+

WO2006011590A1 - 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法 - Google Patents

熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法 Download PDF

Info

Publication number
WO2006011590A1
WO2006011590A1 PCT/JP2005/013914 JP2005013914W WO2006011590A1 WO 2006011590 A1 WO2006011590 A1 WO 2006011590A1 JP 2005013914 W JP2005013914 W JP 2005013914W WO 2006011590 A1 WO2006011590 A1 WO 2006011590A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal expansion
general formula
expansion inhibitor
inhibitor according
manganese nitride
Prior art date
Application number
PCT/JP2005/013914
Other languages
English (en)
French (fr)
Inventor
Koshi Takenaka
Hidenori Takagi
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to EP05767076.2A priority Critical patent/EP1790705A4/en
Priority to CA2575391A priority patent/CA2575391C/en
Priority to JP2006527870A priority patent/JP5099478B2/ja
Priority to KR1020077004743A priority patent/KR101121155B1/ko
Priority to CN200580030788XA priority patent/CN101023147B/zh
Priority to US11/658,740 priority patent/US7632480B2/en
Publication of WO2006011590A1 publication Critical patent/WO2006011590A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Definitions

  • Thermal expansion inhibitor zero thermal expansion material, negative thermal expansion material, thermal expansion suppression method, and thermal expansion inhibitor manufacturing method
  • the present invention relates to a thermal expansion inhibitor, a zero or negative thermal expansion material using the same, a thermal expansion suppression method, and a method of manufacturing a thermal expansion inhibitor for suppressing thermal expansion due to temperature rise. .
  • the present invention is intended to solve the above-described problems, and has a significantly wider application range than a conventional thermal expansion inhibitor and can be easily used. I will provide a.
  • a thermal expansion inhibitor containing manganese nitride crystals (1) A thermal expansion inhibitor containing manganese nitride crystals.
  • thermo expansion inhibitor according to (1) comprising a perovskite mangan nitride crystal having a negative coefficient of thermal expansion over a temperature range of at least 10 ° C.
  • the heat according to (1) which is a crystal having a composition represented by the following general formula (1), and includes manganese nitride having a negative coefficient of thermal expansion over a temperature range of at least 10 ° C.
  • Expansion inhibitor General formula (1) is a crystal having a composition represented by the following general formula (1), and includes manganese nitride having a negative coefficient of thermal expansion over a temperature range of at least 10 ° C.
  • A is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In, and 0 to X (4, where X is an integer)
  • A consists of Al, Si, Sc, and 4A-5B group atoms in the 4th to 6th period of the periodic table, and two or more kinds of atoms, and at least 1 of said atoms
  • the seed is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In, and 0 ⁇ x ⁇ 4, and B is partially carbon atoms, etc. This is an optionally substituted nitrogen atom.
  • a 21 is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In, and the powerful A 22 is Al, Si, Sc and a periodic table. Any one or more of the 4A-5B group atoms in the 4th to 6th cycle of the above (however, A 21 and A 22 are not the same and are not Mn), 0 ⁇ x2 ⁇ l, 0 ⁇ y2 ⁇ l, and I> x2 + y2, and B is a nitrogen atom that may be partially substituted with carbon atoms, etc.)
  • thermo expansion inhibitor according to (1) comprising a manganese nitride crystal having a compositional force represented by the following general formula (2-2).
  • a 21 is Co, Ni ⁇ Cu, Zn, Ga, Rh, Pd, Ag, Cd and In !
  • a 22 is Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, In, Ge and Sn shear forces (however, A 21 and A 22 are not the same! /), 0 ⁇ 2 ⁇ 1, 0.35 ⁇ y2 ⁇ 0.8, powerfully, I> x2 + y2, and B is a nitrogen atom that may be partially substituted with carbon atoms.
  • thermo expansion inhibitor according to (1) comprising a manganese nitride crystal having a composition represented by the following general formula (2-3).
  • a 21 is any one of Ni, Cu, Zn, Ga, Ag and In
  • a 22 is Ge or ⁇ Sn, ⁇ 2 ⁇ 0 or 0. 35 ⁇ y2 ⁇ 0.8, and further, a nitrogen atom which may be substituted with a S-carbon atom.
  • the thermal expansion inhibitor according to (1) comprising a manganese nitride crystal having a composition represented by the following general formula (2-4).
  • a 21 is any one of Ni, Cu, Zn, Ga, Ag and In
  • a 22 is Ge or Sn, and 0 ⁇ x2 ⁇ 0.2, 0. 35 ⁇ y2 ⁇ 0.7, and B is partly It is a nitrogen atom that may be substituted with an elementary atom.
  • a 31 is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In
  • a 32 is Al, Si, Sc and periodic table. Consisting of one or more of any of the 4A-5B group atoms in the 4th to 6th cycle of the above (however, A 31 and A 32 are not the same and are not Mn ⁇ ), 0 ⁇ 3 ⁇ 1, 0 ⁇ y3 ⁇ 2, vigorous, 1 + ⁇ 3 y3> 0, and further, a nitrogen atom which may be substituted with a carbon atom or the like.
  • thermo expansion inhibitor according to (1) comprising manganese nitride having a compositional force represented by the following general formula (4).
  • a 41 is any of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In
  • a 42 is Co, Ni ⁇ Cu, Zn, Ga, Rh, Pd, Ag, Cd, in, and Ge and Sn! /, is at or Re not a (wherein a 41 and a 42 are not identical)
  • a 43 is, Fe, Ta, be any of Cr and Nb , 0 ⁇ x4 ⁇ 0.3, 0.35 ⁇ y4 ⁇ 0.8
  • B is a nitrogen atom that may be partially substituted with carbon atoms.
  • a 51 is, Ni ⁇ Cu, Zn, Ga, Ag and an In! /, A displacement force, 0.6 ° x5 ⁇ 1. 3 (where, x5 is not 1)
  • B is a nitrogen atom that may be partially substituted with carbon atoms.
  • At least two or more of the compounds represented by the following general formula (10) contain perovskite-type manganese nitride obtained by sintering, and have negative heat over a temperature range of at least 10 ° C.
  • the thermal expansion inhibitor according to (1) comprising manganese nitride having an expansion coefficient.
  • a 1 is any one of Al, Si, Sc, and 4A-5B group atoms in the 4th to 6th periods of the periodic table.
  • One of the atoms, or these nitride forces including two or more selected perovskite mangan nitrides that have a negative coefficient of thermal expansion over a temperature range of at least 10 ° C
  • the thermal expansion inhibitor according to (1) including two or more selected perovskite mangan nitrides that have a negative coefficient of thermal expansion over a temperature range of at least 10 ° C.
  • NU also includes at least one atom having a thermal contraction effect of the lattice and at least one atom having an action of slowing the volume change accompanying magnetic phase transition more than Sn, and at least 10
  • the thermal expansion inhibitor according to (1) comprising manganese nitride having a negative coefficient of thermal expansion over a temperature range of ° C.
  • linear expansion coefficient is a 100 X 10- 6 Z ° C ⁇ one 3 X 10- 6 Z ° C ( 1) thermal expansion inhibitor of any one of - (16).
  • a zero thermal expansion material comprising the thermal expansion inhibitor according to any one of (1) to (19).
  • a negative thermal expansion material comprising the thermal expansion inhibitor according to any one of (1) to (19).
  • (23) a step of measuring a coefficient of thermal expansion of the crystal having the compositional force represented by the following general formula (10); and a part of the crystal having the compositional force represented by the general formula (10), Al, Si, Sc and at least one of the 4A to 5B group atoms in the 4th to 6th periods of the periodic table (provided that there is only one kind of atom)
  • a method for producing a thermal expansion inhibitor comprising a step of selecting crystal conditions.
  • a 1 is any one of Al, Si, Sc, and 4A-5B group atoms in the 4th to 6th periods of the periodic table.
  • the magnetic transition temperature range of manganese nitride that is, the temperature range exhibiting negative thermal expansion can be expanded to, for example, 100 ° C or more, and the linearity of the negative expansion coefficient is For example, it has become possible to secure over 70 ° C.
  • manganese nitride can be used as an industrial thermal expansion inhibitor.
  • the thermal expansion inhibitor of the present invention can be applied to a wider temperature range than the thermal expansion inhibitor that has been known in the past.
  • This negative thermal expansion can be obtained even in a high temperature range. Therefore, for example, it has become possible to suppress thermal expansion even for materials that may be heated to 200 ° C or higher.
  • an appropriate thermal expansion inhibitor for members used in high-temperature environments, devices that have joined multiple parts, etc. That adjustment is now possible.
  • thermal expansion inhibitor of the present invention performs isotropic volume expansion, for example, SiO 2
  • the thermal expansion inhibitor of the present invention can be easily controlled precisely according to the thermal expansion coefficient and temperature rise of the target. Therefore, it has become possible to provide a material having zero thermal expansion in a specific temperature range and a material having a negative thermal expansion (for example, a linear expansion coefficient of ⁇ 30 / ° C or more) larger than that of a conventional product. As a result, it was possible to suppress thermal expansion even for materials with large thermal expansion, such as resin and organic matter. It can also be used favorably for precision parts.
  • the thermal expansion inhibitor of the present invention can be used in a powder state, it can be baked and hardened into an arbitrary shape like a ceramic. In addition, it became easy to mix with raw materials.
  • the thermal expansion inhibitor of the present invention is a nitride, the mechanical strength of the target is increased or the strength is maintained.
  • the thermal expansion inhibitor of the present invention since the thermal expansion inhibitor of the present invention exhibits metallic properties, it has characteristics such as high electrical conductivity, thermal conductivity, and other properties as a metal.
  • the thermal expansion inhibitor of the present invention can be composed only of an inexpensive and environmentally friendly material, which is preferable in terms of cost and environment.
  • FIG. 1 is a diagram showing the effect of one thermal expansion inhibitor of the present invention.
  • FIG. 2 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 3 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 4 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 5 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 6 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 7 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 8 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 9 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 10 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 11 is a graph showing the effect of another thermal expansion inhibitor of the present invention.
  • FIG. 12 is a diagram showing the effect of another thermal expansion inhibitor (high-pressure nitrogen treatment) of the present invention.
  • FIG. 13 is a view showing the effect of another thermal expansion inhibitor (high-pressure nitrogen treatment) of the present invention.
  • the manganese nitride in the present invention is described with no atomic defects or excess that can occur in a normal crystal lattice (especially perovskite type manganese nitride). Even if there is a defect or excess that normally occurs in this type of crystal lattice, it is within the scope of the present invention without departing from the spirit of the present invention.
  • the manganese nitride contained in the thermal expansion inhibitor of the present invention has a negative coefficient of thermal expansion over a temperature range of at least 10 ° C, and is represented, for example, by the following general formula (1). It is made up of a composition.
  • A is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In, and 0 to X (4, where X is an integer)
  • A consists of Al, Si, Sc, and 4A-5B group atoms in the 4th to 6th period of the periodic table, and two or more kinds of atoms, and at least 1 of said atoms
  • the seed is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In, and 0 ⁇ x ⁇ 4, and B is partially carbon atoms, etc. This is an optionally substituted nitrogen atom.
  • A is Co, Ni, Cu, Zn , Ga, Rh, Pd, Ag, Cd and In are preferred Any of Ni, Cu, Zn, Ga, Ag and In More preferably, Ga is more preferable.
  • the atom of A is Al, Si, Sc, and any two or more kinds of atoms of Group 4A-5B in the 4th to 6th periods of the periodic table
  • at least one of the atoms is Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In
  • at least one other is Co, Ni CoCu, Zn, Ga, Rh, Pd, Ag, Cd, In, Cr, Fe, Ge, Nb, Sn, Ta, Pt, or Zr is preferable.
  • the A atom contains at least one of Ni, Cu, Zn, Ga, Ag and In, and at least one of Ge, Sn, Fe, Ta, Cr and Nb is there.
  • A may be more than two atoms. If A is also three types of nuclear power, at least one is preferably Fe, Ta, or Nb Fe and Zn and Ge, Fe and Cu and Ge, Fe and Ga and Ge, Combinations of Fe and In and Ge, Ta and Cu and Ge, and Nb, Zn and Sn are preferred examples.
  • X when A consists of one kind of atom, 0 ⁇ x ⁇ 4 (where X is not an integer), preferably 0 ⁇ x ⁇ 2 (where X is an integer) More preferably 0.6 ⁇ x ⁇ 1.3 (where X is not an integer), and even more preferably 0.8 ⁇ x ⁇ l.1 (where X is not an integer) ).
  • A is also two or more types of nuclear power, 0 ⁇ x ⁇ 4, preferably 0 ⁇ x ⁇ 2, more preferably 0.6 ⁇ ⁇ 1.4, Preferably 0.8 3 and X are 1.15.
  • B is a nitrogen atom that may be partially substituted with a carbon atom or the like, and is preferably a nitrogen atom that is partially substituted with a carbon atom! The same applies to the formula).
  • the general formula (1) is preferably represented by the following general formulas (2) to (4).
  • a 21 is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In, and the powerful A 22 is Al, Si, Sc and a periodic table. Any one or more of the 4A-5B group atoms in the 4th to 6th cycle of the above (however, A 21 and A 22 are not the same and are not Mn), 0 ⁇ x2 ⁇ l, 0 ⁇ y2 ⁇ l and I> x2 + y2, and B is a partial force ⁇ carbon atom etc. A nitrogen atom which may be substituted with )
