+

WO2006006650A1 - 発熱体及び発熱体の製造方法 - Google Patents

発熱体及び発熱体の製造方法 Download PDF

Info

Publication number
WO2006006650A1
WO2006006650A1 PCT/JP2005/013003 JP2005013003W WO2006006650A1 WO 2006006650 A1 WO2006006650 A1 WO 2006006650A1 JP 2005013003 W JP2005013003 W JP 2005013003W WO 2006006650 A1 WO2006006650 A1 WO 2006006650A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heating element
exothermic composition
exothermic
molded body
Prior art date
Application number
PCT/JP2005/013003
Other languages
English (en)
French (fr)
Inventor
Toshihiro Dodo
Original Assignee
Mycoal Products Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mycoal Products Corporation filed Critical Mycoal Products Corporation
Priority to JP2006529117A priority Critical patent/JPWO2006006650A1/ja
Priority to EP05765767A priority patent/EP1782774A4/en
Priority to US11/632,207 priority patent/US20080202490A1/en
Priority to CA002573276A priority patent/CA2573276A1/en
Publication of WO2006006650A1 publication Critical patent/WO2006006650A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F7/03Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction
    • A61F7/032Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction using oxygen from the air, e.g. pocket-stoves
    • A61F7/034Flameless
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • C09K5/18Non-reversible chemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0098Heating or cooling appliances for medical or therapeutic treatment of the human body ways of manufacturing heating or cooling devices for therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0268Compresses or poultices for effecting heating or cooling having a plurality of compartments being filled with a heat carrier

