WO2001068130A1 - Procede et composition pour traiter une hyperreactivite bronchique - Google Patents
Procede et composition pour traiter une hyperreactivite bronchique Download PDFInfo
- Publication number
- WO2001068130A1 WO2001068130A1 PCT/US2001/007069 US0107069W WO0168130A1 WO 2001068130 A1 WO2001068130 A1 WO 2001068130A1 US 0107069 W US0107069 W US 0107069W WO 0168130 A1 WO0168130 A1 WO 0168130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- animal
- receptor
- agent
- airway hyperresponsiveness
- inflammation
- Prior art date
Links
- 208000002200 Respiratory Hypersensitivity Diseases 0.000 title claims abstract description 173
- 230000010085 airway hyperresponsiveness Effects 0.000 title claims abstract description 173
- 238000000034 method Methods 0.000 title claims abstract description 121
- 239000000203 mixture Substances 0.000 title claims description 24
- 241001465754 Metazoa Species 0.000 claims abstract description 159
- 150000001875 compounds Chemical class 0.000 claims abstract description 132
- 102000003814 Interleukin-10 Human genes 0.000 claims abstract description 18
- 108090000174 Interleukin-10 Proteins 0.000 claims abstract description 18
- 229940076144 interleukin-10 Drugs 0.000 claims abstract description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 133
- 108020003175 receptors Proteins 0.000 claims description 130
- 102000005962 receptors Human genes 0.000 claims description 128
- 210000004027 cell Anatomy 0.000 claims description 107
- 230000004054 inflammatory process Effects 0.000 claims description 76
- 206010061218 Inflammation Diseases 0.000 claims description 75
- 230000001105 regulatory effect Effects 0.000 claims description 73
- 150000007523 nucleic acids Chemical class 0.000 claims description 55
- 102000039446 nucleic acids Human genes 0.000 claims description 53
- 108020004707 nucleic acids Proteins 0.000 claims description 53
- 230000014509 gene expression Effects 0.000 claims description 52
- 229960002329 methacholine Drugs 0.000 claims description 47
- NZWOPGCLSHLLPA-UHFFFAOYSA-N methacholine Chemical compound C[N+](C)(C)CC(C)OC(C)=O NZWOPGCLSHLLPA-UHFFFAOYSA-N 0.000 claims description 42
- 230000004071 biological effect Effects 0.000 claims description 36
- 230000027455 binding Effects 0.000 claims description 28
- 208000006673 asthma Diseases 0.000 claims description 27
- 102000004127 Cytokines Human genes 0.000 claims description 26
- 108090000695 Cytokines Proteins 0.000 claims description 26
- 239000003112 inhibitor Substances 0.000 claims description 26
- 230000000694 effects Effects 0.000 claims description 24
- 230000002401 inhibitory effect Effects 0.000 claims description 24
- 241000124008 Mammalia Species 0.000 claims description 21
- 201000010099 disease Diseases 0.000 claims description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 21
- 239000003446 ligand Substances 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 20
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 19
- 230000004043 responsiveness Effects 0.000 claims description 19
- 230000009285 allergic inflammation Effects 0.000 claims description 18
- 239000005557 antagonist Substances 0.000 claims description 17
- 102000053642 Catalytic RNA Human genes 0.000 claims description 16
- 108090000994 Catalytic RNA Proteins 0.000 claims description 16
- 230000002829 reductive effect Effects 0.000 claims description 16
- 108091092562 ribozyme Proteins 0.000 claims description 16
- 238000013519 translation Methods 0.000 claims description 14
- 239000013592 cell lysate Substances 0.000 claims description 13
- 238000009472 formulation Methods 0.000 claims description 11
- 239000002464 receptor antagonist Substances 0.000 claims description 11
- 229940044551 receptor antagonist Drugs 0.000 claims description 11
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 10
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 10
- 230000004047 hyperresponsiveness Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 9
- 150000002617 leukotrienes Chemical class 0.000 claims description 9
- 206010035664 Pneumonia Diseases 0.000 claims description 8
- 108700008625 Reporter Genes Proteins 0.000 claims description 8
- 208000011580 syndromic disease Diseases 0.000 claims description 8
- 238000013518 transcription Methods 0.000 claims description 8
- 230000035897 transcription Effects 0.000 claims description 8
- 230000003612 virological effect Effects 0.000 claims description 8
- 208000026935 allergic disease Diseases 0.000 claims description 7
- 230000006872 improvement Effects 0.000 claims description 7
- 208000007892 occupational asthma Diseases 0.000 claims description 7
- 208000036273 reactive airway disease Diseases 0.000 claims description 7
- 206010020751 Hypersensitivity Diseases 0.000 claims description 6
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 6
- -1 anti-IgE Substances 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 claims description 6
- 230000000699 topical effect Effects 0.000 claims description 6
- 230000009752 translational inhibition Effects 0.000 claims description 6
- 206010003557 Asthma exercise induced Diseases 0.000 claims description 5
- 208000004657 Exercise-Induced Asthma Diseases 0.000 claims description 5
- 208000024695 exercise-induced bronchoconstriction Diseases 0.000 claims description 5
- 206010052613 Allergic bronchitis Diseases 0.000 claims description 4
- 206010006474 Bronchopulmonary aspergillosis allergic Diseases 0.000 claims description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 4
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 4
- 206010014561 Emphysema Diseases 0.000 claims description 4
- 206010048643 Hypereosinophilic syndrome Diseases 0.000 claims description 4
- 208000029523 Interstitial Lung disease Diseases 0.000 claims description 4
- 208000016999 Parasitic Lung disease Diseases 0.000 claims description 4
- 208000006778 allergic bronchopulmonary aspergillosis Diseases 0.000 claims description 4
- 201000009267 bronchiectasis Diseases 0.000 claims description 4
- 206010006451 bronchitis Diseases 0.000 claims description 4
- 230000001684 chronic effect Effects 0.000 claims description 4
- 239000003246 corticosteroid Substances 0.000 claims description 4
- 229960001334 corticosteroids Drugs 0.000 claims description 4
- 239000000430 cytokine receptor antagonist Substances 0.000 claims description 4
- 201000009580 eosinophilic pneumonia Diseases 0.000 claims description 4
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 claims description 4
- 230000009610 hypersensitivity Effects 0.000 claims description 4
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 claims description 4
- 239000003607 modifier Substances 0.000 claims description 4
- 230000000414 obstructive effect Effects 0.000 claims description 4
- 206010039083 rhinitis Diseases 0.000 claims description 4
- 201000000306 sarcoidosis Diseases 0.000 claims description 4
- 201000009890 sinusitis Diseases 0.000 claims description 4
- 201000008827 tuberculosis Diseases 0.000 claims description 4
- 229940125388 beta agonist Drugs 0.000 claims description 3
- 229940082638 cardiac stimulant phosphodiesterase inhibitors Drugs 0.000 claims description 3
- 230000003915 cell function Effects 0.000 claims description 3
- 229960000265 cromoglicic acid Drugs 0.000 claims description 3
