、裏面側に回動させるとともにバックラ イト照明を行うことで裏面の目視観察を行なうことができる。 [0003] A macro inspection apparatus described in Patent Document 1 below includes a substrate holder that is a rectangular frame-shaped frame cover having an opening slightly smaller than a rectangular glass substrate; and the substrate holder is directed toward an observer. And a biaxial rotation mechanism that enables vertical rotation for raising the substrate to a predetermined angle and horizontal rotation for swinging / reversing the substrate holder. In this macro inspection apparatus, the peripheral portion of the back surface of the substrate is supported on the upper surface of the substrate holder. On the upper surface of the substrate holder, an alignment mechanism is provided for holding and positioning the glass substrate. The alignment mechanism includes a plurality of reference pins that regulate the reference positions of two adjacent sides of the glass substrate that is fixed along two adjacent sides of the rectangular opening of the substrate holder; A pressing pin that is provided along the other two adjacent sides of the rectangular opening of the substrate holder and is movable toward the reference pins. With the glass substrate placed on the substrate holder, the pressing pins are pressed against the glass substrate side, so that the two sides of the glass substrate are pressed against the respective reference pins. Positioned at the reference position. [0004] A macro inspection apparatus described in Patent Document 2 includes a substrate holder that holds a glass substrate, and a push-up drive unit that is coupled to a central portion of the substrate holder, and includes a front end portion and a rear end portion of the substrate holder. The substrate holder is rotated to the front side or the back side. In this macro inspection device, the substrate holder is rotated to the front side and macro illumination is performed from above to visually observe the front surface, and the back is illuminated and back surface illumination is performed to visually observe the back surface. Can be done.
[0005] 下記特許文献 3に示すマクロ検査装置は、 FPD用ガラス基板 (2000mm)に比べ て 200mm、 300mmと非常に小さなウェハ基板を目視検査するための検査装置で ある。このマクロ検査装置は、ベースに水平方向に回転自在に連結されたアームの 先端にひねり回転自在な手首部を備えたロボットを備えて 、る。前記手首部の先端 には、ウェハ基板を把持して自転するウェハホルダが取り付けられている。ウェハ出 入機により搬送されたウェハ基板の周縁をウェハホルダで把持し、手首部をひねり回 転させることによってウェハ基板を表面側又は裏面側に自転させて姿勢制御すること により、ウェハ基板の位置決めとその表裏面の目視観察ができる。  [0005] The macro inspection apparatus shown in Patent Document 3 below is an inspection apparatus for visually inspecting a very small wafer substrate of 200 mm and 300 mm compared to an FPD glass substrate (2000 mm). This macro inspection apparatus includes a robot having a wrist portion that can be rotated by twisting at the tip of an arm that is rotatably connected to a base in a horizontal direction. A wafer holder that holds and rotates the wafer substrate is attached to the tip of the wrist. The wafer substrate is conveyed by the wafer loading / unloading machine, gripped by the wafer holder, and twisted to rotate the wrist to rotate the wafer substrate to the front side or the back side to control the posture. Visual observation of the front and back surfaces is possible.
[0006] 特許文献 1 :特開平 7— 306153号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-306153
特許文献 2:特開平 11― 94752号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-94752
特許文献 3:特開平 8 - 125004号公報  Patent Document 3: JP-A-8-125004
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、 FPD用のマクロ検査装置においては、基板サイズが年々大型化し、 現在では一辺が 2000mmを超えて 3000mmに近 、ガラス基板が出現して!/、る。ガ ラス基板の大型化に伴って基板ホルダも大型化する必要があるが、基板ホルダが大 型化すると、基板ホルダを回転 '摇動させる基板ホルダ駆動機構に力かる負荷が大 きくなるという問題があった。特に、基板ホルダ駆動機構として多関節アームロボット を用い、この多関節アームロボットにより基板ホルダを片持ちで支持し、基板ホルダを 所定角度に立ち上げて目視で検査するマクロ検査装置を実現しょうとした場合、多 関節アームロボットに大きな負荷が加わるため、実現が困難であった。また、基板ホ ルダのサイズが大きくなると、基板ホルダを揺動させるためのスペースも大きくする必 要があるので、装置が大型化するという問題があった。 [0007] However, in the macro inspection system for FPD, the substrate size has been increasing year by year, and now a glass substrate has appeared! It is necessary to increase the size of the substrate holder as the size of the glass substrate increases. However, if the size of the substrate holder increases, the load on the substrate holder drive mechanism that rotates and swings the substrate holder increases. was there. In particular, an articulated arm robot was used as the substrate holder drive mechanism, and the multi-joint arm robot supported the substrate holder in a cantilevered manner, and tried to realize a macro inspection device that raised the substrate holder to a predetermined angle and visually inspected. In such a case, it was difficult to realize this because a large load was applied to the articulated arm robot. Also, as the size of the substrate holder increases, the space for swinging the substrate holder must also be increased. Therefore, there is a problem that the apparatus becomes large.
本発明は、上記事情に鑑みてなされたもので、基板ホルダを回転 '揺動させる基板 ホルダ駆動機構に力かる負担を低減することを目的とする。また、装置の大型化を防 ぐことも目的とする。  The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce a burden imposed on a substrate holder driving mechanism that rotates and swings the substrate holder. Another objective is to prevent the equipment from becoming large.
[0008] また、従来のマクロ検査装置では、基板ホルダの一辺に回動軸を設けて片持ち支 持しているため、基板ホルダの大型化に伴い、重たい基板ホルダを回動させて停止 させる際に、基板ホルダの先端部が大きく振動してしまう問題が生じる。基板ホルダ の停止時に振動が発生すると、静止するまでにかなりの時間を要する。そのため、基 板ホルダが静止するまで、搬送装置による基板の受け渡しができなくなり、待機時間 が増えた分、検査に要するタクトタイムが増えてしまうという問題が生じる。特に、多関 節アームロボットによって基板ホルダを片持ち支持するマクロ検査装置を実現しようと した場合、多関節アームロボットによって基板ホルダを基板の受け渡し位置に停止さ せる際に、基板ホルダの先端部に大きな回転モーメントが加わって基板ホルダが振 動するため、実現が困難であった。  [0008] In addition, in the conventional macro inspection apparatus, since the rotation shaft is provided on one side of the substrate holder and cantilevered, the heavy substrate holder is rotated and stopped as the size of the substrate holder increases. In this case, there arises a problem that the tip of the substrate holder vibrates greatly. If vibration occurs when the substrate holder is stopped, it will take a considerable amount of time to stop. As a result, the substrate cannot be transferred by the transfer device until the substrate holder is stationary, and the tact time required for the inspection increases as the waiting time increases. In particular, when trying to realize a macro inspection device that cantilever-supports a substrate holder by a multi-joint arm robot, when the substrate holder is stopped at the substrate transfer position by an articulated arm robot, it is placed at the tip of the substrate holder. This was difficult to achieve because the substrate holder vibrates due to a large rotational moment.
本発明は、上記事情に鑑みてなされたもので、基板ホルダ駆動機構により回転自 在-揺動自在に支持された基板ホルダを基板の受け渡し位置に迅速に静止させるこ とにより基板の受け渡しの円滑ィ匕を図り、タクトタイムを短縮して検査の効率ィ匕を図る ことを目的とする。また、基板ホルダ上における基板の位置決めを迅速に行うことによ り、タクトタイムを短縮して検査の効率ィ匕を図ることも目的とする。  The present invention has been made in view of the above circumstances. The substrate holder supported by the substrate holder drive mechanism so as to rotate and swing freely can be quickly stopped at the substrate transfer position, thereby smoothly transferring the substrate. The purpose is to improve inspection efficiency by shortening the tact time. Another object of the present invention is to shorten the tact time and improve the inspection efficiency by quickly positioning the substrate on the substrate holder.
[0009] また、基板ホルダの姿勢を自由に制御できるように、多関節アームロボットで基板ホ ルダを片持ちで支持するマクロ検査装置の実用化が進められて 、る。ウェハ基板の ように小型で軽量な基板では、上記引用文献 3で示したように、基板ホルダを片持支 持したとしても、基板ホルダの停止時における基板ホルダの振動による影響も少なく 、また連結箇所に加わる負荷も小さいため、問題なく扱うことができる。しかし、 FPD 用の大型ガラス基板を保持する基板ホルダは、大型 ·重量ィ匕の傾向にある。したがつ て、この基板ホルダを片持ち支持する多関節アームロボットを用いて基板ホルダを多 方向に姿勢制御しょうとすると、多関節アームロボットのアームと基板ホルダとの連結 部から基板ホルダ先端までの距離が基板サイズに比例して長くなるため、基板ホル ダの先端側に大きくバランスが偏り、停止時の回転モーメントによって基板ホルダが 大きく振動するとともに、アームと基板ホルダとの連結部に大きな負荷が加わるという 問題が新たに生じる。 In addition, a macro inspection apparatus that supports a substrate holder in a cantilever manner with an articulated arm robot is being put into practical use so that the posture of the substrate holder can be freely controlled. For a small and lightweight substrate such as a wafer substrate, even if the substrate holder is cantilevered as shown in the above cited reference 3, the influence of the vibration of the substrate holder when the substrate holder is stopped is small, and the connection Since the load applied to the location is small, it can be handled without any problems. However, substrate holders that hold large glass substrates for FPDs tend to be large and heavy. Therefore, if an articulated arm robot that cantilever-supports the substrate holder is used to control the posture of the substrate holder in multiple directions, the joint between the arm of the articulated arm robot and the substrate holder and the tip of the substrate holder are used. Board distance increases in proportion to the board size. A new problem arises in that the balance is greatly biased toward the tip of the slider, the substrate holder vibrates greatly due to the rotational moment when stopped, and a large load is applied to the connection between the arm and the substrate holder.
このような種々の問題から、多関節アームロボットを用いたマクロ検査装置を容易に 実現することができな力つた。  Because of these various problems, we were unable to easily realize a macro inspection device using an articulated arm robot.
本発明は、上記事情に鑑みてなされたものであって、基板ホルダを移動させる基板 ホルダ駆動機構 (多関節アームロボットを備えた検査用ロボット)の駆動部への負担 を軽減し、多関節アームロボットを用いたマクロ検査装置を実現することを目的とする 課題を解決するための手段  The present invention has been made in view of the above circumstances, and reduces the burden on the drive unit of a substrate holder drive mechanism (inspection robot equipped with a multi-joint arm robot) that moves the substrate holder. Means for solving problems aimed at realizing a macro inspection system using a robot
[0010] 上記課題を解決するために、本発明は以下の手段を採用した。  In order to solve the above problems, the present invention employs the following means.
すなわち、本発明のマクロ検査装置は、検査を受ける基板を保持する基板ホルダと ;前記基板に照明光を照射するマクロ照明光学系と;前記基板ホルダを支持するとと もに前記基板が前記照明光で照らされた状態で前記基板ホルダの姿勢を制御する 基板ホルダ駆動機構と;前記基板ホルダとの間で前記基板の受け渡しを行う基板搬 送機構と;前記基板ホルダ上に受け渡された前記基板に対してエアーの吹き付けを 行うことにより、この基板を前記基板ホルダ上カゝら浮き上がらせる基板浮上機構と;こ の基板浮上機構により浮上状態にある前記基板を前記基板ホルダ上の基準位置に 位置決めする基板位置決め機構と;この基板位置決め機構により位置決めされた前 記基板を前記基板ホルダに固定する基板固定機構と;を備える。  That is, the macro inspection apparatus of the present invention includes: a substrate holder that holds a substrate to be inspected; a macro illumination optical system that irradiates the substrate with illumination light; and the substrate holder that supports the substrate light A substrate holder driving mechanism for controlling the posture of the substrate holder in a state illuminated by the substrate; a substrate transport mechanism for delivering the substrate to and from the substrate holder; and the substrate delivered on the substrate holder And a substrate floating mechanism that causes the substrate to float above the substrate holder by blowing air to the substrate holder; and the substrate floating mechanism positions the substrate in a floating position by the substrate floating mechanism. A substrate positioning mechanism; and a substrate fixing mechanism for fixing the substrate positioned by the substrate positioning mechanism to the substrate holder.
[0011] このマクロ検査装置では、基板受け渡し位置に待機している基板ホルダに対し、基 板搬送機構が基板を載置する。このようにして載置された基板は、基板浮上機構の エアーの吹き付けによって基板ホルダ上力も浮き上がる。そして、この浮上状態にあ る基板を基板位置決め機構により基準位置に位置決めした後、基板固定機構により 固定する。このようにして基板ホルダ上への基板の固定が完了した後、基板ホルダ駆 動機構によって基板ホルダの姿勢制御を行うことで、観察者がマクロ観察を行 、や すいように基板の移動制御を行う。したがって、このマクロ検査装置によれば、基板ホ ルダ上における基板の位置決めを迅速に行うことができるので、タクトタイムを短縮し て検査の効率ィ匕を図ることが可能になる。 [0011] In this macro inspection apparatus, the substrate carrying mechanism places the substrate on the substrate holder waiting at the substrate delivery position. The substrate placed in this manner also raises the force on the substrate holder by blowing air from the substrate floating mechanism. Then, after the substrate in the floating state is positioned at the reference position by the substrate positioning mechanism, it is fixed by the substrate fixing mechanism. After the substrate is fixed on the substrate holder in this way, the substrate holder drive mechanism controls the posture of the substrate holder so that the observer can perform macro observation and control the movement of the substrate so that it is easy. Do. Therefore, according to this macro inspection apparatus, the substrate can be quickly positioned on the substrate holder, so that the tact time can be shortened. This makes it possible to improve the efficiency of inspection.
前記基板ホルダ駆動機構力 多関節アームロボットを備えてもよ!、。  The substrate holder drive mechanism force You may have an articulated arm robot!
[0012] 前記基板位置決め機構が、前記基板ホルダ以外の位置に設けられて!/ヽてもよ!/ヽ。 [0012] The substrate positioning mechanism may be provided at a position other than the substrate holder.
この場合、基板位置決め機構が基板ホルダに設けられていない分だけ、基板ホル ダを小型化、軽量化させることができる。したがって、基板ホルダの移動を速やかに 行えるようになり、検査時間を短縮することができる。また、基板ホルダの姿勢を制御 する基板ホルダ駆動機構を小型化することができ、マクロ検査装置全体を小型化、 軽量ィ匕することができる。  In this case, the substrate holder can be reduced in size and weight by the amount that the substrate positioning mechanism is not provided on the substrate holder. Therefore, the substrate holder can be moved quickly, and the inspection time can be shortened. In addition, the substrate holder driving mechanism for controlling the posture of the substrate holder can be reduced in size, and the entire macro inspection apparatus can be reduced in size and weight.
[0013] 前記基板位置決め機構が、前記基板をその周囲から挟持することにより、前記位置 決めを行うようにしてもよい。 [0013] The substrate positioning mechanism may perform the positioning by sandwiching the substrate from its periphery.
前記基板位置決め機構が、前記基準位置に達した際の前記基板に当接する位置 に固定された位置決め部材と;前記基板を前記位置決め部材に向けて付勢する付 勢装置と;を備えてもよい。  A positioning member fixed at a position where the substrate positioning mechanism contacts the substrate when the reference position is reached; and a biasing device that biases the substrate toward the positioning member. .
[0014] 前記基板ホルダに、前記基板位置決め機構との間の干渉を避ける第 1の切り欠き を形成してもよい。 [0014] A first cutout that avoids interference with the substrate positioning mechanism may be formed in the substrate holder.
この場合、基板位置決め機構が基板を保持しやすくするために、基板位置決め機 構の、基板を保持する保持部の大きさを大きくしても、この保持部が基板ホルダに形 成された第 1の切り欠きによって基板ホルダに干渉するのを回避することができる。  In this case, in order to make it easier for the substrate positioning mechanism to hold the substrate, even if the size of the holding portion for holding the substrate of the substrate positioning mechanism is increased, the holding portion is formed on the substrate holder. Interference with the substrate holder due to the notch can be avoided.
[0015] 前記基板位置決め機構が、前記基板ホルダ上に設けられて前記基準位置に達し た際の前記基板に当接する位置に固定された位置決め部材と;前記基板ホルダ以 外の位置に設けられて前記基板を前記位置決め部材に向けて付勢する付勢装置と ;を備えても良い。 [0015] The substrate positioning mechanism is provided on the substrate holder and is fixed to a position that contacts the substrate when the reference position is reached; provided at a position other than the substrate holder; And an urging device that urges the substrate toward the positioning member.
この場合、基板受け渡し位置に待機させた基板ホルダ上に基板ホルダを載置し、 その後、付勢装置によって基板を位置決め部材に押し付けることで、基板を基準位 置に位置決めすることができる。し力も、付勢装置は基板ホルダ外に設けられている ので、付勢装置を基板ホルダに設ける場合に比較して基板ホルダを軽量ィ匕すること ができる。その結果、基板ホルダ駆動機構にカゝかる負荷 (すなわち、基板ホルダの回 転モーメント)を低減させることができる。したがって、基板ホルダ駆動機構を小型化 できるので、マクロ検査装置全体の小型化をも図ることができる。 In this case, the substrate can be positioned at the reference position by placing the substrate holder on the substrate holder waiting at the substrate delivery position and then pressing the substrate against the positioning member by the biasing device. Also, since the urging device is provided outside the substrate holder, the substrate holder can be reduced in weight compared to the case where the urging device is provided on the substrate holder. As a result, it is possible to reduce the load on the substrate holder driving mechanism (that is, the rotation moment of the substrate holder). Therefore, the board holder drive mechanism is downsized. Therefore, the entire macro inspection apparatus can be reduced in size.