Definitions

  • the present invention is capable of heat-sealing without generating wrinkles by temporarily sealing a base material and a covering material with a pressure-sensitive adhesive layer and then heat-sealing.
  • the present invention relates to a heating element and a method for manufacturing the same, which greatly improves productivity and has no seal failure!
  • a heating element in which a heat generating composition is sealed in a bag (or sheet) that has air permeability on at least one side, and a pressure-sensitive adhesive layer on one side of the heating element can be applied to a human body.
  • V loosely used, thrown away, filtered, and hot compresses, such as warming means and medical hot packs, and adhesive layers of these hot compresses and patches are transdermally absorbed.
  • a drug containing or carrying a sex drug and used for a so-called transdermal absorption system has also been proposed.
  • this heating element As a method for producing this heating element, generally, after a heating composition is dropped on a predetermined castle on the upper surface of a base material having air permeability or air tightness, a covering material having air tightness or air permeability is covered, and thereafter, The heat seal is performed over the entire periphery of the periphery of the substrate and the periphery of the covering material. That is, the periphery of the base material and the covering material is heat sealed over the entire circumference.
  • a hot melt adhesive layer may be laminated on either the base material or the coating material, and this hot melt adhesive layer may be interposed.
  • a heating composition is laminated on a predetermined castle on the top surface of a base material having air permeability or air tightness, and then a covering material having air tightness or air permeability is covered. Further, thereafter, the outer peripheral edge portion of the base material and the outer peripheral edge portion of the covering material are crimped and sealed through the adhesive layer over the entire circumference. That is, the outer peripheral edge portion of the base material and the covering material is pressure-bonded (adhesive seal) over the entire periphery.
  • the heating element manufactured in this way suppresses the exothermic reaction until use.
  • it is sealed and stored in an airtight outer bag for distribution.
  • Such a conventional heating element has the following problems when the base and the outer peripheral edge of the covering material are heat-sealed over the entire circumference.
  • the synthetic resin film or film constituting the base material or the covering material uses a hot-melt adhesive layer previously formed on at least one surface of the base material or the covering material, and the base material and the peripheral portion of the covering material are heat-melted. If heat sealing is performed by heat bonding, the exothermic composition does not enter the heat sealing part! / ⁇ After melting the synthetic resin film or hot melt adhesive, heat sealing is performed. Since it is necessary to perform the bonding securely, there is a limit to high-speed operation and productivity is lowered.
  • the sealing can be easily performed, and the sealing portion, that is, the entire peripheral portion of the heating element is flexible.
  • the adhesive strength of the adhesive seal decreases depending on the application, heat generation due to separation of the seal becomes unstable, and there is a risk of scalding, and its application is limited. Even when a temperature lower than the melting point of the pressure-sensitive adhesive layer was partially applied and the heat treatment seal was applied, the effect was accompanied by a problem that the seal was released too much, resulting in a poor seal and abnormal heat generation.
  • the present invention solves the above technical problem and forms a temporary attachment portion by temporary attachment with a pressure-sensitive adhesive layer between a base material and a heat-generating composition molded body and a covering material, and then heat-seals, thereby forming a single layer of the line.
  • the high-speed heat treatment has been achieved to greatly improve productivity, and the heat generation group when joining the base material to the coating material
  • An object of the present invention is to provide a heating element that can be heat-sealed without misalignment of the molded product and has no sealing failure.
  • the heating element of the present invention is an exothermic material obtained by molding a heating composition having a pyrogen, a carbon component, a reaction accelerator and water as essential components and having a mobile water value of 0.01 to 20.
  • the base material and the covering material are temporarily attached by an adhesive layer, and the temporarily attached portion is heat-sealed by the heat sealing layer of the base material and Z or the covering material, and the heat seal portion has The adhesive layer component and the heat seal layer component coexist, and the heat seal portion has a 60 ° C seal strength of 0.8 kgZ25 mm or more.
  • the heating element according to claim 2 is the heating element according to claim 1, characterized in that at least a part of the heat seal part has a region where the air vent part is heat sealed.
  • the heating element according to claim 3 is the heating element according to claim 1, wherein the adhesive layer is formed of a hot-melt adhesive.
  • the heating element according to claim 4 is the heating element according to claim 1, wherein the total thickness of the heat seal layer is equal to or greater than the thickness of the adhesive layer.
  • the heating element according to claim 5 is the heating element according to claim 1, wherein the thickness of the adhesive layer is 0.1 to: LOO / zm.
  • the heating element according to claim 6 is the heating element according to claim 1, wherein the adhesive layer has a gap.
  • the heating element according to claim 7 is the heating element according to claim 1, wherein the heat seal portion includes a mixed portion of the component of the heat seal layer and the component of the adhesive layer.
  • the heating element according to claim 8 is the heating element according to claim 1, wherein the base material and the covering material are formed of an extensible material.
  • the heating element according to claim 9 is the heating element according to claim 1, wherein the heating element is the heating element.
  • the composition molded body is characterized in that it is divided into a plurality of sections by a section that is a heat seal section.
  • the heating element according to claim 10 is the heating element according to claim 1, wherein the heating material of the heating composition is iron powder, and the iron powder has an iron oxide film.
  • the heating element according to claim 11 is the heating element according to claim 1, characterized in that the exothermic composition molded body is compressed.
  • the heating element according to claim 12 is the heating element according to claim 1, wherein after the heat sealing, at least a part of the exothermic composition molded body is heat-sealed and moved to the temporary attachment portion. By doing so, the temporary attachment portion that is not heat-sealed is opened.
  • the heating element according to claim 13 is the heating element according to claim 1, characterized in that the heating element has a fixing means on an exposed surface.
  • the air-permeable base material and the Z or covering material have at least a heat-sealable layer capable of heat-sealing, and the iron powder, carbon component, reaction
  • An exothermic composition molded body containing an accelerator and water as essential components and having an exothermic composition with a mobile water value of 0.01 to 20 is laminated on a substrate, and a hot-melt adhesive is melted thereon.
  • the method for manufacturing a heating element according to claim 15 is the method for manufacturing a heating element according to claim 14, wherein after the outer periphery of the heating element is temporarily attached, the outer periphery of the heating element is replaced with an air vent. It is characterized by heat sealing.
  • a method for manufacturing a heating element according to claim 16 is the method for manufacturing a heating element according to claim 14, wherein a heating roll having a heat seal portion smaller than the temporary attachment portion in the temporary attachment roll is used. It is characterized by heat sealing.
  • the method for manufacturing a heating element according to claim 17 provides the method for manufacturing the heating element according to claim 14.
  • the heat-generating composition molded body is heat-sealed and moved to a new temporary tacking portion, thereby opening the temporary sealing portion that is not heat-sealed.
  • the heat generating body is heat-sealed at the center portion of the heat seal portion, and the peripheral portion of the heat seal portion is adhesively sealed.
  • the adhesive layer is preferably laminated on the heat seal layer of the covering material.
  • the adhesive layer is preferably laminated on the upper surface of the exothermic composition molded body!
  • the melting point of the base polymer of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably not more than the melting point of the heat-sealing material constituting the heat-seal layer.
  • the fixing means is a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer includes a water retention agent, a water-absorbing polymer, a pH adjuster, a surfactant, an organic silicon compound, a hydrophobic polymer compound, Pyroelectric substances, antioxidants, aggregates, fibrous materials, moisturizers, functional substances, or a mixture of these. It is preferable to contain at least one selected component.
  • the thickness of the adhesive layer is equal to or less than the total thickness of the heat seal layers of the base material and the covering material.
  • the adhesive layer preferably has a gap.
  • the heat seal layer is composed of an ethylene heat seal material, and the adhesive layer is composed of a hot melt adhesive.
  • the said temporary attachment roll is a flat roll which has a type
  • an indentation roll having an indentation portion smaller than the exothermic composition molded body.
  • the present invention has the following effects. 1.
  • the heat-sealing can be surely performed without causing wrinkles, and high-speed heat sealing is achieved. realizable.
  • the base material and the coating material are configured to adhere to each other with an adhesive layer, it can be temporarily attached by simply applying pressure, and can be easily performed by the next heat seal, resulting in higher line speed. To achieve a significant improvement in productivity.
  • the adhesive layer compatible with the heat-sealable layer, the adhesive and heat-sealant can be mixed without separation during heat sealing, enabling more reliable heat sealing.
  • the heating element of the present invention is a heating composition molded body obtained by molding a heating composition having an exothermic substance, a carbon component, a reaction accelerator, and water as essential components, and a mobile water value of 0.01 to 20.
  • a heating element formed by laminating on a base material, covering with a covering material, and heat-sealing the peripheral edge of the exothermic composition molded body, wherein the base material and the covering material are adhesive layers
  • the part temporarily attached and temporarily attached is heat sealed by the heat seal layer of the base material and Z or the covering material, and the adhesive layer component and the heat seal layer component are provided in the heat seal part. Coexisting, and the heat seal part has a 60 ° C seal strength of 0.8 kgZ25 mm or more.
  • the present invention is intended to increase the speed of heat sealing and to stabilize the heat sealing portion by temporary attachment, and the following advantages are obtained.
  • the base material and the coating material are configured to adhere to each other with an adhesive layer, it is extremely easy to adhere by simply applying pressure. Suitable for. 2) In addition, the heat sealing device is unnecessary and simplification of production equipment can be realized.
  • the adhesive used in the adhesive layer is compatible with the hot-melt adhesive used in heat sealing, so it is dispersed in the heat sealing part and does not hinder heat sealing, forming an appropriate heat sealing part. it can.
  • the heat seal part can be easily formed with a heat seal. High-speed and stable heat sealing can be performed.
  • temporary attachment refers to a weak, pressure-sensitive adhesive or adhesive for holding a stored exothermic composition molded body until at least the base material and the covering material are adhered by an adhesive layer and heat sealed. It is sticky.
  • the pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive and has a 60 ° C seal strength of 0.01 to 0.8 kg / 25 mm. Thereby, the movement of the exothermic composition molded body between the base material and the coating material can be stopped, and high-speed heat sealing is possible. Further, if desired, heating may be performed during temporary wearing. It is preferable that the heating is performed at a pressure not higher than the melting point of the base polymer in the hot-melt pressure-sensitive adhesive forming the pressure-sensitive adhesive layer.
  • the temporary sealing part is formed through an adhesive layer, but the adhesive constituting the adhesive layer is a layer formed of a polymer composition having tack at normal temperature, and it is limited if heat sealing can be performed after temporary attachment. Not sure.
  • the non-hydrophilic adhesive is preferred as the adhesive that constitutes the adhesive layer used for temporary attachment.
  • the adhesive constituting the adhesive layer preferably has a melting point of the base polymer of the adhesive having good compatibility with the heat sealing material constituting the heat seal, which is lower than the melting point of the heat sealing material.
  • a hot melt adhesive is preferable for the hot melt adhesive.
  • the heat seal material is an olefin-based material
  • an example of a preferable example of the adhesive is an olefin-based adhesive.
  • an adhesive is laminated on the base material, the exothermic composition molded body, and the covering material.
  • at least the peripheral portion of the exothermic composition molded body and Z or the covering material on the base material are laminated.
  • an adhesive having good compatibility with the heat seal layer is laminated on the peripheral edge of at least the exothermic composition molded body on the lower surface.
  • the adhesive layer when the adhesive layer is laminated on the peripheral edge of the exothermic composition molded body on the substrate and Z or on the peripheral edge of the exothermic composition molded body on the lower surface of the coating material, Or when the adhesive layer is laminated on the entire lower surface of the coating material, and when the adhesive layer is laminated on the entire surface of the substrate and the peripheral edge of the exothermic molded article on the lower surface of the coating material or Z!
  • the adhesive layer is laminated on the entire peripheral edge of the exothermic composition molded body on the substrate and / or the lower surface of the covering material, and further, these adhesive layers are partially spread over the entire surface of each part. Are laminated.
  • the pressure-sensitive adhesive layer may be scattered on the entire surface or a part of the exothermic composition molded body.
  • the substrate and the Z or coating material may be partially interspersed over the entire region where the adhesive layer is removed, that is, a corresponding region where the exothermic composition molded body is laminated.
  • 60 ° C seal strength refers to a 25 mm x 250 mm test piece taken from the location where the seal strength of a sealed target sample is measured, left in a 60 ° C environment for 5 minutes, and then in a 60 ° C environment. Then, the maximum strength is measured for each of the three specimens by gripping, spacing 10 mm, and tensile speed 300 mmZmin.
  • the seal strength of the temporary attachment portion is preferably 0.5 kgZ25 mm or more, more preferably 0.5 to: LkgZ25 mm, and further preferably 0.5 to 0.9 kg / 20 ° C. in an environment of 20 ° C. 25 mm, and more preferably 0.5 to 0.8 kgZ25 mm. Also 60.
  • the C seal strength is preferably less than 0.8 kgZ25 mm, more preferably from 0.01 to less than 0.8 kg / 25 mm, even more preferably less than 0.01 to 0.5 kgZ25 mm, and even more preferably 0.01. It is less than ⁇ 0.4kgZ25mm.
  • the adhesive layer of the temporary attachment part is composed of an adhesive and has a 60 ° C seal strength of 0.01 to 0.8 kg / 25 mm, which stops the movement of the exothermic composition molded body between the substrate and the coating material. Capable of high-speed heat sealing. Furthermore, you may heat at the time of temporary attachment if desired. The heating is preferably performed under pressure at a temperature equal to or lower than the melting point of the base polymer in the hot melt pressure-sensitive adhesive forming the pressure-sensitive adhesive layer.
  • the seal strength of the heat-sealed part heat-sealed after temporary attachment in an environment of 20 ° C is preferably 1.0 kgZ25 mm or more, more preferably 1.2 kgZ25 mm or more, and even more preferably 1.5 kgZ25 mm or more. More preferably, it is 1.5 to 3 kgZ25 mm.
  • the 60 ° C seal strength in an environment of 60 ° C is preferably 0.8 kgZ25 mm or more, more preferably 1. OkgZ25 mm or more, further preferably 1.2 kgZ25 mm or more, more preferably 1. 5kgZ25mm or more.
  • the seal strength under the 20 ° C environment is the same as the 60 ° C seal strength condition except that the measurement environment temperature is 20 ° C.
  • the pressure-bonding surface to be restricted may be either partial pressure bonding or full-surface pressure bonding.
  • the means can be preferably performed by a template, a flat surface or a flat plate. Moreover, it can carry out by letting a mold roll, a plane, or a flat roll pass.
  • the die roll has a crimped shape that is similar to the periphery of the exothermic composition molded body, or a part of the periphery of the exothermic composition molded body is crimped so that only the temporary attachment part is crimped.
  • the exothermic composition molded body is formed so as not to be pressure-bonded, and there is no limitation as long as the heat-generating composition molded body is not pressure-bonded.
  • the crimping surface can be a plain surface, but it is preferable that at least one surface of the crimping surface is an embossed surface in consideration of material slippage and conveyance.
  • the shape of the embossed mesh examples of the shape are usually a wave shape, a turtle shell shape, a ring shape, a polka dot shape, and a mesh pattern shape.
  • the area ratio of the protrusions on the embossed surface but usually 0.5 to 60% is preferable.
  • the crimping part is also a temporary attachment part. As an example, a part or a part provided for the entire surface can be given.
  • the flat or flat roll is a flexible material that presses the entire heating element and temporarily attaches at least the peripheral edge of the exothermic composition.
  • the material is not limited as long as it can be deformed and temporarily attached, but examples thereof include foams, felts, woven fabrics, non-woven fabrics, rubbers, balloons and the like.
  • Temporary attachment is performed using the temporary attachment tool shown as an example in FIGS. 7 to 13.
  • the temporary attachment is not limited thereto, and any temporary attachment can be used.
  • the exothermic composition molded body is thick, depending on the type of coating material used, at least one selected from the exothermic composition molded body and the end of the substrate as shown in FIG. 8 is temporarily attached. It is preferable.
  • the end portion of the base material is an end portion of the base material parallel to the MD direction of the exothermic composition molded body and a region parallel to the TD direction where no exothermic composition molded body exists.
  • a slack of a covering material may be provided between at least one exothermic composition molded body and at least one adjacent exothermic composition molded body, and temporarily attached.
  • the slack at the time of temporary attachment may be one direction or plural directions. This is because the loose seal can prevent the seal from being cut.
  • the heat generating part is composed of a divided heat generating part and a separating part which is a seal part
  • the divided heat generating part and the divided heat generating part are separated depending on the limit width of the heat seal. It was necessary to make a large section between them.
  • the space between the segment heat generating portions becomes large, the heat retaining effect between the segment heat generating portions decreases, and the heat generation time is shortened. Therefore, this method of making the heating element flexible has a problem in duration of heat generation.
  • heat sealing after temporary attachment allows high-speed, narrow heat sealing without causing the exothermic composition to dissipate to the heat seal portion.
  • the exothermic composition is temporarily attached but is heat sealed! /, NA! /
  • the heat seal part can be opened and the section width can be reduced.
  • the heat seal material constituting the heat seal layer is not limited as long as at least a part of the heat seal material can be bonded by heating even if it is a single material or a composite material having a heat seal layer. Absent.
  • ethylene olefin copolymer resins such as polyethylene and polypropylene, ethylene vinyl acetate copolymer resins, ethylene-isobutyl acrylate copolymer resins, and other ethylene acrylic acid ester copolymers
  • hot melt resin such as polyvinyl ether hot melt resin, polyurethane hot melt resin, polycarbonate hot melt resin, vinyl acetate, vinyl chloride vinyl acetate copolymer, and films and sheets thereof.
  • hot melt resin such as polyvinyl ether hot melt resin, polyurethane hot melt resin, polycarbonate hot melt resin, vinyl acetate, vinyl chloride vinyl acetate copolymer, and films and sheets thereof.
  • what mixed additives, such as various acid prevention agents, can also be used for hot-melt type
  • the thickness of the heat seal layer is not limited as long as it can be heat sealed, but is usually 5 to 1000 ⁇ m, preferably 10 to 500 ⁇ m 2 , and more preferably 15 to 250 ⁇ m. If the thickness force of the heat seal layer is less than 5 / zm, the required adhesive strength may not be obtained. On the other hand, if the thickness force exceeds 1000 m, the heat seal speed becomes slow.
  • the pressure-sensitive adhesive is a layer formed of a polymer composition having a tack at normal temperature, and there is no limitation as long as it can be heat-sealed after temporary attachment that is compatible with the heat-seal layer.
  • a solvent-type pressure-sensitive adhesive or a hot-melt pressure-sensitive adhesive is given as an example.
  • the foamed adhesive layer elastically deforms the gas in the pores, the elasticity, stretchability and flexibility are remarkably enhanced, the flexibility of the packaging material composed of the base material and the covering material, In particular, the sealing part of the base material and the covering material becomes extremely flexible and the feeling of use is further enhanced.
  • Examples of methods for foaming hot-melt adhesives include chemical foaming methods and physical foaming methods.
  • chemical foaming methods inorganic foaming agents, organic foaming agents, or mixtures thereof are used. This is a method of foaming using nitrogen gas or carbon dioxide gas generated during the decomposition reaction.
  • Physical foaming is a method of applying a gas such as compressed air, compressed nitrogen, or compressed carbon dioxide gas to the pressure-sensitive adhesive. It is a method of mixing by physical force.
  • the physical methods described in JP-B-60-3350, JP-A-62-87267, JP-B-63-17295, JP-A-1-59023 are described in particular. The foaming method is recommended for the reasons described below.
  • a pressure gas is brought into contact with a hot-melt pressure-sensitive adhesive ejected from a nozzle at atmospheric pressure, whereby the pressure-sensitive adhesive is blown into a delicate woven fabric, and between them. Fine open pores or closed cells are formed.
  • the expansion ratio depends on the temperature related to the viscosity of the pressure-sensitive adhesive and the pressure of the pressurized gas, the temperature conditions for obtaining a pressure-sensitive adhesive layer with the required foaming rate compared to the case of using a foaming agent. Easily set pressure conditions!
  • the pressure-sensitive adhesive is formed of a hot-melt polymer material, an alicyclic petroleum resin and a softening agent, and this pressure-sensitive adhesive is foamed by the above-described method. .
  • examples of the hot-melt polymer material include those described above.
  • This hot-melt type polymer material is a base polymer in an adhesive, and an adhesive foam formed using this polymer has excellent shape retention and has an initial tack.
  • the adhesiveness at the time of caro is good, and the adhesive strength after adhesion is stable.
  • alicyclic petroleum coffin is an adhesive imparting agent, and required adhesive properties can be obtained by combination with a hot-melt type polymer substance.
  • An alicyclic petroleum resin is a petroleum-based resin having a cyclic skeleton.
  • rosin for example, rosin, dehydrated rosin, dehydrogenated rosin glycerin esters, gum rosin glycerin esters, hydrogenated Rosin, hydrogenated rosin methyl ester, hydrogenated rosin glycerin ester, hydrogenated rosin pentaerythritol rosin, polymerized rosin, polymerized rosin glycerin ester, coumarone indene resin, hydrogenated petroleum resin, Examples thereof include maleic anhydride-modified rosin, rosin derivatives, C5 petroleum rosin, and the like, which are appropriately used alone or in combination of two or more in order to impart the required adhesive strength to the patch.
  • the base material of the present invention is substantially planar and does not have a storage pocket.
  • the covering material covers the exothermic composition provided on the base material, and the peripheral portion of the exothermic composition is heated.
  • the base material and the covering material in the present invention are not distinguished from each other by the material structure, and the material on which the exothermic composition molded body is laminated is defined as the base material, and then the base material is covered with the exothermic composition molded body. Defined material is defined as a covering material.
  • the substantially planar shape means a flat surface that does not have storage recesses such as storage pockets, storage sections, and storage areas that are provided in advance to store the exothermic composition. Say. Accordingly, irregularities that do not intentionally contain the exothermic composition may exist.
  • the pocket of the present invention is a storage pocket previously provided in the packaging material for storing the exothermic composition, and is a pocket as described in JP-A-2001-507593. Since the unevenness that is not intended for storing the intentionally generated heat and molded product is not a pocket, even if such unevenness is present in the base material, it should be a substantially planar base material.
  • the storage compartment is a storage compartment provided in advance for the packaging material in order to store the exothermic composition.
  • the storage compartment is described in Japanese Patent No. 316160, Japanese Patent Publication No. 11-508314, V, etc. Storage compartment. It is not intended for storage of the intentionally exothermic composition molded body! Since the unevenness is not the storage compartment, even if such unevenness is present in the base material, the storage area is a substantially flat base material.
  • a storage area for storing preliminarily provided in the packaging material for storing the exothermic composition which is described in Japanese Patent No. 316160 and Japanese Patent Publication No. 11 508314. It ’s a storage area. It is not intended for storing the exothermic composition molded body! Since the unevenness is not a storage area, even if such unevenness is present in the base material, it should be a substantially flat base material.
  • the material constituting the base material, the covering material, and the covering material is not limited as long as it functions as a storage bag for the exothermic composition.
  • Non-breathable material, breathable material, water-absorbing material, non-water-absorbing material, non-extensible, stretchable, stretchable material, non-stretchable material, foamed material, non-foamed material, non-heat-sealable material, heat Sealing materials and the like are listed as examples, and can be appropriately used according to a desired application in a desired form of a film, a sheet, a nonwoven fabric, a woven fabric, and the like and a composite thereof.
  • the base material is made of a non-breathable film or sheet
  • the covering material may be a force that also acts as a breathable film, sheet, or nonwoven fabric, or both may be breathable.
  • the flooring material may be properly used for air permeability and non-air permeability.
  • the base material may have a single layer structure or a multilayer structure.
  • the structure is not limited, but as an example of a multilayer structure, the base material is A layer ZB layer or A layer ZB layer ZC layer or A layer ZB layer ZC layer ZD layer Or E layer ZF layer ZG layer or F layer ZH layer ZG layer force
  • Layer A is a thermoplastic resin film such as polyethylene, heat seal layer such as polyethylene or EVA, water absorbent paper, etc.
  • layer B is a nonwoven fabric of thermoplastic resin such as nylon, non-water absorbent paper, water absorbent.
  • C layer is adhesive layer, non-water-absorbent Paper, water-absorbing paper, thermoplastic resin film such as polyethylene, non-slip layer, non-woven fabric of thermoplastic resin such as polyester and nylon
  • D layer is separator, thermoplastic resin film such as polyethylene, non-woven fabric E layer is a heat seal layer, etc.F layer is a polyethylene resin thermoplastic porous film, perforated film, polyethylene thermoplastic resin film, non-water absorbent paper, etc.
  • examples of the base material or the coating material include a polyethylene heat sheath layer / polyethylene phenolic layer and a polyethylene heat sheath layer / Polypropylene film, polyethylene heat-seal layer / polyethylene film using a metal catalyst Z adhesive layer Z separator, EVA heat seal layer Z polypropylene film z adhesive layer Z separator, polyethylene heat seal layer Z polyethylene film
  • Non-woven fabric Z paper, porous film Z perforated (needle, laser) film, non-woven fabric z paper, porous film z non-woven fabric and the like can be mentioned as examples.
  • each layer may be laminated via a breathable pressure-sensitive adhesive layer or a laminating agent layer, or may be laminated by hot melt extrusion or the like.
  • the pressure-sensitive adhesive layer may be provided on these packaging materials.
  • the gas-permeable adhesive layer is formed by spraying and spreading the adhesive substance through hot air while heating and melting.
  • the adhesive material is made into fibers by an appropriate method such as curtain spray method, melt blow method, slot spray method, etc., and then spread and deposited on an appropriate support substrate such as a porous film, a breathable substrate or a separator.
  • An example is an adhesive layer.
  • the non-breathable material is not limited as long as it has non-breathability.
  • Polyethylene, polypropylene, nylon, acrylic, polyester, polyvinyl alcohol, ethylene vinyl acetate copolymer and other films, sheets, coatings that have polymer strength, and those in which a metal (including semiconductor) compound such as silicon oxide is laminated For example, and composite materials using them.
  • an example of a highly non-breathable film is a non-breathable material film in which a thin film of a metal containing a semiconductor or a compound thereof is provided in a single layer or multiple layers.
  • metals including semiconductors include silicon, aluminum Examples thereof include alloys and mixtures containing these metals.
  • the metal compound including a semiconductor include oxides, nitrides, and oxynitrides of the above metals, alloys, and mixtures.
  • one obtained by laminating a silicon oxide layer, an aluminum oxide layer, a silicon oxynitride layer, or an arbitrary layer thereof on a stretched polyolefin film (for example, biaxially stretched polypropylene vinylome) can be given as an example.
  • the breathable material is not limited as long as it has breathability.
  • a breathable film such as a porous film and a perforated film, paper, non-woven fabric, etc. having air permeability alone, paper, and a breathable film, non-woven fabric, etc. are laminated to have air permeability.
  • a non-breathable packaging material with a polyethylene film laminated to a non-breathable material with fine holes using a needle, etc. to make it breathable, and fibers are laminated and thermocompression bonded to make it breathable. Examples thereof include a controlled nonwoven fabric, a porous film, or a laminate of a nonwoven fabric and a porous film.
  • the perforated film is a non-breathable film such as polyethylene film provided with fine holes with a needle so as to be breathable.
  • the air permeability is not limited as long as heat generation can be maintained.
  • breathability is moisture permeability by the Lissy method (Lyssy method).
  • LO Lissy method
  • LO LO, 000g / mV4hr, preferably 70 ⁇ 5,000gZm 2 Z24hr, more preferably Is 100 to 2 , OOOg Zm 2 Z24hr, more preferably 100 to 700 gZm 2 Z24hr.
  • the moisture permeability is less than 50, the calorific value is reduced, and a sufficient thermal effect cannot be obtained, which is not preferable.
  • it exceeds 10,000 gZm 2 Z24hr, the exothermic temperature increases and the safety is improved. This is not preferable because a problem may occur.
  • the stretchable packaging material is not particularly limited as long as it has stretchability. That is, as a whole, it may be a single product as long as it has stretchability, or a composite product composed of stretchable substrates or a combination of a stretchable substrate and a non-stretchable substrate.
  • natural rubber recycled rubber, synthetic rubber, elastomers, stretchable shape memory polymers, etc., or mixtures of these, blends of these with non-stretchable materials, and mixed products
  • examples include woven fabrics, films, yarns, and the like that are made from a combination.
  • porous film examples include a porous film obtained by stretching a film made of a filler material such as polyethylene, a polyolefin resin such as linear low density polyethylene and polypropylene, a fluorine resin such as polytetrafluoroethylene, and the like.
  • a quality film can be selected as appropriate.
  • the non-woven fabric include rayon, nylon (polyamide), polyester, acrylic, polypropylene, vinylon, polyethylene, polyurethane, cupra, cotton, cellulose, pulp, etc.
  • a mixed paper or cumulative fiber layer stack is used.
  • dry non-woven fabric, wet non-woven fabric, spunbond, spunlace, etc. can be used for manufacturing.
  • a nonwoven fabric made of a core-sheath composite fiber may also be used.
  • the components used in the moldable exothermic composition and the heating element of the present invention, and the packaging materials such as the base material, the covering material, and the covering material, in addition to the materials that have been used conventionally, are biodegradable materials. Can be used.
  • the exothermic composition contains exothermic substances such as iron, a carbon component, a reaction accelerator and water as essential components, and has surplus water with a mobile water value of 0.01 to 20, It is preferable to use an exothermic composition that has a formability with surplus water and that does not function as a barrier layer in the exothermic composition and causes an exothermic reaction when in contact with air.
  • the exothermic composition is a water retention agent, a water absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, a fibrous material, a functional material, a surfactant, an organic key compound, a pyroelectric material, a moisturizing agent.
  • a water retention agent a water absorbing polymer
  • a pH adjuster a hydrogen generation inhibitor
  • an aggregate a fibrous material
  • a functional material a functional material
  • a surfactant an organic key compound
  • a pyroelectric material a moisturizing agent.
  • the iron powder is preferably normal iron powder, iron alloy powder, or active iron powder made of iron powder or iron alloy powder having an oxygen-containing film on at least a part of the surface of the iron powder.
  • the iron oxide film is a film made of iron such as iron oxide, hydroxide, oxyhydroxide and the like containing oxygen.
  • Active iron powder is a ferrous oxide film formed at least locally on the surface of the iron powder. Local batteries and pits inside and outside the iron oxide film are formed between the ground iron and the iron oxide film. It is possible to obtain the effect of promoting the oxidation reaction.
  • iron powder examples include, but are not limited to, pig iron iron powder, atomized iron powder, electrolytic iron powder, reduced iron powder, sponge iron powder, and iron alloy powder thereof.
  • these iron powders may contain carbon or oxygen, or iron containing 50% or more of iron and other metals!
  • the type of metal contained in the alloy is not particularly limited as long as the iron component acts as a component of the exothermic composition, but metals such as aluminum, manganese, copper, nickel, silicon, cobalt, palladium and molybdenum, semiconductors, etc. Is given as an example.
  • the metal of the present invention includes a semiconductor. These metals and alloys may be present only on the surface or on the inside, or on both the surface and the inside.
  • the content of the metal other than iron is usually 0.01 to 50% by weight, preferably 0.1 to 10% by weight, based on the whole iron powder.
  • a mixture of active iron powder and iron powder other than active iron powder is an example.
  • the mechanism is not in any detail, but due to the contact between the acidic gas and the component, the oxidation of the component, particularly the iron powder, the iron oxide film on the surface of the iron powder, that is, the oxygen-containing film
  • the surface of the activated carbon is also oxidized, and the Z or oxidized iron component adheres, both are imparted with hydrophilicity, and are improved. It is estimated that
  • iron oxide film is formed on the surface of the iron powder, the iron powder particles become irregularly shaped, distortion occurs due to acid and soot, water-containing pits are formed, and some function change occurs. It is presumed that iron powder is activated and heat generation is improved.
  • magnetite Fe 2 O 3
  • it has excellent conductivity.
  • hematite Fe 2 O 3
  • it becomes porous the presence of hematite (Fe 2 O 3) is also preferable because it becomes porous.
  • the surface of the carbon component is oxidized to become a carbon component with a large amount of surface oxide, the hydrophilicity is increased, and the activity is also increased.
  • the thickness of the iron oxide film which is an oxygen-containing film covering the surface of the iron powder, is usually 3 nm or more, preferably 3 ⁇ to 100 / ⁇ ⁇ , more preferably, using Auger electron spectroscopy. More preferably 30 nm to 100 ⁇ m, more preferably 30 nm to 50 ⁇ m, still more preferably 30 ⁇ to 1; ⁇ ⁇ , more preferably 30 nm to 500 nm, still more preferably 50 nm. ⁇ 300nm.
  • the thickness of the iron oxygen-containing film can exert the effect of promoting the oxidation reaction, and contact with an oxidizing gas such as air causes the oxidation reaction. You can get started right away. If the thickness of the iron oxygen-containing film is 100 m or more, the heat generation time may be shortened, but it can be used depending on the application.
  • a reaction having iron powder, a reaction accelerator and water as essential components, a water content of 0.5 to 20% by weight, and an easy water value indicating an excess water amount of less than 0.01.
  • the reaction rate during the contact treatment with the oxidizing gas can be increased, and the time for the temperature rise of the reaction mixture to be 1 ° C or higher can be achieved within 10 minutes.
  • the time to reach the predetermined temperature or more proper activation can be achieved and unnecessary oxidation on the iron powder can be prevented.
  • exothermic compositions with easy-moving water values of 0.01 to 50 by adding carbon components, etc. to the exothermic mixture produced by contacting the reaction mixture with an oxidizing gas and adjusting the water content are appropriate.
  • exothermic compositions with a mobile water value of 0.01 to 20 start an exothermic reaction as soon as they come into contact with air, have excellent exothermic rise properties, and have excellent moldability. is there.
  • the oxidizing gas contact treatment method of the reaction mixture consists of iron powder, a reaction accelerator and water as essential components, a water content of 0.5 to 20% by weight and a mobile water value of less than 0.01.
  • the temperature of the reaction mixture is increased to 1 ° C or more by contact treatment with oxidizing gas.
  • the temperature of the reaction mixture is increased to 1 ° C or more by contact treatment with oxidizing gas.
  • a method for producing an exothermic mixture wherein the method described in any one of 1 to 5 is performed in an environment heated to 10 ° C or more from the environmental temperature,
  • a method for producing an exothermic mixture which is performed by blowing an acidic gas heated to 10 ° C or higher from the environmental temperature by the method described in 7.
  • a method for producing an exothermic composition in which the oxidizing gas contact treatment is performed until the maximum temperature, which is the highest temperature rise due to an exothermic reaction, is exceeded by the method described in any one of 1 to 8.
  • the oxidizing gas contact treatment is performed until the maximum temperature, which is the highest temperature rise due to the exothermic reaction, is exceeded, and then the oxidizing gas is shut off.
  • a method for producing a heat-generating composition which is held until the temperature is lowered by at least 10 to 20 ° C. 12.
  • One example is a method for producing an exothermic mixture in which the reaction mixture or exothermic mixture described in any one of 1 to 5 is heated to 1 ° C or higher in an oxidizing gas environment.
  • exothermic mixture may be added to the exothermic mixture, and further treated with an oxidizing gas to form an exothermic mixture.
  • the reaction mixture environment during the oxidizing gas contact treatment is not limited as long as it is in contact with oxidizing gas in an environment of o ° c or higher and the temperature rise of the reaction mixture is set to c within 10 minutes.
  • it When performing in an open system, it may be present in a container without a lid, or it may be in a state in which an oxidizing gas such as air enters through a breathable sheet-like material such as a nonwoven fabric.
  • the acidic gas contact treatment may be either batch type or continuous type under stirring, non-stirring, flowing or non-flowing.
  • the water content in the reaction mixture and further in the exothermic mixture before the oxidizing gas treatment is usually 0.5 to 20% by weight, preferably 1 to 15% by weight, more preferably 2 to 10%. % By weight, more preferably 3 to 10% by weight, more preferably 6 to 10% by weight.
  • the temperature of the reaction mixture after contact with the oxidizing gas is such that the temperature rise is 1 ° C or more. If there is no limitation, it is preferably 1 to 80 ° C, more preferably 1 to 70 ° C, still more preferably 1 to 60 ° C, and further preferably 1 to 40 ° C. is there.
  • the environmental temperature at the time of contact between the reaction mixture and the oxidizing gas is not limited as long as the temperature of the reaction mixture rises above a predetermined level, but is preferably 0 ° C or higher, more preferably 0 to 250 ° C. More preferably, it is 10 to 200 ° C, more preferably 20 to 150 ° C, and further preferably. Or 25 to 100 ° C, more preferably 25 to 50 ° C.
  • the temperature rise of the reaction mixture at the time of contact between the reaction mixture and the oxidizing gas is 1 ° C or more.
  • the time is within 10 minutes, but it is preferably 1 second to 10 minutes, more preferably 1 second to 7 minutes, more preferably 1 second to 5 minutes, more preferably 2 seconds to 5 minutes, further preferably 2 seconds to 3 minutes, and further preferably 2 seconds to 1 minute. is there.
  • the temperature of the oxidizing gas is not limited as long as the environmental temperature is maintained.
  • the oxidizing gas may be any gas as long as it is acidic and oxygen gas, air, or a mixed gas of an inert gas such as nitrogen gas, argon gas, helium gas and oxygen gas is an example.
  • the mixed gas is not limited as long as it contains oxygen, but air is particularly preferred among these, which preferably contain 10% or more of oxygen gas.
  • catalysts such as platinum, palladium, iridium and their compounds can be used.
  • the oxidation reaction can be carried out in an oxidizing gas atmosphere with stirring, if desired, under pressure, and further under Z or ultrasonic irradiation.
  • the optimum conditions for the acid-acid reaction may be appropriately determined experimentally.
  • the amount of oxidizing gas used may be adjusted according to the type of oxidizing gas without restriction, the type and particle size of iron powder, the amount of water, the processing temperature, and the processing method.
  • open systems there is no limit as long as the required oxygen amount can be taken in.
  • open systems should be used so long as they can be surrounded by a breathable material such as nonwoven fabric or woven fabric.
  • the amount of air is preferably 0.01 to L000 liters Z, more preferably 0 for 1 g of atmospheric pressure with respect to 200 g of iron powder. 01-: L00 liters Z minutes, more preferably 0.1-50 liters Z minutes.
  • the oxygen concentration may be converted based on the case of air.
  • peracid additives may be added. Hydrogen peroxide and ozone are examples.
  • the state of the reaction mixture or the exothermic mixture at the time of the contact treatment with the oxidizing gas may be either a stationary state, a moving state, or a fluidized state by stirring or the like as long as the iron powder is partially oxidized. However, it may be selected appropriately.
  • the acidic gas atmosphere or in the acidic environment where the environment during the contact treatment with the mixed oxidizing gas at the time of mixing each component of the reaction mixture, exothermic mixture and exothermic composition is adjusted.
  • An example is gas blowing.
  • a method for measuring the temperature rise of the exothermic yarn and composition is as follows.
  • the heat generation test of the heating element shall follow the JIS temperature characteristic test.
  • At least a part of the surface of the iron powder or active iron powder in the exothermic composition subjected to the oxidizing gas treatment is coated with an iron oxygen-containing film.
  • the covering degree of the surface of the iron oxygen-containing film may be the entire surface as long as at least a part of the surface is covered.
  • ions of the reaction accelerator such as chlorine ions are contained in the exothermic composition, and therefore, there is no anticorrosive effect on the oxide film due to the corrosion effect by the ions of the reaction accelerator such as chlorine ions. This is a kind of corrosion and does not inhibit the acid-oxidation reaction.
  • Etc. occur, an equal area is generated, and unevenness and a gap are also generated. For this reason, it is estimated that it has hydrophilicity and acid-catalyst properties (FeO, etc.) in its own part.
  • an iron component that is a contact accelerator with an oxidizing gas containing an iron component as a reaction accelerator and water as an essential component has a reaction active part mainly composed of oxides, hydroxides, chlorine ions, hydrogen ions, and the like. The exothermic reactivity and hydrophilicity are improved, and the exothermic rise and moldability are expected to be remarkably improved.
  • the amount of FeO (wustite) contained in the iron component containing the predetermined amount of wustite is usually 2 to 50% by weight, preferably 2 to 40% by weight, more preferably, in terms of the X-ray peak intensity ratio with iron. It is 2 to 30% by weight, more preferably 5 to 30% by weight, and further preferably 6 to 30% by weight. Even if it exceeds 50% by weight, the heat buildup is good, but the heat generation duration is shortened. If it is less than 2% by weight, the heat build-up property becomes dull.
  • the thickness of the oxygen-containing film of the iron powder having the predetermined amount of oxygen-containing film or wustite is applied to the exothermic composition or the exothermic composition molded body during lamination.
  • the iron powder contains a carbon component and iron powder coated with Z or a carbon component is also preferred. If the iron component is 50% by weight or more with respect to the carbon component, the ratio of the carbon component is Although there is no limitation, iron powder partially covered with 0.3 to 3.0% by weight of conductive carbonaceous material is useful. Examples of conductive carbonaceous materials include carbon black, activated carbon, carbon nanotubes, carbon nanohorns, fullerenes, etc. Iron powder that may be conductive by doping is reduced iron powder or atomized iron powder. Sponge iron powder is an example, and in particular, the conductive carbonaceous material is activated carbon, and the iron powder is returned. The original iron powder is useful for the heating element.
  • 0. conductive carbonaceous material coated so as not to impair the flowability of the iron powder in order to perform efficiently from 01 to 0.05 weight 0/0 of oils, such as spindle oil or the like may be ⁇ Ka ⁇ .
  • the thickness of the iron oxide film of the iron powder in the mixture or the exothermic composition in the heating element should be measured according to each item. That is,
  • the exothermic composition is taken out from the heating element and measured according to the method for measuring the mobile water value.
  • a heat-generating composition In a nitrogen atmosphere, a heat-generating composition, a heat-generating composition molded body, a heat-generating composition compressed body or a mixture is dispersed in ion-exchanged water substituted with nitrogen, iron powder is separated with a magnet, and dried under a nitrogen atmosphere. Use a sample for measurement.
  • the exothermic composition of the present invention comprises iron powder, a carbon component, a reaction accelerator, and water as essential components, and the production method thereof can be industrially put into practical use.
  • the iron powder, the reaction accelerator, and water are used.
  • As an essential component a reaction mixture with a water content of 1 to 20% by weight and a mobile water value indicating excess water of less than 0.01 is brought into contact with an oxidizing gas in an environment of 0 ° C or higher and within 10 minutes.
  • the temperature rise of the reaction mixture is set to c or more to produce an exothermic mixture, and the exothermic mixture is used as a raw material to obtain an exothermic composition.
  • the moisture may be further adjusted to obtain a heat generating composition, or a carbon component or the like may be added or the water content may be adjusted to obtain a heat generating composition.
  • the water content of the reaction mixture is set to a certain amount or less, particularly the excess water amount is set to a certain amount or less, and the oxidizing contact treatment can be performed in a short time.
  • the amount of excess water and treating for a short time adverse effects caused by the oxidizing gas contact treatment such as poor initial heat generation of the exothermic composition and shortened heat generation retention time can be avoided.
  • Industrial mass production method was established. Further, during the oxidizing gas contact treatment, it is not necessary to perform stirring or the like, but if the stirring is performed, the acidic gas contact treatment can be surely performed.
  • the state of the reaction mixture or the exothermic mixture in the contact treatment with the oxidizing gas may be either a stationary state, a moving state, or a fluidized state by stirring if the iron powder is partially oxidized. It may be selected as appropriate. Also, examples include an oxidizing gas atmosphere and an oxygen-containing gas blowing, in which there are no restrictions on the environment when mixing the components of the reaction mixture, the exothermic mixture, and the exothermic composition and at the time of moisture adjustment.
  • Moisture adjustment is the treatment of water or a water solution of a reaction accelerator after the exothermic mixture is contacted with an oxidizing gas. There is no restriction on the amount to be added, but it is possible to list the weight reduced by the contact treatment and the weight at which the desired water mobility value can be obtained as an example. Whether or not moisture adjustment is performed may be appropriately determined depending on the application.
  • the exothermic composition of the present invention comprises iron powder, a carbon component, a reaction accelerator and water as essential components, and a reaction mixture containing iron powder, a reaction accelerator and water as essential components is contact-treated with an oxidizing gas.
  • This is an exothermic composition having excellent moldability, which is obtained by adjusting the moisture content of an exothermic mixture and is combined with an appropriate amount of surplus water that has a high exothermic rise. It can also be used to produce a heating element that quickly warms up during use.
  • At least the iron powder, including the carbon component has a history of oxidation due to the contact treatment of the acidic gas, and this is deeply related to excellent heat buildup, heat generation sustainability and excellent moldability. Seem.
  • carbon components such as activated carbon in the exothermic composition can be reduced by, for example, 20% or more. Decreasing the amount of carbon component added reduces costs.
  • an exothermic composition having excellent exothermic rising property, excellent hydrophilicity, and excellent moldability can be obtained.
  • a mobile water value of 0.01 to 50, particularly 0.01 to 20 an exothermic composition having remarkably excellent moldability and exothermic properties can be obtained.
  • the exothermic composition produced by the production method of the present invention has remarkably improved exothermic rise, so the amount of carbon components such as activated carbon in the exothermic composition can be reduced by, for example, 20% or more, thereby reducing costs. Can contribute.
  • the hydrophilicity is remarkably improved, the moldability using the mold is remarkably improved, so that the pieces of the exothermic composition are not scattered around the exothermic composition molded body after molding, so that the seal is not scattered. It is possible to produce a heating element that is accurate and has no seal breakage. As a result, various The exothermic composition molded body of the shape can be produced, and the exothermic body of various shapes can be obtained.
  • iron powders having an oxygen-containing film such as an oxide on at least a part of the surface are used as iron powder.
  • a mixture of active iron powder having an oxygen-containing film such as oxides on at least part of the surface of the iron powder mixed with iron powder not having an oxygen-containing film is used as the iron powder.
  • the active iron powder is 60% by weight or more and the iron powder other than the active iron powder is less than 40% by weight.
  • the exothermic composition may comprise a water retention agent, a water-absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, a fibrous material, a functional substance, a surfactant, an organic silicon compound, a pyrogenic compound.
  • a water retention agent e.g., a water-absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, a fibrous material, a functional substance, a surfactant, an organic silicon compound, a pyrogenic compound.
  • the exothermic composition of the present invention is not particularly limited in its blending ratio, but it is 1.0 to 50 parts by weight of a reaction accelerator with respect to 100 parts by weight of iron powder.
  • Water is 1.0 to 60 parts by weight, carbon component 1.0 to 50 parts by weight, water retention agent 0.01 to: LO part by weight, water-absorbing polymer 0.01 to 20 parts by weight, pH adjusting agent 0.01 ⁇ 5 parts by weight, hydrogen generation inhibitor 0.01 to 12 parts by weight, and it is preferable to select the blending ratio so that the exothermic water value is 0.01 to 20 as the exothermic composition. That's right.
  • 1.0-50 parts by weight of metal other than iron 1.0-50 parts by weight of metal oxide other than iron oxide, 0.01-5 parts by weight of surfactant, hydrophobic polymer compound, aggregate, Fibrous substances, functional substances, organic silicon compounds and pyroelectric substances are each 0.01 to 10 parts by weight, and moisturizers, fertilizer components and heating aids are 0.01 to 10 parts respectively: L0 parts by weight, acidic substances. 01 to 1 part by weight.
  • the blending ratio of the magnetic material may be appropriately determined as desired.
  • This blending ratio can also be applied to a reaction mixture and an exothermic mixture.
  • the mobile water value of the reaction mixture is usually less than 0.01.
  • the water may be from a suitable source. There are no restrictions on the purity and type.
  • the water content is 1 to 70% by weight of the exothermic composition, more preferably 1 to 60% by weight, still more preferably 7 to 60% by weight, still more preferably 10 to 50% by weight, Preferably it contains 20 to 50% by weight.
  • reaction mixture and an exothermic mixture before contact treatment with an oxidizing gas 0.5 to 20% by weight of the reaction mixture or the exothermic mixture, more preferably 1 to 20% by weight, still more preferably 3 to 20% by weight. %, More preferably 4 to 15% by weight.
  • the carbon component is not limited as long as it contains carbon as a component.
  • Examples include carbon black, black bell, activated carbon, carbon nanotube, carbon nanohorn, and fullerene. It may have conductivity by doping or the like.
  • Examples include activated carbon prepared from coconut shells, wood, charcoal, coal, bone charcoal, and other raw materials such as animal products, natural gas, fats, oils and resins. In particular, activated carbon having adsorption retention ability is preferable.
  • the carbon component if iron powder containing a carbon component that does not necessarily need to be present alone and coated with Z or carbon component is used in the exothermic composition, the carbon component does not exist alone.
  • the exothermic composition shall contain a carbon component.
  • the reaction accelerator is not limited as long as it can accelerate the reaction of the exothermic substance.
  • Examples include metal halides, nitrates, acetates, carbonates, metal sulfates and the like.
  • Metal halides include sodium chloride, potassium salt, magnesium salt, calcium salt, ferrous chloride, ferric chloride, sodium bromide, potassium bromide, ferrous bromide, Examples include ferric bromide, sodium iodide, potassium iodide and the like.
  • Examples of nitrates include sodium nitrate and potassium nitrate.
  • Examples of the acetate include sodium acetate.
  • Examples of carbonates include ferrous carbonate.
  • metal sulfates include potassium sulfate, sodium sulfate, ferrous sulfate and the like.
  • the water retaining agent is not limited as long as it can retain water.
  • Wood flour, pulp flour, activated carbon, sawdust, cotton fabric with a lot of fluff, cotton short fibers, paper scraps, plant material, and other plant porous materials with a large capillary function and hydrophilicity, activated clay Examples include hydrous magnesium silicate clay minerals such as zeolite, perlite, vermiculite, silica-based porous materials, fossils, volcanic ash-based materials (terra balloon, shirasu balloon, tyset balloon, etc.).
  • processing such as firing and Z or pulverization.
  • the water-absorbing polymer is not particularly limited as long as it has a crosslinked structure and has a water absorption ratio of 3 times or more with respect to its own weight. It may also be a cross-linked surface. Conventionally known water-absorbing polymers and commercially available products can also be used.
  • water-absorbing polymer examples include a crosslinked poly (meth) acrylate, a crosslinked poly (meth) acrylate, a crosslinked poly (meth) acrylate having a sulfonic acid group, and a poly (meth) acrylate having a polyoxyalkylene group
  • Cross-linked product of (meth) acrylate ester crosslinked product of poly (meth) acrylamide, cross-linked product of copolymer of (meth) acrylate and (meth) acrylamide, hydroxyalkyl (meth) acrylate and (meth) acrylate
  • Copolymerized cross-linked product polydioxolane cross-linked product, cross-linked polyethylene oxide, cross-linked polyvinyl pyrrolidone, sulfone-polystyrene cross-linked product, cross-linked polypyridine pyridine, starch-poly (meth) acrylonitrile graft copolymer cane product, starch-poly (
  • the water-absorbing polymer having biodegradability in the water-absorbing polymer is not limited as long as it is a biodegradable water-absorbing polymer.
  • Examples include crosslinked polyethylene oxide, crosslinked polyvinyl alcohol, crosslinked carboxymethyl cellulose, crosslinked alginic acid, crosslinked starch, crosslinked polyamino acid, crosslinked polylactic acid, and the like.
  • the pH adjuster is not limited as long as the pH can be adjusted. There are alkali metal weak acid salts and hydroxides, or alkaline earth metal weak acid salts and hydroxides.
  • the hydrogen generation inhibitor is not limited as long as it suppresses the generation of hydrogen.
  • An example is a compound having at least one kind or two or more kinds selected from the group consisting of thio compounds, oxidizing agents, alkaline substances, io, antimony, selenium, phosphorus and tellurium.
  • the iodo compound is a compound with an alkali metal or an alkaline earth metal, such as a metal sulfate such as calcium sulfate, a metal sulfite such as sodium sulfite, or a metal thiosulfate such as sodium sulfate.
  • a metal sulfate such as calcium sulfate
  • a metal sulfite such as sodium sulfite
  • a metal thiosulfate such as sodium sulfate.
  • oxidizing agent examples include nitrate, oxide, peroxide, halogenated oxyacid salt, permanganate, chromate and the like.
  • the aggregate is not particularly limited as long as it is useful as a filler and is useful for making Z or the exothermic composition porous.
  • Fossil coral coral fossil, weathered reef coral etc.
  • bamboo charcoal Bincho charcoal
  • silica-alumina powder silica-magnesia powder
  • kaolin crystalline cellulose
  • colloidal silica pumice
  • silica gel silica powder
  • my strength powder clay
  • talc Examples include powders and pellets of synthetic resins, foamed synthetic resins such as foamed polyester and polyurethane, algae, alumina, and fiber powder.
  • Kaolin and crystalline cellulose are not included in the exothermic composition of the present invention.
  • fibrous material examples include inorganic fiber materials and Z or organic fiber materials such as rock wool, glass fiber, carbon fiber, metal fiber, pulp, paper, nonwoven fabric, woven fabric, cotton and hemp. Natural fiber, regenerated fiber such as rayon, semi-synthetic fiber such as acetate, synthetic fiber As an example, pulverized products thereof can be given.
  • the functional substance is not limited as long as it has a function, but examples include at least one selected from an anion generating substance and a far-infrared emitting substance.
  • the negative ion generating substance is not limited, whether directly or indirectly, as long as negative ions are generated as a result. Examples include tourmaline, fossilized coral, granite, co-dielectrics such as calcium strontium propionate, ores containing radioactive materials such as radium and radon.
  • the far-infrared emitting material is not limited as long as it emits far-infrared rays. Examples include ceramic, alumina, zeolite, zirconium and silica.
  • surfactant examples include surfactants containing ion, cation, nonone and zwitterion.
  • surfactants containing ion, cation, nonone and zwitterion examples include polyoxyethylene alkyl ethers, alkylphenol 'ethylene oxide adducts, higher alcohol phosphates, and the like, which are preferred as nonionic surfactants, can be mentioned.
  • the organosilicon compound is not particularly limited as long as it is a compound having at least Si—O—R and / or Si—N—R and / or Si—R bonds.
  • examples thereof include organic silane compounds such as methyltriethoxysilane, dimethyl silicone oil, polyorganosiloxane, and silicone resin compositions containing them in the form of monomers, low condensates, polymers, and the like. .
  • the pyroelectric substance is not limited as long as it has pyroelectricity (pie mouth electricity or pyro electricity).
  • Examples include tourmaline and pyroelectric minerals.
  • tourmaline which is a kind of tourmaline is preferable.
  • Examples of tourmalines include drabite (mafic tourmaline), shawl (iron tourmaline), and elvite (lithia tourmaline).
  • the moisturizer is not limited as long as it can be moisturized. Examples include hyaluronic acid, collagen, dariserine, urea and the like.
  • the fertilizer component is not limited as long as it contains at least one of the three elements of nitrogen, phosphoric acid, and potassium. Examples include bone meal, urea, ammonium sulfate, lime superphosphate, potassium chloride, calcium sulfate and the like.
  • the hydrophobic polymer compound is in contact with water in order to improve drainage in the composition.
  • the polymer compound has an angle of 40 ° or more, more preferably 50 ° or more, and still more preferably 60 ° or more.
  • Examples include powders, granules, granules, tablets, etc. whose shape is not limited.
  • polyolefins such as polyethylene and polypropylene, polyesters, polyamides, and the like.
  • heat generation aid examples include metal powder, metal salt, metal oxide, Cu, Mn, Cu CI, FeCl, diacid manganese, cupric oxide, tetraacid tetraacid iron and the like. Mixture etc.
  • any metal acid can be used as long as it does not inhibit the acid of the iron by the acid gas, but examples include manganese dioxide and cupric oxide.
  • the acidic substance include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, succinic acid, malic acid, maleic acid, chloroacetic acid, iron chloride, sulfuric acid, which may be any of inorganic acids, organic acids, and acidic salts. Examples include iron, iron oxalate, iron citrate, salt-aluminum, salt-ammonium, hypochlorous acid, and the like.
  • a heating composition molded body obtained by molding a heating composition containing iron powder, a carbon component, a reaction accelerator, and water as essential components is laminated on a base material, and then on that.
  • Adhesive was provided as a breathable adhesive layer by a melt blow method, etc., and a covering material was further covered on the substrate and the heat generating composition, or an adhesive was provided as a breathable adhesive layer by a melt blow method, etc. Cover the covering material, press with a temporary roll, temporarily bond the base material and the exothermic composition molded body and the covering material, and then cover the base material and the peripheral portion of the exothermic composition molded body with a heat seal roller.
  • a method for manufacturing a heating element wherein the material is heat sealed to form a heat seal portion. Moreover, at least one of the base material and the covering material has air permeability.
  • a breathable pressure-sensitive adhesive layer may be provided on the heat seal portion side of the coating material, or a breathable pressure-sensitive adhesive layer may be provided by a melt-blowing method or the like on the exothermic composition molded body provided on the substrate.
  • the temporary adhering roll may be at least one selected from a mold roll and a flat roll having at least a surface having flexibility.
  • the roll surface may be plain, patterned, or a mixture of plain and patterned.
  • FIGS. 7 (a) and 7 (b) show examples of temporary attachment plates, in which the exothermic composition molded body and the like are accommodated in the recesses 17B, and the temporary attachment portions are formed by 17A.
  • FIG. 8 (a) is a perspective view of the temporary attachment roll 18 in the MD direction.
  • (b) is a side view thereof.
  • a temporary attachment portion is formed of 18A, and a heat-generating composition molded body and the like are accommodated in 18B.
  • FIG. 9 (a) is a perspective view of the roll 18 for temporarily attaching the end portion of the base material in the MD direction, or the end portion of the base material in the MD direction and the top of the heat generating composition formed body and the covering material.
  • FIG. 2B is a cross-sectional view showing a part of the heating element 1 and the roll 18 for temporarily attaching the end portion of the base material 4 in the MD direction and the covering material 5.
  • (c) is a cross-sectional view showing a part of the roll 18 and the heating element 1 for temporarily attaching the end portion of the base material in the MD direction, the top portion of the heating composition molded body 1A and the covering material 5;
  • (d) is a perspective view showing a part of the heating element 1 temporarily attached to the end portion of the base material in the MD direction and the top of the heating composition molded body 7 and the covering material 5.
  • a temporary attachment portion is formed by 18A.
  • the exothermic composition molded body or the like is accommodated, but the exothermic composition molded body is not pressed in the case shown in FIG. Fig. (C) shows what pushes this part.
  • the end in the MD direction of the base material is temporarily attached by the temporary attachment roll 18 shown in the figure (c).
  • the space 7B between the composition molded bodies 7 and the peripheral portion of the heating element including the temporary attachment portion are heat sealed by a heat seal roll.
  • the covering material is slackened between the exothermic composition molded bodies 7 and 7 by temporary fixing rolls, and the periphery of the heat generating body is temporarily attached. After this, the space 7B between the exothermic composition molded bodies 7 and 7 adjacent to each other and the peripheral portion of the heating element including the temporary attachment portion are heat-sealed. This slack can prevent the seal from being cut.
  • FIG. 10 is a perspective view of the temporary roll 18 in the TD direction, and a temporary bonding portion is formed by 18A.
  • FIG. 11 is a plan view of a temporary attachment roll 18 having a rectangular temporary attachment portion, and the temporary attachment portion is formed by 18A. Then, what is pressed by the roll 18 is formed with a temporary attachment portion 7 as shown in FIG. 12, and temporarily heat-sealed together with the portion 7A.
  • FIG. 13 is a plan view of the temporary roll 18 having an elliptical heat generating portion.