- IMZMKUWMOSJXDT-UHFFFAOYSA-N cromoglycic acid Chemical compound O1C(C(O)=O)=CC(=O)C2=C1C=CC=C2OCC(O)COC1=CC=CC2=C1C(=O)C=C(C(O)=O)O2 IMZMKUWMOSJXDT-UHFFFAOYSA-N 0.000 claims description 3
- 230000001976 improved effect Effects 0.000 claims description 3
- 239000002571 phosphodiesterase inhibitor Substances 0.000 claims description 3
- 229960000278 theophylline Drugs 0.000 claims description 3
- 241000699670 Mus sp. Species 0.000 description 109
- 108090000623 proteins and genes Proteins 0.000 description 45
- 108010058846 Ovalbumin Proteins 0.000 description 44
- 229940092253 ovalbumin Drugs 0.000 description 44
- 239000003981 vehicle Substances 0.000 description 37
- 239000002502 liposome Substances 0.000 description 33
- 238000012360 testing method Methods 0.000 description 32
- 230000002950 deficient Effects 0.000 description 26
- 210000003979 eosinophil Anatomy 0.000 description 25
- 206010070834 Sensitisation Diseases 0.000 description 19
- 239000002953 phosphate buffered saline Substances 0.000 description 19
- 230000008313 sensitization Effects 0.000 description 19
- 230000004044 response Effects 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 210000004072 lung Anatomy 0.000 description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 17
- 230000005764 inhibitory process Effects 0.000 description 15
- 230000008371 airway function Effects 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 239000000427 antigen Substances 0.000 description 13
- 108091007433 antigens Proteins 0.000 description 13
- 102000036639 antigens Human genes 0.000 description 13
- 150000002632 lipids Chemical class 0.000 description 13
- 230000008685 targeting Effects 0.000 description 13
- 238000000338 in vitro Methods 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 239000013566 allergen Substances 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 108700025647 major vault Proteins 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 241000701161 unidentified adenovirus Species 0.000 description 10
- 241000282412 Homo Species 0.000 description 9
- GWNVDXQDILPJIG-SHSCPDMUSA-N Leukotriene C4 Natural products CCCCCC=C/CC=C/C=C/C=C/C(SCC(NC(=O)CCC(N)C(=O)O)C(=O)NCC(=O)O)C(O)CCCC(=O)O GWNVDXQDILPJIG-SHSCPDMUSA-N 0.000 description 9
- 230000002327 eosinophilic effect Effects 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- GWNVDXQDILPJIG-NXOLIXFESA-N leukotriene C4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O GWNVDXQDILPJIG-NXOLIXFESA-N 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000000638 stimulation Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 230000000692 anti-sense effect Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 210000004379 membrane Anatomy 0.000 description 7
- 239000013603 viral vector Substances 0.000 description 7
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 6
- 230000037446 allergic sensitization Effects 0.000 description 6
- 238000000540 analysis of variance Methods 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 238000000423 cell based assay Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000009510 drug design Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 230000002757 inflammatory effect Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000007912 intraperitoneal administration Methods 0.000 description 5
- 230000004199 lung function Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 210000000440 neutrophil Anatomy 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000004202 respiratory function Effects 0.000 description 5
- 238000013125 spirometry Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 4
- 241000709661 Enterovirus Species 0.000 description 4
- 108010092408 Eosinophil Peroxidase Proteins 0.000 description 4
- 102000044708 Eosinophil peroxidases Human genes 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 241000725643 Respiratory syncytial virus Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 210000005091 airway smooth muscle Anatomy 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000003960 inflammatory cascade Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 238000010172 mouse model Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000002460 smooth muscle Anatomy 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 239000000556 agonist Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 229960001340 histamine Drugs 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000004968 inflammatory condition Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000003843 mucus production Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 230000009325 pulmonary function Effects 0.000 description 3
- 210000002345 respiratory system Anatomy 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010006473 Bronchopulmonary aspergillosis Diseases 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 206010014950 Eosinophilia Diseases 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 2
- 208000004430 Pulmonary Aspergillosis Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 208000037656 Respiratory Sounds Diseases 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 206010047924 Wheezing Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 2
- 229960004373 acetylcholine Drugs 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000037883 airway inflammation Diseases 0.000 description 2
- 230000008372 airway inflammatory response Effects 0.000 description 2
- 201000009961 allergic asthma Diseases 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000009989 contractile response Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 238000002663 nebulization Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 229940127558 rescue medication Drugs 0.000 description 2
- 230000036387 respiratory rate Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 210000005090 tracheal smooth muscle Anatomy 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 2
- 229950004616 tribromoethanol Drugs 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- BGGYAYMMFYBWEX-HXDOPMNESA-N (5s,6r,7e,9e,11z,14z)-6-[(2r)-2-acetamido-2-carboxyethyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@@H](SC[C@H](NC(C)=O)C(O)=O)[C@@H](O)CCCC(O)=O BGGYAYMMFYBWEX-HXDOPMNESA-N 0.000 description 1
- JSFATNQSLKRBCI-VAEKSGALSA-N 15-HETE Natural products CCCCC[C@H](O)\C=C\C=C/C\C=C/C\C=C/CCCC(O)=O JSFATNQSLKRBCI-VAEKSGALSA-N 0.000 description 1
- JSFATNQSLKRBCI-UHFFFAOYSA-N 15-Hydroxyeicosatetraenoic acid Chemical compound CCCCCC(O)C=CC=CCC=CCC=CCCCC(O)=O JSFATNQSLKRBCI-UHFFFAOYSA-N 0.000 description 1
- PTJFJXLGRSTECQ-PSPARDEHSA-N 20-hydroxy-leukotriene B4 Chemical compound OCCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O PTJFJXLGRSTECQ-PSPARDEHSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 208000036065 Airway Remodeling Diseases 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 238000011891 EIA kit Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010051841 Exposure to allergen Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 101000686985 Mouse mammary tumor virus (strain C3H) Protein PR73 Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 238000001793 Wilcoxon signed-rank test Methods 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- GNNALEGJVYVIIH-UHFFFAOYSA-N benzene-1,2-diamine;hydrochloride Chemical compound Cl.NC1=CC=CC=C1N GNNALEGJVYVIIH-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000004044 bronchoconstricting agent Substances 0.000 description 1