  • a 21 is preferably any one of Ni, Cu, Zn, Ga, Ag, and In, more preferably Cu, Zn, Ga, and In.
  • a 22 is preferably Co, Ni ⁇ Cu ⁇ Zn, Ga ⁇ Rh, Pd ⁇ Ag ⁇ Cd ⁇ In, or Ge ⁇ Sn. Cu, Zn, Ga, In, Ge, Sn It is even better to be one! /. Also, even if x2! /, 0 ⁇ x2 ⁇ 0.2, more preferably 0 ⁇ x2 ⁇ 0.1, and more preferably 0.
  • force S is preferably 0.35 ⁇ y2 ⁇ 0.8, more preferably force S is 0.4 ⁇ y2 ⁇ 0.7, and 0.4 ⁇ y2 ⁇ 0.65. More preferably it is.
  • examples of the general formula (2) include those represented by the general formula (2-2) to the general formula (2-4).
  • a 21 is Co, Ni ⁇ Cu, Zn, Ga, Rh, Pd, Ag, Cd and In !
  • a 22 is Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, In, Ge and Sn shear forces (however, A 21 and A 22 are not the same! /), 0 ⁇ 2 ⁇ 1, 0.35 ⁇ y2 ⁇ 0.80, powerfully, I> x2 + y2, and B is a nitrogen atom that may be partially substituted with carbon atoms.
  • y2 it is more preferable that 0.4 ⁇ y2 ⁇ 0.7, and it is further preferable that 0.4 ⁇ y2 ⁇ 0.65.
  • a 21 is any one of Ni, Cu, Zn, Ga, Ag and In
  • a 22 is Ge or ⁇ Sn, ⁇ 2 ⁇ 0 or 0. 35 ⁇ y2 ⁇ 0.8, and further, a nitrogen atom which may be substituted with a S-carbon atom.
  • a 21 is any one of Ni, Cu, Zn, Ga, Ag and In
  • a 22 is Ge or Sn, and 0 ⁇ x2 ⁇ 0.2, 0. 35 ⁇ y2 ⁇ 0.7
  • B is a nitrogen atom that may be partially substituted with carbon atoms.
  • a 31 is any one of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In
  • a 32 is Al, Si, Sc and periodic table. Consisting of one or more of any of the 4A-5B group atoms in the 4th to 6th cycle of the above (however, A 31 and A 32 are not the same and are not Mn ⁇ ), 0 ⁇ 3 ⁇ 1, 0 ⁇ y3 ⁇ 2, vigorous, 1 + ⁇ 3—y3> 0, and further, a nitrogen atom which may be substituted with a carbon atom or the like.
  • ⁇ 31 is more preferably Cu, Zn, Ga, or In, preferably Ni, Cu, Zn, Ga, Ag, or In.
  • a 32 is preferably Co, Ni ⁇ Cu ⁇ Zn, Ga ⁇ Rh, Pd ⁇ Ag ⁇ Cd ⁇ In, or Ge ⁇ Sn. Cu, Zn, Ga, In, Ge, Sn It is even better to be one! /. In addition, even for x3! /, Even if 0 ⁇ x3 ⁇ 0.2, it is more likely that 0 ⁇ x3 ⁇ 0.15. 0 ⁇ x3 ⁇ 0.1 More preferably it is. On the other hand, y3 Nitsu, Te, it forces preferably 0. 35 ⁇ y3 ⁇ 0. 8, 0. 4 ⁇ y 3 ⁇ rather better that the force element is 0. 7, 0. 4 ⁇ y3 ⁇ 0. 6 is more preferable.
  • a 41 is any of Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In
  • a 42 is Co, Ni ⁇ Cu, Zn, Ga, Rh, Pd, Ag, Cd, in, and Ge and Sn! /, is at or Re not a (wherein a 41 and a 42 are not identical)
  • a 43 is, Fe, Ta, be any of Cr and Nb , 0 ⁇ x4 ⁇ 0. 3 forces 0. 35 ⁇ y4 ⁇ 0.8
  • B is a partial force ⁇ carbon atom A nitrogen atom which may be substituted.
  • x4! /, 0 ⁇ x4 ⁇ 0.2 is preferable, 0 ⁇ x4 ⁇ 0.15 is preferable, 0 ⁇ x4 ⁇ 0.1. Further preferred.
  • y4 is preferably 0.3 ⁇ 5 ⁇ y4 ⁇ 0.7, and more preferably 0.4 ⁇ y4 ⁇ 0.6.
  • the general formula (4) can be more specifically exemplified by the one represented by the general formula (42).
  • x4! /, 0 ⁇ x4 ⁇ 0.2, and 0 ⁇ x4 ⁇ 0.15 is more preferable.
  • y4 it is preferable that 0.35 ⁇ y4 ⁇ 0.7, and it is more preferable that 0.4 ⁇ y4 ⁇ 0.6.
  • ⁇ 51 is the displacement force of Ni ⁇ Cu, Zn, Ga, Ag and In, 0.6 and x5 ⁇ 1.3 (however, x5 is not 1)
  • B is a nitrogen atom that may be partially substituted with carbon atoms.
  • a perovskite-type manganese nitride obtained by sintering at least two kinds of compounds represented by the following general formula (10) can be employed. .
  • a 1 is any one of Al, Si, Sc, and 4A-5B group atoms in the 4th to 6th periods of the periodic table.
  • a 1 is any one of Al, Si, Sc, and 4A-5B group atoms in the 4th to 6th periods of the periodic table.
  • Perovskite-type manganese nitride obtained by sintering any one of these atoms or two or more selected from these nitride forces can also be employed.
  • the manganese nitride used in the present invention includes, for example, at least an atom having a thermal contraction action of a lattice rather than M, and an atom having an action of slowing a volume change accompanying a magnetic phase transition more than Sn. And manganese nitride. Further, manganese nitride containing at least one of Fe, Ta, and Nb is preferable.
  • the atom having the heat shrinking action of the NU lattice can be grasped from the description of Non-Patent Documents 1 to 8, for example.
  • the atom having the effect of slowing the volume change more than Sn is a concept clarified by the present inventor, and is shown in the examples described later. It is an atom that has the effect of slowing the volume change. Specifically, Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In and Ge are preferred! /, Examples of which can be mentioned.
  • Fe, Ta, Cr and Nb have the effect of controlling the operating temperature.
  • the manganese nitride contained in the thermal expansion inhibitor of the present invention preferably has a belovskite crystal structure.
  • the manganese nitride contained in the thermal expansion inhibitor of the present invention is cubic or slightly distorted in cubic (for example, hexagonal, monoclinic, orthorhombic, tetragonal, etc. Crystal system, trigonal system, etc.), but cubic system is preferred.
  • the ratio of substitution even if a part of the nitrogen atom is substituted with a carbon atom or the like is preferably 20% or less, more preferably 15% or less, and still more preferably. 10% or less.
  • the atoms that may be substituted in addition to carbon atoms are not particularly defined, but B, S, 0, and P are preferred examples, and S, 0, and P are more preferred examples.
  • the nitrogen atom is preferably present at the center of the manganese nitride crystal lattice.
  • the nitrogen atom here means that it exists in the center when the defect or excess of the nitrogen atom that can occur in normal manganese nitride is strong.
  • the cubic system is slightly distorted, it refers to the position corresponding to the octahedral center in the cubic system. Therefore, unless departing from the spirit of the present invention, for example, in Mn Cu Ge N, Mn:
  • N including C or the like in which part is substituted
  • the thermal expansion inhibitor of the present invention has a temperature range of at least 10 ° C, preferably a temperature range of at least 15 ° C, more preferably a temperature range of at least 20 ° C, and even more preferably. It has a negative coefficient of thermal expansion over a temperature range of at least 30 ° C., and most preferably over a temperature range of at least 40 ° C. or more.
  • the linear expansion coefficient of the case is less than OZ ° C, preferably 1 X 10- 6 Z ° c 100 X 10- 6 Z ° C, more preferably one 5 X 10- 6 Z ° C 100 X 10- 6 / ° C, more preferably is - 100 X 10- 6 Z ° c - 10 X 10- 6 Z ° c.
  • the temperature range in which such a negative coefficient of thermal expansion is recognized is (1) —20 ° C between 100 ° C, (2) 100 ° C or more (preferably 100 ° C to 250 ° C), It is preferably at least one of (3) -20 ° C or less (preferably between 100 ° C and 20 ° C) and (4) 200 ° C and 100 ° C.
  • the thermal expansion inhibitor of the present invention is not limited thereto. Further, those in which some of the nitrogen atoms contained in the manganese nitride described below are substituted with carbon atoms and the like are preferable, and examples thereof can also be given.
  • Mn Cu Ge N Mn Cu Ge N (more preferably, Mn Cu
  • the thermal expansion inhibitor of the present invention can be used, for example, as a temperature compensation material that cancels out the thermal expansion of a normal material, and produces a negative thermal expansion material that expands negatively in a specific temperature range. can do. Furthermore, a zero thermal expansion material that does not expand positively or negatively in a specific temperature range can be produced.
  • the thermal expansion inhibitor of the present invention can also be used for suppressing or controlling thermal expansion. For example, by adding to a material having a large expansion due to heat, the thermal expansion can be suppressed (decreased) to an allowable range of the material. Alternatively, it can be mixed with other materials to produce a material having the desired thermal expansion.
  • the type of the material is not particularly defined without departing from the gist of the present invention.
  • Glass, resin, ceramic, metal It can be applied to widely known materials such as metal and alloys.
  • the thermal expansion inhibitor of the present invention can be used in a powdered state, it can be preferably used for those that can be baked and hardened into an arbitrary shape such as ceramic.
  • the thermal expansion inhibitor of the present invention can be produced according to a known method. For example, it can be obtained by heating and baking for 10 to L00 hours at a temperature of 500 to 1000 ° C. under a nitrogen gas of 0.5 to 10 atm. In particular, by treating with high-pressure nitrogen (for example, 7 to 10 atmospheres), the temperature at which negative thermal expansion starts can be lowered, and the linear expansion coefficient is decreased (negative expansion is increased). can do.
  • high-pressure nitrogen for example, 7 to 10 atmospheres
  • the thermal expansion inhibitor of the present invention may be subjected to an oxygen annealing treatment.
  • the oxygen ball treatment for example, the treatment may be carried out at 300 to 500 ° C. under oxygen of 0.5 to 3 atmospheres for 10 to 100 hours.
  • the magnetic volume effect is a phenomenon in which the volume increases in response to the expansion of the magnetic moment in a metal magnetic material.
  • the volume change at the magnetic transition point indicated by the manganese nitride represented by the general formula (1) is understood as a typical example of the magnetic volume effect. Therefore, the body expansion in these manganese nitrides is synonymous with the expansion of the magnetic moment, and by looking at the volume change, the magnitude of the magnetic moment (in the case of a ferromagnet, in the case of magnetisation) Size).
  • the ferromagnetic manganese nitride represented by the general formula (1) is a magnetic material for magnetic cooling.
  • the magnetic material for magnetic cooling is, for example, a material used for magnetic cooling in a high temperature region, and is used as a cooling medium when cooling with a magnetic cooling device or the like without using freon gas or the like. Is.
  • the composition represented by the general formula (1) has the effect of making the volume change slower than Sn (Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In
  • Sn Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd and In
  • composition of the general formula (1) is used, and the operating temperature of the magnetic material for magnetic cooling is controlled by adopting manganese nitride containing Fe, Ta, Cr or Nb as the magnetic material for magnetic cooling. I like it because I can.
  • manganese nitride having a composition represented by the general formula (1) can be used in combination with a magnetic material for heat treatment or as an auxiliary agent for other magnetic materials for magnetic cooling.
  • manganese nitride having a compositional power represented by the general formula (1) can be preferably used as a regenerator or the like.
  • Mn A 1 ? ⁇ And Mn A 2 N (Ai and A 2 are Mn ⁇ Co, Ni ⁇ Cu ⁇ Zn ⁇ Ga ⁇ Ge ⁇ Pd ⁇
  • Mn GaN uses Mn N and GaN as raw materials, and nitrogen.
  • the raw material was obtained by heating and baking for 120 hours at 450 ° C with nitrogen gas at 1 atm.
  • Mn A 1 A 2 N is the powder of Mn and Mn A 2 N produced by the above method.
  • Mn GaC weighs Mn, Ga, and C (carbon atoms) in order at a molar ratio of 3: 1: 1.05.
  • Mn A 3 A 1 A 2 N is made from Mn N as a raw material, simple substance A 3 (Fe, Ta, Cr and Nb) or A
  • a strain gauge (Kyowa Denko, KFL-02-120-C11) was used to measure the coefficient of thermal expansion.
  • a strain gauge was affixed to a sintered body sample formed into a 4 X 4 X 1 mm 3 plate using an adhesive (Kyowa Denki, PC-6).
  • the clip was removed, and baking was further performed at 150 ° C for 2 hours under an atmosphere of nitrogen gas at 1 atm.
  • the resistance value R of the strain 'gauge was measured with a physical property evaluation system (Quantum design, PPMS6000).
  • Fig. 1 shows the measurement of the linear expansion coefficient of Mn Cu Ge N.
  • Tmin represents the lowest temperature at which a negative linear expansion coefficient was observed
  • Tmax represents the highest temperature at which a negative linear expansion coefficient was reliably observed within the range measured this time. Therefore, in the temperature range of Tmin to Tmax (expressed by ⁇ ), at least the force that ensures the negative linear expansion coefficient is not necessarily limited to this range. That is, in this example, it is not clear because it was measured only up to 127 ° C (400K) .
  • Tmax force of 127 ° C with a negative linear expansion coefficient is because it can be easily estimated that the temperature is too high (indicated as * 127 in Table 1).
  • a negative linear expansion coefficient may be included in a temperature range wider than Tmin and Tmax.
  • the Tmin temperature is lowered by high-pressure nitrogen treatment. It became possible to lower. As a result, it became easier to adjust the region causing linear expansion. Moreover, it became possible to enlarge negative expansibility.
  • the thermal expansion inhibitor of the present invention can be used as a temperature compensation material that offsets the thermal expansion exhibited by ordinary materials, and can produce a negative thermal expansion material that shrinks with increasing temperature in a specific temperature range. it can.
  • zero thermal expansion materials can be made that do not expand either positively or negatively over a specific temperature range.
  • it can be used for precision optical parts and mechanical parts that dislike changes in shape and dimensions due to temperature, temperature compensation materials for fiber ratings, printed circuit boards, thermal switches, dental materials, refrigerator parts, etc. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 広い温度範囲において適用可能であり、かつ、容易に使用することができる熱膨張抑制剤を提供する。  少なくとも10°Cの温度域にわたって負の熱膨張率を有するペロフスカイト型マンガン窒化物結晶を含む熱膨張抑制剤を採用した。