[0016] 前記基板浮上機構により前記基板を前記基板ホルダから浮上させた状態で、前記 基板ホルダ駆動機構により前記基板ホルダを傾斜させた際に、この基板ホルダの傾 斜に沿って移動する前記基板が前記基準位置に達した際に当接する位置決め部材 を、前記基板位置決め機構に備えてもよい。  [0016] When the substrate holder is tilted by the substrate holder driving mechanism in a state where the substrate is floated from the substrate holder by the substrate floating mechanism, the substrate moves along the tilt of the substrate holder The substrate positioning mechanism may be provided with a positioning member that contacts when the position reaches the reference position.
この場合、受け渡し位置において基板を基板ホルダで受け取った後、基板浮上機 構によるエアーの吹き付けにより基板を基板ホルダ上力 浮き上がらせた状態で、基 板ホルダを基板ホルダ駆動機構により傾斜させる。すると、基板ホルダの傾斜に沿つ て基板が自重により移動し、位置決め部材に当接することでその移動が停止され、 基準位置への位置決めが完了する。このように、基板ホルダ上での位置決めのため に基板を移動させる構成要素を省略することができる。  In this case, after the substrate is received by the substrate holder at the transfer position, the substrate holder is tilted by the substrate holder driving mechanism in a state where the substrate is lifted by the substrate floating mechanism and air is blown up by the substrate floating mechanism. Then, the substrate moves by its own weight along the inclination of the substrate holder, and the movement is stopped by contacting the positioning member, and the positioning to the reference position is completed. In this way, components that move the substrate for positioning on the substrate holder can be omitted.
[0017] 前記基板ホルダを正面視した場合の外形寸法を、前記基板を正面視した場合の外 形寸法より/ J、さくしてもよい。  [0017] The outer dimension when the substrate holder is viewed from the front may be smaller than the outer dimension when the substrate is viewed from the front / J.
この場合、基板位置決め機構が基板を保持しやすくするために、基板位置決め機 構の、基板を保持する保持部の大きさを大きくしても、この保持部が基板ホルダに干 渉するのを回避することができる。  In this case, to make it easier for the substrate positioning mechanism to hold the substrate, even if the size of the holding portion that holds the substrate of the substrate positioning mechanism is increased, this holding portion will not interfere with the substrate holder. can do.
[0018] 前記基板搬送機構との間における前記基板の受け渡し位置に移動した前記基板 ホルダを停止させる静止機構をさらに備えてもよい。  [0018] The apparatus may further include a stationary mechanism that stops the substrate holder that has moved to the substrate transfer position with respect to the substrate transport mechanism.
この場合、前記受け渡し位置に移動した基板ホルダを、予め待機している静止機 構によって停止させるので、基板ホルダを片持ち支持状態で前記受け渡し位置に単 純に停止させた場合に比較して、基板ホルダの振れが抑制、又は防止できる。その 結果、基板ホルダを所定位置にて極めて迅速に静止させることができるので、基板 受け渡し位置における基板の受け渡し動作を速やかに行うことが可能になる。したが つて、基板検査に不要なロスタイムを削減することができ、基板検査のタクトタイムを 大幅に短縮して検査の効率ィ匕を図ることができる。  In this case, since the substrate holder that has moved to the delivery position is stopped by a stationary mechanism that is waiting in advance, compared with a case where the substrate holder is simply stopped at the delivery position in a cantilevered state, The swing of the substrate holder can be suppressed or prevented. As a result, the substrate holder can be stopped very quickly at a predetermined position, so that the substrate transfer operation at the substrate transfer position can be performed quickly. Therefore, it is possible to reduce the loss time unnecessary for the substrate inspection, and it is possible to greatly reduce the tact time of the substrate inspection and improve the inspection efficiency.
[0019] 前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダに当接してこの 基板ホルダの振動を減衰させる弾性体を備えてもよい。 [0019] The stationary mechanism may include an elastic body that abuts against the substrate holder when the delivery position is reached and attenuates vibration of the substrate holder.
前記静止機構が、軸線が基板ホルダに略垂直をなすように定位置に固定されたス プリングをさらに備え、このスプリング上に前記弾性体を設けてもよい。 前記基板ホルダの側部に第 2の切り欠きを形成し;前記静止機構に、前記受け渡し 位置に達した際の前記基板ホルダの前記第 2の切り欠きに係止する係止部を備えさ せてもよい。 The stationary mechanism is a spring fixed at a fixed position so that the axis is substantially perpendicular to the substrate holder. A spring may be further provided, and the elastic body may be provided on the spring. A second notch is formed in a side portion of the substrate holder; and the stationary mechanism is provided with a locking portion for locking to the second notch of the substrate holder when the delivery position is reached. May be.
前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダを挟持する挟 持手段を備えてもよい。  The stationary mechanism may include clamping means for clamping the substrate holder when reaching the delivery position.
前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダを受け入れる凹 部を有するとともに前記基板が前記受け渡し位置に向力う方向に沿って回動する回 動部材と;この回動部材に受け入れられた前記基板ホルダが前記受け渡し位置に達 した際の回転位置に前記回動部材を停止させる回動規制部材と;を備えてもよい。  A rotating member that has a recess for receiving the substrate holder when the stationary mechanism reaches the delivery position, and that rotates along a direction in which the substrate faces the delivery position; A rotation restricting member that stops the rotation member at a rotation position when the received substrate holder reaches the delivery position.
[0020] 前記静止機構が、前記受け渡し位置に達した前記基板ホルダを受け止める受け止 め位置と、この受け止め位置力 離間した待避位置との間で移動するようにしてもよ い。 [0020] The stationary mechanism may move between a receiving position for receiving the substrate holder that has reached the transfer position and a retracted position separated from the receiving position force.
この場合、検査実施中の基板ホルダが静止機構と干渉するのを確実に回避するこ とがでさる。  In this case, it is possible to reliably avoid the substrate holder being inspected from interfering with the stationary mechanism.
なお、前記静止機構が、前記受け止め位置及び前記待避位置間を水平移動する ようにしてもよい。  The stationary mechanism may horizontally move between the receiving position and the retracted position.
または、前記静止機構が、前記受け止め位置及び前記待避位置間を回転移動す るようにしてちょい。  Alternatively, the stationary mechanism may rotate between the receiving position and the retracted position.
[0021] 前記基板ホルダ駆動機構力 前記基板ホルダの一辺を、この一辺に平行な第 1の 軸線回りに前記基板ホルダが回動可能なように支持し;前記第 1の軸線を回転中心 として前記基板ホルダの位置とは反対側に位置するウェイトが、前記基板ホルダに設 けられるようにしてもよい。  [0021] The substrate holder driving mechanism force One side of the substrate holder is supported so that the substrate holder can rotate around a first axis parallel to the one side; and the first axis is the center of rotation. A weight located on the side opposite to the position of the substrate holder may be provided on the substrate holder.
この場合、第 1の軸線を回転中心として、基板ホルダとウェイトとが釣り合うため、ゥ エイトを備えない場合に比較して、基板ホルダ駆動機構に力かる負荷 (すなわち、基 板ホルダの回転モーメント)を低減させることができる。その結果、基板ホルダ駆動機 構を小型化できるので、マクロ検査装置全体の小型化をも図ることができる。また、基 板ホルダ駆動機構として多関節アームロボットを採用することも可能になる。 [0022] 前記ホルダ駆動機構が、前記基板ホルダを、前記第 1の軸線に直交するとともに前 記基板ホルダがなす平面に平行な第 2の軸線回りに回動可能に支持し;前記基板ホ ルダの重心位置と、前記第 1の軸線及び前記第 2の軸線間の交点と、前記ウェイトの 重心位置とが略一直線上に配置されるようにしてもよ!ヽ。 In this case, since the substrate holder and the weight are balanced with the first axis as the rotation center, the load applied to the substrate holder drive mechanism (that is, the rotation moment of the substrate holder) is compared to the case where no weight is provided. Can be reduced. As a result, the substrate holder driving mechanism can be reduced in size, so that the entire macro inspection apparatus can be reduced in size. It is also possible to employ an articulated arm robot as the substrate holder drive mechanism. [0022] The holder driving mechanism supports the substrate holder so as to be rotatable about a second axis perpendicular to the first axis and parallel to a plane formed by the substrate holder; The center of gravity position, the intersection between the first axis and the second axis, and the center of gravity of the weight may be arranged on a substantially straight line.
この場合、第 1の軸線回りのモーメントバランスと、第 2の軸線回りのモーメントバラン スとを調整することができるので、基板ホルダ駆動機構に力かる負荷 (すなわち、基 板ホルダの回転モーメント)を低減させることができる。その結果、基板ホルダ駆動機 構を確実に小型化できるので、マクロ検査装置全体の小型化をも図ることができる。  In this case, since the moment balance around the first axis and the moment balance around the second axis can be adjusted, the load acting on the substrate holder drive mechanism (ie, the rotational moment of the substrate holder) can be reduced. Can be reduced. As a result, the substrate holder driving mechanism can be reliably reduced in size, so that the entire macro inspection apparatus can be reduced in size.
[0023] 前記ホルダ駆動機構が、前記基板ホルダを、前記第 1の軸線に直交するとともに前 記基板ホルダがなす平面に平行な第 2の軸線回りに回動可能に支持し;前記ウェイ トが、前記第 2の軸線を間に挟んで互いに接近するように一対設けるようにしてもよ!/ヽ この場合、一対のウェイトを第 2の軸線を間に挟んで互いに接近するように設けるの で、第 2の軸線回りの回転モーメントを小さくすることができる。  [0023] The holder driving mechanism supports the substrate holder so as to be rotatable around a second axis perpendicular to the first axis and parallel to a plane formed by the substrate holder; In this case, a pair of weights are provided so as to be close to each other with the second axis being sandwiched therebetween. The rotational moment around the second axis can be reduced.
[0024] 本発明のマクロ検査方法は、検査を受ける基板の受け渡し位置に基板ホルダを停 止させる基板ホルダ停止ステップと;前記基板ホルダ上に前記基板を載置する基板 載置ステップと;前記基板に対してエアーを吹き付けてこの基板を前記基板ホルダ上 カゝら浮き上がらせる基板浮上ステップと;浮上状態にある前記基板を前記基板ホルダ 上の基準位置に位置決めする基板位置決めステップと;前記基板位置決めステップ 後の前記基板を前記基板ホルダに固定する基板固定ステップと;を有する。 [0024] The macro inspection method of the present invention includes a substrate holder stop step of stopping the substrate holder at a delivery position of the substrate to be inspected; a substrate placement step of placing the substrate on the substrate holder; and the substrate A substrate floating step of blowing air to the substrate holder to lift the substrate; positioning the substrate in a floating state at a reference position on the substrate holder; and substrate positioning step A substrate fixing step of fixing the subsequent substrate to the substrate holder.
このマクロ検査方法によれば、基板ホルダ上における基板の位置決めを迅速に行う ことができるので、タクトタイムを短縮して検査の効率ィ匕を図ることが可能になる。 なお、前記基板位置決めステップでは、前記基板をその周囲から挟持することによ り、前記位置決めを行ってもよい。  According to this macro inspection method, since the substrate can be quickly positioned on the substrate holder, the tact time can be shortened and the inspection efficiency can be improved. In the substrate positioning step, the positioning may be performed by sandwiching the substrate from its periphery.
[0025] 前記基板が前記基準位置に達した際に当接する位置決め部材を前記基板ホルダ に設け;前記基板位置決めステップで、浮上状態の前記基板を前記位置決め部材 に当接させるように前記基板ホルダを傾斜させてもよい。 [0025] The substrate holder is provided with a positioning member that abuts when the substrate reaches the reference position; and the substrate holder is configured to abut the substrate in a floating state against the positioning member in the substrate positioning step. It may be inclined.
この場合、基板ホルダを基板ホルダ駆動機構により傾斜させると、基板ホルダの傾 斜に沿って基板が移動し、位置決め部材に当接することでその移動が停止され、基 準位置への位置決めが完了する。このように、基板ホルダ上での位置決めのために 基板を移動させる構成要素を省略することができる。 In this case, if the substrate holder is tilted by the substrate holder driving mechanism, the substrate holder is tilted. The substrate moves along the oblique direction and stops moving by contacting the positioning member, and positioning to the reference position is completed. In this way, the components that move the substrate for positioning on the substrate holder can be omitted.
[0026] 前記基板ホルダ停止ステップで、前記受け渡し位置に移動した前記基板ホルダの 振動を減衰させることにより、前記基板ホルダを停止させてもよい。  [0026] In the substrate holder stop step, the substrate holder may be stopped by attenuating vibration of the substrate holder moved to the delivery position.
この場合、前記受け渡し位置に移動した基板ホルダの振動を減衰させることにより 基板ホルダを停止させるので、基板ホルダを片持ち支持状態で前記受け渡し位置に 単純に停止させた場合に比較して、極めて迅速に静止させることができる。したがつ て、基板受け渡し位置における基板の受け渡し動作を速やかに行うことが可能にな る。したがって、基板検査に不要なロスタイムを削減することができ、基板検査のタクト タイムを大幅に短縮して検査の効率ィ匕を図ることができる。  In this case, since the substrate holder is stopped by attenuating the vibration of the substrate holder that has moved to the delivery position, it is extremely quicker than when the substrate holder is simply stopped at the delivery position in a cantilevered state. Can be stationary. Therefore, the substrate transfer operation at the substrate transfer position can be performed quickly. Therefore, it is possible to reduce a loss time unnecessary for the substrate inspection, and it is possible to greatly reduce the tact time of the substrate inspection and improve the inspection efficiency.
[0027] 前記基板ホルダ停止ステップで、前記受け渡し位置に移動した前記基板ホルダを 挟持することにより、前記基板ホルダを停止させてもょ ヽ。  [0027] In the substrate holder stopping step, the substrate holder may be stopped by holding the substrate holder moved to the delivery position.
前記基板ホルダ停止ステップで、前記受け渡し位置に移動した前記基板ホルダを 定位置に係止させることにより、前記基板ホルダを停止させてもょ ヽ。  In the substrate holder stopping step, the substrate holder may be stopped by locking the substrate holder moved to the delivery position at a fixed position.
[0028] 前記基板ホルダの回転モーメントを、この回転モーメントと釣り合う回転モーメントを 発生させるウェイトにより相殺してもよ 、。  [0028] The rotational moment of the substrate holder may be offset by a weight that generates a rotational moment that balances the rotational moment.
この場合、基板ホルダによる回転モーメントとウェイトによる回転モーメントとが釣り 合うため、ウェイトを備えない場合に比較して、基板ホルダの姿勢制御を行うための 駆動機構に力かる負荷 (すなわち、基板ホルダの回転モーメント)を低減させることが できる。その結果、前記駆動機構を小型化できるので、マクロ検査装置全体の小型 ィ匕をも図ることができる。また、駆動機構として多関節アームロボットを採用することも 可會 になる。  In this case, the rotational moment due to the substrate holder balances with the rotational moment due to the weight, so that the load applied to the drive mechanism for controlling the posture of the substrate holder (i.e. (Rotation moment) can be reduced. As a result, the drive mechanism can be reduced in size, so that the entire macro inspection apparatus can be reduced in size. It is also possible to employ an articulated arm robot as the drive mechanism.
発明の効果  The invention's effect
[0029] 本発明のマクロ検査装置及びマクロ検査方法によれば、基板ホルダ上における基 板の位置決めを迅速に行うことができるので、タクトタイムを短縮して検査の効率ィ匕を 図ることが可能になる。  [0029] According to the macro inspection apparatus and the macro inspection method of the present invention, since the substrate can be quickly positioned on the substrate holder, the tact time can be shortened and the inspection efficiency can be improved. become.
また、本発明によれば、例えば、基板位置決め機構を基板ホルダ以外の位置に設 けた場合、基板位置決め機構が基板ホルダに設けられていない分だけ、基板ホルダ を小型化、軽量ィ匕することができる。したがって、基板ホルダ駆動機構に力かる負担 を低減することができるので、基板ホルダ駆動機構を小型化でき、マクロ検査装置全 体を小型化、軽量ィ匕することができる。 Further, according to the present invention, for example, the substrate positioning mechanism is installed at a position other than the substrate holder. In this case, the substrate holder can be reduced in size and weight as much as the substrate positioning mechanism is not provided on the substrate holder. Therefore, the burden imposed on the substrate holder driving mechanism can be reduced, so that the substrate holder driving mechanism can be reduced in size, and the entire macro inspection apparatus can be reduced in size and weight.
また、本発明によれば、上述のように、基板ホルダ駆動機構にカゝかる負担を低減す ることができるので、駆動機構として多関節アームロボットを用いたマクロ検査装置を 実現することが可能になる。  Further, according to the present invention, as described above, the burden on the substrate holder driving mechanism can be reduced, so that a macro inspection apparatus using an articulated arm robot as the driving mechanism can be realized. become.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の第 1実施形態に係るマクロ検査装置の概略構成を示す側面 図である。 FIG. 1 is a side view showing a schematic configuration of a macro inspection apparatus according to a first embodiment of the present invention.
[図 2]図 2は、同マクロ検査装置に備えられている基板ホルダが水平位置にあるときの 平面図を示す図であって、図 1の Π— II線矢視図である。  FIG. 2 is a view showing a plan view when the substrate holder provided in the macro inspection apparatus is in a horizontal position, and is a view taken along the line II-II in FIG.
[図 3]図 3は、同マクロ検査装置に備えられている基板支持部を、図 2の III— III線, I V— IV線に沿って見た断面図である。紙面右図は、吸着部の位置における基板支 持部の断面図、紙面左図は、支持ピンの位置における基板支持部の断面図を示す  [FIG. 3] FIG. 3 is a cross-sectional view of the substrate supporting portion provided in the macro inspection apparatus, taken along lines III-III and IV-IV in FIG. The right side of the drawing shows a cross-sectional view of the substrate support at the position of the suction portion, and the left side of the drawing shows a cross-sectional view of the substrate support at the position of the support pin
[図 4]図 4は、同マクロ検査装置の図 1に相当する図であって、リフトピンを上昇させて 基板を支持させた状態を示す側面図である。 [FIG. 4] FIG. 4 is a side view of the macro inspection apparatus corresponding to FIG. 1 and showing a state in which the lift pins are lifted to support the substrate.
