+

WO2006033151A1 - Wireless receiver and digital demodulating method - Google Patents

Wireless receiver and digital demodulating method Download PDF

Info

Publication number
WO2006033151A1
WO2006033151A1 PCT/JP2004/013921 JP2004013921W WO2006033151A1 WO 2006033151 A1 WO2006033151 A1 WO 2006033151A1 JP 2004013921 W JP2004013921 W JP 2004013921W WO 2006033151 A1 WO2006033151 A1 WO 2006033151A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
digital
data
unit
output
Prior art date
Application number
PCT/JP2004/013921
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Funakubo
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2006536283A priority Critical patent/JP4382095B2/en
Priority to PCT/JP2004/013921 priority patent/WO2006033151A1/en
Publication of WO2006033151A1 publication Critical patent/WO2006033151A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3881Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using sampling and digital processing, not including digital systems which imitate heterodyne or homodyne demodulation

Definitions

  • the present invention relates to a radio receiver and a digital demodulation method thereof, and more particularly to a radio receiver and a digital demodulation method provided with a digital demodulator that directly digitally demodulates a radio frequency signal in order to reduce the size of the radio receiver. .
  • FIG. 4 is a block diagram of the direct RF demodulation method.
  • the AD converter 101 samples the antenna input signal of the RF frequency fo at the sampling frequency fs which is the same frequency as the RF frequency and performs AD conversion.
  • In-phase component (Ich signal) and quadrature component (Qch signal) are output.
  • the Ich and Qch root roll-off filters 103 and 104 limit the bandwidth of the Ich signal and the Qch signal and add predetermined characteristics to the baseband processing unit 105, respectively.
  • the baseband processing unit 105 performs processing such as demodulation and decoding on the input signal.
  • Fig. 4 shows a configuration corresponding to only one wave of the RF frequency fo.
  • an orthogonal unit 102-baseband processing unit 105 is provided corresponding to the carrier, and AD conversion is performed. Connected in parallel to the output of the device 101.
  • the AD conversion rate and the processing speed of the digital section are equivalent to the RF frequency. For this reason, the device performance is limited, and systems with RF frequencies of several hundred MHz or less can be realized, and cannot be used for radio receivers beyond that.
  • the conversion rate of AD conversion and the operation speed of the digital quadrature demodulation unit must also be in the GHz class, which is difficult to realize with current devices. It is.
  • AD converters GHz-class devices have been released in recent years.ASIC and FPGA (Field Programmable The operating speed of LSIs (such as Gate Array) is generally several hundred MHz, and cannot be applied to wireless systems beyond that.
  • an undersampling method may be considered in which undersampling is performed with a clock having a frequency that is larger than the baseband rate of the modulation signal but smaller than the RF frequency, and digitally converted.
  • undersampling simply with a low clock frequency is affected by the jitter of the sampling clock at the RF frequency, so the clock purity needs to be (radio frequency Z clock frequency) times as high as normal. This method is also difficult to realize.
  • the multi-carrier collective demodulation method is a method in which the RF frequency of the antenna input signal is down-converted to an intermediate frequency and then AD conversion is performed, and quadrature demodulation processing is performed on the AD conversion output.
  • Fig. 5 is a block diagram of the multi-carrier simultaneous demodulation method.
  • the mixer 201 mixes the antenna reception signal of the RF frequency fo—fc with the frequency (fo + fc) / 2 ⁇ f output from the local oscillator 202 to the intermediate frequency.
  • the low pass filter 203 generates high frequency components.
  • AD transformation 204 has a sampling frequency of f / n.
  • the intermediate frequency signal is sampled and converted to digital, and input to the receiving circuits 205a to 205 ⁇ corresponding to each carrier.
  • the receiving circuits 205a to 205m have the same configuration except that the orthogonal demodulation unit has a different carrier frequency.
  • the Ich and Qch root roll-off filters 207a and 208a limit the bandwidth of the Ich signal and the Qch signal, add predetermined characteristics to each, and input to the baseband processing unit 209a.
  • the baseband processing unit 209a performs processing such as demodulation and decoding on the input signal.
  • the AD conversion output signal is then multiplied to output the in-phase component (Ich signal) and quadrature component (Qch signal).
  • Root roll-off filter for Ich and Qch 207m and 208m are Ich signal and Qch signal Are added to the baseband processing unit 209 m with predetermined characteristics added thereto.
  • the baseband processing unit 209m performs processing such as demodulation and decoding on the input signal.
  • the digital receiver has also been proposed in which the RF frequency of the antenna input signal is down-converted to an intermediate frequency for a single wave, which is the case of multicarrier, and then AD conversion is performed, and the AD conversion output is subjected to quadrature demodulation processing. (See Patent Document 1).
  • the multi-carrier simultaneous demodulation method of FIG. 5 requires analog down converters (201, 202), and the receivable frequency band is determined by the oscillation frequency of the local oscillation signal output from the local oscillator 202. For this reason, application to a system with a different receivable frequency band requires a change of the local oscillator 202, and there is a problem that software radio cannot be realized.
  • an object of the present invention is to reduce the analog portion, in particular, not to use an analog down converter and to realize a software wireless interface.
  • Another object of the present invention is to obtain a highly accurate quadrature demodulation result without requiring a highly accurate clock purity as in the prior art.
  • Patent Document 1 JP-A-8-162990
  • the above-described problem is achieved by a radio receiver and a digital demodulator that directly AD-convert an antenna input signal and perform orthogonal demodulation and band limitation using the conversion result.
  • the digital demodulator of the present invention uses N antenna input signals sampled at a sampling frequency N′fs (N is an integer of 2 or more) lower than the antenna input signal frequency and higher than a predetermined undersampling rate fs.
  • a demax unit that holds and outputs at the rate fs
  • a digital quadrature demodulation unit that shifts the phase of the carrier wave by lZN'fs, and performs digital quadrature demodulation processing on each of the N pieces of data using a carrier wave that is shifted in phase
  • An interval averaging unit is provided that averages the digital quadrature demodulation results and outputs the interval average value for each undersampling rate fs.
  • the wireless receiver of the present invention samples an antenna input signal at a predetermined sampling rate N′fs and performs AD conversion, and holds N AD converter outputs at an undersampling rate fs.
  • Output demultiplexer shift carrier phase by lZN'fs, perform digital quadrature demodulation on each of the N data using carrier waves shifted in phase Digital quadrature demodulator, average N digital quadrature demodulation results
  • Section average unit that outputs the section average value for each undersampling rate fs, band limit filter section that limits the band of the output signal of the section average section, and baseband processing section that performs baseband processing on the band limit filter output It is equipped with.
  • the radio receiver of the present invention includes at least a digital quadrature demodulation unit, a section average unit, and a band limiting filter unit for each multicarrier carrier. Demodulate and process the signal sent by each carrier
  • the above object is achieved by a reception method and a digital demodulation method of a wireless receiver that directly AD converts an antenna input signal and performs orthogonal demodulation and band limitation using the conversion result.
  • N antenna input signals sampled at a sampling frequency N'fs (N is an integer of 2 or more) lower than the antenna input signal frequency and higher than the under sampling rate fs are set at the under sampling rate fs.
  • the step of saving shifting the phase of the carrier wave by lZN'fs, using the carrier wave whose phase is shifted by V, performing digital quadrature demodulation on each of the N pieces of data, and averaging each digital quadrature demodulation result And a step of outputting an average value of the section for each undersampling rate fs.
  • the antenna input signal is sampled and AD converted at a predetermined sampling rate N′fs, and the outputs of the N AD converters are shifted at the sampling rate N ⁇ fs and the undersampling rate fs.
  • the step of storing in step 1, shifting the carrier phase by 1 ZN'fs, performing digital quadrature demodulation on each of the N pieces of data using carriers shifted in phase, and averaging each digital quadrature demodulation result The step of outputting the average value of the section at each undersampling rate fs, the step of limiting the band of the output signal of the section average section, and baseband processing on the band-limited signal. Have a step to apply!
  • the present invention it is possible to reduce the analog portion, in particular, not to use the analog down converter, and to reduce the size of the radio receiver.
  • the software of the wireless processing unit can be realized. Further, according to the present invention, it is possible to obtain a quadrature demodulation result with high accuracy without requiring high-accuracy clock purity as in the prior art.