Description

明 細 書
熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法お よび熱膨張抑制剤の製造方法
技術分野
[0001] 本発明は、温度上昇による熱膨張を抑制するための、熱膨張抑制剤ならびにこれ を用いたゼロまたは負の熱膨張材料、熱膨張抑制方法、および熱膨張抑制剤の製 造方法に関する。
技術背景
[0002] 一般的に、物質は温度上昇に伴って熱膨張することが知られている。そのため、温 度変化が起こるデバイスに使用する部品については種々の問題が起こる。
そこで、これまでに、各種の温度による熱膨張抑制法が検討されている。例えば、 特開 2003— 146693号公報【こ ίま、 40°C〜100°Cの温度範囲【こお!/、て 1 X 10— 6Z°C〜一 12 X 10—6Z°Cの負の線膨張率を有するセラミックスあるいはガラスセラミツ タスを採用することが記載されている。そして、このようなセラミックスあるいはガラスセ ラミックスとして、 β 石英固溶体または j8 —ユークリプタイト固溶体を主結晶とする セラミックスある 、はガラスセラミックス、または Zrおよび Hfの少なくとも 、ずれかを含 むリン酸タングステン酸塩またはタングステン酸塩を主結晶とする多結晶体セラミック スが挙げられている。
し力しながら、実際に使用するには種々の条件が必要であり、熱膨張抑制剤として は、充分と言えるものではない。
[0003] また、これまでに、化学式 Mn XN (Xは Ni、 Zn、 Gaまたは Agである。)で表される
3
ベロフスカイト型マンガン窒化物が、反強磁性秩序の形成にともない、低温磁気秩序 相で格子が大きくなる現象 (磁気体積効果)を示すことが知られている (J. P. Bouchau d et al" C. R. Acad. Sc. Paris C 262, 640 (1966).、 J. P. Bouchaud, Ann. Chim. 3, 8 1 (1968).、 D. Fruchart et al., Solid State Commun. 9, 1793 (1971).、 R. Fruchart et a 1., J. Phys. (Paris) 32, C 1— 982 (1971).、 D. Fruchart et al., Proc. Intern. Conf. Mag n. 4, 572 (1974).、 Ph. I'Heritier et al., Mat. Res. Bull. 14, 1089 (1979).、 Ph. I'Heriti er et al, Mat. Res. Bull. 14, 1203 (1979).、 W. S. Kim et al, Phys. Rev. B 68, 17240 2 (2003).) oし力し、この現象は鋭い 1次の相転移で、おおむね転移幅が 1°C以内と 狭ぐ工業的な熱膨張抑制剤として使用することはできないものであった。
発明の開示
発明が解決しょうとする課題
[0004] 本願発明は、上記課題を解決することを目的としたものであって、従来の熱膨張抑 制剤より、著しく適用範囲が広ぐかつ、容易に使用することができる熱膨張抑制剤を 提供する。
課題を解決するための手段
[0005] 本発明者が、鋭意検討した結果、驚くべきことに、マンガン窒化物の原子置換を行 うことにより、 10°C以上の温度域にわたって、緩やかな負の熱膨張が得られることを 見出し、本発明を完成するに至った。具体的には、以下の手段により達成された。
(1)マンガン窒化物結晶を含む熱膨張抑制剤。
(2)少なくとも 10°Cの温度域にわたって負の熱膨張率を有するぺロフスカイト型マン ガン窒化物結晶を含む(1)に記載の熱膨張抑制剤。
(3)下記一般式(1)で表される組成からなる結晶であり、少なくとも 10°Cの温度域に わたって負の熱膨張率を有するマンガン窒化物を含む、(1)に記載の熱膨張抑制剤 一般式 (1)
Mn A B
4-X X
(一般式(1)中、 Aは、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれか であり、かつ、 0く Xく 4 (但し、 Xは整数ではない)であり、または、 Aは、 Al、 Si、 Scお よび周期表の第 4〜6周期の 4A〜5B族の原子のいずれ力 2種以上の原子からなり、 かつ、前記原子の少なくとも 1種は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれかであり、かつ、 0<x<4であり、さらに、 Bは、一部が炭素原子等で置換 されていてもよい窒素原子である。 )
(4)前記一般式(1)が、下記一般式 (2)で表される (3)に記載の熱膨張抑制剤。 一般式 (2) Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2)中、 A21は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ かであり、力つ A22は Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 1種以上であり(ただし、 A21および A22は、同一ではなぐまた、 Mnでない) 、 0≤x2< l、 0<y2< l、かつ、 I >x2+y2であり、さらに、 Bは一部力 ^炭素原子等 で置換されていてもよい窒素原子である。 )
(5)下記一般式(2— 2)で表される組成力 なるマンガン窒化物結晶を含む(1)に記 載の熱膨張抑制剤。
一般式(2— 2)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 2)中、 A21は、 Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inの!、 ずれ力であり、 A22は Co、 Ni, Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In、 Geおよび Snの ヽずれ力であり(ただ、し A21と A22は同一でな!/、)、 0≤χ2< 1、 0. 35<y2< 0. 8、力 つ、 I >x2+y2であり、さらに、 Bは一部が炭素原子で置換されていてもよい窒素原 子である。 )
(6)下記一般式(2— 3)で表される組成力 なるマンガン窒化物結晶を含む(1)に記 載の熱膨張抑制剤。
一般式(2— 3)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 3)中、 A21は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A22は Geまた ίま Snであり、 χ2ίま 0であり、 0. 35<y2< 0. 8であり、さらに、 Βίまー咅力 S炭素 原子で置換されていてもよい窒素原子である。 )
(7)下記一般式(2— 4)で表される組成力 なるマンガン窒化物結晶を含む(1)に記 載の熱膨張抑制剤。
一般式 (2— 4)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 4)中、 A21は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A22は Geまたは Snであり、 0<x2< 0. 2、 0. 35<y2< 0. 7であり、さらに、 Bは一部力 ^炭 素原子で置換されていてもよい窒素原子である。 )
(8)前記一般式(1)が、下記一般式 (3)で表される (3)に記載の熱膨張抑制剤。 一般式 (3)
Mn A31 A32 B
3-x3 y3 l+x3-y3
(一般式(3)中、 A31は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ かであり、力つ A32は Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 1種以上の原子からなり(ただし、 A31および A32は、同一ではなぐまた、 Mn でな ヽ)、 0<χ3< 1、 0<y3< 2、力つ、 1 +χ3 y3 >0であり、さらに、 Βίまー咅力 ^ 炭素原子等で置換されていてもよい窒素原子である。 )
(9)下記一般式 (4)で表される組成力 なるマンガン窒化物を含む(1)に記載の熱 膨張抑制剤。
一般式 (4)
Mn A41 A42 A43 B
3-χ4 y4 l-y4 x4
(一般式(4)中、 A41は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ 力であり、 A42は Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In、 Geおよび Snの! /、ず れかであり(ただし A41と A42は同一でない)、 A43は、 Fe、 Ta、 Crおよび Nbのいずれか であり、 0<x4< 0. 3力つ 0. 35<y4< 0. 8であり、さらに、 Bは一部力 ^炭素原子で 置換されていてもよい窒素原子である。 )
(10)下記一般式 (4 2)で表される組成力 なるマンガン窒化物を含む(1)に記載 の熱膨張抑制剤。
一般式 (4 2)
Mn A41 A42 A43 B
3-χ4 y4 l-y4 x4
(一般式(4 2)中、 A"は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A42は Geまた ίま Snであり、 Α43ίま、 Fe、Taの!/、ずれ力であり、0<x4< 0. 3力つ 0. 35<y 4< 0. 8であり、さらに、 Bは一部が炭素原子で置換されていてもよい窒素原子であ る。)
(11)下記一般式(5)で表される組成力 なるマンガン窒化物を含む(1)に記載の熱 膨張抑制剤。 一般式 (5)
Mn A51 B
4-χ5 x5
(一般式(5)中、 A51は、 Niゝ Cu、 Zn、 Ga、 Agおよび Inの! /、ずれ力であり、 0. 6く x5 < 1. 3 (但し、 x5は 1ではない)であり、さらに、 Bは一部が炭素原子で置換されてい てもよい窒素原子である。 )
(12)前記マンガン窒化物は、ぺロフスカイト型である(1)および(3)〜(11)のいずれ か 1項に記載の熱膨張抑制剤。
(13)少なくとも、下記一般式(10)で表される化合物の 2種以上を、焼結してなるぺロ フスカイト型マンガン窒化物を含み、かつ、少なくとも 10°Cの温度域にわたって負の 熱膨張率を有するマンガン窒化物を含む(1)に記載の熱膨張抑制剤。
一般式 (10)
Mn AJN
3
(一般式(10)中、 A1は、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原 子のいずれかである。 )
(14)少なくとも、 Mn Nと、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の
2
原子のいずれか、またはこれらの窒化物力 選択される 2種以上を焼結してなり、力 つ、少なくとも 10°Cの温度域にわたって負の熱膨張率を有するぺロフスカイト型マン ガン窒化物を含む(1)に記載の熱膨張抑制剤。
(15) NUりも格子の熱収縮作用を有する原子の少なくとも 1種と、 Snよりも磁気相転 移にともなう体積変化を緩慢にする作用を有する原子の少なくとも 1種を含み、かつ、 少なくとも 10°Cの温度域にわたって負の熱膨張率を有するマンガン窒化物を含む(1 )に記載の熱膨張抑制剤。
(16)前記マンガン窒化物力 さらに、 Fe、 Ta、 Crおよび Nbの少なくとも 1種を含む( 15)に記載の熱膨張抑制剤。
(17)線膨張率が、 100 X 10— 6Z°C〜一 3 X 10— 6Z°Cである(1)〜(16)のいずれ か 1項に記載の熱膨張抑制剤。
(18)少なくとも 15°Cの温度域に渡って負の熱膨張率を有する(1)〜(17)のいずれ か 1項に記載の熱膨張抑制剤。 (19)前記マンガン窒化物中の窒素原子は、 0より多く 15%以下の割合で炭素原子 に置換されて 、る(1)〜(18)の 、ずれか 1項に記載の熱膨張抑制剤。
(20) (1)〜(19)の 、ずれか 1項に記載の熱膨張抑制剤を含むゼロ熱膨張材料。
(21) (1)〜(19)のいずれか 1項に記載の熱膨張抑制剤を含む負の熱膨張材料。