- 230000003435 bronchoconstrictive effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000006041 cell recruitment Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 208000010227 enterocolitis Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000004887 epithelial permeability Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 1
- 210000002175 goblet cell Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 208000000122 hyperventilation Diseases 0.000 description 1
- 230000000870 hyperventilation Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003434 inspiratory effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- VNYSSYRCGWBHLG-AMOLWHMGSA-N leukotriene B4 Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O VNYSSYRCGWBHLG-AMOLWHMGSA-N 0.000 description 1
- YEESKJGWJFYOOK-IJHYULJSSA-N leukotriene D4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@H](N)C(=O)NCC(O)=O YEESKJGWJFYOOK-IJHYULJSSA-N 0.000 description 1
- OTZRAYGBFWZKMX-JUDRUQEKSA-N leukotriene E4 Chemical compound CCCCCC=CCC=C\C=C\C=C\[C@@H](SC[C@H](N)C(O)=O)[C@@H](O)CCCC(O)=O OTZRAYGBFWZKMX-JUDRUQEKSA-N 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 230000004220 muscle function Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000003566 phosphorylation assay Methods 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000007427 positive regulation of B cell differentiation Effects 0.000 description 1
- 230000032287 positive regulation of immunoglobulin secretion Effects 0.000 description 1
- 230000006513 positive regulation of mast cell proliferation Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 210000004879 pulmonary tissue Anatomy 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 230000016160 smooth muscle contraction Effects 0.000 description 1
- 230000029547 smooth muscle hypertrophy Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940044609 sulfur dioxide Drugs 0.000 description 1
- 231100000617 superantigen Toxicity 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000011816 wild-type C57Bl6 mouse Methods 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1136—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
- A61K38/1793—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5428—IL-10
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
Definitions
- the present invention generally relates to a composition and method for reducing or preventing airway hyperresponsiveness in an animal.
- the present invention relates to the inhibition of interleukin-10 (EL- 10) to reduce or prevent airway hyperresponsiveness in an animal wherein the airway hyperresponsiveness is associated with inflammation.
- EL- 10 interleukin-10
- a variety of inflammatory agents can provoke airflow limitation, including allergens, cold air, exercise, infections and air pollution.
- allergens and other agents in allergic or sensitized mammals i.e., antigens and haptens
- Such cells include lymphocytes, eosinophils, mast cells, basophils, neutrophils, macrophages, monocytes, fibroblasts and platelets.
- AHR airway hyperresponsiveness
- AHR airway hyperresponsiveness
- a variety of studies have linked the degree, severity and timing of the inflammatory process with the degree of airway hyperresponsiveness. Asthma is a significant disease of the lung which effects nearly 20 million Americans.
- Asthma is typically characterized by periodic airflow limitation and/or hyperresponsiveness to various stimuli which results in excessive airways narrowing. Other characteristics can include inflammation of airways, eosinophilia and airway f ⁇ brosis. Airway hyperresponsiveness in asthma increases after exposure to allergen. The level of responsiveness can be demonstrated by showing increased responses to bronchoconstrictors such as methacholine (MCh). This heightened responsiveness is thought to result from a complex inflammatory cascade involving several cell types, including T lymphocytes and eosinophils 1,2 . T lymphocytes exert many of their effects by secreting an array of cytokines.
- MCh methacholine
- Th2 type 2 helper T cell
- EL- 10 regulates inflammation by suppressing the production and/or activity of proinflammatory cytokines, such as TNF- ⁇ and EL-1 , and of other cytokines, such as EL-4 and EL-5, which are involved in allergic responses.
- proinflammatory cytokines such as TNF- ⁇ and EL-1
- other cytokines such as EL-4 and EL-5
- EL- 10 can decrease the recruitment of cells, such as eosinophils and neutrophils, into the lungs.
- interleukin-10 was originally described in mice as a factor which inhibited cytokine production from murine Thl clones 4 .
- EL- 10 can also downregulate Th2 clones and their production of EL-4 and EL-5 5 .
- EL- 10 expresses a wide variety of effects on other immune cells, including stimulation of B cell differentiation and immunoglobulin secretion 6 .
- the true biological effects of EL- 10 have been difficult to delineate since the activities of this molecule on immune responsiveness varies considerably 7 .
- adult mice deficient in EL- 10 (EL- 10-/-), develop a CD4 T cell-dependent and interferon- ⁇ mediated enterocolitis 8 .
- EL-10 has anti-inflammatory activity and suggests its use in the treatment of conditions such as superantigen-mediated toxicity, and in general, as an anti-inflammatory agent in infection or injury.
- EL-10 is a useful anti-inflammatory agent which would be expected to have activity related to the resolution of inflammation, including allergic inflammation and airway hyperresponsiveness.
- EL-10 plays a major role in the development of altered airway function. More specifically, the present inventors demonstrate herein that in the absence of EL-10, mice which were sensitized and challenged to an antigen in an art- accepted model of AHR, fail to develop AHR despite a significant eosinophilic airway inflammatory response. Only following reconstitution with EL-10 was airway hyperresponsiveness restored. Therefore, contrary to the indications of previous research, inhibition of EL-10 is likely to have a beneficial affect on patients suffering from airway hyperresponsiveness associated with inflammation.
- One embodiment of the present invention relates to a method to reduce or prevent airway hyperresponsiveness in an animal.
- the method includes the steps of inhibiting interleukin-10 (EL-10) in an animal that has, or is at risk of developing, airway hyperresponsiveness associated with inflammation.
- EL-10 interleukin-10
- the airway hyperresponsiveness is associated with allergic inflammation.
- asthma chronic obstructive pulmonary disease
- allergic bronchopulmonary aspergillosis hypersensitivity pneumonia
- eosinophilic pneumonia emphysema
- bronchitis allergic bronchitis bronchiectasis
- cystic fibrosis tuberculosis
- hypersensitivity pneumonitis occupational asthma, sarcoid, reactive airway disease syndrome, interstitial lung disease, hyper-eosinophilic syndrome, rhinitis, sinusitis, exercise-induced asthma, pollution-induced asthma and parasitic lung disease.
- the allergic inflammation is associated with a disease selected from the group of asthma, occupational asthma and reactive airway disease syndrome.
- the airway hyperresponsiveness is associated with viral-induced inflammation.
- the inflammation is associated with chronic obstructive disease of the airways.
- the step of inhibiting comprises administering to the animal an agent effective to inhibit interleukin-10 (EL-10).