[図 5]図 5は、同マクロ検査装置に備えられている搬送用ロボットを示す平面図である  FIG. 5 is a plan view showing a transfer robot provided in the macro inspection apparatus.
[図 6]図 6は、本発明の第 2実施形態に係るマクロ検査装置の要部を示す図であって 、図 2に相当する平面図である。 FIG. 6 is a view showing a main part of a macro inspection apparatus according to a second embodiment of the present invention, and is a plan view corresponding to FIG.
[図 7]図 7は、本発明の第 3実施形態に係るマクロ検査装置の要部を示す図であって FIG. 7 is a diagram showing a main part of a macro inspection apparatus according to a third embodiment of the present invention.
、静止機構によって保持された基板ホルダの側面図である。 It is a side view of the substrate holder hold | maintained by the stationary mechanism.
[図 8]図 8は、同静止機構の他の例を説明する側面図である。  FIG. 8 is a side view for explaining another example of the stationary mechanism.
[図 9]図 9は、同静止機構の他の例を説明する側面図である。  FIG. 9 is a side view for explaining another example of the stationary mechanism.
[図 10]図 10は、同静止機構の他の例を説明する側面図である。  FIG. 10 is a side view for explaining another example of the stationary mechanism.
[図 11]図 11は、同静止機構の他の例を説明する側面図である。 [図 12]図 12は、同静止機構の他の例を説明する側面図である。 FIG. 11 is a side view for explaining another example of the stationary mechanism. FIG. 12 is a side view for explaining another example of the stationary mechanism.
[図 13]図 13は、同静止機構の他の例を説明する側面図である。  FIG. 13 is a side view for explaining another example of the stationary mechanism.
[図 14]図 14は、同マクロ検査装置の基板ホルダの他の例を示す図であって、図 2に 相当する平面図である。  FIG. 14 is a view showing another example of the substrate holder of the macro inspection apparatus, and is a plan view corresponding to FIG. 2.
[図 15]図 15は、同基板ホルダの側面図である。  FIG. 15 is a side view of the substrate holder.
[図 16]図 16は、本発明の第 4実施形態に係るマクロ検査装置の基板ホルダを示す図 であって、図 2に相当する平面図である。  FIG. 16 is a view showing the substrate holder of the macro inspection apparatus according to the fourth embodiment of the present invention, and is a plan view corresponding to FIG. 2.
[図 17]図 17は、同基板ホルダの側面図である。  FIG. 17 is a side view of the substrate holder.
[図 18]図 18は、同基板ホルダの他の例を説明する平面図である。  FIG. 18 is a plan view for explaining another example of the substrate holder.
[図 19]図 19は、同基板ホルダの他の例を説明する平面図である。  FIG. 19 is a plan view for explaining another example of the substrate holder.
[図 20]図 20は、同基板ホルダの側面図である。  FIG. 20 is a side view of the substrate holder.
[図 21]図 21は、同基板ホルダの他の例を説明する平面図である。  FIG. 21 is a plan view for explaining another example of the substrate holder.
[図 22]図 22は、同基板ホルダの側面図である。  FIG. 22 is a side view of the substrate holder.
符号の説明 Explanation of symbols
1 マクロ検査装置  1 Macro inspection device
3 光源 (マクロ照明光学系)  3 Light source (macro illumination optical system)
6, 81 基板ホルダ  6, 81 Substrate holder
7e 係合溝 (第 2の切り欠き)  7e Engaging groove (second notch)
9, 11, 84 吸着部 (基板固定機構)  9, 11, 84 Suction part (substrate fixing mechanism)
15 検査用ロボット(基板ホルダ駆動機構,多関節アームロボット)  15 Inspection robot (substrate holder drive mechanism, articulated arm robot)
20 整列手段 (基板位置決め機構)  20 Alignment means (substrate positioning mechanism)
21 シリンダ (付勢装置)  21 cylinder (biasing device)
28 搬送用ロボット (基板搬送機構)  28 Transfer robot (substrate transfer mechanism)
42a, 42b 基準ピン (位置決め部材)  42a, 42b Reference pin (positioning member)
43a, 43b 切り欠き(第 1の切り欠き)  43a, 43b cutout (first cutout)
50 静止機構  50 Stationary mechanism
52 弾性体  52 Elastic body
55 振動減衰部 (スプリング) 56 係合ピン (係止部) 55 Vibration damping part (spring) 56 Engagement pin (locking part)
61, 62 固定ブラケット,可動ブラケット (挟持手段)  61, 62 Fixed bracket, movable bracket (clamping means)
72 当接部(回動部材)  72 Contact part (rotating member)
74 ストツバピン(回動規制部材)  74 Stopper pin (rotation restricting member)
90 バランスウェイト(ウェイト)  90 Balance weight (weight)
W 基板  W substrate
X 連結軸 (第 1の軸線)  X connecting shaft (first axis)
Y 中心軸 (第 2の軸線)  Y center axis (second axis)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 本発明のマクロ検査装置の各実施形態を、図面を参照しながら以下に説明する。 Each embodiment of the macro inspection apparatus of the present invention will be described below with reference to the drawings.
[第 1実施形態]  [First embodiment]
図 1は、本発明の第 1実施形態に係るマクロ検査装置の概略構成を示す側面図で ある。  FIG. 1 is a side view showing a schematic configuration of the macro inspection apparatus according to the first embodiment of the present invention.
マクロ検査装置 1は、クリーンルーム内に配置され、上面及び下面が開放された空 間の周囲を囲む側壁を有する装置本体 2を備える。この装置本体 2の上面には、装 置本体 2内のクリーン度を高めるためのフィルタ(図示略)が取り付けられている。また 、装置本体 2の上部には、マクロ照明光学系として、例えばメタルハライドランプゃナ トリウムランプなどのマクロ照明用の光源 3と、この光源 3から出射される照明光の光 軸上に設けられた反射ミラー 4とが設置されている。反射ミラー 4の下方には、光源 3 力 の照明光を収束させて基板 Wに導くフレネルレンズ 5が配置されている。フレネ ルレンズ 5は、光源 3からの発散光を収束光にする。さらに、光源 3からの発散光を均 一な面光源に変更する散乱機能を有する透過型液晶散乱板力 フレネルレンズ 5に 近接して配置されている。マクロ照明光学系は、液晶ディスプレイやプラズマディスプ レイ等の透明基板の全体を一括照明しても良ぐまた部分的に照明し、照明光を一 次元方向又は二次元方向に走査させるようにしても良 、。  The macro inspection apparatus 1 includes an apparatus main body 2 that is disposed in a clean room and has a side wall that surrounds a space whose upper surface and lower surface are open. A filter (not shown) for increasing the cleanliness in the apparatus main body 2 is attached to the upper surface of the apparatus main body 2. Further, on the upper part of the apparatus body 2, as a macro illumination optical system, for example, a light source 3 for macro illumination such as a metal halide lamp and a sodium lamp, and an optical axis of illumination light emitted from the light source 3 are provided. Reflective mirror 4 is installed. Below the reflecting mirror 4, a Fresnel lens 5 that converges the illumination light of the light source 3 and guides it to the substrate W is disposed. The Fresnel lens 5 converts divergent light from the light source 3 into convergent light. Further, the transmission type liquid crystal scattering plate force having a scattering function for changing the divergent light from the light source 3 to a uniform surface light source is disposed in the vicinity of the Fresnel lens 5. The macro illumination optical system may illuminate the entire transparent substrate such as a liquid crystal display or a plasma display as a whole, or it may partially illuminate and scan the illumination light in one or two dimensions. Good.
[0033] 基板 Wは、透明な平板カゝらなるフラットパネルディスプレイ (FPD)用の透明基板で 、基板搬送装置 (搬送ロボット)により、図 1中に仮想線で示すように、水平に配置され た基板ホルダ 6上に搬入される。マクロ検査装置で検査される透明基板としては、 FP D用の矩形パネルを複数枚製造できる多面取りのマスターガラス基板があり、外形が 矩形に形成され、周縁よりも若干内側に矩形状のパターン領域が形成されている。 以下、基板周縁と矩形パターンとの間を「基板の周縁部」と呼ぶ。 [0033] Substrate W is a transparent substrate for a flat panel display (FPD) formed of a transparent flat plate, and is horizontally arranged by a substrate transfer device (transfer robot) as shown by a virtual line in FIG. Is loaded onto the substrate holder 6. As a transparent substrate to be inspected by the macro inspection equipment, FP There is a multi-chamfered master glass substrate capable of producing a plurality of rectangular panels for D, the outer shape is formed in a rectangular shape, and a rectangular pattern region is formed slightly inside the periphery. Hereinafter, a portion between the substrate periphery and the rectangular pattern is referred to as a “substrate periphery”.
[0034] 図 2に示すように、基板ホルダ 6は、基板 Wの外形よりも小さな矩形の開口部 8が形 成された矩形枠状のホルダ本体 7を有する。ホルダ本体 7は、互いに平行な一対の 長辺部 7a, 7bのそれぞれの両端部が一対の短辺部 7c, 7dによって連結されること で、開口部 8を形成している。開口部 8の大きさは、基板 Wの外形寸法よりも小さぐ 前記矩形パターン領域よりも若干大きな矩形寸法に形成されている。そして、ホルダ 本体 7の内周側周縁部で、基板 Wの裏面の周縁部を支持する。ホルダ本体 7の内周 側周縁部で基板 Wと重なる領域には、吸着部 (基板固定機構) 9が所定間隔をお 、 て複数配設されている。これら吸着部 9は、ホルダ本体 7の上面よりも若干突出して、 吸着時にホルダ本体 7の上面と略面一となるように設定された吸着パッドと;この吸着 ノ^ドに形成された貫通孔に通気管を介して接続された吸引用流体ポンプと;から構 成されている(以上、図示略)。  As shown in FIG. 2, the substrate holder 6 has a rectangular frame-shaped holder body 7 in which a rectangular opening 8 smaller than the outer shape of the substrate W is formed. The holder body 7 forms an opening 8 by connecting both ends of a pair of long side portions 7a and 7b parallel to each other by a pair of short side portions 7c and 7d. The size of the opening 8 is smaller than the outer dimension of the substrate W and is formed in a rectangular size slightly larger than the rectangular pattern region. Then, the peripheral edge of the back surface of the substrate W is supported by the peripheral edge on the inner peripheral side of the holder body 7. A plurality of suction portions (substrate fixing mechanisms) 9 are arranged at predetermined intervals in a region overlapping the substrate W at the inner peripheral edge of the holder body 7. These suction parts 9 protrude slightly from the upper surface of the holder body 7 and are arranged so as to be substantially flush with the upper surface of the holder body 7 during suction; a through-hole formed in this suction node And a suction fluid pump connected via a vent pipe (not shown).
[0035] 吸着部 9には、基板 Wの位置決めの際に、基板 Wをエアーの吹き付けにより浮上さ せて基板ホルダ 6に対する接触抵抗 (摩擦抵抗)を低減させる基板浮上手段として、 例えば、前記通気管に切り替えバルブを介して、エアーを吹出す排気用流体ポンプ が接続されている(以上、図示略)。これにより、前記各吸着パッド 9から圧搾エアー の吹き出しが可能となっており、前記バルブの切換えによって吸引と吹き出しとを択 一的に行えるようになつている。このように、吸引と吹き出し (基板浮上機構)とが可能 な構成を、全ての吸着部 9に持たせても良いが、一部の吸着部 9のみに持たせるよう にしても良い。また、吸着部 9とは別に、基板浮上手段として、エアー吹出し用のノズ ル孔を有する吹上部をホルダ本体 7に設け、エアー吸引とエアー吹出しとを別系統 にしても良い。  [0035] When the substrate W is positioned, the suction unit 9 is provided with, for example, the above-mentioned passage as a substrate floating means that floats the substrate W by blowing air to reduce contact resistance (friction resistance) to the substrate holder 6. An exhaust fluid pump that blows out air is connected to the trachea via a switching valve (not shown). As a result, compressed air can be blown out from each of the suction pads 9, and suction and blowing can be selectively performed by switching the valve. In this way, all the suction units 9 may have a configuration capable of suction and blowing (substrate floating mechanism), but only a part of the suction units 9 may be provided. In addition to the suction part 9, a blowing part having a nozzle hole for air blowing may be provided in the holder body 7 as a substrate floating means, and air suction and air blowing may be provided in different systems.
[0036] ホルダ本体 7の開口部 8内には、複数の基板支持部 10力 互いに十分な間隔をお いて固定されている。各基板支持部 10は、金属製であり、図 3の左右両図に示すよう に、その概略断面形状が、幅寸法に比べて長い高さ寸法の縦長棒状 (桟状)になつ ており、ホルダ本体 7に比べて小型かつ軽量となっている。これら基板支持部 10の詳 細断面形状は、同じく図 3の左右両図に示すように、縦長の六角形形状を有しており 、上端及び下端のうち少なくとも上端には、基板 Wを透過した照明光が基板支持部 1 0の上端で反射して観察の妨げにならないよう、前記照明光を観察視野外に向けて 反射する傾斜面 10b, 10dが形成されている。本実施形態では、各基板支持部 10の 上端と下端の両方に、傾斜面 10b, 10bが形成されている。 [0036] In the opening 8 of the holder main body 7, a plurality of substrate support portions 10 are fixed at a sufficient distance from each other. Each substrate support portion 10 is made of metal, and as shown in the left and right views of FIG. 3, the cross-sectional shape thereof is a vertically long bar shape (bar shape) whose height is longer than the width. It is smaller and lighter than the holder body 7. Details of these substrate supports 10 Similarly, as shown in the left and right views of FIG. 3, the narrow cross-sectional shape has a vertically long hexagonal shape, and at least the upper end and the lower end are illuminated with the illumination light transmitted through the substrate W. In order not to interfere with observation by being reflected at the upper end of 0, inclined surfaces 10b and 10d for reflecting the illumination light toward the outside of the observation field are formed. In the present embodiment, inclined surfaces 10b and 10b are formed on both the upper end and the lower end of each substrate support portion 10.
[0037] これら基板支持部 10の上部には、稜線の一部を平坦に切欠いて形成した取付面 1 Oaに、基板 Wの裏面に吸着する吸着部 (基板固定機構) 11 (図 3の右図)と、基板 W の裏面に当接する支持ピン 12 (図 3の左図)とが垂直に突設されている。これら吸着 部 11及び支持ピン 12は、図 2に示すように、同一基板支持部 10上に交互に配置し ても良ぐまた、各基板支持部 10の全てに吸着部 12を配置しても良ぐさらには各基 板支持部 10の交互に支持ピン 12又は吸着部 11を配置しても良 、。  [0037] At the upper part of these substrate support portions 10, a suction portion (substrate fixing mechanism) 11 (the right side of FIG. And a support pin 12 (left figure in FIG. 3) that abuts against the back surface of the substrate W are vertically projected. These suction portions 11 and support pins 12 may be arranged alternately on the same substrate support portion 10 as shown in FIG. 2, or the suction portions 12 may be placed on all the substrate support portions 10. Alternatively, the support pins 12 or the suction portions 11 may be arranged alternately on each substrate support portion 10.
[0038] 吸着部 11は、基板支持部 10の上面に立設されたロッド 11aと、ロッド 11aの先端に 取り付けられた吸着パッド 1 lbとを備えて 、る。ロッド 1 la及び吸着パッド 1 lbには、 エアー流通孔(図示略)が形成されており、このエアー流通孔に通気管を介して前記 吸引用流体ポンプが接続されている(以上、図示略)。  [0038] The suction part 11 includes a rod 11a standing on the upper surface of the substrate support part 10, and a suction pad 1 lb attached to the tip of the rod 11a. An air circulation hole (not shown) is formed in the rod 1 la and the suction pad 1 lb, and the suction fluid pump is connected to the air circulation hole via a vent pipe (not shown). .
[0039] 吸着部 11には、基板 Wの位置決めの際に、基板 Wをエアーの吹き付けにより浮上 させて基板ホルダ 6に対する接触抵抗 (摩擦抵抗)を低減させる基板浮上手段として 、例えば、前記通気管に切り替えバルブを介してエアーを吹出す排気用流体ポンプ が接続されている(以上、図示略)。これにより、吸着パッド l ibから圧搾エアーが吹き 出し可能となり、前記バルブの切換えにより吸引と吹き出しとを択一的に行うことがで きる。このように、吸引と吹き出しとが可能な構成を、全ての吸着部 11に持たせても良 いし、一部の吸着部 11のみに持たせても良い。また、吸着部 11とは別に、基板浮上 機構として、エアー吹出し用のノズル孔を有する吹上部をホルダ本体 7に設け、エア 一吸引とエアー吹出しとを別系統にしても良い。  [0039] In the suction portion 11, as the substrate floating means for reducing the contact resistance (friction resistance) to the substrate holder 6 by floating the substrate W by blowing air when positioning the substrate W, for example, the vent pipe An exhaust fluid pump that blows out air through a switching valve is connected (not shown above). Thereby, compressed air can be blown out from the suction pad l ib, and suction and blowing can be performed alternatively by switching the valve. In this way, all the suction units 11 may have a configuration capable of sucking and blowing, or only a part of the suction units 11 may be provided. In addition to the suction unit 11, as the substrate floating mechanism, a blow-up portion having a nozzle hole for air blowing may be provided in the holder body 7, and the single air suction and the air blowing may be provided in different systems.
[0040] 支持ピン 12は、基板支持部 10の上面に立設されたロッド 12bと、ロッド 12bの先端 にテフロン (登録商標)等のガラス基板よりも硬度が小さく耐磨耗性に優れた減摩材 力 なる略球形の当接部 12aが設けられて 、る。吸着部 11の上端位置及び支持ピン 12の上端位置は、共に、吸着部 9の上面位置と略等しくなるように高さ調整されてい る。 [0040] The support pin 12 includes a rod 12b erected on the upper surface of the substrate support 10 and a reduced hardness with less wear resistance than a glass substrate such as Teflon (registered trademark) at the tip of the rod 12b. A substantially spherical contact portion 12a having a frictional force is provided. The height of the upper end position of the suction part 11 and the upper end position of the support pin 12 are both adjusted to be approximately equal to the upper surface position of the suction part 9. The
[0041] 図 1及び図 2に示すように、基板ホルダ 6を回転 '摇動させる基板ホルダ駆動機構と して、例えば、多方向(図示 A, B, C, Dの方向)に自由に動ぐ複数のアームを連結 した多関節アームロボットである検査用ロボット 15が装置本体 1の下部に配置されて いる。  [0041] As shown in FIGS. 1 and 2, as a substrate holder driving mechanism for rotating the substrate holder 6, for example, it can freely move in multiple directions (directions A, B, C, and D in the figure). An inspection robot 15, which is an articulated arm robot in which a plurality of arms are connected, is disposed at the bottom of the apparatus body 1.
図 2に示すように、ホルダ本体 7の一方の長辺部 7aは、検査用ロボット 15の先端ァ ーム 16に連結されている。検査用ロボット 15は、不図示の制御装置によって、例え ば、図 1に仮想線で示すように、基板ホルダ 6が水平に姿勢保持される基板受け渡し 位置から、図 1に実線で示す所定の傾斜角度まで基板ホルダ 6を矢印 A方向に回転 させたり、基板ホルダ 6を先端アーム 16の軸線回りの矢印 C方向(図 2)に回転させた り、基板ホルダ 6を矢印 B (図 1)方向に上下移動させたり、基板ホルダ 6を矢印 D方向 (図 2)に左右移動たりすることができる。  As shown in FIG. 2, one long side portion 7 a of the holder body 7 is connected to the tip arm 16 of the inspection robot 15. The inspection robot 15 is controlled by a control device (not shown), for example, from a substrate delivery position where the substrate holder 6 is held in a horizontal position as shown by a virtual line in FIG. Rotate the substrate holder 6 in the direction of arrow A to the angle, rotate the substrate holder 6 in the direction of arrow C around the axis of the tip arm 16 (Fig. 2), or move the substrate holder 6 in the direction of arrow B (Fig. 1) The substrate holder 6 can be moved up and down or moved in the direction of arrow D (Fig. 2).