(22) (1)〜(19)のいずれか 1項に記載の熱膨張抑制剤を用いた熱膨張抑制方法。
(23)下記一般式(10)で表される組成力 なる結晶の熱膨張率を測定する工程と、 前記一般式(10)で表される組成力もなる結晶の一部を、 Al、 Si、 Scおよび周期表の 第 4〜6周期の 4A〜5B族の原子の少なくとも 1種(但し、該原子が 1種のみのときは
、 Mnおよび A1ではない)に変えたものの熱膨張率を測定する工程と、これらの熱膨 張率から、少なくとも 10°Cの温度域に渡って負の熱膨張率を有する組成力もなる結 晶の条件を選択する工程を含む熱膨張抑制剤の製造方法。
一般式 (10)
Mn AJN
3
(一般式(10)中、 A1は、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原 子のいずれかである。 )
(24)前記一般式(10)で表される組成力もなる結晶の一部を、 Fe、 Ta、 Crおよび N bの少なくとも 1種で変えることによって、動作温度を制御する工程を含む(23)に記 載の熱膨張抑制剤の製造方法。
発明の効果
第 1に、マンガン窒化物の磁気転移温度幅、すなわち、負の熱膨張を示す温度域 を、例えば、 100°C以上にも広げることが可能になり、また、負膨張率の線形性も、例 えば、 70°C程度以上にわたっても、確保できるようになった。これにより、マンガン窒 化物が工業的な熱膨張抑制剤として利用可能となった。
第 2に、本発明の熱膨張抑制剤は、従来力も知られていた熱膨張抑制剤より、広い 温度範囲に適用可能となった。そして、この負の熱膨張が高い温度域でも得られるこ ととなつた。従って、例えば、 200°C以上に加熱されることのある材料についても、熱 膨張を抑制することが可能となった。この結果、高温環境で使用する部材や、複数の 部品を接合したデバイス等においても、適当な熱膨張抑制剤を選択することにより、 その調整が可能になった。
第 3に、本発明の熱膨張抑制剤は、等方的な体積膨張を行うため、例えば SiOの
2 ように、焼結の程度等に左右されることなぐ材料への適用が容易となった。
第 4に、本発明の熱膨張抑制剤は、対象とするものの熱膨張率や温度上昇に応じ て、精密に制御することが容易である。従って、特定の温度範囲において熱膨張が ゼロの材料や従来品より大きな負の熱膨張 (例えば、線膨張率—30 /°C以上)を有 する材料を提供することも可能となった。この結果、榭脂、有機物等熱膨張の大きな 材料に対しても熱膨張を抑制することが可能となった。また、精密部品においても好 ましく使用可能となった。
第 5に、本発明の熱膨張抑制剤は、粉末の状態で利用することができるため、セラミ ックのように任意の形状に焼き固めることが可能となった。また、原材料に混合しやす いものとなった。
第 6に、本発明の熱膨張抑制剤は、窒化物であるため、対象とするものの機械的強 度を高める、あるいは強度を維持することになつた。
第 7に、本発明の熱膨張抑制剤は、金属的性質を示すため、高い電気伝導、熱伝 導など、金属としての性質を備えて ヽると!ヽぅ特長を有する。
第 8に、本発明の熱膨張抑制剤は、安価で環境にやさしい素材のみで構成するこ とができるため、コスト面や環境面でも好ましいものとなった。
図面の簡単な説明
[図 1]図 1は、本発明の一の熱膨張抑制剤の効果を示す図である。
[図 2]図 2は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 3]図 3は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 4]図 4は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 5]図 5は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 6]図 6は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 7]図 7は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 8]図 8は、本発明の他の- の熱膨張抑制剤の効果を示す図である。
[図 9]図 9は、本発明の他の- の熱膨張抑制剤の効果を示す図である。 [図 10]図 10は、本発明の他の一の熱膨張抑制剤の効果を示す図である。
[図 11]図 11は、本発明の他の一の熱膨張抑制剤の効果を示す図である。
[図 12]図 12は、本発明の他の一の熱膨張抑制剤 (高圧窒素処理)の効果を示す図 である。
[図 13]図 13は、本発明の他の一の熱膨張抑制剤 (高圧窒素処理)の効果を示す図 である。
発明を実施するための最良の形態
[0008] 以下において、本発明の内容について詳細に説明する。尚、本願明細書において 「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用され る。
[0009] また、本発明におけるマンガン窒化物は、特に断らない限り、通常の結晶格子 (特 に、ぺロフスカイト型のマンガン窒化物)において生じうる原子の欠陥や過剰がないも のをもって記載している力 この種の結晶格子において通常生じうる欠陥や過剰があ つても、本発明の趣旨を逸脱しない限り、本発明の範囲内に含まれる趣旨である。
[0010] 本発明の熱膨張抑制剤に含まれるマンガン窒化物は、少なくとも 10°Cの温度域に 渡って負の熱膨張率を有するものであり、例えば、下記一般式(1)で表される組成か らなるちのである。
一般式 (1)
Mn A B
4-X X
(一般式(1)中、 Aは、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれか であり、かつ、 0く Xく 4 (但し、 Xは整数ではない)であり、または、 Aは、 Al、 Si、 Scお よび周期表の第 4〜6周期の 4A〜5B族の原子のいずれ力 2種以上の原子からなり、 かつ、前記原子の少なくとも 1種は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれかであり、かつ、 0<x<4であり、さらに、 Bは、一部が炭素原子等で置換 されていてもよい窒素原子である。 )
[0011] ここで、 Aの原子が Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれかの原子からなる場合、 Aは、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよ び Inのいずれかであることが好ましぐ Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかが であることがより好ましぐ Gaであることがさらに好ましい。
一方、 Aの原子が Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 2種以上の原子力 なる場合、その原子の少なくとも 1種は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれかであり、他の少なくとも 1種は、 Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In, Cr、 Fe、 Ge、 Nb、 Sn、 Ta、 Pt、 Zrの!ヽず れかであることが好ましい。より好ましくは、 Aの原子が、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれ力 1種以上と、 Ge、 Sn、 Fe、 Ta、 Crおよび Nbのいずれ力 1種以上を含 む場合である。
もちろん、 Aは 3種以上の原子であってもよい。 Aが 3種の原子力もなる場合、少なく とも、 1種が、 Fe、 Ta、 Nbのいずれかであることが好ましぐ Feと Znと Ge、 Feと Cuと Ge、 Feと Gaと Ge、 Feと Inと Ge、 Taと Cuと Ge、 Nbと Znと Snの組み合わせが好まし い例として挙げられる。
[0012] また、 Xに関し、 Aが 1種の原子からなる場合、 0< x<4 (但し、 Xは整数ではない)で あり、好ましくは、 0< x< 2 (但し、 Xは整数ではない)であり、より好ましくは 0. 6< x< 1. 3 (但し、 Xは整数ではない)であり、さらに好ましくは、 0. 8< x< l . 1 (但し、 Xは 整数ではない)である。一方、 Aが 2種以上の原子力もなる場合、 0<x<4であり、好 ましくは、 0<x< 2であり、より好ましくは 0. 6<χ< 1. 4であり、さらに好ましくは 0. 8 3く Xく 1. 15である。
また、 Bは、一部が炭素原子等で置換されていてもよい窒素原子であり、好ましくは 、一部が炭素原子で置換されて!、てもよ!、窒素原子である(以下の一般式にっ 、て も同じ)。
[0013] さらに、一般式(1)は、下記一般式(2)〜 (4)で表されるものが好ましい。
一般式 (2)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2)中、 A21は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ かであり、力つ A22は Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 1種以上であり(ただし、 A21および A22は、同一ではなぐまた、 Mnでない) 、 0≤x2< l、 0<y2< l、かつ、 I >x2+y2であり、さらに、 Bは一部力 ^炭素原子等 で置換されていてもよい窒素原子である。 )
ここで、 A21は Ni、 Cu、 Zn、 Ga、 Ag、 Inのいずれかが好ましぐ Cu、 Zn、 Ga、 Inが さらに好ましい。 A22は、 Co、 Niゝ Cuゝ Zn、 Gaゝ Rh、 Pdゝ Agゝ Cdゝ In、 Geゝ Snのい ずれかであることが好ましぐ Cu、 Zn、 Ga、 In、 Ge、 Snのいずれかであることがさら に好まし!/、。また、 x2につ!/、ても、 0≤x2< 0. 2であること力 子ましく、 0≤x2< 0. 1 であることがより好ましぐ 0であることがさらに好ましい。一方、 y2については、 0. 35 <y2< 0. 8であること力 S好ましく、 0. 4<y2< 0. 7であること力 Sより好ましく、 0. 4<y 2< 0. 65であることがさらに好ましい。
[0014] ここで、一般式(2)は、より具体的には、一般式(2— 2)〜一般式(2— 4)で表され るものを例としてあげることができる。
一般式(2— 2)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 2)中、 A21は、 Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inの!、 ずれ力であり、 A22は Co、 Ni, Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In、 Geおよび Snの ヽずれ力であり(ただ、し A21と A22は同一でな!/、)、 0≤χ2< 1、 0. 35<y2< 0. 80、力 つ、 I >x2+y2であり、さらに、 Bは一部が炭素原子で置換されていてもよい窒素原 子である。 )
ここで、 x2につ!/、て、 0≤x2< 0. 17であること力好ましく、 0≤x2< 0. 1であること 力 り好ましぐ 0であることがさらに好ましい。一方、 y2については、 0. 4<y2< 0. 7 であることがより好ましぐ 0. 4<y2< 0. 65であることがさらに好ましい。
[0015] 一般式(2— 3)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 3)中、 A21は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A22は Geまた ίま Snであり、 χ2ίま 0であり、 0. 35<y2< 0. 8であり、さらに、 Βίまー咅力 S炭素 原子で置換されていてもよい窒素原子である。 )
一般式(2— 3)にお!/、て、 0. 4<y2< 0. 75であること力より好ましく、 0. 4<y2< 0. 65であることがさらに好ましい。
