WO2003003920A2 - Procede et dispositif de recherche non invasive de distribution sanguine et de ses caracteristiques circulatoire chez des organismes a sang chaud - Google Patents
Procede et dispositif de recherche non invasive de distribution sanguine et de ses caracteristiques circulatoire chez des organismes a sang chaud Download PDFInfo
- Publication number
- WO2003003920A2 WO2003003920A2 PCT/GE2002/000006 GE0200006W WO03003920A2 WO 2003003920 A2 WO2003003920 A2 WO 2003003920A2 GE 0200006 W GE0200006 W GE 0200006W WO 03003920 A2 WO03003920 A2 WO 03003920A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organism
- current
- blood
- electrodes
- regions
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 48
- 238000011160 research Methods 0.000 title claims description 40
- 239000008280 blood Substances 0.000 title claims description 34
- 210000004369 blood Anatomy 0.000 title claims description 34
- 238000009826 distribution Methods 0.000 title claims description 22
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 230000000004 hemodynamic effect Effects 0.000 claims abstract description 26
- 230000036770 blood supply Effects 0.000 claims abstract description 17
- 210000000481 breast Anatomy 0.000 claims abstract description 12
- 210000003141 lower extremity Anatomy 0.000 claims abstract description 11
- 230000007170 pathology Effects 0.000 claims abstract description 11
- 210000001364 upper extremity Anatomy 0.000 claims abstract description 11
- 238000011068 loading method Methods 0.000 claims abstract description 8
- 230000006978 adaptation Effects 0.000 claims abstract description 7
- 210000004197 pelvis Anatomy 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 6
- 210000002784 stomach Anatomy 0.000 claims abstract description 6
- 230000000747 cardiac effect Effects 0.000 claims description 34
- 230000017531 blood circulation Effects 0.000 claims description 33
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000007619 statistical method Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 230000005856 abnormality Effects 0.000 claims description 2
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 210000000056 organ Anatomy 0.000 abstract description 14
- 239000003814 drug Substances 0.000 abstract description 11
- 210000003128 head Anatomy 0.000 abstract description 10
- 210000000748 cardiovascular system Anatomy 0.000 abstract description 9
- 230000004044 response Effects 0.000 abstract description 5
- 210000003739 neck Anatomy 0.000 abstract description 2
- 210000002216 heart Anatomy 0.000 description 14
- 230000010412 perfusion Effects 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 230000004064 dysfunction Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000004872 arterial blood pressure Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 210000001147 pulmonary artery Anatomy 0.000 description 6
- 230000008321 arterial blood flow Effects 0.000 description 5
- 230000002802 cardiorespiratory effect Effects 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 230000002685 pulmonary effect Effects 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 206010020772 Hypertension Diseases 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 210000005240 left ventricle Anatomy 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- 206010052337 Diastolic dysfunction Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000002746 orthostatic effect Effects 0.000 description 3
- 230000004088 pulmonary circulation Effects 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000008337 systemic blood flow Effects 0.000 description 3
- 206010007558 Cardiac failure chronic Diseases 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000010241 blood sampling Methods 0.000 description 2
- 230000002057 chronotropic effect Effects 0.000 description 2
- 238000011281 clinical therapy Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000001660 hyperkinetic effect Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 210000005241 right ventricle Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000001839 systemic circulation Effects 0.000 description 2
- 230000008320 venous blood flow Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000004882 diastolic arterial blood pressure Effects 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000002169 extracardiac Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 230000003483 hypokinetic effect Effects 0.000 description 1
- 208000021822 hypotensive Diseases 0.000 description 1
- 230000001077 hypotensive effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004873 systolic arterial blood pressure Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000006496 vascular abnormality Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0535—Impedance plethysmography
Definitions
- the invention refers to medicine and can be used for assessment of the current status of blood supply in all the regions and vital organs and the reserves of adaptation of an organism as a hemodynamic response of cardiovascular system to a way of life, dosed loading, latent or manifested pathology.
- the problem is in that the cardiovascular system is a realisator and a permanent participant of all the processes proceeding in a human organism. It is the most sensitively responsive to any influence upon an organism. However, due to organospecific and organopathologic orientations in perception of a patient's condition, the strategy of research based on research of separate parts of an organism is accepted in medicine.
- thermodilution method as the most simple invasive one is usually applied in reanimation branch.
- the doctor having inserted catheter in pulmonary artery of the patient and using an ice physiological solution is capable to determine the current condition of the basic hemodynamic parameters, with sufficient practice accuracy.
