明 細 書 誘電体バリア放電装置 技術分野 Description Dielectric barrier discharge device Technical field
本発明は、例えば液晶ディスプレイなどのガラス基板やシリコン半導体ゥ エーハなどの表面に付着した有機化合物の汚れを除去するためのドライ洗 浄装置や、オゾンガスとの光化学反応により半導体製造工程においてシリコ ンゥヱーハ上の不要になったフォトレジストを剥離除去するためのアツシ ング (ashing:灰化) 装置などに使用される誘電体バリア放電エキシマ U V (紫外線) ランプの放電装置に関する。 The present invention relates to, for example, a dry cleaning apparatus for removing dirt of organic compounds adhering to the surface of a glass substrate such as a liquid crystal display or a silicon semiconductor wafer, and a photochemical reaction with ozone gas in the semiconductor manufacturing process. The present invention relates to a discharge device of a dielectric barrier discharge excimer UV (ultraviolet) lamp which is used for an ashing device for peeling and removing a photoresist which has become unnecessary.
詳しくは、誘電体バリァ放電によりエキシマ分子を生成する放電用ガスが 充填された放電空間を挟んで一対の電極が配置された誘電体バリア放電工 キシマ U Vランプと、 この誘電体バリァ放電工キシマ U Vランプの両電極の 間に高周波電圧を印加するための給電装置とからなる誘電体バリァ放電装 置に関する。 背景技術 More specifically, a dielectric barrier discharge lamp having a pair of electrodes disposed across a discharge space filled with a discharge gas for generating excimer molecules by dielectric barrier discharge. A UV lamp and a dielectric barrier discharge lamp. The present invention relates to a dielectric barrier discharge device including a power supply device for applying a high frequency voltage between both electrodes of a lamp. Background art
この種の誘電体バリア放電ランプは、放電用ガスが充填される放電プラズ マの空間を挟んで一対の電極の間に誘電体が存在し、 この誘電体を媒体とす る一対の電極は、コンデンサの働きをすることによって電流が流れることに なる。 In this type of dielectric barrier discharge lamp, a dielectric exists between a pair of electrodes across a space of a discharge plasma filled with a discharge gas, and the pair of electrodes using this dielectric as a medium is The current will flow by acting as a capacitor.
これら一対の電極の間に高周波電圧を印加しても、放電が開始される前の 状態では、放電路の抵抗が無限大でコンデンサのままであるが、 このコンデ ンサもある条件下で放電開始エネルギーを加えると、誘電体バリアを通じて 非常に容易に放電が始まり、 この誘電体バリアに充填された放電用ガスを励
起して、 そのガス特有の波長の光エネルギーを放射する。 Even if a high frequency voltage is applied between the pair of electrodes, the resistance of the discharge path is infinite and the capacitor remains as it is before the discharge is started. When energy is applied, discharge begins very easily through the dielectric barrier, and the discharge gas filled in the dielectric barrier is excited. It emits light energy of the wavelength specific to the gas.
この誘電体バリア放電ランプは、その放電中においても静電容量の特性を 持ったまま放電が持続されるものの、 その静電容量は、放電を開始する前に 比べて誘電率が高まるために増大するが、放電中は大きく変化しない性質を 持っている。 Although this dielectric barrier discharge lamp continues discharge with its capacitance characteristics during discharge, its capacitance is increased because the dielectric constant is higher than before discharge is started. However, they have the property that they do not change significantly during discharge.
しかし乍ら、 このような従来の誘電体バリァ放電ランプ用放電装置では、 周波数を変更せずに放電開始領域のままで同じ高電圧を供給し続けるため 、 発光効率が十分でなく、所期の光量を得るには相当の発熱が伴うという問 題がある。 However, in such a conventional discharge device for a dielectric barrier discharge lamp, since the same high voltage is continuously supplied in the discharge start region without changing the frequency, the luminous efficiency is not sufficient. There is a problem that considerable heat generation is required to obtain light intensity.
そこで、 本願の発明者は実験によって、 誘電体バリア放電ランプを含む共 振回路は、 図 2示す如く、放電開始前の誘電体バリア放電ランプの静電容量 を とし、ィンダク夕ンスを L。とした場合の共振周波数: において、両電 極の間に高電圧を印加しても放電の開始が難しく、それを越えて所定の周波 数領域に達した状態で電圧を印加すると、極めて容易に放電が開始されるこ とを発見した。 Therefore, the inventor of the present application has experimentally found that the resonance circuit including the dielectric barrier discharge lamp has the capacitance of the dielectric barrier discharge lamp before the start of discharge as shown in FIG. In this case, it is difficult to start the discharge even if a high voltage is applied between both electrodes at the resonance frequency in the case where the voltage is applied after reaching a predetermined frequency range, it is extremely easy. I found that the discharge started.