  • FIG. 1 is a block diagram of a wireless receiver according to the present invention.
  • FIG. 2 is a configuration diagram of a quadrature demodulator.
  • FIG. 3 is a configuration diagram of a radio receiver of the present invention that can be applied when an antenna input signal is a multicarrier signal.
  • FIG. 4 is a block diagram of a direct RF demodulation method.
  • FIG. 5 is a configuration diagram of a multicarrier collective demodulation method.
  • the AD converter samples and converts the antenna input signal at a predetermined sampling rate N'fs (fs is an undersampling rate larger than the baseband rate), and converts the AD into N pieces of demultiplexing parts. Shift AD output at sampling rate N ⁇ fs and save at undersampling rate fs.
  • the digital quadrature demodulator includes N quadrature demodulators whose carrier phases are shifted by lZN'fs, and each quadrature demodulator uses a carrier whose phase is shifted to each of the N pieces of data. Quadrature demodulation is performed, and the interval average unit averages the results of digital orthogonal demodulation and outputs the interval average value for each undersampling rate fs.
  • a band limiting filter limits the band of the output signal of the section average part and inputs it to the baseband processing part, and the baseband processing part performs baseband processing on the band-limited signal.
  • the demux portion has a predetermined frequency lower than the RF frequency.
  • N is an integer greater than or equal to 2
  • the N-pulled antenna input signals are held and output at the undersampling rate fs, and the quadrature demodulator shifts the phase of the carrier wave by lZN 'fs, and uses each carrier wave with shifted phases.
  • the digital quadrature demodulation process is applied to the data, and the interval average unit averages the results of each digital orthogonal demodulation and outputs the interval average value for each undersampling rate fs.
  • FIG. 1 is a block diagram of the radio receiver of the first embodiment.
  • the AD converter 11 performs AD conversion by undersampling the antenna input signal of the RF frequency fo at a predetermined sampling rate N'fs (fs is an undersampling rate larger than the baseband rate, N is an integer of 2 or more).
  • Demax 12 is composed of flip-flops FF1—FF1 connected in series.
  • the shift unit 12a shifts the N data output from the AD conversion in the flip-flops FF1-FF1 at the sampling rate N-fs, and the holding unit 12b
  • the digital quadrature demodulator 13 includes N quadrature demodulators 13a to 13N whose carrier phases are shifted by 1ZN ⁇ fs, and each quadrature demodulator outputs from the demultiplexer 12 using each carrier whose phase is shifted.
  • the N pieces of data are subjected to digital quadrature demodulation and output.
  • FIG. 2 is a configuration diagram of one quadrature demodulator 13a, which includes a cos memory 31, a sin memory 32, and two multipliers 33 and 34.
  • Each of the multipliers 33 and 34 demultiplexes the cos carrier wave and sin carrier discrete data COS (Q; -k) and sin (a * k) sequentially output from the memories 31 and 32 with the period lZN 'fs.
  • the in-phase component (Ich signal) and quadrature component (Qch signal) are output by multiplying the output data.
  • Other quadrature demodulation The power cos memory 31 and the sin memory 32 can be configured in the same manner.
  • Multipliers 33 and 34 multiply discrete data cos o; -k), sin (a, k) by the first output data of demath unit 12, and in-phase component (Ich signal), quadrature component (Qch signal) Is output.
  • Multipliers 33 and 34 multiply the second output data of demax section 1 2 by the discrete data COS (Q; -k), sin (a, k), and in-phase component (Ich signal), quadrature component (Qch signal) ) Is output.
  • the quadrature demodulator 13b performs digital quadrature demodulation on the second data output from the demux unit 12 using a carrier whose phase is shifted by 1ZN / fs from the carrier of the quadrature demodulator 13a, and outputs the second data.
  • Multipliers 33 and 34 multiply discrete data COS (Q; -k), sin (a -k) by the Nth output data of demux section 12 to in-phase component (Ich signal), quadrature component (Qch signal) ) Is output. That is, the quadrature demodulator 13N is connected to the quadrature demodulator 13N.
  • the Nth data output from the demux unit 12 is subjected to digital quadrature demodulation and output.
  • the Ich and Qch interval averaging units 14a and 14b calculate the interval average values of Ich data and Qch data output from the quadrature demodulator 13a-1 3N, respectively, for each undersampling rate fs.
  • the average value of the section is output to. It is also possible to calculate the interval average value by weighting the Ich data and Qch data output from the quadrature demodulator 13a-13N.
  • the Ich and Qch band limiting filters (roll-off filters) 15a and 15b composed of FIR filters limit the band of the output signal of the section average part and input it to the baseband processing part 16 for baseband processing.
  • the processing unit 16 is a base for demodulating and decoding the band-limited signal. Apply band processing.
  • 3.84 [MHz] is the baseband frequency (chip frequency).
  • the RF frequency f In the radio receiver of the present invention, the RF frequency f.
  • the wireless input signal is simply undersampled by the sampling rate N'fs.
  • the undersampling ratio at this time is 1 900 / 599.04 ⁇ 3 times, and the existing equipment has a sufficient track record, and the clock accuracy requirement is a practical value.
  • AD converters of 2 GHz class are currently being released.
  • digital processing unit high-speed operation of the 500 MHz class is only possible with flip-flops, and it can be realized because it operates at 600 MHz or higher with LVDS devices, etc. If there is enough, it has a proven track record and can be realized without problems.
  • the output data of AD variation ⁇ 11 is sequentially delayed by shifting in N flip-flops FF 1 to FF 1 at a clock frequency of N'fs, and each delayed N data is fs.
  • Each of the N data thus obtained is quadrature demodulated with sin and cos, each of which is sequentially applied with a constant phase offset, and the carrier is completely canceled to form a baseband data string for each N′fs.
  • Each data has an influence of N times the jitter to fs. If the jitter is white (Gaussian noise), it is averaged by the following addition and compressed to 1ZN. Jitter other than white is the force generated by fluctuations in the PLL, etc. Since these periods are sufficiently slow, the problem is not compensated for by the phase equalizer or searcher of the baseband processing unit 16 where there is no fluctuation and difference due to fading. Absent. Note that this jitter suppression effect is equivalent to that disclosed in US Pat. No. 6,317,071 B1.
  • is a ⁇ function
  • ⁇ () indicates a sampling value
  • the digital quadrature demodulator 13 performs quadrature demodulation on each sequence using a cosine wave and a sine wave table whose phases are shifted by ⁇ 0 ZN'fs.
  • the orthogonal recovery of sequence n The adjustment output is expressed by the following formulas (4) and (5)
  • the interval averaging units 14a and 14b add all the sequences. In other words, as a result of the interval average for every lZfs time
  • root roll-off filters 15a and 15b perform a 2 ⁇
  • ⁇ (t) and Q '(t) are I (t) and Q (t), respectively, with a roll-off characteristic.
  • the digital demodulator is composed of a demux unit 12, a digital quadrature demodulation unit 13, and interval averaging units 14a and 14b.
  • the demux unit 12 holds N antenna input signals sampled at a sampling frequency N'fs (N is an integer of 2 or more) lower than the RF frequency and higher than the undersampling rate fs, and outputs them while holding the undersampling rate fs.
  • the quadrature demodulation unit 13 shifts the phase of the carrier wave by lZN'fs, performs digital quadrature demodulation processing on the output data of the N demux units using the carrier wave whose phase is shifted, and the interval averaging units 14a and 14b Each digital quadrature demodulation result is averaged and the interval average value for each undersampling rate fs is output.
  • the analog down converter can be omitted and the radio receiver can be downsized. Do not use an analog down converter. Therefore, according to the present invention, the software of the wireless processing unit can be realized. Furthermore, according to the present invention, a highly accurate orthogonal demodulation result can be obtained without requiring a highly accurate clock purity as in the prior art.
  • FIG. 3 is a configuration diagram of a radio receiver of the present invention that can be applied when the antenna input signal is a multicarrier signal.
  • each digital processing unit 21-1-21-N has almost the same configuration: (1) Demax unit 12-1-12-N, (2) Demodulator unit 13-1-13-N, (3) Average section 14a-l— 14a-N, 14b-l— 14b-N, (4) Bandwidth limiting filter (root roll-off filter) 15a- 1— 15a- N, 15b- 1— 15b- N, (5) Baseband processor 16-1-16-N is provided.
  • the digital processor 21-1 has the same configuration as that shown in FIG.
  • Each digital processing unit 21-1-21-N is different in that the digital quadrature demodulating unit 13-1-11-N generates and demodulates each carrier wave of frequency fo-fc.
  • the digital quadrature demodulator 13-1 includes N quadrature demodulators 13-la—13-1N in which the phase of the carrier wave having the frequency fo is shifted by lZN'fs. Using the shifted carrier waves, digital quadrature demodulation is performed on the N pieces of data output from the demux unit 12-1 and output.
  • the digital quadrature demodulator 13-N includes N quadrature demodulators 13-Na— 13-NN whose phase of the carrier wave of frequency fc is shifted by lZN'fs, and each quadrature demodulator is shifted in phase. Each of the received carriers is used for V and the digital quadrature demodulation is performed on the N pieces of data output from the demux unit 12-N.
  • the baseband processing units 16-1-16-N can be configured to be shared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