  • FIG. 14 shows a heating element having a circular section in the heat generating part temporarily attached by the temporary fixing roll in which the elliptical part of the temporary fixing roll shown in FIG. 13 is formed into a perfect circle shape.
  • FIG. 3 is a plan view showing a state in which heat sealing 8 is performed after temporary attachment.
  • FIGS. 15 to 17 are explanatory diagrams of breakage of the heating element and Z or opening.
  • FIG. 15 shows a cross-sectional view of an opening plate 22 that has an opening convex portion 22A and breaks and Z or opens. As shown in FIG. 17, the heating projection 22A presses the exothermic composition molded body or the like through the covering material 5.
  • FIG. 16 is a cross-sectional view of the breaking roll 22 in which the opening convex portion 22C of FIG.
  • FIG. 17 (a) is a schematic cross-sectional view showing breaking and opening using an opening roll 22B that has an opening convex portion 22C and breaks and Z or opens, as shown on the left side of FIG.
  • the exothermic composition formed body 1A is covered with the covering material 5, and a space is formed around the periphery.
  • the covering material 5 and the base material 4 are partially heat-sealed.
  • the opening projection 22C presses the upper surface of the covering material 5, whereby the exothermic composition molded body is collapsed and accommodated in the space, and the exothermic composition molded body 3 is Then, push in to heat seal part 8.
  • FIG. 17 (b) shows an example in which the opening convex portion 22C is not provided.
  • a heating element is manufactured through a cutting step and the like.
  • the force step, etc. conventional methods and apparatus forces may be appropriately selected and used.
  • the molding method include die-through molding using a punching die, punching punching molding, and punching molding using a concave punching die.
  • a method of manufacturing a heating element by a molding method includes a conventional heating element having one heating part and a heating element having a collective heating part composed of two or more divided heating parts divided into heating parts. is there.
  • the heating element can be produced by any method as long as it is a molding method using a mold. If there is only one heat generating part, it can be formed by using a punching mold or concave insert mold that can form one heat generating part, or two or more divided heat generating parts divided into heat generating parts.
  • the heating element can be manufactured at a speed three times faster than the filling method by using the molding method, it is possible to significantly reduce the cost by improving the production speed by adopting the molding method. Threaded products can only be used if they are exothermic compositions with formability.
  • the mold-through molding method uses a punching die, and a molding machine for laminating a punched exothermic composition molded body on a long base material and covering it with a long covering material.
  • a rotary sealer that can seal the peripheral part of the base material and the coating material (heat seal, pressure seal, thermocompression seal, etc.), and the exothermic composition molded body through the seal
  • it is a continuous forming method in which the necessary parts of the peripheral part and the divided part are heat sealed and sealed.
  • Punching die punching uses a die, covers one side of the hole with a roll, fills the hole with the exothermic composition, and then applies a long substrate to the other side.
  • the exothermic composition molded body is laminated on the base material.
  • the squeeze molding method is a molding machine for laminating a heat generating composition molded body on a long base material by filling the concave portion with a drum-shaped rotating body having a concave portion and transferring it to the base material, and a long machine.
  • a rotary sealer that can cover the target section and the peripheral edge of the base material and the cover (heat seal crimping seal, thermocompression seal, etc.).
  • a continuous forming method in which a necessary portion of the peripheral portion and the divided portion of the active exothermic composition molded body is heat sealed and sealed.
  • An example of the heating element using the exothermic composition is a heating element configured by laminating the exothermic composition molded body between a breathable packaging material including a base material and a coating material. It is mentioned as.
  • Temporary attachment is performed by using a temporary attachment plate, temporary attachment roll, etc., and covering with a base material and Z or exothermic composition and Z or exothermic composition molded body and a coating agent, and pressurizing and heating a desired region. It can be performed by pressure bonding or the like. Heating and pressing can be performed by passing through a heating press or a heating roll. Pressurization and heating / pressurization can be performed with flat or flat rolls. To increase the shape fixing effect while maintaining the flexibility of the 1S sheet, It is preferable that at least one surface of the heat pressing surface is an embossed surface.
  • the shape of the embossed mesh there are no particular restrictions on the shape of the embossed mesh, but it is usually wavy, tortoiseshell, ring-shaped, polka-dotted, or mesh-shaped, and the exothermic composition powder is applied to the non-compressed part during pressurization or heat pressurization. A shape that is easy to avoid is preferred.
  • the area ratio of the protrusions on the embossed surface is not particularly limited, but is usually a force of 0.5 to 60.0%, preferably 5.0 to 40.0%.
  • the surface material of the temporary attachment plate and temporary attachment roll can be used from hard to flexible. In the case of a flat or flat roll, preferably at least the surface is flexible and a deformable surface is preferable.
  • materials such as felt, non-woven fabric, and flexible rubber can be cited as examples.
  • the temperature and pressure conditions of the pressurization and heat pressurization are different depending on the material of the covering material, the softness temperature of the pressure sensitive adhesive and the heat sealant and the z or melting point, for example, depending on the heating roll.
  • the temperature is 70 to 300 ° C and the linear pressure is about 0.1 to 250 kg / cm.
  • the thickness of the pressure-sensitive adhesive layer is not limited as long as it can be temporarily attached and heat-sealed, but the total thickness of the heat-seal layer of the base material and the coating material is preferably equal to or greater than the thickness of the pressure-sensitive adhesive layer.
  • Opening refers to releasing the state where the base material and the covering material are adhered to each other via the adhesive layer, and releasing the adhesive state between the base material and the covering material. It does not matter whether there are inclusions between the substrate and the coating after the opening. For example, a part of a temporary attachment part in which a base material and a covering material are temporarily attached via an adhesive layer is heat-sealed, and the exothermic composition is added between the base material and the covering material in the non-heat-sealed part region. As an example, it is possible to bring the substrate and the covering material into a non-adhesive state by moving the region.
  • Good compatibility at the time of heat sealing means that the heat sealing is not hindered and peeling does not occur when heat sealing. In other words, it is not always necessary for the heat seal part to completely fuse the adhesive layer and heat seal layer. If the heat seal strength after heat sealing is higher than the pressure seal strength after pressure bonding, air is better than the heat seal part. If it does not penetrate the composition, it is heat sealed.
  • heat sealing is performed with a heat seal width narrower than the temporary attachment width, and then non-heat By opening one temporary attachment portion, heat sealing is achieved with a substantially narrow heat sealing width.
  • a heating element having a heat generating part composed of a divided heat generating part and a sorting part (heat seal part) is an important structure and technology for achieving both flexibility and heat generation characteristics.
  • the present invention it is possible to create a heating element having a lower heat generating portion between the divided heat generating portions, and since the divided heat generating portions are not largely separated from each other, the heat retention effect between the divided heat generating portions is increased and the heat generation time is lengthened.
  • the mobile water value is a value indicating the amount of surplus moisture that can move out of the exothermic composition in the moisture present in the exothermic composition. This easy water value will be explained using Fig. 20 to Fig. 24.
  • a non-water-absorbing 70 m polyethylene film 28 is placed so as to cover the hole 31, and further, a stainless steel having a thickness of 5 mm ⁇ a length of 150 mm ⁇ a width of 150 mm is formed thereon. Place plate 27 and hold for 5 minutes, avoiding exothermic reaction.
  • the filter paper 29 is taken out, and along the radially written line, the water or aqueous solution soaking locus is traced from the circumference 35, which is the edge of the hole of the hollow cylinder, to the soaking tip.
  • Read in mm as distance 34.
  • Each of the 8 values (a, b, c, d, e, f, g, h) read is taken as the measured moisture value.
  • the arithmetic average of the eight measured moisture values is taken as the moisture value (mm) of the sample.
  • the moisture content for measuring the true moisture value is the blended moisture content of the exothermic composition or the like corresponding to the weight of the heat generating composition or the like having an inner diameter of 20 mm x a height of 8 mm. Measure in the same way only with the corresponding water, and calculate the same value as the true water value (mm). The value obtained by dividing the moisture value by the true moisture value and multiplying by 100 is the mobile water value.
  • an exothermic composition molded body obtained by molding an exothermic composition having an excess water amount of 0.01 to 20 is laminated on a substrate and covered with a covering material, and at least the exothermic composition molded body is formed.
  • a heating element can be obtained simply by sealing the peripheral edge. It is not necessary to add moisture after the base material is stored in a packaging material such as a coating material. Therefore, the process is remarkably simplified, and there is an advantage in cost.
  • the mobile water value (0 to: L00) in the present invention is 0.01 to 20, more preferably 0.01 to 18, more preferably 0.1 to 15, [Preferably ⁇ or 0.001 to 13, more preferably 1 to 13, and further preferably 3 to 13.
  • a heating element using a heat-generating composition molded body obtained by molding a moldable heat-generating composition using the surplus water of the present invention as a linking substance is a coagulant aid, a dry binder, a flocculant, etc.
  • the appropriate amount of excess water represented by the mobile water value of 0.01 to 20 is used as the linking substance.
  • the hydrophilic group in the composition component is hydrated by dipolar interaction or hydrogen bond, and also has a high structural property around the hydrophobic group. Is presumed to exist. As a result, it becomes sand sando state, and it is estimated that moldability of the exothermic composition occurs.
  • This is connected water, which is a connected substance in some way. In addition to this, there is also water in a state that can be called free water, and if excess water increases, the structure will soften and free water will increase.
  • the controlling factors that cause iron powder to oxidize are the amount of water present and the amount of oxygen supplied to the iron powder surface.
  • the adsorbed water film (less than 100mm) is said to have a low rate of acidity with sufficient moisture. When the adsorbed film is about 1 m, the water content is sufficient. In addition, since the water film is thin, it is easy to supply oxygen to the iron powder surface, and the oxidation rate is high. The film becomes thicker and the adsorbed film becomes: m If exceeded, it is estimated that the oxygen supply will decrease.
  • the mobile water value representing the optimal water content indicating a moldability and oxidation rate above a certain level was 0.01 to 20, and completed the present invention.
  • the component particles are held together by the surface tension of moisture, causing moldability in the exothermic composition, and the moisture does not substantially function as a barrier layer. Therefore, the exothermic composition generates heat upon contact with air.
  • the use of an active exothermic composition using active iron powder makes the exothermic composition extremely remarkably excellent in exothermic heat build-up and has a high moldability.
  • the water in the exothermic composition molded body produced by the molding lamination method generates heat without moving the packaging material to the water absorbent sheet.
  • the heat generating body itself has flexibility, so that it can be applied to places where flexibility is required, such as various parts of the human body or objects having curved surfaces. It is possible to provide a heating element that is excellent in wearing and excellent in usability.
  • the covering material, and the exothermic composition molded body at least the covering material and the exothermic composition molded body are temporarily attached via the adhesive layer, and then the peripheral portion of the exothermic composition molded body and the exothermic body.
  • the peripheral portion By heat-sealing the peripheral portion, the reliability of heat-sealing is improved, so that high-speed heating for producing a heating element and a narrow heat-sealing width can be achieved.
  • the moldability of the present invention means that a molded product of the heat generating composition can be formed in the shape of a punched hole or a concave mold by mold-through molding using a punched mold having a punched hole or by squeeze molding using a concave mold. This shows that the molded shape of the exothermic composition molded body is maintained after molding including separation. If there is moldability, the heat-generating composition molded body is covered with at least the covering material, and the shape is maintained until the seal portion is formed between the base material and the covering material. It is possible to seal with no breakage of the seal because there is no scattered sesame seeds in the seal part. The presence of sesame causes poor sealing. 1) As a measuring device,
  • the magnet covers an area that is larger than the area (40 mm) of the maximum cross section with respect to the direction of travel of the punching hole of the mold, and the area in the vicinity thereof.
  • a stainless steel plate with a thickness of lmm x length 200mm x width 200mm is placed on the endless belt of the measuring device, and a polyethylene plate with a thickness of 70 ⁇ m x length 200mm x width 200mm is placed on the stainless steel plate. Place the stainless steel mold.
  • the exothermic composition 50 g is placed near the scraping plate between the scraping plate and the punching hole to endlessly.
  • the shaped belt is moved at 1.8 mZmin, and the exothermic composition is scraped off and filled into the punched hole of the mold.
  • the endless belt stops running.
  • the mold is removed and the exothermic composition molded body laminated on the polyethylene film is observed.
  • the exothermic composition is moldable.
  • the exothermic composition of the present invention has compression resistance.
  • compression resistance refers to exothermic composition having a thickness of 70% of the mold thickness obtained by compressing the exothermic composition molded body contained in the mold.
  • the compacted body retains an exothermic rise of 80% or more of the exothermic rise of the exothermic composition molded body before compression (temperature difference between 1 minute and 3 minutes after the start of the exothermic test of the exothermic composition). That is.
  • the exothermic temperature is measured using a data collector, measuring the temperature for 2 minutes at a measurement timing of 2 seconds, and determining the compression resistance based on the temperature difference between 1 minute and 3 minutes later.
  • the thickness after compression is preferably 50-99.5% of the mold thickness, more preferably 60-99. 5%, more preferably 60-95%.
  • the exothermic composition molded body includes a exothermic composition compressed body.
  • the particle size of the water-insoluble solid component constituting the moldable exothermic composition of the present invention is not limited as long as the exothermic composition has moldability.
  • the moldability is improved by reducing the particle size.
  • the maximum particle size of the water-insoluble solid component excluding the reaction accelerator and water is preferably 2.5 mm or less, more preferably 930 m or less, and even more preferably 500.
  • / zm or less more preferably 300 / zm or less, more preferably 250 m or less, more preferably 200 m or less, and 80% or more of the particle size of the solid component is usually 500 ⁇ m or less, preferably 300 ⁇ m or less, more preferably 250 / zm or less, further preferably 200 / zm or less, more preferably 150 m or less, and even more preferably 100 ⁇ m or less.
  • the particle size of the water-insoluble solid component is a particle size obtained by separating the particles using a sieve and passing through the sieve and calculating the caliber force of the sieve. That is, the sieve is arranged from the top, such as 8, 12, 20, 32, 42, 60, 80, 100, 115, 150, 200, 250, and 280 mesh. Match. Place about 50 g of water-insoluble solid component particles in the top 8 mesh sieve and shake for 1 minute with an automatic shaker. Weigh the water-insoluble solid component particles on each sieve and tray, and determine the particle size distribution by the weight fraction with the total as 100%.
  • the caliber force of the specific mesh is also calculated ( ⁇ m ) and its water-insoluble property The particle size of the solid component.
  • Each mesh sieve may be combined with other mesh sieves.
  • the 16 mesh path has a particle size of 1 mm or less
  • the 20 mesh path has a particle size of 850 ⁇ m or less
  • the 48 mesh path has a particle size of 300 ⁇ m or less
  • the 60 mesh path has a particle size of 250 ⁇ m or less
  • the 65 mesh path has Particle size 200 ⁇ m or less
  • 80 mesh pass particle size 180 m or less 100 mesh pass particle size 150 m or less
  • Spurs have a particle size of 63 ⁇ m or less. The same applies to the following meshes.
  • the exothermic composition may be a powder or granular exothermic composition depending on the moisture adjustment state and the amount of excess water.
  • An exothermic mixture is an iron powder, a carbon component, a reaction accelerator, and water as essential components, a water content of 1 to 30% by weight, and a mobile water value of less than 0.01.
  • the temperature of the reaction mixture after contact is maintained at 40 ° C or higher for 2 seconds or longer. It is sufficient if the reaction mixture is changed in some characteristics by the oxidizing gas contact treatment.
  • the iron powder does not necessarily need to be oxidized, but is preferably oxidized. In that case, it is preferable that the iron powder becomes active iron powder.
  • the active exothermic composition is an exothermic composition corresponding to any one of the following 1-3.
  • Iron powder, carbon component, reaction accelerator, water are essential components, the water content is 1-30% by weight, and the mobile water value is less than 0.01. At this time, the temperature of the reaction mixing part is kept at 40 ° C or more for 2 seconds or more, or the mixture of the oxidizing gas and the contact-treated mixture is added with water or a reaction accelerator aqueous solution to adjust the water content.
  • Iron powder, carbon component, reaction accelerator, water are essential components, and iron powder containing 20 to: LOO% of active iron powder is used.
  • the moldable exothermic composition contains iron powder, a carbon component, a reaction accelerator, and water as essential components, and includes an agglomeration aid, an aggregating agent, an agglomeration aid, a dry binder, a dry binder, and a dry agent. Does not contain dry binders, adhesive materials, thickeners and excipients, has surplus water with a mobile water value of 0.01 to 20, has moldability with surplus water as a connecting substance, and has an exothermic composition It is an exothermic composition that does not function as a barrier layer and causes an exothermic reaction when in contact with air.
  • the at least one wrapping force at 25 ° C is preferably 400 gZmm 2 or more.
  • the thickness of the packaging material is not limited as long as the elongation at break is ensured, but is preferably 10 ⁇ m or more, more preferably 10 to 500 ⁇ m, and further preferably 10 to 300/300. ⁇ ⁇ , more preferably 10 to 250 / ⁇ ⁇ , more preferably 50 to 250 ⁇ m.
  • a preferred example is a laminate of a nonwoven fabric and a thermoplastic resin film-like material.
  • At least one packaging material is a laminate of a fibrous material and a film-like material, and is a heat-sealable and flexible material. is there. Further, it has a breaking strength of 500 gZ mm 2 or more in an environment of at least 25 to 60 ° C. and has a breaking elongation of 100% or more at 90 ° C.
  • the segment heating element containing the heating composition molded body or the heating string composite compression body that is the compression body is present while the bending resistance is high, and generates heat.
  • exothermic composition molded body It does not contain a composition molded body or a compressed exothermic composition (hereinafter referred to as exothermic composition molded body), and the section that is a heat seal portion has low bending resistance.
  • the heating section consisting of the section heating section and the section can maintain the bending resistance between about 0 ° C force and about 80 ° C, so the section functions as a hinge and takes precedence over the section heating section. Bend.
  • a heating element consisting of a section heating section and a section section has a section functioning as a hinge at least from room temperature to heating (about 23 to about 50 ° C), and bends preferentially over the section heating section. The good stiffness difference during heating is still maintained. As a result, the heating element maintains the structural support of the section heating part and has sufficient rigidity during manufacture or use. On the other hand, it still maintains excellent bending resistance when heated.
  • a heating element using the packaging material as at least one of a base material and a covering material is obtained by laminating a heating composition composition on a substantially planar base material and covering the covering material with the heating composition composition.
  • the packaging material when used as a covering material, it is flexible and breaks at 25 ° C at 25 to 60 ° C. Since the strength is 500 gZmm 2 or more, it is stiff, but it is stiff and can reliably cover the exothermic composition. Furthermore, when heat-sealing, 100% or less at 90 ° C Since it has the above elongation at break, it is possible to form a reliable heat-sealed portion without breaking the seal without breaking the coating material due to the temperature at the time of heat-sealing.
  • the exothermic composition of the present invention having a heat generating portion composed of a divided heat generating portion that contains the exothermic composition molded body and a section portion that does not contain the exothermic composition molded body or a heat generating composition compressed body that is a compressed body thereof.
  • the segmented heat generating part exists in the meantime when the bending resistance is high, does not contain the exothermic composition molded body or the compressed heat generating composition compressed body, and the sectioned part that is the heat sealing part has a bending resistance. Low.
  • the heat generating part which is also the heat generating part and the parting force, can maintain the bending resistance between about 0 ° C force and about 80 ° C, so the dividing part functions as a hinge, giving priority to the heat generating part.
  • the exothermic material is laminated on a substantially flat substrate.
  • a packaging material usually a coating material
  • a breaking elongation at 90 ° C of 100% or more usually a coating material
  • the exothermic material is laminated on a substantially flat substrate.
  • the breathable coating material used in the above examples is an inelastic material having a permanent elongation of 0.5% to 1.7% between 25 and 60 ° C in all examples, and at 25 ° C.
  • the laminate had a breaking strength of 400 gZm m 2 or more and a breaking elongation of 20% or more at 90 ° C.
  • the 60 ° C seal strength refers to a 25 mm x 250 mm test piece taken from the location where the seal strength of the sealed target sample is measured, left in a 60 ° C environment for 5 minutes, and then used in a 60 ° C environment.
  • the measurement of the maximum strength at a distance of 10 mm and a tensile speed of 300 mmZmin was performed on three samples, and the average value of each maximum value.
  • the seal strength under the 20 ° C environment is the same as the 60 ° C seal strength condition except that the measurement environment temperature is 20 ° C.
  • the sealing strength of the temporary attachment portion is preferably 0.5 kgZ25 mm or more, more preferably 0.5 to LkgZ25 mm, and further preferably 0.5 to 0.9 kg / 20 ° C. in an environment of 20 ° C. 25 mm, and more preferably 0.5 to 0.8 kgZ25 mm. Also 60.
  • the C seal strength is preferably less than 0.8 kgZ25 mm, more preferably less than 0.01 to 0.8 kg / 25 mm, still more preferably less than 0.01 to 0.5 kgZ25 mm, and even more preferably 0. 01 ⁇ 0.4 Less than 4kgZ25mm.
  • the adhesive layer of the temporary attachment part is composed of an adhesive and has a 60 ° C seal strength of 0.01 to 0.8 kg / 25 mm, which stops the movement of the exothermic composition molded body between the substrate and the coating material. Capable of high-speed heat sealing. Furthermore, you may heat at the time of temporary attachment if desired. The heating is preferably performed under pressure at a temperature equal to or lower than the melting point of the base polymer in the hot melt pressure-sensitive adhesive forming the pressure-sensitive adhesive layer.
  • the seal strength at 20 ° C in the heat-sealed part heat-sealed after temporary attachment is preferably 1. OkgZ25mm or more, more preferably 1.2kgZ25mm or more, and even more preferably 1.5kgZ25mm or more. More preferably, it is 1.5 to 3 kgZ25 mm.
  • the 60 ° C seal strength in an environment of 60 ° C is preferably 0.8 kgZ25 mm or more, more preferably 1. OkgZ25 mm or more, further preferably 1.2 kgZ25 mm or more, more preferably 1. 5kgZ25mm or more.
  • the material constituting the base material and the covering material is not limited as long as it functions as a storage bag for the exothermic composition.
  • the materials usually used for chemical warmers and heating elements can be used.
  • non-breathable material, breathable material, water-absorbing material, non-water-absorbing material, non-stretchable material, stretchable material, stretchable material, non-stretchable material, foamed material, non-foamed material, non-heat seal examples include heat-resistant materials, heat-sealable materials, etc., and can be used as appropriate according to the desired application in the desired form of films, sheets, non-woven fabrics, woven fabrics, etc. and their composites.
  • the covering material may be a force that also acts as a breathable film, sheet, or non-woven fabric, or vice versa. Further, the flooring material may be properly used for air permeability and non-air permeability.
  • the packaging material of the storage bag may be a single layer structure or a multilayer structure, and there is no limitation on the structure.
  • the packaging material is at least a base material and a covering material, but the packaging material on which the exothermic composition molded body is laminated is the base material, and the packaging material covered on the exothermic composition molded body is the covering material, and the ventilation Sexual Rinashi does not matter.
  • the base material will be A layer ZB layer or A layer ZB layer ZC layer or A layer.
  • Layer A is a thermoplastic resin film such as polyethylene, heat seal layer such as polyethylene and EVA, and water-absorbing paper.
  • Layer B is a nonwoven fabric of thermoplastic resin such as nylon, non-water-absorbing paper, and water-absorbing paper. Paper, polyethylene film, polypropylene film, polyester film, thermoplastic resin film such as polyamide (nylon, etc.) film, core material such as non-water absorbent paper and water absorbent paper, etc.
  • thermoplastic resin film such as polyethylene, non-slip layer, non-woven fabric of thermoplastic resin such as polyester and nylon
  • D layer is separator
  • thermoplastic resin film such as polyethylene
  • non-woven fabric E layer is a heat seal layer
  • F layer is a thermoplastic resin porous film or perforated film such as polyethylene, polyethylene or other thermoplastic resin film, non-water absorbent paper , Absorbent paper, etc.
  • G layer nonwoven thermoplastic ⁇ such as polyester and nylon
  • H layer non-water-absorbing sheet such a water-absorbent paper, and the like.
  • base materials or coating materials include polyethylene heat seal layer / polypropylene film, polyethylene heat seal layer / polypropylene film, E
  • each layer may be laminated directly by hot-melt extrusion or the like, which may be laminated via a breathable pressure-sensitive adhesive layer or a laminating agent layer.
  • polyethylene produced using a metallocene catalyst is also included in polyethylene.
  • the above materials such as a nonwoven fabric and a porous film are laminated via a breathable adhesive layer.
  • the air-permeable adhesive layer is formed by fiberizing the adhesive substance by an appropriate method such as a curtain spray method, a melt blow method, or a slot spray method in which the adhesive material is blown and unfolded through hot air while being heated and melted.
  • An example is a method in which a porous film, a breathable base material, a separator, etc. are spread and deposited on an appropriate support base material to form a porous adhesive layer.
  • the thickness of the base material, the covering material, the laying material, and the material composing them is not greatly limited depending on the application. Usually, it is 5 to 5000 111, preferably 10 to 500 / ⁇ ⁇ , more preferably 20 to 250 ⁇ m.
  • the non-breathable material is not limited as long as it has non-breathability.
  • Polyethylene, polypropylene, nylon, acrylic, polyester, polyvinyl alcohol, ethylene monoacetate copolymer, and other films, sheets, and coatings that have polymer strength, and metal (including semiconductor) compounds such as silicon oxide are laminated on them. Examples of these materials and composite materials using them are examples.
  • examples of the highly non-breathable film include those in which a thin film of a metal or a compound containing a semiconductor is provided on a non-breathable material film in a single layer or multiple layers.
  • examples of the metal containing a semiconductor include silicon, aluminum and the like, alloys and mixtures containing these metals.
  • examples of the metal compound including a semiconductor include oxides, nitrides, and oxynitrides of the above metals, alloys, and mixtures.
  • a layer of polyester oxide, a layer of aluminum oxide, a layer of silicon oxynitride or any of these layers on a polyester film, and a layer of expanded polyolefin film (for example, biaxially stretched polypropylene film) This is an example.
  • the breathable material is not limited as long as it has breathability.
  • a breathable film such as a porous film and a perforated film, paper, non-woven fabric, etc. having air permeability alone, paper, and a breathable film, non-woven fabric, etc. are laminated to have air permeability.
  • a non-breathable packaging material in which a polyethylene film is laminated to a non-woven fabric, with a fine hole using a needle or the like to make it breathable, or fibers are laminated and thermocompression bonded for breathability Controlled non-woven fabric, porous film, or non-woven fabric on porous film
  • the perforated film is a non-breathable film such as a polyethylene film provided with fine holes with a needle so as to be breathable.
  • breathability is not limited as long as heat generation can be maintained.
  • breathability is moisture permeability by the Lissy method (Lyssy method), usually 50 ⁇ : LO, 000g / mV24hr, preferably 70 ⁇ 5, OOOgZm so 24hr, and more preferably 100 ⁇ 2, OOOg Zm 2 Z24hr, more preferably from 100 ⁇ 700gZm 2 Z24hr.
  • the moisture permeability is less than 50, the amount of heat generated is small and a sufficient heating effect cannot be obtained, which is not preferable. On the other hand, if it exceeds 10,000 gZm 2 Z24hr, the heat generation temperature becomes high, causing a safety problem. Since fear arises, it is not preferable. However, depending on the application, there are no restrictions on the use of more than 100000 gZm 2 Z24hr, or in some cases the moisture permeability close to that of an open system.
  • the stretchable packaging material is not particularly limited as long as it has stretchability. That is, as a whole, it may be a single product as long as it has stretchability, or a composite product composed of stretchable substrates or a combination of a stretchable substrate and a non-stretchable substrate.
  • natural rubber recycled rubber, synthetic rubber, elastomers, stretchable shape memory polymers, etc., or mixtures thereof, blends of these with non-stretch materials, mixed products, and combinations of these.
  • examples include woven fabrics, films, yarns, strands, ribbons, tapes, scrim-structured films.
  • the porous film is not limited, but it can also be a filler material such as polyethylene, polyolefins such as linear low density polyethylene and polypropylene, fluorine resins such as polytetrafluoroethylene, and the like.
  • a porous film obtained by stretching a film can be selected as appropriate.
  • the non-woven fabric is not limited, but may be a single fiber or a composite fiber having material strength such as rayon, nylon (polyamide), polyester, acrylic, polypropylene, vinylon, polyethylene, polyurethane, cupra, cotton, cell mouth, norp.
  • a single non-woven fabric or a mixture of these fibers or a stack of cumulative fiber layers is used.
  • dry non-woven fabric, wet non-woven fabric, spunbond, spunlace, etc. can be used in the manufacturing process. Is it a core-sheath composite fiber?
  • a non-woven fabric may be used.
  • the non-woven fabric that contacts the skin is preferably a brushed non-woven fabric.
  • a stretchable nonwoven fabric and a non-stretchable nonwoven fabric can also be used.
  • the water-absorbing material is not particularly limited as long as it has a water-absorbing film-like shape and a sheet-like shape.
  • the water-absorbing material is not particularly limited as long as the material itself has water-absorbing property, regardless of whether the material itself has water-absorbing force.
  • a foam film having a water absorption sheet (foamed body such as a water absorbent foam polyurethane) or papers, a nonwoven fabric or a woven fabric formed of fibers having a water absorption property, or a water absorption property.
  • water-absorbing materials such as non-woven fabrics and woven fabrics containing fibers or water-absorbing porous films and sheets, foamed films and sheets, non-woven fabrics, woven fabrics or porous films, regardless of whether or not they absorb water, Containing, impregnating, kneading, transferring or supporting an agent to impart or increase water absorption, or with or without water absorption, foamed film 'sheet, paper, nonwoven fabric, woven fabric or porous film' sheet Water-absorbing foam film cut into a planar shape of the present invention 'sheet, paper, nonwoven fabric, woven fabric or porous film' water-absorbing material such as sheet is applied to one or both sides of the present invention to absorb water Is granted Things like we are.
  • the surface in contact with the skin is a comfortable surface such as water absorption against sweat, etc., so that when sweating, sweat is absorbed, the surface in contact with the skin.
  • the packaging material is composed of a non-woven fabric or a woven fabric mainly composed of water-absorbing fibers having a water retention rate of 20% or more. As a water-absorbing fiber with a water retention rate of 20% or more
  • Cotton, silk, hemp, wool, polyacrylonitrile synthetic fiber, polyamide synthetic fiber, polyvinyl alcohol synthetic fiber, acetate fiber, triacetate fiber, regenerated fiber, etc. can be exemplified.
  • a nonwoven fabric excellent in water absorption a nonwoven fabric in which a highly water-absorbing polymer is held on a nonwoven fabric can be used.
  • the nonwoven fabric or woven fabric which has these fibers as a main component is also a thing with a comparatively favorable touch with respect to skin.
  • a highly water-absorbing packaging material with high sweat absorbability can also be used as the packaging material.
  • a non-woven fabric containing fibers coated with a superabsorbent resin on the surface a non-woven fabric containing fibers that are hollow and have a large number of micropores on the surface, a cross-sectional shape such as a large number of sac or multiple layers, etc.
  • a non-woven fabric including a fiber having a capillary action by being formed is used.
  • a nonwoven fabric or a film in which a water-absorbing inorganic compound is held can be used for the non-adhesive surface packaging material.
  • a nonwoven fabric in which a powder of diatomaceous earth, zeolite, silica gel or the like is held in a nonwoven fabric, a film in which a relatively large amount of powder of silica, alumina or the like is held in a synthetic resin such as polyethylene can be used.
  • the fixing means is not limited as long as it has a fixing ability capable of fixing a thermal packaging body for a joint peripheral part or a heating part to a required part.
  • Adhesive layers, key hooks, hook buttons, hook-and-loop fasteners such as berg mouths, magnets, bands, strings, etc., and combinations thereof, which are generally employed as the fixing means, can be arbitrarily used.
  • the adjustment fixing means may be further constituted by a combination of a hook-and-loop fastener and an adhesive layer.
  • the hook-and-loop fastener is known by a trade name such as Velcro (registered trademark), Velcro fastener (registered trademark), Berg mouth fastener, hook-and-loop tape, and the like. It has a fastening function in combination with a hook that is a male fastener that can be fastened with a female fastener.
  • the loop function include non-woven fabrics, woven fabrics of yarn having fluff and traps, and the like. Even if the core material forming the band is coated with the loop function (female fastener function). It ’s okay, but you can make up the band by itself!
  • the hook member which is a male fastener member, is not particularly limited, but examples thereof include those formed by a polyolefin resin such as polyethylene and polypropylene, polyamide, polyester and the like.
  • the shape of the hook is not particularly limited, but hooks with a cross-sectional shape of I shape, inverted L shape, shape, so-called mushroom shape, etc. are easily caught on the loop and extremely hard on the skin. This is preferable in that it does not give a sense of irritation.
  • the hook may be adhered to the entire area of the fastening tape, or the tape substrate may be omitted and only the hook may be used as the fastening tape.
  • the pressure-sensitive adhesive layer includes a water retention agent, a water-absorbing polymer, a pH adjuster, a surfactant, an organic key compound, a hydrophobic polymer compound, a pyroelectric substance, an antioxidant, an aggregate, a fibrous material, a moisturizing agent, Functional substance or mixture power of these additional ingredients Power at least one selected Contain it.
  • the pressure-sensitive adhesives of the present invention are classified into non-hydrophilic pressure-sensitive adhesives, mixed pressure-sensitive adhesives, and hydrophilic pressure-sensitive adhesives (Giel etc.).
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not limited as long as it has an adhesive force necessary to adhere to the skin or clothes. Solvent type, aqueous type, emulsion type, hot melt type, reactivity, sensitivity Various forms such as a pressure system, a non-hydrophilic adhesive, and a hydrophilic adhesive are used.
  • the pressure-sensitive adhesive layer includes a non-hydrophilic pressure-sensitive adhesive layer composed of the non-hydrophilic pressure-sensitive adhesive and a non-hydrophilic pressure-sensitive adhesive layer composed of the non-hydrophilic pressure-sensitive adhesive.
  • the non-hydrophilic pressure-sensitive adhesive layer containing a water-absorbing polymer or a water retention agent is treated as a non-hydrophilic pressure-sensitive adhesive layer.
  • a hot melt adhesive may be provided between the hydrophilic adhesive layer and the substrate or the covering material.
  • hydrophilic adhesive is provided on the thermal package for the joint periphery. After the sealing process of the thermal package for the joint periphery, a hydrophilic adhesive layer is provided on the thermal package for the joint periphery. Also good.
  • the pressure-sensitive adhesive layer may be air permeable or non-air permeable. What is necessary is just to select suitably according to a use. As for air permeability, it is only necessary to have air permeability as a whole.
  • a pressure-sensitive adhesive layer in which a pressure-sensitive adhesive is partially present and a part in which a pressure-sensitive adhesive is not present is present, and the entire region is breathable can be given as an example.
  • the method of maintaining the breathability is, for example, by printing the adhesive or transferring the adhesive layer partially.
  • the non-laminated part is used as a ventilation part, and the adhesive is moved in one direction or zigzag while drawing a circle in the shape of a thread.
  • Examples include a method in which the gap between the thread-like adhesives has air permeability or moisture permeability, a method of foaming the adhesive, or a layer formed by a melt blow method.
  • Adhesives that make up the non-hydrophilic adhesive layer are acrylic adhesives and vinyl acetate adhesives ( Butyl acetate resin emulsion, ethylene-acetate resin hot melt adhesive), polyvinyl alcohol adhesive, polyvinylacetal adhesive, vinyl chloride adhesive, polyamide adhesive, polyethylene adhesive, cellulose Adhesives, black-opened (neoprene) adhesives, nitrile rubber adhesives, polysulfide adhesives, butyl rubber adhesives, silicone rubber adhesives, styrene adhesives (for example, styrene hot melt adhesives) ), Rubber adhesives, silicone adhesives, and the like.
  • rubber adhesives, acrylic adhesives or hot melt adhesives are high because of their high adhesive strength, low cost, good long-term stability, and little decrease in adhesive strength even when heated. Adhesives containing molecular substances are desirable.
  • the pressure-sensitive adhesive may optionally contain other components such as rosin, coumarone indene resin, hydrogenated petroleum resin, maleic anhydride-modified rosin, rosin derivatives or C5 petroleum oil.
  • Oil tackifiers such as petroleum spheroids represented by alicyclic petroleum resins such as fats, and phenol tackifiers such as terpene phenolic rosins, rosin phenolic rosins, alkylphenolic terrestrial resins (especially -Tackifiers with a phosphorus point of 50 ° C or lower), coconut oil, castor oil, olive oil, camellia oil, liquid paraffin and other softeners, softeners, anti-aging agents, fillers, aggregates, adhesion regulators, Adhesion improvers, colorants, antifoaming agents, thickeners, modifiers and the like may be added as appropriate to improve performance such as improving the adhesion to nylon clothing and blended fabric clothing.
  • hot melt pressure-sensitive adhesive examples include known hot-melt pressure-sensitive adhesives that have been given tackiness.
  • BB A-type block co-polymers such as SIS, SBS, SEBS, or SIPS can be used.
  • Styrenic adhesives based on polymers chlorinated adhesives based on salt-bulb resin, polyester adhesives based on polyester, polyamide adhesives based on polyamide , Acrylic adhesives based on acrylic resin based on acrylic resin, polyolefin adhesives based on polyolefins such as polyethylene, ultra-low density polyethylene, polypropylene, ethylene ⁇ -olefin, and ethylene acetate butyl copolymer, 1 , 2—Polybutadiene-based polymer 1, 2-polybutadiene adhesive or polyurethane Polyurethane adhesives shall be the base polymer Tan, or those modified products with different adhesion improvement and stability A pressure-sensitive adhesive or a mixture of two or more of these pressure-sensitive adhesives can be used. Moreover, an adhesive layer composed of a foamed adhesive or an adhesive layer composed of a crosslinked adhesive can also be used.
  • the non-aromatic hot-melt pressure-sensitive adhesive is not particularly limited as long as the base polymer does not contain an aromatic ring.
  • olefin-based hot melt adhesives include acrylic hot melt adhesives.
  • Non-aromatic polymers that do not contain aromatic rings and are base polymers include polymers such as olefins and gens.
  • One example is an olefin polymer.
  • the olefin-based polymer is a polymer or copolymer of ethylene or ⁇ -olefin. Also, other monomers, such as butadiene and isoprene, may be added.
  • ⁇ -olefin examples include, but are not limited to, propylene, butene, heptene, hexene, otaten and the like as long as the monomer has a double bond at the terminal.
  • Aromatic hot melt adhesives are hot melt adhesives whose base polymer contains an aromatic ring, such as styrene hot melt adhesives such as ⁇ - ⁇ - ⁇ block copolymers. Is given as an example.
  • the A block is a monovinyl-substituted aromatic compound A such as styrene or methylstyrene, which is an inelastic polymer block
  • the B block is a conjugate of conjugated gen such as butane or isoprene.
  • conjugated gen such as butane or isoprene.
  • SBS styrene butadiene styrene block copolymer
  • SIS styrene isoprene styrene block copolymer
  • SEBS hydrogenated types
  • a pressure-sensitive adhesive layer in which a water-absorbing polymer is further blended with the non-hydrophilic pressure-sensitive adhesive can be used as a measure for preventing a decrease in pressure-sensitive adhesive force due to an increase in water content of the non-hydrophilic pressure-sensitive adhesive layer.
  • the hydrophilic pressure-sensitive adhesive that constitutes the hydrophilic pressure-sensitive adhesive layer is not particularly limited as long as it has a hydrophilic polymer or a water-soluble polymer as a main component, has adhesiveness, and is hydrophilic as the pressure-sensitive adhesive.
  • hydrophilic polymers such as polyacrylic acid, water-soluble polymers such as sodium polyacrylate and polyvinylpyrrolidone, and dry aluminum hydroxide.
  • Cross-linking agents such as metal metasilicate aluminate, softeners such as glycerin and propylene glycol, higher hydrocarbons such as light liquid paraffin polybutene and primary alcohol fatty acid esters such as isopropyl myristate, silicone Oil-containing compounds such as oils, fatty acid glycerin esters such as monoglycerides, oily components such as vegetable oils such as olive oil, preservatives such as methyl noroxybenzoate and propyl parabenzoate, N-methyl-2- Solubilizers such as pyrrolidone, thickeners such as carboxymethylcellulose, surfactants such as polyoxyethylene hydrogenated castor oil sorbitan fatty acid ester, oxycarboxylic acids such as tartaric acid, light anhydrous caus
  • moisturizers such as D-sorbitol, sodium edetate and para Stabilizer such carboxy acid esters and tartaric acid, crosslinked water-absorbing polymers, boron compounds such as boric acid, water and the like as an example. Also, any combination of these forces can be configured.
  • the temporary sealing part is formed through an adhesive layer, but the adhesive constituting the adhesive layer is a layer formed of a polymer composition having tack at normal temperature, and it is limited if heat sealing can be performed after temporary attachment. Not sure.
  • the adhesive of the said adhesive layer can be used for the adhesive which comprises the adhesive layer used for temporary attachment.
  • a non-hydrophilic adhesive is preferred.
  • the adhesive constituting the adhesive layer preferably has a melting point of the base polymer of the adhesive that has good compatibility with the heat seal material constituting the heat seal, and is lower than the melting point of the heat seal material.
  • a hot-melt adhesive is preferable for the hot-melt adhesive.
  • the heat seal material is an olefin-based material
  • an olefin-based pressure-sensitive adhesive is preferred as an example of the pressure-sensitive adhesive.
  • the adhesive layer for fixing the air flow adjusting material is composed of a commonly used adhesive or pressure-sensitive adhesive.
  • the pressure-sensitive adhesive is useful, and the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer can be used.
  • the method of providing the adhesive layer may be provided on the entire surface as long as the air flow adjusting material can be fixed, or may be provided partially or intermittently.
  • Various shapes such as a net shape, a stripe shape, a dot shape, and a belt shape are listed as examples.
  • the adhesive layer is a hydrophilic adhesive layer
  • a packaging material such as a base material between them Moisture movement takes place via both, and inconvenience occurs for both. This happens especially during storage.
  • the packaging material interposed between them preferably has a moisture permeability of at least 2 g / m 2 / day in terms of moisture permeability according to the Lissy method (Lyssy method).
  • the moisture permeability of the moisture-proof packaging material provided between the exothermic composition molded body and the hydrophilic pressure-sensitive adhesive layer is within the range that does not affect the heat generation performance. is not limited as long prevent minute movement, in moisture permeability by Ritsushi one method (Lyssy method), usually, it is 2gZm 2 Zday less, preferably not more than 1. 0gZm 2 Zday, more preferably 0. 5GZm 2 Zday or less, and more preferably 0.01 to 0.5 gZm 2 Zday.
  • the values are under the conditions of 40 ° C and 90% RH under atmospheric pressure.
  • the moisture-proof packaging material can be used as a base material or a coating material, or can be laminated alone on a base material or a coating material.
  • the moisture-proof packaging material is not limited as long as moisture transfer between the exothermic composition molded body and the hydrophilic pressure-sensitive adhesive layer can be prevented.
  • Non-breathable packaging material flexible plastic made by vacuum deposition or sputtering of metal such as aluminum foil on a polyester film base film, metal foil such as aluminum foil, and polyester film substrate Laminate for packaging using a transparent barrier film with a structure in which silicon oxide and aluminum oxide are provided on the base material
  • metal such as aluminum foil
  • metal foil such as aluminum foil
  • polyester film substrate Laminate for packaging using a transparent barrier film with a structure in which silicon oxide and aluminum oxide are provided on the base material
  • a non-breathable packaging material used for the outer bag or the like can also be used.
  • a packaging material such as a moisture-proof packaging material disclosed in Japanese Patent Application Laid-Open No. 2002-200108 can also be used, and the contents of this description are incorporated in the present invention.
  • a reaction accelerator such as sodium chloride in the heat generating composition is used to adjust the water balance between the heat generating composition and the pressure sensitive adhesive layer.
  • the water-absorbing polymer, etc. in the range of 10 to 40% by weight, preferably 15 to 40% by weight, more preferably 15 to 30% by weight of the exothermic composition. You can adjust the weight percentage range!
  • a pressure-sensitive adhesive having good moisture permeability and low irritation to the skin a water-containing pressure-sensitive adhesive (hydrophilic pressure-sensitive adhesive, Jewel) such as JP-A-10-265373 and JP-A-987173 can be used.
  • JP-A-6-199660 hot-melt-adhesive adhesives are disclosed in JP-A-10-279466 and in JP-A-10-182408. Agents are also useful, citing each of these references, the entire text is incorporated herein.
  • the functional substance to be included in the pressure-sensitive adhesive layer is not limited as long as it is a substance having a function, but it is a fragrance compound, a plant extract, a herbal medicine, a fragrance, a slimming agent, an analgesic, a blood circulation promoter, a swelling improving agent, Antibacterial agent, bactericidal agent, fungicide, deodorant, deodorant, transdermal drug, fat decomposition component, negative ion generator, far-infrared radiator, magnetic substance, poultice, cosmetics, bamboo vinegar Alternatively, at least one selected from wood vinegar and the like can be cited as an example.
  • aromatic compounds such as menthol and benzaldehyde, plant extracts such as mugwort extract, herbal medicines such as mogusa, fragrances such as lavender and rosemary, slimming agents such as aminophylline and tea eks, indomethacin, dl—
  • Analgesics such as camphor, blood circulation promoters such as acidic mucopolysaccharides, force mitre, swelling improvement agents such as citrus tincture and flavone derivatives, poultices such as boric acid water, physiological saline, alcohol water, Lipolytic components such as caffeine and tonaline, aloe extract, vitamins, hormones, antihistamines, cosmetics such as amino acids, carboxylic acid derivatives, boric acid, iodine agents, reverse sarcolic acid, salicylic acid substances, iow Examples include antibacterial agents such as antibiotics, bactericides, and fungicides.
  • the percutaneously absorbable drug is not particularly limited as long as it is percutaneously absorbable, but corticosteroids, anti-inflammatory analgesics, hypertensives, anesthetics, hypnotic sedatives, and psycholeptics.
  • the content of the functional substance is not particularly limited as long as the medicinal effect can be expected. However, the content of the functional substance is not limited from the viewpoints of pharmacological effect, economic efficiency, adhesive strength, and the like. Preferably it is 0.01-25 weight part with respect to 100 weight part of agents, More preferably, it is 0.5-15 weight part.
  • the method for providing the adhesive layer may be provided on the entire surface as long as the thermal package for the joint periphery can be fixed, or may be provided partially or intermittently.
  • Various shapes such as a net shape, a stripe shape, a dot shape, and a belt shape can be given as examples.
  • the maximum width of the segmented heat generating portion or the heat generating composition molded body of the present invention is usually 0.5 to 60 mm, preferably 0.5 to 50 mm, more preferably 1 to 50 mm, and still more preferable. Or 3 to 50 mm, more preferably 3 to 30 mm, still more preferably 5 to 20 mm, still more preferably 5 to 15 mm, and still more preferably 5 to 10 mm.
  • the maximum height is usually 0.1 to 30 mm, preferably 0.1 to 10 mm, more preferably 0.3 to 10 mm, still more preferably 1 to 10 mm, and still more preferably. 2-10mm.
  • the longest length is usually 5 to 300 mm, preferably 5 to 200 mm, more preferably 5 to: LOOmm, still more preferably 20 to 150 mm, still more preferably 30 to L00 mm. It is.
  • the volume of the section heat generating portion or the volume of the exothermic composition molded body is usually from 0.015 to 500 cm 3 , preferably from 0.04 to 30 cm 3 , more preferably from 0.1 to 30 cm 3 . , more preferably from L ⁇ 30cm 3, more preferably from 3 ⁇ 20cm 3.
  • the volume of the heat generating composition molded body, which is the heat generating composition molded area, and the heat generating composition storage area when the divided heat generating portion, which is a heat generating composition storage area, is filled with the heat generating composition molded body, the volume of the heat generating composition molded body, which is the heat generating composition molded area, and the heat generating composition storage area.
  • the volume ratio with the volume of the divided heat generating portion is usually 0.6 to 1, preferably ⁇ or 0.7 to 1, more preferably ⁇ or 0.8 to 1, and further preferably ⁇ or 0.00. 9 to 1.0.
  • the width of the divided portion which is the interval between the divided heat generating portions, is not limited as long as it can be divided.
  • Force Usually 0.1 to 50 mm, preferably 0.3 to 50 mm, more preferably 0.3 to 50 mm. Yes, more preferably 0.3 to 40 mm, further preferably 0.5 to 30 mm, more preferably 1.0 to 20 mm, and further preferably 3 to 10 mm.
  • shape of the exothermic composition molded body or the divided heat generating portion may be any shape, but examples thereof include a flat shape, such as a circle, an ellipse, a polygonal shape, a star shape, and a flower shape.
  • shape An example is the shape.
  • these shapes may be rounded at the corners, and the corners may be curved or curved, and there may be a recess in the center.
  • the volume of the exothermic composition part molded body of the present invention means the volume of the exothermic composition molded body or the compressed exothermic composition molded body.
  • volume of the segmented heat generating part means the internal volume of the segmented heat generating part containing the exothermic composition molded body.
  • the shape of the heating element is not particularly limited, but is rectangular, circular, elliptical, polygonal, flat, eye mask shape, lantern shape, ridge shape, ridge shape, rounded round shape , Rounded square shape, egg shape, boomerang shape, maggot shape, wing shape, nose shape, star shape and foot shape.
  • the heating element or the storage bag may be provided with at least one of at least one of letters, designs, symbols, numbers, patterns, photographs, pictures, and coloring.
  • the heating element of the present invention can be obtained in various shapes, thicknesses, and temperature zones, outside of normal body warming, for joints, for facial use, for eyes, for slimming, drip solution heating / warming ,
  • thermal compresses for drug warmers, for neck, for waist, for masks, for gloves, for heels, or for alleviating symptoms such as shoulder pain, muscle pain, or physical pain, for cushions, or during the operation
  • It can be used for various purposes such as warming and warming, heating sheet, transpiration, aroma, abdomen, transpiration insecticide, and cancer treatment.
  • machines can be used for warming and warming pets.
  • the heating element of the present invention when used for symptom relief, is applied directly to a necessary part of the body or indirectly through a cloth or the like.
  • the heating element of the present invention when used for warming the human body during surgery, is applied directly to a necessary part of the body or indirectly through a cloth or the like.
  • Examples of usage include using as a cover or rug as a product with a heating element in advance.
  • Examples of muscle and skeletal pain include acute muscle pain, acute skeletal pain, acute related pain, past muscle pain, past skeletal pain, chronic related pain, joint pain such as knees and elbows, and the like.
  • the maintenance time is not limited, but is preferably 20 seconds to 24 hours, more preferably 1 hour to 24 hours, and still more preferably 8 hours to 24 hours.
  • the maintenance temperature is preferably 30 to 50 ° C, more preferably 32 to 50 ° C, still more preferably 32 to 43 ° C, still more preferably 32 to 41 ° C, and further Preferably, it is 32 to 39 ° C.
  • FIG. 1 is a plan view of a heating element according to an embodiment of the present invention.
  • FIG. 3 Perspective view showing the manufacturing process
  • FIG. 4 is a cross-sectional view of an embodiment of a heating element temporarily attached
  • FIG. 5 is a plan view of another embodiment of the heating element of the present invention.
  • FIG. 6 is a plan view of another embodiment of the heating element of the present invention.
  • FIG. 8 (a) Perspective view of one embodiment of temporary roll (b) Side view
  • FIG. 9 (a) Perspective view of another embodiment of temporary attachment roll (b) Cross-sectional view showing the relationship between the temporary attachment roll and the heating element (c) The relationship between the temporary attachment roll and the heating element (D) Partial perspective view of the temporary heating element (e) Partial sectional view of the temporary heating element having a slack
  • FIG. 10 is a perspective view of another embodiment of a temporary dressing roll.
  • FIG. 11 Plan view of another embodiment of a temporary roll.
  • FIG. 13 is a plan view of another example of a temporary roll.
  • FIG. 14 is a plan view of another embodiment of the temporary roll.
  • FIG. 15 is a side view of a crushed plate of one embodiment of a section heating section of a heating element.
  • FIG. 16 is a side view of an embodiment of a break roll of a heat generating section of a heating element.
  • FIG. 17 (a), (b) Sectional view of one embodiment of a section of a heating element of a heating element or a part of the breaking process of the heating element.
  • FIG. 18 Schematic diagram of one embodiment of a heating element manufacturing process
  • FIG. 19 is a schematic view of another embodiment of the heating element manufacturing process.
  • FIG. 21 is a perspective view for explaining the measurement of mobile water value.
  • Rotating body forming device (Rotating body with a punched hole of desired shape)
  • Non-water absorbent film polyethylene film, etc.
  • Filter paper template with 8 lines drawn at 45 degree intervals radially from the center point
  • the heating element 1 of the present invention has a heating composition molded body in a rectangular flat storage bag having a length of 13 Omm and a width of 80 mm as shown in the plan view of FIG. 1 and the ZZ cross-sectional view of FIG. 1 A is enclosed, and the storage bag is composed of a non-breathable base material 4 and a breathable covering material 5.
  • a polyester release film cover having a thickness of 38 m is provided via an adhesive layer 9 having a basis weight of 150 gZm 2 which is a non-aromatic olefin-based hot melt adhesive force.
  • a separator 13 is provided.
  • the covering material 5 is a three-layer film having a stretchability of 130 mm in width. That is, a porous film having a basis weight of 50 gZm 2 is laminated on a polyester spunlace nonwoven fabric having a basis weight of 30 g / m 2 through a hot-melt adhesive layer having a basis weight of 5 gZm 2 provided by a melt blow method. It is a thing.
  • the moisture permeability of the covering material 5 is 350 gZm 2 Z24 hr by the Lissi method.
  • the heating element 1 is manufactured as shown in FIG.
  • the covering material 5 wound in a roll is fed out, and an olefin-based hot melt adhesive is applied to the entire porous film surface side of the covering material 5 by a melt blow method.
  • the hot melt pressure-sensitive adhesive layer 6 is brought into contact with the base material 4 so as to cover the exothermic composition molded body 1A, and the peripheral edge thereof is pressure-bonded to attach the temporary attachment portion 7.
  • a heat seal roll heat seal the peripheral part of the heating element composition molded body 1 A together with the temporary attachment part 8 and cut it, and the seal width is 8 mm x thickness is about 0.94 mm x 130 mm x 80 mm.
  • a thin heating element was produced.
  • each of the cut heating elements 1 is continuously sent to the packaging process, and is enclosed in an airtight outer bag (not shown).
  • the exothermic composition having moldability in this example, 70 parts by weight of iron powder (particle size: 300 ⁇ m or less), 10 parts by weight of activated carbon (particle size: 300 ⁇ m or less), 2 parts by weight of sodium chloride, water absorption Polymer (particle size of 300 / zm or less) 0.7 parts by weight and 0.1 parts by weight of slaked lime were added with water, and an exothermic composition having a mobile water value of 8 was used.
  • the exothermic composition in this way, by setting the exothermic composition to an easy water value of 8, since no thickener is used, the exothermic characteristics are not sacrificed. In addition, it can be easily laminated at the center of the substrate by mold-through molding, and it can be laminated with high accuracy in the desired lamination area, and the thickness of the exothermic composition molded body 1A is extremely high. It becomes possible to control thinly and uniformly.
  • the outer bag After enclosing in the outer bag, after 24 hours, the outer bag was broken and adhered to the surface of the human body. After normal use, the temperature was about 1 to 2 minutes. The temperature was raised to 38 ° C, and then heat was generated at 38-41 ° C for over 9 hours. During use, the exothermic composition molded body did not move at all in the container, and an average exotherm was observed over the entire surface.
  • FIG. 5 shows an example of the heat generator 1 in which the divided heat generating portions 1B are arranged in 3 rows and 4 columns in the same manner as in the first embodiment.
  • a perforation 12 is provided in the heat seal part 11. There was no seal failure.
  • FIG. 6 is an example of a heating element 1 having a segment heating part 1B manufactured using the same base material 4, covering material 5 and heating composition as in Example 1.
  • the base material 4 wound in the form of a roll with a width of 130 mm is fed out horizontally at 35 mZ, and is formed into a size of 110 mm x 70 mm x O.
  • the exothermic composition molded bodies IB were arranged in 4 rows and 3 columns at intervals of 20 mm. From the top of the exothermic composition molded body 1B, a hot melt adhesive is applied to the porous film surface side with lgZm 2 by the melt blow method, and is adjacent to the base material 4 and the outer peripheral edge of the coating material. Temporary attachment was made between the section heating parts 1B. Then, after heat-sealing using three heat-sealing rollers, it was cut to produce an ultra-thin heating element with a thickness of about 0.94mm x 130mm x 80mm. As a result, there was no case defect
  • Example 1 After sealing in the outer bag, 24 hours later, the outer bag is broken and sticks to the human body surface. In normal use, the same results as in Example 1 were obtained.
  • the heating element of Example 4 was prepared by applying a hot melt pressure-sensitive adhesive on the base material and the heating composition molded body formed in the same manner as in Example 1 at lg / m 2 by the melt blowing method, The upper force is different from that of the covering material so that the porous film side is in contact with the covering material. Note that the same materials as in Example 1 were used for the base material, the covering material, and the exothermic composition.
  • a heat generating component molded body having a width of 5 mm, a length of 110 mm, and a height of 3 mm, which is a total of 8 forces in 4 rows and 2 columns, was placed at intervals of 7 mm.
  • a covering material was crimped with a width of 5 mm to provide a temporary attachment portion.
  • the center part of the temporary attachment part was heat-sealed with a width of 1 mm, and at the same time, the outer peripheral part of the base material and the covering material was heat-sealed with a width of 8 mm to obtain a heating element having eight section heating parts.
  • the heating temperature is about 38 ° in about 1-2 minutes. The temperature was raised to C, and thereafter heat was generated at 38 to 41 ° C for 10 hours or more.
  • the exothermic composition molded body was flexible as a heating element that did not move at all within the container, was well adapted to the curved surface of the body, and an average exotherm was observed over the entire surface.
  • FIG. 18 is a schematic diagram of a manufacturing process of a heating element including a temporary attachment process.
  • the exothermic composition 2 is put into the hopper 15 while feeding the base material 4 from the feed roll 21 at 15 mZ. Then, it is formed on the belt conveyor 23 from the hopper 15 through the rotating body forming device 14 in the central part on the base material 4 at 110 mm ⁇ 70 mm and every 20 mm interval.
  • the heat generating composition 2 is attracted by the magnet 37 provided under the upper belt of the belt conveyor 23 and is easily placed on the substrate 4.
  • the roll and MD direction temporary attachment port The coating material 5 is coated on the base material 4 and the exothermic composition molded body by the tool 18.
  • a hot melt adhesive is applied to the entire surface of the covering material 5 on the porous film side by a melt blower 24.
  • the periphery of the exothermic composition molded body was heat-sealed with a width of 5 mm with a heat seal roll 18C, and the outer peripheral edge of the exothermic body was heat-sealed with a width of 8 mm.
  • the cut heating element was subsequently sent to the packaging process and sealed in an outer bag having airtightness (not shown). Then, after enclosing in the outer bag, after 24 hours, the outer bag was broken and adhered to the human body surface, and when used, the same result as in Example 1 was obtained.
  • a means for providing the air-permeable pressure-sensitive adhesive layer there can be used a melt blow method, a curtain rail method, or the like, which is not particularly limited as long as the air-permeable pressure-sensitive adhesive layer can be formed.
  • the exothermic composition of this example includes 70 parts by weight of iron powder (particle size of 300 or less), 7 parts by weight of activated carbon (particle size of 300 or less), 2 parts by weight of salt, 0.7 part by weight of a water-absorbing polymer, wood powder 3
  • An exothermic composition comprising 0 parts by weight, sodium sulfite 1.0 parts by weight, slaked lime 0.1 parts by weight and water 37 parts by weight was used.
  • FIG. 19 is a new process for strengthening the heat sealing process shown in FIG. 18 and providing a breathable pressure-sensitive adhesive layer with a separator.
  • a breathable pressure-sensitive adhesive layer 9A coated with a hot-melt pressure-sensitive adhesive silicone-treated polyester separator 13 by a melt-blowing method was laminated on the coating 5 in the roll 21A and cut with a die-cut roll 20. .
  • a heating element was produced in the same manner as in Example 5.
  • the exothermic composition of this example is 100 parts by weight of iron powder (particle size 300 m or less), activated carbon (particle size 300 / zm or less) 6.5 parts by weight, wood powder (particle size 150 m or less) 2.3 Part by weight, water-absorbing polymer (particle size 300 m or less) 2.3 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, 6 parts by weight of salt water With reaction mixture less than 0.01 Using a batch-type oxidizing gas contact treatment device, in an environment of 20 ° C, the upper part of the oxidizing gas contact treatment device is open, opened in the air, and after 120 seconds with stirring, the reaction mixture When the temperature rise of the solution reached 45 ° C, it was sealed in a non-breathable storage bag and cooled to room temperature to obtain an exothermic mixture of the present invention. Next, 6% saline was added to the exothermic mixture and mixed to obtain an exothermic composition having a mobile water value of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Resistance Heating (AREA)