更に、 放電が開始されると、 放電開始前の静電容量 からそれより大き な静電容量 C2に変化するため、 放電開始前の共振周 ¾数 f iからそれより低 い共振周波数 f 2に移ることも分かった。 Furthermore, when the discharge is started, the capacitance before the discharge starts changes to a larger capacitance C 2 , so the resonance frequency fi before the discharge starts to the lower resonance frequency f 2 I also learned to move.
従って、 本発明のうち請求項 1記載の発明は、 発光効率が高い誘電体バリ ァ放電装置を提供することを目的としたものである。 Therefore, the invention according to claim 1 of the present invention aims to provide a dielectric barrier discharge device having high luminous efficiency.
請求項 2記載の発明は、 請求項 1に記載の発明の目的に加えて、放電開始 が容易な発振周波数領域を簡単な作業で容易に検出することを目的とした ものである。 発明の開示 The invention according to claim 2 is, in addition to the object of the invention according to claim 1, an object of the present invention is to easily detect an oscillation frequency range where discharge is easy to start by a simple operation. Disclosure of the invention
前述した目的を達成するために、 本発明のうち請求項 1記載の発明は、 給
02 09081 In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention 02 09081
3 電装置が、誘電体バリア放電エキシマ U Vランプを含む共振回路と、 この共 振回路を該ランプの放電開始前に予め設定された放電開始が容易な発振周 波数領域にする発振手段と、 この放電開始が容易な発振周波数領域で起動さ せるためのトリガー手段と、放電開始後に上記共振回路の共振周波数を検出 する検出手段と、 この検出手段で検出した放電開始後の安定した放電持続の ための共振周波数に印加電圧を変更する変更手段とを設けたことを特徴と するものである。 (Iii) a resonant circuit including a dielectric barrier discharge excimer UV lamp, an oscillating means for setting the resonant circuit to an oscillation frequency region which is preset before discharge start of the lamp and which facilitates discharge start. Trigger means for starting in the oscillation frequency range where discharge start is easy, detection means for detecting the resonant frequency of the resonant circuit after discharge start, and stable discharge continuation after discharge start detected by the detection means And changing means for changing the applied voltage to the resonance frequency of
ここで、上記エキシマ U Vランプの励起源として用いられる誘電体バリャ 放電には、 別名ォゾナイザ放電あるいは無声放電 (silent discharge) と、 高周波電界の印加方法として容量結合方式による高周波放電があると言わ れている。 Here, the dielectric valya discharge used as an excitation source of the above-mentioned excimer UV lamp is said to include an aliased ozonizer discharge or a silent discharge (silent discharge) and a high frequency discharge by capacitive coupling as a method of applying a high frequency electric field. There is.
このような構成から生じる請求項 1記載の発明の作用は、放電開始前の状 態で、発振手段により放電開始が容易な発振周波数領域に設定しておき、 ト リガ一手段からの起動によってランプの放電が開始され、 その後、 検出手段 によって、放電後における共振回路の共振周波数を検出し、 変更手段によつ て両電極への電圧出力を放電開始後の安定した放電領域の共振周波数に印 加電圧を変更する。 The operation of the invention according to claim 1 resulting from such a configuration is that, in the state before the discharge start, the oscillation means sets the oscillation frequency region in which the discharge start is easy, and the lamp starts by the trigger means. After that, the detection means detects the resonance frequency of the resonant circuit after discharge, and the change means marks the voltage output to both electrodes at the resonance frequency of the stable discharge area after the discharge starts. Change the applied voltage.
請求項 2記載の発明は、 請求項 1記載の発明の構成に、前記前記発振周波 数領域が、予め測定したランプ放電前の共振回路の静電容量による共振周波 数より高い周波数領域である構成を加えたことを特徴とする。 The invention according to claim 2 is characterized in that, in the configuration according to the invention according to claim 1, the oscillation frequency range is a frequency range higher than the resonance frequency due to the capacitance of the resonance circuit before lamp discharge measured in advance. It is characterized in that
このように追加した構成から生じる請求項 2記載の発明の作用は、放電開 始が容易な発振周波数領域を簡単に検出可能となる。 図面の簡単な説明 The operation of the invention according to claim 2 resulting from the configuration thus added makes it possible to easily detect the oscillation frequency range where discharge can be easily started. Brief description of the drawings
図 1は、 本発明の一実施例を示す誘電体バリア放電装置の回路図である。 図 2は、 両電極間の電圧と共振周波数との関係を示す説明図である。
発明を実施するための最良な形態 FIG. 1 is a circuit diagram of a dielectric barrier discharge device showing one embodiment of the present invention. FIG. 2 is an explanatory view showing a relationship between a voltage between both electrodes and a resonance frequency. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described based on the drawings.