In a wireless receiver, an A/D converter (11) A/D converts an antenna input signal at a sampling rate of N·fs, and a DEMUX part (12) demultiplexes N A/D conversion outputs. Each of N quadrature demodulators (13a-13N), in which the carrier phase is shifted by 1/N·fs, uses the thus phase-shifted carrier to digital quadrature demodulate the respective one of the N DEMUX output data. A section averaging part averages the results of the digital quadrature demodulations to output a section average value for an under-sampling rate of fs. A band limit filter limits the band of the output signals of the section averaging part to input the thus limited output signals to a baseband processing part.

Description

明 細 書  Specification
無線受信機およびディジタル復調方法  Wireless receiver and digital demodulation method
技術分野  Technical field
[0001] 本発明は無線受信機およびそのディジタル復調方法に係わり、特に無線受信機を 小型化する為に、無線周波数信号を直接ディジタル復調するディジタル復調器を備 えた無線受信機及びディジタル復調方法に関する。  The present invention relates to a radio receiver and a digital demodulation method thereof, and more particularly to a radio receiver and a digital demodulation method provided with a digital demodulator that directly digitally demodulates a radio frequency signal in order to reduce the size of the radio receiver. .
背景技術  Background art
[0002] マルチキャリア受信機に於いて装置の小型化を実現する為に、ダイレクト RF復調方 式やマルチキャリア一括復調方式等が提案されて 、る。図 4はダイレクト RF復調方式 のブロック図である。 AD変換器 101は RF周波数 foのアンテナ入力信号を該 RF周 波数と同等の周波数であるサンプリング周波数 fsでサンプリングして AD変換し、ディ ジタル復調部 102は sin搬送波( = sin2 π fo X (kZfs) )及び cos搬送波( = cos2 π fo X (kZfs))の離散データを周期 lZfsで順次発生し (k=0, 1, 2. . . )、これらをそ れぞれ AD変換出力信号に乗算して同相成分 (Ich信号)、直交成分 (Qch信号)を出 力する。 Ich, Qchのルートロールオフフィルタ 103, 104は Ich信号、 Qch信号の帯 域を制限すると共にそれぞれに所定の特性を付加してベースバンド処理部 105に入 力する。ベースバンド処理部 105は入力信号に復調、復号等の処理を施す。なお、 図 4は RF周波数 foの 1波のみに対応する構成である力 マルチキャリア fo— fnに対 応させるには、直交部 102—ベースバンド処理部 105をキャリアに対応して設け、 A D変換器 101の出力に並列に接続して構成する。  In order to reduce the size of a multicarrier receiver, a direct RF demodulation method, a multicarrier collective demodulation method, and the like have been proposed. Figure 4 is a block diagram of the direct RF demodulation method. The AD converter 101 samples the antenna input signal of the RF frequency fo at the sampling frequency fs which is the same frequency as the RF frequency and performs AD conversion. The digital demodulator 102 uses a sin carrier (= sin2 π fo X (kZfs )) And cos carrier (= cos2 π fo X (kZfs)) discrete data are sequentially generated with period lZfs (k = 0, 1, 2...), And these are multiplied by the AD conversion output signal, respectively. In-phase component (Ich signal) and quadrature component (Qch signal) are output. The Ich and Qch root roll-off filters 103 and 104 limit the bandwidth of the Ich signal and the Qch signal and add predetermined characteristics to the baseband processing unit 105, respectively. The baseband processing unit 105 performs processing such as demodulation and decoding on the input signal. Note that Fig. 4 shows a configuration corresponding to only one wave of the RF frequency fo. In order to cope with force multi-carrier fo-fn, an orthogonal unit 102-baseband processing unit 105 is provided corresponding to the carrier, and AD conversion is performed. Connected in parallel to the output of the device 101.
[0003] このダイレクト RF復調方式は、上述のように AD変換レートやディジタル部の処理速 度が RF周波数と同等となる。このため、デバイスの性能に制約され、 RF周波数が数 百 MHz以下のシステムまでが実現可能な対象であり、それ以上の無線受信機に採用 できない。例えば、ダイレクト RF復調方式を GHz帯の無線システムに適用する場合、 AD変^^の変換レートやディジタル直交復調部の動作速度も GHzクラスとする必 要があり、現状のデバイスでは、実現が困難である。なお、 AD変換器に関して、近年 GHzクラスのデバイスがリリースされている力 ASICや FPGA(Field Programmable Gate Array)などの LSIの動作速度は数百 MHz程度が一般であり、それ以上の無線 システムに適用できない。 [0003] In this direct RF demodulation method, as described above, the AD conversion rate and the processing speed of the digital section are equivalent to the RF frequency. For this reason, the device performance is limited, and systems with RF frequencies of several hundred MHz or less can be realized, and cannot be used for radio receivers beyond that. For example, when the direct RF demodulation method is applied to a radio system in the GHz band, the conversion rate of AD conversion and the operation speed of the digital quadrature demodulation unit must also be in the GHz class, which is difficult to realize with current devices. It is. Regarding AD converters, GHz-class devices have been released in recent years.ASIC and FPGA (Field Programmable The operating speed of LSIs (such as Gate Array) is generally several hundred MHz, and cannot be applied to wireless systems beyond that.
そこで、 AD変換器によりデータをサンプリングする際、変調信号のベースバンドレ ートよりは大きいが、 RF周波数よりは小さい周波数のクロックによりアンダーサンプリ ングを行ってディジタル変換するアンダーサンプリング方式が考えられる。し力しなが ら、単純に低いクロック周波数によるアンダーサンプリングでは、サンプリングクロック のジッタの影響を RF周波数で受けるため、クロック純度が通常に比べ、(無線周波数 Zクロック周波数)倍の精度を必要とし、この方式も実現が困難である。  Therefore, when sampling data with an AD converter, an undersampling method may be considered in which undersampling is performed with a clock having a frequency that is larger than the baseband rate of the modulation signal but smaller than the RF frequency, and digitally converted. However, undersampling simply with a low clock frequency is affected by the jitter of the sampling clock at the RF frequency, so the clock purity needs to be (radio frequency Z clock frequency) times as high as normal. This method is also difficult to realize.
[0004] 一方、マルチキャリア一括復調方式は、アンテナ入力信号の RF周波数を中間周波 数にダウンコンバートしてから AD変換し、 AD変換出力に直交復調処理を施す方法 である。図 5はマルチキャリア一括復調方式の構成図であり、ミキサー 201は RF周波 数 fo— fcのアンテナ受信信号にローカル発振器 202から出力する周波数 (fo+fc) /2-f を混合して中間周波数信号を発生し、ローパスフィルタ 203は高周波成分を[0004] On the other hand, the multi-carrier collective demodulation method is a method in which the RF frequency of the antenna input signal is down-converted to an intermediate frequency and then AD conversion is performed, and quadrature demodulation processing is performed on the AD conversion output. Fig. 5 is a block diagram of the multi-carrier simultaneous demodulation method. The mixer 201 mixes the antenna reception signal of the RF frequency fo—fc with the frequency (fo + fc) / 2−f output from the local oscillator 202 to the intermediate frequency. The low pass filter 203 generates high frequency components.
IF IF
カットして AD変翻 204に入力する。 AD変翻 204はサンプリング周波数 f /nで  Cut and input to AD Transform 204. AD transformation 204 has a sampling frequency of f / n.
IF  IF
中間周波信号をサンプリングしてディジタルに変換して、各キャリアに対応する受信 回路 205a— 205ηに入力する。受信回路 205a— 205mは直交復調部の搬送周波 数が異なるだけで同一の構成を有して 、る。  The intermediate frequency signal is sampled and converted to digital, and input to the receiving circuits 205a to 205η corresponding to each carrier. The receiving circuits 205a to 205m have the same configuration except that the orthogonal demodulation unit has a different carrier frequency.
[0005] 受信回路 205aにおいて、ディジタル復調部 206aは sin搬送波( = sin2 w fo X (k/ fs) )及び cos搬送波( = cos2 π f o X (k/fs) )の離散データを周期 lZfs [0005] In the receiving circuit 205a, the digital demodulator 206a converts the discrete data of the sin carrier wave (= sin2wfoX (k / fs)) and the cos carrier wave (= cos2πfoX (k / fs)) to the period lZfs.
で順次発生し (k = 0, 1, 2. . . )、これらを AD変換出力信号に乗算して同相成分 (Ic h信号)、直交成分(Qch信号)を出力する。 Ich, Qchのルートロールオフフィルタ 20 7a, 208aは Ich信号、 Qch信号の帯域を制限すると共にそれぞれに所定の特性を 付カ卩してベースバンド処理部 209aに入力する。ベースバンド処理部 209aは入力信 号に復調、復号等の処理を施す。  Are sequentially generated (k = 0, 1, 2...) And multiplied by the AD conversion output signal to output the in-phase component (Ich signal) and quadrature component (Qch signal). The Ich and Qch root roll-off filters 207a and 208a limit the bandwidth of the Ich signal and the Qch signal, add predetermined characteristics to each, and input to the baseband processing unit 209a. The baseband processing unit 209a performs processing such as demodulation and decoding on the input signal.