[0016] 一般式(2— 4) Mn A A B
3+x2 y2 l-x2-y2
(一般式(2— 4)中、 A21は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A22は Geまたは Snであり、 0<x2< 0. 2、 0. 35<y2< 0. 7であり、さらに、 Bは一部力 ^炭 素原子で置換されていてもよい窒素原子である。 )
一般式(2— 4)にお!/、て、 x2につ!/ヽては 0<x2< 0. 17であること力 子ましく、 0<x 2< 0. 15であることがより好ましぐ 0く x2く 0. 13であることがさらに好ましい。一方 、 y2につ!/ヽては、 0. 4<y2< 0. 65であること力好ましく、 0. 4<y2< 0. 63であるこ とがより好ましい。
[0017] 一般式(3)
Mn A31 A32 B
3-x3 y3 l+x3-y3
(一般式(3)中、 A31は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ かであり、力つ A32は Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 1種以上の原子からなり(ただし、 A31および A32は、同一ではなぐまた、 Mn でな ヽ)、 0<χ3< 1、 0<y3< 2、力つ、 1 +χ3— y3 >0であり、さらに、 Βίまー咅力 ^ 炭素原子等で置換されていてもよい窒素原子である。 )
ここで、 Α31は Ni、 Cu、 Zn、 Ga、 Ag、 Inのいずれかが好ましぐ Cu、 Zn、 Ga、 Inが さらに好ましい。 A32は、 Co、 Niゝ Cuゝ Zn、 Gaゝ Rh、 Pdゝ Agゝ Cdゝ In、 Geゝ Snのい ずれかであることが好ましぐ Cu、 Zn、 Ga、 In、 Ge、 Snのいずれかであることがさら に好まし!/、。また、 x3につ!/、ても、 0<x3< 0. 2であること力 子ましく、 0<x3< 0. 1 5であることがより好ましぐ 0<x3< 0. 1であることがさらに好ましい。一方、 y3につ 、ては、 0. 35<y3< 0. 8であること力好ましく、 0. 4<y3< 0. 7であること力 子まし く、 0. 4<y3< 0. 6であることがさらに好ましい。
[0018] 一般式 (4)
Mn A41 A42 A43 B
3-χ4 y4 l-y4 x4
(一般式(4)中、 A41は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ 力であり、 A42は Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In、 Geおよび Snの! /、ず れかであり(ただし A41と A42は同一でない)、 A43は、 Fe、 Ta、 Crおよび Nbのいずれか であり、 0<x4< 0. 3力つ 0. 35<y4< 0. 8であり、さらに、 Bは一部力 ^炭素原子で 置換されていてもよい窒素原子である。 )
ここで、 x4につ!/、て、 0<x4< 0. 2であること力好ましく、 0<x4< 0. 15であること 力 り好ましぐ 0<x4< 0. 1であることがさらに好ましい。一方、 y4については、 0. 3 5<y4< 0. 7であることが好ましぐ 0. 4<y4< 0. 6であることがより好ましい。
[0019] ここで、一般式 (4)は、より具体的には、一般式 (4 2)で表されるものを例としてあ げることがでさる
一般式 (4 2)
Mn A41 A42 A43 B
3- χ4 y4 l-y4 x4
(一般式(4 2)中、 A"は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A42は Geまた ίま Snであり、 Α43ίま、 Fe、Taの!/、ずれ力であり、0<x4< 0. 3力つ 0. 35<y 4< 0. 8であり、さらに、 Bは一部が炭素原子で置換されていてもよい窒素原子であ る。)
ここで、 x4につ!/、て、 0<x4< 0. 2であること力好ましく、 0<x4< 0. 15であること 力 り好ましい。一方、 y4については、 0. 35<y4< 0. 7であることが好ましぐ 0. 4 <y4< 0. 6であることがより好ましい。
[0020] 一般式(5)
Mn A51 B
4- χ5 χ5
(一般式(5)中、 Α51は、 Niゝ Cu、 Zn、 Ga、 Agおよび Inの! /、ずれ力であり、 0. 6く x5 < 1. 3 (但し、 x5は 1ではない)であり、さらに、 Bは一部が炭素原子で置換されてい てもよい窒素原子である。 )
一般式(5)において、 0. 8<x5< l. 1 (但し、 x5は 1ではない)がより好ましい。
[0021] また、本発明で用いるマンガン窒化物として、少なくとも、下記一般式(10)で表され る化合物の 2種以上を、焼結してなるぺロフスカイト型マンガン窒化物を採用すること ができる。
一般式 (10)
Mn AJN
3
(一般式(10)中、 A1は、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原 子のいずれかである。 ) [0022] さらに、少なくとも、 Mn Nと、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族
2
の原子のいずれかの原子またはこれらの窒化物力 選択される 2種以上を焼結して なるぺロフスカイト型マンガン窒化物を採用することもできる。
[0023] 本発明で用いるマンガン窒化物は、例えば、少なくとも、 Mよりも格子の熱収縮作 用を有する原子と、 Snよりも磁気相転移にともなう体積変化を緩慢にする作用を有す る原子とを含むマンガン窒化物である。さらに、好ましくは、これらに、 Fe、 Ta、 お よび Nbの少なくとも 1種を含むマンガン窒化物である。
ここで、 NUりも格子の熱収縮作用を有する原子とは、例えば、非特許文献 1〜8の 記載より、把握されるものである。一方、 Snよりも体積変化を緩慢にする作用を有す る原子とは、本願発明者が明らかにした概念であって、後述する実施例に示されると おり、該原子を含めることによって、 Snよりも体積変化を緩慢にする作用を有する原 子をいう。具体的には、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inおよび Ge を好まし!/、例として挙げることができる。
さらに、 Fe、 Ta、 Crおよび Nbは、動作温度を制御する作用を有する。
[0024] 本発明の熱膨張抑制剤に含まれるマンガン窒化物は、ベロフスカイト型結晶構造 であることが好ましい。そして、本発明の熱膨張抑制剤に含まれるマンガン窒化物は 、立方晶系、および、立方晶系がわずかにひずんだもの(例えば、六方晶系、単斜晶 系、斜方晶系、正方晶系、三方晶系等)のいずれであってもよいが、立方晶系が好ま しい。
[0025] 本発明の熱膨張抑制剤では、窒素原子の一部が炭素原子等で置換されていても よぐ置換の割合は、好ましくは 20%以下、より好ましくは 15%以下、さらに好ましく は 10%以下である。炭素原子以外に置換されていてもよい原子としては、特に定め るものではないが、 B、 S、 0、 Pを好ましい例として、 S、 0、 Pをより好ましい例として 挙げることができる。
さらに、窒素原子は、マンガン窒化物の結晶格子の中心に存在することが好ましい 。ここでの窒素原子等は、通常のマンガン窒化物において生じうる窒素原子等の欠 陥や過剰がな力つた場合に中心に存在することをいう。例えば、立方晶系がわずか にひずんだものについては、立方晶系における八面体中心に相当する位置をいう。 従って、本発明の趣旨を逸脱しない限り、例えば、 Mn Cu Ge Nにおいて、 Mn:
3 0.5 0.5
N (—部置換された C等を含む)が、 3 : 1. 05や 3 : 0. 95となっても、本発明に含まれ る趣 である。
[0026] そして、本発明の熱膨張抑制剤は、少なくとも 10°Cの温度域、好ましくは、少なくと も 15°Cの温度域、より好ましくは、少なくとも 20°Cの温度域、さらに好ましくは、少なく とも 30°Cの温度域、最も好ましくは、少なくとも 40°C以上の温度域に渡って負の熱膨 張率を有する。この場合の線膨張率は、 OZ°C未満、好ましくは 1 X 10— 6Z°c 100 X 10— 6Z°C、より好ましくは一 5 X 10— 6Z°C 100 X 10— 6/°C、さらに好ましく は— 10 X 10— 6Z°c ― 100 X 10— 6Z°cである。また、このような負の熱膨張率が認 められる温度範囲は、(1)— 20°C 100°Cの間、(2) 100°C以上(好ましくは 100°C から 250°C)、(3)— 20°C以下(好ましくは— 100°C 20°Cの間)、(4)— 200°C 100°Cの間のいずれか 1つ以上であることが好ましい。
[0027] 以下、本発明の熱膨張抑制剤に含まれるマンガン窒化物の好ましい例を挙げる。
本発明の熱膨張抑制剤がこれらに限定されるものではないことは言うまでもない。さら に、下記に記載されたマンガン窒化物に含まれる窒素原子の一部が炭素原子等に 置換されて 、るものも、好まし 、例として挙げることができる。
Mn Cu Ge N Mn Cu Ge N (より好ましくは、 Mn Cu
3 55
Ge N) Mn Cu Ge N Mn Cu Ge N Mn C 55 0 0 3 0.4 .6 0.4 0.6 3 0.43 0.63 0.37 0.57 3 u Ge N Mn Cu Ge N Mn Cu Ge N Mn Z o .35 0.55 3 0 0.7 0.3 0.5 3 0.6 0.8 0.2 0.4 3 n Ge N Mn Zn Ge N Mn Ag Ge N Mn In
.6 3 0.5 7 0.3 0.5 3 0.65 0.85 0.15 0.35 3
Ge ' N Mn Ga Ge N Mn Ga Sn N Mn
).85 0.15 ).35 3 0.55 0.75 0.25 0.45 3 0.5 0.7 0.3 0.5 3
Ga Sn ^ N Mn Cu Sn N Mn Fe Zn Ge
0.3 3 0.4 0.6 0.4 0.6 2.87 2.89 0.11 0.13 0.3 0.5 0. N Mn Fe Zn Ge N Mn Fe Zn
5 0.7 2.93 2.95 0.05 0.07 0.4 0.6 0.4 0.6 2.87 2.89 0.11 0.13 0.4 0.6
Ge N Mn Fe Zn Ge N Mn Cr G
0.4 0.6 2.87 2.89 0.11 0.13 0.45 0.65 0.35 0.55 2.90 2.92 0.08 0.10 aN Mn Nb Zn Sn N Mn Fe Cu Ge
2.75 2.95 0.05 0.25 0.4 0.6 0.4 0.6 2.93 2.95 0.05 0.07 0.3 0.5 0 N Mn Ta Cu Ge N Mn Zn Ge N
.5 0.7 2.80 2.90 0.10 0.20 0.5 0.7 0.3 0.5 3.0 3.2 0.3 0.5 0.4 0.5 Mn Zn Ge N Mn Ga Ge N Mn Ga
3.05 3.15 0.3 0.5 0.35 0.55 3.0 3.2 0.4 0.6 0.3 0.5 3.0 3.2 0.5 Ge N Mn Ga Ge N Mn Ga Ge
0.7 0.4 0.6 3.03 3.23 0.57 0.77 0.1 0.3 3.05 3.25 0.45 0.65 0.2 0.4 N、 Mn 〜 Ga 〜 Ge 〜 N、 Mn 〜 Ga 〜 Ge 〜 N、 Mn Ga 〜
3.07 3.27 0.53 0.73 0.1 0.3 3.1 3.3 0.5 0.7 0.1 0.3 3 0.7 0.
Ge 〜 N 〜 C 〜 、 Mn Ga 〜 Ge 〜 N 〜 C 〜 、 Mn Ga
9 0.1 0.3 0.94 0.96 0.04 0.06 3 0.6 0.8 0.2 0.4 0.92 0.94 0.06 0.08 3 0.6
〜 Ge 〜 N 〜 C 〜 、 Mn Ga 〜 Ge 〜 N 〜 C 〜 、M
