+

WO2002033815A1 - Procede de commande de l'acceleration/deceleration d'un moteur - Google Patents

Procede de commande de l'acceleration/deceleration d'un moteur Download PDF

Info

Publication number
WO2002033815A1
WO2002033815A1 PCT/JP2000/007198 JP0007198W WO0233815A1 WO 2002033815 A1 WO2002033815 A1 WO 2002033815A1 JP 0007198 W JP0007198 W JP 0007198W WO 0233815 A1 WO0233815 A1 WO 0233815A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
internal time
deceleration
motor
calculating
Prior art date
Application number
PCT/JP2000/007198
Other languages
English (en)
Japanese (ja)
Inventor
Tomoaki Hachiya
Masashi Nakayama
Yuuichi Komazawa
Original Assignee
Technowave, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technowave, Ltd. filed Critical Technowave, Ltd.
Priority to PCT/JP2000/007198 priority Critical patent/WO2002033815A1/fr
Publication of WO2002033815A1 publication Critical patent/WO2002033815A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors

Definitions

  • the present invention relates to a method of controlling acceleration and deceleration of a motor for machine operation and software used for the method, and more particularly, to a method of performing smooth acceleration and deceleration without giving a shock to the motor.
  • the present invention relates to a method for controlling acceleration and deceleration of a machine operation motor for improving trajectory accuracy and software used for the method.
  • BACKGROUND ART The motor used to drive each axis, such as a multi-axis machine or an articulated robot, is subject to the weight of the operating axis and inertia. It does not operate on the same trajectory, so it is necessary to perform appropriate acceleration / deceleration control while reaching the target coordinate position from the starting coordinate position.
  • FIG. 5 shows a general schematic flow of such a control method.
  • an operation command is issued by a machining program
  • an interpolation process is executed, whereby position data for each interpolation cycle is calculated, and
  • the motor is driven via the single point processing system.
  • the servo processing system always reads the feed nozzle position data using the encoder attached to the motor.
  • Machining program is provided by G code, teaching play back, etc. It indicates the target position, the moving speed, the shape of the trajectory such as a straight line or an arc, and the caro speed.
  • an operation command for a trajectory shape orthogonal to the XY 2-axis moving from? 0 to? 1 in the X direction first, then moving from P1 to P2 in the Y direction.
  • This method is a method of calculating so that the speed is continuous at the stage of generating the data for interpolating the trajectory.
  • a calculation method for making the speed continuous use of a spline function or the like can be mentioned.
  • Fig. 8 shows an example of the execution procedure by this method.
  • the interpolation cycle is divided into fixed intervals T, and the concept of an internal time Tn that changes by this interval is used.
  • the position data is given as a function of the internal time Tn.
  • Fig. 9 shows an example of control using this method.
  • the advantage of this method is that the trajectory can be kept unchanged even if the speed is changed.
  • the disadvantage is that it is practically impossible to change the speed or make a temporary stop on the way. This is often a fatal problem in the field where machine tools are actually used.
  • a filter system that can change the speed or stop during the operation.
  • This method prepares a FIF buffer of a certain length, records the data obtained by interpolating the trajectory in the buffer while receiving it every moment, and averages the data in the buffer.
  • This is a method of controlling the data of this, and is a method of performing so-called smoothing. That is, as shown in FIG. 10, a step of acceleration / deceleration processing is provided after the execution calculation processing for interpolation. An example of control by this method is shown in Fig. 11 (a). The case where the speed is 100% and the case where the speed is 50% are shown.
  • the advantage of this method is that once the interpolated data stops, it stops completely and smoothly after a certain period of time according to the buffer length. Even if a pause is applied, acceleration / deceleration can be stopped smoothly.
  • the pre-interpolation acceleration / deceleration method is the only method that can accelerate / decelerate without changing the calculation trajectory, but cannot respond to the speed change or pause as described above. Conversely, with the Phil Evening method, how do you change the speed or pause It is possible to respond even if instructed, but the trajectory accuracy is poor.
  • the present invention provides a method having both advantages, that is, a motor control method capable of improving the trajectory accuracy while performing smooth acceleration / deceleration without giving a shock to the motor even when the command speed is changed.
  • the purpose is to provide.
  • the method of performing continuous speed interpolation using a function that obtains the target position as an output when the elapsed time from the starting point is input In the interpolation of the coordinate position for acceleration / deceleration control of the machine operation mode, the method of performing continuous speed interpolation using a function that obtains the target position as an output when the elapsed time from the starting point is input,
  • a method for controlling acceleration and deceleration of motors wherein the step size of the elapsed time is variable, and the variable step size is smoothed using a filter in the process of interpolation.
  • the invention described in Claim 2 is
  • a procedure for receiving a command value including at least one of the target position, speed, trajectory shape, and acceleration,
  • Variable internal step size based on the value of the speed change command and the T (the procedure for calculating 5 Tn,
  • Procedure to calculate the internal time step width d T n that changes smoothly A procedure for updating the internal time using the d T n; a procedure for calculating position data for each interpolation cycle given to the motor based on the updated internal time;
  • a method for controlling acceleration and deceleration of a motor for machine operation characterized by having: The invention described in claim 3 is:
  • a computer readable program recording program for controlling the acceleration / deceleration of the motor characterized in that the step width of the elapsed time is variable and the variable step width is smoothed using a filter in the process of interpolation. Recording medium.
  • a command value including at least one of a target position, a speed, a trajectory shape, and an acceleration
  • a computer-readable recording medium storing a program for performing acceleration / deceleration control of a machine operation mode comprising: The invention described in claim 5 is
  • a command value including at least one of a target position, a speed, a trajectory shape, and an acceleration
  • the position data for each interpolation cycle This is software for performing acceleration / deceleration control of a motor for machine operation, characterized by having:
  • the internal time interval ⁇ 1 T has been improved to be variable,
  • a filter method is introduced in the process of interpolation. The above-mentioned filter method is to prepare a FIFO buffer of a certain length, record the data with the trajectory interpolated every moment, record it in the buffer, and average the data in the buffer at this time. In this method, data after acceleration / deceleration is used.
  • the filtering method adopted in the present invention that is, the execution timing is different from that of the conventional filtering method.
  • filtering is performed in the process of interpolation.
  • the momentary calculation method using the acceleration / deceleration method before interpolation is converted into the following standard form.
  • this is a calculation method that defines a function that can obtain the target position as an output when the elapsed time or the time from the start point is input. This method is hereinafter referred to as a variable internal time method.
  • the instantaneous target position can be calculated in advance by simulation and stored in a table, and the function can be implemented by referring to the table.
  • the input to the function for calculating the target position can be switched not to the actual elapsed time itself but to the smoothly changing internal time that has been subjected to acceleration and deceleration processing in the fill-in method.
  • a method having both advantages of the acceleration / deceleration method before interpolation and the filter method is realized.
  • FIG. 1 is a diagram showing an interpolation processing method according to the present invention.
  • FIG. 2 is a graph showing an example of performing acceleration / deceleration with a trapezoidal speed change.
  • FIG. 3 is a graph showing an interpolation method according to the present invention.
  • FIG. 4 is a graph showing an interpolation method according to the present invention.
  • FIG. 5 is an explanatory diagram showing a schematic execution procedure of a commonly used motor acceleration / deceleration control method.
  • FIG. 6 is a graph showing a target movement locus.
  • FIG. 7 is a graph showing the simplest form of interpolation.
  • FIG. 8 is a diagram showing a conventional interpolation processing method of the pre-interpolation acceleration / deceleration method.
  • FIG. 9 is a graph showing an interpolation method using a conventional acceleration / deceleration method before interpolation.
  • FIG. 10 is a diagram showing a conventional filtering method interpolation method.
  • FIG. 11 is a graph showing an interpolation method using a conventional filter method.
  • FIG. 1 shows an example of a control method according to the present invention.
  • the target position, moving speed, trajectory shape, and acceleration are input as command values as in the conventional machining program, and the initial time is calculated based on the input command values to calculate the internal time interval T. (S101).
  • the intermediate data appearing in the calculation process of the subsequent execution calculation process (S105) the one that takes a constant value every time is obtained in the initial calculation process stage.
  • K2 -AT a 2 + V n + T a
  • K3 5-ATa 2 + V 0 -f-Ta + Vj (Tb-Ta)
  • Is calculated, and K 1 to ⁇ 5 are stored in a variable table. This is, As described later, it is used in execution calculation processing.
  • a in the above equation is the acceleration.
  • the suffix n changes one by one every interpolation cycle, and all data with n is data that changes every moment.
  • acceleration / deceleration processing is performed based on the internal time step width changed by the speed change processing (5 Tn).
  • This process is a process for advancing the internal time using the internal time interval after acceleration / deceleration.
  • the position data P n for each interpolation cycle based on the result of the execution calculation processing is given to the motor via the servo processing system in the same manner as in the past, and the motor is driven.
  • the filter processing is performed based on the internal time based on the speed change command, and the execution calculation processing is performed based on this. Therefore, even if there is a speed change, smooth acceleration / deceleration is performed, and at the same time, the output of the execution calculation is Since the output of the function f () is the same as that of the conventional acceleration / deceleration before interpolation, the output exists on the same trajectory, so that the trajectory accuracy is constant.
  • FIG. 3 is an example in which the operation of the present invention is interpolated to output the operation of FIG.
  • the control method of the present invention can be applied to acceleration / deceleration processed for each axis unit. For example, like a panel molding machine and other plastic working machines, It can be applied to general multi-axis processing machines that use a lot of rotating shafts and cam shafts, and whose speed must be changed during operation of the machine.
  • the present invention can be applied to a drawing device such as an XY plotter. In this case, a shift or deformation of a figure due to a change in drawing speed can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Numerical Control (AREA)

Abstract

L'invention concerne un procédé destiné à commander l'accélération/décélération d'un moteur en vue d'un actionnement mécanique. Ce procédé consiste à recevoir des variables de commande comprenant la position cible, la vitesse, la forme du tracé et/ou l'accélération, à calculer une largeur de pas (ΔT) d'un temps interne au moyen de la variable de commande reçue, à recevoir une commande de changement de vitesse provenant de l'extérieur, à calculer une largeur de pas interne variable (σTn) à partir de la valeur de la commande de changement de vitesse et de ΔT, à calculer une largeur de pas (dTn) du temps interne, lequel est modifié progressivement par traitement d'une accélération/décélération de temps interne au moyen d'un filtre basé sur la valeur σTn, à mettre à jour le temps interne au moyen de la valeur dTn, puis à calculer les données de position pour chaque période d'interpolation appliquée au moteur sur la base du temps interne mis à jour. L'invention concerne également un logiciel permettant de mettre en oeuvre ce procédé. Selon ce dernier, aucun choc n'est appliqué au moteur même si la vitesse de commande est modifiée, l'accélération/décélération étant réalisée progressivement, d'où la possibilité d'améliorer la précision du tracé.
PCT/JP2000/007198 2000-10-17 2000-10-17 Procede de commande de l'acceleration/deceleration d'un moteur WO2002033815A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007198 WO2002033815A1 (fr) 2000-10-17 2000-10-17 Procede de commande de l'acceleration/deceleration d'un moteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007198 WO2002033815A1 (fr) 2000-10-17 2000-10-17 Procede de commande de l'acceleration/deceleration d'un moteur

Publications (1)

Publication Number Publication Date
WO2002033815A1 true WO2002033815A1 (fr) 2002-04-25

Family

ID=11736597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007198 WO2002033815A1 (fr) 2000-10-17 2000-10-17 Procede de commande de l'acceleration/deceleration d'un moteur

Country Status (1)

Country Link
WO (1) WO2002033815A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981455A (zh) * 2012-12-04 2013-03-20 杭州电子科技大学 一种针对嵌入式系统的nurbs曲线实时插补方法
CN109508050A (zh) * 2018-11-28 2019-03-22 浙江工业大学 一种自动点钻机速度控制方法
CN111015669A (zh) * 2019-12-27 2020-04-17 南京埃斯顿机器人工程有限公司 一种工业机器人停止运动轨迹规划方法
CN114779721A (zh) * 2022-06-20 2022-07-22 济南邦德激光股份有限公司 基于位置点进行速度滤波的方法、设备和存储介质
CN115556104A (zh) * 2022-10-20 2023-01-03 北京精准医械科技有限公司 一种机器人单个关节位置的控制方法和系统及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110532A (ja) * 1992-09-29 1994-04-22 Intetsuku:Kk 位置制御方法及び装置
JPH11175130A (ja) * 1997-12-12 1999-07-02 Fanuc Ltd ロボットの制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110532A (ja) * 1992-09-29 1994-04-22 Intetsuku:Kk 位置制御方法及び装置
JPH11175130A (ja) * 1997-12-12 1999-07-02 Fanuc Ltd ロボットの制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981455A (zh) * 2012-12-04 2013-03-20 杭州电子科技大学 一种针对嵌入式系统的nurbs曲线实时插补方法
CN109508050A (zh) * 2018-11-28 2019-03-22 浙江工业大学 一种自动点钻机速度控制方法
CN109508050B (zh) * 2018-11-28 2022-03-01 浙江工业大学 一种自动点钻机速度控制方法
CN111015669A (zh) * 2019-12-27 2020-04-17 南京埃斯顿机器人工程有限公司 一种工业机器人停止运动轨迹规划方法
CN111015669B (zh) * 2019-12-27 2022-03-11 南京埃斯顿机器人工程有限公司 一种工业机器人停止运动轨迹规划方法
CN114779721A (zh) * 2022-06-20 2022-07-22 济南邦德激光股份有限公司 基于位置点进行速度滤波的方法、设备和存储介质
CN115556104A (zh) * 2022-10-20 2023-01-03 北京精准医械科技有限公司 一种机器人单个关节位置的控制方法和系统及相关设备

Similar Documents

Publication Publication Date Title
Sencer et al. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools
JP3900789B2 (ja) モータの速度・加速度決定方法、加減速生成方法、加減速制御方法、加減速制御装置及びモータ制御装置
EP1213634B1 (fr) Procédé à commande numérique
JP4891528B2 (ja) 加工時間算出装置
JP4938119B2 (ja) 工具先端点位置を制御する多軸加工機用数値制御装置
JP5762625B2 (ja) 軌跡制御装置
JP3681972B2 (ja) 加減速制御方法
EP1720083B1 (fr) Contrôleur numérique
WO2008053601A1 (fr) Dispositif de contrôle de travail et son programme
WO1989006066A1 (fr) Procede de commande de vitesse pour servomoteur
JP2008046899A (ja) 数値制御装置
JP3795854B2 (ja) レーザ加工装置
CN112865750A (zh) 基于fir滤波器的数控系统倍率变化平滑控制方法及装置
WO2002033815A1 (fr) Procede de commande de l'acceleration/deceleration d'un moteur
JP7538349B2 (ja) システム及び制御装置
JP2008090513A (ja) 数値制御装置
WO1997001801A1 (fr) Procede de regulation des operations d'acceleration et de deceleration d'un robot
CN111331577B (zh) 机器人的控制装置及控制方法
JP2019114192A (ja) 数値制御装置
EP1182524A1 (fr) Regulateur programmable
JPH0354610A (ja) インボリュート補間誤差補正方式
JP4255783B2 (ja) ロボット制御装置
JP2003015715A (ja) 指令値生成方法、指令値生成システムおよびプログラム作成装置
JPH10301614A (ja) 数値制御装置
JPH10286788A (ja) 軌跡制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载