[0042] この検査用ロボット 15を用いることにより、基板ホルダ 6を、マクロ照明下での観察に 適した角度に立ち上げた状態で、基板ホルダ 6を上下左右に移動させることができ、 基板 Wの全面に対してマクロ照明光を走査させることができる。マクロ照明光学系を XY方向に移動可能に設けた場合には、検査用ロボット 15として、基板ホルダ 6を矢 印 A方向に回転又は揺動させる一軸方式の基板ホルダ駆動機構や、基板ホルダ 6を 矢印 A方向と矢印 C方向に回転させる二軸方式の基板ホルダ駆動機構を採用しても 良い。 [0042] By using this inspection robot 15, the substrate holder 6 can be moved up, down, left, and right with the substrate holder 6 raised to an angle suitable for observation under macro illumination. The macro illumination light can be scanned over the entire surface. When the macro illumination optical system is provided so as to be movable in the X and Y directions, a uniaxial substrate holder drive mechanism that rotates or swings the substrate holder 6 in the direction of arrow A as the inspection robot 15 or a substrate holder 6 is installed. A biaxial substrate holder drive mechanism that rotates in the direction of arrow A and arrow C may be used.
なお、起き上がらせたときの基板ホルダ 6の前面の位置に対応するように、装置本 体 2には開口(図示略)が形成されており、起き上がらせた状態の基板 Wの外観を観 察者が目視観察できるようになつている。  In addition, an opening (not shown) is formed in the apparatus body 2 so as to correspond to the position of the front surface of the substrate holder 6 when it is raised, so that the external appearance of the substrate W when it is raised is observed. Can be visually observed.
[0043] 図 2に示すように、基板 Wを受け入れるために基板受け渡し位置に基板ホルダ 6を 水平に姿勢制御した状態では、基板ホルダ 6の周囲にフレーム 17が配置されるよう になっている。フレーム 17は、検査用ロボット 15が揺動可能な範囲を除いて、ホルダ 本体 7の各辺部 7a, 7b, 7c, 7dに沿って、ホルダ本体 7の周囲を囲むように装置本 体 2に対して固定されている。このフレーム 17の上部には、基板 Wをホルダ本体 7上 の基準位置に位置決めする基板位置決め機構として複数の整列手段 20が、ホルダ 本体 7の周囲力も離間して取り付けられている。これら整列手段 20は、ホルダ本体 7 の長辺部 7a, 7b及び短辺部 7dに対向する位置にあるフレーム 17には 2つずつ設け られ、基板ホルダ Wの短辺部 7cと対向する位置のフレーム 17には 1つ設けられて!/、 る。短辺部 7d側、長辺部 7a, 7b側に配設されている各整列手段 20は、基板 Wの各 隅部に対向するように設けられている。ただし、短辺部 7c側に配設された整列手段 2 0は、基板 Wの左短辺の中心付近に対向するように設けられて 、る。 As shown in FIG. 2, a frame 17 is arranged around the substrate holder 6 in a state in which the posture of the substrate holder 6 is horizontally controlled at the substrate delivery position in order to receive the substrate W. The frame 17 is attached to the main body 2 of the apparatus body 2 so as to surround the holder body 7 along each side 7a, 7b, 7c, 7d of the holder body 7 except for the range in which the inspection robot 15 can swing. It is fixed against. A plurality of alignment means 20 serving as a substrate positioning mechanism for positioning the substrate W at a reference position on the holder body 7 are provided on the upper portion of the frame 17. The peripheral force of the main body 7 is also attached separately. Two of these alignment means 20 are provided on the frame 17 at a position facing the long side portions 7a, 7b and the short side portion 7d of the holder body 7, and are arranged at positions facing the short side portion 7c of the substrate holder W. There is one frame 17! / Each alignment means 20 disposed on the short side 7d side and the long side 7a, 7b side is provided to face each corner of the substrate W. However, the alignment means 20 arranged on the short side portion 7c side is provided so as to face the vicinity of the center of the left short side of the substrate W.
[0044] 各整列手段 20は、フレーム 17に固定されたシリンダ 21等力もなる駆動部と、シリン ダ 21に進退自在に支持されたロッド状の押し付けピン 22等力もなる押圧部材とを備 える。押し付けピン 22の先端には、テフロン (登録商標)等のガラス基板よりも硬度が 小さぐ耐磨耗性に優れた減摩材カ なる円柱形の当接部 22aが設けられている。各 押し付けピン 22は、基板ホルダ 6の上面位置よりも若干上方位置に配置され、これら 押し付けピン 22の当接部 22aがガラス基板 Wの側面に押し当てられる整列位置 (基 準位置)と;図 2に仮想線で示すように、押し付けピン 22の当接部 22aがホルダ本体 7 よりも外側に向力つて離間した退避位置と;に移動可能になっている。  Each alignment means 20 includes a drive unit that also has a constant force of a cylinder 21 fixed to the frame 17, and a pressing member that also has a constant force of a rod-shaped pressing pin 22 that is supported by the cylinder 21 so as to advance and retreat. At the tip of the pressing pin 22, there is provided a cylindrical contact portion 22a, which is a friction reducing material having a smaller hardness than a glass substrate such as Teflon (registered trademark) and having excellent wear resistance. Each pressing pin 22 is arranged slightly above the upper surface position of the substrate holder 6, and an alignment position (reference position) where the contact portion 22 a of the pressing pin 22 is pressed against the side surface of the glass substrate W; As indicated by an imaginary line in FIG. 2, the abutting portion 22a of the pressing pin 22 is movable to a retracted position separated from the holder body 7 by force.
[0045] 整列手段 20は、シリンダ駆動の構成に限定されず、例えば、モータ (駆動部)にリン ク機構 (押圧部材)を介して当接部 22aを進退させる構成を採用しても良い。また、ホ ルダ本体 7を、基板 Wの周縁部がホルダ本体 7から若干飛び出すように、ホルダ本体 7の外形寸法を基板 Wの外形寸法よりも若干小さく形成し、ホルダ本体 7から飛び出 した基板 Wの周縁に、各押し付けピン 22の当接部 22aを押し付けるようにしても良い  [0045] The alignment means 20 is not limited to the cylinder drive configuration, and for example, a configuration in which the contact portion 22a is advanced and retracted via a link mechanism (pressing member) in a motor (drive portion) may be adopted. In addition, the holder body 7 is formed so that the outer dimension of the holder body 7 is slightly smaller than the outer dimension of the substrate W so that the peripheral edge of the substrate W slightly protrudes from the holder body 7, and the substrate W protrudes from the holder body 7. The abutting portion 22a of each pressing pin 22 may be pressed against the periphery of
[0046] 図 1に示すように、水平に姿勢制御された基板ホルダ 6の下方には、リフト装置 24 が配置されている。リフト装置 24は、図 5に示すように、平面視した場合に基板ホルダ 6の各基板支持部 10と基板搬送用ロボット 28の櫛歯状のフィンガ 31とが干渉しな ヽ 複数箇所に配置されたリフトピン 25と;図 1に示すように、これらのリフトピン 25を支持 するリフトピン支持バー 26と;このリフトピン支持バー 26を昇降させるァクチユエータ 部 27と;を備えている。 As shown in FIG. 1, a lift device 24 is disposed below the substrate holder 6 whose posture is horizontally controlled. As shown in FIG. 5, the lift device 24 is arranged in a plurality of locations so that the substrate support portions 10 of the substrate holder 6 and the comb-like fingers 31 of the substrate transfer robot 28 do not interfere with each other when viewed in plan. As shown in FIG. 1, a lift pin support bar 26 for supporting these lift pins 25 and an actuator section 27 for raising and lowering the lift pin support bar 26 are provided.
各リフトピン 25は、図 4に示すような、基板ホルダ 6の上面位置よりも高い位置まで 突出するリフト位置と、図 1に示すような、基板ホルダ 6の下面位置よりも下がった退 避位置とに移動可能である。各リフトピン 25の先端には、テフロン (登録商標)等のガ ラス基板よりも硬度が小さくて耐磨耗性に優れた減摩材からなる略球形の当接部が 設けられている。 Each lift pin 25 has a lift position that protrudes to a position higher than the upper surface position of the substrate holder 6 as shown in FIG. 4, and a retreat that is lower than the lower surface position of the substrate holder 6 as shown in FIG. It can move to the avoidance position. At the tip of each lift pin 25, there is provided a substantially spherical contact portion made of an antifriction material having a hardness smaller than that of a glass substrate such as Teflon (registered trademark) and having excellent wear resistance.
[0047] 図 5に、搬送用ロボット 28を示す。搬送用ロボット 28は、基板ホルダ 6に基板 Wを搬 入したり、基板ホルダ 6から基板 Wを搬出したりする際に使用され、多関節アームロボ ットを備えている。この搬送ロボット 28の先端アーム 29にロボットハンド 30が取り付け られている。ロボットハンド 30は、櫛歯状に配設された複数本のフィンガ 31を備えて おり、各フィンガ 31の上面には、吸着部 32が等間隔配置され、基板 Wを吸着保持す る。  FIG. 5 shows the transfer robot 28. The transfer robot 28 is used when a substrate W is loaded into the substrate holder 6 or when the substrate W is unloaded from the substrate holder 6 and includes an articulated arm robot. A robot hand 30 is attached to the tip arm 29 of the transfer robot 28. The robot hand 30 includes a plurality of fingers 31 arranged in a comb-like shape, and suction portions 32 are arranged at equal intervals on the upper surface of each finger 31 to hold the substrate W by suction.
図 2に示すように、ロボットハンド 30は、装置本体 2の基板揷入口 2aを通して基板ホ ルダ 6の上方に挿入されたときに、整列手段 20やリフトピン 25を避けるように、フィン ガ 31の形状や配置が設定されている。  As shown in FIG. 2, the robot hand 30 has a shape of the finger 31 so as to avoid the alignment means 20 and the lift pins 25 when inserted above the substrate holder 6 through the substrate inlet 2a of the apparatus body 2. And the arrangement is set.
[0048] 本実施形態のマクロ検査装置 1の動作について以下に説明する。 [0048] The operation of the macro inspection apparatus 1 of the present embodiment will be described below.
まず、各整列手段 20の押し付けピン 22を前記退避位置に退避させてから、検査用 ロボット 15により基板ホルダ 6を基板 Wの搬入出に適した水平な基板受け渡し位置 に待機させる。搬送用ロボット 28は、図示しないカセットより基板 Wを一枚吸着保持し て取り出して基板ホルダ 6の上方に移送してから、基板 Wに対する吸着を解除する。 その後、リフト装置 24は、ァクチユエータ部 27を駆動させ、リフトピン 25を搬送用ロボ ット 28のフィンガ 31よりも上方に移動させて基板 Wを受け取る。このときのリフトピン 2 5は、ホルダ本体 7、各基板支持部 10、及び搬送用ロボット 28の櫛歯状のフィンガ 31 に干渉しないように配設されているので、ホルダ本体 7の開口部 8を通り、搬送用ロボ ット 28の各フィンガ 31の間を通り抜けて基板 Wを持ち上げる。これにより、搬送用口 ボット 28に載置された基板 Wは、搬送用ロボット 28のフィンガ 31からリフトピン 25に 移載される。この状態で、搬送用ロボット 28によりロボットハンド 30をホルダ本体 7に 接触しな!ヽ位置まで降下させた後、ロボットノヽンド 30を基板ホルダ 6の移動経路上か ら退避させる。  First, after the pressing pins 22 of the aligning means 20 are retracted to the retracted position, the inspection robot 15 causes the substrate holder 6 to stand by at a horizontal substrate transfer position suitable for loading and unloading the substrate W. The transfer robot 28 sucks and holds one substrate W from a cassette (not shown), takes it out, transfers it to the upper side of the substrate holder 6, and then releases the suction to the substrate W. Thereafter, the lift device 24 drives the actuator unit 27 and moves the lift pins 25 above the fingers 31 of the transfer robot 28 to receive the substrate W. The lift pins 25 at this time are arranged so as not to interfere with the holder main body 7, the substrate support portions 10, and the comb-like fingers 31 of the transfer robot 28. Pass through between the fingers 31 of the transfer robot 28 and lift the substrate W. As a result, the substrate W placed on the transfer port bot 28 is transferred from the finger 31 of the transfer robot 28 to the lift pin 25. In this state, the robot hand 30 is not brought into contact with the holder body 7 by the transfer robot 28! After being lowered to the position, the robot node 30 is retracted from the movement path of the substrate holder 6.
[0049] 次に、ァクチユエータ部 27を駆動してリフトピン 25を前記退避位置まで降下させる と、基板 Wの裏面がホルダ本体 7の吸着部 9と、基板支持部 10の吸着部 11及び支 持ピン 12とに当接し、リフトピン 25から基板ホルダ 6に基板 Wが移載される。基板 W を基板ホルダ 6上に載置させたら、基板浮上機構として機能する吸着部 9, 11から圧 搾エアーを吹き出して基板 Wをホルダ本体 7から僅か〖こ浮上させる。基板 Wをエアー で浮かせた状態で、各整列手段 20を駆動して各押し付けピン 22を基板 Wに向かつ て突出させる。その結果、基板 Wは、各押し付けピン 22により挟持されて基準位置に 整列される。基板 Wが位置決めされた状態で、吸着部 9, 11からの圧搾エアー供給 を停止させ、基板 Wをホルダ本体 7及び各基板支持部 10の上に載置する。この後、 吸着部 8, 11により吸引を開始して、位置決めされた基板 Wを吸着保持する。 Next, when the actuator unit 27 is driven and the lift pin 25 is lowered to the retracted position, the back surface of the substrate W is brought into contact with the suction unit 9 of the holder body 7, the suction unit 11 of the substrate support unit 10, and the support unit 10. The substrate W is brought into contact with the holding pins 12 and the substrate W is transferred from the lift pins 25 to the substrate holder 6. When the substrate W is placed on the substrate holder 6, the compressed air is blown out from the suction portions 9 and 11 that function as a substrate floating mechanism, and the substrate W is slightly lifted from the holder body 7. In a state where the substrate W is floated by air, each alignment means 20 is driven to project each pressing pin 22 toward the substrate W. As a result, the substrate W is sandwiched between the pressing pins 22 and aligned at the reference position. With the substrate W positioned, the compressed air supply from the suction portions 9 and 11 is stopped, and the substrate W is placed on the holder body 7 and each substrate support portion 10. Thereafter, suction is started by the suction units 8 and 11, and the positioned substrate W is sucked and held.
[0050] なお、基板 Wを位置決めする際、ホルダ本体 7の対角線を挟んで一方側に配置さ れる整列手段 20を位置決め基準用に設定し、この基準用整列手段 20の当接部 22a をホルダ本体 7の基準位置に固定し、他方側に配置される整列手段 20を基板押し付 け用に設定し、この押し付け用整列手段 20の当接部 22aにより基板 Wを基準用整列 手段 20の当接部 22aに押し付けて位置決めするようにしても良い。  [0050] When positioning the substrate W, the alignment means 20 arranged on one side across the diagonal of the holder body 7 is set for positioning reference, and the contact portion 22a of the reference alignment means 20 is set as the holder. The alignment means 20 fixed to the reference position of the main body 7 and arranged on the other side is set for substrate pressing, and the substrate W is brought into contact with the reference alignment means 20 by the contact portion 22a of the pressing alignment means 20. You may make it position by pressing on the contact part 22a.
[0051] 基板 Wをホルダ本体 7上の基準位置に位置決めして吸着保持させたら、検査用口 ボット 15が基板ホルダ 6を水平位置から、図 1に実線で示したように、基板 Wが観察 者に向力 ように起き上がらせる。この状態で、光源 3からの照明光によって基板 Wを その上方から照らし、観察者によるマクロ検査が行われる。この際、検査用ロボット 15 により、基板ホルダ 6を微小角度で上下方向又は左右方向に揺動させ、基板 Wに対 して照明光の入射角度を変化させながらマクロ検査を行うようにしても良い。基板 W の裏面のマクロ検査を行なう場合には、検査用ロボット 15により基板 Wを反転させ、 基板 Wの裏面を照明方向に向けてマクロ検査を行うようにしても良い。さらに、不図 示のノ ックライト装置を設けて、基板 Wをその裏面側から照らしながら観察を行うよう にしても良い。  [0051] After the substrate W is positioned and held at the reference position on the holder body 7, the inspection port bot 15 observes the substrate holder 6 from the horizontal position as shown by the solid line in FIG. Make the person get up like a power. In this state, the substrate W is illuminated from above by the illumination light from the light source 3, and a macro inspection is performed by an observer. At this time, the inspection robot 15 may swing the substrate holder 6 in the vertical direction or the horizontal direction at a minute angle so as to perform the macro inspection while changing the incident angle of the illumination light with respect to the substrate W. . When performing a macro inspection of the back surface of the substrate W, the inspection robot 15 may invert the substrate W so that the back surface of the substrate W faces the illumination direction. Further, a knock light device (not shown) may be provided so that the substrate W is observed while illuminating it from the back side.
[0052] マクロ検査が終了したら、基板ホルダ 6を水平位置まで戻した後、吸着部 9, 11によ る吸着保持を解除する。再び、リフト装置 25のァクチユアータ部 27を駆動し、リフトピ ン 25を上昇させ、基板 Wを基板ホルダ 6からリフトピン 25上に移載する。この状態で 、搬送用ロボット 28は、ロボットハンド 30を水平に移動させてフィンガ 31をホルダ本 体 7と基板 Wとの間に挿入し、ロボットハンド 30を上昇させてリフトピン 25から基板 W を受け取り、基板 Wを吸着部 32により吸着保持した後、ロボットハンド 30を後退させ て前記カセットに向けて搬出する。 When the macro inspection is completed, the substrate holder 6 is returned to the horizontal position, and the suction holding by the suction portions 9 and 11 is released. The actuator 27 of the lift device 25 is driven again, the lift pin 25 is raised, and the substrate W is transferred from the substrate holder 6 onto the lift pin 25. In this state, the transfer robot 28 moves the robot hand 30 horizontally to insert the finger 31 between the holder body 7 and the substrate W, and lifts the robot hand 30 to lift the substrate W from the lift pin 25. After the substrate W is sucked and held by the sucking unit 32, the robot hand 30 is moved backward and carried out toward the cassette.
[0053] 以上説明のように、本実施形態のマクロ検査装置 1は、検査を受ける基板 Wを保持 する基板ホルダ 6と;基板 Wに照明光を照射する光源 (マクロ照明光学系) 3と;基板 ホルダ 6を支持するとともに基板 Wが照明光で照らされた状態で基板ホルダ 6の姿勢 を制御する検査用ロボット (基板ホルダ駆動機構) 15と;基板ホルダ 6との間で基板 W の受け渡しを行う搬送用ロボット (基板搬送機構) 28と;基板ホルダ 6上に受け渡され た基板 Wに対してエアーの吹き付けを行うことにより、この基板 Wを基板ホルダ 6上か ら浮き上がらせる前記通気管,前記切り替えバルブ,前記排気用流体ポンプを有す る基板浮上機構と;この基板浮上機構により浮上状態にある基板 Wを基板ホルダ 6上 の基準位置に位置決めする整列手段 (基板位置決め機構) 20と;この整列手段 20に より位置決めされた基板 Wを基板ホルダ 6に固定する吸着部 (基板固定機構) 9, 11 と;を備える。 [0053] As described above, the macro inspection apparatus 1 of the present embodiment includes the substrate holder 6 that holds the substrate W to be inspected; the light source (macro illumination optical system) 3 that irradiates the substrate W with illumination light; An inspection robot (substrate holder drive mechanism) 15 that supports the substrate holder 6 and controls the posture of the substrate holder 6 while the substrate W is illuminated by illumination light; and transfers the substrate W between the substrate holder 6 A transfer robot (substrate transfer mechanism) 28 for performing the above-mentioned ventilation pipe, which lifts the substrate W from the substrate holder 6 by blowing air to the substrate W transferred onto the substrate holder 6; A substrate floating mechanism having the switching valve and the exhaust fluid pump; an alignment means (substrate positioning mechanism) 20 for positioning the substrate W in a floating state by the substrate floating mechanism at a reference position on the substrate holder 6; This alignment hand Comprises; more positioning wafer W on the 20 suction portion for fixing to the substrate holder 6 (substrate fixing mechanism) 9, 11 and.