- EL-10 interleukin-10
- the agent can include, but is not limited to, an inhibitor of EL-10 expression, an inhibitor of EL-10 biological activity, an inhibitor of EL-10 receptor expression or an inhibitor of EL-10 receptor biological activity.
- such an agent can include, but is not limited to, an isolated nucleic acid molecule that reduces expression of EL-10 by selectively hybridizing to a nucleic acid molecule encoding EL-10; a ribozyme specific for EL-10 RNA; an EL-10 antagonist; an antibody that selectively binds to EL-10; a soluble EL-10 receptor; an EL-10 receptor antagonist; or an antibody which binds to an EL-10 receptor and blocks EL-10 from binding to the receptor.
- the agent useful in the present method is preferably administered by a route of administration selected from the group consisting of oral, nasal, inhaled, topical, intratracheal, transdermal, rectal and parenteral routes.
- the agent is administered to the animal in an amount effective to measurably reduce airway hyperresponsiveness in the animal as compared to prior to administration of the agent.
- the agent is administered to the animal in an amount effective to measurably reduce airway hyperresponsiveness in the animal as compared to a level of airway hyperresponsiveness in a population of animals having allergic inflammation wherein the agent was not administered.
- administration of the agent decreases methacholine responsiveness in the animal.
- administration of the agent reduces the airway hyperresponsiveness of the animal such that the FEN ! value of the animal is improved by at least about 5%.
- administration of the agent results in an improvement in the animal's PC 20methacho ii ne FEV 1 value such that the PC 20methacho ii ne -FEV 1 value obtained before administration of the agent when the animal is provoked with a first concentration of methacholine is the substantially the same as the PC 20metlmclMlIine FEN 1 value obtained after administration of the agent when the animal is provoked with double the amount of the first concentration of methacholine.
- the first concentration of methacholine is preferably between about 0.01 mg/ml and about 8 mg/ml.
- the agent is administered in a pharmaceutically acceptable excipient.
- the animal is a mammal.
- Another embodiment of the present invention relates to a method to reduce airway hyperresponsiveness in an animal that has, or is at risk of developing, airway hyperresponsiveness associated with inflammation.
- the method includes the step of administering to the animal an agent that inhibits interleukin-10 (EL-10) in the animal, wherein the agent is selected from the group of: an isolated nucleic acid molecule that reduces expression of EL-10 by selectively hybridizing to a nucleic acid molecule encoding EL-10; a ribozyme specific for EL-10 RNA; an EL-10 antagonist; an antibody that selectively binds to EL- 10; a soluble EL- 10 receptor; an EL- 10 receptor antagonist; and an antibody which binds to an EL-10 receptor and blocks EL-10 from binding to the receptor.
- the agent is administered in an amount effective to measurably reduce methacholine responsiveness in the animal.
- the formulation includes: (a) an inhibitor of EL-10 selected from the group of: an isolated nucleic acid molecule that reduces expression of EL-10 by selectively hybridizing to a nucleic acid molecule encoding EL-10; a ribozyme specific for EL-10 RNA; an EL-10 antagonist; an antibody that selectively binds to EL-10; a soluble EL-10 receptor; an EL-10 receptor antagonist; and or an antibody which binds to an EL-10 receptor and blocks EL-10 from binding to the receptor; and, (b) an anti-inflammatory agent suitable for reducing inflammation in an animal that has, or is at risk of developing, airway hyperresponsiveness associated with inflammation.
- an inhibitor of EL-10 selected from the group of: an isolated nucleic acid molecule that reduces expression of EL-10 by selectively hybridizing to a nucleic acid molecule encoding EL-10; a ribozyme specific for EL-10 RNA; an EL-10 antagonist; an antibody that selectively binds to EL-10;
- the anti-inflammatory agent is selected from the group consisting of corticosteroids, (oral, inhaled and injected), ⁇ -agonists (long or short acting), leukotriene modifiers (inhibitors or receptor antagonists), cytokine or cytokine receptor antagonists, anti-IgE, phosphodiesterase inhibitors, sodium cromoglycate, nedocrimal, theophylline, inhibitors of T cell function.
- Yet another embodiment of the present invention relates to a method to identify a compound that reduces or prevents airway hyperresponsiveness associated with inflammation.
- the method includes the steps of: (a) contacting a putative regulatory compound with a cell that expresses EL-10 wherein in the absence of the putative regulatory compound, the EL-10 can be expressed and is biologically active; (b) detecting whether the putative regulatory compound inhibits EL-10 expression or activity in the cell; and (c) administering the putative regulatory compound to a non-human animal in which airway hyperresponsiveness can be induced, and identifying animals in which airway hyperresponsiveness is reduced or prevented as compared to in the absence of the putative regulatory compound.
- a putative regulatory compound that inhibits EL-10 expression or activity and that reduces or prevents airway hyperresponsiveness in the non-human animal is indicated to be a compound for reducing or preventing hyperresponsiveness associated with inflammation.
- the step (b) of detecting is selected from the group of measurement of EL-10 transcription, measurement of EL-10 translation, measurement of EL-10 receptor ligand binding activity, and measurement of EL-10 biological activity associated with the cell.
- the step (a) of contacting comprises contacting the putative regulatory compound with a cell containing transcripts of the EL-10
- the step (b) of detecting comprises detecting translational inhibition of the EL-10 transcript.
- Yet another embodiment of the present invention relates to a method to identify a compound that reduces or prevents airway hyperresponsiveness associated with inflammation.
- the method includes the steps of: (a) contacting a cell or cell lysate which expresses an interleukin-10 (EL-10) receptor with a putative regulatory compound; (b) detecting whether the putative regulatory compound inhibits an EL-10 receptor function selected from the group consisting of EL-10 receptor expression, EL-10 receptor ligand binding or EL-10 receptor biological activity; and (c) administering the putative regulatory compound to a non-human animal in which airway hyperresponsiveness can be induced, and identifying animals in which airway hyperresponsiveness is reduced or prevented as compared to in the absence of the putative regulatory compound.
- EL-10 interleukin-10
- a putative regulatory compound that inhibits EL-10 receptor expression, ligand binding or biological activity and that reduces or prevents airway hyperresponsiveness in the non-human animal is indicated to be a compound for reducing or preventing hyperresponsiveness associated with inflammation.
- the step (a) of contacting comprises contacting the putative regulatory compound with a cell or cell lysate containing a reporter gene operatively associated with a regulatory element of the EL-10 receptor, and the step (b) of detecting comprises detecting expression of the reporter gene product.