- this method also suffers from obvious disadvantages which are inherent to any invasive procedure.
- the non-invasive electrobioimpedance plethysmographic methods of researches are continued to be used for research of a complex of hemodynamic parameters.
- the calculation of the main hemodynamic parameter, i.e. the volume, is made by use of an impedance derivative dZ/dT, but not by the direct measurement of active bioimpedance component, which is the direct characteristic of liquid volume.
- a method and system for non-invasive determination of main cardiorespiratory parameters of a human body offered by Tsoglin and Frinerman in the USA patent No 5,735,284 refers to integrated electrobioimpedance measurements of the whole body.
- the method is designed for determination of the basic cardiorespiratory parameter of an individual. According to this method, the electrodes are applied at least in two places, one - to hands and the other - to legs.
- the integrated curve is obtained as a result of measurement of an alternating current of highly stable amplitude running through a body.
- the active i.e. the resistive component is separated from an integrated bioimpedance.
- the method continues to support organospecific and organopathologic approach to an organism and does not promote the system complete vision and the analysis of a patient's organism.
- the method is invasive, since for calculation of the basic cardiorespiratory hemodynamic parameter of cardiac output (CO) according to the equation offered by authors: EQU1, 145+0,35 (Hct-40), the blood sampling is necessary for calculation of substitutional value in the basic equation haematocrit-Hct from the patient's blood.
- the factor (concentration) of electrolytic ions in blood of patient Kel- is also calculated as a result of the analysis of blood and is included in other calculations under the offered formulas for individual dialysis EQU4 and for others EQU5.
- Epy integral method in a combination with segmentary one is not completely used by authors.
- Electric equivalent circuits given in patent US 5,735,284 on Fig.l A - Fig.lG do not allow to judge about a condition of the whole cardiorespiratory system under those conditions, which are provided in the patent, since they do not comprise such an important region as the head containing brain - the basis of nervous regulation of an organism.
- Authors Tsoglin and Finerman in the USA patent 5,735,284 under an integrated method mean the research of a body by means of connecting current electrodes between extremities, not taking into account the region of the head containing at least 25% of the volume of deposited blood, change of redistribution, which always brings an error, and the main thing is that it does not allow to assess the state of blood supply of the brain (a nervous regulation state) and the organism as a whole.
- Technical result of the proposed invention comprises the increase in self-descriptiveness, sensitivity, and also increase in accuracy of measurement of the basic cardiorespiratory parameters of blood circulation, that is achieved by that in a method for non-invasive research of distribution of blood and its circulatory characteristics in the warm-blooded organism comprising connecting the high-frequency generator of a stable sounding current to a researched object by means of current electrodes, gathering and measuring a base impedance and electrical impedance plethysmogram by means of pickup electrodes, determining blood deposition, recognizing, measuring and calculating the averaged amplitude of systolic wave and the averaged period of cardiac output, connection of the high-frequency generator of a stable sounding current by means of attaching at least three or five current electrodes to the upper part of a head and to the distal parts of the lower and/or upper extremities, each of the electrodes having at least two sections, connecting pickup electrodes, each one having at least two sections, in regions of a head, a neck, a breast, a
- the technical result is achieved also in that in the device for non-invasive researches of distribution of blood and its circulatory characteristics in a warm-blooded organism comprising the high-frequency stable generator of sounding current, current electrodes connected to the generator, pickup electrodes connected to the block of commutation, which by means of the channel of measurement of a base impedance and electroimpedance plethysmograms of matching device and the block of the analog-digital converter is connected to the system block of a computer, means of display and registration, a set of means for storage of programs and incoming data, the current and pickup electrodes have sections, each of electrodes having at least two sections, current electrodes, at least three or five thereof are capable of connection to the upper part of a head and to an upper or lower part of feet, the pickup electrodes are capable of connection to a warm-blooded organism in regions of a head, a neck, a breast, a stomach, a pelvis, upper and lower extremities, the device containing at least two channels of measurement of a base
- the method and the device are proposed for non-invasive research of distribution of blood and its circulatory characteristics in regions, the vital bodies and an organism as a whole during the life.
- This is the electroimpedance-plethysmographic research, and also the device for determination of the basic hemodynamic parameters describing the state of organs providing blood circulation in an organism of an individual, the system analysis of which allows to assess the status of systems of blood circulation and blood supply and the state of regulation system at all researched levels and to provide monitoring of the current status of an organism as a whole.