[0054] そして、本実施形態のマクロ検査装置 1によれば、基板 Wを整列させる位置決め機 構として機能する整列手段 20を基板ホルダ 6とは別体に設けたので、基板ホルダ 6 上に駆動部を有する整列手段 20を設ける必要がなくなる。この大きな取り付けスぺ ースを要する整列手段 20をホルダ本体 7上力も分離することにより、整列手段 20を 配置するスペース分だけホルダ本体 7の幅寸法を小さくでき、基板ホルダ 6を軽量ィ匕 できる。さら〖こ、基板ホルダ 6の軽量ィ匕により、基板ホルダ 6を駆動させる検査ロボット 5にかかる負荷を低減させることできる。その結果、検査用ロボット 15に小型の多関 節アームロボットを使用することが可能になる。さら〖こは、これら基板ホルダ 6及び検 查用ロボット 15の小型化により、マクロ検査装置 1を小型化でき、クリーンルームの設 置スペースを小さくできる。  [0054] According to the macro inspection apparatus 1 of the present embodiment, the alignment means 20 that functions as a positioning mechanism for aligning the substrates W is provided separately from the substrate holder 6, and thus is driven on the substrate holder 6. It is not necessary to provide the aligning means 20 having a portion. By separating the aligning means 20 that requires a large mounting space from the force on the holder body 7, the width of the holder body 7 can be reduced by the space for arranging the aligning means 20, and the substrate holder 6 can be reduced in weight. . Furthermore, the load on the inspection robot 5 that drives the substrate holder 6 can be reduced by the light weight of the substrate holder 6. As a result, a small multi-joint arm robot can be used as the inspection robot 15. Furthermore, by reducing the size of the substrate holder 6 and the inspection robot 15, the macro inspection apparatus 1 can be reduced in size and the installation space of the clean room can be reduced.
[0055] なお、ホルダ本体 7は、基板 Wの周縁部がホルダ本体 7から若干飛び出すように、 ホルダ本体 7の外形寸法を基板 Wの外形寸法よりも若干小さくして 、るので、押し付 け用整列手段 20の押し付けピン 22の進退時に、押し付けピン 22とホルダ本体 7との 干渉を防止できる。さらには、押し付けピン 22の先端に取り付けられる当接部 22aを 大きくすることができるので、ホルダ本体 7が上下方向に多少ずれても、これら当接部 22aを確実に基板 Wに接触させて押圧することができる。さら〖こ、ホルダ本体 7の外 形寸法を、基板外形寸法内に小型化することができ、更なる軽量ィ匕を図ることができ る。 Note that the holder body 7 is pressed because the outer dimension of the holder body 7 is slightly smaller than the outer dimension of the substrate W so that the peripheral edge of the substrate W slightly protrudes from the holder body 7. Interference between the pressing pin 22 and the holder body 7 can be prevented when the pressing pin 22 of the aligning means 20 moves forward and backward. Further, since the contact portion 22a attached to the tip of the pressing pin 22 can be enlarged, even if the holder body 7 is slightly displaced in the vertical direction, these contact portions 22a can be reliably brought into contact with the substrate W and pressed. Furthermore, the outer dimensions of the holder body 7 can be reduced within the outer dimensions of the board, and further light weight can be achieved.
[0056] [第 2実施形態]  [0056] [Second Embodiment]
本発明のマクロ検査装置の第 2実施形態について、図面を参照しながら以下に説 明する。なお、上記第 1実施形態と同一構成要素には同一符号を付し、その説明を 省略する。  A second embodiment of the macro inspection apparatus of the present invention will be described below with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
図 6に示すように、検査用ロボット 15の先端アーム 16が取り付けられているホルダ 本体 7の長辺部 7a上面には、基準用整列手段 (基準用基板位置決め機構)である基 準ピン 42aが 2つ固定され、短辺部 7c上面には、基準ピン 42bが固定されている。各 基準ピン 42aは、基板 Wの隅部に対応する位置に配置され、基準ピン 42bは、基板 Wの左側縁の中央部に対応する位置に配置されている。  As shown in FIG. 6, on the upper surface of the long side portion 7a of the holder body 7 to which the tip arm 16 of the inspection robot 15 is attached, a reference pin 42a which is a reference alignment means (reference substrate positioning mechanism) is provided. Two are fixed, and a reference pin 42b is fixed on the upper surface of the short side portion 7c. Each reference pin 42a is disposed at a position corresponding to the corner of the substrate W, and the reference pin 42b is disposed at a position corresponding to the central portion of the left edge of the substrate W.
[0057] 装置本体 2には、ホルダ本体 7の長辺部 7b及び短辺部 7dに沿うように、フレーム 44 及びフレーム 45が取り付けられ、これらフレーム 44, 45には、基板 Wを各基準ピン 4 2a, 42bに押し付けるための押し付け用整列手段 (押し付け用基板位置決め機構) 2 0が 2つずつ設けられて!/、る。  [0057] A frame 44 and a frame 45 are attached to the apparatus main body 2 along the long side portion 7b and the short side portion 7d of the holder main body 7, and the substrate W is attached to each reference pin on the frames 44, 45. 4 Pressing alignment means (pressing board positioning mechanism) 2 0 for pressing against 2a and 42b are provided two by two.
基板ホルダ本体 7の長辺部 7b及び短辺部 7dには、押し付け用整列手段 20に対応 した位置に切欠き 43a, 43bが基板ホルダ本体 7の外周面から開口部 8に向力つて凹 むように形成されている。これら切欠き 43a, 43bは、図 6に示すように、基板 Wの内 側へ数ミリ程度の入り込む位置まで切り欠かれている。  The long side 7b and the short side 7d of the substrate holder body 7 are notched at positions corresponding to the pressing alignment means 20 so that the notches 43a and 43b are recessed from the outer peripheral surface of the substrate holder body 7 toward the opening 8. Is formed. These notches 43a and 43b are notched to a position where they enter into the inside of the substrate W by several millimeters, as shown in FIG.
[0058] 本実施形態では、上記第 1実施形態で説明した構成から、ホルダ本体 7の長辺部 7 a及び短辺部 7cに沿って設けられたそれぞれのフレームを省略している。そして、こ の省略したフレームに固定されていたシリンダ等の駆動部を有する位置決め用整列 手段 20を、駆動部の無い基準ピン 42a、 42bに代えている。さらに、ホルダ本体 7の、 各押し付け用整列手段 20と対向する位置に切欠き 43a, 43bを設けている。以上説 明の点以外の構成は、上記第 1実施形態の構成と同じであり、重複する説明は省略 する。  In the present embodiment, the respective frames provided along the long side portion 7a and the short side portion 7c of the holder body 7 are omitted from the configuration described in the first embodiment. Then, the positioning alignment means 20 having a driving portion such as a cylinder fixed to the omitted frame is replaced with reference pins 42a and 42b having no driving portion. Furthermore, notches 43a and 43b are provided in the holder body 7 at positions facing the pressing alignment means 20. The configuration other than the points described above is the same as the configuration of the first embodiment, and a duplicate description is omitted.
[0059] 本実施形態のマクロ検査装置 1の動作について以下に説明する。 本実施形態は、上記第 1実施形態に対して、基板 Wの位置決めの仕方だけが異な つている。この異なる位置決めの仕方について以下に説明する。図 5に示したような 搬送用ロボット 28で搬入された基板 Wを基板ホルダ 6上に載置した後、基板浮上機 構として機能する吸着部 9, 11から圧搾エアーを吹き出して基板 Wを浮上させる。次 に、各整列手段 20が押し付けピン 22を基板 Wに向けて突出させると、基板 Wの側面 が押され、基板 Wの反対側の側面が基準ピン 42a, 42bに押し付けられて位置決め される。基板 Wが位置決めされた状態で、吸着部 9, 11からの圧搾エアーの供給を 停止させて基板 Wをホルダ本体 7及び各基板支持部 10の上に載置する。この後、吸 着部 9, 11により吸引を開始して、位置決めされた基板 Wを吸着保持する。 [0059] The operation of the macro inspection apparatus 1 of the present embodiment will be described below. This embodiment is different from the first embodiment only in the method of positioning the substrate W. This different positioning method will be described below. After the substrate W carried by the transfer robot 28 as shown in FIG. 5 is placed on the substrate holder 6, the compressed air is blown out from the suction parts 9, 11 functioning as a substrate floating mechanism, and the substrate W is lifted. Let Next, when each alignment means 20 projects the pressing pin 22 toward the substrate W, the side surface of the substrate W is pressed, and the opposite side surface of the substrate W is pressed against the reference pins 42a and 42b for positioning. With the substrate W positioned, the supply of compressed air from the suction portions 9 and 11 is stopped and the substrate W is placed on the holder body 7 and each substrate support portion 10. Thereafter, suction is started by the suction portions 9 and 11, and the positioned substrate W is sucked and held.
[0060] 以上説明の本実施形態のマクロ検査装置によれば、基板 Wを整列させる基準用整 列手段を、駆動部の無い安価な基準ピン 42a, 42bに代えることにより、装置の製造 コストを低減させることができる。さらに、ホルダ本体 7の長辺部 7a及び短辺部 7cに沿 つて配置されるフレームを減らすことができるので、検査用ロボット 15及び搬送用ロボ ット 28がフレームと干渉しに《なり、検査用ロボット 15及び搬送用ロボット 28の動作 が広がる。 [0060] According to the macro inspection apparatus of the present embodiment described above, by replacing the reference alignment means for aligning the substrates W with the inexpensive reference pins 42a and 42b having no drive unit, the manufacturing cost of the apparatus is reduced. Can be reduced. Furthermore, since the frames arranged along the long side 7a and the short side 7c of the holder body 7 can be reduced, the inspection robot 15 and the transfer robot 28 interfere with the frame, so that the inspection The operation of the robot 15 and the transport robot 28 is expanded.
また、ホルダ本体 7に切り欠き 43a, 43bを形成したので、押し付け用整列手段 20 の押し付けピン 22の進退時に、押し付けピン 22及びホルダ本体 7間の干渉を防止で きる。切欠き 43a, 43bを設けることにより、押し付けピン 22の先端に取り付けられた 当接部 22aのサイズを大きくすることができるので、ホルダ本体 7が上下方向に多少 ずれても基板 Wに接触し、確実に基板 Wを押圧することができる。また、ホルダ本体 7に基準ピン 42a, 42bを固定するとともに、押し付け用整列手段 20にのみ駆動機構 を備えたことにより、上記第 1実施形態のように全ての整列手段に駆動機構を備えた ものに比べて、位置決め制御が簡単になる。すなわち、上記第 1実施形態では、全て の整列手段を正解に位置決め制御する必要があるが、本実施形態では、押し付け 用整列手段 20によって基板 Wを基準ピン 42a、 42bに押し付け、所定押圧力に達し たら押し付けを停止させるという簡単な位置決め制御で済むため、位置決めをさらに 速やかに行なうことができる。その他の効果は、上記第 1実施形態と同じである。  Further, since the notches 43a and 43b are formed in the holder main body 7, interference between the pressing pin 22 and the holder main body 7 can be prevented when the pressing pin 22 of the pressing aligning means 20 advances and retreats. By providing the notches 43a and 43b, the size of the contact portion 22a attached to the tip of the pressing pin 22 can be increased, so that even if the holder body 7 is slightly displaced in the vertical direction, it contacts the substrate W, The substrate W can be reliably pressed. In addition, the reference pins 42a and 42b are fixed to the holder body 7, and only the pressing alignment means 20 is provided with a drive mechanism, so that all alignment means are provided with a drive mechanism as in the first embodiment. Compared to, positioning control is simplified. That is, in the first embodiment described above, it is necessary to position and control all alignment means correctly, but in this embodiment, the substrate W is pressed against the reference pins 42a and 42b by the pressing alignment means 20 so that a predetermined pressing force is obtained. When it reaches, simple positioning control that stops pressing is sufficient, so positioning can be performed more quickly. Other effects are the same as those of the first embodiment.
[0061] なお、本発明は、上記第 2実施形態に限定されずに広く応用することができる。 例えば、機構部をさらに減らして装置をさらに小型化、軽量化することを目的としてNote that the present invention is not limited to the second embodiment and can be widely applied. For example, for the purpose of further reducing the mechanism and further reducing the size and weight of the device
、図 6に示す基板ホルダ 6において、押し付け用整列手段 20及び切り欠き 43a, 43b を設けずに、基板 Wの基準位置を規制する基準ピン 42a, 42bのみを設けるようにし ても良い。 In the substrate holder 6 shown in FIG. 6, only the reference pins 42a and 42b for regulating the reference position of the substrate W may be provided without providing the pressing alignment means 20 and the notches 43a and 43b.
この場合、基板 Wを搬入するときには、リフトピン 25で基板 Wを基板ホルダ 6に移載 したら、基板 Wを、基板浮上機構として機能する吸着部 9, 11からエアーを吹き付け て浮上させた状態で、検査用ロボット 15を駆動し、最初に、長辺部 7aに対して長辺 部 7bが少し高くなるようにホルダ本体 7を傾斜させる。これにより、浮上した基板 Wは 、自重によりホルダ本体 7に沿って長辺部 7a側に移動し、基準ピン 42aに当接して基 板 Wの下側の位置が定まる。この状態で、検査用ロボット 15を駆動して、短辺部 7c に対して短辺部 7bが少し高くなるようにホルダ本体 7を傾斜させる。これにより、浮上 した基板 Wは、 2つの基準ピン 42aに当接したままの状態で、短辺部 7c側に移動し、 基準ピン 42bに当接して基板 Wの右側の位置が定まる。このように、ホルダ本体 7を、 基準ピン 42a, 42bが下になるように少し傾斜させることで、基板 Wの自重により基板 Wを基準ピン 42a, 42bに当接させて位置決めすることが可能になる。  In this case, when the substrate W is carried in, the substrate W is transferred to the substrate holder 6 by the lift pins 25, and then the substrate W is floated by blowing air from the suction portions 9 and 11 that function as the substrate floating mechanism. The inspection robot 15 is driven, and the holder body 7 is first inclined so that the long side portion 7b is slightly higher than the long side portion 7a. As a result, the floating substrate W moves to the long side portion 7a side along the holder body 7 due to its own weight, and comes into contact with the reference pin 42a to determine the lower position of the substrate W. In this state, the inspection robot 15 is driven to tilt the holder body 7 so that the short side portion 7b is slightly higher than the short side portion 7c. As a result, the substrate W that has floated is moved to the short side portion 7c while being in contact with the two reference pins 42a, and the right side of the substrate W is determined by contacting the reference pins 42b. Thus, by tilting the holder body 7 slightly so that the reference pins 42a and 42b are at the bottom, it is possible to position the substrate W by contacting the reference pins 42a and 42b by its own weight. Become.
[0062] 検査用ロボット 15に、多方向に姿勢制御可能な多関節アームロボットを採用して、 基板 Wの整列を行うようにした場合には、基板 Wを整列させる整列手段のうち、駆動 部を必要としない基準用整列手段を、駆動機構部の無い安価な基準ピン 42a, 42b のみで構成することができる。その場合、さらに価格の低減を図ることができると共に 、ホルダ本体 7の周辺から、整列手段を取り付けるためのフレームを全て省略すること ができ、装置全体の小型化を図ることができる。その他の効果は、上記第 1実施形態 と同じである。 [0062] When an articulated arm robot capable of posture control in multiple directions is adopted as the inspection robot 15 and the substrate W is aligned, of the alignment means for aligning the substrate W, the drive unit The reference aligning means that does not need to be configured can be constituted only by inexpensive reference pins 42a and 42b having no drive mechanism. In this case, the cost can be further reduced, and all the frames for attaching the aligning means can be omitted from the periphery of the holder body 7, and the entire apparatus can be reduced in size. Other effects are the same as in the first embodiment.
[0063] 前記多関節アームロボットを採用して基板 Wの整列を行う場合、検査用ロボット 15 は、一度に長辺部 7aと短辺部 7cとの隅部が最も低くなるように、ホルダ本体 7を傾斜 させ、基板 Wをその自重により、ホルダ本体 7の両辺に設けられた基準ピン 42a, 42a , 42bに向けて移動させるようにしても良い。この場合、ワンアクションで基板 Wを整 歹 IJさせることができる。  [0063] When the articulated arm robot is used to align the substrate W, the inspection robot 15 has a holder body so that the corners of the long side portion 7a and the short side portion 7c are lowest at a time. 7 may be inclined, and the substrate W may be moved toward the reference pins 42a, 42a, 42b provided on both sides of the holder body 7 by its own weight. In this case, the substrate W can be adjusted IJ with one action.
また、上述のいずれかの場合において、検査用ロボット 15により、基板ホルダ 6を微 小に揺らすように駆動させても良い。基板ホルダ 6が揺れることで、基板 Wが速やか に移動して整列する。この場合には、エアーの吹き付けによる浮上を必ずしも行わな くても良い。 In any of the above cases, the substrate holder 6 is finely moved by the inspection robot 15. You may drive it so that it may swing small. As the substrate holder 6 shakes, the substrate W moves and aligns quickly. In this case, it is not always necessary to float by blowing air.