- the step (a) of contacting comprises contacting the putative regulatory compound with a cell or cell lysate containing transcripts of the EL-10 receptor, and the step (b) of detecting comprises detecting translational inhibition of the EL-10 receptor transcript.
- FIG. 1A is a line graph showing lung resistance as a measure of airway hyperresponsiveness to methacholine after sensitization with ovalbumin and challenge with either ovalbumin or PBS in EL- 10-deficient (EL-10-/-) and wild-type mice.
- Fig. IB is a line graph showing dynamic compliance as a measure of airway hyperresponsiveness to methacholine after sensitization with ovalbumin and challenge with either ovalbumin or PBS in EL-10-def ⁇ cient (EL-10-/-) and wild-type mice.
- Fig.2 is a bar graph showing the cellular composition of B AL fluid in EL- 10-deficient (EL-10-/-) and wild-type mice after sensitization and challenge to ovalbumin.
- Fig. 3 A is a bar graph showing eosinophilic peroxidase (EPO) in EL-10 -/- and WT mice sensitized and challenged with OVA or PBS.
- Fig. 3B is a bar graph showing leukotriene C4 (LTC4) levels in EL-10 -/- and WT mice sensitized and challenged with OVA or PBS.
- EPO eosinophilic peroxidase
- LTC4 leukotriene C4
- Fig. 4 is a bar graph showing airway responsiveness in EL-10 -/- and WT mice measured by electrical field stimulation.
- Fig. 5A is a line graph showing lung resistance as a measure of airway hyperresponsiveness to MCh after sensitization and challenge with OVA in EL- 10-deficient and WT mice following adenovirus-mediated transfer of the EL-10 gene.
- Fig. 5B is a line graph showing dynamic compliance as a measure of airway hyperresponsiveness to MCh after sensitization and challenge with OVA in EL- 10-deficient and WT mice following adenovirus-mediated transfer of the EL-10 gene.
- Fig. 6 is a line graph showing lung resistance as a measure of airway hyperresponsiveness to MCh after sensitization and challenge with OVA in EL- 10-deficient and WT mice following adenovirus-mediated transfer of the EL-10 gene and administration of EL-5.
- the present invention generally relates to a method to reduce or prevent airway hyperresponsiveness (AHR) in an animal that has, or is at risk of developing, airway hyperresponsiveness, by inhibiting EL-10 in the animal.
- AHR airway hyperresponsiveness
- the animal has, or is at risk of developing, airway hyperresponsiveness associated with inflammation.
- airway hyperresponsiveness is commonly associated with allergic inflammation and/or viral-induced inflammation.
- Airway hyperresponsiveness associated with allergic inflammation can occur in a patient that has, or is at risk of developing, a condition including, but not limited to, any chronic obstructive disease of the airways.
- Such conditions include, but are not limited to: asthma, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonia, eosinophilic pneumonia, emphysema, bronchitis, allergic bronchitis bronchiectasis, cystic fibrosis, tuberculosis, hypersensitivity pneumonitis, occupational asthma, sarcoid, reactive airway disease syndrome, interstitial lung disease, hyper-eosinophilic syndrome, rhinitis, sinusitis, exercise-induced asthma, pollution-induced asthma and parasitic lung disease.
- Airway hyperresponsiveness associated with viral-induced inflammation can occur in a patient that has, or is at risk of developing, an infection by a virus including, but not limited to, respiratory syncytial virus (RSN), parainfluenza virus (PIN), rhinovirus (RN) and adeno virus.
- RSN respiratory syncytial virus
- PIN parainfluenza virus
- RN rhinovirus
- the present invention is based on the present inventors' discovery that EL-10 plays a major role in the development of altered airway function, and that the inhibition of EL-10 in patient's that have, or are at risk of developing, airway hyperresponsiveness will have a beneficial effect.
- the present inventors used an established mouse model of eosinophilic airway inflammation and allergen-driven alterations in airway function.
- EL- 10-def ⁇ cient mice when sensitized and challenged to ovalbumin (ONA), fail to develop AHR despite a significant eosinophilic airway inflammatory response. Only following reconstitution with EL- 10 could changes in airway responsiveness be detected. These data indicated a major role for EL-10 in the regulation of airway function downstream of the inflammatory cascade. Prior to the present invention, important roles for a number of cytokines, including EL-4, EL-5 and EL- 13, have been shown in the development of allergic asthma in humans and increased airway responsiveness in experimental models 2 ' 3 .
- EL-10 deficient mice also referred to herein as EL-10 -/- mice
- OAA ovalbumin
- MCh methacholine
- RL altered lung resistance
- Cedyn altered dynamic compliance
- EL- 10 would be useful for the reduction of inflammation and is produced by cells involved in the resolution of allergic inflammation.
- Grunig et al. (1997) found that EL-10-/- mice developed comparable AHR as controls following bronchopulmonary aspergillosis.
- Bronchopulmonary aspergillosis is a complex combination of both infection and allergic sensitization involving the activation of several different types of inflammatory reactions, including both Th-1 and Th-2 responses.
- One embodiment of the present invention relates to a method to reduce or prevent airway hyperresponsiveness in an animal.
- This method includes a step of inhibiting interleukin-10 (EL-10) in an animal that has, or is at risk of developing, airway hyperresponsiveness associated with inflammation.
- EL-10 interleukin-10
- airway hyperresponsiveness or “AHR” refers to an abnormality of the airways that allows them to narrow too easily and/or too much in response to a stimulus capable of inducing airflow limitation.
- AHR can be a functional alteration of the respiratory system caused by inflammation or airway remodeling (e.g., such as by collagen deposition).
- Airflow limitation refers to narrowing of airways that can be irreversible or reversible.
- Airflow limitation or airway hyperresponsiveness can be caused by collagen deposition, bronchospasm, airway smooth muscle hypertrophy, airway smooth muscle contraction, mucous secretion, cellular deposits, epithelial destruction, alteration to epithelial permeability, alterations to smooth muscle function or sensitivity, abnormalities of the lung parenchyma and infiltrative diseases in and around the airways. Many of these causative factors can be associated with inflammation.
- the present invention is directed to airway hyperresponsiveness that is associated with inflammation, and typically is associated with inflammation of airways, eosinophilia and inflammatory cytokine production.
- AHR can be measured by a stress test that comprises measuring an animal's respiratory system function in response to a provoking agent (i.e., stimulus).
- AHR can be measured as a change in respiratory function from baseline plotted against the dose of a provoking agent (a procedure for such measurement and a mammal model useful therefore are described in detail below in the Examples).