0 0.70 0.30 0.40 0.92 0.94 0.06 0.08 3 0.6 0.8 0.2 0.4 0.89 0.91 0.09 0.11 n Cu 〜 Ga 〜 N、 Mn Cu 〜 Ni 〜 N、 Mn In 〜 Co 〜 N、 Mn
3 0.4 0.6 0.4 0.6 3 0.4 0.6 0.4 0.6 3 0.65 0.85 0.15 0.35 3
〜 Ge 〜 N、 Mn Cu 〜 Pd 〜 N
.10 3.20 0.80 0.90 3 0.70 0.90 0.10 0.30
[0028] 本発明の熱膨張抑制剤は、例えば、通常材料が示す熱膨張を相殺する温度補償 材として利用することができ、特定の温度範囲において負に膨張する、負の熱膨張 材料を作製することができる。さらに、特定の温度範囲においては、正にも負にも膨 張しない、ゼロ熱膨張材料をも作製できる。また、本発明の熱膨張抑制剤は、熱膨張 の抑制もしくは制御にも用いることができる。例えば、熱による膨張が大きい材料に添 加することにより、該材料の許容範囲内まで、熱膨張を抑制 (低下)させることができ る。または、他の材料に混合して、目的の熱膨張の大きさを有する材料を作製するこ とがでさる。
本発明の熱膨張抑制剤を、負の熱膨張材料またはゼロ熱膨張材料として使用する 場合、その材料の種類は本発明の趣旨を逸脱しない限り特に定めるものではなぐ ガラス、榭脂、セラミック、金属や合金等広く公知の材料に適用することができる。特 に、本発明の熱膨張抑制剤は、粉末状の状態で利用することができるため、セラミツ ク等のように任意の形状に焼き固めることができるものにも好ましく採用することがで きる。
[0029] 本発明の熱膨張抑制剤は、公知の方法に従って製造することができる。例えば、窒 素ガス 0. 5〜10気圧下、 500〜1000°Cの温度で、 10〜: L00時間加熱'焼成するこ とにより得られる。特に、高圧窒素(例えば、 7〜10気圧)で処理を行なうことにより、 負の熱膨張率を示し始める温度を低下させることができ、また、線膨張率を小さく(負 の膨張性を大きく)することができる。
さらに、本発明の熱膨張抑制剤は、酸素ァニール処理を行なってもよい。酸素ァ- ール処理としては、例えば、酸素 0. 5〜3気圧下、 300〜500°Cで、 10〜100時間 処理するとよい。このように酸素ァニール処理を行なうことにより、負の線膨張率が認 められた最低温度を上昇させることができ、また、線膨張率を大きく(負の膨張性を小 さく)することができる。
磁気体積効果とは、金属磁性体において、磁気モーメントの伸長に対応して、体積 が増大する現象である。一般式(1)で表されるマンガン窒化物が示す、磁気転移点 における体積変化は、磁気体積効果の典型例として理解されている。したがって、こ れらのマンガン窒化物における体膨張は、すなわち、磁気モーメントの伸長と同義で あり、体積変化を見ることで、磁気モーメントの大きさ(強磁性体の場合であれば、磁 化の大きさ)を知ることができる。
磁気転移点において不連続的に体積が増大する、すなわち、磁気モーメントが不 連続的に伸長するなら、転移点近傍において、磁ィ匕過程におけるエントロピー変化 が大きくなり、磁気冷凍装置の作業物質として好ましく用いることができる (磁気冷凍 における冷却能力はこのエントロピー変化に比例する。 ) oそれゆえ、一般式(1)で表 される組成カゝらなる強磁性のマンガン窒化物は、磁気冷却用磁性材料として好ましく 用いることができる。ここで、磁気冷却用磁性材料とは、例えば、高温領域で磁気的 に冷却を行うために用いる材料であり、フレオンガス等を用いることなしに、磁気冷却 装置等で冷却する場合の冷却媒体として用いるものである。より具体的には、特開平 11— 238615号公報の段落番号 0017〜0018に記載の磁気冷却装置における磁 気冷却用材料として、また、特開 2002— 106999号公報に記載の磁気冷凍装置の 磁気作業物質として用いることができる。
特に、一般式(1)で表される組成カゝらなり、 Snよりも体積変化を緩慢にする作用を 有する原子(Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inおよび Ge等)を含む マンガン窒化物を磁気冷却用磁性材料として採用することにより、急激な体積変化に 由来する衝撃を和らげるとともに、大きな磁気モーメント伸長を、ある一定の幅を持つ た温度域にわたり持続的に生じさせ、一つの組成が磁気冷却剤として機能する温度 域を広げることができる。
さらに、一般式(1)で表される組成からなり、 Fe、 Ta、 Crまたは Nbを含むマンガン 窒化物を磁気冷却用磁性材料として、採用することにより、磁気冷却用磁性材料の 動作温度を制御できるため好まし 、。
さらにまた、一般式(1)で表される組成力もなるマンガン窒化物は、他の磁気冷却 用磁性材料と併用して、または、他の磁気冷却用磁性材料の補助剤としても用いるこ とがでさる。
そのほか、一般式(1)で表される組成力もなるマンガン窒化物は蓄冷剤等としても 好ましく用いることができる。
実施例
[0031] 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す 材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、 適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定さ れるものではない。
[0032] (1)熱膨張抑制剤の作製
Mn A1?^および Mn A2N (Aiおよび A2は、 Mnゝ Co、 Niゝ Cuゝ Znゝ Gaゝ Geゝ Pdゝ
3 3
Ag、 Inまたは Sn、以下同じ)を、 Mn Nおよび Aが M A1または A2= 3 : 1のモル比
2
になるよう秤量 '撹拌した後、石英管に真空封入 (〜: LO—3 torr)し、 500〜770°Cで 60 〜70時間加熱'焼成して得た。但し、 Mn GaNは、 Mn Nと GaNとを原料とし、窒素
3 2
ガス 1気圧、 760°Cで 60時間加熱 '焼成して得た。また、 Mn Nについては金属 Mnを
4
原料とし、窒素ガス 1気圧、 450°Cで 120時間加熱 '焼成して得た。
そして、 Mn A1 A2 Nは、上記の方法で作製した Mn と Mn A2Nの粉末を目
3 1-xl xl 3 3
的のモル比(1— xl): (xl)で混合'撹拌した後、錠剤型に押し固めて、真空封入もし くは窒素ガス 1気圧の雰囲気で 800°C、 60時間の加熱を行い、焼成'焼結して得た。
Mn GaCは、 Mn、 Ga、 C (炭素原子)を、順に、 3 : 1 : 1. 05のモル比で、秤量.撹
3
拌した後、石英管に真空封入(〜: L0 X— 3 torr)し、 550〜850°Cで 80〜120時間加熱. 焼成して得た。ここで、 Cの比率が 1.05であるのは、焼成中の炭素欠損を補うためで ある。得られた Mn GaCを用い、下記組成となるよう、例えば、 Mn Ga A2 N じの
3 3 1-x x 1-y y 場合、 Mn GaN、 Mn A2N、 Mn GaCの粉末を(1—x—y): x: yのモル比で混合 ·
3 3 3
撹拌した後、錠剤型に押し固めて、石英管に真空封入し、 800°C、 60〜80時間加熱 · 焼成して、炭素置換体を得た。
Mn A3 A1 A2 Nは、原料を Mn N、単体 A3 (Fe、 Ta、 Crおよび Nb)もしくは A
3-x2 x2 l-x3 x3 2
3 N、
Figure imgf000018_0001
(3-X2) :X2 : (1 X3) :x3のモル比とな るよう秤量'撹拌した後、石英管に真空封入したものを 650〜770°Cで 60〜70時間加 熱してまず粉末試料を作製し、それを錠剤型に押し固めたものを真空封入もしくは窒 素ガス 1気圧の雰囲気で 800°C、 60時間の加熱を行い、焼結して得た。
上記の試料作製において、原料は全て純度 99.9%以上の粉末であった。原料粉な どの撹拌は全て窒素ガス中で行った。なお、用いた窒素ガスはフィルター(日化精ェ 、 DC— A4および GC RX)により水分と酸素を除去した。作製した試料は粉末 X線回 折 (デバイ'シヱラ一法)により評価し、単相、室温で立方晶であることを確認した。 (1 1)高圧窒素処理
さらに、一部の試料においては、上記(1)において、窒素ガス 1気圧の雰囲気で 80 0°C、 60時間の加熱を行い、焼結した後、窒素ガス 8気圧の雰囲気で 800°C、 60時間 の加熱処理を行なった。
[0033] (2)膨張率の測定
熱による線膨張率の測定にはストレイン'ゲージ(共和電業、 KFL— 02— 120— C1 11)を用いた。 4 X 4 X 1mm3の板状に成形した焼結体試料に、接着剤(共和電業、 PC— 6)を用いてストレイン'ゲージを貼り付けた。文書用ダブルクリップ (コクョ J— 35) で挟むことで荷重をかけた状態で、窒素ガス 1気圧の雰囲気のもと、 80°Cで 1時間、 13 0°Cで 2時間、 150°Cで 2時間維持した後、クリップをはずして、さらに窒素ガス 1気圧の 雰囲気のもと、 150°Cで 2時間維持して、焼き付けを行った。ストレイン'ゲージの抵抗 値 Rは物理特性評価システム (カンタム'デザイン、 PPMS6000)で測定した。参照試 料として無酸素銅板 (純度 99.99%)を用い、その銅板に同様の方法で焼き付けたストレ イン'ゲージの抵抗歪み値 ARZRをまず測定した。次に Cuについての線膨張率の 文献値 [G. K. White and J. G. Collins, J. Low Temp. Phys. 7, 43 (1972); G. K. Whit e, J. Phys. D: Appl. Phys. 6, 2070 (1973)]から、試料に焼き付けたストレイン'ゲージ の抵抗歪み値力 差し引くべき補正値を算出した。それを用いて試料の線膨張率 Δ LZLを求めた。なお、等方的な物質の場合、体膨張率 AVZVを 3で割ったものが、 線膨張率に相当し、本実施例のものはすべて等方的なものである。
[0034] (3)以下、結果を図に示す。
ここで、図 1は、 Mn Cu Ge Nの線膨張率を測定したものであって、図中の数字(
3 1 0. 5、 0. 55. 0. 6. 0. 7) ίま、 χにネ目当する値である。同様に、図 2も、 Mn Cu Ge
3 x 1-x
Nの線膨張率を測定したものであって、図中の数字 (0. 45、 0. 5)は、 Xに相当する 値である。図 3〜図 11は、図中に示したマンガン窒化物の線膨張率を測定したもの ある。
下記表 1に、具体的数値を示す。ここで、 Tminは、負の線膨張率が認められた最 低温度を、 Tmaxは、今回測定した範囲内で、負の線膨張率が確実に認められた最 高温度を示す。従って、 Tmin〜Tmaxの温度域(ΔΤで表す)では、少なくとも、負の 線膨張率が確実に認められることになる力 必ずしも、この範囲に限定されるもので はない。すなわち、本実施例では、 127°C (400K)までしか測定されていないため明 確ではないが、例えば、図 2に示されるマンガン窒化物では、負の線膨張率の Tmax 力 127°Cよりも高い温度であることは容易に推測できるからである(表 1中、 * 127と 記載。)。もちろん、実験誤差によって、上記 Tminや Tmaxよりも広い温度域におい て、負の線膨張率を含む場合がありうることも考慮されるべきである。
また、表 1中、(N - 8atm)記載されている試料は、上記高圧窒素処理を行なった試
2
料である。
[表 1]
Figure imgf000021_0001
図 12および図 13に示すとおり、高圧窒素処理をすることにより、 Tminの温度を低 下させることが可能になった。この結果、さらに、線膨張を起こす領域を調整しやすく なった。また負の膨張性を大きくすることが可能になった。
産業上の利用可能性
本発明の熱膨張抑制剤は、通常材料が示す熱膨張を相殺する温度補償材として 利用することができ、特定の温度範囲において温度上昇とともに収縮する、負の熱膨 張材料を作製することができる。さらに、特定の温度範囲においては、正にも負にも 膨張しない、ゼロ熱膨張材料をも作製できる。
具体的には、温度による形状や寸法の変化を嫌う精密光学部品や機械部品、ファ ィバーグレーティングの温度補償材、プリント回路基板、熱スィッチ、歯科材料、冷凍 機部品などに利用することができる。