[0064] また、機構部を減らして、装置をさらに小型化、軽量ィ匕及び価格低化させるために 、リフト装置 24から昇降機構を取り除き、このリフト装置 24を図 1に示したような所定 位置に固定しても良い。この場合には、リフトピン 25の長さは、その先端部 27aが、水 平位置にある基板ホルダ 6の下面よりも低い位置に固定されるように設定する。基板 Wの搬入搬出を行う際には、検査用ロボット 15を駆動させ、基板ホルダ 6をリフトピン 25よりも低くなるように下降させる。これにより、リフトピン 25の先端部が基板ホルダ 6 の上面から突出するので、搬送用ロボット 28により基板 Wをリフトピン 25上に移載し、 搬送用ロボット 28を退避させた後に、検査用ロボット 28により基板ホルダ 8を上昇さ せることにより、搬送用ロボット 28から検査用ロボット 15への基板 Wの受け渡しが可 能になる。その後、検査用ロボット(多関節ロボット) 15が基板ホルダ 6を上昇させると 、基板 Wがリフトピン 25から基板ホルダ 6に移載される。基板 Wの位置決め、吸着、 及びマクロ観察は、前記と同様にして行う。基板 Wを搬出する際には、リフトピン 25よ りも少し高い位置で、基板 Wの吸着保持を解除してから、基板ホルダ 6をリフトピン 25 の先端よりも低い位置まで下降させる。その結果、リフトピン 25に基板 Wが移載され るので、搬送用ロボット 28で基板 Wを搬出することが可能になる。  [0064] Further, in order to reduce the mechanism portion and further reduce the size, weight, and cost of the device, the lifting mechanism 24 is removed from the lifting device 24, and the lifting device 24 is fixed as shown in FIG. The position may be fixed. In this case, the length of the lift pin 25 is set so that the tip 27a is fixed at a position lower than the lower surface of the substrate holder 6 in the horizontal position. When carrying in / out the substrate W, the inspection robot 15 is driven and the substrate holder 6 is lowered so as to be lower than the lift pins 25. As a result, the tip of the lift pin 25 protrudes from the upper surface of the substrate holder 6, so that the substrate W is transferred onto the lift pin 25 by the transfer robot 28, and after the transfer robot 28 is retracted, the inspection robot 28 By raising the substrate holder 8, the substrate W can be transferred from the transfer robot 28 to the inspection robot 15. Thereafter, when the inspection robot (articulated robot) 15 raises the substrate holder 6, the substrate W is transferred from the lift pins 25 to the substrate holder 6. The positioning, suction, and macro observation of the substrate W are performed in the same manner as described above. When unloading the substrate W, the suction holding of the substrate W is released at a position slightly higher than the lift pins 25, and then the substrate holder 6 is lowered to a position lower than the tip of the lift pins 25. As a result, since the substrate W is transferred to the lift pins 25, the substrate W can be carried out by the transfer robot 28.
[0065] このような構成を採用した場合、基板 Wの受け渡し位置にぉ ヽて、基板 Wを載置し た状態で水平に昇降させるリフト装置の昇降機能を、検査用ロボット 15に兼用させる ことにより、リフトピン 25を昇降させる機構を設ける必要がなくなる。その結果、装置の 小型化、軽量ィ匕を図ることができる。その他の効果は上記第 1実施形態と同じである  [0065] When such a configuration is adopted, the inspection robot 15 is also used as the lifting function of the lift device that moves up and down horizontally with the substrate W placed on the transfer position of the substrate W. This eliminates the need to provide a mechanism for raising and lowering the lift pins 25. As a result, the apparatus can be reduced in size and weight. Other effects are the same as in the first embodiment.
[0066] 基板ホルダ 6は、その短辺部が検査用ロボット(多関節ロボット) 15の先端アーム 16 に取り付けられて ヽても良 、。 The short side of the substrate holder 6 may be attached to the tip arm 16 of the inspection robot (articulated robot) 15.
図 6に示した基板ホルダ 6から、切り欠き 43a, 43bを省略しても良い。また、図 1に 示す基板ホルダ 6に対し、整列手段 20の配置にあわせて切り欠き 43a, 43bを形成 しても良い。 [0067] [第 3実施形態] The notches 43a and 43b may be omitted from the substrate holder 6 shown in FIG. Further, notches 43a and 43b may be formed in the substrate holder 6 shown in FIG. [0067] [Third embodiment]
本発明のマクロ検査装置の第 3実施形態について、図面を参照しながら以下に説 明する。なお、上記第 1実施形態と同一構成要素には同一符号を付し、その説明を 省略する。 A third embodiment of the macro inspection apparatus of the present invention will be described below with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
本実施形態では、基板ホルダ 6を回転 ·揺動させる基板ホルダ駆動機構として検査 用多関節アームロボット(検査用ロボット 15)を採用している。そして、この検査用ロボ ット 15によって回転 ·揺動自在に支持した基板ホルダ 6を、基板受け渡し位置におい て迅速に静止させて基板 Wの受け渡しを円滑に行い、タクトタイムを短縮して検査効 率を向上させるために、静止機構 50を備えている。この静止機構 50を設けた以外は 、上記第 1実施形態と同じであり、重複する説明は省略する。  In the present embodiment, an inspection articulated arm robot (inspection robot 15) is employed as a substrate holder driving mechanism for rotating and swinging the substrate holder 6. Then, the substrate holder 6 supported by the inspection robot 15 so as to be rotatable and swingable is quickly stopped at the substrate transfer position to smoothly transfer the substrate W, thereby reducing the tact time and inspecting efficiency. In order to improve the rate, a stationary mechanism 50 is provided. Except for the provision of the stationary mechanism 50, the second embodiment is the same as the first embodiment, and a duplicate description is omitted.
[0068] 検査用ロボット 15の先端アーム 16に連結された基板ホルダ 6は、図 7に示すように 、基板受け渡し位置において水平に姿勢保持される。静止機構 50は、基板ホルダ 6 を基板受け渡し位置に規制するストツバ機能を有しており、基板ホルダ 6の先端側 ( 自由端側)に配置されている。この静止機構 50は、基板ホルダ 6の衝撃を吸収して振 動を抑える静止機能をさらに有する。  As shown in FIG. 7, the substrate holder 6 connected to the tip arm 16 of the inspection robot 15 is held in a horizontal position at the substrate transfer position. The stationary mechanism 50 has a stagger function for restricting the substrate holder 6 to the substrate delivery position, and is disposed on the front end side (free end side) of the substrate holder 6. The stationary mechanism 50 further has a stationary function that absorbs the impact of the substrate holder 6 and suppresses the vibration.
図 7に示す静止機構 50は、鉛直方向に立設された支柱 51の先端部(上端部)に、 例えば、ゴムあるいはスポンジなどの榭脂系の弾性体 52が取り付けられたストッパ 53 を備えており、弾性体 52の上面が当接部 54とされている。この静止機構 50は、基板 受け渡し位置に配置されたホルダ本体 7の先端下方に設けられて ヽる。ホルダ本体 7 は、水平に姿勢保持される基板受け渡し位置に配置された際に、その先端部下面が ストッパ 53の当接部 54に当接する。  A stationary mechanism 50 shown in FIG. 7 includes a stopper 53 attached to a distal end portion (upper end portion) of a support column 51 erected in the vertical direction, for example, a rubber-based elastic body 52 such as rubber or sponge. The upper surface of the elastic body 52 is a contact portion 54. The stationary mechanism 50 is provided below the front end of the holder body 7 disposed at the substrate transfer position. When the holder body 7 is disposed at the substrate delivery position where the holder body 7 is held in a horizontal position, the lower surface of the tip end portion comes into contact with the contact portion 54 of the stopper 53.
[0069] 上記第 1実施形態で説明したように、基板ホルダ 6は、検査用ロボット 15による基板 Wの搬入時と、マクロ検査後の基板 Wの搬出時に、搬送用ロボット 28との間の基板 受け渡し位置に移動される。  [0069] As described in the first embodiment, the substrate holder 6 is a substrate between the transfer robot 28 when the inspection robot 15 carries in the substrate W and when the substrate W after macro inspection is carried out. It is moved to the delivery position.
[0070] 検査用ロボット 15により、基板ホルダ 6がマクロ観察による所定角度力も基板受け渡 し位置の水平角度に移動(回転)されると、ホルダ本体 7の先端部下面がストツバ 53 の当接部 54に当接する。これにより、ホルダ本体 7は、先端部に振れを生じることなく 、基板受け渡し位置に迅速に静止する。このとき、検査用ロボット 15を高速で回転さ せ、基板受け渡し位置の手前で回転を減速させてホルダ本体 7をストッパ 53にゆつく り当接させることで、ストッパ 53に対するホルダ本体 7の衝撃力を和らげるとともに、基 板ホルダ 6の高速移動によって基板 Wの受け渡しに要する時間を短縮することがで きる。 [0070] When the substrate holder 6 is moved (rotated) by the inspection robot 15 to the horizontal angle of the substrate delivery position even when a predetermined angular force is observed by macro observation, the bottom surface of the tip of the holder body 7 is in contact with the contact portion of the stagger Abuts 54. As a result, the holder main body 7 quickly stops at the substrate transfer position without causing vibration at the tip. At this time, the inspection robot 15 is rotated at a high speed. The holder body 7 is gently brought into contact with the stopper 53 by slowing down the rotation just before the board transfer position, so that the impact force of the holder body 7 against the stopper 53 is reduced and the substrate holder 6 is moved at high speed. The time required for delivery of the substrate W can be reduced.
[0071] 基板受け渡し位置に移動したホルダ本体 7が静止した力否かの判断としては、例え ば、振動センサなどを用いても良いが、所定時間が経過した力否かによって判断す るようにしても良い。ホルダ本体 7が静止したことをセンサや時間により確認した後、 搬送用ロボット 28を駆動制御して、基板ホルダ 6からの基板 Wの受け渡しを行なう。 なお、本実施形態では、静止機構 50でホルダ本体 7の先端部を支持することにより 基板ホルダ 6の振れを止めたが、基板ホルダ 6の支持箇所としては、先端部に限らず 、その他の箇所を採用しても良い。具体的には、基板ホルダ 6の重心に対し、そのホ ルダ本体 7の、駆動アーム 16による支持箇所とは反対側、すなわち、前記重心の位 置力 前記先端部の位置までの間であれば良い。  [0071] For example, a vibration sensor may be used to determine whether or not the holder body 7 that has moved to the substrate delivery position is stationary. For example, a determination may be made based on whether or not a predetermined time has passed. May be. After confirming that the holder body 7 is stationary by a sensor and time, the transfer robot 28 is driven and controlled to transfer the substrate W from the substrate holder 6. In the present embodiment, the stationary mechanism 50 supports the tip of the holder body 7 to stop the swing of the substrate holder 6. However, the support of the substrate holder 6 is not limited to the tip, but other locations. May be adopted. Specifically, with respect to the center of gravity of the substrate holder 6, if the holder body 7 is on the opposite side of the support location by the drive arm 16, that is, between the position of the center of gravity and the position of the tip. good.
[0072] 以上説明のように、静止機構 50を備えた本実施形態のマクロ検査装置 1によれば、 基板受け渡し位置へ移動される基板ホルダ 6の重心に対し、そのホルダ本体 7の、駆 動アーム 16による支持箇所とは反対側がストツバ 53によって保持されるので、基板ホ ルダ 6を基板受け渡 Lf立置において極めて迅速に静止させることができ、基板受け渡 し位置における基板 Wの受け渡し動作を速やかに行わせることが可能となる。 As described above, according to the macro inspection apparatus 1 of the present embodiment including the stationary mechanism 50, the drive of the holder body 7 with respect to the center of gravity of the substrate holder 6 moved to the substrate delivery position. Since the side opposite to the place where the arm 16 is supported is held by the stopper 53, the substrate holder 6 can be stopped very quickly when the substrate delivery Lf is placed, and the substrate W can be transferred at the substrate delivery position. It is possible to make it happen promptly.
これにより、基板 Wの検査に不要なロスタイムを削減することができ、基板 Wの検査 のタクトタイムを大幅に短縮し、検査の効率ィ匕を図ることができる。  As a result, the loss time unnecessary for the inspection of the substrate W can be reduced, the tact time of the inspection of the substrate W can be greatly shortened, and the inspection efficiency can be improved.
また、基板受け渡し位置において、予め位置決めされた静止機構 50にホルダ本体 7を当接させることで、基板ホルダ 6を精度良く水平に支持させることができ、基板 W の受け渡しを円滑に行うことができる。  In addition, by bringing the holder body 7 into contact with the pre-positioned stationary mechanism 50 at the substrate delivery position, the substrate holder 6 can be supported horizontally and accurately, and the substrate W can be delivered smoothly. .
[0073] 静止機構 50としては、例えば、支柱 51を伸縮可能として当接部 54の高さ位置を上 下に調整可能とするのが好ましい。この場合、基板受け渡 Lf立置における当接部 54 の高さ位置の精度を向上させることができる。また、基板受け渡し位置の変更などに 対して容易に対応することができる。 [0073] As the stationary mechanism 50, for example, it is preferable that the column 51 can be expanded and contracted so that the height position of the contact portion 54 can be adjusted up and down. In this case, it is possible to improve the accuracy of the height position of the abutment portion 54 in the substrate delivery Lf standing. In addition, it is possible to easily cope with changes in the board delivery position.
また、当接部 54に吸着部あるいは磁石を設け、ホルダ本体 7が当接した際に、この ホルダ本体 7の下面を真空吸着ある!/ヽは磁力により吸着することにより、さらに迅速か つ確実に基板ホルダ 6を基板受け渡し位置に静止させることができる。 In addition, when the abutment part 54 is provided with an attracting part or a magnet, The bottom surface of the holder body 7 is vacuum-adsorbed! / ヽ is attracted by magnetic force, so that the substrate holder 6 can be stopped at the substrate transfer position more quickly and reliably.
[0074] なお、静止機構 50としては、上記構造のものに限定されず、各種の構造のものが 適用可能である。 [0074] The stationary mechanism 50 is not limited to the structure described above, and various structures can be applied.
ここで、静止機構 50の他の例について説明する。  Here, another example of the stationary mechanism 50 will be described.
図 8に示す静止機構 50は、支柱 51の先端部にダンバ及びスプリング力もなる振動 減衰部 55を設けた場合の例である。  A stationary mechanism 50 shown in FIG. 8 is an example in which a vibration damping unit 55 that also has a damper and a spring force is provided at the tip of a column 51.
このような振動減衰部 55を設けた場合、当接部 54に当接するホルダ本体 7からの 振動及び衝撃を確実に受け止め、基板ホルダ 6を迅速に静止させることができる。  When such a vibration attenuating portion 55 is provided, it is possible to reliably receive vibration and impact from the holder main body 7 that abuts against the abutting portion 54, and to quickly stop the substrate holder 6.
[0075] 図 9に示す静止機構 50は、支柱 51の先端部に、当接部として係合ピン 56を有する 係合部 57を備えた場合の例である。係合ピン 56は、ホルダ本体 7側に向かって突出 しており、ホルダ本体 7の先端部に形成された係合溝 7eに係合可能とされている。係 合ピン 56は、先端が半球状に形成された円柱形状を有し、図示しないコイルパネに 接続された状態で、係合部 57の穴内に挿入されている。その結果、係合ピン 56は、 前記穴に対して出没可能に設けられている。  A stationary mechanism 50 shown in FIG. 9 is an example in which an engaging portion 57 having an engaging pin 56 as an abutting portion is provided at the distal end portion of a support column 51. The engagement pin 56 protrudes toward the holder body 7 and can be engaged with an engagement groove 7e formed at the tip of the holder body 7. The engaging pin 56 has a cylindrical shape with a hemispherical tip, and is inserted into the hole of the engaging portion 57 while being connected to a coil panel (not shown). As a result, the engaging pin 56 is provided so as to be able to appear and retract with respect to the hole.
静止機構 50では、ホルダ本体 7が基板受け渡し位置に移動すると、このホルダ本 体 7の係合溝 7eに係合ピン 56が係合する。その結果、基板ホルダ 6を基板受け渡し 位置に迅速に静止させることができる。  In the stationary mechanism 50, when the holder body 7 moves to the substrate delivery position, the engagement pin 56 engages with the engagement groove 7e of the holder body 7. As a result, the substrate holder 6 can be quickly stopped at the substrate delivery position.
[0076] 図 10に示す静止機構 50は、支柱 51の先端部に、側面視コ字状に形成されて一端 側が互いに回動可能に連結された固定ブラケット 61及び可動ブラケット 62と、可動 ブラケット 62を回動させる駆動機構(図示略)とを備えている。固定ブラケット 61は、 支柱 51に固定され、可動ブラケット 62との連結側と反対側の他端部に弾性体 64が 設けられ、その表面が当接部 65とされている。可動ブラケット 62の他端部にも弾性体 66が設けられ、その表面が挟持部 67とされている。  A stationary mechanism 50 shown in FIG. 10 includes a fixed bracket 61 and a movable bracket 62 that are formed in a U-shape in a side view and are connected to one end side so as to be rotatable with respect to the distal end portion of a column 51. And a drive mechanism (not shown) for rotating the. The fixed bracket 61 is fixed to the support column 51, and an elastic body 64 is provided on the other end opposite to the connection side with the movable bracket 62, and the surface thereof is a contact portion 65. An elastic body 66 is also provided at the other end portion of the movable bracket 62, and the surface thereof serves as a clamping portion 67.
[0077] そして、この静止機構 50では、可動ブラケット 62が、図 10の仮想線に示す位置に 配置された状態で、ホルダ本体 7が基板受け渡し位置へ移動される。そして、ホルダ 本体 7の先端部下面が固定ブラケット 61の当接部 65に当接すると、前記駆動機構に よって可動ブラケット 62が時計回り(図中矢印 α方向)へ回動される。これにより、ホ ルダ本体 7は、その先端部が、固定ブラケット 61の当接部 65と可動ブラケット 62の挟 持部 67とによって挟持され、基板ホルダ 6が基板受け渡し位置にて迅速に静止させ ることがでさる。 In the stationary mechanism 50, the holder main body 7 is moved to the substrate delivery position in a state where the movable bracket 62 is disposed at the position indicated by the phantom line in FIG. When the lower surface of the front end of the holder body 7 contacts the contact portion 65 of the fixed bracket 61, the movable bracket 62 is rotated clockwise (in the direction of the arrow α in the figure) by the drive mechanism. This The front end of the rudder body 7 is sandwiched between the abutment portion 65 of the fixed bracket 61 and the sandwiching portion 67 of the movable bracket 62, so that the substrate holder 6 can be quickly stopped at the substrate delivery position. .
[0078] 図 11に示す静止機構 50は、支柱 51の先端部に回動可能に支持された支持ブラ ケット 71を備えている。この支持ブラケット 71は、側面視 V字状に形成され、 V字を形 成する内側の面がそれぞれ当接部 72とされている。  The stationary mechanism 50 shown in FIG. 11 includes a support bracket 71 that is rotatably supported at the tip end portion of the support column 51. The support bracket 71 is formed in a V shape when viewed from the side, and the inner surface forming the V shape is a contact portion 72.
この静止機構 50では、支持ブラケット 71が、図中仮想線にて示す位置に配置され た状態で、ホルダ本体 7が基板受け渡し位置に移動され、その先端部が支持ブラケ ット 71に接触すると、支持ブラケット 71が回転軸 73を中心として時計回り(図中矢印 β方向)に回動され、ストツバピン 74に当接して図中実線に示す位置に停止する。こ れにより、ホルダ本体 7は、その先端部における上下の角部が支持ブラケット 71のそ れぞれの当接部 72に当接されるので、基板ホルダ 6が基板受け渡し位置に迅速に 静止される。  In this stationary mechanism 50, when the holder main body 7 is moved to the substrate delivery position in a state where the support bracket 71 is disposed at the position indicated by the phantom line in the drawing, The support bracket 71 is rotated clockwise about the rotation shaft 73 (in the direction of arrow β in the figure), contacts the stopper pin 74, and stops at the position indicated by the solid line in the figure. As a result, the upper and lower corners of the tip of the holder body 7 are brought into contact with the respective contact portions 72 of the support bracket 71, so that the substrate holder 6 is quickly stopped at the substrate delivery position. The