- This method of computer overall-differential impedance measuring is free from necessity of an additional blood sampling, tuning of the measuring device during research and is characterized in high self-descriptiveness, sensitivity, specificity, higher accuracy in measurement of the basic cardiorespitatory parameters of blood circulation.
- Fig. 1 is general block diagram of the device.
- Fig. 2 is electroimpedance plethysmograms.
- Fig. 3 is a synthesized plethysmographic cardiac complex
- Fig. 4 is a field of synthesized plethysmograms
- Fig. 5 are phases of cardiac cycle on plethysmograms.
- Fig. 6 is a visual representation of informative points on plethysmograms
- the device comprises high-frequency stable generator of sounding current 1 and current electrodes I, II, III connected thereto, a block of commutation 2 and pickup electrodes a, b, c, d, e, f, g, h, i, j, k connected thereto, the channel of measurement of a base impedance 3, a matching device 4, which contains at least 4 channels of the coordination to to the inputs of the block of the analog-digital converter 5, at least two processors 6 of a system block of computer 7 containing also a printer 8, a monitor 9 and key board 10.
- the current and pickup electrodes have at least two sections, e.g. as it is shown on Fig. 1, dl, d2 or el and e2.
- All electrodes both current and pickup ones, have sections for detailed research of blood circulation in regions, that allows to achieve both the complete (integral) research of a state of volumes of blood deposition and cardiac output, and their distribution among the various parts in each region of a body. Besides, the availability of sections instead of integral electrodes allows to increase the reliability of research, reducing probability of influence of breakage of separate connecting wires upon the results of research.
- the pickup sectional electrodes fixed in the regions of head, neck, breast, stomach, pelvis, hips, lower or/and upper extremities form the closed electric measuring circuit for synchronous registration and measurement of dynamics of impedance changes, that allows to judge about distribution of blood in an organism, regions and their parts. Gathering impedancemetric data is carried out simultaneously from all the researched regions of the patient's body, or at least in pairs - the region of breast and the region of periphery, the region of breast and the other region of periphery, etc. prior to accumulation of the data on all the peripheral regions of an organism.
- the collected impedancemetric information comes to the multichannel device of measurement of a base impedance (Zo), describing the volume of deposited blood.
- Resistive components (dZ, and dZ/dT) reflecting blood circulatory characteristics are separated from an integral bioimpedance and come to the channels of measurement of electroimpedance plethysmograms, Fig. 2 (A, B).
- the device of measurement contains a number of channels of measurement equal to the amount of the researched regions, or not less than two electroimpedance channels of measurement and program-controlled switchboard of connection of pickup electrodes. All the channels of measurement through the matching device containing at least four matching channels, through the block of analog-digital converter are connected to the system block of a computer, which contains at least two processors and the device for storage of programs and the coming information, its processing, display of results of processing and registration.
- Such a structure of construction of the device allowing to investigate non-invasively the distribution of blood and its circulatory characteristics, is necessary for single-stage gathering and measurement of base impedances and plethysmograms, and processing of the information from all the regions of a warm-blooded organism.
- all the averaged synthesized cardiac complexes of plethysmograms of periphery are synchronized in a field of plethysmogram, FIG 4. For this purpose from the time of achieving a maximum systolic wave in the region of breast, the time of achieving a maximum systolic wave in the region of periphery is subtracted.
- the time delays connected to a state of distribution of pulse-wave in vessels are caused by a spatial arrangement of electrodes on a researched organism and state of distribution of pulse- wave, i.e. by physical parameters of vessels and blood.
- the phases of a cardiac cycle of FIG.5 are reflected in the synthesized cardiac complexes of plethysmogram as auricular wave, presystolic wave, fast and slow phases of systolic and diastolic waves. They are recognized by the account of a time sequence of their display on rheogram, parameters of amplitudes, speeds of their change in points of an inflection, calculation of amount of the maximal amplitudes.
- the measured in these points amplitude-time parameters Ai and Ti, in all the regions of a warm-blooded organism characterize the circulatory parameters of blood flow bearing hemodynamic response to a way of life and the current status.
- the heart rate (HR) is automatically is determined by counting up the amount of amplitudes of a systole in a unit of time.
- the received results are visualized, both as graphic display of a field of averaged plethysmograms and as a set of digital values of parameter describing the results of recognition.
- the method and the device allow in case of need, when working with initial plethysmographic curves, to recognize the phases of a cardiac cycle subjectively.
- the curves are deduced visually on the means of display and registration - for example, on the screen of the display.