Claims

請求の範囲
[1] マンガン窒化物結晶を含む熱膨張抑制剤。
[2] 少なくとも 10°Cの温度域にわたって負の熱膨張率を有するぺロフスカイト型マンガン 窒化物結晶を含む請求項 1に記載の熱膨張抑制剤。
[3] 下記一般式(1)で表される組成からなる結晶であり、少なくとも 10°Cの温度域にわた つて負の熱膨張率を有するマンガン窒化物を含む、請求項 1に記載の熱膨張抑制 剤。
一般式 (1)
Mn A B
4-X X
(一般式(1)中、 Aは、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれか であり、かつ、 0く Xく 4 (但し、 Xは整数ではない)であり、または、 Aは、 Al、 Si、 Scお よび周期表の第 4〜6周期の 4A〜5B族の原子のいずれ力 2種以上の原子からなり、 かつ、前記原子の少なくとも 1種は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれかであり、かつ、 0<x<4であり、さらに、 Bは、一部が炭素原子等で置換 されていてもよい窒素原子である。 )
[4] 前記一般式(1)が、下記一般式 (2)で表される請求項 3に記載の熱膨張抑制剤。
一般式 (2)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2)中、 A21は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ かであり、力つ A22は Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 1種以上であり(ただし、 A21および A22は、同一ではなぐまた、 Mnでない) 、 0≤x2< l、 0<y2< l、かつ、 I >x2+y2であり、さらに、 Bは一部力 ^炭素原子等 で置換されていてもよい窒素原子である。 )
[5] 下記一般式(2— 2)で表される組成力 なるマンガン窒化物結晶を含む請求項 1に 記載の熱膨張抑制剤。
一般式(2— 2)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 2)中、 A21は、 Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inの!、 ずれ力であり、 A22は Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In、 Geおよび Snの ヽずれ力であり(ただ、し A21と A22は同一でな!/、)、 0≤χ2< 1、 0. 35<y2< 0. 8、力 つ、 I >x2+y2であり、さらに、 Bは一部が炭素原子で置換されていてもよい窒素原 子である。 )
[6] 下記一般式(2— 3)で表される組成力 なるマンガン窒化物結晶を含む請求項 1に 記載の熱膨張抑制剤。
一般式(2— 3)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 3)中、 A21は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A22は Geまた ίま Snであり、 χ2ίま 0であり、 0. 35<y2< 0. 8であり、さらに、 Βίまー咅力 S炭素 原子で置換されていてもよい窒素原子である。 )
[7] 下記一般式(2— 4)で表される組成力 なるマンガン窒化物結晶を含む請求項 1に 記載の熱膨張抑制剤。
一般式 (2— 4)
Mn A21 A22 B
3+x2 y2 l-x2-y2
(一般式(2— 4)中、 A21は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A22は Geまたは Snであり、 0<x2< 0. 2、 0. 35<y2< 0. 7であり、さらに、 Bは一部力 ^炭 素原子で置換されていてもよい窒素原子である。 )
[8] 前記一般式(1)が、下記一般式 (3)で表される請求項 3に記載の熱膨張抑制剤。
一般式 (3)
Mn A31 A32 B
3-x3 y3 l+x3-y3
(一般式(3)中、 A31は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ かであり、力つ A32は Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子の いずれか 1種以上の原子からなり(ただし、 A31および A32は、同一ではなぐまた、 Mn でな ヽ)、 0<χ3< 1、 0<y3< 2、力つ、 1 +χ3— y3 >0であり、さらに、 Βίまー咅力 ^ 炭素原子等で置換されていてもよい窒素原子である。 )
[9] 下記一般式 (4)で表される組成力 なるマンガン窒化物を含む請求項 1に記載の熱 膨張抑制剤。 一般式 (4)
Mn A41 A42 A43 B
3-x4 y4 l-y4 x4
(一般式(4)中、 A41は、 Co、 Ni、 Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cdおよび Inのいずれ 力であり、 A42は Co、 Niゝ Cu、 Zn、 Ga、 Rh、 Pd、 Ag、 Cd、 In、 Geおよび Snの! /、ず れかであり(ただし A41と A42は同一でない)、 A43は、 Fe、 Ta、 Crおよび Nbのいずれか であり、 0<x4< 0. 3力つ 0. 35<y4< 0. 8であり、さらに、 Bは一部力 ^炭素原子で 置換されていてもよい窒素原子である。 )
[10] 下記一般式 (4 2)で表される組成力 なるマンガン窒化物結晶を含む請求項 1に 記載の熱膨張抑制剤。
一般式 (4 2)
Mn A41 A42 A43 B
3- χ4 y4 l-y4 x4
(一般式(4 2)中、 A"は、 Ni、 Cu、 Zn、 Ga、 Agおよび Inのいずれかであり、 A42は Geまた ίま Snであり、 Α43ίま、 Fe、Taの!/、ずれ力であり、0<x4< 0. 3力つ 0. 35<y 4< 0. 8であり、さらに、 Bは一部が炭素原子で置換されていてもよい窒素原子であ る。)
[11] 下記一般式(5)で表される組成力 なるマンガン窒化物を含む請求項 1に記載の熱 膨張抑制剤。
一般式 (5)
Mn A51 B
4- χ5 χ5
(一般式(5)中、 Α51は、 Niゝ Cu、 Zn、 Ga、 Agおよび Inの! /、ずれ力であり、 0. 6く x5
< 1. 3 (但し、 x5は 1ではない)であり、さらに、 Bは一部が炭素原子で置換されてい てもよい窒素原子である。 )
[12] 前記マンガン窒化物は、ぺロフスカイト型である請求項 1および 3〜: L 1のいずれか 1 項に記載の熱膨張抑制剤。
[13] 少なくとも、下記一般式(10)で表される化合物の 2種以上を、焼結してなるぺロフス カイト型マンガン窒化物を含み、かつ、少なくとも 10°Cの温度域にわたって負の熱膨 張率を有するマンガン窒化物を含む請求項 1に記載の熱膨張抑制剤。
一般式 (10) Mn AJN
3
(一般式(10)中、 A1は、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原 子のいずれかである。 )
[14] 少なくとも、 Mn Nと、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原子
2
のいずれか、またはこれらの窒化物力 選択される 2種以上を焼結してなり、かつ、少 なくとも 10°Cの温度域にわたって負の熱膨張率を有するぺロフスカイト型マンガン窒 化物を含む請求項 1に記載の熱膨張抑制剤。
[15] NUりも格子の熱収縮作用を有する原子の少なくとも 1種と、 Snよりも磁気相転移に ともなう体積変化を緩慢にする作用を有する原子の少なくとも 1種を含み、かつ、少な くとも 10°Cの温度域にわたって負の熱膨張率を有するマンガン窒化物を含む請求項 1に記載の熱膨張抑制剤。
[16] 前記マンガン窒化物が、さらに、 Fe、 Ta、 Crおよび Nbの少なくとも 1種を含む請求項
15に記載の熱膨張抑制剤。
[17] 線膨張率が、— 100 X 10— 6Z°C〜― 3 X 10— 6Z°Cである請求項 1〜16のいずれか 1 項に記載の熱膨張抑制剤。
[18] 少なくとも 15°Cの温度域に渡って負の熱膨張率を有する請求項 1〜17のいずれか 1 項に記載の熱膨張抑制剤。
[19] 前記マンガン窒化物中の窒素原子は、 0より多く 15%以下の割合で炭素原子に置換 されている請求項 1〜18いずれか 1項に記載の熱膨張抑制剤。
[20] 請求項 1〜19のいずれか 1項に記載の熱膨張抑制剤を含むゼロ熱膨張材料。
[21] 請求項 1〜19のいずれか 1項に記載の熱膨張抑制剤を含む負の熱膨張材料。
[22] 請求項 1〜19のいずれか 1項に記載の熱膨張抑制剤を用いた熱膨張抑制方法。
[23] 下記一般式(10)で表される組成力 なる結晶の熱膨張率を測定する工程と、前記 一般式(10)で表される組成力もなる結晶の一部を、 Al、 Si、 Scおよび周期表の第 4 〜6周期の 4A〜5B族の原子の少なくとも 1種(但し、該原子が 1種のみのときは、 M nおよび A1ではない)に変えたものの熱膨張率を測定する工程と、これらの熱膨張率 から、少なくとも 10°Cの温度域に渡って負の熱膨張率を有する組成力もなる結晶の 条件を選択する工程を含む熱膨張抑制剤の製造方法。 一般式 (10)
Mn AJN
3
(一般式(10)中、 A1は、 Al、 Si、 Scおよび周期表の第 4〜6周期の 4A〜5B族の原 子のいずれかである。 )
前記一般式(10)で表される組成力もなる結晶の一部を、 Fe、 Ta、 Crおよび Nbの少 なくとも 1種で変えることによって、動作温度を制御する工程を含む請求項 23に記載 の熱膨張抑制剤の製造方法。
PCT/JP2005/013914 2004-07-30 2005-07-29 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法 WO2006011590A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05767076.2A EP1790705A4 (en) 2004-07-30 2005-07-29 HEAT DETECTION INHIBITOR, ZERO HEAT DETERGENT, NEGATIVE THERMAL INSULATION SUBSTANCE, METHOD OF INHIBITING HEAT INSULATION AND METHOD FOR PRODUCING A THERMAL INSULATION INHIBITOR
CA2575391A CA2575391C (en) 2004-07-30 2005-07-29 Thermal expansion inhibitor, zero thermal expansion material, negative thermal expansion material, method for inhibiting thermal expansion, and method for producing thermal expansion inhibitor
JP2006527870A JP5099478B2 (ja) 2004-07-30 2005-07-29 熱膨張抑制剤、ゼロ熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
KR1020077004743A KR101121155B1 (ko) 2004-07-30 2005-07-29 열팽창 억제제, 제로 열팽창 재료, 부의 열팽창 재료, 열팽창 억제 방법 및 열팽창 억제제의 제조 방법
CN200580030788XA CN101023147B (zh) 2004-07-30 2005-07-29 热膨胀抑制剂、零热膨胀材料、负热膨胀材料、热膨胀抑制方法和热膨胀抑制剂的制造方法
US11/658,740 US7632480B2 (en) 2004-07-30 2005-07-29 Thermal expansion inhibitor, zero thermal expansion material, negative thermal expansion material, method for inhibiting thermal expansion, and method for producing thermal expansion inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004224431 2004-07-30
JP2004-224431 2004-07-30
JP2005-018311 2005-01-26
JP2005018311 2005-01-26

Publications (1)

Publication Number Publication Date
WO2006011590A1 true WO2006011590A1 (ja) 2006-02-02

Family

ID=35786336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013914 WO2006011590A1 (ja) 2004-07-30 2005-07-29 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法

Country Status (7)