この実施例は、 図 1に示す如く、 誘電体バリア放電エキシマ U Vランプ A が、中空円筒状に形成した石英ガラス製の放電容器 A 3の内側に沿って内部 電極 A 1を配置すると共に外側に沿って外部電極 A 2を配置し、 この放電容 器 A 3内の放電空間に放電用ガス A 4としてキセノンガスを封入すること により、 1 7 2 n mのエキシマ V U V (真空紫外線) が放射状に照射される 二重円筒型構造である場合を示すものである。 In this embodiment, as shown in FIG. 1, a dielectric barrier discharge excimer UV lamp A has an internal electrode A1 disposed along the inner side of a quartz glass discharge vessel A3 formed in a hollow cylindrical shape and is provided on the outer side. An external electrode A2 is disposed along the discharge space of the discharge vessel A3 and xenon gas is enclosed as discharge gas A4 so that excimer VUV (vacuum ultraviolet light) of 17 2 nm radiates radially. It shows the case of a double cylindrical structure.
これら両電極 A 1 , A 2の間に高周波電圧を印加するための給電装置 Bは A feeder B for applying a high frequency voltage between the two electrodes A 1 and A 2 is
、 誘電体バリア放電エキシマ U Vランプ Aを含む共振回路 1と、 この共振回 路 1を該エキシマ U Vランプ Aの放電開始前に予め設定された放電開始が 容易な発振周波数領域 f tにする発振手段 2と、 この放電開始が容易な発振 周波数領域 f tで起動させるためのトリガ一手段 3と、 放電開始後に上記共 振回路 1の共振周波数を検出する検出手段 4と、 この検出手段 4で検出した 放電開始後の安定した放電持続のための共振周波数に印加電圧を変更する 変更手段 5とを設ける。 And a resonant circuit 1 including a dielectric barrier discharge excimer UV lamp A, and an oscillation means for setting the resonant circuit 1 into an oscillation frequency region f t which is previously set before the discharge start of the excimer UV lamp A. 2, a trigger 1 means 3 for starting in the oscillation frequency range f t where the discharge start is easy, a detection means 4 for detecting the resonance frequency of the resonant circuit 1 after the discharge start, and detection means 4 A change means 5 is provided for changing the applied voltage to a resonance frequency for sustaining stable discharge after the start of discharge.
本実施例の場合には、上記エキシマ U Vランプ Aが放電する前の状態で共 振回路 1の静電容量 による共振周波数: ^を予め測定して求める。 In the case of the present embodiment, the resonance frequency: ^ by the capacitance of the resonance circuit 1 is measured and obtained in advance in a state before the excimer UV lamp A is discharged.
上記発振手段 2は、 放電開始前の状態で、 上記共振周波数 より高い放 電開始が容易な発振周波数領域 f tを発振する発振回路であり、 その出力端 が加算回路 6を介してパワーアンプ 7に接続され、このパワーアンプ 7で増 幅された後に上記共振回路 1を介して両電極 A 1 , A 2に出力される。 上記トリガー手段 2は、上記発振手段 2による放電開始が容易な発振周波 数領域 f tで放電開始信号を出力するトリガ一回路であり、 その出力端が加 算回路 6に接続され、 トリガー回路からの出力に基づきパワーアンプ 6及び
共振回路 1を介して発振周波数領域: f tの電圧が両電極 A 1, A 2に出力さ れる。 The oscillation means 2 is an oscillation circuit that oscillates an oscillation frequency range f t which facilitates discharge start higher than the resonance frequency in a state before the discharge start, and its output end is connected to the power amplifier 7 via the addition circuit 6. After being amplified by the power amplifier 7, the signal is output to both electrodes A 1 and A 2 through the resonant circuit 1. The trigger means 2 is a trigger circuit that outputs a discharge start signal in an oscillation frequency range f t where discharge start by the oscillation means 2 is easy, and its output end is connected to the addition circuit 6, and from the trigger circuit Power amplifier 6 based on the output of The oscillation frequency domain: The voltage of f t is output to both electrodes A 1 and A 2 via the resonant circuit 1.