- the researcher recognizes and marks informative points of plethysmograms, and the device automatically measures in these points the amplitude-time parameters describing parameters of cardiac output and its distribution on regions, FIG.6.
- the algorithm of recognition of informative parameters is based on subjective, visual recognition by the researcher of at least 10 systolic complexes of cardiac cycle on the initial plethysmograms, where the device automatically measures amplitude-time parameters (Ai, Ti) of each cycle and the result is supplemented with their averaged values.
- amplitude-time parameters Ai, Ti
- HR heart rate
- GVR general vascular resistance
- CBV-1 systemic circulation blood volume
- SCBV systemic circulation blood volume
- PCBV pulmonary circulation blood volume
- RR respiration rate
- HPF heart pump function
- AI Perfusion an arterial impedance of perfusion
- AIPF an arterial impedance of pump function
- AI Pressure an arterial impedance of pressure
- ABSF arterial blood flow
- BBF venous blood flow
- FV filling of veins
- the device using incorporated in a software a set of the statistical data describing ranges limits, automatically normalizes all these parameters on hit in ranges of values "optimum” - "latent dysfunction” - "pathology".
- the segments are allocated, which correspond to upper and lower limits of the age norm, in which dysfunction is compensated by an organism.
- the device using incorporated in a mathematical software the set of the statistical data and algorithms of conversion of initial parameters and the basic informative parameters of blood circulation, which are connected with uniform hemodynamics, calculates and normalizes the indexes describing a functional status of organs and regimens of their functioning. For determination of a state of indexes the sums of the parameters, which have got in various ranges at normalization are calculated and are compared to the criteria allowing by coincidence to assess the current state of indexes. For example, for defining the state of an index - an arterial pressure regimen AP-1 the three-stage construction and calculation of criteria is necessary to make an arterial pressure regimen.
- the first criterion includes the general group of the parameters reflecting the regimen of functioning of blood circulation organs, to which are referred the state of parameters of systemic blood circulation volume (SBCV), mean arterial pressure (MAP), HR, SV, MBV and arterial impedance to pressure (AI Pressure) regions etc..
- SBCV systemic blood circulation volume
- MAP mean arterial pressure
- HR HR
- SV mean arterial pressure
- MBV arterial impedance to pressure
- AI Pressure arterial impedance to pressure
- the second criterion is a typical group of parameters, into which enter arterial pressure regimen (APR), GVR of SC and AI Pressure of all the regions.
- APR arterial pressure regimen
- GVR of SC
- AI Pressure arterial pressure
- Each criterion is calculated as follows: the quantity of parameters got in a range "Optimum” is first summarized and the obtained result is compared to the criterion of recognition of the state, which was earlier determined on the basis of the statistical data. If the calculated value meets the criterion it is assigned the code of this state. If no, then the comparison with the other range "the latent dysfunction" proceeds.
- indexes and abbreviations (APR)- arterial pressure regimen, (HR) - heart rate (SBP) -systolic blood pressure, (DBP) -diastolic blood pressure, (PBC) - pulmonary blood circulation, (SBC) - systemic blood circulation, (HPF) - heart pump function, (RV) - right ventricle, (LV) - left ventricle,
- PAOP pulmonary artery occluded pressure
- AIPF arterial impedance of pump function of heart
- the device After the current state of indexes is determined, the device automatically makes the system analysis of a state of blood circulation and blood supply of vital organs of an organism and a state of regulation at all levels in rest. For this purpose see the Extract from Medical Examination Protocol No. 000261 :
- Value of an index of system arterial pressure regimen is in a range "latent dysfunction " -hyper-.
- the index of the total volume of circulating blood of a warm-blooded organism is in the range - "Optimum”-.
- the index - chronotropic cardiac regimen is in the range “latent dysfunction” - hypo-.
- Value of an index - left ventricle pump function (LVPF) is in the range - "Optimum”-, but an index - the general vascular resistance of blood circulation system (GVR of BC), is in the range - "Pathology"-hyper-.
- GVR of BC general vascular resistance of blood circulation system
- the pulmonary blood circulation is also characterized by the discrepancy between the index of right ventricle pump function (RVPF), which in the example is in the range "Optimum” and the index of pulmoarterial resistance, which is in the range - "Pathology"-hyper-.
- RVF right ventricle pump function
- pulmoarterial resistance which is in the range - "Pathology"-hyper-.
- PAOP pulmonary artery occluded pressure
- PAOP A of systole / A of diastole *K.