受信回路 205mにおいて、ディジタル復調部206111は3 搬送波(= 3 2兀 ;^ (k /fs) )及び cos搬送波( = cos2 π f c X (k/fs) )の離散データを周期 lZfsで順次発 生して AD変換出力信号に乗算して同相成分 (Ich信号)、直交成分 (Qch信号)を出 力する。 Ich, Qchのルートロールオフフィルタ 207m, 208mは Ich信号、 Qch信号 の帯域を制限すると共にそれぞれに所定の特性を付加してベースバンド処理部 209 mに入力する。ベースバンド処理部 209mは入力信号に復調、復号等の処理を施す 。以上はマルチキャリアの場合である力 1波についてアンテナ入力信号の RF周波 数を中間周波数にダウンコンバートしてから AD変換し、 AD変換出力に直交復調処 理を施すディジタル受信機も提案されている (特許文献 1参照)。 In the receiving circuit 205m, the digital demodulator 206111 sequentially generates discrete data of 3 carrier waves (= 3 2 兀; ^ (k / fs)) and cos carrier waves (= cos2 π fc X (k / fs)) with a period of lZfs. The AD conversion output signal is then multiplied to output the in-phase component (Ich signal) and quadrature component (Qch signal). Root roll-off filter for Ich and Qch 207m and 208m are Ich signal and Qch signal Are added to the baseband processing unit 209 m with predetermined characteristics added thereto. The baseband processing unit 209m performs processing such as demodulation and decoding on the input signal. The digital receiver has also been proposed in which the RF frequency of the antenna input signal is down-converted to an intermediate frequency for a single wave, which is the case of multicarrier, and then AD conversion is performed, and the AD conversion output is subjected to quadrature demodulation processing. (See Patent Document 1).
[0006] 近年ソフトウェア無線が提案され、異なる無線システムを同一のハードウェアで実現 することが目標とされている。すなわち、ハードウェアを同じにして、ソフトウェアゃ設 定データを変えるだけで異なる無線システムに適用できるようにすることが目標とされ ている。し力し、図 5のマルチキャリア一括復調方式はアナログダウンコンバータ(201 , 202)を必要とし、受信可能な周波数帯域はローカル発振器 202から出力する局部 発振信号の発振周波数により決まる。このため、受信可能な周波数帯域が異なるシ ステムへの適用は、ローカル発振器 202の変更を必要としソフトウェア無線を実現で きない問題がある。 [0006] In recent years, software defined radio has been proposed, and the goal is to realize different radio systems with the same hardware. In other words, the goal is to make the hardware the same so that the software can be applied to different wireless systems simply by changing the configuration data. However, the multi-carrier simultaneous demodulation method of FIG. 5 requires analog down converters (201, 202), and the receivable frequency band is determined by the oscillation frequency of the local oscillation signal output from the local oscillator 202. For this reason, application to a system with a different receivable frequency band requires a change of the local oscillator 202, and there is a problem that software radio cannot be realized.
以上から本発明の目的は、アナログ部の削減、特にアナログダウンコンバータを使 用しないようにでき、かつ、ソフトウェアの無線ィ匕を実現できるようにすることである。 本発明の別の目的は、従来のように高い精度のクロック純度を必要としなくても、精 度の高 、直交復調結果が得られるようにすることである。  In view of the above, an object of the present invention is to reduce the analog portion, in particular, not to use an analog down converter and to realize a software wireless interface. Another object of the present invention is to obtain a highly accurate quadrature demodulation result without requiring a highly accurate clock purity as in the prior art.
特許文献 1:特開平 8— 162990号公報  Patent Document 1: JP-A-8-162990
発明の開示  Disclosure of the invention
[0007] 上記課題は本発明によれば、アンテナ入力信号を直接 AD変換し、変換結果を用 いて直交復調及び帯域制限する無線受信機およびディジタル復調器により達成され る。本発明のディジタル復調器は、アンテナ入力信号周波数より低く所定のアンダー サンプリングレート fsより高いサンプリング周波数 N'fs (Nは 2以上の整数)でサンプリ ングされた N個のアンテナ入力信号を該アンダーサンプリングレート fsで保持して出 力するデマックス部、搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波 を用いて前記 N個の各データにディジタル直交復調処理を施すディジタル直交復調 部、 N個のディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区 間平均値を出力する区間平均部を備えている。 [0008] 本発明の無線受信機は、アンテナ入力信号を所定のサンプリングレート N'fsでサ ンプリングして AD変換する AD変換器、 N個の AD変換器出力をアンダーサンプリン グレート fsで保持して出力するデマックス部、搬送波の位相を lZN'fsづっずらし、 各位相をずらした搬送波を用いて前記 N個の各データにディジタル直交復調を施す ディジタル直交復調部、 N個のディジタル直交復調結果を平均してアンダーサンプリ ングレート fs毎の区間平均値を出力する区間平均部、区間平均部の出力信号の帯 域を制限する帯域制限フィルタ部、帯域制限フィルタ出力にベースバンド処理を施 すベースバンド処理部を備えて 、る。アンテナ入力信号がマルチキャリア信号の場 合、本発明の無線受信機は、マルチキャリアの各キャリア毎に、ディジタル直交復調 部、区間平均部、帯域制限フィルタ部を少なくとも備え、一括してマルチキャリアの各 キャリアで送られてくる信号を復調して処理 [0007] According to the present invention, the above-described problem is achieved by a radio receiver and a digital demodulator that directly AD-convert an antenna input signal and perform orthogonal demodulation and band limitation using the conversion result. The digital demodulator of the present invention uses N antenna input signals sampled at a sampling frequency N′fs (N is an integer of 2 or more) lower than the antenna input signal frequency and higher than a predetermined undersampling rate fs. A demax unit that holds and outputs at the rate fs, a digital quadrature demodulation unit that shifts the phase of the carrier wave by lZN'fs, and performs digital quadrature demodulation processing on each of the N pieces of data using a carrier wave that is shifted in phase, N An interval averaging unit is provided that averages the digital quadrature demodulation results and outputs the interval average value for each undersampling rate fs. The wireless receiver of the present invention samples an antenna input signal at a predetermined sampling rate N′fs and performs AD conversion, and holds N AD converter outputs at an undersampling rate fs. Output demultiplexer, shift carrier phase by lZN'fs, perform digital quadrature demodulation on each of the N data using carrier waves shifted in phase Digital quadrature demodulator, average N digital quadrature demodulation results Section average unit that outputs the section average value for each undersampling rate fs, band limit filter section that limits the band of the output signal of the section average section, and baseband processing section that performs baseband processing on the band limit filter output It is equipped with. When the antenna input signal is a multicarrier signal, the radio receiver of the present invention includes at least a digital quadrature demodulation unit, a section average unit, and a band limiting filter unit for each multicarrier carrier. Demodulate and process the signal sent by each carrier
する。  To do.
[0009] 上記課題は本発明によれば、アンテナ入力信号を直接 AD変換し、変換結果を用 いて直交復調及び帯域制限する無線受信機の受信方法及びディジタル復調方法に より達成される。本発明のディジタル復調方法は、アンテナ入力信号周波数より低く アンダーサンプリングレート fsより高いサンプリング周波数 N'fs (Nは 2以上の整数)で サンプリングされた N個のアンテナ入力信号を該アンダーサンプリングレート fsで保 存するステップ、搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波を用 V、て前記 N個の各データに対してそれぞれディジタル直交復調を施すステップ、各 ディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間平均値を 出力するステップを有して 、る。  [0009] According to the present invention, the above object is achieved by a reception method and a digital demodulation method of a wireless receiver that directly AD converts an antenna input signal and performs orthogonal demodulation and band limitation using the conversion result. In the digital demodulation method of the present invention, N antenna input signals sampled at a sampling frequency N'fs (N is an integer of 2 or more) lower than the antenna input signal frequency and higher than the under sampling rate fs are set at the under sampling rate fs. The step of saving, shifting the phase of the carrier wave by lZN'fs, using the carrier wave whose phase is shifted by V, performing digital quadrature demodulation on each of the N pieces of data, and averaging each digital quadrature demodulation result And a step of outputting an average value of the section for each undersampling rate fs.