Abstract

 基材及び発熱組成物成形体と被覆材との間に粘着層による仮着により仮着部形成後、ヒートシールすることにより、ラインの一層の高速化を実現して生産性を大幅に向上し、基材と被覆材の接合の際の発熱組成物成形体の位置ずれがなく、ヒートシールでき、シール不良のない発熱体を提供する。  発熱物質、炭素成分、反応促進剤及び水を必須成分とし、易動水値が0.01~20の発熱組成物を成形した発熱組成物成形体を、基材上に積層して、被覆材により被覆し、前記発熱組成物成形体の周縁部をヒートシールすることにより形成される発熱体であって、前記基材と、前記被覆材とが粘着層により仮着され、仮着された部分が、前記基材及び/又は前記被覆材が有するヒートシール層によりヒートシールされ、前記ヒートシール部には、前記粘着層成分と前記ヒートシール層成分が共存し、前記ヒートシール部の60°Cシール強度が0.8kg/25mm以上であることを特徴とする。

Description

明 細 書
発熱体及び発熱体の製造方法
技術分野
[0001] 本発明は、基材と被覆材とを粘着剤層によって仮着した後にヒートシールすること により、しわが発生することなぐ確実にヒートシールでき、ラインの一層の高速化を実 現して生産性を大幅に向上し、シール不良のな!、発熱体及びその製造方法に関す る。
背景技術
[0002] 近年、少なくとも片面が通気性を有するフィルム (或いはシート)力 なる袋体に発 熱組成物を封入した発熱体や発熱体の片面に粘着剤層を積層して人体などに貼付 できるようにした温湿布剤が提案されており、 V、わゆる使 、捨てか 、ろ及び温熱湿布 として、採暖の手段及び医療用ホットパックやこの温湿布剤や貼付剤の粘着剤層が 経皮吸収性薬物を含有或いは担持して、いわゆる経皮吸収システムに利用するもの も提案されている。
この発熱体の製造方法としては、一般に、通気性或いは気密性を有する基材上面 における所定領城に発熱組成物を投下した後、気密性或いは通気性を有する被覆 材を被せ、更にこの後、基材の周縁部と被覆材の周縁部とを全周にわたってヒートシ ールを行っている。つまり、基材と被覆材における周縁部が全周にわたってヒートシ ールされている。
この場合、基材又は被覆材の何れか一方にホットメルト系接着剤層を積層し、この ホットメルト系接着剤層を介在させることがある。
また、他の発熱体の製造方法としては、一般に、通気性或いは気密性を有する基 材上面における所定領城に発熱組成物を積層した後、気密性或いは通気性を有す る被覆材を被せ、更に、この後、基材の外周縁部と被覆材の外周縁部とを全周にわ たって粘着層を介して圧着シールを行っている。つまり、基材と被覆材における外周 縁部が全周にわたつて圧着シール (粘着剤シール)されて 、る。
そして、このようにして製造された発熱体は使用時までの発熱反応を抑止するため に、気密性の外袋内に密封して保存され流通に供される。
このような従来の発熱体にぉ ヽては、基材と被覆材における外周縁部とが全周に わたりヒートシールされて 、る場合、以下に述べる課題が有る。
即ち、基材又は被覆材を構成する合成樹脂フィルム或 ヽは予め基材又は被覆材 の少なくとも片面に形成されたホットメルト系接着剤層を用い、基材と被覆材の周辺 部とを熱融着ゃ熱接着してヒートシールを行う場合、発熱組成物がヒートシール部内 に入らな!/ヽようにして、前記の合成樹脂フィルム或いはホットメルト系接着剤を溶融し てから熱融着ゃ熱接着を確実に行う必要が有るため、高速ィ匕に限界が生じ、生産性 が低くなる。
また、基材に発熱組成物成形体を積層し、それに被覆材を被せ、発熱組成物成形 体の周辺部を熱融着ゃ熱接着してヒートシールを行う場合、基材ゃ被覆材間で発熱 組成物成形体が動き、シール不良を起こす場合があり、特に高速時にはそれが著し くなり、積層は高速にできても、シールが低速しかできず、結局、工程全体としては、 低速生産に甘んじる以外はな力つた。特に、発熱組成物成形体の体積が小さぐシ 一ル幅も小さ 、場合は特に顕著になり、超低速になって!/、た。
一方、粘着剤層を用いて、基材の周辺と被覆材の周縁部とを粘着シールした例で は、簡単にシールでき、シール部分、つまり発熱体の全周辺部が柔軟性のある発熱 体ができる反面、前記粘着シールは発熱体の使用時、用途によってはシール強度が 低下して、シール離れによる発熱が不安定になり、やけど等の畏れがあり、その使用 用途は限られていた。部分的に粘着剤層の融点より低い温度をかけ、加温処理シー ルしても、その効果はあまりなぐシール離れを起こし、シール不良になり、異常発熱 を起こす問題が伴っていた。
もちろん、この従来の発熱体を用いる貼付剤にも、全く同様の問題が伴う。
発明の開示
発明が解決しょうとする課題
本発明は、前記技術的課題を解決し、基材及び発熱組成物成形体と被覆材との間 に粘着剤層による仮着により仮着部形成後、ヒートシールすることにより、ラインの一 層の高速ィ匕を実現して生産性を大幅に向上し、基材と被覆材の接合の際の発熱組 成物成形体の位置ずれがなぐヒートシールでき、シール不良のない発熱体を提供 することを目的とする。
課題を解決するための手段
本発明の発熱体は、請求項 1に記載の通り、発熱物質、炭素成分、反応促進剤及 び水を必須成分とし、易動水値が 0. 01〜20の発熱組成物を成形した発熱組成物 成形体を、基材上に積層して、被覆材により被覆し、前記発熱組成物成形体の周縁 部をヒートシールすることにより形成される発熱体であって、
前記基材と、前記被覆材とが粘着層により仮着され、仮着された部分が、前記基材 及び Z又は前記被覆材が有するヒートシール層によりヒートシールされ、前記ヒートシ ール部には、前記粘着層成分と前記ヒートシール層成分が共存し、前記ヒートシール 部の 60°Cシール強度が 0. 8kgZ25mm以上であることを特徴とする。
また、請求項 2に記載の発熱体は、請求項 1に記載の発熱体において、前記ヒート シール部の少なくとも一部は、空気抜き部をヒートシールした領域を有することを特徴 とする。
また、請求項 3に記載の発熱体は、請求項 1に記載の発熱体において、前記粘着 層は、ホットメルト系粘着剤により構成されることを特徴とする。
また、請求項 4に記載の発熱体は、請求項 1に記載の発熱体において、前記ヒート シール層の厚みの合計は、前記粘着層の厚み以上であることを特徴とする。
また、請求項 5に記載の発熱体は、請求項 1に記載の発熱体において、前記粘着 層の厚みは、 0. 1〜: LOO /z mであることを特徴とする。
また、請求項 6に記載の発熱体は、請求項 1に記載の発熱体において、前記粘着 層は、空隙を有することを特徴とする。
また、請求項 7に記載の発熱体は、請求項 1に記載の発熱体において、前記ヒート シール部には、前記ヒートシール層の成分と前記粘着剤層の成分の混合部が存在 することを特徴とする。
また、請求項 8に記載の発熱体は、請求項 1に記載の発熱体において、前記基材 及び被覆材が伸長性の素材で形成されていることを特徴とする。
また、請求項 9に記載の発熱体は、請求項 1に記載の発熱体において、前記発熱 組成物成形体は、ヒートシール部である区分け部により区分けされて、複数配置され ていることを特徴とする。
また、請求項 10に記載の発熱体は、請求項 1に記載の発熱体において、前記発熱 組成物の発熱物質は、鉄粉であり、前記鉄粉が鉄酸化物皮膜を有していることを特 徴とする。
また、請求項 11に記載の発熱体は、請求項 1に記載の発熱体において、前記発熱 組成物成形体は、圧縮処理されて!ヽることを特徴とする。
また、請求項 12に記載の発熱体は、請求項 1に記載の発熱体において、前記ヒー トシール後、前記発熱組成物成形体の少なくとも一部をヒートシールされて 、な 、仮 着部に移動させることにより、前記ヒートシールされていない仮着部を開着したことを 特徴とする。
また、請求項 13に記載の発熱体は、請求項 1に記載の発熱体において、前記発熱 体において、露出面に固定手段を有することを特徴とする。
本発明の発熱体の製造方法は、請求項 14に記載の通り、通気性を有する基材及 び Z又は被覆材が少なくともヒートシール可能なヒートシール層を有し、鉄粉、炭素 成分、反応促進剤及び水を必須成分し、易動水値が 0. 01〜20の発熱組成物を成 形した発熱組成物成形体を基材上に積層し、その上にホットメルト系粘着剤をメルト ブロー方式で粘着層として設け、前記被覆材を被せ、仮着ロールにて、前記発熱組 成物成形体及び Z又は基材を前記被覆材と仮着した後に、前記発熱組成物成形体 の周縁部をヒートシールし、シール部の 60°Cにおけるシール強度が 0. 8kg/25mm 以上であることを特徴とする。
また、請求項 15に記載の発熱体の製造方法は、請求項 14に記載の発熱体の製造 方法において、前記発熱体の外周部を仮着後、前記発熱体の外周部を、空気抜き 部を残してヒートシールすることを特徴とする。
また、請求項 16に記載の発熱体の製造方法は、請求項 14に記載の発熱体の製造 方法において、前記仮着ロールにおける仮着部より小さい、ヒートシール部を有する ヒートロールを使用してヒートシールすることを特徴とする。
また、請求項 17に記載の発熱体の製造方法は、請求項 14に記載の発熱体の製造 方法にお!ヽて、前記発熱組成物成形体をヒートシールされて ヽな ヽ仮着部に移動さ せることにより、前記ヒートシールされていない仮着部を開着することを特徴とする。
[0005] また、前記発熱体にお!、て、前記ヒートシール部の中央部は、ヒートシールされ、前 記ヒートシール部の周辺部は、粘着シールされて 、ることが好まし 、。
また、前記発熱体において、前記粘着層は、前記被覆材の前記ヒートシール層に 積層されて ヽることが好ま ヽ。
また、前記発熱体において、前記粘着層は、前記発熱組成物成形体の上面に積 層されて 、ることが好まし!/、。
また、前記発熱体において、前記粘着層を構成する粘着剤のベースポリマーの融 点は、ヒートシール層を構成するヒートシール材の融点以下であることが好まし 、。 また、前記発熱体において、前記固定手段は、粘着剤層であり、前記粘着剤層が 保水剤、吸水性ポリマー、 pH調整剤、界面活性剤、有機ケィ素化合物、疎水性高分 子化合物、焦電物質、酸化防止剤、骨材、繊維状物、保湿剤、機能性物質又はこれ らの混合物力 なる付加的な成分力 選ばれた少なくとも 1種を含有してなることが好 ましい。
また、前記発熱体において、前記粘着層の厚みが、前記基材と前記被覆材の各ヒ ートシール層の厚みの合計以下であることが好ましい。
また、前記発熱体において、前記粘着層は空隙を有することが好ましい。 また、前記発熱体において、前記ヒートシール層はエチレン系ヒートシール材により 構成され、前記粘着層はホットメルト系粘着剤により構成されていることが好ましい。 また、前記発熱体の製造方法において、前記仮着ロールが、型ロール及び Z又は 少なくとも表面が柔軟性を有する平ロールであることが好ましい。
また、前記発熱体の製造方法において、前記発熱組成物成形体より小さい押し込 み部を有する押し込みロールを使用することが好まし 、。
また、前記発熱体の製造方法において、崩し板に沿わせて、前記発熱組成物成形 体を移動させることが好ま 、。
発明の効果
[0006] 以上の通り、本発明は下記効果を有する。 1.本発明に係る発熱体においては、このように基材と被覆材とを粘着層によって仮 着後、ヒートシールすることにより、しわが生じることなぐ確実にヒートシールでき、高 速ヒートシールが実現できる。
2.このように基材と被覆材とを封着する場合、単に加圧するだけで良ぐ従来のよう に、熱融着する必要が無いから、基材ゃ被覆材の熱伝導の影響を考える必要がなく 、簡単に発熱組成物積層体の移動を防止でき、次のヒートシールにより、シールを確 実にできるので、シール不良が防止されて発熱体の信頼性が著しく向上するのであ る。
3.更に、基材と被覆材を粘着層で粘着するように構成しているから、加庄するだけ で至極簡単に仮着でき、次のヒートシールで容易にできる結果、ラインの一層の高速 化を実現して、生産性が著しく向上する。
4.更に、粘着層をヒートシール可能層と相溶性のよいものにすることにより、ヒート シール時に粘着剤とヒートシール材が分離することなく混合し、より確実なヒートシ一 ルが可能になった。
発明を実施するための最良の形態
[0007] 本発明の発熱体は、発熱物質、炭素成分、反応促進剤及び水を必須成分とし、易 動水値が 0. 01〜20の発熱組成物を成形した発熱組成物成形体を、基材上に積層 して、被覆材により被覆し、前記発熱組成物成形体の周縁部をヒートシールすること により形成される発熱体であって、前記基材と、前記被覆材とが粘着層により仮着さ れ、仮着された部分が、前記基材及び Z又は前記被覆材が有するヒートシール層に よりヒートシールされ、前記ヒートシール部には、前記粘着層成分と前記ヒートシール 層成分が共存し、前記ヒートシール部の 60°Cシール強度が 0. 8kgZ25mm以上の 発熱体である。
[0008] 本発明は仮着により、ヒートシールの高速化、ヒートシール部のシール安定ィ匕を図 るものであり、以下の様な利点が得られる。
1)基材と被覆材を粘着層で粘着するように構成して ヽるから、加圧するだけで至極 簡単に粘着できる結果、ラインの一層の高速ィ匕を実現するための仮着には非常に適 している。 2)また、ヒートシール装置が不要で生産設備の簡素化が実現できるのであり、し力も
、ヒートシールによる熱融着ゃホットメルト系接着剤を用いて熱接着させる場合には熱 源が必要であるが、粘着シールにおいては、基材と被覆材とを粘着剤層によって封 着を行うから、電力等の熱源が不要になってエネルギーの節約になり、これらの結果 、発熱体や温熱貼付剤を至極経済的に仮着できる。
3)このように基材と被獲材との周辺部を粘着層によって仮着を行うと、基材と被覆材 間に挟まれた発熱体組成物成形体がずれず、高速で、次の工程へ移動できる。
4)基材と被覆材をヒートシールする場合、仮着により発熱体組成物成形体の動きが 制御されているので、ヒートシールロール表面の動きに対し、追従させながらヒートシ ールできる。
5)粘着層に使用される粘着剤はヒートシールに使用されるホットメルト系接着剤と相 溶性がよいので、ヒートシール部に分散され、ヒートシールを阻害せず、適切なヒート シール部が形成できる。
6)粘着層を介して仮着することにより、基材と被覆材が密着しているので、ヒートシ一 ルにより、ヒートシール部を容易に形成できるので、これまで困難であった 20mZ分 以上の高速で、安定したヒートシールを行うことができるようになった。
本発明において、仮着とは、粘着層により少なくとも基材と被覆材を粘着し、ヒート シールをするまでの間、収納した発熱組成物成形体を保留しておくための弱 、感圧 接着又は粘着である。
また、粘着層は、粘着剤から構成され、 60°Cシール強度が 0. 01〜0. 8kg/25m mである。これにより、基材と被覆材との間の発熱組成物成形体の動きを止めること ができ、高速ヒートシールを可能にする。更に、所望により、仮着時に加温をしてもよ い。加温は粘着層を形成するホットメルト系粘着剤中のベースポリマーの融点以下で 加圧処理されるのが好ま ヽ。
仮着シール部は、粘着層を介して形成されるが、粘着層を構成する粘着剤は、常 温でタックがある高分子組成物で形成された層で、仮着後ヒートシールができれば限 定はない。
また、仮着に使用される粘着層を構成する粘着剤は、非親水性の粘着剤が好まし V、。粘着層を構成する粘着剤はヒートシールを構成するヒートシール材と相溶性が良 ぐ粘着剤のベースポリマーの融点はヒートシール材の融点以下が好ましい。特に、 ホットメルト系接着剤にはホットメルト系粘着剤が好ましい。また、ヒートシール材がォ レフイン系の素材である場合は粘着剤としては、ォレフィン系の粘着剤が好ましい一 例として挙げられる。
[0010] 本発明の仮着部を形成する前にお!/ヽては、基材、発熱組成物成形体、被覆材に 粘着剤が、積層されることが好ましいが、特に、基材上における少なくとも発熱組成 物成形体の周縁部及び Z又は被覆材の下面における少なくも発熱組成物成形体の 周縁部にヒートシール層と相溶性のよい粘着剤が積層されることが好ましい。
即ち、基材上における発熱組成物成形体の周縁部及び Z又は被覆材の下面にお ける発熱組成物成形体の周縁部に粘着層が積層されている場合と、基材上の全面 及び Z又は被覆材の下面における全面に粘着層が積層されている場合と、基材上 の全面及び Z又は被覆材の下面における発熱組成物成形体の周縁部に粘着層が 積層されて!、る場合と、基材上の発熱組成物成形体の周縁部及び,又は被覆材の 下面における全面に粘着層が積層されている場合と、更に、これらの粘着層がそれ ぞれの箇所全面にわたって部分的に積層されているものが挙げられる。また、上記 の各場合において、粘着剤層を、発熱組成物成形体上の全面又は部分的に点在さ せてもよい。
更に、基材上の発熱組成物成形体の周縁部及び Z又は被覆材の下面における発 熱組成物成形体の周縁部に粘着層が積層されている場合において、基材及び Z又 は被覆材における粘着層が除かれた部位全体即ち発熱組成物成形体の積層される 相当領域にわたって粘着層を部分的に点在させても良い。
[0011] 60°Cシール強度とは、シールされた対象試料のシール強度を測定する個所から 2 5mm X 250mmの試験片をとり、 60°C環境下で 5分放置後、 60°C環境下で、つか み、間隔 10mm、引張速度 300mmZminで最大強度を測定することを、 3個の試料 に対し行い、各々の最高値の平均値をいう。
前記仮着部のシール強度としては、 20°C環境下で、好ましくは 0. 5kgZ25mm以 上であり、より好ましくは 0. 5〜: LkgZ25mmであり、更に好ましくは 0. 5〜0. 9kg/ 25mmであり、更に好ましくは 0. 5〜0. 8kgZ25mmである。また、 60。Cシール強 度は好ましくは 0. 8kgZ25mm未満であり、より好ましくは 0. 01〜0. 8kg/25mm 未満であり、更に好ましくは 0. 01-0. 5kgZ25mm未満であり、更に好ましくは 0. 01〜0. 4kgZ25mm未満である。
仮着部の粘着層は粘着剤から構成され、 60°Cシール強度が 0. 01〜0. 8kg/25 mmであり、基材と被覆材との間の発熱組成物成形体の動きを止めることができ、高 速ヒートシールを可能にする。更に、所望により、仮着時に加温をしてもよい。加温は 粘着剤層を形成するホットメルト系粘着剤中のベースポリマーの融点以下で加圧処 理されるのが好ましい。
仮着後ヒートシールしたヒートシール部の 20°C環境下でのシール強度は、好ましく は 1. 0kgZ25mm以上であり、より好ましくは 1. 2kgZ25mm以上であり、更に好ま しくは 1. 5kgZ25mm以上であり、更に好ましくは 1. 5〜3kgZ25mmである。また 、 60°C環境下での 60°Cシール強度は、好ましくは 0. 8kgZ25mm以上であり、より 好ましくは 1. OkgZ25mm以上であり、更に好ましくは 1. 2kgZ25mm以上であり、 更に好ましくは 1. 5kgZ25mm以上である。ここで、 20°C環境下でのシール強度は 、測定環境温度が 20°Cである以外は 60°Cシール強度の条件と同じである。
仮着部を設ける範囲については、制限はなぐ圧着面が部分圧着でも全面圧着で ち何れでもよい。
また、その手段についても制限はないが、好ましくは型板や平面又は平板で行うこ とができる。また、型ロールや平面又は平ロールを通すことにより行うことができる。型 ロールは仮着部のみが圧着されるように、圧着部がほぼ発熱組成物成形体周縁部 の相似形に圧着形状が形成されたり、発熱組成物成形体周辺部の一部が圧着され るように形成され、発熱組成物成形体は圧着されないように構成されたものであり、発 熱組成物成形体が圧着されなければ制限はない。圧着面は無地の面でも行うことが できるが、素材の滑りや搬送を考慮すると圧着面の少なくとも片面をエンボス面とする ことが好ましい。エンボス目の形状としては、特に限定はないが、通常は波状、亀甲 状、輪状、水玉状、網目模様状などが一例として挙げられる。エンボス面の突起部面 積比率に特に制限はないが、通常は 0. 5〜60%が好ましい。また、圧着部も仮着部 に対して部分的に設けられたものや全面的に設けられたものが一例として挙げられる 。平面又は平ロールは柔軟性の素材で発熱体全体を加圧しながら、少なくとも発熱 組成物成形体の周縁部を仮着するものである。前記素材としては、変形ができ、仮着 ができれば制限はないが、発泡体、フェルト、織布、不織布、ゴム、風船体等一例とし て挙げられる。
[0013] また、仮着は、図 7〜図 13に一例として示した仮着具を使用して行うが、仮着具は これらに限定されず、仮着できるものであれば使用できる。特に、発熱組成物成形体 が厚い場合、使用する被覆材の種類にもよるが、図 8に示したような発熱組成物成形 体及び基材端部から選ばれた少なくとも 1種を仮着することが好ましい。ここで、基材 端部とは前記発熱組成物成形体の MD方向に平行な基材の端部及び TD方向に平 行で、発熱組成物成形体の存在しな!ヽ領域である。
また、少なくとも 1個の発熱組成物成形体と隣接する発熱組成物成形体の少なくと も 1個との間に被覆材のたるみを設けて仮着してもよい。仮着時のたるみは一方向で も複数方向でもよい。ゆるやかなたるみによりシール切れを防ぐことができるからであ る。
[0014] また、仮着、ヒートシール、発熱組成物の移動を組み合わせることにより、高速で、 細幅のヒートシール部を具現ィ匕できる。発熱部を区分発熱部とシール部である区分 け部とから構成する場合、区分け部の形成をヒートシールのみ力も行う場合は、ヒート シールの幅の限界幅により、区分発熱部と区分発熱部との間である区分け部を大き くとる必要があった。しかし、区分発熱部と区分発熱部との間が大きくなると、区分発 熱部同士の保温効果が減少し、発熱時間が短くなる。従って、発熱体を柔軟にする この方法は、発熱持続時間で問題があった。本発明の仮着、ヒートシール、発熱組成 物の移動を組み合わせを用いることにより、仮着後ヒートシールすることにより、発熱 組成物がヒートシール部へ散逸することなぐ高速で、細幅のヒートシール部形成が 可能になり、ヒートシール部形成後、押し込みロール等を使い、発熱組成物を仮着部 であるがヒートシールされて!/、な!/、領域に発熱組成物を移動させ、未ヒートシール部 を開着し、区分け部幅を小さくすることができる。これにより発熱体の発熱持続時間を 短くすることなぐ柔軟な発熱体を具現化できた。 [0015] 本発明においてヒートシール層を構成するヒートシール材としては、単独素材でもよ ぐヒートシール層を有する複合素材でもよぐ加熱によって少なくともその一部が接 合しうるものであれば制限はない。一例を挙げると、ポリエチレン、ポリプロピレン等の ポリオレフインゃォレフイン共重合榭脂、エチレン 酢酸ビニル共重合榭脂、ェチレ ンーイソブチルアタリレート共重合榭脂などのエチレン アクリル酸エステル共重合 榭脂等のエチレン系ホットメルト榭脂、ポリアミド系ホットメルト榭脂、プチラーノレ系ホッ トメルト榭脂、ポリエステル系ホットメルト榭脂、ポリアミド系ホットメルト榭脂、ポリエステ ル系ホットメルト榭脂、ポリメチルメタタリレート系ホットメルト榭脂、ポリビニルエーテル 系ホットメルト榭脂、ポリウレタン系ホットメルト榭脂、ポリカーボネート系ホットメルト榭 脂、酢酸ビニル、塩ィヒビ二ルー酢酸ビニル共重合体等のホットメルト系榭脂及びその フィルムやシートが一例として挙げられる。また、ホットメルト系榭脂及びそのフィルム やシートには、種々の酸ィ匕防止剤等添加剤を配合したものも使用することができる。 特に、低密度ポリエチレン、メタ口セン触媒使用のポリエチレンが有用である。
前記ヒートシール層の厚さとしては、ヒートシールできれば制限はないが、通常、 5 〜1000 μ mであり、好ましくは 10〜500 μ m2であり、更に好ましくは 15〜250 μ m である。ヒートシール層の厚さ力 5 /z m未満になると、所要の粘着力を得られない場 合があり、一方、 1000 mを超えるとヒートシール速度が遅くなる。
前記粘着剤は、常温でタックがある高分子組成物で形成された層で、ヒートシール 層と相溶性がよぐ仮着後ヒートシールができれば限定はない。具体的には、例えば 溶剤型粘着剤又はホットメルト系粘着剤が一例として挙げられる。
[0016] また、発泡した粘着剤層は気孔内の気体が弾性変形するので、弾力性、伸縮性及 び柔軟性が著しく高められる緒果、基材と被覆材からなる包材の柔軟性、特に、基材 と被覆材の封着部が著しく柔軟になるうえ、使用感が一層高められる。
ホットメルト系粘着剤を発泡させる方法としては、化学的発泡方法と物理的発泡方 法とが挙げられるのであり、化学的発泡方法では無機系発泡剤又は有機系発泡剤も しくはこれらの混合物を用い、その分解反応の際に発生する窒素ガスや炭酸ガスを 利用して発泡させる方法であり、物理的発泡とは粘着剤に圧縮空気、圧縮窒素、圧 縮炭酸ガスなどの気体を圧力などの物理力によって混入させる方法である。 これらの発泡方法の中では、特に、特公昭 60— 3350号公報、特開昭 62— 8726 7号公報、特公昭 63— 17295号公報、特開平 1— 59023号公報に記載されている 物理的発泡方法が以下に述べる理由により推奨される。
即ち、この物理的発泡方法によれば、大気圧中でノズルから噴出されるホットメルト 系粘着剤に加圧気体を接触させることにより、粘着剤が繊細な織維状に吹き散らされ てその間に微細な連続気孔或いは独立気泡が形成される。
その発泡倍率は粘着剤の粘度に関連する温度と、加圧気体の圧力とに依存するの で、発泡剤を用いる場合に比べて、所要の発泡率の粘着剤層を得るための温度条 件及び圧力条件を設定し易!ヽ。
また、この物理的発泡方法においては、発泡倍率を安定させるために、ノズルから の粘着剤の噴出量ないし噴出速度と加圧空気の圧力とを安定させればよいので、均 質な粘着剤層を得ることが容易である。
この物理的発泡方法を実施する場合において、発泡率の制御精度を高めるために は、ノズルカゝら噴出する粘着剤にできるだけ早く圧縮気体を接触させることが好まし いので、例えば、粘着剤を噴出する噴出口の周囲に圧縮気体を噴出する噴気口を 開口させ、粘着剤の噴出と同時に圧縮気体を粘着剤に接触させることが好ましい。 また、粘着剤を噴出する噴出口は、同時にできるだけ広範囲に粘着剤を噴出して、 塗工時間を短縮するため、スリット状に形成したり、多数の粘着剤の噴出口を列状に 順に隣接させて設けたりすることが好ましい。
また、本発明においては、粘着剤がホットメルト型高分子物質、脂環族系石油榭脂 及び軟化剤で形成されているものが有益であり、この粘着剤は、上述の方法で発泡 される。
本発明において、ホットメルト型高分子物質としては、上述のものが挙げられる。こ のホットメルト型高分子物質は、粘着剤中のベースポリマーであり、これを用いて形成 した粘着剤の発泡体は、優れた保形性を有し、しかも初期タックがあり、常温時やカロ 温時の粘着性が良好で、且つ粘着後における粘着力が安定しているのである。 また、本発明において、脂環族系石油榭脂は、粘着性賦与剤であり、ホットメルト型 高分子物質との組合せにより、所要の粘着特性が得られる。 脂環族系石油樹脂とは、環状骨格を持った石油系榭脂であり、具体的には、例え ば、ロジン、脱水ロジン、脱水素ロジンのグリセリンエステル類、ガムロジンのグリセリ ンエステル類、水添ロジン、水添ロジンのメチルエステル類、水添ロジンのグリセリン エステル類、水添ロジンのペンタエリトリットロジン類、重合ロジン、重合ロジンのグリセ リンュステル類、クマロンインデン榭脂、水添石油榭脂、無水マレイン酸変性ロジン、 ロジン誘導体類又は C5系石油榭脂等が挙げられるのであり、貼付剤に所要の粘着 力を賦与するために、単独或いは 2種以上を組み合わせて適宜用いられる。
[0017] 本発明の基材は、実質的に平面状で、収納ポケットを有しない、前記基材上に設け られた発熱組成物を被覆材が覆 ヽ、前記発熱組成物の周縁部をヒートシールするこ とにより構成される区分発熱部が、 2個以上複数個からなり、ヒートシール部である区 分け部により、各区分発熱部が離れて配置され、前記区分発熱部の集合から発熱部 が形成される。ここで、本発明における基材と被覆材は素材構成で区別するのでは なぐ発熱組成物成形体が積層される素材を基材と定義し、その後、基材ゃ発熱組 成物成形体に被せられる素材を被覆材と定義する。
[0018] 本発明において、実質的に平面状とは、発熱組成物を収納するために予め設けら れた収納用のポケット、収納区画、収納区域等の収納用凹部を有しない平らな面を いう。従って、意図的に発熱組成物を収納しない凹凸は存在してもよい。
本発明のポケットとは、発熱組成物を収納するために、予め包材に設けられた収納 用ポケットであり、特表 2001— 507593号公報に記載されているようなポケットである 。意図的な発熱,袓成物成形体の収納用でない凹凸はポケットではないので、そのよ うな凹凸が基材にあっても、実質的な平面状の基材とする。
前記収納区画とは、発熱組成物を収納するために、予め包材に設けられた収納用 収納区画であり、特許 316160号公報、特表平 11— 508314号公報に記載されて V、るような収納区画である。意図的な発熱組成物成形体の収納用でな!、凹凸は収納 区画ではないので、そのような凹凸が基材にあっても、実質的な平面状の基材とする 前記収納区域とは、発熱組成物を収納するために、予め包材に設けられた収納用 収納区域であり、特許 316160号公報、特表平 11 508314号公報に記載されて 、るような収納区域である。意図的な発熱組成物成形体の収納用でな!、凹凸は収納 区域ではないので、そのような凹凸が基材にあっても、実質的な平面状の基材とする
[0019] 前記基材、被覆材、敷材を構成する素材としては、発熱組成物の収納袋として機 能すれば制限はない。素材として非通気性素材、通気性素材、吸水性素材、非吸水 性素材、非伸長性、伸長性、伸縮性素材、非伸縮性素材、発泡素材、非発泡素材、 非ヒートシール性素材、ヒートシール性素材等が一例として挙げられ、フィルム、シー ト、不織布、織布等及びそれらの複合体の所望の形態で、所望の用途により適宜使 用できる。
[0020] 通常、基材は非通気性フィルム又はシートからなり、被覆材は通気性フィルム又は シート又は不織布力もなる力 逆でもかまわないし、双方が通気性を有していてもよ い。また、敷材は通気性や非通気性は適宜使い分ければよい。
[0021] 前記基材ゃ被覆材は単層構造でもよぐ多層構造でもよい。その構造には制限は ないが、多層構造の例としては、基材が A層 ZB層又は A層 ZB層 ZC層又は A層 Z B層 ZC層 ZD層力 なるものや被覆材が F層 ZG層又は E層 ZF層 ZG層又は F層 ZH層 ZG層力 なるものが一例として挙げられる。
尚、 A層は、ポリエチレン等熱可塑性榭脂フィルム、ポリエチレンや EVA等のヒート シール層、吸水性紙類等、 B層はナイロン等の熱可塑性榭脂の不織布、非吸水性紙 類、吸水性紙類、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエステルフィルム 、ポリアミド (ナイロン等)フィルム等熱可塑性榭脂フィルム、非吸水性紙類や吸水性 紙類等の芯材等、 C層は粘着剤層、非吸水性紙類、吸水性紙類、ポリエチレン等熱 可塑性榭脂フィルム、滑り止め層、ポリエステルやナイロン等の熱可塑性榭脂の不織 布等、 D層はセパレータ、ポリエチレン等熱可塑性榭脂フィルム、不織布等、 E層はヒ 一トシール層等、 F層はポリエチレン等熱可塑性榭脂製多孔質フィルムや穿孔フィル ム等、ポリエチレン等熱可塑性榭脂製フィルム、非吸水性紙類、吸水性紙類等、 G層 はポリエステルやナイロン等の熱可塑性榭脂の不織布等、 H層は非吸水性紙類、吸 水性紙類等である。例えば、基材又は被覆材の例としては、メタ口セン触媒使用のポ リエチレン製ヒートシ一ノレ層/ポリエチレンフイノレム、ポリエチレン製ヒートシ一ノレ層/ ポリプロピレンフィルム、メタ口セン触媒使用のポリエチレン製ヒートシール層/ポリェ チレンフィルム Z粘着剤層 Zセパレータ、 EVA製ヒートシール層 Zポリプロピレンフィ ルム z粘着剤層 Zセパレータ、ポリエチレン製ヒートシール層 Zポリエチレンフィルム
Zナイロン不織布、 EVA製ヒートシール層 Zポリエチレンフィルム Zナイロン不織布
、ポリエチレン製ヒートシール層/ポリプロピレンフィルム/ポリプロピレン不織布、不 織布 Z多孔質フィルム、不織布 Z紙、穿孔 (針、レーザー)フィルム Z多孔質フィルム
、不織布 Z紙、多孔質フィルム Z穿孔 (針、レーザー)フィルム、不織布 z紙、多孔質 フィルム z不織布等が一例として挙げられる。各層の積層方法については制限はな ぐ各層の直接積層でもよぐ各層は通気性粘着剤層やラミネート剤層を介して積層 してもよく、熱溶融押出し等でラミネートをしてもよい。粘着剤層はこれらの包材上に 設ければよい。
[0022] 例えば、不織布、多孔質フィルム等の前記素材を通気性接着層を介して積層する 場合、前記通気性接着層の形成は、接着性物質を加熱溶融下に熱風を介し吹付け 展開するカーテンスプレー方式やメルトブロー方式やスロットスプレー方式などの適 宜な方式で接着性物質を繊維化して多孔質フィルムや通気性基材ゃセパレータ等 力 なる適宜な支持基材上に展開堆積させ多孔状態の接着層とする方法などが一 例として挙げられる。
[0023] 前記基材、被覆材、敷材及びそれらを構成する素材の厚さとしては、用途によって 大きく異なる力 制限はない。通常は5〜5000 111、好ましくは 10〜500 /ζ πι、より 好ましくは 20〜250 μ mである。
[0024] 前記非通気性素材としては、非通気性があれば制限はない。ポリエチレン、ポリプロ ピレン、ナイロン、アクリル、ポリエステル、ポリビニルアルコール、エチレン 酢酸ビニ ル共重合体等ポリマー力もなるフィルム、シート、塗布物及びそれらに酸化ケィ素等 の金属(半導体も含む)化合物を積層したものやそれらを使った複合素材が一例とし て挙げられる。
[0025] 例えば、前記非通気性素材の中で、非通気性の高いフィルムとしては、非通気性 素材フィルム上に半導体を含む金属やその化合物の薄膜を単層又は多層に設けた ものが一例として挙げられる。例えば、半導体を含む金属としては、ケィ素、アルミ- ゥム等及びこれら金属を含む合金や混合物等が一例として挙げられる。半導体を含 む金属化合物としては、上記金属又は合金や混合物の酸化物、窒化物及び酸窒化 物が一例として挙げられる。例えば、酸化ケィ素層、酸ィ匕アルミニウム層、酸窒化ケィ 素層やそれらの任意層を延伸ポリオレフインフィルム(例えば 2軸延伸ポリプロピレン フイノレム)に積層したものが一例として挙げられる。
[0026] 前記通気性素材としては、通気性があれば制限はな!/、。例えば、多孔質フィルム及 び穿孔フィルム等の通気性フィルムや紙類、不織布等の単独で通気性を有するもの 、紙類及びそれに通気性フィルムゃ不織布等を少なくとも 1種以上積層し通気性を 持たせたもの、不織布にポリエチレンフィルムがラミネートされた非通気性の包材に 針などを用いて微細な孔を設けて通気性を持たせたもの、繊維が積層され熱圧着さ れて通気性を制御された不織布、多孔質フィルム或 、は多孔質フィルムに不織布を 貼り合わせたもの等が一例として挙げられる。ここで、穿孔フィルムとはポリエチレンフ イルムなどの非通気性フィルムに針で微細な孔を設けて通気性を持たせたものであ る。
[0027] 通気性としては、発熱が維持できれば制限はない。通常の発熱に使用される場合、 通気性はリツシ一法 (Lyssy法)による透湿度力 通常は 50〜: LO, 000g/mV4hr であり、好ましくは 70〜5, 000gZm2Z24hrであり、より好ましくは 100〜2, OOOg Zm2Z24hr、更に好ましくは 100〜700gZm2Z24hrである。
[0028] この透湿度が、 50未満であると発熱量が少なくなり、十分な温熱効果が得られない ので好ましくなぐ一方、 10, 000gZm2Z24hrを越えると発熱温度が高くなつて安 全性に問題が生じる虞れが生じるので好ましくない。ただし、用途によっては 10, 00 0gZm2Z24hrを越えたり、場合によっては開放系に近い透湿度で使用することも制 限されない。
[0029] 前記伸縮性包材としては、伸縮性があれば、特に限定されるものではな 、。即ち、 全体として、伸縮性があればよぐ単品でも、伸縮性基材同士又は伸縮性基材と非 伸縮性基材との組み合わせによる複合品でもよ 、。
例えば、天然ゴム、再生ゴム、合成ゴム、エラストマ一、伸縮性形状記憶ポリマー等 の単品やこれらの混合物やこれらと非伸縮性素材との混合品、混抄品ゃこれらの組 み合わせ品から構成される織物、フィルム、糸等が一例として挙げられる。