上記検出手段 4は、 検出回路からなり、 その入力側のコイルと、 上記パヮ —アンプ 1 bの出力端に接続されたコイルと、共振回路 1のィンダク夕ンス コイルとでコンデンサを構成し、 これを共振回路 1のインダク夕ンス L。と すると共に、 該エキシマ U Vランプ Aが放電開始された後、 例えば 1秒後に 共振回路 1の共振点を検出して、それを前記発振手段 2の発振回路へフィ一 ドバックさせる。 The detection means 4 comprises a detection circuit, and a coil is formed by the coil on the input side, the coil connected to the output end of the power amplifier 1b, and the inductance coil of the resonant circuit 1, The inductance L of the resonant circuit 1. At the same time, after the discharge of the excimer UV lamp A is started, for example, after 1 second, the resonance point of the resonance circuit 1 is detected and fed back to the oscillation circuit of the oscillation means 2.
更に、 前記発振手段 2の発振回路は、 上記検出手段 4で検出した共振回路 1の共振点がフィードバックされると、 上記共振周波数: ^より低い共振周 波数: f 2に切り換えて発振し、 これに基づき両電極 A 1 , A 2への電圧出力 を放電開始後の安定した放電持続のための共振周波数 f 2に印加電圧を変更 させる変更手段 5でもある。 Furthermore, the oscillation circuit of the oscillation unit 2, the resonance point of the resonance circuit 1 is detected by the detection means 4 are fed back, the resonance frequency: ^ lower resonance frequency: switched oscillate f 2, which It is also a changing means 5 for changing the voltage output to both electrodes A 1 and A 2 to the resonance frequency f 2 for sustaining stable discharge after the start of discharge.
また、 上記給電装置 Bの回路中には、 必要に応じてアッテネーター 8を接 続してそれを通る信号が適量となるように減衰しても良い。 In addition, an attenuator 8 may be connected in the circuit of the power feeding device B, if necessary, to attenuate the signal passing therethrough to an appropriate amount.
次に、 斯かる誘電体バリア放電装置の作動について説明する。 Next, the operation of such a dielectric barrier discharge device will be described.
先ず、 発振手段 2の発振回路によって、 予め測定した共振周波数 より 高い放電開始が容易な発振周波数領域: f tに設定しておく。 First, the oscillation frequency region: f t which is easy to start discharge higher than the resonance frequency measured in advance by the oscillation circuit of the oscillation means 2 is set.
この状態で、 トリガ一手段 3のトリガ一回路によって、放電開始信号が両 電極 A l , A 2に出力され、 それにより、 該エキシマ U Vランプ Aの放電が 極めて容易に開始される。 In this state, a trigger signal of trigger 1 means 3 outputs a discharge start signal to both electrodes Al and A2, whereby the discharge of the excimer UV lamp A is very easily started.
この放電が開始された後、例えば 1秒後に検出手段 4によって、 上記共振 回路 1の共振点を検出し、 上記共振周波数 より低い共振周波数 f 2が、 変 更手段 5でもある発振手段 2の発振回路へフィードバックされ、最良な共振 周波数 f 2になるように発振回路を制御する。 After this discharge is started, the resonance point of the resonance circuit 1 is detected by the detection means 4 after 1 second, for example, and the oscillation of the oscillation means 2 whose resonance frequency f 2 lower than the resonance frequency is also the change means 5 is fed back to the circuit, controls the oscillator so that the best resonance frequency f 2.
その結果、 両電極 A l , A 2への電圧出力を放電開始後の安定した放電領
域の共振周波数: f 2に印加電圧を変更する。 As a result, the voltage output to both electrodes Al and A2 is stable after the discharge starts. Range of the resonance frequency: changing the voltage applied to f 2.
その一例を述べれば、 予め測定した共振周波数 が例えば 2.08MHzで、 そ れより約 0.2MHz高い約 2. 10MHzを中心とした発振周波数領域: tにおいて、 エキシマ U Vランプ Aを放電させた場合、エキシマ U Vランプ Aが放電開始 した後も周波数を変更せず、 そのままで放射照度が 25mW/cm2のエキシマ V U Vを照射するため約 600W の電力を両電極 A 1 , A 2に入力しなければなら ず、 その反射電力は約 400W であった。 Stated an example thereof, in the resonant frequency measured in advance e.g. 2.08MHz, approximately 0.2MHz from Re their high about 2. Oscillation frequency range around the 10 MHz: at t, when to discharge the excimer UV lamp A, excimer UV lamp A does not change the frequency even after the discharge starts, and in order to irradiate excimer VUV with an irradiance of 25 mW / cm 2 as it is, about 600 W of power must be input to both electrodes A 1 and A 2 , The reflected power was about 400W.