[0079] 図 12に示す静止機構 50は、その下部に移動機構 75を備えている。この移動機構 75は、ストッパ 53を不図示のレールに沿って直線的に移動させることにより、基板ホ ルダ 6が当接する当接部 54を、基板受け渡し位置に配置されたホルダ本体 7の先端 部下方位置カゝら外れた位置(図中仮想線にて示す位置)〖こ配置させることができる。 この移動機構 75を備えた静止機構 50では、ホルダ本体 7が基板受け渡 Lf立置に 移動するときだけストツバ 53が基板受け渡し位置側に移動し、当接部 54にホルダ本 体 7が当接して静止される。  The stationary mechanism 50 shown in FIG. 12 includes a moving mechanism 75 at the lower part. This moving mechanism 75 moves the stopper 53 linearly along a rail (not shown), so that the contact portion 54 with which the substrate holder 6 abuts is placed below the tip of the holder body 7 disposed at the substrate delivery position. It is possible to dispose a position (a position indicated by an imaginary line in the figure) that deviates from the direction position. In the stationary mechanism 50 including the moving mechanism 75, the stopper 53 moves to the substrate delivery position side only when the holder body 7 moves to the substrate delivery Lf standing position, and the holder body 7 comes into contact with the contact portion 54. To be stationary.
[0080] つまり、この静止機構 50は、検査時のホルダ本体 7に対してストッパ 53が干渉する ことがないように、必要時以外のときは移動機構 75によってストッパ 53を待避位置( 図中仮想線にて示す位置)に移動させる。  In other words, the stationary mechanism 50 is configured such that the stopper 53 is moved to the retracted position (virtual in the figure) by the moving mechanism 75 when it is not necessary so that the stopper 53 does not interfere with the holder body 7 during inspection. To the position indicated by the line).
なお、必要時以外のときにストッパ 53を待避位置へ移動させる機構としては、直線 的に水平移動させるものに限らず、所定の軸を中心として回転させることによりストツ パ 53を平面視で円弧状に移動させる回転式を採用しても良い。  Note that the mechanism for moving the stopper 53 to the retracted position when it is not necessary is not limited to linearly moving horizontally, but the stopper 53 is arcuate in plan view by rotating around a predetermined axis. You may employ | adopt the rotary type moved to.
[0081] 図 13に示す静止機構 50は、ストツバ 53を構成する支柱 51が途中で分割されてお り、その分割箇所よりも上部のストツバ 53が下部に対して回動可能に連結されている この静止機構 50では、ホルダ本体 7が基板受け渡 Lf立置に移動するときだけ、支 柱 51が直線状をなし、当接部 54上にホルダ本体 7が当接して静止される。 [0081] In the stationary mechanism 50 shown in Fig. 13, the column 51 constituting the stocker 53 is divided in the middle, and the stocker 53 above the divided part is rotatably connected to the lower part. In this stationary mechanism 50, only when the holder main body 7 moves to the substrate delivery Lf standing position, the support column 51 forms a straight line, and the holder main body 7 comes into contact with and rests on the contact portion 54.
つまり、この静止機構 50の場合も、検査時のホルダ本体 7に対してストッパ 53が干 渉することがな 、ように、必要時以外のときは支柱 51が連結箇所にて屈曲されて待 避位置(図中仮想線にて示す位置)にストッパ 53が移動する。  In other words, even in the case of this stationary mechanism 50, the support column 51 is bent at the connecting portion and retracted when it is not necessary so that the stopper 53 does not interfere with the holder body 7 at the time of inspection. The stopper 53 moves to the position (position indicated by the phantom line in the figure).
[0082] なお、本実施形態では、枠状に形成された基板ホルダ 6を備えたマクロ検査装置 1 を例にとって説明した力 基板ホルダとしては、枠状のものに限定されないのは勿論 である。 In the present embodiment, the force substrate holder described by taking the macro inspection apparatus 1 including the substrate holder 6 formed in a frame shape as an example is not limited to the frame shape.
図 14及び図 15は、それぞれ、他の基板ホルダの平面図及び側面図である。これら の図に示す基板ホルダ 81は、複数本の細長い基板支持部 82を櫛歯状に配設した ホルダ本体 83を備えており、各基板支持部 82の上面には、前述した吸着部 9と同様 の吸着部 84が互いに間隔をあけて配置されている。そして、この基板ホルダ 81では 、ホルダ本体 83上に載置された基板 Wを、各基板支持部 82上の各吸着部 84によつ て真空吸着して保持する。  14 and 15 are a plan view and a side view of another substrate holder, respectively. The substrate holder 81 shown in these drawings includes a holder body 83 in which a plurality of elongated substrate support portions 82 are arranged in a comb-tooth shape. Similar suction portions 84 are arranged with a space therebetween. In the substrate holder 81, the substrate W placed on the holder main body 83 is vacuum-sucked and held by the suction portions 84 on the substrate support portions 82.
[0083] このような構造の基板ホルダ 81を採用した場合、基板受け渡し位置に移動される 基板ホルダ 81の各基板支持部 82の先端部下面側力 静止機構 50のストツバ 53に よって保持され、迅速に静止される。 [0083] When the substrate holder 81 having such a structure is employed, the bottom surface lower side force of each substrate support portion 82 of the substrate holder 81 moved to the substrate delivery position is held by the stop 53 of the stationary mechanism 50 and quickly To be quiesced.
特に、上記構造の基板ホルダ 81によれば、枠状の基板ホルダと比較して軽量化と ともに外形寸法の小型化が図られるので、基板受け渡し位置における振れの発生自 体を抑えることができ、さらに迅速に静止させることができる。  In particular, according to the substrate holder 81 having the above structure, the weight can be reduced and the outer dimensions can be reduced as compared with the frame-shaped substrate holder. Furthermore, it can be made still quickly.
[0084] [第 4実施形態] [0084] [Fourth Embodiment]
本発明のマクロ検査装置の第 4実施形態について、図面を参照しながら以下に説 明する。なお、上記第 1実施形態と同一構成要素には同一符号を付し、その説明を 省略する。  A fourth embodiment of the macro inspection apparatus of the present invention will be described below with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
図 16及び図 17は、それぞれ、他の基板ホルダの平面図及び側面図である。本実 施形態では、この基板ホルダ 6を回転 '摇動させる駆動機構として検査用多関節ァー ムロボット (検査用ロボット 15)を採用しており、検査用ロボット 15の駆動部への負担 を軽減し、装置全体の小型化を図ることを目的としてバランスウェイト 90を備えている 。このノ ランスウェイト 90を設けたこと以外は上記第 1実施形態と同じであり、重複す る説明は省略する。 16 and 17 are a plan view and a side view of another substrate holder, respectively. In this embodiment, an inspection articulated arm robot (inspection robot 15) is employed as a drive mechanism for rotating and swinging the substrate holder 6, and the load on the drive unit of the inspection robot 15 is reduced. The balance weight 90 is provided for the purpose of reducing the size of the apparatus and reducing the size of the entire apparatus. Except for the provision of the non-weight weight 90, the second embodiment is the same as the first embodiment, and a duplicate description is omitted.
[0085] ホルダ本体 7の一端側に形成された連結部 7fには、検査用多関節アームロボット( 基板ホルダ駆動機構)を採用した検査用ロボット 15の先端アーム 16が、連結軸 Xを 中心として回動可能に連結されている。これにより、この基板ホルダ 6が検査用ロボッ ト 15によって片持ち支持されている。検査用ロボット 15は、例えば、図 1に仮想線で 示したような水平に姿勢保持される位置から、図 1に実線で示したような所定の傾斜 角度まで起き上がった位置まで、基板ホルダ 6を揺動させたり、回転させたりすること が可能になっている。  [0085] At the connecting portion 7f formed on one end side of the holder body 7, the tip arm 16 of the inspection robot 15 employing the inspection articulated arm robot (substrate holder driving mechanism) is centered on the connection axis X. It is connected so that it can rotate. As a result, the substrate holder 6 is cantilevered by the inspection robot 15. For example, the inspection robot 15 moves the substrate holder 6 from the position where the posture is held horizontally as shown by the phantom line in FIG. 1 to the position where it rises to a predetermined inclination angle as shown by the solid line in FIG. It can be swung or rotated.
[0086] 基板ホルダ 6には、検査用ロボット 15の先端アーム 16が連結された連結側端部に 、一対のバランスウェイト 90が取り付けられている。これらバランスウェイト 90は、基板 ホルダ 6の両側部近傍に固定された支持アーム 91の先端に支持されており、先端ァ ーム 16との連結軸 Xに対して基板ホルダ 6とは反対側に配置されている。  A pair of balance weights 90 are attached to the substrate holder 6 at the connection side end to which the tip arm 16 of the inspection robot 15 is connected. These balance weights 90 are supported at the tip of a support arm 91 fixed in the vicinity of both sides of the substrate holder 6, and are arranged on the opposite side of the substrate holder 6 with respect to the connecting axis X with the tip arm 16. Has been.
[0087] これらバランスウェイト 90は、先端アーム 16との連結箇所を通る基板ホルダ 6の中 心軸 Yを挟んだ両側にそれぞれ振り分けて設けられ、しカゝも、連結軸 Xを境に基板ホ ルダ 6の重心 Gの反対側にそれぞれ配置されている。  [0087] These balance weights 90 are provided separately on both sides of the center axis Y of the substrate holder 6 that passes through the connection point with the tip arm 16, and the shim is also connected to the substrate Ruda 6 is placed on the opposite side of the center of gravity G.
これにより、連結軸 Xには、基板ホルダ 6の重量により生じる回転モーメントが、バラ ンスウェイト 90の重量により生じる回転モーメントで減じられている。なお、基板ホル ダ 6の重量により生じる回転モーメントを略釣り合わせて相殺させるように、ノ《ランスゥ エイト 90の重量及び配置を設定しても良い。  As a result, the rotational moment generated by the weight of the substrate holder 6 is reduced on the connecting shaft X by the rotational moment generated by the weight of the balance weight 90. Note that the weight and arrangement of the lance weight 90 may be set so that the rotational moment generated by the weight of the substrate holder 6 is substantially balanced and offset.
[0088] 以上説明の構成を有する本実施形態のマクロ検査装置 1によれば、検査用ロボット 15の先端アーム 16との連結側端部に、先端アーム 16との連結軸 Xに対して重心 Gと 反対側にバランスウェイト 90を設けたので、基板ホルダ 6の重量により生じる連結軸 X回りの回転モーメントを、ノ《ランスウェイト 90の重量により生じる連結軸 X回りの回転 モーメントで減少させることができる。  According to the macro inspection apparatus 1 of the present embodiment having the above-described configuration, the center of gravity G with respect to the connection axis X with the tip arm 16 is formed at the end of the inspection robot 15 on the connection side with the tip arm 16. Since the balance weight 90 is provided on the opposite side, the rotational moment around the connecting axis X caused by the weight of the substrate holder 6 can be reduced by the rotational moment around the connecting axis X caused by the weight of the lance weight 90. .
その結果、基板ホルダ 6を揺動自在に片持ち支持する検査用ロボット 15の駆動部 への負荷を大幅に低減し、装置全体の小型化を図ることができる。 [0089] また、各バランスウェイト 90を、先端アーム 16との連結箇所を通る基板ホルダ 6の 中心軸 Yを挟んだ両側にそれぞれ振り分けて設けたので、先端アーム 16との連結箇 所に対する各バランスウェイト 91による回転モーメントのバランスも釣り合わせること ができ、これにより、中心軸 Yを中心とした基板ホルダ 6の回動を円滑に行うことがで きる。 As a result, the load on the drive part of the inspection robot 15 that cantilever-supports the substrate holder 6 can be greatly reduced, and the entire apparatus can be downsized. In addition, each balance weight 90 is provided separately on both sides of the center axis Y of the substrate holder 6 that passes through the connection point with the tip arm 16, so that each balance with respect to the connection point with the tip arm 16 is provided. The balance of the rotational moment by the weight 91 can also be balanced, whereby the substrate holder 6 can be smoothly rotated about the central axis Y.
[0090] なお、バランスウェイト 90は、検査用ロボット 15の先端アーム 16との連結箇所を通 る基板ホルダ 6の中心軸 Yに沿って位置調節が可能にしても良い。この場合、ノラン スウェイト 90の位置を調節することにより、ホルダ本体 7の重さの変化や傾斜角度な どに合わせて連結軸 Xにおける回転モーメントのバランスをさらに高精度に制御する ことができる。  It should be noted that the balance weight 90 may be positionally adjustable along the central axis Y of the substrate holder 6 that passes through the connection point with the tip arm 16 of the inspection robot 15. In this case, by adjusting the position of the nourishment weight 90, the balance of the rotational moment on the connecting shaft X can be controlled with higher accuracy in accordance with the change in the weight of the holder body 7 and the inclination angle.
[0091] バランスウェイト 90の取り付け位置は、連結軸 X回りの回転モーメントを減少させる ことができる位置であれば、本実施形態の位置に限定されない。バランスウェイト 90 の取り付け位置が異なる他の例について、以下に説明する。  [0091] The attachment position of the balance weight 90 is not limited to the position of the present embodiment as long as the rotational moment about the connecting axis X can be reduced. Another example in which the mounting position of the balance weight 90 is different will be described below.
図 18は、一対のバランスウェイト 90を、連結部 7fに近接配置した場合を示す。 この場合、中心軸 Y回りの基板ホルダ 6の慣性モーメントを極力小さくすることがで き、中心軸 Yを中心とした基板ホルダ 6の回動を円滑に行うことができる。  FIG. 18 shows a case where a pair of balance weights 90 are arranged close to the connecting portion 7f. In this case, the moment of inertia of the substrate holder 6 around the central axis Y can be minimized, and the substrate holder 6 can be smoothly rotated about the central axis Y.
[0092] 図 19及び図 20は、先端アーム 16が連結される連結部 7fを、連結軸 Xに対してホ ルダ本体 7とは反対側に延在させた支持アーム 91と、この支持アーム 91に支持され た一つのバランスウェイト 90とを備えた場合を示す。ノ ランスウェイト 90は、基板ホル ダ 6の中心軸 Y上に配設されて 、る。 FIGS. 19 and 20 show a support arm 91 in which a connecting portion 7f to which the tip arm 16 is connected is extended to the opposite side of the holder body 7 with respect to the connecting axis X, and the support arm 91. The case with one balance weight 90 supported by is shown. The tolerance weight 90 is disposed on the central axis Y of the substrate holder 6.
上記構造によれば、中心軸 Y回りにおける基板ホルダ 6の慣性モーメントをさらに小 さくすることができ、中心軸 Yを中心とした基板ホルダ 6の回動をさらに円滑に行うこと ができる。  According to the above structure, the moment of inertia of the substrate holder 6 around the central axis Y can be further reduced, and the substrate holder 6 can be rotated more smoothly around the central axis Y.
[0093] なお、この場合、先端アーム 16が支持アーム 91及びバランスウェイト 90に干渉しな いように、例えば、ホルダ本体 7の連結部 7fに対して駆動アーム 16が略直交するよう に連結させ、可動範囲が極力制限されな 、ようにするのが好ま 、。  In this case, for example, the drive arm 16 is connected so as to be substantially orthogonal to the connecting portion 7f of the holder body 7 so that the tip arm 16 does not interfere with the support arm 91 and the balance weight 90. It is preferable to limit the range of movement as much as possible.
[0094] なお、本変形例では、枠状に形成された基板ホルダ 6を備えたマクロ検査装置 1を 例にとって説明したが、基板ホルダとしては、枠状のものに限定されないのは勿論で ある。 In this modification, the macro inspection apparatus 1 including the substrate holder 6 formed in a frame shape has been described as an example. However, the substrate holder is not limited to the frame shape. is there.
図 21、及び図 22に示すものは、図 14に示したものと同じ基板ホルダ 81であり、複 数の細長い基板支持部 82を櫛歯状に配設し、各基板支持部 82の上面には、各吸 着部 84が互いに間隔をあけて設けられて 、る。  FIG. 21 and FIG. 22 show the same substrate holder 81 as that shown in FIG. 14, and a plurality of elongated substrate support portions 82 are arranged in a comb-like shape, on the upper surface of each substrate support portion 82. Each of the adsorbing portions 84 is provided at a distance from each other.
[0095] そして、この基板ホルダ 81にも、先端アーム 16とホルダ本体 83の連結部 83aとの 連結側端部に、一対の支持アーム 91を介して一対のバランスウェイト 90が取り付け られており、これらバランスウェイト 90力 連結軸 Xを境に基板ホルダ 81の重心 Gの 反対側に配置されている。 Then, a pair of balance weights 90 is attached to the substrate holder 81 via a pair of support arms 91 at the connection side end portion between the tip arm 16 and the connection portion 83a of the holder body 83. These balance weights 90 force are arranged on the opposite side of the center of gravity G of the substrate holder 81 with the connecting axis X as a boundary.
これにより、連結軸 X回りにおいて、基板ホルダ 81の重量により生じる回転モーメン トと、ノ《ランスウェイト 90の重量により生じる回転モーメントとが略釣り合って相殺され る。  As a result, the rotational moment generated by the weight of the substrate holder 81 and the rotational moment generated by the weight of the lance weight 90 are substantially balanced and offset around the connecting axis X.
[0096] 特に、上記構造の基板ホルダ 81によれば、枠状の基板ホルダと比較して小型軽量 ィ匕が図られるので、バランスウェイト 90としても軽量なものを用いることができ、さらな る装置の小型化を図ることができる。  [0096] In particular, according to the substrate holder 81 having the above-described structure, a smaller and lighter weight can be achieved as compared with the frame-shaped substrate holder. The size of the apparatus can be reduced.
産業上の利用可能性  Industrial applicability
[0097] 本発明によれば、基板ホルダ上における基板の位置決めを迅速に行うことができる ので、タクトタイムを短縮して検査の効率ィ匕を図ることが可能になる。 According to the present invention, since the substrate can be quickly positioned on the substrate holder, the tact time can be shortened and the inspection efficiency can be improved.
また、本発明によれば、例えば、基板位置決め機構を基板ホルダ以外の位置に設 けた場合、基板位置決め機構が基板ホルダに設けられていない分だけ、基板ホルダ を小型化、軽量ィ匕することができる。したがって、基板ホルダ駆動機構に力かる負担 を低減することができるので、基板ホルダ駆動機構を小型化でき、マクロ検査装置全 体を小型化、軽量ィ匕することができる。  Further, according to the present invention, for example, when the substrate positioning mechanism is provided at a position other than the substrate holder, the substrate holder can be reduced in size and weight by the amount that the substrate positioning mechanism is not provided on the substrate holder. it can. Therefore, the burden imposed on the substrate holder driving mechanism can be reduced, so that the substrate holder driving mechanism can be reduced in size, and the entire macro inspection apparatus can be reduced in size and weight.
また、本発明によれば、上述のように、基板ホルダ駆動機構にカゝかる負担を低減す ることができるので、駆動機構として多関節アームロボットによるマクロ検査装置を実 現することが可能になる。  In addition, according to the present invention, as described above, the burden on the substrate holder driving mechanism can be reduced, so that a macro inspection apparatus using an articulated arm robot can be realized as the driving mechanism. Become.