- Respiratory function can be measured by, for example, spirometry, plethysmograph, peak flows, symptom scores, physical signs (i.e., respiratory rate), wheezing, exercise tolerance, use of rescue medication (i.e., bronchodialators) and blood gases.
- spirometry can be used to gauge the change in respiratory function in conjunction with a provoking agent, such as methacholine or histamine.
- a provoking agent such as methacholine or histamine.
- spirometry is performed by asking a person to take a deep breath and blow, as long, as hard and as fast as possible into a gauge that measures airflow and volume.
- the volume of air expired in the first second is known as forced expiratory volume (FEV j ) and the total amount of air expired is known as the forced vital capacity (FNC).
- FEV j forced expiratory volume
- FNC forced vital capacity
- normal predicted FEN ! and FNC are available and standardized according to weight, height, sex and race.
- An individual free of disease has an FEN, and a FNC of at least about 80% of normal predicted values for a particular person and a ratio of FEN,/FNC of at least about 80%. Values are determined before (i.e, representing a mammal's resting state) and after (i.e., representing a mammal's higher lung resistance state) inhalation of the provoking agent. The position of the resulting curve indicates the sensitivity of the airways to the provoking agent. The effect of increasing doses or concentrations of the provoking agent on lung function is determined by measuring the forced expired volume in 1 second (FEV,) and FE V ! over forced vital capacity (FEVj/FVC ratio) of the mammal challenged with the provoking agent.
- FEV forced expired volume in 1 second
- FEVj/FVC ratio forced vital capacity
- a provoking agent i.e., methacholine or histamine
- FEVi PD 20 FEV ⁇
- FEV 1 and FVC values can be measured using methods known to those of skill in the art. Pulmonary function measurements of airway resistance (RJ and dynamic compliance
- CJ and hyperresponsiveness can be determined by measuring transpulmonary pressure as the pressure difference between the airway opening and the body plethysmograph. Volume is the calibrated pressure change in the body plethysmograph and flow is the digital differentiation of the volume signal.
- Resistance (R L ) and compliance (C L ) are obtained using methods known to those of skill in the art (e.g., such as by using a recursive least squares solution of the equation of motion). The measurement of lung resistance (R L ) and dynamic compliance (C,) are described in detail in the Examples. It should be noted that measuring the airway resistance (R- value in a non-human mammal (e.g., a mouse) can be used to diagnose airflow obstruction similar to measuring the FEV ! and or FEVj/FVC ratio in a human.
- Suitable provoking agents include direct and indirect stimuli.
- Preferred provoking agents include, for example, an allergen, methacholine, a histamine, a leukotriene, saline, hyperventilation, exercise, sulfur dioxide, adenosine, propranolol, cold air, an antigen, bradykinin, acetylcholine, a prostaglandin, ozone, environmental air pollutants and mixtures thereof.
- Mch is used as a provoking agent.
- concentrations of Mch to use in a concentration-response curve are between about 0.001 and about 100 milligram per milliliter (mg/ml).
- concentrations of Mch to use in a concentration-response curve are between about 0.01 and about 50 mg/ml. Even more preferred concentrations of Mch to use in a concentration-response curve are between about 0.02 and about 25 mg/ml.
- the degree of AHR is defined by the provocative concentration of Mch needed to cause a 20% drop of the FEVj of a mammal (PC 20methacholine FEV 1 ).
- PC 20methacholine FEV 1 the degree of AHR.
- a normal person typically has a PCao methacho ii ne FEV ! >8 mg/ml of Mch.
- AHR is defined as PC 20methacholine FEV 1 ⁇ 8 mg/ml of Mch.
- respiratory function can also be evaluated with a variety of static tests that comprise measuring an animal's respiratory system function in the absence of a provoking agent.
- static tests include, for example, spirometry, plethysmographically, peak flows, symptom scores, physical signs (i.e., respiratory rate), wheezing, exercise tolerance, use of rescue medication (i.e., bronchodialators) and blood gases.
- Evaluating pulmonary function in static tests can be performed by measuring, for example, Total Lung Capacity (TLC), Thoracic Gas Volume (TgV), Functional Residual Capacity (FRC), Residual Volume (RV) and Specific Conductance (SGL) for lung volumes, Diffusing Capacity of the Lung for Carbon Monoxide (DLCO), arterial blood gases, including pH, P 02 and P C02 for gas exchange.
- TLC Total Lung Capacity
- TgV Thoracic Gas Volume
- FRC Functional Residual Capacity
- RV Residual Volume
- SGL Specific Conductance
- Both FEV ! and FEV ⁇ FVC can be used to measure airflow limitation. If spirometry is used in humans, the FEVj of an individual can be compared to the FEV ! of predicted values. Predicted FEV !
- values are available for standard normograms based on the animal's age, sex, weight, height and race.
- a normal animal typically has an FEVi at least about 80% of the predicted FEVi for the animal.
- Airflow limitation results in a FEVj or FVC of less than 80% of predicted values.
- An alternative method to measure airflow limitation is based on the ratio of FEVj and FVC (FEVi/FVC).
- Disease free individuals are defined as having a FEV FVC ratio of at least about 80%.
- Airflow obstruction causes the ratio of FEVi/FVC to fall to less than 80% of predicted values.
- an animal having airflow limitation is defined by an FEVj/FVC less than about 80%.
- airway hyperresponsiveness refers to any measurable reduction in airway hyperresponsiveness and/or any reduction of the occurrence or frequency with which airway hyperresponsiveness occurs in a patient.
- a reduction in AHR can be measured using any of the above-described techniques or any other suitable method known in the art.
- airway hyperresponsiveness, or the potential therefor is reduced, optimally, to an extent that the animal no longer suffers discomfort and/or altered function resulting from or associated with airway hyperresponsiveness.
- To prevent airway hyperresponsiveness refers to preventing or stopping the induction of airway hyperresponsiveness before biological characteristics of airway hyperresponsiveness as discussed above can be substantially detected or measured in a patient.
- the method of the present invention decreases methacholine responsiveness in the animal.
- the method of the present invention results in an improvement in a mammal's PC 20methacholine FEV ! value such that the PC 20methachoIine FEV ⁇ value obtained before use of the present method when the mammal is provoked with a first concentration of methacholine is the same as the PC 20methacholine FEN 1 value obtained after use of the present method when the mammal is provoked with double the amount of the first concentration of methacholine.