これに対し、 エキシマ U Vランプ Aが放電開始した後に、 上記発振周波数 領域: f t (約 2. 10MHzを中心とした領域) より低い共振周波数: f 2として例えば 1.80MHzに変更した場合には、 放射照度が 25mW/cm2のエキシマ V U Vを照射 するため約 200W の電力を両電極 A l, A 2に入力しなければならず、 その 反射電力は約 70W となった。 On the other hand, after the excimer UV lamp A starts to discharge, when the resonance frequency lower than the above oscillation frequency area: f t (area centered on about 2.10 MHz): f 2 is changed to 1.80 MHz, for example, In order to irradiate excimer VUV with an irradiance of 25 mW / cm 2 , about 200 W of power had to be input to both electrodes A1, A2, and the reflected power was about 70 W.
これらの差は、電気エネルギーをエキシマ V U Vの光エネルギーに変換す る効率の差である。 These differences are differences in the efficiency of converting electrical energy into light energy of excimer V UV.
その結果、 入力電力に対する発光効率が向上し、 それにより所期の光量を 得ても発熱が抑えられる。 As a result, the light emission efficiency with respect to the input power is improved, whereby the heat generation can be suppressed even if the desired amount of light is obtained.
また、前記エキシマ U Vランプ Aの励起源として用いられる誘電体バリヤ 放電には、 別名ォゾナイザ放電あるいは無声放電 (si lent discharge) と、 高周波電界の印加方法として容量結合方式による高周波放電があると言わ れているが、 どちらの放電方式でも本発明は使用できる。 The dielectric barrier discharge used as an excitation source for the excimer UV lamp A is also known as an aliaser discharge or silent discharge, and a high frequency discharge by capacitive coupling as a method of applying a high frequency electric field. However, the present invention can be used with either of the discharge methods.
尚、 前示実施例では、 誘電体バリア放電エキシマ U Vランプ Aが、 中空円 筒状の放電容器 A 3の内側に沿って内部電極 A 1を配置すると共に外側に 沿って外部電極 A 2を配置し、 この放電容器 A 3内に放電用ガス A 4として キセノンガスを封入した二重円筒型構造である場合を示したが、 これに限定 されず、放電容器 A 3の形状及び両電極 A 1 , A 2の配置位置や放電用ガス A 4が異なるものでも良い。
産業上の利用可能性 In the above-described embodiment, the dielectric barrier discharge excimer UV lamp A has the internal electrode A1 disposed along the inside of the hollow cylindrical discharge vessel A3 and the external electrode A2 disposed along the outside. The discharge vessel A 3 has a double cylindrical structure in which xenon gas is enclosed as discharge gas A 4, but the invention is not limited thereto. The shape of the discharge vessel A 3 and both electrodes A 1 , A 2 arrangement position and discharge gas A 4 may be different. Industrial applicability
以上説明したように、 本発明のうち請求項 1記載の発明は、発振手段によ り放電開始が容易な発振周波数領域に設定しておき、 トリガ一手段からの起 動によってランプの放電が開始され、 その後、 検出手段によって、 放電後に おける共振回路の共振周波数を検出し、変更手段によって両電極への電圧出 力を放電開始後の安定した放電領域の共振周波数に印加電圧を変更するの で、 発光効率が高い誘電体バリァ放電装置を提供できる。 As described above, the invention according to claim 1 of the present invention sets the oscillation frequency range in which the discharge can be easily started by the oscillation means, and the discharge of the lamp is started by the activation from the trigger one means. After that, the detecting means detects the resonant frequency of the resonant circuit after the discharge, and the changing means changes the voltage output to both electrodes to the resonant frequency of the stable discharge region after the discharge is started. It is possible to provide a dielectric barrier discharge device having high luminous efficiency.
従って、所期の光量を得るのに発熱が抑えられ、 その分だけ省エネルギー となって電源を小型化できる。 Therefore, the heat generation can be suppressed to obtain the desired light intensity, and the energy can be saved accordingly to miniaturize the power supply.
請求項 2の発明は、 請求項 1の発明の効果に加えて、 ランプが放電する前 の状態で共振回路の静電容量による共振周波数を予め測定して求めたので 、 放電開始が容易な発振周波数領域を簡単に検出できる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, the resonance frequency due to the capacitance of the resonance circuit is measured in advance in the state before the lamp is discharged. The frequency domain can be easily detected.