前記多孔質フィルムとしては、ポリエチレン、直鎖状低密度ポリエチレンやポリプロ ピレン等のポリオレフイン系榭脂、ポリテトラフノレォロエチレン等のフッ素系榭脂等と 充填材カゝらなるフィルムを延伸した多孔質フィルムで、適宜選択することができる。 前記不織布としては、レーヨン、ナイロン (ポリアミド)、ポリエステル、アクリル、ポリプ ロピレン、ビニロン、ポリエチレン、ポリウレタン、キュプラ、綿、セルロース、パルプ等 の材質力 なる単織維又は複合繊維の単一不織布又はそれら繊維の混抄又は累積 繊維層の積層が用いられる。また、製法的には乾式不織布、湿式不織布、スパンボ ンド、スパンレース等を使用することができる。芯鞘構造の複合繊維からなる不織布 でもよい。
また、本発明の成形性発熱組成物及び発熱体に使用される成分及び基材、被覆 材、敷材等の包材等において、従来力 使用されてきた素材の他に生分解性の素 材が使用できる。
[0030] 前記発熱組成物としては、鉄等の発熱物質、炭素成分、反応促進剤及び水を必須 成分として含有し、易動水値を 0. 01〜20とする余剰水を有し、前記余剰水による成 形性を持ち、且つ発熱組成物中の水分がバリア層として機能せず、空気と接触して 発熱反応を起こす発熱組成物を使用することが好まし ヽ。
また、前記発熱組成物が、保水剤、吸水性ポリマー、 pH調整剤、水素発生抑制剤 、骨材、繊維状物、機能性物質、界面活性剤、有機ケィ素化合物、焦電物質、保湿 剤、肥料成分、疎水性高分子化合物、発熱助剤、鉄以外の金属、酸化鉄以外の金 属酸化物、酸性物質又はこれらの混合物からなる付加的な成分から選ばれた少なく とも 1種を含有することが好ましい。
[0031] 尚、本発明において、ノリア層として機能せず、空気と接触して発熱反応を起こす とは、発熱組成物中の水分が空気遮断層としてのノリア層として機能せず、発熱組 成物製造直後に、空気と接触して直ちに発熱反応を起こすことを 、う。
[0032] 前記鉄粉とは、通常の鉄粉、鉄合金粉、鉄粉の表面の少なくとも一部に酸素含有 皮膜を有する鉄粉又は鉄合金粉からなる活性鉄粉が好ましい。尚、鉄酸化物皮膜と は、鉄の酸化物、水酸化物、ォキシ水酸ィ匕物等の酸素を含む鉄カゝらなる皮膜である 。また、活性鉄粉とは、鉄粉表面に鉄酸ィ匕物皮膜を少なくとも局部的に形成したもの で、地鉄と鉄酸化物皮膜間に形成される局部電池や鉄酸化物皮膜内外のピットによ る酸化反応促進効果が得られるものである。
前記鉄粉は、限定はされないが、铸鉄鉄粉、アトマイズ鉄粉、電解鉄粉、還元鉄粉 、スポンジ鉄粉及びそれらの鉄合金粉等が一例として使用できる。更に、これら鉄粉 が炭素や酸素を含有していてもよぐまた、鉄を 50%以上含む鉄で、他の金属を含 んで!、てもよ!/ヽ。合金等として含まれる金属の種類は鉄成分が発熱組成物の成分と して働けば特に制限はないが、アルミニウム、マンガン、銅、ニッケル、ケィ素、コバル ト、パラジウム及びモリブデン等の金属、半導体が一例として挙げられる。本発明の 金属には半導体も含める。これらの金属及び合金は表面のみ又は内部のみに有し て ヽても表面と内部との両方に有して 、てもよ 、。
本発明の鉄粉において、前記鉄以外の金属の含有量は、鉄粉全体に対して通常 0 . 01〜50重量%であり、好ましくは 0. 1〜10重量%である。
[0033] 前記鉄の表面の少なくとも一部に酸素含有皮膜を有する鉄粉としては、
A.発熱組成物の必須成分又はそれに酸性物質やその他必要成分を加えたもの を酸化性ガスとの接触処理し、鉄成分を部分酸化し、鉄成分の表面を少なくとも部分 酸化した活性鉄粉
B.ウスタイトの含有量力 鉄との X線ピーク強度比で、 2〜50重量0 /0の活性鉄粉
C.厚さ 3nm以上の鉄酸化物皮膜を表面に有する鉄粉
D.活性鉄粉と活性鉄粉以外の鉄粉の混合物等が一例として挙げられる。
[0034] 上記 Aについて
機構としては、詳しくはわ力もないが、酸ィ匕性ガスと成分の接触により、成分の酸ィ匕 、特に鉄粉の酸化により、鉄粉の表面に鉄酸化物皮膜、即ち、酸素含有皮膜が形成 されるとともに、活性炭の表面も酸化され、及び Z又は酸化された鉄成分が付着し、 ともに親水性が付与され、又、向上し、水の仲立ちによる成分間の結合や構造化が 起きていると推定される。
即ち、鉄粉の表面に鉄酸化物皮膜が形成されたり、鉄粉粒子が不規則形状になつ たり、酸ィ匕により歪みが発生したり、含水ピットが形成されたり、何らかの機能変化が 起こり、鉄粉が活性化され、発熱立ち上がり性が向上すると推定される。
また、鉄酸化物皮膜中にマグネタイト (Fe O )が存在する場合、導電性に優れるの
3 4
で好ましぐまた、へマタイト (Fe O )が存在する場合もポーラスとなるので好ましい。
2 3
また、炭素成分も表面が酸化され、表面酸化物の多い炭素成分になり、親水性も増 加し、活性も増加すると推定される。
前記鉄粉の表面を覆う酸素含有皮膜である鉄酸ィ匕物皮膜の厚さは、ォージェ電子 分光法を用いて、通常 3nm以上であり、好ましくは 3ηπι〜100 /ζ πιであり、より好まし く ίま 30nm〜100 μ mであり、更に好ましく ίま 30nm〜50 μ mであり、更に好ましく【ま 30ηπι〜1 ;ζ πιであり、更に好ましくは 30nm〜500nmであり、更に好ましくは 50nm 〜300nmである。鉄の酸素含有皮膜の厚さを 3nm以上とすることにより、鉄の酸素 含有皮膜の厚さが酸化反応の促進効果を発揮でき、空気等の酸化性ガスと接触して 、酸ィ匕反応をすぐに開始させることができる。鉄の酸素含有皮膜の厚さが 100 m以 上であると、発熱時間が短くなるおそれがあるが、用途によっては使用できる。
また、上記活性鉄粉によれば、鉄粉と反応促進剤と水を必須成分とし、含水量が 0 . 5〜20重量%で、余剰水量を示す易動水値が 0. 01未満の反応混合物を用いるこ とにより、酸化性ガスと接触処理時の反応速度を上げ、反応混合物の温度上昇分を 1°C以上にする時間を 10分以内で達成できる。所定温度以上に達する時間を短くす ることにより、適正な活性ィ匕をすることができ、鉄粉上の不必要な酸化を防止できる。 また、反応混合物を酸化性ガス接触処理することにより製造された発熱混合物に炭 素成分等の添加や水分調整を行い、易動水値を 0. 01〜50にした発熱組成物は適 度にベたつき、優れた成形性を有し、型通し成形法ゃ铸込み成形法の成形法が適 用でき各種形状の発熱体が生産できる。特に易動水値が 0. 01〜20の発熱組成物 は空気と接触してすぐに発熱反応を始め、優れた発熱立ち上がり性を有し、且つ、優 れた成形性を有する優れたものである。
反応混合物の酸化性ガスの接触処理方法は、鉄粉と反応促進剤と水を必須成分と し、含水量が 0. 5〜20重量%で、易動水値が 0. 01未満の反応混合物を、酸化性 ガスと接触処理し、反応混合物の温度上昇分を 1°C以上にさせるものであれば特に 制限はないが、 具体例として更に一例を挙げれば、
1.鉄粉、反応促進剤及び水の反応混合物を酸化性ガス雰囲気中、自己発熱反応 させ、鉄粉を部分酸化し、表面に鉄酸化物皮膜を有する鉄粉を含有する発熱混合物 の製造方法、
2.鉄粉、反応促進剤、酸性物質及び水の反応混合物を酸化性ガス雰囲気中、自 己発熱反応させる発熱混合物の製造方法、
3.鉄粉、反応促進剤、炭素成分及び水の反応混合物を酸化性ガス雰囲気中、自 己発熱反応させる発熱混合物の製造方法、
4.鉄粉、反応促進剤、酸性物質、炭素成分及び水の反応混合物を酸化性ガス雰 囲気中、自己発熱反応させる発熱混合物の製造方法、
5. 1乃至 4の何れかに記載の反応混合物又は発熱混合物が上記成分以外の成分 を含有し、 1乃至 4の何れかに記載の方法を行う部分酸化鉄粉を含有する発熱混合 物の製造方法、
6. 1乃至 5の何れかに記載の方法を、環境温度より 10°C以上に加温した環境で行 う発熱混合物の製造方法、
7. 1乃至 6の何れかに記載の方法を酸化性ガスを吹き込んで行う発熱混合物の製 造方法、
8. 7に記載の方法で、環境温度より 10°C以上に加温した酸ィ匕性ガスを吹き込んで 行う発熱混合物の製造方法、
9. 1乃至 8の何れかに記載の方法で、発熱反応による温度上昇の最高点である最 高温度を超えるまで、酸化性ガス接触処理を行う発熱組成物の製造方法、
10. 1乃至 8の何れかに記載の方法で、発熱反応による最高温度を超え、更に、前 記最高温度から少なくとも 10〜20°C下がるまで、酸化性ガス接触処理を行う発熱混 合物の製造方法、
11. 1乃至 8の何れかに記載の方法で、発熱反応による温度上昇の最高点である 最高温度を超えるまで、酸化性ガス接触処理を行い、その後酸化性ガスを遮断し、 少なくとも反応混合物の温度が前記最高温度力も少なくとも 10〜20°C下がるまで、 保持する発熱組成物の製造方法、 12. 1乃至 5の何れかに記載された反応混合物又は発熱混合物を酸化性ガス環境 下で、温度上昇分を 1°C以上にする発熱混合物の製造方法、等が一例として挙げら れる
更に、発熱混合物に他の成分を加え、更に、酸化性ガス処理を行い、発熱混合物 としてちよい。
尚、酸化性ガス接触処理時の反応混合物の環境は o°c以上の環境下で、酸化性 ガスと接触させ、 10分以内に、反応混合物の温度上昇分を cにさせれば制限はな ぐ開放系で行う場合、フタのない容器の中に存在する状態でも、不織布等の通気 性シート状物を通じて空気等の酸ィ匕性ガスが入る状態でもよい。
また、酸ィ匕性ガス接触処理は撹拌下、非撹拌下、流動下又は非流動下の何れでも よぐバッチ式でも連続式でもよい。
最終的な発熱糸且成物としては、
1)上記 1乃至 12の何れかに記載の方法で製造された発熱混合物を発熱組成物原 料とする発熱組成物、
2) 1)の発熱組成物に他の成分を加えた発熱組成物、
3) 1)又は 2)の何れかに記載の発熱組成物を水分調整した発熱組成物、の何れか が挙げられる。また、前記必須成分以外の成分を添加する時期と水分調整の時期の 順序の制限はない
ここで、反応混合物、更に酸化性ガス処理を行う前の発熱混合物中の含水量は通 常 0. 5〜20重量%であり、好ましくは 1〜15重量%であり、より好ましくは 2〜10重 量%であり、更に好ましくは 3〜10重量%であり、更に好ましくは 6〜10重量%である 前記酸化性ガスとの接触後の反応混合物の温度は温度上昇分が 1°C以上であれ ば制限はないが、好ましくは 1〜80°Cであり、より好ましくは 1〜70°Cであり、更に好 ましくは 1〜60°Cであり、更に好ましくは 1〜40°Cである。
反応混合物と酸化性ガスとの接触時の環境温度は反応混合物の温度が所定以上 に上がれば、制限はないが、好ましくは 0°C以上であり、より好ましくは 0〜250°Cであ り、更に好ましくは 10〜200°Cであり、更に好ましくは 20〜150°Cであり、更に好まし くは 25〜100°Cであり、更に好ましくは 25〜50°Cである。
反応混合物と酸化性ガスとの接触時の反応混合物の温度上昇分が 1°C以上になる 時間が 10分以内であれば制限はないが、好ましくは 1秒〜 10分であり、より好ましく は 1秒〜 7分であり、更に好ましくは 1秒〜 5分であり、更に好ましくは 2秒〜 5分であり 、更に好ましくは 2秒〜 3分であり、更に好ましくは 2秒〜 1分である。
酸化性ガスの温度は前記環境温度が保たれれば、制限はな ヽ。
酸化性ガスとは、気体で酸ィ匕性があれば如何なるものでもよいが、酸素ガス、空気 、又は窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスと酸素ガスとの混合気 体が一例として挙げられる。前記混合気体としては、酸素が含まれていれば制限は ないが、 10%以上の酸素ガスを含むことが好ましぐこれらの中で、特に、空気が好 ましい。所望ならば、白金、パラジュゥム、イリジユウム及びそれらの化合物などの触 媒を用いることちできる。
酸化反応は、撹拌下に酸化性ガス雰囲気中で、所望により加圧下で、更に Z若しく は、超音波照射下で行うことができる。
酸ィ匕反応の最適条件は実験的に適宜決めればよい。
酸化性ガスの使用量は、制限はなぐ酸化性ガスの種類、鉄粉の種類や粒度、水 分量、処理温度、処理方法などによって調整をすればよい。
開放系の場合は、必要酸素量が取り込めれば制限はない。反応混合物の飛散や ゴミ等の混入を防ぐため、不織布や織布等の通気性素材で回りを囲んでもよぐ通気 性がある状態であれば開放系とする。
酸化性ガスを吹き込む方式で、空気を使用した場合、一例として、鉄粉 200gに対 して、 1気圧下、空気の量は、好ましくは 0. 01〜: L000リットル Z分、より好ましくは 0. 01〜: L00リットル Z分、更に好ましくは 0. 1〜50リットル Z分である。他の酸化性ガス の場合、空気の場合を基準として、酸素の濃度により換算すればよい。
所望により、過酸ィ匕物を添加してもよい。過酸化水素、オゾンが一例として挙げられ る。
ここで、酸化性ガスとの接触処理時の反応混合物又は発熱混合物の状態は鉄粉が 部分酸化されれば、静置状態でも、移動状態でも、撹拌等による流動状態でも何れ でもよぐ適宜選択すればよい。また、反応混合物、発熱混合物及び発熱組成物の 各成分の混合時並びに水分調整時の混合酸化性ガスとの接触処理時の環境に制 限はなぐ酸ィ匕性ガス雰囲気中や酸ィ匕性ガスの吹き込み等が一例として挙げられる。
[0036] 上記発熱糸且成物の温度上昇を測定する方法は次の通りである。
1)周囲温度 20± 1°Cの条件下、発熱組成物を非通気性の外袋封入状態で 1時間 放置する。
2)脚付き支持台の塩化ビュル製支持板 (厚さ 3mm X長さ縦 600mm X幅横 600m m)の裏面の中央部付近に成形型の抜き穴形状を覆うように磁石を設ける。
3)温度センサーを支持板中央部上に置く。
4)厚さ約 80 μ mの粘着剤層付き厚さ 25 ^ m X長さ 250mm X幅 200mmのポリエ チレンフィルムの中央がセンサーのところにくるようにして、粘着層を介して支持板に 貼り付ける。
5)外袋から発熱組成物を取り出す。
6)前記ポリエチレンフィルムの中央部上に、長さ 80mm X幅 50mm X高さ 3mmの 抜き穴を持つ長さ 250mm X幅 200mmの型板を置き、その抜き穴付近に試料を置 き、押し込み板を型板上に沿って動かし、試料を押し込みながら抜き穴へ入れ、型板 面に沿って、試料を押し込みながら擦り切り(型押し込み成形)、型内に試料を充填 する。次に、支持板下の磁石を除き、温度測定を開始する。
発熱温度の測定はデータコレクタを用い、測定タイミング 2秒で、 10分間温度測定 をし、 3分後の温度をもって、発熱立ち上がり性を判定する。
発熱体の発熱試験については、 JIS温度特性試験に従うものとする。
[0037] 前記酸化性ガス処理をした発熱組成物中の鉄粉又は活性鉄粉は、表面の少なくと も一部が鉄の酸素含有皮膜で被覆されて!、る。鉄の酸素含有皮膜の表面の被覆程 度は表面の少なくとも一部が被覆されていれば、制限はなぐ全面でもよい。本発明 の発熱組成物の場合、塩素イオン等の反応促進剤のイオンが発熱組成物に含まれ るので、塩素イオン等の反応促進剤のイオンによる腐食効果により、酸化皮膜の防食 効果がないので、一種の腐食である酸ィ匕反応が阻害されることはない。特に鉄の酸 素含有皮膜が塩素イオン等の反応促進剤のイオンと共存して作成される場合は、そ の効果は大である。上記鉄以外の金属が表面にある場合はそれら鉄以外の金属以 外の部分の少なくとも一部が鉄の酸素含有皮膜で被覆されて 、ればよ!/、。
本発明の鉄粉には、
1.全面 (均一)腐食、
2.孔食、すきま腐食、
3.応力腐食割れ、
等がおこり、等する領域が生じるとともに、凹凸やすき間も生ずる。このため、親水性 及び酸ィ匕触媒性 (FeO等)を自らの部分に持つことになると推定される。混合でなぐ 自らの部分に酸素含有皮膜を持つことが発熱組成物を製造する上に重要である。特 に鉄成分を反応促進剤、水を必須成分として酸化性ガスとの接触処理をした鉄成分 には、酸化物、水酸化物、塩素イオン、水素イオン等を主体とする反応活性部が生じ 、発熱反応性、親水性が向上し、発熱立ち上がり性、成形性が著しく向上すると思わ れる。
[0038] 上記 Bについて
前記所定量のウスタイトを含む鉄成分に含まれる FeO (ウスタイト)量は、鉄との X線 ピーク強度比で、通常は 2〜50重量%であり、好ましくは 2〜40重量%、より好ましく は 2〜30重量%であり、更に好ましくは 5〜30重量%であり、更に好ましくは 6〜30 重量%である。 50重量%を超えても発熱立ち上がり性はよいが、発熱持続時間が短 くなる。 2重量%未満であると発熱立ち上がり性が鈍くなる。
前記所定量の酸素含有皮膜やウスタイトを有する鉄粉の酸素含有皮膜の厚さゃゥ スタイト量は積層時の発熱組成物又は発熱組成物成形体に適用する。
[0039] 前記鉄粉が炭素成分を含有及び Z又は炭素成分で被覆された鉄粉も好ましぐ前 記炭素成分に対して、鉄成分が 50重量%以上であれば前記炭素成分の割合は制 限はないが、鉄粉表面が 0. 3〜3. 0重量%の導電性炭素質物質で部分的に被覆さ れた鉄粉は有用である。導電性炭素質物質は、カーボンブラック、活性炭、カーボン ナノチューブ、カーボンナノホーン、フラーレン等が一例として挙げられ、ドーピング によって導電性を有するものであってもよぐ鉄粉は、還元鉄粉、アトマイズ鉄粉、ス ポンジ鉄粉が一例として挙げられ、特に、導電性炭素質物質が活性炭で、鉄粉が還 元鉄粉である場合が発熱体には有用である。
また、導電性炭素質物質被覆を効率よく行うために鉄粉の流動性を害さない程度 に 0. 01〜0. 05重量0 /0の油分、例えばスピンドル油等を添カ卩してもよい。
[0040] 発熱体中の発熱組成物の易動水値及び混合物や発熱体中の発熱組成物中の鉄 粉の鉄酸化物皮膜の厚さ、ウスタイト量を測定する場合は、発熱組成物や混合物を 各項目に従って測定すればよい。即ち、
1)易動水値
発熱体から発熱組成物を取り出し、前記易動水値の測定法に従って測定する。
2)鉄粉の鉄酸化物皮膜の厚さ、ウスタイト量
窒素雰囲気下、窒素置換されたイオン交換水に発熱組成物、発熱組成物成形体、 発熱組成物圧縮体又は混合物を分散させ、磁石で鉄粉を分離し、窒素雰囲気下で 乾燥させたものを測定用試料とする。
[0041] 本発明の発熱組成物は、鉄粉、炭素成分、反応促進剤、水を必須成分とし、その 製造方法は、工業的に実用化が可能で、鉄粉と反応促進剤と水を必須成分とし、含 水量が 1〜20重量%で、余剰水量を示す易動水値が 0. 01未満の反応混合物を、 0 °C以上の環境下、酸化性ガスと接触させ、 10分以内に反応混合物の温度上昇分を c以上にし、発熱混合物を製造し、該発熱混合物を原料とし、発熱組成物とするか
、又は、その後、更に水分調整を行い発熱組成物とするか、炭素成分等の添加や水 分調整をし、発熱組成物としてもよい。
本発明は反応混合物の含水量を一定量以下、特に余剰水量を一定量以下にし、 酸化性接触処理をすることで、短時間に酸ィ匕性ガス接触処理が行えるようにした。余 剰水量の特定化と短時間処理により、発熱組成物の初期の発熱立ち上がりがよくな かったり、発熱保持時間が短くなつたりする等の酸化性ガス接触処理に起因する悪 影響が回避でき、工業的大量生産方法が確立できた。また、酸化性ガス接触処理中 は、攪拌等をしなくてもよいが、攪拌等をした方が酸ィ匕性ガス接触処理が確実に行え る。
ここで、酸化性ガスとの接触処理の反応混合物又は発熱混合物の状態は鉄粉が部 分酸化されれば、静置状態でも、移動状態でも、撹拌等による流動状態でも何れで もよぐ適宜選択すればよい。また、反応混合物、発熱混合物及び発熱組成物の各 成分の混合時並びに水分調整時の混合時の環境に制限はなぐ酸化性ガス雰囲気 中や酸ィ匕性ガスの吹き込み等が一例として挙げられる。
[0042] 水分調整とは発熱混合物を酸化性ガスと接触処理した後に水又反応促進剤の水 溶液をカ卩えることである。加える量には制限はないが、接触処理により、減量した重 量をカ卩えることや、所望の易動水値となる重量をカ卩えることが一例として挙げられる。 水分調整を行うかどうかは用途により適宜決めればよい。
[0043] 本発明の発熱組成物は、鉄粉、炭素成分、反応促進剤、水を必須成分とし、鉄粉、 反応促進剤及び水を必須成分とした反応混合物を酸化性ガスで接触処理したもの を原料にしたもので、通常は発熱混合物を水分調整したもので、発熱立ち上がりがよ ぐ適量の余剰水と相まって、優れた成形性を有する発熱組成物である。また、これ を使用して、使用時にすぐに温まる発熱体が製造できる。
したがって、少なくとも鉄粉は、更に炭素成分も含め、酸ィ匕性ガスの接触処理による 酸化の履歴を有し、これが優れた発熱立ち上がり性、発熱持続性及び優れた成形性 に深くかかわっていると思われる。
[0044] 本発明の酸化性ガスの接触処理をした鉄粉を使用すると、発熱組成物中の活性炭 等の炭素成分を、例えば、 20%以上減らすことができる。炭素成分添加量を減少す ることにより、コストが下がる。
[0045] 本発明の発熱混合物の製造方法によれば、優れた発熱立ち上がり性、優れた親水 性、優れた成形性を有する発熱組成物を得ることができる。易動水値 0. 01〜50、特 に 0. 01〜20との併用により著しく優れた成形性と発熱特性を併せ持つ発熱組成物 が得られる。
本発明の製造方法により製造された発熱組成物は発熱立ち上がり性が著しく向上 されているので、発熱組成物中の活性炭等の炭素成分の添加量を、例えば、 20% 以上減少でき、コストダウンに貢献できる。
また、親水性が著しく向上されているので、型を使った成形性が著しく向上するの で、成形後に発熱組成物成形体の周辺に発熱組成物の崩れ片をまき散らさないの で、シールが的確にでき、シール切れのない発熱体が製造できる。これにより、種々 の形状の発熱組成物成形体が製造でき、種々の形状の発熱体ができる。
[0046] また、発熱組成物の発熱立ち上がり性を向上させる意味から、下記のものが好まし い。
1)発熱組成物の必須成分又はそれに酸性物質やその他必要成分を加えたものを 酸化性ガスとの接触処理(自己発熱等)したもの、それを水分調整したもの又はその 他の成分を加え混合し、発熱組成物としたもの。
2)表面の少なくとも一部に酸ィ匕物等の酸素含有皮膜を有する下記いずれ力の活性 鉄粉を鉄粉として使用する。 a)鉄粉の表面についてオージ 電子分光法で求めた 3 nm以上の厚さの鉄の酸素含有皮膜を有する鉄粉。 b)ウスタイトの含有量が鉄との X 線ピーク強度比で、 2〜50重量%の鉄粉。
3)鉄粉の表面の少なくとも一部に酸ィ匕物等の酸素含有皮膜を有する活性鉄粉を酸 素含有皮膜を有しない鉄粉に混合したものを鉄粉とて使用する。この場合、活性鉄 粉が 60重量%以上で、活性鉄粉以外の鉄粉を 40重量%未満とした混合物とするこ とが好ましい。
[0047] 前記酸化性ガス処理をした発熱組成物又は活性鉄粉を含有する発熱組成物及び それを利用してものを長時間保存する場合は、水素発生抑制剤を組み合わせるのが 好ましい。これにより、水素発生が抑制され、保存時等に外袋の膨らみもなぐ発熱 立ち上がり性のよい発熱特性の優れた発熱体が得られるからである。
[0048] 更に所望により、前記発熱組成物は、保水剤、吸水性ポリマー、 pH調整剤、水素 発生抑制剤、骨材、繊維状物、機能性物質、界面活性剤、有機ケィ素化合物、焦電 物質、保湿剤、肥料成分、疎水性高分子化合物、発熱助剤、鉄以外の金属、酸化鉄 以外の金属酸化物、酸性物質又はこれらの混合物からなる付加的な成分から選ば れた少なくとも 1種をカ卩えてもよい。
[0049] また、本発明の発熱組成物等は、その配合割合は特に限定されるものではな 、が 、鉄粉 100重量部に対して、反応促進剤 1. 0〜50重量部であり、水は 1. 0〜60重 量部で、炭素成分 1. 0〜50重量部、保水剤 0. 01〜: LO重量部、吸水性ポリマー 0. 01〜20重量部、 pH調整剤 0. 01〜5重量部、水素発生抑制剤 0. 01〜12重量部、 発熱組成物として易動水値が 0. 01〜20になるように配合割合を選択するのが好ま しい。
更に、前記発熱組成物に下記のものを鉄粉に対して、下記の配合割合で加えても よい。即ち、鉄以外の金属 1. 0〜50重量部、酸化鉄以外の金属酸化物 1. 0〜50重 量部、界面活性剤 0. 01〜5重量部、疎水性高分子化合物、骨材、繊維状物、機能 性物質、有機ケィ素化合物、焦電物質はそれぞれ 0. 01〜10重量部、保湿剤、肥料 成分、発熱助剤はそれぞれ 0. 01〜: L0重量部、酸性物質 0. 01〜1重量部である。 尚、磁性体を更に配合するようにしてもよぐ配合割合は所望により適宜決めればよ い。
尚、この配合割合は、反応混合物、発熱混合物にも適用することができる。また、反 応混合物の易動水値は通常 0. 01未満である。
[0050] 前記水としては、適当なソースからのものでよい。その純度及び種類等には制限は ない。
水の含有量は、発熱組成物の場合、発熱組成物の 1〜70重量%、より好ましくは 1 〜60重量%、更に好ましくは 7〜60重量%、更に好ましくは 10〜50重量%、更に好 ましくは 20〜50重量%を含有する。
また、酸化性ガスによる接触処理をする前の反応混合物及び発熱混合物の場合、 反応混合物又は発熱混合物の 0. 5〜20重量%、より好ましくは 1〜20重量%、更に 好ましくは 3〜20重量%、更に好ましくは 4〜15重量%を含有する。
[0051] 前記炭素成分としては、炭素を成分としたものであれば制限はな 、。カーボンブラ ック、黒鈴、活性炭、カーボンナノチューブ、カーボンナノホーン、フラーレンなどが一 例として挙げられる。ドーピング等により導電性を有するものであってもよい。ココナツ の殻、木材、木炭、石炭、骨炭などから調製された活性炭や、動物産物、天然ガス、 脂肪、油及び樹脂のような他の原料力 調製されたものも一例として挙げられる。特 に、吸着保持能を有する活性炭が好ましい。
また、炭素成分としては、必ずしも単独で存在する必要はなぐ炭素成分を含有及 び Z又は炭素成分で被覆された鉄粉を発熱組成物に使用した場合、炭素成分が単 独に存在しなくても、前記発熱組成物は炭素成分を含むものとする。
[0052] 前記反応促進剤としては、発熱物質の反応促進ができるものであれば制限はない 。金属ハロゲン化物、硝酸塩、酢酸塩、炭酸塩、金属硫酸塩類等が一例として挙げら れる。金属ハロゲン化物としては、塩ィ匕ナトリウム、塩ィ匕カリウム、塩ィ匕マグネシウム、 塩ィ匕カルシウム、塩化第一鉄、塩化第二鉄、臭化ナトリウム、臭化カリウム、臭化第一 鉄、臭化第二鉄、沃化ナトリウム、沃化カリウム等が一例として挙げられる。硝酸塩と しては硝酸ナトリウム、硝酸カリウム等が一例として挙げられる。酢酸塩としては、酢酸 ナトリウム等が一例として挙げられる。炭酸塩としては、炭酸第一鉄等が一例として挙 げられる。金属硫酸塩類としては、硫酸カリウム、硫酸ナトリウム、硫酸第一鉄等が一 例として挙げられる。
前記保水剤としては、保水できれば制限はない。木粉、パルプ粉、活性炭、おがく ず、多くの綿毛を有する綿布、綿の短繊維、紙屑、植物質材料及び他の大きい毛細 管機能と親水性とを有する植物性多孔質材料、活性白土、ゼォライト等の含水ケィ 酸マグネシウム質粘土鉱物、パーライト、バーミキユライト、シリカ系多孔質物質、珊瑚 化石、火山灰系物質 (テラバルーン、シラスバルーン、タイセッバルーン等)等が一例 として挙げられる。尚、これら保水剤の保水力の増加、形状維持力の強化等のため、 焼成及び Z又は粉砕等の加工処理をしたものもよい。
前記吸水性ポリマーは、架橋構造を有し、かつ自重に対するイオン交換水の吸水 倍率が 3倍以上の榭脂であれば特に限定されるものではない。また、表面を架橋した ものでもよ 、。従来公知の吸水性ポリマーや市販のものも用いることもできる。
吸水性ポリマーとしては、ポリ (メタ)アクリル酸架橋体、ポリ (メタ)アクリル酸塩架橋 体、スルホン酸基を有するポリ(メタ)アクリル酸エステル架橋体、ポリオキシアルキレ ン基を有するポリ(メタ)アクリル酸エステル架橋体、ポリ(メタ)アクリルアミド架橋体、( メタ)アクリル酸塩と (メタ)アクリルアミドとの共重合架橋体、(メタ)アクリル酸ヒドロキシ アルキルと (メタ)アクリル酸塩との共重合架橋体、ポリジォキソラン架橋体、架橋ポリ エチレンォキシド、架橋ポリビニルピロリドン、スルホンィ匕ポリスチレン架橋体、架橋ポ リビュルピリジン、デンプン—ポリ(メタ)アクリロニトリルグラフト共重合体のケンィ匕物、 デンプンーポリ(メタ)アクリル酸 (塩)グラフト架橋共重合体、ポリビュルアルコールと 無水マレイン酸 (塩)との反応生成物、架橋ポリビュルアルコールスルホン酸塩、ポリ ビュルアルコール アクリル酸グラフト共重合体、ポリイソブチレンマレイン酸 (塩)架 橋重合体等が一例として挙げられる。これらは単独で用いてもよぐ 2種以上を併用し てもよい。
前記吸水性ポリマー中の生分解性を有する吸水性ポリマーとしては、生分解性を 有する吸水性ポリマーであれば制限はない。ポリエチレンォキシド架橋体、ポリビ- ルアルコール架橋体、カルボキシメチルセルロース架橋体、アルギン酸架橋体、澱粉 架橋体、ポリアミノ酸架橋体、ポリ乳酸架橋体などが一例として挙げられる。
前記 pH調整剤としては、 pHが調整できれば制限はない。アルカリ金属の弱酸塩、 水酸化物など、或いは、アルカリ土類金属の弱酸塩、水酸ィ匕物などがあり、 Na CO
2 3
、 NaHCO、 Na PO、 Na HPO、 Na P O 、 NaOHゝ KOH、 Ca (OH) 、 Mg (0
3 3 4 2 4 5 3 10 2
H) 、 Ca (PO ) などが一例として挙げられる。
2 3 4 2
前記水素発生抑制剤としては、水素の発生を抑制するものであれば制限はな 、。 ィォゥ化合物、酸化剤、アルカリ性物質、ィォゥ、アンチモン、セレン、リン及びテルル 力もなる群より選ばれた少なくとも 1種又は 2種以上力もなるものが一例として挙げら れる。尚、ィォゥ化合物としては、アルカリ金属やアルカリ土類金属との化合物で、硫 化カルシウム等の金属硫ィ匕物、亜硫酸ナトリウム等の金属亜硫酸塩ゃチォ硫酸ナトリ ゥム等金属チォ硫酸塩等が一例として挙げられる。
前記酸化剤としては、硝酸塩、酸化物、過酸化物、ハロゲン化酸素酸塩、過マンガ ン酸塩、クロム酸塩等が一例として挙げられる。
前記骨材としては、充填剤として有用であり、及び Z又は、発熱組成物の多孔質化 に有用であれば制限はない。化石サンゴ (サンゴ化石、風化造礁サンゴ等)、竹炭、 備長炭、シリカ—アルミナ粉、シリカ—マグネシア粉、カオリン、結晶セルロース、コロ ィダルシリカ、軽石、シリカゲル、シリカ粉、マイ力粉、クレー、タルク、合成樹脂の粉 末やペレット、発泡ポリエステル及びポリウレタンのような発泡合成樹脂、藻土、アルミ ナ、繊維素粉末等が一例として挙げられる。尚、カオリン及び結晶セルロースは、本 発明の発熱組成物には含まないものとする。
前記繊維状物としては、無機系の繊維状物及び Z又は有機系の繊維状物である、 ロックウール、ガラス繊維、カーボン繊維、金属繊維、パルプ、紙、不織布、織物、綿 や麻等の天然繊維、レーヨン等再生繊維、アセテート等の半合成繊維、合成繊維及 びそれらの粉砕品が一例として挙げられる。
前記機能性物質としては、機能を有する物質であれば制限はないが、マイナスィォ ン発生物質や遠赤外線放射物質等力 選ばれた少なくとも 1種が一例として挙げら れる。前記マイナスイオン発生物質としては、直接、間接を問わず、結果としてマイナ スイオンは発生すれば制限はない。トルマリン、化石サンゴ、花崗岩、プロピオン酸カ ルシゥムストロンチウムなどの共誘電体、ラジウム、ラドン等の放射性物質を含む鉱石 等が一例として挙げられる。前記遠赤外線放射物質としては、遠赤外線を放射するも のであれば制限はない。セラミック、アルミナ、ゼォライト、ジルコニウム、シリカ等が一 例として挙げられる。
前記界面活性剤としては、ァ-オン、カチオン、ノ-オン、両性イオンを含む界面活 性剤を包含する。特に、ノ-オン界面活性剤が好ましぐポリオキシエチレンアルキル エーテル、アルキルフエノール'エチレンオキサイド付加物、高級アルコール燐酸ェ ステル等が一例として挙げられる。
前記有機ケィ素化合物としては、少なくとも Si— O—R及び又は Si— N—R及び又 は Si— Rの結合を持つ化合物であれば制限はない。モノマー、低縮合物、ポリマー 等の形態で、メチルトリエトキシシラン等の有機シランィ匕合物、ジメチルシリコーンオイ ル、ポリオルガノシロキサン又はそれらを含有するシリコーン榭脂組成物等が一例と して挙げられる。
前記焦電物質としては、焦電性 (パイ口電気又はピロ電気)を有する物であれば制 限はない。電気石、ィキヨタ鉱物焦電性鉱物が一例として挙げられる。特に電気石の 一種であるトルマリンが好ましい。トルマリンとしては、ドラバイト(苦土電気石)、ショー ル (鉄電気石)、エルバイト(リチア電気石)等が挙げられる。
前記保湿剤としては、保湿ができれば制限はない。ヒアルロン酸、コラーゲン、ダリ セリン、尿素等が一例として挙げられる。
前記肥料成分としては、窒素、燐酸、カリウムの 3要素のうち少なくとも 1種を含む成 分であれば制限はない。骨粉、尿素、硫安、過燐酸石灰、塩化カリウム、硫酸カルシ ゥム等が一例として挙げられる。
前記疎水性高分子化合物としては、組成物中の水抜けをよくするため、水との接触 角が 40° 以上、より好ましくは 50° 以上、更に好ましくは 60° 以上の高分子化合物 であれば制限はない。形状も制限はなぐ粉体、顆粒、粒、錠等が一例として挙げら れる。ポリエチレンやポリプロピレン等のポリオレフイン、ポリエステル、ポリアミド等が 一例として挙げられる。
前記発熱助成剤としては、金属粉、金属塩、金属酸化物などがあり、 Cu、 Mn、 Cu CI、 FeCl、二酸ィ匕マンガン、酸化第二銅、四三酸ィ匕鉄等やそれらの混合物等が
2 2 一 例として挙げられる。
前記酸ィ匕鉄以外の金属酸ィ匕物としては、酸ィ匕性ガスによる鉄の酸ィ匕を阻害しなけ れば如何なるものでもよいが二酸ィ匕マンガン、酸化第 2銅等が一例として挙げられる 前記酸性物質としては、無機酸、有機酸、及び酸性塩の何れでもよぐ塩酸、硫酸 、硝酸、酢酸、シユウ酸、クェン酸、リンゴ酸、マレイン酸、クロル酢酸、塩化鉄、硫酸 鉄、シユウ酸鉄、クェン酸鉄、塩ィ匕アルミニウム、塩ィ匕アンモ-ゥム、次亜塩素酸等が 一例として挙げられる。
本発明の発熱体の製造方法としては、鉄粉、炭素成分、反応促進剤、水を必須成 分とする発熱組成物を成形した発熱組成物成形体を基材上に積層し、その上に粘 着剤をメルトブロー方式等で通気性粘着層として設け、更に基材及び発熱組成物成 形体上に被覆材を被せるか、又は、粘着剤をメルトブロー方式等で通気性粘着層と して設けた被覆材を被せ、仮着ロールにて、圧着し、基材及び発熱組成物成形体と 被覆材を仮着した後に、ヒートシールローラーにて、発熱組成物成形体の周縁部の 基材と被覆材をヒートシールし、ヒートシール部を形成することを特徴とする発熱体の 製造方法である。しかも前記の基材と被覆材のうち少なくとも一方が通気性を有する ものである。尚、被覆材のヒートシール部側に通気性粘着層を設けてもよいし、基材 上に設けられた発熱組成物成形体に対してメルトブロー法等により通気性粘着層を 設けてもよい。
また、前記仮着ロールが型ロール及び少なくとも表面が柔軟性を有する平ロールか ら選ばれた、少なくとも 1種であればよい。ロール表面は無地、模様、無地と模様の混 成の何れでもよい。 次に、仮着について、図 7〜図 13を参照して説明する。
図 7 (a) (b)に示すものは仮着板の例であり、凹部 17B内に発熱組成物成形体等が 収容され、 17Aで仮着部を形成するものである。
図 8 (a)は、 MD方向の仮着ロール 18の斜視図である。 (b)はその側面図である。 図示されるものでは、 18Aで仮着部が形成され、 18Bには発熱組成物成形体等が 収容される。
図 9 (a)は MD方向の基材の端部、又は MD方向の基材の端部及び発熱組成物成 形体頂部と被覆材とを仮着するロール 18の斜視図である。 (b)は MD方向の基材 4 の端部と被覆材 5とを仮着するロール 18と発熱体 1の一部を示す断面図である。 (c) は、 MD方向の基材の端部及び発熱組成物成形体 1A頂部と被覆材 5とを仮着する ロール 18と発熱体 1の一部を示す断面図である。 (d)は MD方向の基材の端部及び 発熱組成物成形体 7頂部と被覆材 5とを仮着した発熱体 1の一部を示す斜視図であ る。同図(a)で示すものでは、 18Aにより仮着部が形成される。尚、隣接する 18A、 1 8Aの間の空間には、発熱組成物成形体等が収容されることになるが、同図(b)で示 されるものでは、発熱組成物成形体を押圧しないものが示され、同図(c)では、この 部分を押圧するものが示されている。同図(d)で示されるものは、同図(c)で示される 仮着ロール 18により、基材の MD方向の端部が仮着された状態となっており、この後 に隣接する発熱組成物成形体 7の間の空間 7B及び前記仮着部を含めた発熱体周 辺部がヒートシールロールによりヒートシールされることになる。同図(e)で示されるも のは、仮着ロールにより発熱組成物成形体 7, 7の間に被覆材をたるませてあり、発 熱体周辺部が仮着された状態となっており、この後に隣接する発熱組成物成形体 7 , 7の間の空間部 7B及び前記仮着部を含めた発熱体周辺部がヒートシールされるこ とになる。このたるみにより、シール切れを防止することができる