本発明の受信方法は、アンテナ入力信号を所定のサンプリングレート N'fsでサン プルして AD変換するステップ、 N個の AD変換器出力をサンプリングレート N · f sでシ フトすると共にアンダーサンプリングレート fsで保存するステップ、搬送波の位相を 1 ZN'fsづっずらし、各位相をずらした搬送波を用いて前記 N個の各データに対して それぞれディジタル直交復調を施すステップ、各ディジタル直交復調結果を平均し てアンダーサンプリングレート fs毎の区間平均値を出力するステップ、区間平均部の 出力信号の帯域を制限するステップ、該帯域制限された信号にベースバンド処理を 施すステップを有して!ヽる。 In the receiving method of the present invention, the antenna input signal is sampled and AD converted at a predetermined sampling rate N′fs, and the outputs of the N AD converters are shifted at the sampling rate N · fs and the undersampling rate fs. The step of storing in step 1, shifting the carrier phase by 1 ZN'fs, performing digital quadrature demodulation on each of the N pieces of data using carriers shifted in phase, and averaging each digital quadrature demodulation result The step of outputting the average value of the section at each undersampling rate fs, the step of limiting the band of the output signal of the section average section, and baseband processing on the band-limited signal. Have a step to apply!
本発明によれば、アナログ部の削減、特にアナログダウンコンバータを使用しないよ うにでき、無線受信機の小型化が可能になった。また、アナログダウンコンバータを使 用しないようにできるため、本発明によれば、無線処理部のソフトィ匕が可能となった。 また、本発明によれば、従来のように高い精度のクロック純度を必要としなくても、精 度の高 、直交復調結果を得をことができる。  According to the present invention, it is possible to reduce the analog portion, in particular, not to use the analog down converter, and to reduce the size of the radio receiver. In addition, since it is possible not to use an analog down converter, according to the present invention, the software of the wireless processing unit can be realized. Further, according to the present invention, it is possible to obtain a quadrature demodulation result with high accuracy without requiring high-accuracy clock purity as in the prior art.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の無線受信機のブロック図である。  FIG. 1 is a block diagram of a wireless receiver according to the present invention.
[図 2]直交復調器の構成図である。  FIG. 2 is a configuration diagram of a quadrature demodulator.
[図 3]アンテナ入力信号がマルチキャリア信号の場合に適用できる本発明の無線受 信機の構成図である。  FIG. 3 is a configuration diagram of a radio receiver of the present invention that can be applied when an antenna input signal is a multicarrier signal.
[図 4]ダイレクト RF復調方式のブロック図である。  FIG. 4 is a block diagram of a direct RF demodulation method.
[図 5]マルチキャリア一括復調方式の構成図である。  FIG. 5 is a configuration diagram of a multicarrier collective demodulation method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] (1)本発明の概略 [0011] (1) Outline of the present invention
本発明の無線受信機において、 AD変換器はアンテナ入力信号を所定のサンプリ ングレート N'fs (fsはベースバンドレートより大きなアンダーサンプリングレート)でサン プルして AD変換し、デマックス部は N個の AD変^^出力をサンプリングレート N · f s でシフトすると共にアンダーサンプリングレート fsで保存する。ディジタル直交復調部 は、搬送波の位相が lZN'fsづっずれた N個の直交復調器を備え、各直交復調器 は該位相がずれた搬送波をそれぞれ用いて前記 N個の各データに対してディジタル 直交復調を施し、区間平均部は各ディジタル直交復調結果を平均してアンダーサン プリングレート fs毎の区間平均値を出力する。帯域制限用フィルタ (口ールオフフィル タ)は区間平均部の出力信号の帯域を制限してベースバンド処理部に入力し、ベー スバンド処理部は帯域制限された信号にベースバンド処理を施す。  In the wireless receiver of the present invention, the AD converter samples and converts the antenna input signal at a predetermined sampling rate N'fs (fs is an undersampling rate larger than the baseband rate), and converts the AD into N pieces of demultiplexing parts. Shift AD output at sampling rate N · fs and save at undersampling rate fs. The digital quadrature demodulator includes N quadrature demodulators whose carrier phases are shifted by lZN'fs, and each quadrature demodulator uses a carrier whose phase is shifted to each of the N pieces of data. Quadrature demodulation is performed, and the interval average unit averages the results of digital orthogonal demodulation and outputs the interval average value for each undersampling rate fs. A band limiting filter (or a loop-off filter) limits the band of the output signal of the section average part and inputs it to the baseband processing part, and the baseband processing part performs baseband processing on the band-limited signal.
本発明のディジタル復調器において、デマックス部は、 RF周波数より低く所定のァ ン  In the digital demodulator of the present invention, the demux portion has a predetermined frequency lower than the RF frequency.
ダーサンプリングレート fsより高いサンプリング周波数 N'fs (Nは 2以上の整数)でサン プリングされた N個のアンテナ入力信号を該アンダーサンプリングレート fsで保持して 出力し、直交復調部は搬送波の位相を lZN 'fsづっずらし、各位相をずらした搬送 波を用いて N個の各データにディジタル直交復調処理を施し、区間平均部は各ディ ジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間平均値を出 力する。 Sampling rate N'fs (N is an integer greater than or equal to 2) The N-pulled antenna input signals are held and output at the undersampling rate fs, and the quadrature demodulator shifts the phase of the carrier wave by lZN 'fs, and uses each carrier wave with shifted phases. The digital quadrature demodulation process is applied to the data, and the interval average unit averages the results of each digital orthogonal demodulation and outputs the interval average value for each undersampling rate fs.
[0012] (2)第 1実施例 [0012] (2) First embodiment
(A)無線受信機の構成  (A) Configuration of wireless receiver
図 1は第 1実施例の無線受信機のブロック図である。 AD変換器 11は RF周波数 fo のアンテナ入力信号を所定のサンプリングレート N'fs (fsはベースバンドレートより大 きなアンダーサンプリングレート、 Nは 2以上の整数)でアンダーサンプリングして AD 変換する。デマックス部 12は、直列接続されたフリップフロップ FF1— FF1 で構成  FIG. 1 is a block diagram of the radio receiver of the first embodiment. The AD converter 11 performs AD conversion by undersampling the antenna input signal of the RF frequency fo at a predetermined sampling rate N'fs (fs is an undersampling rate larger than the baseband rate, N is an integer of 2 or more). Demax 12 is composed of flip-flops FF1—FF1 connected in series.
1 N されたシフト部 12aと、フリップフロップ FF2— FF2で構成された保持部 12bを備え  1 N shift section 12a and holding section 12b composed of flip-flops FF2-FF2
1 N  1 N
ている。シフト部 12aは AD変 から出力する N個のデータをサンプリングレート N -fsでフリップフロップ FF1— FF1 内をシフトすると共に、保持部 12bはアンダーサ  ing. The shift unit 12a shifts the N data output from the AD conversion in the flip-flops FF1-FF1 at the sampling rate N-fs, and the holding unit 12b
1 N  1 N
ンプリングレート fsでフリップフロップ FF1— FF1の内容をフリップフロップ FF2— F  Flip-flop FF1—FF1 contents at flip-flop FF2—F
1 N 1 1 N 1
F2に保存して出力する。 Save to F2 and output.
N  N
ディジタル直交復調部 13は、搬送波の位相が 1ZN · fsづっずれた N個の直交復 調器 13a— 13Nを備え、各直交復調器は該位相がずれた搬送波をそれぞれ用いて デマックス部 12から出力される前記 N個の各データに対してディジタル直交復調を 施して出力する。  The digital quadrature demodulator 13 includes N quadrature demodulators 13a to 13N whose carrier phases are shifted by 1ZN · fs, and each quadrature demodulator outputs from the demultiplexer 12 using each carrier whose phase is shifted. The N pieces of data are subjected to digital quadrature demodulation and output.
[0013] 図 2は 1つの直交復調器 13aの構成図であり、 cosメモリ 31、 sinメモリ 32、 2つの乗 算器 33, 34を有している。 cosメモリ 31は、 cos搬送波( = cos2 π fo)を lZN 'fsの周 期でサンプリングした離散データ( = cos( a .k) ) k=0, 1 , 2. . . )を記憶する。ただ し、 α = 2 π ίοΖΝ ·ίδである。また、 3 メモリ32は3 搬送波(= 3 2兀 )を1/?^ 3 の周期でサンプリングした離散データ(= 3 ( 0; ), k = 0, 1, 2. . . )を記憶する。 乗算器 33, 34はそれぞれ、周期 lZN 'fsで順次メモリ 31, 32から出力される cos搬 送波及び sin搬送波の離散データ COS( Q; -k), sin( a *k)をデマックス部 12の出力デー タに乗算して同相成分 (Ich信号)、直交成分 (Qch信号)を出力する。他の直交復調 器も同様に構成できる力 cosメモリ 31と sinメモリ 32を共用するように構成することもで きる。 FIG. 2 is a configuration diagram of one quadrature demodulator 13a, which includes a cos memory 31, a sin memory 32, and two multipliers 33 and 34. The cos memory 31 stores discrete data ( = cos ( a.k )) k = 0 , 1, 2,..., obtained by sampling a cos carrier wave (= cos2πfo) at a period of lZN′fs. However, α = 2 π ίοΖΝ · ί δ . The 3 memory 32 stores discrete data (= 3 (0;), k = 0, 1, 2,...) Obtained by sampling 3 carriers (= 3 2 3) with a period of 1 /? ^ 3. Each of the multipliers 33 and 34 demultiplexes the cos carrier wave and sin carrier discrete data COS (Q; -k) and sin (a * k) sequentially output from the memories 31 and 32 with the period lZN 'fs. The in-phase component (Ich signal) and quadrature component (Qch signal) are output by multiplying the output data. Other quadrature demodulation The power cos memory 31 and the sin memory 32 can be configured in the same manner.