- the method of the present invention results in an improvement in a mammal's PC 20methacho ⁇ ine FEV ⁇ value such that the PC 20methacho ⁇ ine FEV ⁇ value obtained before the use of the present method when the animal is provoked with between about 0.01 mg/ml to about 8 mg/ml of methacholine is the same as the PC 20methachollne FEN 1 value obtained after the use of the present method when the animal is provoked with between about 0.02 mg/ml to about 16 mg/ml of methacholine.
- the method of the present invention results in improves an animal's FEV, by at least about 5%, and more preferably by between about 6% and about 100%, more preferably by between about 7% and about 100%, and even more preferably by between about 8% and about 100% of the mammal's predicted FEN*.
- the method of the present invention improves an animal's FEVi by at l east about 5%, and preferably, at least about 10%, and even more preferably, at least about 25%, and even more preferably, at least about 50%, and even more preferably, at least about 75%.
- the method of the present invention results in an increase in the PC 20methacholine FEN 1 of an animal by about one doubling concentration towards the PC 20methacholine FEN 1 of a normal animal.
- a normal animal refers to an animal known not to suffer from or be susceptible to abnormal AHR.
- a patient, or test animal refers to an animal suspected of suffering from or being susceptible to abnormal AHR.
- an animal that has airway hyperresponsiveness associated with inflammation is an animal in which airway hyperresponsiveness is measured or detected, such as by using one of the above methods for measuring airway hyperresponsiveness, wherein the airway hyperresponsiveness is associated with inflammation.
- the airway hyperresponsiveness is apparently or obviously, directly or indirectly associated with (e.g., caused by, a symptom of, indicative of, concurrent with) an inflammatory condition or disease (i.e., a condition or disease characterized by inflammation).
- an inflammatory condition or disease i.e., a condition or disease characterized by inflammation.
- such an inflammatory condition or disease is at least partially characterized by inflammation of pulmonary tissues.
- An animal that is at risk of developing airway hyperresponsiveness is an animal that has a condition or disease associated with inflammation which is likely to be associated with at least a potential for airway hyperresponsiveness, but does not yet display a measurable or detectable characteristic or symptom of airway hyperresponsiveness.
- An animal that is at risk of developing airway hyperresponsiveness also includes an animal that is identified as being predisposed to or susceptible to such a condition or disease.
- Inflammation is typically characterized by the release of inflammatory mediators (e.g., cytokines or chemokines) which recruit cells involved in inflammation to a tissue.
- inflammatory mediators e.g., cytokines or chemokines
- a condition or disease associated with allergic inflammation is a condition or disease in which the elicitation of one type of immune response (e.g., a Th2-type immune response) against a sensitizing agent, such as an allergen, can result in the release of inflammatory mediators that recruit cells involved in inflammation in a mammal, the presence of which can lead to tissue damage and sometimes death.
- Airway hyperresponsiveness associated with allergic inflammation can occur in a patient that has, or is at risk of developing, any chronic obstructive disease of the airways, including, but not limited to, asthma, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonia, eosinophilic pneumonia, emphysema, bronchitis, allergic bronchitis bronchiectasis, cystic fibrosis, tuberculosis, hypersensitivity pneumonitis, occupational asthma, sarcoid, reactive airway disease syndrome, interstitial lung disease, hyper-eosinophilic syndrome, rhinitis, sinusitis, exercise-induced asthma, pollution-induced asthma and parasitic lung disease.
- any chronic obstructive disease of the airways including, but not limited to, asthma, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonia, eosinophilic pneumonia, emphyse
- Niral-induced inflammation typically involves the elicitation of another type of immune response (e.g., a Thl-type immune response) against viral antigens, resulting in production of inflammatory mediators the recruit cells involved in inflammation in a an animal, the presence of which can also lead to tissue damage.
- a Thl-type immune response e.g., a Thl-type immune response
- Airway hyperresponsiveness associated with viral-induced inflammation can occur in a patient that has, or is at risk of developing, an infection by a virus including, but not limited to, respiratory syncytial virus (RSN), parainfluenza virus (PIN), rhinovirus (RN) and adeno virus.
- RSN respiratory syncytial virus
- PIN parainfluenza virus
- RN rhinovirus
- the method of the present invention can be used in any animal, and particularly, in any animal of the Vertebrate class, Mammalia, including, without limitation, primates, rodents, livestock and domestic pets.
- Preferred mammals to treat using the method of the present invention include humans.
- the method of the present invention includes a step of inhibiting interleukin-10 (EL-1)
- to inhibit EL-10 in an animal refers to inhibiting the expression and/or the biological activity of IL-10.
- Inhibition of EL-10 according to the present invention can be accomplished by directly affecting EL-10 expression (transcription or translation) or biological activity, or by directly affecting the ability of an EL- 10 receptor to bind to or be activated by EL-10.
- the method of inhibiting EL-10 is specific for EL-10, and does not substantially directly affect (i.e., act on) other molecules, and particularly, other cytokines.
- the method of the present invention is intended to be specifically targeted to EL-10 expression and/or biological activity, and is intended to exclude, therefore, methods by which an inhibitory effect on EL-10 is a downstream effect of an action on a different molecule.
- the step of inhibiting EL-10 does not include the administration of a cytokine having a biological activity that counters (i.e., antagonizes) the biological activity of EL-10, such as EL-12, because such a method does not act directly and specifically on EL-10.
- a cytokine having a biological activity that counters (i.e., antagonizes) the biological activity of EL-10, such as EL-12, because such a method does not act directly and specifically on EL-10.
- other molecules and cytokines can be indirectly affected as a result of the direct inhibition or down-regulation of EL-10 (e.g., as a downstream effect of the inhibition of EL-10).
- inhibition of EL-10 is defined herein as any measurable (detectable) reduction (i.e., decrease, downregulation, inhibition) of the expression of EL- 10.
- the expression of EL- 10 refers to either the transcription of EL- 10 or the translation of EL- 10. Therefore, in one embodiment, the method of the present invention inhibits the transcription and/or the translation of EL- 10 by a cell in the animal that naturally expresses EL-10. Methods for inhibiting the expression of EL-10 include, but are not limited to, administering an agent that inhibits the expression of EL-10 and genetically modifying an animal to have reduced EL-10 expression.
- EL-10 expression is inhibited by administration of an agent to the animal that directly inhibits EL-10 expression.
- agents include, but are not limited to : a ribozyme that is specific for EL- 10 RNA; a DNA binding protein or a drug that binds to a gene encoding EL-10 and inhibits expression of EL- 10; a protein or drug that binds to EL- 10 intracellularly and prevents secretion of EL- 10 by the cell which expresses EL-10; and, an isolated nucleic acid molecule that reduces expression of EL-10 by hybridizing under high stringency conditions to a gene encoding EL-10 in a cell of the animal (i.e., an anti-sense nucleic acid molecule).