図 10は、 TD方向の仮着ロール 18の斜視図であり、 18Aで仮着部が形成される。 図 11は、矩形の仮着部を有する仮着ロール 18の平面図であり、 18Aにより仮着部 が形成される。そして、このロール 18により押圧されたものは、図 12に示すように、仮 着部 7が形成され、仮着されて!ヽな 、部分 7Aとともに後からヒートシールされる。 また、図 13は、楕円の発熱部を有する仮着ロール 18の平面図である。 そして、図 14は、図 13で示される仮着ロールの楕円形の部分を正円形状に形成し た仮着ロールにより、仮着された発熱部内に円形の区分け部を有する発熱体であつ て、仮着後にヒートシール 8をした状態の平面図である。
[0056] 図 15〜図 17は発熱体の崩し及び Z又は開着の説明図である。
図 15は開着凸部 22Aを有し、崩し及び Z又は開着する開着板 22の断面図を示す 。この開着凸部 22Aにより、図 17に示すように、被覆材 5を介して発熱組成物成形体 等を押圧するものである。また、図 16は、図 15の開着凸部 22Cを円形状のロール表 面に設けた崩し及び Z又は開着する開着ロール 22の断面図を示す。
図 17 (a)は開着凸部 22Cを有し、崩し及び Z又は開着する開着ロール 22Bを用い た崩し及び開着を示す模式断面図であり、同図左方に示されるように発熱組成物成 形体 1Aは被覆材 5で被覆され、その周部に空間ができた状態となっている。また、被 覆材 5と基材 4とは一部においてヒートシール 8がされている。この状態で、開着凸部 22Cが被覆材 5の上面を押圧することにより、前記空間内に発熱組成物成形体が崩 れて収容され、同図右側のように発熱組成物成形体 3は、ヒートシール部 8まで押し 込まれる。尚、図 17 (b)は開着凸部 22Cを有しない例を示すものである。
[0057] これらシール工程後、カット工程等を経て発熱体を製造する。前記シール工程、力 ット工程等は従来方法、装置力も適宜選択して使用すればよい。尚、成形方式として 、抜き型を使用した型通し成形、抜き型铸込み成形や凹状の铸込み型を使用した铸 込み成形が一例として挙げられる。
[0058] この方法〖こよると、粘着剤層によって、基材と被覆材の周縁部を仮着後、ヒートシ一 ルするから、発熱組成物成形体がずれず、高速で複雑なヒートシールが可能になる
[0059] 成形方式による発熱体の製造方法は発熱部が 1個の従来型の発熱体と発熱部が 区分化された 2個以上の複数の区分発熱部からなる集合発熱部を有する発熱体が ある。それら発熱体の製造方法は型を使った成形法であれば如何なるものでもよ ヽ 力 型通し成形法ゃ铸込み成形法が一例として挙げられる。発熱部が 1個の場合は 1個の発熱部が成形できる抜き型や凹状の铸込み型を使用して成形すればよいし、 発熱部が区分化された 2個以上の複数の区分発熱部からなる集合発熱部からなる場 合は 2個以上の複数の区分発熱部力 なる集合発熱部が成形できる抜き型や凹状 の铸込み型を使用して成形すればよい。成形方式よる発熱体の製造は充填方式に 比べ、 3倍以上の速度で、発熱体を製造できるので、成形方式採用により、生産速度 向上による大幅なコストダウンが可能であるが、それに使用する発熱糸且成物は成形 性を備えた発熱組成物でなければ使用できな 、。
[0060] 型通し成形法とは抜き型を使用し、長尺の基材の上に型の抜き形状の発熱組成物 成形体を積層する成形機とそれを長尺の被覆材で覆い、目的とする区分け部分及 び基材と被覆材の周縁部をシール (ヒートシールや圧着シールや熱圧着シール等) できる回転式のシール器を用いて、そのシール器を介し、発熱組成物成形体の周縁 部及び区分け部分の必要箇所をヒートシールし、封入処理する連続形成方法などで ある。
[0061] 抜き型铸込み成形とは抜き型を使用し、抜き穴の一面をロール等で覆い、発熱組 成物を抜き穴に充填し、その後、他面に長尺の基材を当てて、前記基材上に発熱組 成物成形体を積層するものである。
[0062] 铸込み成形法とは凹部を有するドラム状回転体による凹部への充填と基材への移 設により、発熱組成物成形体を長尺基材上へ積層する成形機とそれを長尺の被覆 材で覆い、目的とする区分け部分及び基材と被覆材の周縁部をシール (ヒートシ一 ルゃ圧着シールや熱圧着シール等)できる回転式のシール器を用いて、そのシール 器を介し、活性発熱組成物成形体の周縁部及び区分け部分の必要箇所をヒートシ ールし、封入処理する連続形成方法などである。
[0063] また、前記発熱組成物を使用した発熱体としては、前記発熱組成物成形体を基材 と被覆材から構成される通気性包材間に積層して構成される発熱体がその一例とし て挙げられる。
[0064] 仮着は仮着板、仮着ロール等を用いて、基材及び Z又は発熱組成物及び Z又は 発熱組成物成形体と被覆剤で覆!ヽ、所望の領域を加圧や加熱加圧等により圧着す ることにより行うことができる。加熱加圧は、加熱プレス機、又は加熱ロールを通すこと により行うことができる。加圧や加熱加圧は平面或いは平ロールで行なうこともできる 1S シート状物の柔軟性を保持しながら形状固定効果を上げるために、加圧面や加 熱加圧面の少なくとも片面をエンボス面とすることが好ましい。エンボス目の形状とし ては、特に限定はないが、通常は波状、亀甲状、輪状、水玉状、網目模様状などで あり、加圧や加熱加圧時に発熱組成物粉体が非圧縮部によけやすい形状が好まし い。エンボス面の突起部面積比率に特に制限はないが、通常は 0. 5〜60. 0%であ る力 好ましくは 5. 0〜40. 0%である。また、仮着板及び仮着ロールの表面材質は 堅いものから柔軟性のある物まで使用できる。平面或いは平ロールの場合、好ましく は少なくとも表面は柔軟性があり、変形のできる表面がよい。例えばフェルト、不織布 、柔軟性ゴム等の素材が一例として挙げられる。
[0065] 加圧や加熱加圧の温度及び圧力条件としては、基材ゃ被覆材の材質、粘着剤ゃヒ ートシール材の軟ィ匕温度及び z又は融点によっても異なる力、例えば加熱ロールに よる場合、通常は温度 70〜300°C、線圧 0. l〜250kg/cm程度である。これによつ て積層物が加圧された状態で突起部に接する面のヒートシール材が溶融し形状固 定される。
[0066] また、粘着層の厚みは仮着とヒートシールができれば制限はな 、が、基材及び被覆 材のヒートシール層の厚みの合計厚みが粘着剤層の厚み以上であることが好ましい
[0067] 開着とは、基材と被覆材とが粘着層を介して粘着して!/ヽる状態を解除し、基材と被 覆材との粘着状態を開放することである。開着後、基材と被覆材間に介在物があるか どうかは問わない。例えば、基材と被覆材とが粘着層を介して仮着している仮着部の 一部をヒートシールし、その未ヒートシール部領域の基材と被覆材の間に発熱組成 物をその領域に移動させることにより、基材と被覆材との間が粘着状態にない状態に することが一例として挙げられる。
[0068] ヒートシール時に相溶性がよいとは、ヒートシールした時にヒートシールを阻害せず 、剥離が起こらないとを意味する。即ち、ヒートシール部は必ずしも粘着層とヒートシ ール層が完全融合する必要はなぐヒートシール後のヒートシール強度が圧着後の 圧着シール強度より高くなつていれば良ぐヒートシール部より空気が発熱組成物に 侵入しなければヒートシールされて 、るとする。
[0069] また、仮着後、仮着幅より狭いヒートシール幅でヒートシールし、その後、未ヒートシ 一ルの仮着部を開着することにより実質的に狭いヒートシール幅で、ヒートシールした ことになる。本発明により、極細幅のヒートシールが可能になった。特に区分発熱部と 区分け部 (ヒートシール部)とから構成される発熱部を有する発熱体では柔軟性と発 熱特性を両立させる場合に重要な構造であり、技術である。ヒートシール幅である区 分け部幅が大きいと区分発熱部間が拡がり、発熱部の温度むらが大きくなる。
本発明により、区分発熱部間を最少に下発熱部を有する発熱体が作成可能になり 、区分発熱部が大きく離れないので、区分発熱部間の保温効果が高まり、発熱時間 ち長くなる。
易動水値とは、発熱組成物中に存在する水分の中で発熱組成物外へ移動できる 余剰水分の量を示す値である。この易動水値について、図 20乃至図 24を使って説 明する。
図 20に示すように、中心点力 放射状に 45度間隔で 8本の線が書かれた NO. 2 (J IS P 3801 2 )の據紙 29を、図 21及び図 22【こ示すよう【こ、ステンレス板 33上【こ 置き、前記濾紙 29の中心に、内径 20mm X高さ 8mmの中空円筒状の穴 31を持つ 長さ 150mm X幅 100mmの型板 30を置き、その中空円筒状の穴 31付近に試料 32 を置き、押し込み板 26を型板 31上に沿って動かし、試料 32を押し込みながら中空 円筒状の穴 31へ入れ、型板 30面に沿って、試料を擦り切る(型押し込み成形)。 次に、図 23に示すように、前記穴 31を覆うように非吸水性の 70 mポリエチレンフ イルム 28を置き、更に、その上に、厚さ 5mm X長さ 150mm X幅 150mmのステンレ ス製平板 27を置き、発熱反応が起こらないようにして、 5分間保持する。
その後、図 24に示すように、濾紙 29を取り出し、放射状に書かれた線に沿って、水 又は水溶液の浸みだし軌跡を中空円筒の穴の縁である円周部 35から浸みだし先端 までの距離 34として、 mm単位で読み取る。同様にして、各線上カゝらその距離 34を 読み取り、合計 8個の値を得る。読み取った 8個の各値 (a, b, c, d, e, f, g, h)を測 定水分値とする。その 8個の測定水分値を算術平均したものをその試料の水分値 (m m)とする。
また、真の水分値を測定するための水分量は、内径 20mm X高さ 8mmの前記発 熱組成物等の重量に相当する前記発熱組成物等の配合水分量とし、その水分量に 相当する水のみで同様に測定し、同様に算出したものを真の水分値 (mm)とする。 水分値を真の水分値で除したものに 100をかけた値が易動水値である。
即ち、
易動水値 = [水分値 (mm) Z真の水分値 (mm) ] X 100
同一試料に対して、 5点測定し、その 5個の易動水値を平均し、その平均値をその 試料の易動水値とする。
本発明において、易動水値 0. 01〜20の余剰水量を有する発熱組成物を成形し た発熱組成物成形体は、基材に積層し、被覆材を被せ、少なくとも発熱組成物成形 体の周縁部をシールするだけで発熱体とすることができる。基材ゃ被覆材等の包材 に収納した後は、水分を添加する必要がない。従って、工程が著しく簡素化されるの で、コスト的にも優位性がある。
本発明での易動水値(0〜: L00)は、 0. 01〜20であり、より好ましくは 0. 01〜18で あり、更【こ好ましく ίま 0. 01〜15であり、更【こ好ましく ίま 0. 01〜13であり、更【こ好まし くは 1〜13であり、更に好ましくは 3〜13である。
本発明の余剰水を連結物質とした、成形性のある発熱組成物を成形した発熱組成 物成形体を用いた発熱体は、前記発熱組成物は凝集助剤、乾燥結合剤、凝集化剤 等を使用せず、易動水値 0. 01〜20で表される適量の余剰水を連結物質とするもの である。
発熱組成物中の余剰水は適量になると、組成物の成分中の親水基に対しては双 極子相互作用又は水素結合等によって水和し、また、疎水基の周辺においても高い 構造性を有して存在すると推定される。これにより砂ダンゴ状態になり、発熱組成物 の成形性が生ずると推定される。これは何らかの意味で連結物質である連結水であ る。これ以外に、自由に動ける自由水と呼べる状態の水分もあり、余剰水が増加すれ ば構造が軟化し、自由水が増加すると思われる。また、鉄粉が酸化反応を起こす支 配因子は、水の存在量と鉄粉表面への酸素供給量である。吸着水膜(100 Α未満) 程度では水分が十分でなぐ酸ィ匕速度は小さいといわれている。吸着膜が約 1 m 程度になると、水分量が十分になる。また、水膜の厚さが薄いため、鉄粉表面への酸 素の供給も容易となり、大きな酸化速度を示す。更に膜が厚くなり、吸着膜が: mを 超えると、酸素供給量が減少すると推定される。一定以上の成形性と酸化速度を示 す最適水分量を表す易動水値が 0. 01〜20であるとの知見を得、本発明を完成した 即ち、適量の余剰水を用いることにより、水分の表面張力で各成分粒子をつなぎ止 め、発熱組成物に成形性を生じさせ、水分が実質的にバリア層として機能しないため 、発熱組成物は空気と接触して発熱する。更に、活性鉄粉を用いた発熱組成物ゃ活 性発熱組成物を用いることにより発熱立ち上がり性の著しく優れ、また、成形性の高 い発熱組成物となる。また、成形積層方式により製造した発熱組成物成形体中の水 分を包材ゃ吸水性シートに移動させることなく発熱する。更に、発熱組成物成形体を シール部により区分けした区分発熱部を複数設けることにより、発熱体自身が柔軟性 を有し、人体各所や曲面を有する物体等の柔軟性の要求される箇所への装着に優 れ、使用感に優れた発熱体を提供できる。
また、前記基材、被覆材及び発熱組成物成形体において、少なくとも被覆材と発熱 組成物成形体とを粘着層を介して、仮着してから、発熱組成物成形体の周縁部及び 発熱体周辺部をヒートシールすることにより、ヒートシールの確実性が向上するので、 発熱体製造の高速ィヒ及びヒートシール幅の小幅化が図れる。
本発明の成形性とは抜き穴を有する抜き型を用いた型通し成形や、凹状の型を用 いた铸込み成形により、抜き穴や凹状型の形状で発熱組成物の成形体ができ、型離 れを含め成形後、発熱組成物成形体の成形形状を維持することを示すものである。 成形性があると発熱組成物成形体が少なくとも被覆材に覆われ、基材と被覆材の 間にシール部が形成されるまで、形状が維持されるので、所望の形状でその形状周 縁部でシールができ、シール部に発熱組成物の崩れ片である 、わゆるゴマが散在し ないので、シール切れがなくシールできる。ゴマの存在はシール不良の原因となる。 1)測定装置としては、
走行可能な無端状ベルトの上側にステンレス製成形型(中央部に縦 60mm X横 40 mmの四隅が R5に処理された抜き穴を有する厚さ 2mm X縦 200mm X横 200mm の板)と固定可能な擦り切り板を配置し、それと反対側である無端状ベルトの下側に 磁石(厚さ 12. 5mm X縦 24mm X横 24mmの磁石が並列に 2個)を配置する。 前記磁石は、擦り切り板及びその近傍の領域、且つ、成形型の抜き穴の進行方向 に対する最大断面の領域 (40mm)より大き ヽ領域を覆う。
2)測定法としては、
前記測定装置の無端状ベルトの上に厚さ lmm X縦 200mm X横 200mmのステ ンレス板を置き、その上に厚み 70 ^ m X縦 200mm X横 200mmのポリエチレンフィ ノレムを置き、更にその上にステンレス製成形型を置く。
その後、前記成形型の抜き穴の無端状ベルトの進行側端部から 50mmの位置に 擦り切り板を固定後、前記擦り切り板と前記抜き穴の間で擦り切り板付近に発熱組成 物 50gを置き、無端状ベルトを 1. 8mZminで動かし、発熱組成物を擦り切りながら 成形型の抜き穴へ充填する。成形型が擦り切り板を完全に通過後、無端状ベルトの 走行を停止する。次に成形型を外し、ポリエチレンフィルム上に積層された発熱組成 物成形体を観察する。
3)判定法としては、
前記発熱組成物成形体の周縁部において、最大長さが 800 mを超える発熱組 成物成形体の崩れ片がなぐ最大長さ 300から 800 mの発熱組成物成形体の崩 れ片が 5個以内である場合に、前記発熱組成物は成形性があるとする。
成形方式に使用する発熱組成物には必須の性質である。これがな!、と成形方式に よる発熱体の製造は不可能である。
本発明の発熱組成物は、耐圧縮性を有するもので、ここで耐圧縮性とは成形型に 収容した発熱組成物成形体を型内圧縮し、型厚みの 70%の厚みを有する発熱組成 物圧縮体が、圧縮前の発熱組成物成形体の発熱立ち上がり性 (発熱組成物の発熱 試験での試験開始後 1分と 3分での温度差)の 80%以上の発熱立ち上がり性を保持 することである。
ここで、耐圧縮性のための発熱立ち上がり性の測定法について説明する。
1.発熱組成物成形体、
1)脚付き支持台の塩化ビニル製支持板(厚さ 5mm X長さ 600mm X幅 600mm)の 裏面の中央部付近に成形型の抜き穴形状を覆うように磁石を設ける。
2)温度センサーを支持板の表面中央部上に置く。 3)厚さ約 80 μ mの粘着剤層付き厚さ 25 ^ m X長さ 250mm X幅 200mmのポリエ チレンフィルムの中央がセンサーのところにくるようにして、粘着層を介して支持板に 貼り付ける。
4)長さ 280mm X幅 150mm X厚さ 50 μ m〜 2mmの敷板上に長さ 230mm X幅 15 5mm X厚さ 25 μ m〜100 μ mのポリエチレンフィルムの一端が敷板の外側に約 20 mm出るようにし、且つ、その長さ方向は一端が敷板の一端とほぼ一致するようにポリ エチレンを設置する。
5)前記敷板上のポリエチレンフィルム上に長さ 80mm X幅 50mm X高さ 3mmの抜 き穴を持つ長さ 230mm X幅 120mm X厚さ 3mmの型板を置く。その場合、型板の 長さ方向の一端を敷板とポリエチレンフィルムが一致して置かれている一端に合わせ 、更に、幅方向において、ポリエチレンフィルムが敷板より外側にはみ出している側と 反対の端部より約 20mm中央部の位置に型板の幅の一端部がくるようにして、型板 をポリエチレンフィルム上に設置する。次に、支持板上に敷板とともに置く。
6)その抜き穴付近に試料を置き、押し込み板を型板上に沿って動かし、試料を押し 込みながら抜き穴へ入れ、型板面に沿って、試料を押し込みながら擦り切り(型押し 込み成形)、型内に試料を充填する。
7)支持板下の磁石を除き、更に、はみ出したポリエチレンフィルムの端部を押さえ、 敷板を除き、温度測定を開始する。
2.発熱組成物圧縮体
1)〜6)は、発熱組成物成形体の場合と同じである。
8)抜き穴と凹凸の関係で、ほぼぴったりと抜き穴に入る、厚さ 0. 9mmの凸部を有す る押し型を抜き穴に合わせておき、ロールプレスや板プレスにて圧縮して、厚さ 2. 1 mmの発熱組成物圧縮体を型内に作成する (型厚みの 70%に圧縮)。
9)支持板上に敷板とともに置き、支持板下の磁石を除き、更に、はみ出したポリェチ レンフィルムの端部を押さえ、敷板を除き、温度測定を開始する。
発熱温度の測定は、データコレクタを用い、測定タイミング 2秒で、 5分間温度測定 をし、 1分後と 3分後の温度差をもって耐圧縮性を判定する。
圧縮後の厚みは、好ましくは型厚みの 50〜99. 5%であり、より好ましくは 60〜99 . 5%であり、更に好ましくは 60〜95%である。
尚、本発明において、発熱組成物成形体には、発熱組成物圧縮体を含むものとす る。
本発明の成形性発熱組成物を構成する非水溶性固形成分の粒径は、発熱組成物 が成形性を有すれば制限はな!ヽ。発熱組成物を成形した発熱組成物成形体のサイ ズである縦、横、高さの何れかが小さくなる場合は粒径を小さくする方が成形性が向 上する。
更に、成形性発熱組成物を構成する固形成分の粒径を小さくすることは成形上好 ましい。成形性発熱組成物を構成する成分中、反応促進剤と水を除く非水溶性固形 成分の最大粒径は好ましくは 2. 5mm以下であり、より好ましくは 930 m以下であり 、更に好ましくは 500 /z m以下であり、更に好ましくは 300 /z m以下であり、更に好ま しくは 250 m以下であり、更に好ましくは 200 m以下であり、且つ、前記固形成分 の粒径の 80%以上が、通常 500 μ m以下で有り、好ましくは 300 μ m以下で有り、よ り好ましくは 250 /z m以下であり、更に好ましくは 200 /z m以下であり、更に好ましくは 150 m以下であり、更に好ましくは 100 μ m以下である。
尚、非水溶性固形成分の粒径とは、篩を使って分離し、前記篩を通過したものをそ の篩の口径力も算出した粒径である。即ち、篩を、上から 8、 12、 20、 32、 42、 60、 8 0、 100、 115、 150、 200、 250及び 280メッシュ等の箭並び【こ受 Mの jl匿【こ糸且み合 せる。最上段の 8メッシュ篩に非水溶性固形成分粒子を約 50g入れ、自動振盈機で 1 分間振盈させる。各篩及び受皿上の非水溶性固形成分粒子の重量を秤量し、その 合計を 100%として重量分率により粒径分布を求める。特定メッシュの櫛の下のすべ ての受け皿の合計が前記粒径分布の合計値である 100%になった場合、前記特定 メッシュの口径力も算出した大きさ( μ m)をもって、その非水溶性固形成分の粒径と する。尚、各メッシュ篩は他のメッシュ篩を組み合わせてもよい。ここで、 16メッシュパ スは粒径 lmm以下、 20メッシュパスは粒径 850 μ m以下、 48メッシュパスは粒径 30 0 μ m以下、 60メッシュパスは粒径 250 μ m以下、 65メッシュパスは粒径 200 μ m以 下、 80メッシュパスは粒径 180 m以下、 100メッシュパスは粒径 150 m以下、 11 5メッシュパスは粒径 120 /z m以下、 150メッシュパスは粒径 100 /z m以下、 250メッ シュパスは粒径 63 μ m以下とする。以下のメッシュも同様とする。
[0075] また、発熱組成物は、水分調整状態や余剰水量により、粉体又は粒状発熱組成物
(易動水値が 0. 01未満)、成形性発熱組成物(易動水値が 0. 01〜20)、シヤーべッ ト状発熱組成物 (易動水値が 20を超え 50以下)に分類することができる。易動水値 により分類された発熱組成物は前記通りである。
[0076] 発熱混合物とは、鉄粉と炭素成分と反応促進剤と水を必須成分とし、含水量が 1〜 30重量%で、易動水値が 0. 01未満の反応混合物を、流動下、酸化性ガス接触処 理し、接触後の反応混合物の温度が 40°C以上、 2秒以上保持されたものである。酸 化性ガス接触処理により、反応混合物に何らかの特性に変化を起こさせれば良ぐ 必ずしも鉄粉が酸ィ匕されている必要はないが、酸ィ匕されている方が好ましい。その場 合、鉄粉は活性鉄粉になって 、ることが好ま 、。
[0077] 活性発熱組成物とは下記の 1〜3の何れかに該当する発熱組成物である。
1.鉄粉、炭素成分、反応促進剤、水を必須成分とした反応混合物を酸化性ガスと接 触処理したもの、又は、その酸化性ガスと接触処理済み混合物を水又は反応促進剤 水溶液を加え、水分調整をしたものである。
2.鉄粉、炭素成分、反応促進剤、水を必須成分とし、含水量が 1〜30重量%で、易 動水値が 0. 01未満の反応混合物を酸化性ガスと接触処理し、接触時の反応混合 部の温度を 40°C以上、 2秒以上保持したもの、又は、その酸化性ガスと接触処理済 み混合物を水又は反応促進剤水溶液を加え、水分調整をしたものである。
3.鉄粉、炭素成分、反応促進剤、水を必須成分とし、鉄粉に活性鉄粉を 20〜: LOO %含有する鉄粉を使用したものである。
[0078] 成形性発熱組成物とは鉄粉、炭素成分、反応促進剤、水を必須成分として含有し 、凝集助剤及び凝集化剤及び集塊補助剤及び乾燥結合材及び乾燥結合剤及び乾 燥バインダ及び粘着素材及び増粘剤及び賦形剤を含有せず、易動水値 0. 01〜20 とする余剰水を有し、連結物質である余剰水による成形性を持ち、且つ発熱組成物 中の水分がバリア層として機能せず、空気と接触して発熱反応を起こす発熱組成物 である。
[0079] 前記少なくとも 1つの包材力 25°Cにおいて、好ましくは 400gZmm2以上の、より 好ましくは 500gZmm2以上、更に好ましくは lOOOgZmm2以上、更に好ましくは 20 OOgZmm2以上の破断強度を有し、更に、 90°Cにおいて、 100%以上の破断伸び を有する素材力もなることが好ましい。また、前記包材の厚みは前記破断伸びを確保 すれば制限はないが、好ましくは 10 μ m以上であり、より好ましくは 10〜500 μ mで あり、更【こ好ましく ίま 10〜300 /ζ πιであり、更【こ好ましく ίま 10〜250 /ζ πιであり、更【こ 好ましくは 50〜250 μ mである。
不織布と熱可塑性榭脂のフィルム状物との積層体が好ましい一例として挙げられる 少なくとも 1つの包材は繊維状物とフィルム状物との積層体で、ヒートシール可能で 、可撓性の素材である。また、少なくと少なくとも 25〜60°Cの環境において、 500gZ mm2以上の破断強度を有し、 90°Cにおいて、 100%以上の破断伸びを有する。本 発明の前記包材を使用した発熱体において、発熱組成物成形体又はその圧縮体で ある発熱紐成物圧縮体を含有する区分発熱部は剛軟度が高ぐその間に存在し、発 熱組成物成形体又はその圧緒体である発熱組成物圧縮体 (以下発熱組成物成形体 とという)を含有せず、ヒートシール部である区分け部は剛軟度が低い。前記区分発 熱部と区分け部からなる発熱部は約 0°C力 約 80°Cの間で、剛軟度を保つことがで きるので、区分け部がヒンジとして機能し、区分発熱部より優先的に曲がる。区分発 熱部と区分け部からなる発熱体は少なくとも常温から加熱時 (約 23〜約 50°C)まで、 区分け部がヒンジとして機能し、区分発熱部より優先的に曲がる。加熱時の良好な剛 軟度差は尚維持される。この結果、発熱体は区分発熱部の構造的支持を維持し、製 造中又は使用中十分な剛性を有する。一方、加熱された時の優れた剛軟度を尚維 持する。
基材又は被覆材の少なくとも 1種に前記包材を使用する発熱体は、発熱組成物成 形体を実質的に平面状の基材上に積層し、それに被覆材を被せ、発熱組成物成形 体の周縁部をヒートシールし、シール部である区分け部が形成される力 一例として 被覆材に前記包材を使用した場合、可撓性で、少なくとも 25〜60°Cにおいて、 25°C における破断強度が 500gZmm2以上あるので、橈むが、腰があって、発熱組成物 成形体を確実に覆うことができる。更にヒートシール時には、 90°Cにおいて 100%以 上の破断伸びを有するため、ヒートシール時の温度により被覆材は破断することなく 、シール切れもなぐ確実ヒートシール部を形成できる。従って、発熱組成物成形体を 含育する区分発熱部と含有しない区分け部からなる発熱部を有する本発明の発熱 、て、発熱組成物成形体又はその圧縮体である発熱組成物圧縮体を含有す る区分発熱部は剛軟度が高ぐその間に存在し、発熱組成物成形体又はその圧縮 体である発熱組成物圧縮体を含有せず、ヒートシール部である区分け部は剛軟度が 低い。前記区分発熱部と区分け部力もなる発熱部は約 0°C力も約 80°Cの間で、剛軟 度を保つことができるので、区分け部がヒンジとして機能し、区分発熱部より優先的に 曲がる。区分発熱部と区分け部からなる発熱体は少なくとも使用温度における変化 が少ない包材を使用しているため、使用時、包材による寸法変化が少なぐ剛軟度に よる構造的柔軟性が保持されるため、発熱体に安定した適度の柔軟性が保たれる。 また、少なくとも包材のどちらか一方が 90°Cの破断伸びが 100%以上の包材 (通常 は被覆材)を使用しているので、実質的に平面上の基材に積層された発熱物成形体 に実質的に平面上の被覆材を被せて発熱組成物成形体の周縁部をヒートシールす る場合、シール漏れを生ずるしわが発生せず、シール切れのないシール部が形成で きる。被覆材は一部に凹部を有していてもよい。
前記実施例で使用した通気性被覆材は、すべての実施例において、 25〜60°Cの 間で永久伸びが 0. 5%〜1. 7%である非弾性体であり、 25°Cにおいて、 400gZm m2以上の破断強度を有し、 90°Cにおいて、 20%以上の破断伸びを有した積層体で あった。
60°Cシール強度とは、シールされた対象試料のシール強度を測定する個所から 2 5mm X 250mmの試験片をとり、 60°C環境下で 5分放置後、 60°C環境下で、つか み、間隔 10mm、引張速度 300mmZminで最大強度を測定することを、 3個の試料 に対し行い、各々の最高値の平均値をいう。
ここで、 20°C環境下でのシール強度は、測定環境温度が 20°Cである以外は 60°C シール強度の条件と同じである。
前記仮着部のシール強度としては、 20°C環境下で、好ましくは 0. 5kgZ25mm以 上であり、より好ましくは 0. 5〜: LkgZ25mmであり、更に好ましくは 0. 5〜0. 9kg/ 25mmであり、更に好ましくは 0. 5〜0. 8kgZ25mmである。また、 60。Cシール強 度は、好ましくは 0. 8kgZ25mm未満であり、より好ましくは 0. 01〜0. 8kg/25m m未満であり、更に好ましくは 0. 01〜0. 5kgZ25mm未満であり、更に好ましくは 0 . 01〜0. 4kgZ25mm未満である。
仮着部の粘着層は粘着剤から構成され、 60°Cシール強度が 0. 01〜0. 8Kg/25 mmであり、基材と被覆材との間の発熱組成物成形体の動きを止めることができ、高 速ヒートシールを可能にする。更に、所望により、仮着時に加温をしてもよい。加温は 粘着剤層を形成するホットメルト系粘着剤中のベースポリマーの融点以下で加圧処 理されるのが好ましい。
仮着後ヒートシールしたヒートシール部の 20°C環境下でのシール強度は、好ましく は 1. OkgZ25mm以上であり、より好ましくは 1. 2kgZ25mm以上であり、更に好ま しくは 1. 5kgZ25mm以上であり、更に好ましくは 1. 5〜3kgZ25mmである。また 、 60°C環境下での 60°Cシール強度は、好ましくは 0. 8kgZ25mm以上であり、より 好ましくは 1. OkgZ25mm以上であり、更に好ましくは 1. 2kgZ25mm以上であり、 更に好ましくは 1. 5kgZ25mm以上である。
前記基材、被覆材を構成する素材としては、発熱組成物の収納袋として機能すれ ば制限はない。通常化学カイロや発熱体に使用されている素材が使用できる。例え ば素材として非通気性素材、通気性素材、吸水性素材、非吸水性素材、非伸長性 素材、伸長性素材、伸縮性素材、非伸縮性素材、発泡素材、非発泡素材、非ヒート シール性素材、ヒートシール性素材等が一例として挙げられ、フィルム、シート、不織 布、織布等及びそれらの複合体の所望の形態で、所望の用途により適宜使用できる 通常、基材は非通気性フィルム又はシートからなり、被覆材は通気性フィルム又は シート又は不織布力もなる力 逆でもかまわないし、双方が通気性を有していてもよ い。また、敷材は通気性や非通気性は適宜使い分ければよい。
前記収納袋の包材は単層構造でもよぐ多層構造でもよぐその構造には制限はな い。また、包材は少なくとも基材及び被覆材カゝらなるが、発熱組成物成形体を積層す る包材が基材であり、発熱組成物成形体に被せる包材が被覆材であり、通気性のあ りなしは関係ない。一例として、非通気性の包材を基材、通気性性包材を被覆材とし て、多層構造の例を説明すれば、基材が A層 ZB層又は A層 ZB層 ZC層又は A層 ZB層 ZC層 ZD層力 なるものや、被覆材カ 層 ZG層又は E層 ZF層 ZG層又は F層 ZH層 ZG層力もなるものが一例として挙げられる。 A層は、ポリエチレン等熱可 塑性榭脂フィルム、ポリエチレンや EVA等のヒートシール層や、吸水性紙類等、 B層 はナイロン等の熱可塑性榭脂の不織布、非吸水性紙類、吸水性紙類、ポリエチレン フィルム、ポリプロピレンフィルム、ポリエステルフィルム、ポリアミド(ナイロン等)フィル ム等熱可塑性榭脂フィルム、非吸水性紙類や吸水性紙類等の芯材等、 C層は粘着 剤層、非吸水性紙類、吸水性紙類、ポリエチレン等熱可塑性榭脂フィルム、滑り止め 層、ポリエステルやナイロン等の熱可塑性榭脂の不織布等、 D層はセパレータ、ポリ エチレン等熱可塑性榭脂フィルム、不織布等、 E層はヒートシール層等、 F層はポリエ チレン等熱可塑性榭脂製多孔質フィルムや穿孔フィルム等、ポリエチレン等熱可塑 性榭脂製フィルム、非吸水性紙類、吸水性紙類等、 G層はポリエステルやナイロン等 の熱可塑性榭脂の不織布等、 H層は非吸水性紙類、吸水性紙類等である。例えば、 基材又は被覆材の例としては、メタ口セン触媒使用のポリエチレン製ヒートシール層 /ポリプロピレンフィルム、ポリエチレン製ヒートシール層/ポリプロピレンフィルム、 E
VA製ヒートシール層 Zポリプロピレンフィルム、 EVA製ヒートシール層 Zポリプロピレ ンフィルム Z粘着剤層 Zセパレータ、 EVA製ヒートシール層 Zポリエチレンフィルム Zナイロン不織布、不織布/多孔質フィルム、メタ口セン触媒使用のポリエチレン製ヒ ートシール層 Zポリエチレンフィルム Zナイロン不織布、メタ口セン触媒使用のポリエ チレン製ヒートシール層 Zポリプロピレンフィルム Zポリプロピレン不織布、不織布 Z ( 紙及び Z又は穿孔 (針、レーザー)フィルム) Z多孔質フィルム、不織布 Z (紙及び Z 又は多孔質フィルム) Z穿孔 (針、レーザー)フィルム、不織布 Z (紙及び Z又は多孔 質フィルム) z不織布等が一例として挙げられる。各層の積層方法については制限 はなぐ各層の直接積層でもよぐ各層は通気性粘着剤層やラミネート剤層を介して 積層してもよぐ熱溶融押出し等でラミネートをしてもよい。また、本発明ではメタロセ ン触媒を使用して製造したポリエチレンもポリエチレンに含む。
例えば、不織布、多孔質フィルム等の前記素材を通気性接着層を介して積層する 場合、前記通気性接着層の形成は、接着性物質を加熱溶融下に熱風を介し吹付け 展開するカーテンスプレー方式やメルトブロー方式やスロットスプレー方式などの適 宜な方式で接着性物質を繊維化して多孔質フィルムや通気性基材ゃセパレータ等 からなる適宜な支持基材上に展開堆積させ多孔状態の接着層とする方法などが一 例として挙げられる。
前記基材、被覆材、敷材及びそれらを構成する素材の厚さとしては、用途によって 大きく異なる力 制限はない。通常は5〜5000 111、好ましくは 10〜500 /ζ πι、より 好ましくは 20〜250 μ mである。
前記非通気性素材としては、非通気性があれば制限はない。ポリエチレン、ポリプ ロピレン、ナイロン、アクリル、ポリエステル、ポリビニルアルコール、エチレン一酢酸ビ -ル共重合体等ポリマー力もなるフィルム、シート、塗布物及びそれらに酸化ケィ素 等の金属(半導体も含む)化合物を積層したものやそれらを使った複合素材が一例と して挙げられる。
例えば、前記非通気性素材の中で、非通気性の高いフィルムとしては、非通気性 素材フィルム上に半導体を含む金属やその化合物の薄膜を単層又は多層に設けた ものが一例として挙げられる。例えば、半導体を含む金属としては、ケィ素、アルミ- ゥム等及びこれら金属を含む合金や混合物等が一例として挙げられる。半導体を含 む金属化合物としては、上記金属又は合金や混合物の酸化物、窒化物及び酸窒化 物が一例として挙げられる。例えば、酸化ケィ素層、酸ィ匕アルミニウム層、酸窒化ケィ 素層やそれらの任意層をポリエステル製フィルムに積層したものや、更に、それに延 伸ポリオレフインフィルム(例えば 2軸延伸ポリプロピレンフィルム)を積層したものが一 例として挙げられる。
前記通気性素材としては、通気性があれば制限はない。例えば、多孔質フィルム及 び穿孔フィルム等の通気性フィルムや紙類、不織布等の単独で通気性を有するもの 、紙類及びそれに通気性フィルムゃ不織布等を少なくとも 1種以上積層し通気性を 持たせたもの、不織布にポリエチレンフィルムがラミネートされた非通気性の包材に 針などを用いて微細な孔を設けて通気性を持たせたもの、繊維が積層され熱圧着さ れて通気性を制御された不織布、多孔質フィルム、或いは、多孔質フィルムに不織布 を貼り合わせたもの等が一例として挙げられる。ここで、穿孔フィルムとはポリエチレン フィルムなどの非通気性フィルムに針で微細な孔を設けて通気性を持たせたもので ある。
通気性としては、発熱が維持できれば制限はない。通常の発熱に使用される場合、 通気性はリツシ一法 (Lyssy法)による透湿度力 通常は 50〜: LO, 000g/mV24h rであり、好ましくは 70〜5, OOOgZmソ 24hrであり、より好ましくは 100〜2, OOOg Zm2Z24hr、更に好ましくは 100〜700gZm2Z24hrである。
この透湿度が、 50未満であると発熱量が少なくなり、十分な温熱効果が得られない ので好ましくなぐ一方、 10, 000gZm2Z24hrを越えると発熱温度が高くなつて安 全性に問題が生じる虞れが生じるので好ましくない。ただし、用途によっては 10, 00 0gZm2Z24hrを越えたり、場合によっては開放系に近い透湿度で使用することも制 限されない。
前記伸縮性包材としては、伸縮性があれば、特に限定されるものではない。即ち、 全体として、伸縮性があればよぐ単品でも、伸縮性基材同士又は伸縮性基材と非 伸縮性基材との組み合わせによる複合品でもよ 、。