[0014] 以上より直交復調器 13aは k=0のアドレス力も始めて、以後周期 lZN'fs毎に kを インクリメントして離散データ C0S( Q; 'k) , sh a .k)をメモリ 31, 32から読み出して乗 算器 33, 34に入力する。乗算器 33, 34は離散データ cos o; -k), sin( a,k)をデマツ タス部 12の第 1番目の出力データに乗算して同相成分 (Ich信号)、直交成分 (Qch 信号)を出力する。 [0014] From the above, the quadrature demodulator 13a also starts the address power of k = 0, and thereafter increments k every period lZN'fs to store discrete data C0S (Q; 'k), sh a .k ) in the memory 31, 32 Is read out and input to multipliers 33 and 34. Multipliers 33 and 34 multiply discrete data cos o; -k), sin (a, k) by the first output data of demath unit 12, and in-phase component (Ich signal), quadrature component (Qch signal) Is output.
直交復調器 13bは k= lのアドレス力も始めて、以後周期 lZN'fs毎に kをインクリ メントして離散データ cos( Q; 'k) , sh a 'k)をメモリ 31, 32から読み出して乗算器 33 , 34に入力する。乗算器 33, 34は離散データ COS( Q; -k), sin( a,k)をデマックス部 1 2の第 2番目の出力データに乗算して同相成分 (Ich信号)、直交成分 (Qch信号)を 出力する。すなわち、直交復調器 13bは直交復調器 13aの搬送波から位相が 1ZN •fsずれた搬送波を用いてデマックス部 12から出力される第 2番目のデータに対して ディジタル直交復調を施して出力する。  The quadrature demodulator 13b also starts the addressing power of k = l, then increments k every period lZN'fs and reads the discrete data cos (Q; 'k), sh a' k) from the memory 31, 32 and multiply Input to devices 33 and 34. Multipliers 33 and 34 multiply the second output data of demax section 1 2 by the discrete data COS (Q; -k), sin (a, k), and in-phase component (Ich signal), quadrature component (Qch signal) ) Is output. That is, the quadrature demodulator 13b performs digital quadrature demodulation on the second data output from the demux unit 12 using a carrier whose phase is shifted by 1ZN / fs from the carrier of the quadrature demodulator 13a, and outputs the second data.
以下同様に、直交復調器 13Nは k=N— 1のアドレス力も始めて、以後周期 lZN'fs 毎に kをインクリメントして離散データ cos( o; 'k), sin( a .k)をメモリ 31, 32から読み 出して乗算器 33, 34に入力する。乗算器 33, 34は離散データ COS( Q; -k), sin( a -k) をデマックス部 12の第 N番目の出力データに乗算して同相成分 (Ich信号)、直交成 分 (Qch信号)を出力する。すなわち、直交復調器 13Nは直交復調器 13  Similarly, the quadrature demodulator 13N also starts addressing power of k = N−1, and thereafter increments k every period lZN'fs to store discrete data cos (o; 'k), sin (a.k) in the memory 31. , 32 and input to multipliers 33 and 34. Multipliers 33 and 34 multiply discrete data COS (Q; -k), sin (a -k) by the Nth output data of demux section 12 to in-phase component (Ich signal), quadrature component (Qch signal) ) Is output. That is, the quadrature demodulator 13N is connected to the quadrature demodulator 13N.
aの搬送波から位相が (N— 1 ) ZN · fsずれた搬送波を用いてデマックス部 12から出 力される第 N番目のデータに対してディジタル直交復調を施して出力する。  Using the carrier wave whose phase is shifted by (N – 1) ZN · fs from the carrier wave a, the Nth data output from the demux unit 12 is subjected to digital quadrature demodulation and output.
[0015] 図 1に戻って、 Ich, Qchの区間平均部 14a, 14bはそれぞれ、直交復調器 13a— 1 3Nから出力する Ichデータ、 Qchデータの区間平均値を計算し、アンダーサンプリン グレート fs毎に該区間平均値を出力する。なお、直交復調器 13a— 13Nから出力す る Ichデータ、 Qchデータに重み付けを行なって区間平均値を計算することもできる。 ついで、 FIRフィルタで構成された Ich, Qchの帯域制限用フィルタ (ロールオフフィル タ) 15a, 15bは、区間平均部の出力信号の帯域を制限してベースバンド処理部 16 に入力し、ベースバンド処理部 16は帯域制限された信号に復調、復号などのベース バンド処理を施す。 [0015] Referring back to FIG. 1, the Ich and Qch interval averaging units 14a and 14b calculate the interval average values of Ich data and Qch data output from the quadrature demodulator 13a-1 3N, respectively, for each undersampling rate fs. The average value of the section is output to. It is also possible to calculate the interval average value by weighting the Ich data and Qch data output from the quadrature demodulator 13a-13N. Next, the Ich and Qch band limiting filters (roll-off filters) 15a and 15b composed of FIR filters limit the band of the output signal of the section average part and input it to the baseband processing part 16 for baseband processing. The processing unit 16 is a base for demodulating and decoding the band-limited signal. Apply band processing.
[0016] (B)数値例  [0016] (B) Numerical example
以下は、本発明の 2GHz帯受信機における各周波数 fo, fs及び Nの数値例であり、 fo= 1900 [MHz]  The following is a numerical example of each frequency fo, fs, and N in the 2 GHz band receiver of the present invention, fo = 1900 [MHz]
fs = 2 X 3. 84 [MHz] = 7. 68 [MHz]  fs = 2 X 3.84 [MHz] = 7.68 [MHz]
N= 78  N = 78
N-fs = 599. 04 [MHz]  N-fs = 599. 04 [MHz]
である。上式において、 3. 84 [MHz]はベースバンド周波数 (チップ周波数)である。 本発明の無線受信機において、 RF周波数 f。の無線入力信号は、サンプリングレー ト N'fsによって単純にアンダーサンプルされる。このときのアンダーサンプル比は、 1 900/599. 04^ 3倍となり、既存の装置で充分実績が有り、クロック精度の要求は 実現的な値である。  It is. In the above equation, 3.84 [MHz] is the baseband frequency (chip frequency). In the radio receiver of the present invention, the RF frequency f. The wireless input signal is simply undersampled by the sampling rate N'fs. The undersampling ratio at this time is 1 900 / 599.04 ^ 3 times, and the existing equipment has a sufficient track record, and the clock accuracy requirement is a practical value.
動作周波数に対する、デバイスの実現性に関しては、 AD変換器は現状 2GHz級の ものがリリースされている。また、ディジタル処理部に関して、 500MHz級の高速動作 はフリップフロップのみであり、 LVDSデバイス等にて 600MHz以上で動作しているこ とから実現が可能であり、 FFの後段に関しては、現状 100MHz程度であれば充分 実績があり、問題無く実現できる。  Regarding the feasibility of devices with respect to operating frequency, AD converters of 2 GHz class are currently being released. In addition, regarding the digital processing unit, high-speed operation of the 500 MHz class is only possible with flip-flops, and it can be realized because it operates at 600 MHz or higher with LVDS devices, etc. If there is enough, it has a proven track record and can be realized without problems.
[0017] AD変^^ 11の出力データは、 N'fsのクロック周波数で N個のフリップフロップ FF 1一 FF1内をシフトして逐次遅延され、それぞれの遅延された N個のデータは fsのク[0017] The output data of AD variation ^^ 11 is sequentially delayed by shifting in N flip-flops FF 1 to FF 1 at a clock frequency of N'fs, and each delayed N data is fs The
1 N 1 N
ロック周波数で FF2— FF2に保持されてパラレルデータへデマックスされる。デマツ  It is held in FF2-FF2 at the lock frequency and de-multiplexed into parallel data. Dematsu
1 N  1 N
タスされた N個のデータは、それぞれ、順次一定の位相オフセットをかけた sin, cosで 直交復調され、キャリアは完全にキャンセルされ、 N'fs毎のベースバンドデータ列に なる。各データは、 fsに対し N倍のジッタの影響を持っている力 ジッタが白色 (ガウス 分布雑音)であるならば、次の加算により平均化され、 1ZNに圧縮される。白色以外 のジッタは、 PLL等の揺らぎにより発生する力 これらの周期は充分遅い為、フエ一 ジングによる変動と差分が無ぐベースバンド処理部 16の位相等価器やサーチャー により補償されるため問題はない。なお、このジッタの抑圧効果は、 US 6,317,071 B1 に開示されているのと同等の効果が得られる。 [0018] 又、直交復調器 13a— 13Nの cosメモリや sinメモリの値、および FIR構成のロールォ フフィルタの係数値をそれぞれダウンロードにより変更するように構成すれば、ハード 変更無しに、受信周波数、即ちシステムの変更が可能になり、ソフト無線を実現でき る。 Each of the N data thus obtained is quadrature demodulated with sin and cos, each of which is sequentially applied with a constant phase offset, and the carrier is completely canceled to form a baseband data string for each N′fs. Each data has an influence of N times the jitter to fs. If the jitter is white (Gaussian noise), it is averaged by the following addition and compressed to 1ZN. Jitter other than white is the force generated by fluctuations in the PLL, etc. Since these periods are sufficiently slow, the problem is not compensated for by the phase equalizer or searcher of the baseband processing unit 16 where there is no fluctuation and difference due to fading. Absent. Note that this jitter suppression effect is equivalent to that disclosed in US Pat. No. 6,317,071 B1. [0018] Further, if the configuration is such that the values of the cos memory and sin memory of the quadrature demodulator 13a-13N and the coefficient value of the roll-off filter of the FIR configuration are changed by downloading, respectively, the received frequency, The system can be changed and soft radio can be realized.