- Increase of pulmonary artery occluded pressure (PAOP) and increase of blood volume in a pulmonary blood circulation is probably caused by diastolic dysfunction of heart, and it is a shock-organ.
- the indexes describing the mechanisms of ensuring perfusion on microcirculation level are changed under the effect of local nervous -humoral regulation, i.e. - the metarteriole tonus is in a range "latent dysfunction " - hyper-, and the capacity of a capillary bed is in the range “latent dysfunction " - hypo-.
- the index - chronotropic cardiac regimen (CCR) is in a range "latent dysfunction” - hypo-.
- Heart rate (HR) is reduced (bradycardia), i.e. the status of central regulation is characterized by a prevalence of parasympathetics.
- the method and the device for non-invasive research of distribution of blood and its circulatory characteristics in a warm-blooded organism as the method of functional research of blood circulation system allows the doctor to assess the real state of vital activity of an organism by the parameters of blood supply. It promotes reception of the new information, which is a basis for systematization of medical knowledge, allows the doctor to optimize the strategy of diagnostics and tactics of treatment.
- the method makes possible to re-classify a state of patients on the new hemodynamic basis, qualitatively improving standards existing in medicine.
- the device as hemodynamic analyzer allows non-invasively, quickly, objectively and at single-stage to assess a state of blood supply of all regions and to identify hemodynamic response of an organism to a way of life, the dosed out loading, latent or a demonstrated pathology.
- the method and the device are necessary for doctors in polyclinics, hospitals, ambulance, to persons admitting drivers on public transport, the ships, planes, operators in the chemical, nuclear industries and also to family and sports doctors.
- the method and the device can be used in consulting rooms of functional diagnostics, hospitals, military draft commissions and sports.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GEAP2001004373 | 2001-07-05 | ||
GE004373 | 2001-07-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003003920A2 true WO2003003920A2 (fr) | 2003-01-16 |
WO2003003920A3 WO2003003920A3 (fr) | 2003-04-17 |
Family
ID=10922908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GE2002/000006 WO2003003920A2 (fr) | 2001-07-05 | 2002-07-04 | Procede et dispositif de recherche non invasive de distribution sanguine et de ses caracteristiques circulatoire chez des organismes a sang chaud |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2003003920A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005010640A2 (fr) | 2003-07-31 | 2005-02-03 | Dst Delta Segments Technology, Inc. | Surveillance multi-canaux non invasive de parametres hemodynamiques |
CN103230272A (zh) * | 2013-04-23 | 2013-08-07 | 中国科学院电工研究所 | 一种用于肝病营养状态检测的方法及装置 |
WO2014146174A1 (fr) * | 2013-03-20 | 2014-09-25 | Terence Vardy | Mesure de caractéristiques physiologiques |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5178154A (en) * | 1990-09-18 | 1993-01-12 | Sorba Medical Systems, Inc. | Impedance cardiograph and method of operation utilizing peak aligned ensemble averaging |
US5685316A (en) * | 1996-04-08 | 1997-11-11 | Rheo-Graphic Pte Ltd. | Non-invasive monitoring of hemodynamic parameters using impedance cardiography |
WO1998053737A1 (fr) * | 1997-05-30 | 1998-12-03 | N.I. Medical Ltd. | Procede et systeme pour determiner de maniere non invasive les parametres cardiorespiratoires principaux du corps humain |
DE19914437A1 (de) * | 1999-03-30 | 2000-10-05 | Hans Karl Seifert | Mathematische Formel zur Berechnung des Herzschlagvolumens aus der DELTA Z - Kurve des Impedanzkardiogramms |
US6339722B1 (en) * | 1995-09-26 | 2002-01-15 | A. J. Van Liebergen Holding B.V. | Apparatus for the in-vivo non-invasive measurement of a biological parameter concerning a bodily fluid of a person or animal |
-
2002
- 2002-07-04 WO PCT/GE2002/000006 patent/WO2003003920A2/fr not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5178154A (en) * | 1990-09-18 | 1993-01-12 | Sorba Medical Systems, Inc. | Impedance cardiograph and method of operation utilizing peak aligned ensemble averaging |