Claims

請求の範囲 The scope of the claims
[1] 検査を受ける基板を保持する基板ホルダと;  [1] a substrate holder for holding a substrate to be inspected;
前記基板に照明光を照射するマクロ照明光学系と;  A macro illumination optical system for irradiating the substrate with illumination light;
前記基板ホルダを支持するとともに前記基板が前記照明光で照らされた状態で前 記基板ホルダの姿勢を制御する基板ホルダ駆動機構と;  A substrate holder driving mechanism that supports the substrate holder and controls the posture of the substrate holder in a state where the substrate is illuminated by the illumination light;
前記基板ホルダとの間で前記基板の受け渡しを行う基板搬送機構と; 前記基板ホルダ上に受け渡された前記基板に対してエアーの吹き付けを行うことに より、この基板を前記基板ホルダ上カゝら浮き上がらせる基板浮上機構と;  A substrate transport mechanism for delivering the substrate to and from the substrate holder; and by blowing air to the substrate delivered to the substrate holder, A substrate levitation mechanism that lifts from the surface;
この基板浮上機構により浮上状態にある前記基板を前記基板ホルダ上の基準位置 に位置決めする基板位置決め機構と;  A substrate positioning mechanism that positions the substrate in a floating state by the substrate floating mechanism at a reference position on the substrate holder;
この基板位置決め機構により位置決めされた前記基板を前記基板ホルダに固定す る基板固定機構と;  A substrate fixing mechanism for fixing the substrate positioned by the substrate positioning mechanism to the substrate holder;
を備えたことを特徴とするマクロ検査装置。  A macro inspection apparatus comprising:
[2] 請求項 1に記載のマクロ検査装置であって、  [2] The macro inspection apparatus according to claim 1,
前記基板ホルダ駆動機構力 多関節アームロボットを備える。  The substrate holder driving mechanism force includes an articulated arm robot.
[3] 請求項 1に記載のマクロ検査装置であって、  [3] The macro inspection apparatus according to claim 1,
前記基板位置決め機構が、前記基板ホルダ以外の位置に設けられて!/ヽる。  The substrate positioning mechanism is provided at a position other than the substrate holder! / Speak.
[4] 請求項 3に記載のマクロ検査装置であって、  [4] The macro inspection apparatus according to claim 3,
前記基板位置決め機構が、前記基板をその周囲から挟持することにより、前記位置 決めを行う。  The substrate positioning mechanism performs the positioning by sandwiching the substrate from its periphery.
[5] 請求項 3に記載のマクロ検査装置であって、  [5] The macro inspection apparatus according to claim 3,
前記基板位置決め機構が、前記基準位置に達した際の前記基板に当接する位置 に固定された位置決め部材と;前記基板を前記位置決め部材に向けて付勢する付 勢装置と;を備える。  A positioning member fixed at a position that contacts the substrate when the substrate positioning mechanism reaches the reference position; and a biasing device that biases the substrate toward the positioning member.
[6] 請求項 3に記載のマクロ検査装置であって、 [6] The macro inspection apparatus according to claim 3,
前記基板ホルダに、前記基板位置決め機構との間の干渉を避ける第 1の切り欠き が形成されている。  A first notch is formed in the substrate holder to avoid interference with the substrate positioning mechanism.
[7] 請求項 1に記載のマクロ検査装置であって、 前記基板位置決め機構が、前記基板ホルダ上に設けられて前記基準位置に達し た際の前記基板に当接する位置に固定された位置決め部材と;前記基板ホルダ以 外の位置に設けられて前記基板を前記位置決め部材に向けて付勢する付勢装置と ;を備える。 [7] The macro inspection apparatus according to claim 1, A positioning member provided on the substrate holder and fixed at a position where the substrate positioning mechanism comes into contact with the substrate when the reference position is reached; provided at a position other than the substrate holder; A biasing device that biases the positioning member toward the positioning member.
[8] 請求項 1に記載のマクロ検査装置であって、  [8] The macro inspection apparatus according to claim 1,
前記基板浮上機構により前記基板を前記基板ホルダから浮上させた状態で、前記 基板ホルダ駆動機構により前記基板ホルダを傾斜させた際に、この基板ホルダの傾 斜に沿って移動する前記基板が前記基準位置に達した際に当接する位置決め部材 力 前記基板位置決め機構に備えられている。  When the substrate holder is tilted by the substrate holder driving mechanism in a state where the substrate is floated from the substrate holder by the substrate floating mechanism, the substrate moving along the tilt of the substrate holder is the reference Positioning member force that contacts when the position is reached The substrate positioning mechanism is provided.
[9] 請求項 1に記載のマクロ検査装置であって、  [9] The macro inspection apparatus according to claim 1,
前記基板ホルダを正面視した場合の外形寸法が、前記基板を正面視した場合の 外形寸法よりも小さい。  The outer dimension when the substrate holder is viewed from the front is smaller than the outer dimension when the substrate is viewed from the front.
[10] 請求項 1に記載のマクロ検査装置であって、  [10] The macro inspection apparatus according to claim 1,
前記基板搬送機構との間における前記基板の受け渡し位置に移動した前記基板 ホルダを停止させる静止機構をさらに備える。  The apparatus further includes a stationary mechanism for stopping the substrate holder that has moved to the substrate transfer position with respect to the substrate transport mechanism.
[11] 請求項 10に記載のマクロ検査装置であって、  [11] The macro inspection apparatus according to claim 10,
前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダに当接してこの 基板ホルダの振動を減衰させる弾性体を備える。  The stationary mechanism includes an elastic body that abuts against the substrate holder when the delivery position is reached and attenuates vibration of the substrate holder.
[12] 請求項 11に記載のマクロ検査装置であって、  [12] The macro inspection apparatus according to claim 11,
前記静止機構が、軸線が基板ホルダに略垂直をなすように定位置に固定されたス プリングをさらに備え、このスプリング上に前記弾性体が設けられている。  The stationary mechanism further includes a spring fixed at a fixed position so that the axis is substantially perpendicular to the substrate holder, and the elastic body is provided on the spring.
[13] 請求項 10に記載のマクロ検査装置であって、  [13] The macro inspection apparatus according to claim 10,
前記基板ホルダの側部に第 2の切り欠きが形成され;  A second notch is formed in a side of the substrate holder;
前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダの前記第 2の切 り欠きに係止する係止部を備える。  The stationary mechanism includes an engaging portion that engages with the second notch of the substrate holder when the delivery position is reached.
[14] 請求項 10に記載のマクロ検査装置であって、 [14] The macro inspection apparatus according to claim 10,
前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダを挟持する挟 持手段を備える。 The stationary mechanism includes clamping means for clamping the substrate holder when reaching the delivery position.
[15] 請求項 10に記載のマクロ検査装置であって、 [15] The macro inspection apparatus according to claim 10,
前記静止機構が、前記受け渡し位置に達した際の前記基板ホルダを受け入れる凹 部を有するとともに前記基板が前記受け渡し位置に向力う方向に沿って回動する回 動部材と;この回動部材に受け入れられた前記基板ホルダが前記受け渡し位置に達 した際の回転位置に前記回動部材を停止させる回動規制部材と;を備える。  A rotating member that has a recess for receiving the substrate holder when the stationary mechanism reaches the delivery position, and that rotates along a direction in which the substrate faces the delivery position; A rotation restricting member that stops the rotation member at a rotation position when the received substrate holder reaches the delivery position.
[16] 請求項 10に記載のマクロ検査装置であって、 [16] The macro inspection apparatus according to claim 10,
前記静止機構が、前記受け渡し位置に達した前記基板ホルダを受け止める受け止 め位置と、この受け止め位置力も離間した待避位置との間で移動する。  The stationary mechanism moves between a receiving position for receiving the substrate holder that has reached the transfer position, and a retracted position in which the receiving position force is also separated.
[17] 請求項 16に記載のマクロ検査装置であって、 [17] The macro inspection apparatus according to claim 16,
前記静止機構が、前記受け止め位置及び前記待避位置間を水平移動する。  The stationary mechanism moves horizontally between the receiving position and the retracted position.
[18] 請求項 16に記載のマクロ検査装置であって、 [18] The macro inspection apparatus according to claim 16,
前記静止機構が、前記受け止め位置及び前記待避位置間を回転移動する。  The stationary mechanism rotates between the receiving position and the retracted position.
[19] 請求項 1に記載のマクロ検査装置であって、 [19] The macro inspection apparatus according to claim 1,
前記基板ホルダ駆動機構力 前記基板ホルダの一辺を、この一辺に平行な第 1の 軸線回りに前記基板ホルダが回動可能なように支持し;  The substrate holder driving mechanism force supports one side of the substrate holder so that the substrate holder can rotate around a first axis parallel to the one side;
前記第 1の軸線を回転中心として前記基板ホルダの位置とは反対側に位置するゥ エイトが、前記基板ホルダに設けられている。  A weight located on the side opposite to the position of the substrate holder with the first axis as the rotation center is provided on the substrate holder.
[20] 請求項 19に記載のマクロ検査装置であって、 [20] The macro inspection apparatus according to claim 19,
前記ホルダ駆動機構が、前記基板ホルダを、前記第 1の軸線に直交するとともに前 記基板ホルダがなす平面に平行な第 2の軸線回りに回動可能に支持し;  The holder driving mechanism supports the substrate holder so as to be rotatable about a second axis that is orthogonal to the first axis and parallel to a plane formed by the substrate holder;
前記基板ホルダの重心位置と、前記第 1の軸線及び前記第 2の軸線間の交点と、 前記ウェイトの重心位置とが略一直線上に配置されている。  The barycentric position of the substrate holder, the intersection between the first axis and the second axis, and the barycentric position of the weight are arranged on a substantially straight line.
[21] 請求項 19に記載のマクロ検査装置であって、 [21] The macro inspection apparatus according to claim 19,
前記ホルダ駆動機構が、前記基板ホルダを、前記第 1の軸線に直交するとともに前 記基板ホルダがなす平面に平行な第 2の軸線回りに回動可能に支持し;  The holder driving mechanism supports the substrate holder so as to be rotatable about a second axis that is orthogonal to the first axis and parallel to a plane formed by the substrate holder;
前記ウェイトが、前記第 2の軸線を間に挟んで互いに接近するように一対設けられ ている。  A pair of weights are provided so as to approach each other with the second axis interposed therebetween.
[22] 検査を受ける基板の受け渡し位置に基板ホルダを停止させる基板ホルダ停止ステ ップと; [22] Substrate holder stop step for stopping the substrate holder at the delivery position of the substrate to be inspected And
前記基板ホルダ上に前記基板を載置する基板載置ステップと;  A substrate placing step of placing the substrate on the substrate holder;
前記基板に対してエアーを吹き付けてこの基板を前記基板ホルダ上力 浮き上が らせる基板浮上ステップと;  A substrate floating step of blowing air to the substrate to lift the substrate on the substrate holder;
浮上状態にある前記基板を前記基板ホルダ上の基準位置に位置決めする基板位 置決めステップと;  A substrate positioning step for positioning the floating substrate at a reference position on the substrate holder;
前記基板位置決めステップ後の前記基板を前記基板ホルダに固定する基板固定 ステップと;  A substrate fixing step of fixing the substrate after the substrate positioning step to the substrate holder;
を有するマクロ検査方法。  A macro inspection method.
[23] 請求項 22に記載のマクロ検査方法であって、  [23] The macro inspection method according to claim 22,
前記基板位置決めステップでは、前記基板をその周囲から挟持することにより、前 記位置決めを行う。  In the substrate positioning step, the substrate is positioned from above by positioning the substrate.
[24] 請求項 22に記載のマクロ検査方法であって、 [24] The macro inspection method according to claim 22,
前記基板が前記基準位置に達した際に当接する位置決め部材を前記基板ホルダ に設け;  A positioning member that contacts when the substrate reaches the reference position is provided on the substrate holder;
前記基板位置決めステップで、浮上状態の前記基板を前記位置決め部材に当接 させるように前記基板ホルダを傾斜させる。  In the substrate positioning step, the substrate holder is inclined so that the floating substrate is brought into contact with the positioning member.
[25] 請求項 22に記載のマクロ検査方法であって、 [25] The macro inspection method according to claim 22,
前記基板ホルダ停止ステップで、前記受け渡し位置に移動した前記基板ホルダの 振動を減衰させることにより、前記基板ホルダを停止させる。  In the substrate holder stop step, the substrate holder is stopped by attenuating the vibration of the substrate holder moved to the delivery position.
[26] 請求項 22に記載のマクロ検査方法であって、 [26] The macro inspection method according to claim 22,
前記基板ホルダ停止ステップで、前記受け渡し位置に移動した前記基板ホルダを 挟持することにより、前記基板ホルダを停止させる。  In the substrate holder stopping step, the substrate holder is stopped by holding the substrate holder moved to the delivery position.
[27] 請求項 22に記載のマクロ検査方法であって、 [27] The macro inspection method according to claim 22,
前記基板ホルダ停止ステップで、前記受け渡し位置に移動した前記基板ホルダを 定位置に係止させることにより、前記基板ホルダを停止させる。  In the substrate holder stop step, the substrate holder is stopped by locking the substrate holder moved to the delivery position at a fixed position.
[28] 請求項 22に記載のマクロ検査方法であって、 [28] The macro inspection method according to claim 22,
前記基板ホルダの回転モーメントを、この回転モーメントと釣り合う回転モーメントを 発生させるウェイトにより相殺する。 A rotational moment that balances the rotational moment of the substrate holder with this rotational moment. Offset by the weight to be generated.
PCT/JP2005/017616 2004-09-27 2005-09-26 Macro inspection apparatus and macro inspection method WO2006035703A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006537713A JP4729499B2 (en) 2004-09-27 2005-09-26 Macro inspection apparatus and macro inspection method
CN2005800015913A CN1906476B (en) 2004-09-27 2005-09-26 Macro inspection apparatus and macro inspection method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004279992 2004-09-27
JP2004-279992 2004-09-27
JP2004279991 2004-09-27
JP2004279990 2004-09-27
JP2004-279990 2004-09-27
JP2004-279991 2004-09-27

Publications (1)

Publication Number Publication Date
WO2006035703A1 true WO2006035703A1 (en) 2006-04-06

Family

ID=36118849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017616 WO2006035703A1 (en) 2004-09-27 2005-09-26 Macro inspection apparatus and macro inspection method

Country Status (5)

Country Link
JP (1) JP4729499B2 (en)
KR (1) KR100791132B1 (en)
CN (1) CN1906476B (en)
TW (1) TW200614412A (en)
WO (1) WO2006035703A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281651A (en) * 2009-06-04 2010-12-16 Panasonic Corp Optical inspection device
JP2011141127A (en) * 2010-01-05 2011-07-21 Avanstrate Taiwan Inc Visual inspection method and visual inspection device for defect part of glass plate
CN106770364A (en) * 2017-01-26 2017-05-31 江苏东旭亿泰智能装备有限公司 Substrate positioning mechanism, macro inspection apparatus and macro inspection method
WO2025070260A1 (en) * 2023-09-29 2025-04-03 吉野石膏株式会社 Sampling apparatus, apparatus for manufacturing plate member, and apparatus for manufacturing gypsum building material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265099B2 (en) * 2006-09-11 2013-08-14 オリンパス株式会社 Board inspection equipment
KR101367910B1 (en) * 2011-12-30 2014-02-28 엘아이지에이디피 주식회사 Substrate Aligner and Substrate Inspecting System With the Same
CN102591044A (en) * 2012-01-12 2012-07-18 北京凌云光视数字图像技术有限公司 TFT (thin film transistor) liquid crystal screen quality detection method
CN102540515B (en) * 2012-01-12 2015-07-08 北京凌云光视数字图像技术有限公司 Quality detection system for thin film transistor (TFT) liquid crystal display screen
KR102177156B1 (en) 2014-03-10 2020-11-10 삼성전자주식회사 robot and substrate processing apparatus including the same
CN106198570B (en) * 2016-08-15 2019-02-22 武汉华星光电技术有限公司 A kind of substrate detection apparatus
CN106918934A (en) * 2017-03-27 2017-07-04 武汉华星光电技术有限公司 Substrate macro -graph machine
WO2018194022A1 (en) * 2017-04-20 2018-10-25 日本電気硝子株式会社 Glass plate production method and production apparatus
CN108613990A (en) * 2018-07-13 2018-10-02 江苏东旭亿泰智能装备有限公司 A kind of microcosmic and compound check machine of macroscopic view
CN109192673B (en) * 2018-08-27 2021-09-17 苏州精濑光电有限公司 Wafer detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101119A (en) * 1989-09-14 1991-04-25 Hitachi Electron Eng Co Ltd Substrate chuck mechanism
JP2001194312A (en) * 1999-10-25 2001-07-19 Olympus Optical Co Ltd Holder mechanism for macro-inspection
JP2003302346A (en) * 2002-04-12 2003-10-24 Hitachi Electronics Eng Co Ltd Surface inspection device for sheet work

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264276B2 (en) * 1991-05-09 2002-03-11 株式会社日立製作所 Method for detecting nucleic acid fragment molecular weight separation pattern
KR20020065480A (en) * 2000-08-24 2002-08-13 올림파스 고가꾸 고교 가부시키가이샤 Floodlight for appearance inspection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101119A (en) * 1989-09-14 1991-04-25 Hitachi Electron Eng Co Ltd Substrate chuck mechanism
JP2001194312A (en) * 1999-10-25 2001-07-19 Olympus Optical Co Ltd Holder mechanism for macro-inspection
JP2003302346A (en) * 2002-04-12 2003-10-24 Hitachi Electronics Eng Co Ltd Surface inspection device for sheet work

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281651A (en) * 2009-06-04 2010-12-16 Panasonic Corp Optical inspection device
JP2011141127A (en) * 2010-01-05 2011-07-21 Avanstrate Taiwan Inc Visual inspection method and visual inspection device for defect part of glass plate
CN106770364A (en) * 2017-01-26 2017-05-31 江苏东旭亿泰智能装备有限公司 Substrate positioning mechanism, macro inspection apparatus and macro inspection method
WO2025070260A1 (en) * 2023-09-29 2025-04-03 吉野石膏株式会社 Sampling apparatus, apparatus for manufacturing plate member, and apparatus for manufacturing gypsum building material

Also Published As

Publication number Publication date
KR20070037563A (en) 2007-04-05
JP4729499B2 (en) 2011-07-20
TW200614412A (en) 2006-05-01
CN1906476B (en) 2010-10-06
CN1906476A (en) 2007-01-31
JPWO2006035703A1 (en) 2008-05-15
KR100791132B1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
WO2006035703A1 (en) Macro inspection apparatus and macro inspection method
JP6191721B2 (en) Conveying apparatus, conveying method, exposure apparatus, and device manufacturing method
JP4723204B2 (en) Integrated large glass handling system
CN101752283B (en) Substrate transport apparatus and substrate transport method
TW200906695A (en) Substrate adsorption device, substrate transportation device and external inspection equipment
JP2002099095A (en) Automatic both-side exposing device and method of using the same
US20090016857A1 (en) Substrate-replacing apparatus, substrate-processing apparatus, and substrate-inspecting apparatus
JP4377918B2 (en) Board holder
JP5005945B2 (en) Board inspection equipment
JP4394797B2 (en) Substrate transfer device
JPH02126648A (en) Treatment apparatus
JP3832922B2 (en) Large board inspection equipment
JPH0922933A (en) Method and apparatus for carrying substrate
JP4334895B2 (en) Large substrate stage
JP2603191B2 (en) Thin plate tilting device
JP4745536B2 (en) Display substrate transfer device
JP4282379B2 (en) Wafer inspection equipment
KR100358707B1 (en) Panel Sending Apparatus of Liquid Crystal Display Inspection System
JP4286461B2 (en) Transfer machine
JP3777050B2 (en) Substrate processing system
JP5928771B2 (en) Substrate inspection apparatus and substrate inspection method
WO2007119613A1 (en) Conveyance apparatus, conveyance method, and device production method
CN100485369C (en) Holding device
JP4002189B2 (en) Substrate transfer device
JPH1076491A (en) Plate delivery system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001591.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006537713

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020067010103

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020067010103

Country of ref document: KR

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载