[0019] (C)実施例の数式による動作原理  [0019] (C) Operational principle based on formula of embodiment
以下に実施例 1の動作原理を数式により説明する。  Hereinafter, the operation principle of the first embodiment will be described using mathematical formulas.
アンテナ入力の時間波形を  The time waveform of the antenna input
[数 1]  [Number 1]
/( = I(t) cos ω0ί - Q(t) sin 0t ( 1) とおくと、 AD変 l lの出力 f (t)は、 / (= I (t) cos ω 0 ί-Q (t) sin 0 t (1), the output f (t) of the AD converter ll is
AD  AD
[数 2]  [Equation 2]
Figure imgf000011_0001
となる。なお、 δは δ関数であり、 δ ( )はサンプリング値を示している。
Figure imgf000011_0001
It becomes. Note that δ is a δ function, and δ () indicates a sampling value.
これを、デマックス部 12で Ν個の系列にアンダーサンプリングすると、 η番目の系列 の時間波形 g (t)は  If this is undersampled into 系列 series in the demux section 12, the time waveform g (t) of the ηth series is
[数 3]  [Equation 3]
! Nk ! Nk
(り = / 2
Figure imgf000011_0002
となる。
(Ri = / 2
Figure imgf000011_0002
It becomes.
[0021] ディジタル直交復調部 13は、各系列に対し、それぞれ位相を ω 0 ZN'fsづっずらし た余弦波及び正弦波テーブルを用いて直交復調を施す。この結果、系列 nの直交復 調出力は、以下の (4)、(5)式 [0021] The digital quadrature demodulator 13 performs quadrature demodulation on each sequence using a cosine wave and a sine wave table whose phases are shifted by ω 0 ZN'fs. As a result, the orthogonal recovery of sequence n The adjustment output is expressed by the following formulas (4) and (5)
[数 4] [Equation 4]
Nk + n  Nk + n
, ( ) = g„(i)cosoy
Figure imgf000012_0001
, () = g „(i) cosoy
Figure imgf000012_0001
(4)  (Four)
[数 5] [Equation 5]
Nk + n
Figure imgf000012_0002
Nk + n
Figure imgf000012_0002
(5) で与えられる。  Given in (5).
この結果に対し、区間平均部 14a, 14bは全系列を加算する。すなわち、 lZfs時 間毎の区間平均の結果として  In response to this result, the interval averaging units 14a and 14b add all the sequences. In other words, as a result of the interval average for every lZfs time
[数 6]
Figure imgf000012_0003
[Equation 6]
Figure imgf000012_0003
(6) (6)
[数 7]
Figure imgf000013_0001
[Equation 7]
Figure imgf000013_0001
Nk + n Nk + n Nk + n \ Nk - Nk + n Nk + n Nk + n \ Nk-
Q sin 2ω. ∞s2o>, t—— Q sin 2ω. ∞s2o>, t——
Nf「  Nf
(7) を出力する。  (7) is output.
[0023] 最後に、ルートロールオフフィルタ 15a, 15bは帯域制限処理により、 2 ωの高周波  [0023] Finally, the root roll-off filters 15a and 15b perform a 2 ω
0  0
成分をカットし、次式  Cut the ingredients, the following formula
[数 8]
Figure imgf000013_0002
[Equation 8]
Figure imgf000013_0002
[数 9]
Figure imgf000013_0003
[Equation 9]
Figure imgf000013_0003
に示すデータを出力する。ただし、 ΐ (t)及び Q' (t)はそれぞれ、 I(t)及び Q(t)にル 一トロールオフ特性がかけられたものである。  The data shown in is output. However, ΐ (t) and Q '(t) are I (t) and Q (t), respectively, with a roll-off characteristic.
[0024] (D)ディジタル復調器  [0024] (D) Digital demodulator
ディジタル復調器を、デマックス部 12、ディジタル直交復調部 13、区間平均部 14a , 14bで構成する。デマックス部 12は、 RF周波数より低くアンダーサンプリングレート fsより高いサンプリング周波数 N'fs (Nは 2以上の整数)でサンプリングされた N個のァ ンテナ入力信号を該アンダーサンプリングレート fsで保持して出力し、直交復調部 13 は搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波を用いて N個のデ マックス部の出力データにディジタル直交復調処理を施し、区間平均部 14a, 14bは 各ディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間平均値 を出力する。  The digital demodulator is composed of a demux unit 12, a digital quadrature demodulation unit 13, and interval averaging units 14a and 14b. The demux unit 12 holds N antenna input signals sampled at a sampling frequency N'fs (N is an integer of 2 or more) lower than the RF frequency and higher than the undersampling rate fs, and outputs them while holding the undersampling rate fs. The quadrature demodulation unit 13 shifts the phase of the carrier wave by lZN'fs, performs digital quadrature demodulation processing on the output data of the N demux units using the carrier wave whose phase is shifted, and the interval averaging units 14a and 14b Each digital quadrature demodulation result is averaged and the interval average value for each undersampling rate fs is output.
以上から、図 1の実施例によれば、アナログダウンコンバータを使用しないようにでき 、無線受信機の小型化が可能になった。また、アナログダウンコンバータを使用しな いようにできるため、本発明によれば、無線処理部のソフトィ匕が実現できる。また、本 発明によれば、従来のように高い精度のクロック純度を必要としなくても、精度の高い 直交復調結果を得ることができる。 From the above, according to the embodiment of FIG. 1, the analog down converter can be omitted and the radio receiver can be downsized. Do not use an analog down converter. Therefore, according to the present invention, the software of the wireless processing unit can be realized. Furthermore, according to the present invention, a highly accurate orthogonal demodulation result can be obtained without requiring a highly accurate clock purity as in the prior art.
(3)第 2実施例  (3) Second embodiment
図 3はアンテナ入力信号がマルチキャリア信号の場合に適用できる本発明の無線 受信機の構成図である。  FIG. 3 is a configuration diagram of a radio receiver of the present invention that can be applied when the antenna input signal is a multicarrier signal.
アンテナ入力信号が周波数 fo— fcのマルチキャリア信号の場合、無線受信機はキ ャリア毎に、 AD変翻 11に接続されたディジタル処理部 21- 1— 21- Nを備えている。 各ディジタル処理部 21-1— 21-Nはほぼ同一の構成を備え、(1)デマックス部 12-1— 12-N、(2)復調部 13-1— 13-N、(3)区間平均部 14a-l— 14a-N, 14b-l— 14b-N、(4)帯 域制限フィルタ部 (ルートロールオフフィルタ) 15a- 1— 15a- N, 15b- 1— 15b- N、(5)ベ ースバンド処理部 16-1— 16-Nを備えている。ディジタル処理部 21-1は、符号が異な るが図 1の構成と全く同じである。  When the antenna input signal is a multi-carrier signal of frequency fo-fc, the radio receiver is equipped with a digital processing unit 21-1-21-N connected to AD conversion 11 for each carrier. Each digital processing unit 21-1-21-N has almost the same configuration: (1) Demax unit 12-1-12-N, (2) Demodulator unit 13-1-13-N, (3) Average section 14a-l— 14a-N, 14b-l— 14b-N, (4) Bandwidth limiting filter (root roll-off filter) 15a- 1— 15a- N, 15b- 1— 15b- N, (5) Baseband processor 16-1-16-N is provided. The digital processor 21-1 has the same configuration as that shown in FIG.
各ディジタル処理部 21-1— 21-Nにお 、て異なる点は、ディジタル直交復調部 13-1 一 13-Nがそれぞれ周波数 fo— fcの搬送波を発生して復調して ヽる点である。すなわ ち、ディジタル直交復調部 13-1は、周波数 foの搬送波の位相が lZN'fsづっずれた N個の直交復調器 13-la— 13-1Nを備え、各直交復調器は該位相がずれた搬送波 をそれぞれ用いてデマックス部 12-1から出力される N個のデータに対してディジタル 直交復調を施して出力する。また、ディジタル直交復調部 13-Nは、周波数 fcの搬送 波の位相が lZN'fsづっずれた N個の直交復調器 13- Na— 13- NNを備え、各直交 復調器は該位相がずれた搬送波をそれぞれ用 Vヽてデマックス部 12-Nから出力され る N個のデータに対してディジタル直交復調を施して出力する。  Each digital processing unit 21-1-21-N is different in that the digital quadrature demodulating unit 13-1-11-N generates and demodulates each carrier wave of frequency fo-fc. . In other words, the digital quadrature demodulator 13-1 includes N quadrature demodulators 13-la—13-1N in which the phase of the carrier wave having the frequency fo is shifted by lZN'fs. Using the shifted carrier waves, digital quadrature demodulation is performed on the N pieces of data output from the demux unit 12-1 and output. The digital quadrature demodulator 13-N includes N quadrature demodulators 13-Na— 13-NN whose phase of the carrier wave of frequency fc is shifted by lZN'fs, and each quadrature demodulator is shifted in phase. Each of the received carriers is used for V and the digital quadrature demodulation is performed on the N pieces of data output from the demux unit 12-N.
力かる第 2実施例によれば、 AD変換器 11までのアナログ部は 1つで、複数のキヤリ ァが受信可能となる。また、一括してマルチキャリアの各キャリアで送られてくる信号 を復調して処理することができる。なお、図 3において、ベースバンド処理部 16—1— 16-Nは共用構成とすることができる。  According to the second embodiment, there is only one analog part up to the AD converter 11, and a plurality of carriers can be received. It is also possible to demodulate and process the signals sent on each multicarrier carrier at once. In FIG. 3, the baseband processing units 16-1-16-N can be configured to be shared.