US6339722B1 (en) * | 1995-09-26 | 2002-01-15 | A. J. Van Liebergen Holding B.V. | Apparatus for the in-vivo non-invasive measurement of a biological parameter concerning a bodily fluid of a person or animal |
US5685316A (en) * | 1996-04-08 | 1997-11-11 | Rheo-Graphic Pte Ltd. | Non-invasive monitoring of hemodynamic parameters using impedance cardiography |
US6161038A (en) * | 1996-04-08 | 2000-12-12 | Rheo-Graphic Pte Ltd. | Non-invasive monitoring of hemodynamic parameters using impedance cardiography |
WO1998053737A1 (fr) * | 1997-05-30 | 1998-12-03 | N.I. Medical Ltd. | Procede et systeme pour determiner de maniere non invasive les parametres cardiorespiratoires principaux du corps humain |
DE19914437A1 (de) * | 1999-03-30 | 2000-10-05 | Hans Karl Seifert | Mathematische Formel zur Berechnung des Herzschlagvolumens aus der DELTA Z - Kurve des Impedanzkardiogramms |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005010640A2 (fr) | 2003-07-31 | 2005-02-03 | Dst Delta Segments Technology, Inc. | Surveillance multi-canaux non invasive de parametres hemodynamiques |
EP1648297A2 (fr) * | 2003-07-31 | 2006-04-26 | DST Delta Segments Technology, Inc. | Surveillance multi-canaux non invasive de parametres hemodynamiques |
EP1648297A4 (fr) * | 2003-07-31 | 2009-06-10 | Dst Delta Segments Technology | Surveillance multi-canaux non invasive de parametres hemodynamiques |
US8682424B2 (en) | 2003-07-31 | 2014-03-25 | Dst Delta Segments Technology, Inc. | Noninvasive multi-channel monitoring of hemodynamic parameters |
WO2014146174A1 (fr) * | 2013-03-20 | 2014-09-25 | Terence Vardy | Mesure de caractéristiques physiologiques |
US10201304B2 (en) | 2013-03-20 | 2019-02-12 | Isotechnology Pty Ltd | Measurement of physiological characteristics |
AU2014234961B2 (en) * | 2013-03-20 | 2022-04-28 | Terence Vardy | The measurement of physiological characteristics |
CN103230272A (zh) * | 2013-04-23 | 2013-08-07 | 中国科学院电工研究所 | 一种用于肝病营养状态检测的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2003003920A3 (fr) | 2003-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10278599B2 (en) | Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure | |
US8706464B2 (en) | Health data dynamics, its sources and linkage with genetic/molecular tests | |
US12251239B2 (en) | System and method of assessing intra-arterial fluid volume using intelligent pulse averaging with integrated EKG and PPG sensors | |
EP1014852A1 (fr) | Appareils et procedes pour une mesure non invasive de parametres physiologiques | |
JP2006501903A (ja) | 高分解能生体インピーダンス装置 | |
US20230055617A1 (en) | Methods and Systems for Engineering Photoplethysmographic-Waveform Features From Biophysical Signals for Use in Characterizing Physiological Systems | |
Osman et al. | Blood pressure estimation using a single channel bio-impedance ring sensor | |
US9629559B2 (en) | Measuring homeostatic risk | |
WO2003003920A2 (fr) | Procede et dispositif de recherche non invasive de distribution sanguine et de ses caracteristiques circulatoire chez des organismes a sang chaud | |
RU2314750C1 (ru) | Способ системной оценки динамики жидкости и крови | |
Yılmaz et al. | Comparison of electrode configurations for impedance plethysmography based heart rate estimation at the forearm | |
Cybulski | Applications and prospects for impedance cardiography: Stationary and ambulatory implementations | |
RU2107457C1 (ru) | Способ определения основных функциональных показателей миогемодинамики левого желудочка сердца | |
WO2021211634A1 (fr) | Système et procédé d'évaluation de volume de fluide intra-artériel à l'aide d'une moyenne d'impulsion intelligente avec des capteurs ekg et ppg intégrés | |
PAMBIANCO | Indirect quantitative assessment of the respiratory frequency from heart rate during physical exercise | |
Alves | A Wearable System for Remote Cardiorespiratory Fitness Monitoring | |
CN119318473A (zh) | 一种多模态心脑血流动力学监测方法及装置 | |
Escrivá Muñoz | Advanced bioimpedance signal processing techniques for hemodynamic monitoring during anesthesia | |
Patil et al. | Impedance Cardiography Used For Diagnosis of Disease | |
Tannous | Robust Estimation of Mean Arterial Pressure in Atrial Fibrillation using Oscillometry | |
Adamson | Impedance Cardiography–New Techniques for Measurement of Cardiac Functions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
ENP | Entry into the national phase |
Ref document number: 2004116130 Country of ref document: RU Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |