+

WO2002000813A1 - Fuel for use in fuel cell system - Google Patents

Fuel for use in fuel cell system Download PDF

Info

Publication number
WO2002000813A1
WO2002000813A1 PCT/JP2001/005645 JP0105645W WO0200813A1 WO 2002000813 A1 WO2002000813 A1 WO 2002000813A1 JP 0105645 W JP0105645 W JP 0105645W WO 0200813 A1 WO0200813 A1 WO 0200813A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
cell system
amount
mol
Prior art date
Application number
PCT/JP2001/005645
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichirou Saitou
Iwao Anzai
Osamu Sadakane
Michiro Matsubara
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU2001267883A priority Critical patent/AU2001267883A1/en
Publication of WO2002000813A1 publication Critical patent/WO2002000813A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel used for a fuel cell system.
  • methanol As fuel for fuel cell systems, there is methanol in addition to hydrogen. Although methanol is advantageous in that it can be relatively easily reformed to hydrogen, it must be handled with care because it produces a small amount of power per weight and is toxic. In addition, since it is corrosive, special equipment is required for storage and supply.
  • the amount of power generated by subtracting the required amount of heat (the amount of heat that balances the heat generated and absorbed by the preheating and reaction) from the amount of generated power is This is the amount of power generated by the entire fuel cell system. Therefore, the lower the temperature required for reforming the fuel, the smaller the amount of preheating and the more advantageous the system, the shorter the startup time of the system, and the lower the amount of heat per weight required for the preheating of the fuel. Is also necessary. Insufficient preheating can lead to high levels of unreacted hydrocarbons (THC) in the exhaust gas, not only reducing power generation per weight, but also causing air pollution. Conversely, when operating the same system at the same temperature, it is advantageous to have less T H C in the exhaust gas and a higher conversion rate to hydrogen:
  • an object of the present invention is to provide a fuel suitable for a fuel cell system that satisfies the above-mentioned required properties in a good balance. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a fuel composed of a hydrocarbon compound having a specific composition is suitable for a fuel cell system.
  • the fuel for a fuel cell system according to the present invention is:
  • the fuel composed of the hydrocarbon compound having the above specific composition further satisfies the following additional requirements.
  • the sulfur content is 50 mass ppm or less.
  • the vapor pressure at 40 is 1.55MPa or less.
  • the density at 15 is 0.500 to 0.620 g / cm 3 .
  • the copper plate corrosion rate for 1 hour at 40 ° C is 1 or less.
  • the gas has a heat capacity at 15 ° C of 1.7 kJZkg ' BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a flowchart of a steam reforming fuel cell system used for evaluating fuel for a fuel cell system of the present invention.
  • FIG. 2 is a front chart of a partial oxidation fuel cell system used for evaluating the fuel for a fuel cell system of the present invention.
  • a hydrocarbon compound having a specific composition is defined as having a saturated component (M (S)) of 60 mol% or more, an olefin component (M (O)) of 40 mol% or less, and a butadiene component (M (B (B)). )) Is 0.5 mol% or less, and isoparaffins (M (IP)) in the saturated component having 4 or more carbon atoms are 0.1 mol% or more, and are hydrocarbon compounds which are gaseous at ordinary temperature.
  • M (S)) indicates that the amount of power generation per weight is large, the amount of power generation per CO 2 generation is large, and the fuel efficiency of the entire fuel cell system is good.
  • the amount of THC in the exhaust gas is small, and the system startup time is short. Therefore, it is preferable to use at least 60 mol%, preferably at least 80 mol%, and more preferably at least 95 mol%. Preferably, it is at least 99 mol%, most preferably.
  • the olefin component (M (O)) has a large amount of power generation per weight, a large amount of power generation per CO 2 generation, good fuel efficiency of the fuel cell system as a whole, and low THC in the exhaust gas.
  • the content is preferably 40 mol% or less, and more preferably 10 mol% or less. Most preferably, it is 1 mol% or less.
  • Butadiene (M (B)) has a large amount of power generation per weight, a large amount of power generation per CO 2 generation, good fuel economy of the fuel cell system as a whole, and low THC in exhaust gas. It should be less than 0.5 mol% and less than 0.1 mol% from the viewpoint of short system start-up time, low deterioration of the reforming catalyst, long-lasting initial performance, and storage stability. Is preferred.
  • Isoparaffins (M (IP)) in saturated components with 4 or more carbon atoms are considered to be zero due to their good fuel efficiency as a whole fuel cell system, low THC in exhaust gas, and short system startup time.
  • 1 mol% or more preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and preferably 30 mol% or more. Most preferred.
  • M (S), M (B), M (IP) and M (O) are values measured by JIS K 2240 “liquefied petroleum gas 5.9 composition analysis method”.
  • the sulfur content of the fuel of the present invention the deterioration of the fuel cell system such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, a fuel cell stock, etc. is small, and Since the performance can be maintained for a long time, it is preferable that the mass be 50 mass ppm or less based on the total amount of fuel. 10 mass! ) It is more preferably at most pm, even more preferably at most 1 ppm by mass.
  • Degradation of fuel cell systems such as reforming catalysts, water gas shift reaction catalysts, carbon monoxide removal catalysts, and fuel Kameike stacks, is such that the above-mentioned preferable range of the sulfur content and the preferable range of the above composition are both satisfied. It is most preferred because of its small size and long-term initial performance.
  • the sulfur content means the sulfur content measured according to JIS K2240 “Liquid petroleum gas 5.5 or 5.5 sulfur content test method”.
  • the composition for each carbon number is not limited at all, but the hydrocarbons having 2 or less carbon atoms are 5 mol% or less, and the total amount of the hydrocarbons having 3 carbon atoms and the hydrocarbons having 4 carbon atoms is 9%. It is preferable that the content of hydrocarbons having 0 mol% or more and 5 or more carbon atoms is 5 mol% or less.
  • the hydrocarbon having 2 or less carbon atoms is preferably at most 5 mol%, more preferably at most 3 mol%, from the viewpoint of mountability, flammability, evaporation and the like.
  • 5 or more hydrocarbon atoms are often power generation amount per weight, it often power generation amount of 2 generation amount per C_ ⁇ , good fuel economy as a whole ⁇ cell system, small, THC in the exhaust gas It is preferably 5 mol% or less, more preferably 2 mol% or less, because the starting time of the system is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time.
  • composition for each carbon number is a value measured by JIS K2240 “liquefied petroleum gas 5.9 composition analysis method”.
  • the vapor pressure of the fuel of the present invention is not limited at all, but the vapor pressure at 40 is 1.55 from the viewpoint of mountability, flammability, evaporation and the like. It is preferably at most 1.5 MPa, more preferably at most 1.5 MPa. .
  • the vapor pressure at 40 ° C is measured according to JIS K 2240 “liquefied petroleum gas 5.4 vapor pressure test method”.
  • the density at 15 ° C is measured according to JIS K 2240 “Liquefied petroleum gas 5.7 or 5.8 density test method”.
  • the copper plate corrosivity of the fuel of the present invention there is no limitation on the copper plate corrosivity of the fuel of the present invention, but the fuel cell system, such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, and a fuel cell stack, has little deterioration and has a long initial performance. From the point of view that it can be maintained for a long time, it is preferable that the corrosion rate of the copper plate per hour at 40 is 1 or less.
  • the copper plate corrosion rate at 40 for 1 hour is measured by the liquefied petroleum gas 5.10 copper plate corrosion test method of JIS 2240.
  • the heat capacity of the fuel is not limited at all. However, since the fuel efficiency of the entire fuel cell system is good, the heat capacity at 15 ° C of gas is 1.7 kJ g Is preferred.
  • This heat capacity is measured by a calorimeter such as a water calorimeter, an ice calorimeter, a vacuum calorimeter, or an adiabatic calorimeter. .
  • a straight-line propane fraction mainly composed of propane obtained from a crude oil distillation unit, a naphtha reformer, etc.
  • a straight-line desulfurized propane fraction obtained by desulfurizing it a crude oil distillation unit, a naphtha reformer
  • a straight run obtained by desulfurizing the straight-run butane fraction a straight-line propane fraction mainly composed of propane obtained from a crude oil distillation unit, a naphtha reformer, etc.
  • a straight-line desulfurized propane fraction obtained by desulfurizing it
  • a crude oil distillation unit a naphtha reformer
  • Straight-run butane fraction centered on butane obtained from coal-processing equipment, alkylation equipment, etc.
  • a straight run obtained by desulfurizing the straight-run butane fraction a straight-line propane fraction mainly composed of propane obtained from a crude oil distillation unit, a naphtha reformer, etc.
  • Desulfurized butane fraction cracked propane fraction mainly composed of propane and propylene obtained from catalytic cracking unit, butane fraction derived mainly from butane and butene obtained from catalytic cracking unit, etc. It is manufactured using one or more base materials.
  • a base material for producing the fuel of the present invention include a straight-run desulfurized propane fraction, a straight-run desulfurized butane fraction, and the like.
  • the fuel of the present invention is used as a fuel for a fuel cell system.
  • the fuel cell system referred to in the present invention includes a fuel reformer, a carbon monoxide purifier, a fuel cell, and the like, and the fuel of the present invention is suitably used in any fuel cell system.
  • the fuel reformer is for reforming the fuel to obtain hydrogen, which is the fuel of the fuel cell.
  • a reformer specifically, for example,
  • a steam reforming reformer that mixes heated and vaporized fuel with steam and reacts by heating in a catalyst such as copper, nickel, platinum, and ruthenium to obtain hydrogen-based products.
  • the carbon monoxide purifier removes carbon monoxide contained in the gas generated by the above reformer and becomes a catalyst poison of the fuel cell.
  • the fuel cell include polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells ( SOFC).
  • PEFC polymer electrolyte fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • the fuel cell system as described above is used for electric vehicles, hybrid vehicles of conventional engines and electric vehicles, portable power sources, distributed power sources, home power sources, cogeneration systems, and the like.
  • Table 1 shows the properties of the base material (LPG) used for each fuel in Examples and Comparative Examples.
  • Table 2 shows the composition and properties of each fuel used in Examples and Comparative Examples.
  • the fuel and water were vaporized by electric heating, led to a reformer filled with a noble metal catalyst and maintained at a predetermined temperature by an electric heater, and a reformed gas rich in hydrogen was generated.
  • the temperature of the reformer was set to the lowest temperature at which reforming was completely performed in the initial stage of the test (the lowest temperature at which THC was not contained in the reformed gas).
  • the reformed gas is led to a carbon monoxide treatment device (water gas shift reaction) together with water vapor to convert carbon monoxide in the reformed gas into carbon dioxide, and the generated gas is guided to a polymer electrolyte fuel cell to generate electricity.
  • a carbon monoxide treatment device water gas shift reaction
  • the fuel was vaporized by electric heating, and the preheated air was charged with a precious metal catalyst and led to a reformer maintained at 1100 with an electric heater to generate a hydrogen-rich reformed gas.
  • the reformed gas is led together with water vapor to a carbon treatment device (water gas shift reaction) to convert carbon monoxide in the reformed gas to carbon dioxide, and the generated gas is led to a polymer electrolyte fuel cell to generate electricity. Done.
  • a carbon treatment device water gas shift reaction
  • Figure 2 shows a flowchart of the partial oxidation fuel cell system used for the evaluation.
  • the amount of heat (preheat) required to guide each fuel to the specified reformer temperature was calculated from the heat capacity and latent heat of vaporization.
  • the performance degradation rate of the reforming catalyst (the amount of power generated 100 hours after the start of the test / the amount of power generated immediately after the test), the thermal efficiency (the amount of power generated immediately after the start of the test), The fuel calorific value) and the preheating amount ratio (preheating amount / power generation amount) were calculated.
  • Table 3 shows the measured values and calculated values.
  • Optimal reformer temperature 1 ° c 650 640 640 680 670 Electric energy KJ / fuel kg 31 140 30 700 30 800-29 180 29 460
  • the fuel comprising the hydrocarbon compound having the specific composition according to the present invention can obtain electric energy with a small performance deterioration ratio at a high output by being used in a fuel cell, and can have various performances for a fuel cell. To be satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A fuel for use in a fuel cell system comprising a mixture of hydrocarbon compounds which is a gas at ordinary temperatures and contains saturated components in an amount of 60 mole % or more, olefin components in an amount of 40 mole % or less and butadiene components in an amount of 0.5 mole % or less, wherein saturated components having 4 or more carbon atoms contain iso-paraffins in an amount of 0.1 mole % or more. The fuel exhibits an increased energy output generated per its weight and per amount of CO2 formed, an improved fuel consumption, a decreased evaporative emission, good handling properties such as good storage stability and a suitable flash point, and reduced calories required for preheating. Further, the fuel allows a fuel cell system using the fuel to keep its initial performance for a long period of time, since it reduces the deterioration of a fuel cell system, that is, a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, a fuel cell stack and the like.

Description

明 細 書 燃料電池システム用燃料 技術分野  Description Fuel technology for fuel cell systems
本発明は、 燃料電池システムに用いられる燃料に関する。 背景技術  The present invention relates to a fuel used for a fuel cell system. Background art
近年、 将来の地球環境に対する危機感の高まりから、 地球にやさしい エネルギー供給システムの開発が求められている。 特 (こ、 地球温暖化防 止のための C O 2 低減、 T H C (排出ガス中の未反応の炭化水素) 、 N O x、 P M (排出ガス中の粒子状物質:すす、 燃料 ·潤滑油の高沸点 · 高分子の未燃成分) 等有害物質の低減を、 高度に達成することが要求さ れている。 そのシステムの具体例としては、 従来のォッ! ディーゼ ルシステムに代わる自動車動力システム、 あるいは火力に代わる発電シ ステムが挙げられる。 In recent years, the growing sense of danger to the global environment in the future has demanded the development of an energy supply system that is kind to the earth. JP (This, CO 2 reduction for global warming, THC (unreacted hydrocarbons in the exhaust gas), NO x, PM (particulate matter in exhaust gas: soot, the fuel-lubricant high It is required to achieve a high degree of reduction of harmful substances such as boiling point and unburned polymer components) Specific examples of such systems include automobile power systems that replace conventional O.D. Another example is a power generation system that replaces thermal power.
そこで、 理想に近いエネルギー効率を持ち、 基本的には H2 Oと C 02 しか排出しない燃料電池が、 社会の要望に応えるにもつとも有望なシス テムと期待されている。 そして、 このようなシステムの達成のためには、 機器の技術開発だけではなく、 それに最適な燃料の開発が必要不可欠で ある。 Thus we have the energy efficiency close to the ideal, is basically a fuel cell which does not emit only between H 2 O and C 0 2 has been expected promising systems also have to meet the needs of society. To achieve such a system, it is essential not only to develop equipment technology but also to develop the optimal fuel.
従来、 燃料電池システム用の燃料としては、 水素、 メタノール、 炭化 水素系燃料が考えられている。  Conventionally, hydrogen, methanol, and hydrocarbon fuels have been considered as fuels for fuel cell systems.
燃料電池システム用の燃料として、 水素以外にメタノールがある。 メ 夕ノールは、 水素への改質が比較的容易である点で有利であるが、 重量 あたりの発電量が小さく、 有毒のため取り扱いにも注意が必要である。 また、 腐食性があるため、 貯蔵 ·供給に特殊な設備が必要である。  As fuel for fuel cell systems, there is methanol in addition to hydrogen. Although methanol is advantageous in that it can be relatively easily reformed to hydrogen, it must be handled with care because it produces a small amount of power per weight and is toxic. In addition, since it is corrosive, special equipment is required for storage and supply.
このように、 燃料電池システムの能力を充分に発揮させるための燃料 は未だ開発されていない。 特に、 燃料電池システム用燃料としては、 重 量当りの発電量が多いこと、 c o 2 発生量当りの発電量が多いこと、 燃 料電池システム全体としての燃費が良いこと、 蒸発ガス (エバポェミツ シヨン) が少ないこと、 改質触媒、 水性ガスシフト反応触媒、 一酸化炭 素除去触媒、 燃料電池スタック等、 燃料電池システムの劣化が小さく初 期性能が長時間持続できること、 システムの起動時間が短いこと、 シス テムへの塔載性、 貯蔵安定性や引火点など取り扱い性が良好なことなど が求められる。 Thus, no fuel has yet been developed to fully exploit the capabilities of the fuel cell system. In particular, heavy fuels for fuel cell systems It generation amount per amount is large, it generation amount of 2 generation amount per co is large, that the fuel consumption of the entire fuel cell system is good, the evaporation gas (Ebapoemitsu Chillon) is small, the reforming catalyst, water gas shift reaction Catalysts, carbon monoxide removal catalysts, fuel cell stacks, etc., have low degradation of the fuel cell system and can maintain the initial performance for a long time, short system startup time, system loadability, storage stability, etc. Good handling properties such as flash point are required.
なお、 燃料電池システムでは、 燃料および改質器を所定の温度に保つ ことが必要なため、 発電量からそれに必要な熱量 (予熱及び反応に伴う 吸発熱をパランスさせる熱量) を差し引いた発電量が、 燃料電池システ ム全体の発電量となる。 したがって、 燃料を改質させるために必要な温 度が低い方が予熱量が小さく有利になり、 システムの起動時間も短く有 利になり、 また燃料の予熱に必要な重量当りの熱量が小さいことも必要 である。 予熱が十分でない場合、 排出ガス中に未反応の炭化水素 (T H C) が多くなり、 重量当りの発電量を低下させるだけでなく、 大気汚染 の原因となる可能性がある。 逆に言えば、 同一システムを同一温度で稼 働させた場合に、 排出ガス中の T H Cが少なく、 水素への変換率が高い 方が有利である:  In the fuel cell system, it is necessary to keep the fuel and reformer at a given temperature. Therefore, the amount of power generated by subtracting the required amount of heat (the amount of heat that balances the heat generated and absorbed by the preheating and reaction) from the amount of generated power is This is the amount of power generated by the entire fuel cell system. Therefore, the lower the temperature required for reforming the fuel, the smaller the amount of preheating and the more advantageous the system, the shorter the startup time of the system, and the lower the amount of heat per weight required for the preheating of the fuel. Is also necessary. Insufficient preheating can lead to high levels of unreacted hydrocarbons (THC) in the exhaust gas, not only reducing power generation per weight, but also causing air pollution. Conversely, when operating the same system at the same temperature, it is advantageous to have less T H C in the exhaust gas and a higher conversion rate to hydrogen:
本発明は、 このような状況を鑑み、 上記したような要求性状をパラン ス良く満たした燃料電池システムに適した燃料を提供することを目的と する。 発明の開示  In view of such circumstances, an object of the present invention is to provide a fuel suitable for a fuel cell system that satisfies the above-mentioned required properties in a good balance. Disclosure of the invention
本発明者らは、 上記課題を解決するため鋭意研究を重ねた結果、 特定 の組成を有する炭化水素化合物からなる燃料が、 燃料電池システムに適 していることを見出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a fuel composed of a hydrocarbon compound having a specific composition is suitable for a fuel cell system.
すなわち、 本発明に係る燃料電池システム用燃料は、  That is, the fuel for a fuel cell system according to the present invention is:
( 1 ) 飽和分が 6 0モル%以上、 ォレフィン分が 4 0モル%以下、 ブタ ジェン分が 0 . 5モル%以下、 炭素数 4以上の飽和分中のイソパラフィ ンが 0. 1モル%以上であり、 常温常圧で気体である炭化水素化合物か らなる。 (1) Saturated content of 60 mol% or more, Olefin content of 40 mol% or less, butadiene content of 0.5 mol% or less, isoparaffin in saturated content of 4 or more carbon atoms Is at least 0.1 mol% and is a hydrocarbon compound which is a gas at normal temperature and normal pressure.
上記特定の組成の炭化水素化合物からなる燃料は、 更に、 以下のよう な付加的要件を満たすものがより好ましい。  It is more preferable that the fuel composed of the hydrocarbon compound having the above specific composition further satisfies the following additional requirements.
(2) 硫黄分含有量が 50質量 p pm以下である。  (2) The sulfur content is 50 mass ppm or less.
(3) 炭素数 2以下の炭化水素が 5モル%以下、 炭素数 3の炭化水素と 炭素数 4の炭化水素の合計量が 90モル%以上、 炭素数 5以上の炭化水 素が 5モル%以下である。  (3) 5 mol% or less of hydrocarbons having 2 or less carbon atoms, 90 mol% or more of hydrocarbons having 3 carbon atoms and hydrocarbons having 4 carbon atoms, 5 mol% of hydrocarbons having 5 or more carbon atoms It is as follows.
(4) 40ででの蒸気圧が、 1. 55MP a以下である。  (4) The vapor pressure at 40 is 1.55MPa or less.
(5) 15ででの密度が、 0. 500~0. 620 g/cm3 である。(5) The density at 15 is 0.500 to 0.620 g / cm 3 .
(6) 40 °Cで 1時間の銅板腐食度が 1以下である。 (6) The copper plate corrosion rate for 1 hour at 40 ° C is 1 or less.
(7) 気体で、 1 5°Cにおける熱容量が、 1. 7 k JZk g 'で以下で ある。 図面の簡単な説明  (7) The gas has a heat capacity at 15 ° C of 1.7 kJZkg ' BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の燃料電池システム用燃料の評価に用いた水蒸気改 質型燃料電池システムのフローチャートである。 第 2図は、 本発明の燃 料電池システム用燃料の評価に用いた部分酸化型燃料電池システムのフ 口一チャートである。 発明を実施するための最良の形態  FIG. 1 is a flowchart of a steam reforming fuel cell system used for evaluating fuel for a fuel cell system of the present invention. FIG. 2 is a front chart of a partial oxidation fuel cell system used for evaluating the fuel for a fuel cell system of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の内容をさらに詳細に説明する。  Hereinafter, the contents of the present invention will be described in more detail.
本発明において、 特定の組成を有する炭化水素化合物とは、飽和分(M (S) ) が 60モル%以上、 ォレフィン分 (M (O) ) が 40モル%以 下、 ブタジエン分 (M (B) ) が 0. 5モル%以下、 炭素数 4以上の飽 和分中のイソパラフィン (M (I P) ) が 0. 1モル%以上であり、 常 温で気体である炭化水素化合物である。 以下、 これらを個別に説明する。 飽和分 (M (S) ) は、 重量当りの発電量が多いこと、 CO2 発生量 当りの発電量が多いこと、 燃料電池システム全体としての燃費が良いこ と、 排出ガス中の THCが少ないこと、 システムの起動時間が短いこと などから、 60モル%以上でぁり、 80モル%以上であることが好まし く、 95モル%以上であることがより好ましく、 99モル%以上である ことが最も好ましい。 In the present invention, a hydrocarbon compound having a specific composition is defined as having a saturated component (M (S)) of 60 mol% or more, an olefin component (M (O)) of 40 mol% or less, and a butadiene component (M (B (B)). )) Is 0.5 mol% or less, and isoparaffins (M (IP)) in the saturated component having 4 or more carbon atoms are 0.1 mol% or more, and are hydrocarbon compounds which are gaseous at ordinary temperature. Hereinafter, these will be individually described. The saturation (M (S)) indicates that the amount of power generation per weight is large, the amount of power generation per CO 2 generation is large, and the fuel efficiency of the entire fuel cell system is good. In addition, the amount of THC in the exhaust gas is small, and the system startup time is short. Therefore, it is preferable to use at least 60 mol%, preferably at least 80 mol%, and more preferably at least 95 mol%. Preferably, it is at least 99 mol%, most preferably.
ォレフィン分 (M (O) ) は、 重量当りの発電量が多いこと、 CO2 発生量当りの発電量が多いこと、,燃料電池システム全体としての燃費が 良いこと、 排出ガス中の THCが少ないこと、 システムの起動時間が短 いこと、 改質触媒の劣化が小さく初期性能が長時間持続できること、 貯 蔵安定性などから、 40モル%以下であり、 10モル%以下であること が好ましく、 1モル%以下であることが最も好ましい。 The olefin component (M (O)) has a large amount of power generation per weight, a large amount of power generation per CO 2 generation, good fuel efficiency of the fuel cell system as a whole, and low THC in the exhaust gas. In view of the fact that the system startup time is short, the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time, and the storage stability, etc., the content is preferably 40 mol% or less, and more preferably 10 mol% or less. Most preferably, it is 1 mol% or less.
ブタジエン分 (M (B) ) は、 重量当りの発電量が多いこと、 CO2 発生量当りの発電量が多いこと、 燃料電池システム全体としての燃費が 良いこと、 排出ガス中の THCが少ないこと、 システムの起動時間が短 いこと、 改質触媒の劣化が小さく初期性能が長時間持続できること、 貯 蔵安定性などから、 0. 5モル%以下であり、 0. 1モル%以下である ことが好ましい。 Butadiene (M (B)) has a large amount of power generation per weight, a large amount of power generation per CO 2 generation, good fuel economy of the fuel cell system as a whole, and low THC in exhaust gas. It should be less than 0.5 mol% and less than 0.1 mol% from the viewpoint of short system start-up time, low deterioration of the reforming catalyst, long-lasting initial performance, and storage stability. Is preferred.
炭素数 4以上の飽和分中のイソパラフィン (M ( I P) ) は、 燃料電 池システム全体としての燃費が良いこと、 排出ガス中の T H Cが少ない こと、 システムの起動時間が短いこ などから、 0. 1モル%以上であ り、 1モル%以上であることが好ましく、 10モル%以上であることが より好ましく、 20モル%以上であることがさらにより好ましく、 30 モル%以上であることが最も好ましい。  Isoparaffins (M (IP)) in saturated components with 4 or more carbon atoms are considered to be zero due to their good fuel efficiency as a whole fuel cell system, low THC in exhaust gas, and short system startup time. 1 mol% or more, preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and preferably 30 mol% or more. Most preferred.
なお、 上記の M (S) 、 M (B) 、 M ( I P) 、 M (O) は、 J I S K 2240 「液化石油ガス 5. 9組成分析法」 により測定される値 である。  The above M (S), M (B), M (IP) and M (O) are values measured by JIS K 2240 “liquefied petroleum gas 5.9 composition analysis method”.
また、 本発明の燃料の硫黄分含有量については何ら制限はないが、 改 質触媒、 水性ガスシフト反応触媒、 一酸化炭素除去触媒、 燃料電池ス夕 ック等、 燃料電池システムの劣化が小さく初期性能が長時間持続できる ことなどから、 燃料全量基準で、 50質量 p pm以下であることが好ま しく、 1 0質量!) p m以下であることがより好ましく、 1質量 p p m以 下であることがさらにより好ましい。 Although there is no limitation on the sulfur content of the fuel of the present invention, the deterioration of the fuel cell system such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, a fuel cell stock, etc. is small, and Since the performance can be maintained for a long time, it is preferable that the mass be 50 mass ppm or less based on the total amount of fuel. 10 mass! ) It is more preferably at most pm, even more preferably at most 1 ppm by mass.
そして、 上記硫黄分の好ましい範囲と上記の組成の好ましい範囲が二 つながらに満足することが、 改質触媒、 水性ガスシフト反応触媒、 一酸 化炭素除去触媒、 燃料亀池スタック等、 燃料電池システムの劣化が小さ く初期性能が長時間持続できることから、 最も好ましい。  Degradation of fuel cell systems, such as reforming catalysts, water gas shift reaction catalysts, carbon monoxide removal catalysts, and fuel Kameike stacks, is such that the above-mentioned preferable range of the sulfur content and the preferable range of the above composition are both satisfied. It is most preferred because of its small size and long-term initial performance.
ここで、 硫黄分とは、 J I S K 2 2 4 0 「液化石油ガス 5 . 5ま たは 5 . 6硫黄分試験方法」 により測定される硫黄分を意味している。 本発明の燃料において、 炭素数毎の組成については何ら制限はないが、 炭素数 2以下の炭化水素が 5モル%以下、 炭素数 3の炭化水素と炭素数 4の炭化水素の合計量が 9 0モル%以上、 炭素数 5以上の炭化水素が 5 モル%以下であることが好ましい。  Here, the sulfur content means the sulfur content measured according to JIS K2240 “Liquid petroleum gas 5.5 or 5.5 sulfur content test method”. In the fuel of the present invention, the composition for each carbon number is not limited at all, but the hydrocarbons having 2 or less carbon atoms are 5 mol% or less, and the total amount of the hydrocarbons having 3 carbon atoms and the hydrocarbons having 4 carbon atoms is 9%. It is preferable that the content of hydrocarbons having 0 mol% or more and 5 or more carbon atoms is 5 mol% or less.
炭素数 2以下の炭化水素は、 搭載性、 引火性、 エバポェミッションな どから、 5モル%以下であることが好ましく、 3モル%以下がより好ま しい。 炭素数 3の炭化水素と炭素数 4の炭化水素の合計量は、 重量当り の発電量が多いこと、 C O 2 発生量当りの発電量が多いこと、 燃料電池 システム全体としての燃費が良いこと、 排出ガス中の T H Cが少ないこ と、 システムの起動時間が短いこと、 改質触媒の劣化が小さく初期性能 が長時間持続できることなどから、 9 0モル%以上であることが好まし く、 9 5モル%以上がより好ましい。 炭素数 5以上の炭化水素は、 重量 当りの発電量が多いこと、 C〇2 発生量当りの発電量が多いこと、 燃钭 電池システム全体としての燃費が良いこと、 排出ガス中の T H Cが少な いこと、 システムの起動時間が短いこと、 改質触媒の劣化が小さく初期 性能が長時間持続できることなどから、 5モル%以下であることが好ま しく、 2モル%以下がより好ましい。 The hydrocarbon having 2 or less carbon atoms is preferably at most 5 mol%, more preferably at most 3 mol%, from the viewpoint of mountability, flammability, evaporation and the like. The total amount of hydrocarbons hydrocarbons and 4 carbon atoms of 3 carbon atoms, often power generation amount per weight, it generation amount of 2 generation amount per CO is large, that overall fuel consumption of the fuel cell system is good, Since the amount of THC in the exhaust gas is small, the startup time of the system is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time, the content is preferably 90 mol% or more. Mole% or more is more preferable. 5 or more hydrocarbon atoms are often power generation amount per weight, it often power generation amount of 2 generation amount per C_〇, good fuel economy as a whole燃钭cell system, small, THC in the exhaust gas It is preferably 5 mol% or less, more preferably 2 mol% or less, because the starting time of the system is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time.
なお、 上記の炭素数毎の組成は、 J I S K 2 2 4 0 「液化石油ガ ス 5 . 9組成分析法」 により測定される値である。  The above composition for each carbon number is a value measured by JIS K2240 “liquefied petroleum gas 5.9 composition analysis method”.
また、 本発明の燃料の蒸気圧については何ら制限はないが、 搭載性、 引火性、 エバポェミッションなどから、 4 0 での蒸気圧が、 1 . 5 5 MP a以下が好ましく、 1. 5 3MP a以下がより好ましい。. Further, the vapor pressure of the fuel of the present invention is not limited at all, but the vapor pressure at 40 is 1.55 from the viewpoint of mountability, flammability, evaporation and the like. It is preferably at most 1.5 MPa, more preferably at most 1.5 MPa. .
なお、 4 0°Cでの蒸気圧は、 J I S K 2 240 「液化石油ガス 5. 4蒸気圧試験法」 により測定される。  The vapor pressure at 40 ° C is measured according to JIS K 2240 “liquefied petroleum gas 5.4 vapor pressure test method”.
また、 本発明の燃料の密度については何ら制限はないが、 重量当りの 発電量が多く、 C〇2 発生量当りの発電量が多く、 燃料電池システム全 体としての燃費が良いこと、 排出ガス中の THCが少ないこと、 システ ムの起動時間が短いことなどから、 改質触媒の劣化が小さく初期性能が 長時間持続できるなどの点から、 1 5^で 0. 6 2 0 gZcm3 以下の ものが好ましく、 本発明の効果を奏するために、 0. 5 0 0 gZcm3 以上のものが最も好ましい。 Although there is no any restriction on the density of the fuel of the present invention, many power generation amount per weight, more power generation amount of 2 generation amount per C_〇, that fuel consumption of the fuel cell system overall is good, exhaust gas it THC in a small, etc. that startup time the system is short, in view of the small initial performance degradation of the reforming catalyst can be long lasting, 0. 6 2 0 gZcm 3 the following 1 5 ^ In order to achieve the effects of the present invention, those having 0.5 000 gZcm 3 or more are most preferable.
なお、 1 5°Cでの密度は、 J I S K 2 240 「液化石油ガス 5. 7または 5. 8密度試験方法」 により測定される。  The density at 15 ° C is measured according to JIS K 2240 “Liquefied petroleum gas 5.7 or 5.8 density test method”.
また、 本発明の燃料の銅板腐食性については何ら制限はないが、 改質 触媒、 水性ガスシフト反応触媒、 一酸化炭素除去触媒、 燃料電池スタツ ク等、 燃料電池システムの劣化が小さく初期性能が長時間持続できるな どの点から、 40でで 1時間の銅板腐食度が 1以下であるものが好まし い。  Further, there is no limitation on the copper plate corrosivity of the fuel of the present invention, but the fuel cell system, such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, and a fuel cell stack, has little deterioration and has a long initial performance. From the point of view that it can be maintained for a long time, it is preferable that the corrosion rate of the copper plate per hour at 40 is 1 or less.
なお、 40でで 1時間の銅板腐食度は、 J I S Κ 2 240の 「液 化石油ガス 5. 1 0銅板腐食試験方法」 によって測定される。  The copper plate corrosion rate at 40 for 1 hour is measured by the liquefied petroleum gas 5.10 copper plate corrosion test method of JIS 2240.
また、 本発明において、 燃料の熱容量については何ら制限はないが、 燃料電池システム全体としての燃費が良いことから、 気体で、 1 5°Cに おける熱容量が、 1. 7 k J g ·で以下が好ましい。  In the present invention, the heat capacity of the fuel is not limited at all. However, since the fuel efficiency of the entire fuel cell system is good, the heat capacity at 15 ° C of gas is 1.7 kJ g Is preferred.
この熱容量は、 水熱量計、 氷熱量計、 真空熱量計、 断熱熱量計等の熱 量計によって測定される。 .  This heat capacity is measured by a calorimeter such as a water calorimeter, an ice calorimeter, a vacuum calorimeter, or an adiabatic calorimeter. .
本発明の燃料の製造方法については、 特に制限はない。 具体的には例 えば、 原油蒸留装置、 ナフサ改質装置等から得られるプロパンを中心と した直留系プロパン留分、 それを脱硫した直留系脱硫プロパン留分、 原 油蒸留装置、 ナフサ改質装置、 アルキレ一シヨン装置等から得られるブ タンを中心とした直留系ブタン留分、 直留系ブタン留分を脱硫した直留 系脱硫ブタン留分、 接触分解装置等から得られるプロパン ·プロピレン を中心とした分解系プロパン留分、 接触分解装置等から得られるブ夕 ン ·ブテンを中心とした分解系ブタン留分、 等の基材を 1種または 2種 以上を用いて製造される。 There is no particular limitation on the method for producing the fuel of the present invention. Specifically, for example, a straight-line propane fraction mainly composed of propane obtained from a crude oil distillation unit, a naphtha reformer, etc., a straight-line desulfurized propane fraction obtained by desulfurizing it, a crude oil distillation unit, a naphtha reformer Straight-run butane fraction centered on butane obtained from coal-processing equipment, alkylation equipment, etc., and a straight run obtained by desulfurizing the straight-run butane fraction. Desulfurized butane fraction, cracked propane fraction mainly composed of propane and propylene obtained from catalytic cracking unit, butane fraction derived mainly from butane and butene obtained from catalytic cracking unit, etc. It is manufactured using one or more base materials.
これらの中でも、 本発明の燃料の製造基材として好ましいものとして は、 直留系脱硫プロパン留分、 直留系脱硫ブタン留分等が挙げられる。 本発明の燃料は、 燃料電池システム用燃料として用いられる。 本発明 でいう燃料電池システムには、 燃料の改質器、 一酸化炭素浄化装置、 燃 料電池等が含まれるが、 本発明の燃料は如何なる燃料電池システムにも 好適に用いられる。  Among them, preferred as a base material for producing the fuel of the present invention include a straight-run desulfurized propane fraction, a straight-run desulfurized butane fraction, and the like. The fuel of the present invention is used as a fuel for a fuel cell system. The fuel cell system referred to in the present invention includes a fuel reformer, a carbon monoxide purifier, a fuel cell, and the like, and the fuel of the present invention is suitably used in any fuel cell system.
燃料の改質器は、 燃料を改質して燃料電池の燃料である水素を得るた めのものである。 改質器としては、 具体的には、 例えば、  The fuel reformer is for reforming the fuel to obtain hydrogen, which is the fuel of the fuel cell. As a reformer, specifically, for example,
( 1 ) 加熱気化した燃料と水蒸気を混合し、 銅、 ニッケル、 白金、 ルテ ニゥム等の触媒中で加熱反応させることにより、 水素を主成分とする生 成物を得る水蒸気改質型改質器、  (1) A steam reforming reformer that mixes heated and vaporized fuel with steam and reacts by heating in a catalyst such as copper, nickel, platinum, and ruthenium to obtain hydrogen-based products. ,
( 2 ) 加熱気化した燃料を空気と混合し、 銅、 ニッケル、 白金、 ルテニ ゥム等の触媒中または無触媒で反応させることにより、 水素を主成分と する生成物を得る部分酸化型改質器、  (2) Partial oxidation reforming that mixes heated and vaporized fuel with air and reacts with or without a catalyst such as copper, nickel, platinum, and ruthenium to obtain a product containing hydrogen as a main component. Bowl,
( 3 ) 加熱気化した燃料を水蒸気及び空気と混合し、 銅、 ニッケル、 白 金、 ルテニウム等の触媒層前段にて、 (2 ) の部分酸化型改質を行ない、 後段にて部分酸化反応の熱発生を利用して、 (1 ) の水 ^気型改質を行 なうことにより、 水素を主成分とする生成物を得る部分酸化 ·水蒸気改 質型改質器、  (3) The heated and vaporized fuel is mixed with steam and air, and the partial oxidation reforming of (2) is performed in the preceding stage of the catalyst layer of copper, nickel, platinum, ruthenium, etc., and the partial oxidation reaction is performed in the subsequent stage. By performing the water-gas reforming of (1) using heat generation, a partial oxidation / steam reforming reformer that obtains a product containing hydrogen as a main component is obtained.
等が挙げられる。 And the like.
一酸化炭素浄化装置とは、 上記の改質装置で生成されたガスに含まれ、 燃料電池の触媒毒となる一酸化炭素の除去を行なうものであり、 具体的 には、  The carbon monoxide purifier removes carbon monoxide contained in the gas generated by the above reformer and becomes a catalyst poison of the fuel cell.
( 1 ) 改質ガスと加熱気化した水蒸気を混合し、 銅、 ニッケル、 白金、 ルテニウム等の触媒中で反応させることにより、 一酸化炭素と水蒸気よ り二酸化炭素と水素を生成物として得る水性ガスシフト反応器、 (1) Mix reformed gas and heated vaporized steam and react in a catalyst such as copper, nickel, platinum, ruthenium, etc. to reduce carbon monoxide and steam. Water gas shift reactor to obtain carbon dioxide and hydrogen as products,
(2) 改質ガスを圧縮空気と混合し、 白金、 ルテニウム等の触媒中で反 応させることにより、 一酸化炭素を二酸化炭素に変換する選択酸化反応 器等が挙げられ、 これらを単独または組み合わせて使用される。  (2) Selective oxidation reactors that convert carbon monoxide to carbon dioxide by mixing reformed gas with compressed air and reacting in a catalyst such as platinum or ruthenium, etc. Used.
燃料電池としては、 具体的には、 例えば、 固体高分子型燃料電池 (P EFC) 、 リン酸型燃料電池 (PAFC) 、 溶融炭酸塩型燃料電池 (M CFC) 、 固体酸化物型燃料電池 (SOFC) 等が挙げられる。  Specific examples of the fuel cell include polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells ( SOFC).
また、 上記したような燃料電池システムは、 電気自動車、 従来ェンジ ンと電気のハイブリッド自動車、 可搬型電源、 分散型電源、 家庭用電源、 コ一ジェネレーションシステム等に用いられる。 実施例  Further, the fuel cell system as described above is used for electric vehicles, hybrid vehicles of conventional engines and electric vehicles, portable power sources, distributed power sources, home power sources, cogeneration systems, and the like. Example
実施例および比較例の各燃料に用いた基材 (LPG) の性状等を第 1 表に示す。  Table 1 shows the properties of the base material (LPG) used for each fuel in Examples and Comparative Examples.
また、 実施例および比較例に用いた各燃料の組成及び性状を第 2表に 示す。 Table 2 shows the composition and properties of each fuel used in Examples and Comparative Examples.
第 1 表 直留系 直留系 分解系 分解系 DME Table 1 Straight run system Straight run system Decomposition system Decomposition system DME
プロハ。ン留分 脱硫ブタン留分 プロ Aン留分 フ'タン留分  Proha. Sulfur fraction Desulfurized butane fraction Pro A fraction Frethane fraction
原油蒸留装置、 原油蒸留装置、 接触分解装置等 接触分解装置等 シ'メチルェ- -亍ル ナフサ改質装置 ナフサ改質装置、 から得られる、フ°口カヽら得られる、フ'タ  Crude oil distillation equipment, crude oil distillation equipment, catalytic cracking equipment, etc. Catalytic cracking equipment, etc. S-methyl naphtha naphtha reforming equipment Naphtha reforming equipment
等から得られるフ アルキレ—シヨン装置 ハ°ン'プロピレンを中 ン-ブテンを中心とし  Furnacation equipment obtained from products such as propylene
ロハ °ンを中心とした 等から得られるフ 心とした留分 た留分  Fractions obtained mainly from Rohan, etc.
田刀 タンを中心とした留  Tatana
分を脱硫処理した  Was desulfurized
もの 硫黄分 質星 ppm 7 <1 5 34 く 1 密度 @1 5°C g/m3 0.509 0.577 0.518 0.591 0.600 蒸気圧 @40°C MPa 1.33 0.34 1.50 0.39 0.88 銅板腐食 1 a 1 a 1 a 1  Thorium Sulfur star ppm 7 <1 5 34 ku 1 Density @ 1 5 ° C g / m3 0.509 0.577 0.518 0.591 0.600 Vapor pressure @ 40 ° C MPa 1.33 0.34 1.50 0.39 0.88 Copper plate corrosion 1 a1 a1 a1
炭素数 2以下の炭化水素 モル0 /0 2.5 0.0 0.0 0.0 2 following hydrocarbon molar carbon atoms 0/0 2.5 0.0 0.0 0.0
CD  CD
炭素数 3の炭化水素 モル0 /0 96.6 0.0 99.8 2.4 Hydrocarbon mole of 3 carbon atoms 0/0 96.6 0.0 99.8 2.4
炭素数 4の炭化水素 モル0 /0 0.9 99.9 0.2 92.4 Hydrocarbon mole of 4 carbon atoms 0/0 0.9 99.9 0.2 92.4
炭素数 5以上の炭化水素 モル0 /0 0.0 0.1 0.0 5.2 5 or more hydrocarbon mole carbon 0/0 0.0 0.1 0.0 5.2
飽和分 モル% 99.9 99.9 19.7 53.9  Saturation mol% 99.9 99.9 19.7 53.9
ォレフィン分 モル% 0.1 0.1 80.3 46.1  Olefin mole% 0.1 0.1 80.3 46.1
ブタジエン モル% 0.0 0.0 0.0 0.2  Butadiene mol% 0.0 0.0 0.0 0.2
C4以上飽和分中のイソ Λラフィン モル% 78.2 35.8 100.0 81.4 Isoperafin mol% in C4 or higher saturated content 78.2 35.8 100.0 81.4
第 2 表 実施例 1 - 笔施例ク 実施例 3 比鼓例 1 比較例 2 混合割合(容 »%) Table 2 Example 1-Example ク Example 3 Comparative Example 1 Comparative Example 2 Mixing ratio (volume »%)
直留系 °ロハ'ン留分 100 25  Straight run ° Rohan fraction 100 25
直留系 ·脱硫ブタン留分 100 75  Straight run system · Desulfurized butane fraction 100 75
分解系ヷロハ'ン留分 94  Decomposition system Rohan fraction 94
分解系 'タン留分 100 ェタン 6  Cracking system 'Tan fraction 100 ethane 6
性状分析結果  Property analysis results
硫黄分 ¾kppm 7 <1 2 5 34 密度 g/cm3 0.509 0.577 0.560 0.508 0.591  Sulfur content ¾kppm 7 <1 2 5 34 Density g / cm3 0.509 0.577 0.560 0.508 0.591
Mpa 1.33 0.34 0.60 1.75 0.36 炭素数分布 (炭化水素部分)炭素数 2以下の炭化水素 モル% 2.5 0.0 0.7 5.8 0.0  Mpa 1.33 0.34 0.60 1.75 0.36 Carbon number distribution (hydrocarbon part) Hydrocarbons with 2 or less carbon mole% 2.5 0.0 0.7 5.8 0.0
炭素数 3の炭化水素 モル% 96.6 0.0 27.1 94.0 2.4 炭素数 4の炭化水素 モル% 0.9 99.9 72.1 0.2 92.4 炭素数 5以上の炭化水素 モル% 0.0 0.1 0.1 0.0 5.2 Hydrocarbons with 3 carbons mol% 96.6 0.0 27.1 94.0 2.4 Hydrocarbons with 4 carbons mol% 0.9 99.9 72.1 0.2 92.4 Hydrocarbons with 5 or more carbons mol% 0.0 0.1 0.1 0.0 5.2
〇 組成 飽和分 モル% 99.9 99.9 99.9 24.4 53.9 組成 Composition Saturation mol% 99.9 99.9 99.9 24.4 53.9
ォレフィン分 モル% 0.1 0.1 0.1 75.6 46.1 フ'タシ'ェン - モル% 0.0 0.0 0.0 0.0 0.2 Olefin content mol% 0.1 0.1 0.1 75.6 46.1 'Fatashien'-mol% 0.0 0.0 0.0 0.0 0.2
C4以上飽和分中のイソハ°ラフィン モル% 78.2 35.8 35.9 100.0 80.6 銅板腐食 1 a 1 a 1 a 1 a 1 真発熱量 kJ/kg 46330 45670 45820 45930 45440 熱容量 3 体 kJ/kg-°C 1.62 1.62 1.62 1.52 1.55. Isohafin raffin mol% in C4 or more saturated content 78.2 35.8 35.9 100.0 80.6 Copper plate corrosion 1 a 1 a 1 a 1 a 1 Net calorific value kJ / kg 46 330 45 670 45 820 45 930 45 440 Heat capacity 3 kJ / kg- ° C 1.62 1.62 1.62 1.52 1.55.
これら各燃料について、 燃料電池システム評価試験を行なった。 For each of these fuels, a fuel cell system evaluation test was performed.
燃料電池システム評価試験 Fuel cell system evaluation test
(1) 水蒸気改質型  (1) Steam reforming type
燃料と水を電気加熱により気化させ、 貴金属系触媒を充填し電気ヒー ターで所定の温度に維持した改質器に導き、 水素分に富む改質ガスを発 生させた。  The fuel and water were vaporized by electric heating, led to a reformer filled with a noble metal catalyst and maintained at a predetermined temperature by an electric heater, and a reformed gas rich in hydrogen was generated.
改質器の温度は、 試験の初期段階において改質が完全に行なわれる最 低の温度 (改質ガスに THCが含まれない最低温度) とした。  The temperature of the reformer was set to the lowest temperature at which reforming was completely performed in the initial stage of the test (the lowest temperature at which THC was not contained in the reformed gas).
改質ガスを水蒸気と共に一酸化炭素処理装置 (水性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成した ガスを固体高分子型燃料電池に導き発電を行なった。  The reformed gas is led to a carbon monoxide treatment device (water gas shift reaction) together with water vapor to convert carbon monoxide in the reformed gas into carbon dioxide, and the generated gas is guided to a polymer electrolyte fuel cell to generate electricity. Was.
評価に用いた水蒸気改質型の燃料電池システムのフローチャートを図 Diagram of the flow chart of the steam reforming type fuel cell system used for evaluation
1に示す。 Shown in 1.
(2) 部分酸化型  (2) Partial oxidation type
燃料を電気加熱により気化させ、 予熱した空気と共に貴金属系触媒を 充填し電気ヒーターで 1 100でに維持した改質器に導き、 水素分に富 む改質ガスを発生させた。  The fuel was vaporized by electric heating, and the preheated air was charged with a precious metal catalyst and led to a reformer maintained at 1100 with an electric heater to generate a hydrogen-rich reformed gas.
改質ガスを水蒸気と共にー戰化炭素処理装置 (水性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成した ガスを固体高分子型燃料電池に導き発電を行なった。  The reformed gas is led together with water vapor to a carbon treatment device (water gas shift reaction) to convert carbon monoxide in the reformed gas to carbon dioxide, and the generated gas is led to a polymer electrolyte fuel cell to generate electricity. Done.
評価に用いた部分酸化型の燃料電池システムのフローチャートを図 2 に示す。  Figure 2 shows a flowchart of the partial oxidation fuel cell system used for the evaluation.
(3) 評価方法  (3) Evaluation method
評価試験開始直後に改質器から発生する改質ガス中の H2 、 CO, C O2 、 THC量について測定を行った。 同じく、 評価試験開始直後に一 酸化炭素処理装置から発生する改質ガス中の H2 、 CO、 CO2.、 TH C量について測定を行つた。 Immediately after the start of the evaluation test, the amounts of H 2 , CO, CO 2 , and THC in the reformed gas generated from the reformer were measured. Similarly, measurements were made on the amounts of H 2 , CO, CO 2. , And THC in the reformed gas generated from the carbon monoxide treatment equipment immediately after the start of the evaluation test.
評価試験開始直後および開始 100時間後の燃料電池における発電量、 燃料消費量、 並びに燃料電池から排出される CO2 量について測定を行 なった。 Immediately after and 100 hours after the start of the evaluation test, the amount of power generated by the fuel cell, the amount of fuel consumed, and the amount of CO 2 emitted from the fuel cell were measured. became.
各燃料を所定の改質器温度にまで導くために要する熱量 (予熱量) は、 熱容量、 蒸発潜熱から計算した。  The amount of heat (preheat) required to guide each fuel to the specified reformer temperature was calculated from the heat capacity and latent heat of vaporization.
また、 これら測定値 ·計算値および燃料発熱量から、 改質触媒の性能 劣化割合 (試験開始 1 0 0時間後の発電量/試験開始直後の発霉量) 、 熱効率 (試験開始直後の発電量 燃料発熱量) 、 予熱量割合 (予熱量ノ 発電量) を計算した。  In addition, the performance degradation rate of the reforming catalyst (the amount of power generated 100 hours after the start of the test / the amount of power generated immediately after the test), the thermal efficiency (the amount of power generated immediately after the start of the test), The fuel calorific value) and the preheating amount ratio (preheating amount / power generation amount) were calculated.
各測定値 ·計算値を第 3表に示す。 Table 3 shows the measured values and calculated values.
第 3 表 実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 評価結果 Table 3 Example 1 Example 2 Example 3 Comparative example 1 Comparative example 2 Evaluation result
水蒸気改質法による発電 (改質器温度 = =最適改質器温度1)) Power generation by steam reforming (reformer temperature = = optimal reformer temperature 1 )
最適改質器温度 1 ) °c 650 640 640 680 670 電気エネルギー KJ/燃料 kg 31 140 30700 30800 - 29180 29460 Optimal reformer temperature 1) ° c 650 640 640 680 670 Electric energy KJ / fuel kg 31 140 30 700 30 800-29 180 29 460
1 00時間 31 1 10 30690 30780 28700 28520 性能劣化割合 1 00時間 0.10% 0.03% 0.06% 1.64% 3.19% 熱効率 2) 67% 67% 67% 64% 65%100 hours 31 1 10 30 690 30 780 28 700 28 520 Performance degradation rate 100 hours 0.10% 0.03% 0.06% 1.64% 3.19% Thermal efficiency 2) 67% 67% 67% 64% 65%
G02発生量 kg/燃料 kg 初期性能 2.993 3.029 3.021 3.102 3.079G02 generation kg / fuel kg Initial performance 2.993 3.029 3.021 3.102 3.079
C02当リエネルキ *一 KJ/C02-kg. 初期性能 10404 10135 10195 9407 9568 予熱量 3) KJ/撚料 kg 1010 1000 1000 1000 1000 予熱量割合 4) 3.2% 3.3% 3.2% 3.4% 3.4% 部分酸化改質法による発電 (改質器温度 1100°C) C02 this rienerki * 1 KJ / C02-kg.Initial performance 10404 10135 10195 9407 9568 Preheating amount 3) KJ / twisting material kg 1010 1000 1000 1000 1000 Preheating amount ratio 4) 3.2% 3.3% 3.2% 3.4% 3.4% Partial oxidation modification Power generation (reformer temperature 1100 ° C)
電気エネルギー KJ/撚料 kg 初期性能 16200 15590 15730 14020 14420  Electric energy KJ / twisting material kg Initial performance 16200 15590 15730 14020 14420
1 00時間 16190 15590 15720 13910 14220 性能劣化割合 100時間 0.06% 0.00% 0.06% 0.78% 1.39% 熱効率 2) 初期性能 35%- 34% 34% 30% 32%100 hours 16190 15590 15720 13910 14220 Performance degradation ratio 100 hours 0.06% 0.00% 0.06% 0.78% 1.39% Thermal efficiency 2) Initial performance 35%-34% 34% 30% 32%
C02発生量 kg/燃料 kg 初期性能 2.992 3.028 3.019 3.101 3.077C02 generation kg / fuel kg Initial performance 2.992 3.028 3.019 3.101 3.077
C02当り: Eネルキ '一 KJ/C02-kg 初期性能 5414 ― 5149 5210 4521 4686 予熱量 3) KJ/燃料 kg 1740 1750 1740 1630 1670 予熱量割合 4) 10.7% 1 1.2% 1 1.1 % 1 1.6% 1 1.6% Per C02: E Nerki 'one KJ / C02-kg Initial performance 5414 ― 5149 5210 4521 4686 Preheat amount 3) KJ / fuel kg 1740 1750 1740 1630 1670 Preheat ratio 4) 10.7% 1 1.2% 1 1.1% 1 1.6% 1 1.6%
1 )改質ガス中に THCが含まれない最低温度 1) Minimum temperature at which THC is not contained in the reformed gas
HQ  HQ
2)電気エネルギー Z燃料発熱量  2) Electric energy Z fuel heating value
3)燃料を所定の改質器温度に導くために必要な熱量  3) The amount of heat required to bring the fuel to the specified reformer temperature
4)予熱量 電気エネルギー 4) Preheating amount Electric energy
産業上の利用の可能性 Industrial applicability
上記の通り、 本発明の特定の組成の炭化水素化合物からなる燃料は、 燃料電池に用いることにより、 性能劣化割合の少ない電気エネルギーを 高出力で得ることができる他、 燃料電池用として各種性能を満足する。  As described above, the fuel comprising the hydrocarbon compound having the specific composition according to the present invention can obtain electric energy with a small performance deterioration ratio at a high output by being used in a fuel cell, and can have various performances for a fuel cell. To be satisfied.
4 Four

Claims

請 求 の 範 囲 The scope of the claims
1. 飽和分が 60モル%以上、 ォレフィン分が 40モル%以下、 プタ ジェン分が 0. 5モル%以下、 炭素数 4以上の飽和分中のイソパラフィ ンが 0. 1モル%以上であり、 常温常圧で気体である炭化水素化合物か らなる燃料電池システム用燃料。 1. Saturated component is 60 mol% or more, olefin component is 40 mol% or less, putagen component is 0.5 mol% or less, isoparaffin in saturated component having 4 or more carbon atoms is 0.1 mol% or more Fuel for fuel cell systems consisting of hydrocarbon compounds that are gases at normal temperature and pressure.
2. 硫黄分含有量が 50質量 p pm以下である請求の範囲第 1項に記 載の燃料電池システム用燃料。  2. The fuel for a fuel cell system according to claim 1, having a sulfur content of 50 mass ppm or less.
3. 炭素数 2以下の炭化水素が 5モル%以下、 炭素数 3の炭化水素と 炭素数 4の炭化水素の合計量が 90モル%以上、 炭素数 5以上の炭化水 素が 5モル%以下である請求の範囲第 1項または第 2項に記載の燃料電 池システム用燃料。  3. 5 mol% or less of hydrocarbons having 2 or less carbon atoms, 90 mol% or more of hydrocarbons having 3 carbon atoms and 4 carbon atoms, 5 mol% or less of hydrocarbons having 5 or more carbon atoms 3. The fuel for a fuel cell system according to claim 1 or 2, which is:
4. 40ででの蒸気圧が、 1. 55MP a以下である請求の範囲第 1 項〜第 3項の何れかに記載の燃料電池システム用燃料。  4. The fuel for a fuel cell system according to any one of claims 1 to 3, wherein the vapor pressure at 40 is 1.55 MPa or less.
5. 1 5°Cでの密度が、 0, 500〜0. 620 gZcm3 である請 求の範囲第 1項〜第 4項の何れかに記載の燃料電池システム用燃料。5. The fuel for a fuel cell system according to any one of claims 1 to 4, wherein the density at 15 ° C is from 0,500 to 0.620 gZcm 3 .
6. 40でで 1時間の銅板腐食度が 1以下である請求の範囲第 1項〜 第 5項の何れかに記載の燃料電池システム用燃料。 6. The fuel for a fuel cell system according to any one of claims 1 to 5, wherein a copper plate corrosion rate per hour at 40 is 1 or less.
7. 気体で、 1 5でにおける熱容量が、 1. 7 k JZk g * °C以下で ある請求の範囲第 1項〜第 6項の何れかに記載の燃料電池システム用燃 料。  7. The fuel for a fuel cell system according to any one of claims 1 to 6, wherein the gas has a heat capacity at 15 of 1.7 kJZkg * ° C or less.
PCT/JP2001/005645 2000-06-29 2001-06-29 Fuel for use in fuel cell system WO2002000813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001267883A AU2001267883A1 (en) 2000-06-29 2001-06-29 Fuel for use in fuel cell system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000196651 2000-06-29
JP2000-196651 2000-06-29
JP2000-196649 2000-06-29
JP2000196649 2000-06-29

Publications (1)

Publication Number Publication Date
WO2002000813A1 true WO2002000813A1 (en) 2002-01-03

Family

ID=26594999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005645 WO2002000813A1 (en) 2000-06-29 2001-06-29 Fuel for use in fuel cell system

Country Status (3)

Country Link
US (1) US20030105369A1 (en)
AU (1) AU2001267883A1 (en)
WO (1) WO2002000813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278287A (en) * 2005-03-30 2006-10-12 Idemitsu Kosan Co Ltd Fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO126312A3 (en) * 2010-07-23 2012-01-30 Centrul De Cercetare Pentru Materiale Macromoleculare Şi Membrane S.A. Electrocatalytic membrane system and process for obtaining fuel gas from water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975721A (en) * 1995-09-12 1997-03-25 Tokyo Gas Co Ltd Adsorbent for removing trace components in hydrocarbon gas and removal method
JPH10121069A (en) * 1996-10-22 1998-05-12 Cosmo Sogo Kenkyusho:Kk Auto gas composition
JPH10237473A (en) * 1997-02-21 1998-09-08 Tokyo Gas Co Ltd Desulfurization method of hydrocarbon gas
JPH1150070A (en) * 1997-08-05 1999-02-23 Cosmo Sogo Kenkyusho:Kk Fuel composition for two-stroke engine
JPH11263712A (en) * 1998-03-16 1999-09-28 Shiseido Co Ltd Aerosol composition
JP2000090952A (en) * 1998-09-16 2000-03-31 Toshiba Corp Fuel cell power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975721A (en) * 1995-09-12 1997-03-25 Tokyo Gas Co Ltd Adsorbent for removing trace components in hydrocarbon gas and removal method
JPH10121069A (en) * 1996-10-22 1998-05-12 Cosmo Sogo Kenkyusho:Kk Auto gas composition
JPH10237473A (en) * 1997-02-21 1998-09-08 Tokyo Gas Co Ltd Desulfurization method of hydrocarbon gas
JPH1150070A (en) * 1997-08-05 1999-02-23 Cosmo Sogo Kenkyusho:Kk Fuel composition for two-stroke engine
JPH11263712A (en) * 1998-03-16 1999-09-28 Shiseido Co Ltd Aerosol composition
JP2000090952A (en) * 1998-09-16 2000-03-31 Toshiba Corp Fuel cell power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278287A (en) * 2005-03-30 2006-10-12 Idemitsu Kosan Co Ltd Fuel cell system

Also Published As

Publication number Publication date
AU2001267883A1 (en) 2002-01-08
US20030105369A1 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
JPWO2002031090A1 (en) Gasoline vehicle and fuel for fuel cell system, and storage and / or supply system thereof
JP4598892B2 (en) Fuel for fuel cell system
JP4598894B2 (en) Fuel for fuel cell system
JP4583666B2 (en) Fuel for fuel cell system
KR20100024934A (en) Reformer and indirect internal reforming-type high-temperature fuel cell
WO2001077259A1 (en) Fuel for use in fuel cell system
JP4598893B2 (en) Fuel for fuel cell system
WO2002000813A1 (en) Fuel for use in fuel cell system
JP4598889B2 (en) Fuel for fuel cell system
JP4598890B2 (en) Fuel for fuel cell system
JP4632281B2 (en) Fuel for fuel cell system
JP4598898B2 (en) Fuel for fuel cell system
US6837909B2 (en) Fuel for use in a fuel cell system
JP4598891B2 (en) Fuel for fuel cell system
JP5463006B2 (en) Operation method of solid oxide fuel cell system
WO2002000814A1 (en) Fuel for fuel cell system
JP4598895B2 (en) Fuel for fuel cell system
JP4598897B2 (en) Fuel for fuel cell system
JP4601869B2 (en) Fuel for fuel cell system
JP4598896B2 (en) Fuel for fuel cell system
JP4202058B2 (en) Fuel for fuel cell system
JP2004027082A (en) Fuel for fuel cell system
BRPI0803413B1 (en) electricity and hydrogen generation process comprising a hybrid reformer
JP2004027083A (en) Fuel for producing hydrogen
JP2004319402A (en) Fuel for fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 505929

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10297938

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载