Country Link
US (1) US7632480B2 (ja)
EP (1) EP1790705A4 (ja)
JP (2) JP5099478B2 (ja)
KR (1) KR101121155B1 (ja)
CN (1) CN101023147B (ja)
CA (1) CA2575391C (ja)
WO (1) WO2006011590A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081647A1 (ja) * 2006-12-27 2008-07-10 Riken 低膨張材料および低膨張材料の製造方法
WO2008111285A1 (ja) * 2007-03-12 2008-09-18 Taiheiyo Cement Corporation 金属-セラミックス複合材料およびその製造方法
JP2008309199A (ja) * 2007-06-12 2008-12-25 Toyota Motor Corp 軸受構造
JP2009213230A (ja) * 2008-03-03 2009-09-17 Yaskawa Electric Corp アクチュエータ
JP2010021429A (ja) * 2008-07-11 2010-01-28 Murata Mfg Co Ltd 電子機器およびその製造方法
JP2010059047A (ja) * 2008-08-04 2010-03-18 Santoku Corp 希土類窒化物およびその製造方法、ならびに磁気冷凍材料および蓄冷材料
JP2010165649A (ja) * 2009-01-13 2010-07-29 Hironari Miyazaki 試料ホルダー
JP2010228945A (ja) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp 樹脂−セラミックス複合材料およびその製造方法
JP2010228944A (ja) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp 樹脂−セラミックス複合材料およびその製造方法
EP2418923A1 (en) 2010-08-12 2012-02-15 Canon Kabushiki Kaisha Thermal expansion suppressing member and anti-thermally-expansive member
EP2418240A1 (en) 2010-08-12 2012-02-15 Canon Kabushiki Kaisha Anti-thermally-expansive resin and anti-thermally-expansive metal
WO2013018823A1 (ja) * 2011-08-02 2013-02-07 独立行政法人理化学研究所 熱膨張制御金属複合材料およびその製造方法
US8449971B2 (en) 2011-04-11 2013-05-28 International Business Machines Corporation Thermal expansion control employing platelet fillers
WO2018123897A1 (ja) * 2016-12-27 2018-07-05 国立大学法人名古屋大学 複合材料
US10676371B2 (en) 2016-02-12 2020-06-09 National University Corporation Nagoya University Ruthenium oxide having a negative thermal expansion coefficient, and useable as a thermal expansion inhibitor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692898B2 (en) * 2006-12-27 2010-04-06 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head that includes negative expansion material
CN101734863B (zh) * 2009-12-14 2012-08-08 北京航空航天大学 一种“反钙钛矿”结构的三元锰氮化物Mn3CuN薄膜
CN102320663A (zh) * 2011-06-07 2012-01-18 江苏大学 一种具有负热膨胀特性的粉体材料
CN102220536A (zh) * 2011-06-07 2011-10-19 江苏大学 一种具有极微负热膨胀特性的粉体材料
US20140144911A1 (en) * 2012-10-12 2014-05-29 Empire Technology Development Llc Storage containers including negative thermal expansion coefficient materials
EP2947664B1 (en) * 2013-01-16 2020-07-15 Japan Science and Technology Agency Magnetic material and method for producing magnetic material
BR112015027424B1 (pt) 2013-05-03 2021-11-30 Fmc Kongsberg Subsea As Elemento de vedação, método para fabricar um elemento de vedação e método para vedar um sistema de retenção de pressão
CN103466723B (zh) * 2013-08-27 2015-04-22 江苏大学 一种超大负热膨胀材料及其制备方法
CN103449436B (zh) * 2013-09-17 2016-01-20 盐城工学院 一种类钙钛矿结构负膨胀锰碳化合物制备方法
CN104630685A (zh) * 2015-01-28 2015-05-20 河北钢铁股份有限公司 一种零膨胀系数的金属陶瓷复合粉末过渡层材料
CN108441727A (zh) * 2017-02-16 2018-08-24 河北科技大学 一种具有高温近零膨胀特性的金属间化合物材料及其制备方法
JP7092303B2 (ja) 2018-07-20 2022-06-28 国立大学法人東海国立大学機構 負熱膨張性マンガン窒化物微粒子群の製造方法およびマンガン窒化物微粒子群
CN109811305B (zh) * 2019-02-19 2022-02-15 盐城工学院 一种近零膨胀薄膜材料及其制备方法
CN116529199A (zh) * 2020-11-30 2023-08-01 国立大学法人东海国立大学机构 负热膨胀材料、复合材料、负热膨胀材料的制备方法和部件
CN113381027B (zh) * 2021-02-07 2022-03-04 南京工业大学 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池
US11874562B2 (en) 2021-12-07 2024-01-16 Huizhou China Star Optoelectronics Display Co., Ltd. Component for dissipating heat of device, backlight module, and display panel
CN114114740B (zh) * 2021-12-07 2023-01-24 惠州华星光电显示有限公司 器件散热装置、背光模组及显示面板
CN115073141B (zh) * 2022-08-22 2022-11-22 中国科学院理化技术研究所 一种单相近零热膨胀材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698195A (en) * 1979-12-11 1981-08-07 Anvar Marking and confirming means and bill paper applying nuclear means
JPH0736286U (ja) * 1993-12-09 1995-07-04 古河電気工業株式会社 侵入防止検知線
JP2003146693A (ja) * 2001-11-09 2003-05-21 Nippon Electric Glass Co Ltd 光通信デバイス用基材、その製造方法及びそれを用いた光通信デバイス
JP2003192385A (ja) * 2001-12-19 2003-07-09 Ohara Inc ガラスセラミックス及び温度補償部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2096995B1 (ja) * 1970-07-24 1973-10-19 Anvar
CA2332811A1 (en) * 1998-05-19 1999-12-16 Corning Incorporated Negative thermal expansion materials including method of preparation and uses therefor
KR100425254B1 (ko) * 2001-05-16 2004-03-30 한국표준과학연구원 낮은 저항 계수를 갖는 망간 질화물의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698195A (en) * 1979-12-11 1981-08-07 Anvar Marking and confirming means and bill paper applying nuclear means
JPH0736286U (ja) * 1993-12-09 1995-07-04 古河電気工業株式会社 侵入防止検知線
JP2003146693A (ja) * 2001-11-09 2003-05-21 Nippon Electric Glass Co Ltd 光通信デバイス用基材、その製造方法及びそれを用いた光通信デバイス
JP2003192385A (ja) * 2001-12-19 2003-07-09 Ohara Inc ガラスセラミックス及び温度補償部材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GARCIA J ET AL: "Thermophysical properties of the intermetallic Mn3MN perovskites II. Heat capacity of manganese zinc nitride: Mn3ZnN and manganese gallium nitride: Mn3GaN.", THE JOURNAL OF CHEMICAL THERMODYNAMICS., vol. 15, no. 11, November 1983 (1983-11-01), pages 1041 - 1057, XP002993050 *
HERITIER ET AL: "Structures magnetiques et transitions du premier ordre dans les perovskites metalliques GaMn3(C1-xNx). Relation avec les composes de terres rares a changement de valence.", MATERIALS RESEARCH BULLETIN., vol. 14, no. 9, September 1979 (1979-09-01), pages 1203 - 1212, XP002993049 *
See also references of EP1790705A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081647A1 (ja) * 2006-12-27 2008-07-10 Riken 低膨張材料および低膨張材料の製造方法
JP5164168B2 (ja) * 2006-12-27 2013-03-13 独立行政法人理化学研究所 複合材料
WO2008111285A1 (ja) * 2007-03-12 2008-09-18 Taiheiyo Cement Corporation 金属-セラミックス複合材料およびその製造方法
JP2008309199A (ja) * 2007-06-12 2008-12-25 Toyota Motor Corp 軸受構造
JP2009213230A (ja) * 2008-03-03 2009-09-17 Yaskawa Electric Corp アクチュエータ
JP2010021429A (ja) * 2008-07-11 2010-01-28 Murata Mfg Co Ltd 電子機器およびその製造方法
JP2010059047A (ja) * 2008-08-04 2010-03-18 Santoku Corp 希土類窒化物およびその製造方法、ならびに磁気冷凍材料および蓄冷材料
JP2010165649A (ja) * 2009-01-13 2010-07-29 Hironari Miyazaki 試料ホルダー
JP2010228945A (ja) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp 樹脂−セラミックス複合材料およびその製造方法
JP2010228944A (ja) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp 樹脂−セラミックス複合材料およびその製造方法
EP2418240A1 (en) 2010-08-12 2012-02-15 Canon Kabushiki Kaisha Anti-thermally-expansive resin and anti-thermally-expansive metal
EP2418923A1 (en) 2010-08-12 2012-02-15 Canon Kabushiki Kaisha Thermal expansion suppressing member and anti-thermally-expansive member
US8664316B2 (en) 2010-08-12 2014-03-04 Canon Kabushiki Kaisha Anti-thermally-expansive resin and anti-thermally-expansive metal
US8753749B2 (en) 2010-08-12 2014-06-17 Canon Kabushiki Kaisha Thermal expansion suppressing member and anti-thermally-expansive member
US8974729B2 (en) 2010-08-12 2015-03-10 Canon Kabushiki Kaisha Anti-thermally-expansive resin and anti-thermally-expansive metal
US10124558B2 (en) 2010-08-12 2018-11-13 Kyoto University Thermal expansion suppressing member and anti-thermally-expansive member
US8449971B2 (en) 2011-04-11 2013-05-28 International Business Machines Corporation Thermal expansion control employing platelet fillers
US8846191B2 (en) 2011-04-11 2014-09-30 International Business Machines Corporation Thermal expansion control employing platelet fillers
WO2013018823A1 (ja) * 2011-08-02 2013-02-07 独立行政法人理化学研究所 熱膨張制御金属複合材料およびその製造方法
JP2013032244A (ja) * 2011-08-02 2013-02-14 Institute Of Physical & Chemical Research 熱膨張制御金属複合材料およびその製造方法
US10676371B2 (en) 2016-02-12 2020-06-09 National University Corporation Nagoya University Ruthenium oxide having a negative thermal expansion coefficient, and useable as a thermal expansion inhibitor
WO2018123897A1 (ja) * 2016-12-27 2018-07-05 国立大学法人名古屋大学 複合材料

Also Published As

Publication number Publication date
EP1790705A1 (en) 2007-05-30
JP2012140324A (ja) 2012-07-26
US20090004087A1 (en) 2009-01-01
JP5099478B2 (ja) 2012-12-19
KR20070083519A (ko) 2007-08-24
EP1790705A4 (en) 2013-05-01
US7632480B2 (en) 2009-12-15
CA2575391A1 (en) 2006-02-02
CN101023147A (zh) 2007-08-22
JPWO2006011590A1 (ja) 2008-05-01
KR101121155B1 (ko) 2012-03-19
JP5553366B2 (ja) 2014-07-16
CN101023147B (zh) 2010-05-12
CA2575391C (en) 2012-09-25

Similar Documents

Publication Publication Date Title
WO2006011590A1 (ja) 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
KR101616109B1 (ko) 열전재료 및 칼코게나이드 화합물
Takenaka et al. Magnetovolume effect and negative thermal expansion in Mn3 (Cu1− xGex) N
EP2418923B1 (en) Thermal expansion suppressing member and anti-thermally-expansive member
WO2013018823A1 (ja) 熱膨張制御金属複合材料およびその製造方法
KR101680763B1 (ko) 열전재료, 이를 포함하는 열전모듈과 열전장치
KR20150079633A (ko) 세라믹스 재료 및 스퍼터링 타겟 부재
JP4243943B2 (ja) 窒化アルミニウム材料および半導体製造用部材
WO2017138643A1 (ja) ルテニウム酸化物およびルテニウム酸化物の製造方法
Wu et al. Phase coexistence and high piezoelectric properties in (K0. 40Na0. 60) 0.96 Li0. 04Nb0. 80Ta0. 20O3 ceramics
US20190322838A1 (en) Composite material
JP2008292402A (ja) 温感素子、温感素子の製造方法、一次相転移温度の調整方法
JP4332615B2 (ja) 金属−セラミックス複合材料およびその製造方法
JP5164168B2 (ja) 複合材料
KR100425254B1 (ko) 낮은 저항 계수를 갖는 망간 질화물의 제조방법
CN109704769B (zh) 磁性max相陶瓷及其制备方法
Dai et al. Physical Properties and Negative Thermal Property of Antiperovskite Mn 3 Ga 0.5 Sn 0.5 N
Singh et al. Study of Structural and Electrical Properties of Li and Nb Modified BNT Thin Film and Observation of Enhanced Electrocaloric Effect near Room Temperature
JP3987334B2 (ja) 二重整列ペロブスカイト構造磁気抵抗素子
Ling et al. Piezoelectric Thermal Stability of (KxNa1-x) NbO3 Based Ceramics
JPH01100026A (ja) 金属酸化物材料
JP2005213084A (ja) 低熱膨張複合体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527870

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2575391

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2005767076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005767076

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077004743

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580030788.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005767076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11658740

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载