Claims

請求の範囲 The scope of the claims
[1] 無線受信機のディジタル復調器にぉ 、て、  [1] The digital demodulator of the radio receiver
アンテナ入力信号周波数より低く所定のアンダーサンプリングレート fsより高いサン プリング周波数 N'fs (Nは 2以上の整数)でサンプリングされた N個のアンテナ入力信 号を該アンダーサンプリングレート fsで保持して出力するデマックス部、  N antenna input signals sampled at a sampling frequency N'fs (N is an integer of 2 or more) that is lower than the antenna input signal frequency and higher than the specified undersampling rate fs are output at the undersampling rate fs. To demax,
搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波を用いて前記 N個 の各データにディジタル直交復調処理を施すディジタル直交復調部、  A digital quadrature demodulating unit that shifts the phase of the carrier wave by lZN'fs and performs digital quadrature demodulation processing on each of the N pieces of data using the carrier wave that is shifted in phase,
N個のディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間 平均値を出力する区間平均部、  Interval average unit that averages N digital quadrature demodulation results and outputs an average value for each interval of undersampling rate fs,
を備えたことを特徴とするディジタル復調器。  A digital demodulator characterized by comprising:
[2] 前記デマックス部は、前記 N個のアンテナ入力信号をサンプリングレート N'fsでシ フトするシフト部、 [2] The demax unit shifts the N antenna input signals at a sampling rate N′fs.
シフトされた N個のデータをアンダーサンプリングレート fsで保持して出力する保持 部、  A holding unit that holds and outputs the shifted N data at the undersampling rate fs,
を備えたことを特徴とする請求項 1記載のディジタル復調器。  The digital demodulator according to claim 1, further comprising:
[3] 前記ディジタル直交復調部は、 [3] The digital quadrature demodulation unit includes:
sin搬送波及び cos搬送波を周期 1ZN · fsでサンプルした時の値をそれぞれ保持す るメモリ、  A memory that holds the values when the sin carrier and cos carrier are sampled with a period of 1ZN
N個の各入力データ毎に、 lZN'fsづっ読出し位相を順次ずらして前記メモリから 各搬送波データを読み出し、該各搬送波データを入力データに乗算して直交復調 信号を出力する N個の乗算部、  For each N pieces of input data, each carrier data is read from the memory by sequentially shifting the read phase by lZN'fs, and each carrier data is multiplied by the input data to output a quadrature demodulated signal. N multipliers ,
を備えたことを特徴とする請求項 1記載のディジタル復調器。  The digital demodulator according to claim 1, further comprising:
[4] 無線受信機のディジタル復調方法にお!、て、 [4] The digital demodulation method for wireless receivers!
アンテナ入力信号周波数より低く所定のアンダーサンプリングレート fsより高いサン プリング周波数 N'fs (Nは 2以上の整数)でサンプリングされた N個のアンテナ入力信 号を該アンダーサンプリングレート fsで保存し、  N antenna input signals sampled at a sampling frequency N'fs (N is an integer of 2 or more) lower than the antenna input signal frequency and higher than a predetermined undersampling rate fs are stored at the under sampling rate fs.
搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波を用いて前記 N個 の各データに対してそれぞれディジタル直交復調を施し、 各ディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間平均 値を出力する、 The phase of the carrier wave is shifted by lZN'fs, and each of the N pieces of data is subjected to digital quadrature demodulation using the carrier wave whose phase is shifted. Averages the results of digital quadrature demodulation and outputs the average value of the interval for each undersampling rate fs.
ことを特徴とするディジタル復調方法。  And a digital demodulation method.
[5] アンテナ入力信号を直接 AD変換し、変換結果を用いて直交復調及び帯域制限す る無線受信機において、  [5] In a radio receiver that directly AD converts the antenna input signal and performs quadrature demodulation and band limitation using the conversion result.
アンテナ入力信号を所定のサンプリングレート N'fsでサンプリングして AD変換する AD変 、  Samples the antenna input signal at a predetermined sampling rate N'fs and performs AD conversion.
N個の AD変^ ^出力をアンダーサンプリングレート fsで保持して出力するデマック ス部、  A demux section that outputs N AD ^^ outputs at the undersampling rate fs.
搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波を用いて前記 N個 の各データにディジタル直交復調を施すディジタル直交復調部、  A digital quadrature demodulator that shifts the phase of the carrier wave by lZN'fs and performs digital quadrature demodulation on each of the N pieces of data using a carrier wave that is shifted in phase;
N個のディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間 平均値を出力する区間平均部、  Interval average unit that averages N digital quadrature demodulation results and outputs an average value for each interval of undersampling rate fs,
区間平均部の出力信号の帯域を制限する帯域制限フィルタ部、  A band limiting filter unit for limiting the band of the output signal of the section average unit,
帯域制限フィルタ出力にベースバンド処理を施すベースバンド処理部、 を備えることを特徴とする無線受信機。  A wireless receiver comprising: a baseband processing unit that performs baseband processing on a band-limited filter output.
[6] 前記デマックス部は、サンプリングレート N'fsで前記 AD変換器出力をシフトするシ フト部、 [6] The demax unit shifts the AD converter output at a sampling rate N'fs.
シフトされた N個のデータをアンダーサンプリングレート fsで保持して出力する保持 部、  A holding unit that holds and outputs the shifted N data at the undersampling rate fs,
を備えたことを特徴とする請求項 5記載の無線受信機。  The wireless receiver according to claim 5, further comprising:
[7] 前記ディジタル直交復調部は、 [7] The digital quadrature demodulation unit includes:
sin搬送波及び cos搬送波を周期 1ZN · fsでサンプルした時の値をそれぞれ保持す るメモリ、  A memory that holds the values when the sin carrier and cos carrier are sampled with a period of 1ZN
N個の各入力データ毎に、 lZN'fsづっ読出し位相を順次ずらして前記メモリから 各搬送波データを読み出し、該各搬送波データを入力データに乗算して直交復調 信号を出力する N個の乗算部、  For each N pieces of input data, each carrier data is read from the memory by sequentially shifting the read phase by lZN'fs, and each carrier data is multiplied by the input data to output a quadrature demodulated signal. N multipliers ,
を備えたことを特徴とする請求項 5記載の無線受信機。 The wireless receiver according to claim 5, further comprising:
[8] 前記アンテナ入力信号がマルチキャリア信号の場合、マルチキャリアの各キャリア 毎に、 [8] When the antenna input signal is a multicarrier signal, for each carrier of the multicarrier,
ディジタル直交復調部、区間平均部、帯域制限フィルタ部を少なくともを設け、 一括してマルチキャリアの各キャリアで送られてくる信号を復調して処理することを 特徴とする請求項 5記載の無線受信機。  6. The radio reception according to claim 5, wherein at least a digital quadrature demodulating unit, an interval averaging unit, and a band limiting filter unit are provided, and signals transmitted on each multicarrier carrier are demodulated and processed collectively. Machine.
[9] 無線受信機の受信方法において、 [9] In the receiving method of the wireless receiver,
アンテナ入力信号を所定のサンプリングレート N'fsでサンプルして AD変換し、 The antenna input signal is sampled at a predetermined sampling rate N'fs and AD converted,
N個の AD変換器出力をサンプリングレート N'fsでシフトすると共にアンダーサンプ リングレート fsで保存し、 N AD converter outputs are shifted at sampling rate N'fs and saved at undersampling rate fs.
搬送波の位相を lZN'fsづっずらし、各位相をずらした搬送波を用いて前記 N個 の各データに対してそれぞれディジタル直交復調を施し、  The phase of the carrier wave is shifted by lZN'fs, and each of the N pieces of data is subjected to digital quadrature demodulation using the carrier wave whose phase is shifted.
各ディジタル直交復調結果を平均してアンダーサンプリングレート fs毎の区間平均 値を出力し、  Each digital quadrature demodulation result is averaged and the average value of the interval at each undersampling rate fs is output.
区間平均部の出力信号の帯域を制限し、  Limit the band of the output signal of the section average part,
該帯域制限された信号にベースバンド処理を施すこと、  Applying baseband processing to the band-limited signal;
を特徴とする無線受信機の受信方法。  A receiving method for a wireless receiver.
PCT/JP2004/013921 2004-09-24 2004-09-24 Wireless receiver and digital demodulating method WO2006033151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006536283A JP4382095B2 (en) 2004-09-24 2004-09-24 Wireless receiver and digital demodulation method
PCT/JP2004/013921 WO2006033151A1 (en) 2004-09-24 2004-09-24 Wireless receiver and digital demodulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013921 WO2006033151A1 (en) 2004-09-24 2004-09-24 Wireless receiver and digital demodulating method

Publications (1)

Publication Number Publication Date
WO2006033151A1 true WO2006033151A1 (en) 2006-03-30

Family

ID=36089918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013921 WO2006033151A1 (en) 2004-09-24 2004-09-24 Wireless receiver and digital demodulating method

Country Status (2)

Country Link
JP (1) JP4382095B2 (en)
WO (1) WO2006033151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877024B2 (en) 2009-04-16 2011-01-25 Kabushiki Kaisha Toshiba Infrared signal decode circuit and infrared signal decode method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162990A (en) * 1994-12-09 1996-06-21 Japan Radio Co Ltd Digital receiver
JP2000022535A (en) * 1998-06-30 2000-01-21 Nec Corp Data sampling method and device
JP2000307531A (en) * 1999-04-15 2000-11-02 Nec Corp Frequency shift demodulation circuit
JP2002354056A (en) * 2001-05-25 2002-12-06 Toyota Central Res & Dev Lab Inc Receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162990A (en) * 1994-12-09 1996-06-21 Japan Radio Co Ltd Digital receiver
JP2000022535A (en) * 1998-06-30 2000-01-21 Nec Corp Data sampling method and device
JP2000307531A (en) * 1999-04-15 2000-11-02 Nec Corp Frequency shift demodulation circuit
JP2002354056A (en) * 2001-05-25 2002-12-06 Toyota Central Res & Dev Lab Inc Receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877024B2 (en) 2009-04-16 2011-01-25 Kabushiki Kaisha Toshiba Infrared signal decode circuit and infrared signal decode method

Also Published As

Publication number Publication date
JP4382095B2 (en) 2009-12-09
JPWO2006033151A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US5172070A (en) Apparatus for digitally demodulating a narrow band modulated signal
US8315338B2 (en) Orthogonality detector, and quadrature demodulator and sampling quadrature demodulator using detector thereof
JP4842942B2 (en) Wireless receiver
JP4652546B2 (en) Receiving machine
JPH09200285A (en) Improved sampling system for reception radio frequency
JPH0888577A (en) A/d converter with frequency conversion function and radio machine using this converter
EP1388942B1 (en) Conversion circuit, tuner and demodulator
US8543074B1 (en) Frequency agile digital radio receiver
CN101151810B (en) Low and middle frequency receiver and its sampling method
EP1693954B1 (en) Demodulation circuit for use in receiver using IF sampling scheme
CN111683028B (en) Digital equal-amplitude cw signal demodulation method
JP4501679B2 (en) Method and program for determining sampling frequency in undersampling
WO2006033151A1 (en) Wireless receiver and digital demodulating method
JP4843347B2 (en) Receiving system
JP2010130185A (en) Sampling rate conversion circuit
US7277501B2 (en) Data receiving device
JP4214635B2 (en) Digital radio equipment
JP4463063B2 (en) Demodulation circuit and demodulation method
JP2003298356A (en) Broadband attenuating image rejection mixer
JP2002271431A (en) Low pass filter
WO2009066945A2 (en) Apparatus and method for down-converting frequency in wireless communication system
EP2904702B1 (en) Method and apparatus for quadrature mixer circuits
US7885357B1 (en) Apparatus for signal detection to enhance performance of a receiver and method therefor
Xiao et al. Improved implementation of costas loop for dqpsk receivers using fpga
JP4211923B2 (en) FSK demodulating circuit and receiving circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006536283

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载