例えば、天然ゴム、再生ゴム、合成ゴム、エラストマ一、伸縮性形状記憶ポリマー等 の単品やこれらの混合物やこれらと非伸縮性素材との混合品、混抄品ゃこれらの組 み合わせ品から構成される織物、フィルム、糸、ストランド、リボン、テープ、スクリム構 造弹性状フィルム等が一例として挙げられる。
前記多孔質フィルムとしては、制限はないが、ポリエチレン、直鎖状低密度ポリェチ レンやポリプロピレン等のポリオレフイン系榭脂、ポリテトラフルォロエチレン等のフッ 素系榭脂等と充填材カもなるフィルムを延伸した多孔質フィルムで、適宜選択するこ とがでさる。
前記不織布としては、制限はないが、レーヨン、ナイロン (ポリアミド)、ポリエステル、 アクリル、ポリプロピレン、ビニロン、ポリエチレン、ポリウレタン、キュプラ、綿、セル口 ース、ノルプ等の材質力もなる単繊維又は複合繊維の単一不織布又はそれら繊維 の混抄又は累積繊維層の積層が用いられる。また、製法的には乾式不織布、湿式不 織布、スパンボンド、スパンレース等を使用することができる。芯鞘構造の複合繊維か らなる不織布でもよい。肌と接する面の不織布は起毛の(毛羽立てた)不織布が好ま しい。また、伸縮性不織布や非伸縮性不織布も使用できる。
前記吸水性素材としては、吸水性を有するフィルム状な 、しシート状のものであれ ば特に限定されるものではな 、。
この吸水性素材としては、その素材自体が吸水性を有する力否力を問わず、結果と して吸水性を有するものであれば特に限定されるものではない。
具体的には、例えば、吸水性を有する発泡フィルム 'シート(吸水性発泡ポリウレタ ン等の発泡体)や紙類、吸水性を有する繊維で形成された不織布や織布、或いは、 吸水性を有する繊維を含む不織布や織布、又は吸水性の多孔質フィルム ·シートな どの吸水材の他、吸水性の有無を問わず、発泡フィルム ·シート、不織布、織布又は 多孔質フィルム 'シートに、吸水剤を含有、含浸、練り込み、転写又は担持させて吸 水性を付与ないし増大させたり、吸水性の有無を問わず、発泡フィルム 'シート、紙類 、不織布、織布又は多孔質フィルム 'シートに、本発明物の平面形状に切断した吸水 性の発泡フィルム 'シート、紙類、不織布、織布又は多孔質フィルム 'シート等の吸水 性素材を本発明物の片面又は両面に当てがつて吸水性が付与されたものが挙げら れる。
特に、本発明の発熱体において、皮膚と接触する面は、汗などに対する吸水性な ど快適な面とするために、発汗した場合には汗が吸収されるように、皮膚と接触する 面の包材を、保水率 20%以上の吸水性の繊維を主成分とする不織布又は織布を用 Vヽた包装材で構成されることが好ま U、。保水率 20%以上の吸水性の繊維としては
、綿、絹、麻、ウール、ポリアクリロニトリル系合成繊維、ポリアミド系合成繊維、ポリビ -ルアルコール系合成繊維、アセテート繊維、トリアセテート繊維、再生繊維等を例 示することができる。更に、吸水性が優れた不織布として、高吸水性ポリマーを不織 布に保持させた不織布等を用いることもできる。尚、これらの繊維を主成分とする不 織布又は織布は、皮膚に対して感触が比較的良好なものでもある。
更に、前記包材に、汗の吸収性の高い高吸水性の包装材を用いることもできる。例 えば、表面が高吸水性榭脂で被覆された繊維を含む不織布、中空状で表面に多数 の微細孔を有する繊維を含む不織布、断面形状が多数の嚢もしくは複層状等を形 成することによって毛細管作用を持たせた繊維を含む不織布などが用いられる。 このほか、非粘着面の包装材に、吸水性無機化合物を保持させた不織布、或いは 、フィルムを用いることもできる。例えば、不織布に珪藻土、ゼォライト、シリカゲルなど の粉末を保持させた不織布、シリカ、アルミナ等の粉末をポリエチレンなどの合成榭 脂に比較的多量に保持させたフィルム等も用いることができる。
固定手段としては、関節周囲部用温熱包装体や発熱部を有するものを所要部に固 定できる固定能力を有するものであれば制限はない。
前記固定手段として一般的に採用されている、粘着剤層、鍵ホック、ホックボタン、 ベルク口等の面ファスナー、マグネット、バンド、ひも等及びそれらを組み合わせたも のを任意に使用できる。
尚、バンドの場合、面ファスナーと粘着剤層との組み合わせで調整用固定手段を 更に構成しても構わない。
ここで、面ファスナーとは、マジックテープ (登録商標)、マジックファスナー(登録商 標)、ベルク口ファスナー、フックアンドループテープ等の商品名で知られているもの で、雌ファスナーであるループと前記雌ファスナー締結し得る雄ファスナーであるフッ クとの組み合わせで締結機能を有するものである。前記ループ機能を有するものとし て、不織布や、毛羽立ち、わなを有する糸の織布等あるが、バンドを形成する芯材の 表面にこれらループ機能 (雌ファスナー機能)を有するものを被覆してもよいが、これ 自体でバンドを構成してもよ!/、。雄ファスナー部材であるフック部材は特に制限はな いが、ポリエチレン、ポリプロピレン等のポリオレフイン系榭脂ゃポリアミド、ポリエステ ル等力 形成されたものがー例として挙げられる。フックの形状は特に限定されるも のではないが、断面が I字型、逆 L字型、 字型、いわゆるきのこ型等の形状のフッ クがループに引つかかり易ぐかつ肌に極度の刺激感を与えない点で好ましい。尚、 フックがファスユングテープの全面積に粘着されていてもよぐ更にテープ基体を省 略してフックのみで、ファスユングテープとして使用してもよい。
前記粘着剤層は、保水剤、吸水性ポリマー、 pH調整剤、界面活性剤、有機ケィ素 化合物、疎水性高分子化合物、焦電物質、酸化防止剤、骨材、繊維状物、保湿剤、 機能性物質又はこれらの混合物力 なる付加的な成分力 選ばれた少なくとも 1種を 含有してちょい。
本発明の粘着剤は、非親水性粘着剤、混合粘着剤、親水性粘着剤 (ジエル等)に 分類される。
前記粘着剤層を構成する粘着剤としては、皮膚や衣服に付着するに必要な粘着力 を有するものであれば、制限はなぐ溶剤系、水性系、ェマルジヨン型、ホットメルト型 、反応性、感圧系、或いは、非親水性粘着剤、親水性粘着剤などの各種形態が用い られる。
前記粘着剤層は、前記非親水性粘着剤から構成される非親水性粘着剤 1層と前記 非親水性粘着剤から構成される非親水性粘着剤層とがある。
前記非親水性粘着剤層が吸水性ポリマーや保水剤を含有して吸水性を改良したも のは非親水性粘着剤層として扱う。
前記親水性粘着剤層と基材又は被覆材との間にホットメルト系の粘着剤を設けても よい。
また、前記親水性粘着剤を関節周囲部用温熱包装体に設ける場合制限はなぐ関 節周囲部用温熱包装体のシール処理後に親水性粘着剤層を関節周囲部用温熱包 装体に設けてもよい。
また、粘着剤層としては、通気性を有するものであっても、通気性を有しないもので あってもよい。用途に応じて適宜選択をすればよい。通気性としては、全体として通 気性があればよい。例えば、部分的に粘着剤が存在し、部分的に粘着剤の存在しな い部分があり、領域全体として通気性がある粘着剤層が一例として挙げられる。 通気性の基材及び Z又は被覆材に粘着剤をそのまま層状に積層するにあたり、そ の通気性を維持する方法としては、例えば、粘着剤を印刷、或いは、転写により、粘 着剤層を部分的に積層し、その非積層部を通気部とする方法と、粘着剤を糸状に円 を描きながら、一方向に移動させたり、ジグザグに移動させたりするなど適宜二次元 方向に運行させ、その糸状の粘着剤の隙間が通気性ないし透湿性を推持させたり、 粘着剤を発泡させる方法やメルトブロー方式で形成された層とがー例として挙げられ る。
非親水性粘着剤層を構成する粘着剤はアクリル系粘着剤、酢酸ビニル系粘着剤 ( 酢酸ビュル榭脂系ェマルジヨン、エチレン—酢酸ビュル榭脂系ホットメルト粘着剤)、 ポリビニルアルコール系粘着剤、ポリビニルァセタール系粘着剤、塩化ビニル系粘着 剤、ポリアミド系粘着剤、ポリエチレン系粘着剤、セルロース系粘着剤、クロ口プレン( ネオプレン)系粘着剤、二トリルゴム系粘着剤、ポリサルファイド系粘着剤、プチルゴ ム系粘着剤、シリコーンゴム系粘着剤、スチレン系粘着剤(例えば、スチレン系ホット メルト粘着剤)、ゴム系粘着剤、シリコーン系粘着剤等が一例として挙げられる。これ らのうち、粘着力が高ぐ安価で、長期安定性が良ぐしかも温熱を与えても粘着力の 低下が少ない等の理由より、ゴム系粘着剤、アクリル系粘着剤又はホットメルト系高分 子物質を含有する粘着剤が望まし ヽ。
前記粘着剤に前記ベースポリマーの他に、所望により、他の成分、例えば、ロジン 類、クマロンインデン榭脂、水添石油榭脂、無水マレイン酸変性ロジン、ロジン誘導 体類又は C5系石油榭脂等の脂環族系石油樹脂に代表される石油榭脂類等の粘着 付与剤やテルペンフエノール系榭脂、ロジンフエノール系榭脂、アルキルフエノール 系榭脂等のフエノール系粘着付与剤 (特にァ-リン点が 50°C以下の粘着付与剤)、 ヤシ油、ヒマシ油、ォリーブ油、ツバキ油、流動パラフィン等の軟化剤、軟化剤、老化 防止剤、充填剤、骨材、粘着調整剤、粘着改良剤、着色剤、消泡剤、増粘剤、改質 剤等が適宜配合し、ナイロン製衣類や混紡布製衣類への粘着性向上等の性能向上 をしてもよい。
前記ホットメルト系の粘着剤としては、粘着性を付与した公知のホットメルト系粘着 剤が挙げられ、具体的には、例えば、 SIS, SBS、 SEBS又は SIPS等の A— B— A 型ブロック共重合体をベースポリマーとするスチレン系粘着剤、塩ィ匕ビュル榭脂をべ ースポリマーとする塩化ビュル系粘着剤、ポリエステルをベースポリマーとするポリェ ステル系粘着剤、ポリアミドをベースポリマーとするポリアミド系粘着剤、アクリル榭脂 をベースポリマーとするアクリル系粘着剤、ポリエチレン、超低密度ポリエチレン、ポリ プロピレン、エチレン αォレフィン、エチレン 酢酸ビュル共重合体等のポリオレフ インをベースポリマーとするポリオレフイン系粘着剤、 1, 2—ポリブタジエンをベース ポリマーとする 1, 2—ポリブタジエン系粘着剤又はポリウレタンをベースポリマーとす るポリウレタン系粘着剤、或いは、接着性の改善や安定性等を変えたこれらの変性体 力もなる粘着剤、若しくはこれらの粘着剤の 2種以上の混合物が挙げられる。また、発 泡させた粘着剤から構成される粘着剤層や粘着剤が架橋されたものから構成される 粘着剤層も使用できる。
前記非芳香族系ホットメルト系粘着剤とは、ベースポリマーが芳香族環を含有しな いホットメルト系粘着剤であれば、制限はない。ォレフィン系ホットメルト系粘着剤ゃァ クリル系ホットメルト系粘着剤等が一例として挙げられる。芳香族環を含有しな 、ベー スポリマーである非芳香族系ポリマーとは、ォレフィンやジェン等のポリマーゃコポリ マーが挙げられる。一例としてォレフィン系ポリマーが挙げられる。ォレフィン系ポリマ 一は、エチレン、 αォレフィンの重合体又は共重合体である。また、他のモノマーとし てブタジエン、イソプレン等のジェンも加えたものもよ 、。
αォレフインとしては、二重結合が末端にあるモノマーであれば制限はなぐプロピ レン、ブテン、ヘプテン、へキセン、オタテン等が一例として挙げられる。
芳香族系ホットメルト系粘着剤とは、ベースポリマーが芳香族環を含有するホットメ ルト系粘着剤で、 Α—Β— Α型ブロック共重合体に代表されるスチレン系のホットメル ト系粘着剤等が一例として挙げられる。
前記 A—B— A型ブロック共重合体において、 Aブロックはスチレン、メチルスチレン 等のモノビニル置換芳香族化合物 Aで、非弾性重合体ブロックであり、 Bブロックはブ タジェン、イソプレン等の共役ジェンの弾性重合体ブロックであり、具体的には、例え ば、スチレン ブタジエン スチレンブロック共重合体(SBS)、スチレン イソプレン スチレンブロック共重合体(SIS)、又はこれらの水添タイプ(SEBS、 SIPS)等が挙 げられ、また、これらを混合して用いてもよい。
上記非親水性粘着剤層の水分増加による粘着力低下防止対策として上記非親水 性粘着剤に更に吸水性ポリマーが配合された粘着剤層も使用できる。
前記親水性粘着剤層を構成する親水性粘着剤としては、親水性ポリマーや水溶性 ポリマーを主成分として、粘着性を有し、粘着剤として親水性であれば特に制限はな い。
前記親水性粘着剤の構成成分としては、ポリアクリル酸等の親水性ポリマーやポリ アクリル酸ナトリウムやポリビニルピロリドン等の水溶性ポリマー、乾燥水酸化アルミ- ゥムゃメタケイ酸アルミン酸金属塩等の架橋剤類、グリセリンやプロピレングリコール 等の軟化剤類、また、軽質流動パラフィンゃポリブテン等の高級炭化水素やミリスチ ン酸イソプロピル等の一級アルコール脂肪酸エステル、シリコーン油等の含ケィ素化 合物、モノグリセリド等の脂肪酸グリセリンエステル、ォリーブ油等の植物油等の油性 成分、また、ノ ラオキシ安息香酸メチルやパラォキシ安息香酸プロピル等の防腐剤、 N—メチル—2—ピロリドン等の溶解剤、カルボキシメチルセルロース等の増粘剤、ポ リオキシエチレン硬化ヒマシ油ゃソルビタン脂肪酸エステル等の界面活性剤、酒石酸 等のォキシカルボン酸、軽質無水ケィ酸、吸水性ポリマー、カオリン等の賦形剤、 D -ソルビトール等の保湿剤、ェデト酸ナトリウムやパラォキシ安息香酸エステルや酒 石酸等の安定化剤、架橋型吸水性ポリマー、ホウ酸等のホウ素化合物、水等が一例 として挙げられる。また、これらの任意の組み合わせ力 構成される。
仮着シール部は、粘着層を介して形成されるが、粘着層を構成する粘着剤は、常 温でタックがある高分子組成物で形成された層で、仮着後ヒートシールができれば限 定はない。
また、仮着に使用される粘着層を構成する粘着剤は前記粘着剤層の粘着剤が使 用できる。非親水性の粘着剤が好ましい。粘着層を構成する粘着剤はヒートシールを 構成するヒートシール材と相溶性が良ぐ粘着剤のベースポリマーの融点はヒートシ 一ル材の融点以下が好ましい。特に、ホットメルト系接着剤にはホットメルト系粘着剤 が好ましい。また、ヒートシール材がォレフイン系の素材である場合は粘着剤としては 、ォレフィン系の粘着剤が好ま 、一例として挙げられる。
通気調整材を固定する接着層は通常使用されている接着剤や粘着剤から構成さ れる。特に粘着剤は有用であり、前記粘着剤層を構成する粘着剤が使用できる。 また、接着層の設ける方法については通気調整材が固定できれば制限はなぐ全 面に設けても、部分的や間欠的に設けてもよい。網状、ストライプ状、ドット状、帯状 等、各種形状が一例として挙げられる。
また、粘着剤層を親水性粘着剤層にした場合、前記親水性粘着剤層と発熱組成物 成形体との間に水分保持力の差がある場合にはその間にある基材等の包材を介し て、水分の移動が起こり、双方に取って、不都合が起こる。特に保存中に多く起こる。 これを防止するために、これらの間に介在する包材は、透湿度が、少なくとも、リツシ 一法 (Lyssy法)による透湿度で、 2g/m2/day以下であることが好ましい。これを使 用することにより、発熱体を非通気性収納袋である外袋に収納し保存する場合、水分 移動が防げる。
粘着剤層に親水性粘着剤層を使用した場合、発熱組成物成形体と親水性粘着剤 層との間に設けられた防湿性包装材の透湿度は、発熱性能に影響しない範囲で、水 分の移動が防止できれば制限はないが、リツシ一法 (Lyssy法)による透湿度で、通 常、 2gZm2Zday以下であり、好ましくは 1. 0gZm2Zday以下であり、より好ましく は 0. 5gZm2Zday以下であり、更に好ましくは 0. 01〜0. 5gZm2Zdayである。こ こで、大気圧下、 40°C、 90%RHという条件下の値である。尚、前記防湿性包装材は 基材ゃ被覆材としても使用できるし、単独で基材ゃ被覆材等に積層してもょ 、。 前記防湿性包材は、発熱組成物成形体と親水性粘着剤層の間の水分移動が防止 できれば、制限はないが、金属蒸着フィルム、金属酸化物の蒸着フィルム、金属箔ラ ミネートフィルム、 EVOH (エチレン 'ビュルアルコール共重合物、エチレン '酢酸ビ- ル共重合体鹼化物)系フィルム、二軸延伸ポリビュルアルコールフィルム、ポリ塩化ビ ユリデンコートフィルム、ポリ塩ィ匕ビユリデンをポリプロピレン等の基材フィルムに塗布 してなるポリ塩ィ匕ビユリデンコートフィルム、アルミニウム箔等の金属箔、ポリエステル フィルム基材にアルミニウム等の金属を真空蒸着やスパッタリングしてなる非通気性 包材、可撓性プラスチック基材の上に、酸化ケィ素、酸ィ匕アルミニウムを設けた構造 の透明バリア性フィルムを使用した包装用積層体が一例として挙げられる。前記外袋 等に使用されて 、る非通気性包材も使用できる。
また、特開平 2002— 200108号公報の防湿性包材等の包材も使用でき、この記 載内容を本発明に組み入れる。
水含有の親水性粘着剤 (ジエル等)を粘着剤層に使用する場合、発熱組成物と前 記粘着剤層の水分平衡を調整するために、発熱組成物中の塩化ナトリウム等の反応 促進剤や吸水性ポリマー等の水分確保力のある物質の含有量を発熱組成物に対し て、 10〜40重量%の範囲で、好ましくは 15〜40重量%の範囲で、更に好ましくは 1 5〜30重量%の範囲で調整してもよ!/、。 また、透湿性がよぐ皮膚への刺激性が低い粘着剤としては、特開平 10— 265373 号公報、特開平 9 87173号公報等の含水粘着剤 (親水性粘着剤、ジエル)ゃ特開 平 6— 145050号公報、特開平 6— 199660号公報に記載されているホットメルト塗 ェできる粘着剤ゃ特開平 10— 279466号公報ゃ特開平 10— 182408号公報に記 載されているゴム系粘着剤も有用であり、本各文献を引用し、全文を本明細書に組 み入れる。
前記粘着剤層に含ませる機能性物質としては、機能を有する物質であれば制限は ないが、芳香化合物、植物エキス、生薬、香料、スリム化剤、鎮痛剤、血行促進剤、 むくみ改善剤、抗菌剤、殺菌剤、防かび剤、消臭剤、脱臭剤、経皮吸収性薬剤、脂 肪分解成分、マイナスイオン発生体、遠赤外線放射体、磁気体、湿布剤、化粧料、 竹酢液又は木酢液等カゝら選ばれた少なくとも一種を一例として挙げられる。
具体的には、メントール、ベンツアルデヒド等の芳香族化合物、ョモギエキス等の植 物エキス、モグサ等の生薬、ラベンダー、ローズマリー等の香料、アミノフィリン、茶ェ キス等のスリム化剤、インドメタシン、 dl—カンフル等の鎮痛剤、酸性ムコポリサッカラ イド、力ミツレ等の血行促進剤、セィヨウトチンキ、フラボン誘導体等のむくみ改善剤、 ホウ酸水、生理的食塩水、アルコール水等の湿布剤、タイソゥ抽出液、カフェイン、ト ナリン等の脂肪分解成分、アロエエキス、ビタミン剤、ホルモン剤、抗ヒスタミン剤、ァ ミノ酸類等の化粧料、石炭酸誘導体、ホウ酸、ョード剤、逆性石鹼、サリチル酸系の 物質、ィォゥ、抗生物質等の抗菌剤や殺菌剤、或いは、防かび剤が一例として挙げ られる。
経皮吸収性薬剤としては、経皮吸収性のものであれば特に限定されるものではな いが、コルチコステロイド類、消炎鎮痛剤、高血圧剤、麻酔剤、催眠鎮静剤、精神安 定剤、抗菌性物質、抗真菌物質、皮膚刺激剤、炎症抑制剤、抗てんかん剤、鎮痛剤 、解熱剤、麻酔剤、殺菌剤、抗微生物抗生物質、ビタミン類、抗ウィルス剤、むくみ改 善剤、利尿剤、血圧降下剤、冠血管拡張剤、鎮咳去痰剤、スリム化剤、抗ヒスタミン 剤、不整脈用剤、強心剤、副腎皮質ホルモン剤、血行促進剤、局所麻酔剤、脂肪分 解成分等及びそれらの混合物が一例として挙げられるが、これらに限定されない。こ れら薬物は、 1種又は必要に応じて 2種以上配合されて用いられる。 この機能性物質の含有量としては、薬効を期待できる範囲であれば特に限定され るものではないが、薬理効果や経済性、更に、粘着力等の観点より、機能性物質の 含有量が粘着剤 100重量部に対して、好ましくは 0. 01〜25重量部、更に好ましくは 0. 5〜 15重量部である。
また、粘着剤層の設ける方法については関節周囲部用温熱包装体が固定できれ ば制限はなぐ全面に設けても、部分的や間欠的に設けてもよい。網状、ストライプ状 、ドット状、帯状等、各種形状が一例として挙げられる。
本発明の区分発熱部又は発熱組成物成形体は、最大幅は、通常、 0. 5〜60mm であり、好ましくは 0. 5〜50mmであり、更に好ましくは l〜50mmであり、更に好まし くは 3〜50mmであり、更に好ましくは 3〜30mmであり、更に好ましくは 5〜20mm であり、更に好ましくは 5〜 15mmであり、更に好ましくは 5〜 10mmである。また、最 高高さは、通常 0. l〜30mmであり、好ましくは 0. l〜10mmであり、更に好ましくは 0. 3〜10mmであり、更に好ましくは l〜10mmであり、更に好ましくは 2〜10mmで ある。また、最長長さは、通常 5〜300mmであり、好ましくは 5〜200mmであり、より 好ましくは 5〜: LOOmmであり、更に好ましくは 20〜150mmであり、更に好ましくは 3 0〜: L 00mmである。
前記区分発熱部の容積又は発熱組成物成形体の体積は、通常、 0. 015〜500c m3であり、好ましくは 0. 04〜30cm3であり、より好ましくは 0. l〜30cm3であり、更に 好ましくは l〜30cm3であり、更に好ましくは 3〜20cm3である。
前記区分発熱部において、発熱組成物収納領域である区分発熱部が発熱組成物 成形体で満たされた時に、発熱組成物成形体占有領域である発熱組成物成形体の 体積と発熱組成物収納領域である区分発熱部の容積との容積比は通常 0. 6〜1で あり、好ましく ίま 0. 7〜1であり、より好ましく ίま 0. 8〜1であり、更に好ましく ίま 0. 9〜 1. 0である。
また、前記区分発熱部の間隔である区分け部の幅は区分けができれば制限はない 力 通常 0. l〜50mmであり、好ましくは 0. 3〜50mmであり、より好ましくは 0. 3〜 50mmであり、更【こ好ましく ίま 0. 3〜40mmであり、更【こ好ましく ίま 0. 5〜30mmで あり、更に好ましくは 1. 0〜20mmであり、更に好ましくは 3〜10mmである。 尚、前記発熱組成物成形体又は区分発熱部の形状は如何なるものでもよいが、平 面形状で、円、楕円、多角形状、星形状、花形状等が一例として挙げられる。立体形 状では、多角錐形状、円錐形状、錐台形状、球形状、平行六面体形状、円筒体形状 、半円柱体形状、半楕円柱体形状、蒲鋅形状体、円柱体形状、楕円柱体形状等が 一例として挙げられる。また、これらの形状は角部にアールを設け、角部を曲線状や 曲面状にしてもよ!、し、中央部等に凹部があってもょ 、。
また、本発明の発熱組成部成形体の体積とは、発熱組成物成形体又は圧縮された 発熱組成物成形体の体積を意味する。
また、区分発熱部の容積とは、発熱組成物成形体を収納した区分発熱部の内部容 積を意味する。
[0084] また、発熱体の形状についても特に制限はないが、長方形状、円形状、楕円形状、 多角形状、そらまめ形状、アイマスク形状、提灯形状、繭形状、瓢箪形状、角丸長方 形状、角丸正方形状、卵形状、ブーメラン形状、まが玉形状、翼形状、鼻形状、星形 状及び足形状の群の中から選ばれた形状とすることができる。
[0085] また、発熱体又は収納袋には、少なくとも一部に文字、図柄、記号、数字、模様、写 真、絵、着色のいずれか一種以上を設けることもできる。
[0086] 本発明の発熱体は、各種形状、厚み、温度帯のものが得られるため、通常の身体 採暖用の外、関節用、美顔用、目用、痩身用、点滴液加温 ·保温用、温熱湿布用、 薬剤カイロ用、頸部用、腰用、マスク用、手袋用、痔瘻用、或いは、肩痛、筋肉痛、生 理痛等の症状緩和用、座布団用、手術中の人体加温'保温用、温熱シート用、蒸散 芳香用、腹部用、蒸散殺虫用、癌治療用等の各用途に用いることができる。更に、機 械類ゃペット等への加温 ·保温用等へ利用できる。
[0087] 例えば、症状緩和用として使用する場合は、本発明の発熱体を身体の必要部位に 直接あてがうか、布等を介して間接的にあてがう。また、手術中の人体加温'保温用 として使用する場合は、
1.加温 ·保温を必要とする身体に発熱体を直接あてがう、
2.カバー等に発熱体を固定して身体にかける、
3.身体の下側に敷く敷物等に発熱体を固定する、 4.予め、発熱体を備える製品としてのカバーや敷物として使用する、等の使用方法 がー例として挙げられる。尚、筋肉や骨格等の痛みとは、急性筋肉痛、急性骨格痛、 急性関連痛、既往筋肉痛、既往骨格痛、慢性関連痛、膝や肘等の関節痛等が一例 として挙げられる。
前記維持時間は制限はないが、好ましくは 20秒〜 24時間であり、より好ましくは 1 時間〜 24時間であり、更に好ましくは 8時間〜 24時間である。
維持温度は、好ましくは 30〜50°Cであり、より好ましくは 32〜50°Cであり、更に好 ましくは 32〜43°Cであり、更に好ましくは 32〜41°Cであり、更に好ましくは 32〜39 °Cである。
[0088] 以下、本発明の実施例を図面に基づいて具体的に説明する力 本発明はこれらに 限定されるものではない。
図面の簡単な説明
[0089] [図 1]本発明の一実施例に係る発熱体の平面図
[図 2]同発熱体の Z— Z線の断面図
[図 3]製造工程を示す斜視図
[図 4]仮着した発熱体の一実施例の断面図
[図 5]本発明の発熱体の他の実施例の平面図
[図 6]本発明の発熱体の他の実施例の平面図
[図 7] (a)仮着板の斜斜視図 (b)同変形例の斜視図
[図 8] (a)仮着ロールの一実施例の斜視図 (b)同側面図
[図 9] (a)仮着ロールの他の実施例の斜視図 (b)同仮着ロールと発熱体との関係を示 す断面図 (c)同仮着ロールと発熱体との関係を示す断面図 (d)仮着された発熱体の 一部斜視図 (e)仮着され、一部にたるみを有する発熱体の一部断面図
[図 10]仮着ロールの他の実施例の斜視図
[図 11]仮着ロールの他の実施例の平面図
[図 12]仮着ロールの他の実施例の平面図
[図 13]仮着ロールの他の実施例の平面図
[図 14]仮着ロールの他の実施例の平面図 [図 15]発熱体の区分発熱部の一実施例の潰し板の側面図
[図 16]発熱体の区分発熱部の崩しロールの一実施例の側面図
[図 17] (a)、(b)発熱体の区分発熱部又は発熱部の崩し工程の一部の一実施例の断 面図
[図 18]発熱体の製造工程の一実施例の模式図
[図 19]発熱体の製造工程の他の一実施例の模式図
[図 20]易動水値の測定用濾紙の平面図
[図 21]易動水値の測定を説明するための斜視図
[図 22]易動水値の測定を説明するための側面図
[図 23]易動水値の測定を説明するための断面図
[図 24]易動水値測定実施後の濾紙の平面図
符号の説明
1 発熱体
1A 発熱組成物成形体
4 基材
5 被覆材
6 たるみ
7 仮着部
7B 空間
8 ヒートシール部 (粘着剤とヒートシール剤の混合層を含む)
9 粘着剤層
9A 通気性粘着剤層
11 区分け部 (シール部)
12 ミシン目
13 セパレータ
14 回転体状成形装置 (所望の形状の抜き穴を有する回転体)
15 ホッノ一
17 仮着板 A 仮着シール部
B 凹部
仮着ロール
A 仮着シール部
B 凹部
ヒートシ一ノレローノレ
カットロール
送り出しロール
A 押さえロール
崩し板
A 崩し部
B 崩しロール
C 崩し部
D 崩し板
ベルトコンベア一
A ベルトコンベア一
メルトプロ一機
メルトブロー機
押し込み板
平板
非吸水性フィルム(ポリエチレンフィルム等)
中心点から放射状に 45度間隔で 8本の線がかかれた濾紙 型板
試料
ステンレス板
水又は溶液の浸みだし先端までの距離
濾紙上の中空円筒状の穴相当位置 実施例
[0091] (実施例 1)
本発明の発熱体 1は、図 1に平面図、図 2に図 1の Z— Z断面図に示すように、縦 13 Omm,横 80mmの長方形の扁平な収納袋内に発熱組成物成形体 1 Aを封入したも のであり、前記収納袋は、非通気性の基材 4と、通気性を有する被覆材 5とからなる。 前記基材 4の露出面側には、坪量 150gZm2の非芳香族系であるォレフィン系ホット メルト系粘着剤力もなる粘着剤層 9を介して、厚さ 38 mのポリエステル製離型フィル ムカ なるセパレータ 13が設けられている。
[0092] 被覆材 5は、伸長性を有する幅 130mmの 3層フィルムからなるものである。即ち、 坪量 30g/m2のポリエステル製のスパンレース不織布上に、メルトブロー方式で設け られた坪量 5gZm2のホットメルト系粘着層を介して、坪量 50gZm2の多孔質フィル ムが積層されたものである。この被覆材 5の透湿度は、リツシ一法で 350gZm2Z24 hrである。
[0093] 前記発熱体 1は、図 3に示すようにして製造される。
ポリエチレンフィルム製の基材 4に粘着剤層 9を介してセパレータ 13を設けたものを ロール状にして、これから 30mZ分で繰り出しつつ、基材 4側の中央部に型通し成形 によって、 110mm X 70mm X l. 7mmの寸法に成形した発熱組成物成形体 1Aを、 20mm間隔毎に転写した。
次に、図 4に示すように、ロール状に卷回した被覆材 5を繰り出し、被覆材 5の多孔 質フィルム表面側全体に、ォレフィン系ホットメルト系粘着剤をメルトブロー方式によ つて、 lg/m2で塗工しつつ、そのホットメルト系粘着剤層 6が基材 4に接触するように して、前記発熱組成物成形体 1Aに被せ、その周縁部を圧着して仮着部 7を形成す る。その後、ヒートシールロールを使用し、仮着部 8とともに発熱体組成物成形体 1 A の周辺部をヒートシールしてから裁断し、シール幅 8mmX厚さ 0. 94mm程度 X 130 mm X 80mmの超薄形の発熱体を製造した。
上記製造の結果、シール不良はな力つた。
尚、裁断された各発熱体 1は、引き統いて包装工程に送り込まれ、図示しないが、 気密性を有する外袋内に封入される。 [0094] 前記成形性を有する発熱組成物として、本実施例では、鉄粉 (粒度 300 μ m以下) 70重量部、活性炭 (粒度 300 μ m以下) 10重量部、食塩 2重量部、吸水性ポリマー( 粒度 300 /z m以下) 0. 7重量部及び消石灰 0. 1重量部に、水を加えて、易動水値 8 の発熱組成物を使用した。
このように発熱組成物を易動水値 8にすることにより、増粘剤を使用することがない ので、発熱特性を犠牲にすることがない。また、型通し成形により基材上の中央部に 積層させることが容易になり、所望の積層領域に高精度で積層することが可能で、し 力も、発熱組成物成形体 1Aの厚みを非常に薄ぐ均一に制御できるようになる。
[0095] また、外袋に封入した後、 24時間経過して力ゝら外袋を破って人の体表面に粘着さ せ、通常の使用をしたところ、 1〜2分程度で温度が約 38°Cまで昇温し、以後 38〜4 1°Cで 9時間以上にわたって発熱した。使用中、発熱組成物成形体は全く収納体内 で移動することはなぐ全面にわたって平均した発熱が認められた。
[0096] (実施例 2)
図 5は、実施例 1と同様の方法により、区分発熱部 1Bを 3行 4列となるようにした発 熱体 1の一例である。ヒートシール部 11には、ミシン目 12を設けている。シール不良 はなかった。
[0097] (実施例 3)
図 6は、実施例 1と同じ基材 4、被覆材 5及び発熱組成物を使用して製造した区分 発熱部 1Bを有する発熱体 1の一例である。幅 130mmのロール状に卷回した基材 4 を 35mZ分で水平方向に繰り出しつつ、基材 4の中央部に 20mm間隔で、型通し成 形によって 110mm X 70mm X O. 5mmの寸法に形成された発熱組成物成形体 IB を、 20mm間隔で、 4行 3列に配置した。発熱組成物成形体 1Bの上からは、ホットメ ルト系粘着剤をメルトブロー方式によって lgZm2で多孔質フィルム面側に塗布した 被覆材を被せ、基材 4及び被覆材の外周縁部と、隣接する区分発熱部 1B間とを粘 着によって仮着した。その後、 3台のヒートシールローラーを使用してヒートシールし た後、裁断し、厚さ 0. 94mm程度 X 130mm X 80mmの超薄形の発熱体を製造し た。その結果、シーノレ不良はなかった。
また、外袋に封入した後、 24時間経過して力ゝら外袋を破って人の体表面に粘着さ せ、通常の使用したところ、実施例 1の場合と同様の結果が得られた。
[0098] (実施例 4)
実施例 4の発熱体は、実施例 1と同様に形成された基材及び発熱組成物成形体の 上にホットメルト系粘着剤を、メルトブロー方式によって、 lg/m2で塗布しつつ、更に 、その上力も被覆材の多孔質フィルム側が接触するように被せた点にぉ 、て異なる。 尚、基材、被覆材、発熱組成物は、実施例 1と同様の材料を使用した。
基材上に、 4行 2列の計 8個力もなる幅 5mm X長さ 110mm X高さ 3mmの発熱組 成部成形体を 7mm間隔で載置した。隣接する発熱組成物成形体間には被覆材を 幅 5mmで圧着し、仮着部を設けた。次に、仮着部の中央部を幅 lmmでヒートシール すると同時に、基材及び被覆材の外周辺部を 8mm幅で、ヒートシールし、区分発熱 部が 8個ある発熱体を得た。
次に、平面状開着ロールで区分発熱部を加圧し、未ヒートシールの仮着部へ発熱 組成物成形体の一部を移動させ、発熱体の周辺部をカットし、周辺部のシール幅 8 mm及びシール幅 lmmの区分発熱部を有する発熱体を得た。そして、発熱体を非 通気性の外袋内に封入した。
上記発熱体を、外袋に封入した後、 24時間経過してから外袋を破って人の体表面 に粘着させ、通常の使用をしたところ、 1〜2分程度で発熱温度が約 38°Cまで昇温し 、以後 38〜41°Cで 10時間以上にわたって発熱した。この使用中、発熱組成物成形 体は全く収納体内で移動することはなぐ発熱体として柔軟で、身体曲面に良く馴染 み、全面にわたって平均した発熱が認められた。
[0099] (実施例 5)
図 18は、仮着工程を含む発熱体の製造工程の模式図である。送り出しロール 21か ら基材 4を 15mZ分で繰り出しつつ、ホッパー 15内に、発熱組成物 2を投入する。そ して、ホッパー 15からベルトコンベア一 23上に、回転体状成形装置 14を介して、基 材 4上の中央部に、 110mmX 70mmで、且つ、 20mm間隔毎に形成する。尚、発 熱組成物 2は、ベルトコンベア一 23の上ベルトの下に設けられた磁石 37に引かれて 基材 4上に載置されやすくなつている。
更に、ベルトコンベア一 23上を搬送される途中、合わせロール兼 MD方向仮着口 ール 18により、基材 4及び発熱組成物成形体の上に、被覆材 5が被覆される。この被 覆材 5の多孔質フィルム側の表面全体には、ホットメルト系粘着剤をメルトブロー機 2 4によって塗工している。
次に、ヒートシールロール 18Cにて発熱組成物成形体の周縁部を 5mm幅でヒート シールするとともに、発熱体の外周辺縁部を 8mm幅でヒートシールした。
次に、ダイカットロール 20で裁断して 126mm X 86mmの発熱体を得た。得られた 発熱体において、ヒートシール不良はなかった。
裁断された発熱体は、引き続いて包装工程に送り込まれ、図示しない気密性を有 する外袋内に封入した。そして、外袋に封入した後、 24時間経過して力ゝら外袋を破 つて人の体表面に粘着させ、使用したところ、実施例 1と同様の結果が得られた。 上記実施例において、通気性を有する粘着剤層を設ける手段としては、通気性の ある粘着剤層が形成することができれば特に制限はなぐメルトブロー法やカーテン レール法等を使用することができる。
また、本実施例の発熱組成物としては、鉄粉 (粒度 300 以下) 70重量部、活性炭 (粒度 300 以下) 7重量部、食塩 2重量部、吸水性ポリマー 0. 7重量部、木粉 3. 0 重量部、亜硫酸ナトリウム 1. 0重量部、消石灰 0. 1重量部及び水 37重量部からなる 発熱組成物を使用した。
[0100] 図 19は、図 18に示したヒートシール工程を強化し、セパレータ付通気性粘着剤層 を設ける工程を新設したものである。新設工程では、ホットメルト粘着剤をメルトブロー 方式によりシリコーン処理されたポリエステル製セパレータ 13に塗布した通気性粘着 剤層 9A以外をロール 21Aにおいて、被覆材 5上に積層し、ダイカットロール 20で裁 断した。
[0101] (実施例 6)
本実施例は、実施例 5と同様にして発熱体を製造した。
本実施例の発熱組成物としては、鉄粉 (粒径 300 m以下) 100重量部、活性炭( 粒径 300 /z m以下) 6. 5重量部、木粉 (粒径 150 m以下) 2. 3重量部、吸水性ポリ マー (粒径 300 m以下) 2. 3重量部、消石灰 0. 5重量部、亜硫酸ナトリウム 0. 7重 量部、 6%食塩水 10重量部力もなる、易動水値 0. 01未満の反応混合物を撹拌付き バッチ式酸化性ガス接触処理装置を使用し、 20°Cの環境下、酸化性ガス接触処理 装置の上部は開放形で、空気中に開放した状態で、撹拌しながら、 120秒後、反応 混合物の温度上昇分が 45°Cになった時点で非通気性収納袋に封入し、室温まで冷 やし、本発明の発熱混合物を得た。次に前記発熱混合物に 6%食塩水を加え、混合 し、易動水値が 10の発熱組成物を得、前記発熱組成物を使用した。

Claims

請求の範囲
[I] 発熱物質、炭素成分、反応促進剤及び水を必須成分とし、易動水値が 0. 01〜20 の発熱組成物を成形した発熱組成物成形体を、基材上に積層して、被覆材により被 覆し、前記発熱組成物成形体の周縁部をヒートシールすることにより形成される発熱 体であって、
前記基材と、前記被覆材とが粘着層により仮着され、仮着された部分が、前記基材 及び Z又は前記被覆材が有するヒートシール層によりヒートシールされ、前記ヒートシ ール部には、前記粘着層成分と前記ヒートシール層成分が共存し、前記ヒートシール 部の 60°Cシール強度が 0. 8kgZ25mm以上であることを特徴とする発熱体。
[2] 前記ヒートシール部の少なくとも一部は、空気抜き部をヒートシールした領域を有す ることを特徴とする請求項 1に記載の発熱体。
[3] 前記粘着層は、ホットメルト系粘着剤により構成されることを特徴とする請求項 1〖こ 記載の発熱体。
[4] 前記ヒートシール層の厚みの合計は、前記粘着層の厚み以上であることを特徴とす る請求項 1に記載の発熱体。
[5] 前記粘着層の厚みは、 0. 1〜: LOO mであることを特徴とする請求項 1に記載の発 熱体。
[6] 前記粘着層は、空隙を有することを特徴とする請求項 1に記載の発熱体。
[7] 前記ヒートシール部には、前記ヒートシール層の成分と前記粘着剤層の成分の混 合部が存在することを特徴とする請求項 1に記載の発熱体。
[8] 前記基材及び被覆材が伸長性の素材で形成されていることを特徴とする請求項 1 に記載の発熱体。
[9] 前記発熱組成物成形体は、ヒートシール部である区分け部により区分けされて、複 数配置されて ヽることを特徴とする請求項 1に記載の発熱体。
[10] 前記発熱組成物の発熱物質は、鉄粉であり、前記鉄粉が鉄酸化物皮膜を有してい ることを特徴とする請求項 1に記載の発熱体。
[I I] 前記発熱組成物成形体は、圧縮処理されて!ヽることを特徴とする請求項 1に記載 の発熱体。
[12] 前記ヒートシール後、前記発熱組成物成形体の少なくとも一部をヒートシールされ て 、な 、仮着部に移動させることにより、前記ヒートシールされて!/、な!、仮着部を開 着したことを特徴とする請求項 1に記載の発熱体。
[13] 前記発熱体において、露出面に固定手段を有することを特徴とする請求項 1に記 載の発熱体。
[14] 通気性を有する基材及び Z又は被覆材が少なくともヒートシール可能なヒートシ一 ル層を有し、鉄粉、炭素成分、反応促進剤及び水を必須成分し、易動水値が 0. 01 〜 20の発熱組成物を成形した発熱組成物成形体を基材上に積層し、その上にホッ トメルト系粘着剤をメルトブロー方式で粘着層として設け、前記被覆材を被せ、仮着口 ールにて、前記発熱組成物成形体及び Z又は基材を前記被覆材と仮着した後に、 前記発熱組成物成形体の周縁部をヒートシールし、シール部の 60°Cにおけるシー ル強度が 0. 8kgZ25mm以上であることを特徴とする発熱体の製造方法。
[15] 前記発熱体の外周部を仮着後、前記発熱体の外周部を、空気抜き部を残してヒー トシールすることを特徴とする請求項 14に記載の発熱体の製造方法。
[16] 前記仮着ロールにおける仮着部より小さい、ヒートシール部を有するヒートロールを 使用してヒートシールすることを特徴とする請求項 14に記載の発熱体の製造方法。
[17] 前記発熱組成物成形体をヒートシールされて 、な 、仮着部に移動させることにより 、前記ヒートシールされて 、な 、仮着部を開着することを特徴とする請求項 14に記載 の発熱体の製造方法。
PCT/JP2005/013003 2004-07-14 2005-07-14 発熱体及び発熱体の製造方法 WO2006006650A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006529117A JPWO2006006650A1 (ja) 2004-07-14 2005-07-14 発熱体及び発熱体の製造方法
EP05765767A EP1782774A4 (en) 2004-07-14 2005-07-14 HEATING ELEMENT AND METHOD FOR PRODUCING THE HEATING ELEMENT
US11/632,207 US20080202490A1 (en) 2004-07-14 2005-07-14 Heat Generating Body and Process For Producing Heat Generating Body
CA002573276A CA2573276A1 (en) 2004-07-14 2005-07-14 Heat generating body and process for producing heat generating body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-207831 2004-07-14
JP2004207831 2004-07-14

Publications (1)

Publication Number Publication Date
WO2006006650A1 true WO2006006650A1 (ja) 2006-01-19

Family

ID=35783986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013003 WO2006006650A1 (ja) 2004-07-14 2005-07-14 発熱体及び発熱体の製造方法

Country Status (5)

Country Link
US (1) US20080202490A1 (ja)
EP (1) EP1782774A4 (ja)
JP (1) JPWO2006006650A1 (ja)
CA (1) CA2573276A1 (ja)
WO (1) WO2006006650A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533687A (ja) * 2011-11-17 2014-12-15 イム、ヘ ウンLIM, Hae Eun 蚊毒素治療用の局所パッチ製剤
CN104666073A (zh) * 2015-03-18 2015-06-03 徐州市固医堂生物科技有限公司 一种自发热药用脊柱贴
WO2016121780A1 (ja) * 2015-01-29 2016-08-04 小林製薬株式会社 発熱具
CN106038261A (zh) * 2016-05-30 2016-10-26 陈颉 自发热艾灸贴
CN106109081A (zh) * 2016-06-22 2016-11-16 武汉大学 一种多功能关节热敷装置
WO2017191680A1 (ja) * 2016-05-02 2017-11-09 小林製薬株式会社 発熱具
WO2017191681A1 (ja) * 2016-05-02 2017-11-09 小林製薬株式会社 発熱具
CN111031972A (zh) * 2017-06-15 2020-04-17 菲利克株式会社 温热体及其制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722233B2 (en) * 2005-05-06 2014-05-13 Blue Spark Technologies, Inc. RFID antenna-battery assembly and the method to make the same
US9193588B2 (en) * 2006-02-01 2015-11-24 Tilak Bommaraju Hydrogen elimination and thermal energy generation in water-activated chemical heaters
WO2007114352A1 (ja) * 2006-03-31 2007-10-11 Kao Corporation 目用水蒸気発生体
CN105105911B (zh) * 2010-06-18 2018-10-23 花王株式会社 发热体的制造方法
US9394637B2 (en) 2012-12-13 2016-07-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US9642736B2 (en) * 2014-03-12 2017-05-09 Rechargeable Battery Corporation Thermoformable splint structure with integrally associated oxygen activated heater and method of manufacturing same
US20180252438A9 (en) * 2014-03-12 2018-09-06 Rechargeable Battery Corporation Chemically based heater for a bio-mechanical device and article to be heated
US9872795B2 (en) 2014-03-12 2018-01-23 Rechargeable Battery Corporation Thermoformable medical member with heater and method of manufacturing same
JP6020513B2 (ja) * 2014-05-29 2016-11-02 横河電機株式会社 細胞培養バッグおよび細胞培養バッグの製造方法
CN108289754B (zh) * 2015-09-11 2021-09-07 小林制药株式会社 发热器具
EP3453365A4 (en) * 2016-05-02 2020-01-01 Kobayashi Pharmaceutical Co., Ltd. HEAT GENERATOR
KR101885781B1 (ko) * 2017-07-05 2018-08-06 (주)다오코리아 온열 매트
BE1026686B1 (nl) * 2018-10-05 2020-05-07 Promeco Nv Werkwijze voor het produceren van een met faseovergangsmateriaal gevuld serviesgoed
CN110593129B (zh) * 2019-10-14 2021-01-22 济南鑫顺莉贸易有限公司 一种公路桥梁施工用防水紧固装置
CN115804685B (zh) * 2022-12-05 2024-12-13 天津富棽科技有限公司 一种自发热水凝胶的制备方法
WO2024187427A1 (zh) * 2023-03-15 2024-09-19 深圳十商科技有限公司 发热体及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007467U (ja) * 1994-08-04 1995-02-14 桐灰化学株式会社 使い捨てカイロ
JP2002036471A (ja) * 2000-07-24 2002-02-05 Nitto Denko Corp ヒートシール用シート基材、及びこれを備えてなる袋材、並びにこれを用いた使い捨てカイロ
JP2002155273A (ja) * 2000-11-21 2002-05-28 Kaoru Usui 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2003129041A (ja) * 2001-10-25 2003-05-08 Maikooru Kk 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2003336042A (ja) * 2002-05-20 2003-11-28 Maikooru Kk 吸水性ポリマー入り発熱組成物及び発熱体
JP2004024671A (ja) * 2002-06-27 2004-01-29 Maikooru Kk 化学カイロのシール型、シール装置及びシール方法並びに化学カイロ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084986A (en) * 1987-12-22 1992-02-04 Mycoal Warmers Company Limited Disposable warmer holder
JPH02149272A (ja) * 1988-11-30 1990-06-07 Maikoole Kairo Kk 使いすてカイロ
US5178139A (en) * 1990-03-05 1993-01-12 Stephen P. Angelillo Absorbent pad and thermal pack
US6099556A (en) * 1995-05-27 2000-08-08 Kabushiki Kaisha Genchi Kenkyusho Method of controlling exothermic reaction of an exothermic composition, the exothermic composition, an exothermic device and an application pad
GB2303208B (en) * 1995-07-08 1998-01-21 Akio Usui Viscous liquid exothermic composition,exothermic device made thereof and manufacturing method of exothermic device
US6289889B1 (en) * 1999-07-12 2001-09-18 Tda Research, Inc. Self-heating flexible package
US7021848B1 (en) * 1999-10-08 2006-04-04 The Procter & Gamble Company Semi-enclosed applicator having a temperature changing element
US20020121624A1 (en) * 2001-03-01 2002-09-05 Akio Usui Flowing exothermic composition, heater element using the same and process for manufacturing the same
JP4093348B2 (ja) * 2002-05-20 2008-06-04 マイコール株式会社 足温用発熱体及び足温用発熱体の製造方法
JP2004208978A (ja) * 2002-12-27 2004-07-29 Mycoal Products Corp 発熱組成物及び発熱体
US20040178384A1 (en) * 2003-03-13 2004-09-16 Kaoru Usui Heat-generating composition, heater made using heat-generating composition, and process for producing the same
JP2005014978A (ja) * 2003-06-26 2005-01-20 Toa Kiko Kk 磁性体粉末の連続包装機および包装方法
US20050196562A1 (en) * 2004-03-04 2005-09-08 Keizo Ota Self-heating and adhesive device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007467U (ja) * 1994-08-04 1995-02-14 桐灰化学株式会社 使い捨てカイロ
JP2002036471A (ja) * 2000-07-24 2002-02-05 Nitto Denko Corp ヒートシール用シート基材、及びこれを備えてなる袋材、並びにこれを用いた使い捨てカイロ
JP2002155273A (ja) * 2000-11-21 2002-05-28 Kaoru Usui 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2003129041A (ja) * 2001-10-25 2003-05-08 Maikooru Kk 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2003336042A (ja) * 2002-05-20 2003-11-28 Maikooru Kk 吸水性ポリマー入り発熱組成物及び発熱体
JP2004024671A (ja) * 2002-06-27 2004-01-29 Maikooru Kk 化学カイロのシール型、シール装置及びシール方法並びに化学カイロ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1782774A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533687A (ja) * 2011-11-17 2014-12-15 イム、ヘ ウンLIM, Hae Eun 蚊毒素治療用の局所パッチ製剤
WO2016121780A1 (ja) * 2015-01-29 2016-08-04 小林製薬株式会社 発熱具
JP2016140382A (ja) * 2015-01-29 2016-08-08 桐灰化学株式会社 発熱具
CN104666073A (zh) * 2015-03-18 2015-06-03 徐州市固医堂生物科技有限公司 一种自发热药用脊柱贴
WO2017191680A1 (ja) * 2016-05-02 2017-11-09 小林製薬株式会社 発熱具
WO2017191681A1 (ja) * 2016-05-02 2017-11-09 小林製薬株式会社 発熱具
JPWO2017191680A1 (ja) * 2016-05-02 2019-03-14 小林製薬株式会社 発熱具
US10980665B2 (en) 2016-05-02 2021-04-20 Kobayashi Pharmaceutical Co., Ltd. Heat generator
CN106038261A (zh) * 2016-05-30 2016-10-26 陈颉 自发热艾灸贴
CN106109081A (zh) * 2016-06-22 2016-11-16 武汉大学 一种多功能关节热敷装置
CN111031972A (zh) * 2017-06-15 2020-04-17 菲利克株式会社 温热体及其制造方法

Also Published As

Publication number Publication date
US20080202490A1 (en) 2008-08-28
CA2573276A1 (en) 2006-01-19
EP1782774A1 (en) 2007-05-09
JPWO2006006650A1 (ja) 2008-05-01
EP1782774A4 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
WO2006006650A1 (ja) 発熱体及び発熱体の製造方法
JP4527724B2 (ja) 発熱体及び型成形発熱体用包材
WO2006006654A1 (ja) ヒートクロス及びその製造方法
WO2006006658A1 (ja) 足温用発熱体及び足温用発熱体の製造方法
WO2006006664A1 (ja) 可撓性発熱体
WO2006006655A1 (ja) 発熱パッド及びその使用方法
WO2006006652A1 (ja) 発熱体
WO2006006653A1 (ja) マイクロヒーター及びその製造方法
JP2004208978A (ja) 発熱組成物及び発熱体
JP4490971B2 (ja) 発熱体
WO2006006662A1 (ja) 発熱体
WO2006006648A1 (ja) 発熱組成物、発熱体及び発熱体の製造方法
WO2006006651A1 (ja) 発熱体及びその製造方法
JPWO2006006647A1 (ja) 活性鉄粉及び発熱体
WO2006006657A1 (ja) 関節周囲部用温熱包装体
WO2006006665A1 (ja) 発熱組成物及び発熱体
WO2006006645A1 (ja) 発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体
WO2006006663A1 (ja) 温灸器
WO2006006649A1 (ja) 湿潤性発熱組成物圧縮体、発熱体及び湿潤性発熱組成物圧縮体の製造方法
JPWO2006006646A1 (ja) 活性鉄粉、発熱組成物及び発熱体
WO2006006660A1 (ja) 発熱ラップ
WO2006006659A1 (ja) 発熱パック及びその使用方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2573276

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005765767

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006529117

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005765767

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632207

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005765767

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载