- Ribozymes, DNA binding proteins, drugs, and anti-sense molecules that selectively inhibit EL-10 expression can be produced using techniques known to those of skill in the art.
- inhibition of EL- 10 is defined herein as any measurable (detectable) reduction (i.e., decrease, downregulation, inhibition) of the biological activity of EL-10.
- the biological activity or biological action of a protein refers to any function(s) exhibited or performed by a naturally occurring form of the protein as measured or observed in vivo (i.e., in the natural physiological environment of the protein) or in vitro (i.e., under laboratory conditions).
- a biological activity of a EL-10 can include, but is not limited to, receptor binding activity, inhibition of Thl lymphocyte activity, stimulation of mast cell proliferation, stimulation of MHC Class II production, inhibition of macrophage function, contraction of airway smooth muscle.
- EL-10 biological activity is inhibited by directly preventing or inhibiting (reducing, decreasing) the ability of EL-10 to bind to and/or activate its receptor, thereby inhibiting downstream events resulting from such binding.
- EL-10 biological activity is inhibited by administering an agent including, but not limited to, an agent that binds to EL-10 or its receptor in a manner that the ability of EL-10 to bind to and/or activate its receptor is inhibited or prevented.
- an agent includes, but is not limited to EL-10 antagonists and EL-10 receptor antagonists, antibodies, and soluble EL-10 receptors that selectively bind to EL-10 or its receptor such that EL-10 biological activity is inhibited or prevented.
- the method of the present invention includes the use of a variety of agents (i.e., regulatory compounds) which, by acting directly on EL-10, its receptor, or the genes encoding EL- 10 or its receptor, inhibit the expression and or biological activity of EL- 10 in a cell such that airway hyperresponsiveness is reduced in an animal.
- agents useful in the present invention include, for example, proteins, nucleic acid molecules, antibodies, and compounds that are products of rational drug design (i.e., drugs). Such agents are generally referred to herein as EL-10 inhibitors.
- an EL-10 inhibitor is any agent which inhibits, either by direct inhibition or competitive inhibition, the expression and/or biological activity of EL-10, and includes agents which act on EL-10 or the EL-10 receptor.
- EL- 10 inhibiting agents as referred to herein include, for example, compounds that are products of rational drug design, natural products, and compounds having partially defined EL-10 regulatory properties.
- An EL-10-regulatory agent can be a protein-based compound, a carbohydrate-based compound, a lipid-based compound, a nucleic acid-based compound, a natural organic compound, a synthetically derived organic compound, an antibody, or fragments thereof.
- EL-10 regulatory agents of the present invention include drugs, including peptides, oligonucleotides, carbohydrates and/or synthetic organic molecules which regulate the production and/or function of EL-10.
- Such an agent can be obtained, for example, from molecular diversity strategies (a combination of related strategies allowing the rapid construction of large, chemically diverse molecule libraries), libraries of natural or synthetic compounds, in particular from chemical or combinatorial libraries (i.e., libraries of compounds that differ in sequence or size but that have the same building blocks) or by rational drug design. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.
- large compound libraries are synthesized, for example, from peptides, oligonucleotides, carbohydrates and/or synthetic organic molecules, using biological, enzymatic and/or chemical approaches.
- the critical parameters in developing a molecular diversity strategy include subunit diversity, molecular size, and library diversity.
- the general goal of screening such libraries is to utilize sequential application of combinatorial selection to obtain high-affinity ligands against a desired target, and then optimize the lead molecules by either random or directed design strategies. Methods of molecular diversity are described in detail in Maulik, et al., supra.
- the three-dimensional structure of a regulatory compound can be analyzed by, for example, nuclear magnetic resonance (NMR) or X-ray crystallography. This three-dimensional structure can then be used to predict structures of potential compounds, such as potential regulatory agents by, for example, computer modeling.
- the predicted compound structure can be used to optimize lead compounds derived, for example, by molecular diversity methods.
- the predicted compound structure can be produced by, for example, chemical synthesis, recombinant DNA technology, or by isolating a mimetope from a natural source (e.g., plants, animals, bacteria and fungi).
- Maulik et al. disclose, for example, methods of directed design, in which the user directs the process of creating novel molecules from a fragment library of appropriately selected fragments; random design, in which the user uses a genetic or other algorithm to randomly mutate fragments and their combinations while simultaneously applying a selection criterion to evaluate the fitness of candidate ligands; and a grid-based approach in which the user calculates the interaction energy between three dimensional receptor structures and small fragment probes, followed by linking together of favorable probe sites.
- an isolated nucleic acid molecule that is particularly useful as an agent for inhibiting EL- 10 is an anti-sense nucleic acid molecule.
- an EL- 10 anti-sense nucleic acid molecule is defined as an isolated nucleic acid molecule that reduces expression of FL- 10 by hybridizing under high stringency conditions to a gene encoding EL- 10.
- an EL- 10 receptor anti-sense nucleic acid molecule is defined as an isolated nucleic acid molecule that reduces expression of EL-10 receptor (EL-10R) by hybridizing under high stringency conditions to a gene encoding EL-10R.
- nucleic acid molecule is sufficiently similar to EL-10 or EL-IOR, respectively, that the molecule is capable of hybridizing under high stringency conditions to the coding or complementary strand of the gene or RNA encoding the natural EL-10 or EL-IOR.
- An EL-10 gene (or an EL-IOR gene) includes all nucleic acid sequences related to an EL-10 gene (or an EL-IOR gene) such as regulatory regions that control production of the protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself.
- the genes encoding EL- 10 and its receptor have been previously cloned and sequenced and are available to those of skill in the art.
- an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milieu (i.e., that has been subject to human manipulation) and can include DNA, RNA, or derivatives of either DNA or RNA.
- isolated nucleic acid molecule of the present invention can be isolated from its natural source or produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis.
- Anti-sense molecules that bind to EL-10 receptor are described in U.S. Patent No. 5,843,697, incorporated herein by reference in its entirety.
- stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules are used to identify similar nucleic acid molecules.
- high stringency hybridization conditions refer to conditions which permit isolation of nucleic acid molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction, more particularly at least about 75%, and most particularly at least about 80%. Such conditions will vary, depending on whether DNA:RNA or DNA:DNA hybrids are being formed. Calculated melting temperatures for DNA:DNA hybrids are 10 ° C less than for DNA:RNA hybrids.
- stringent hybridization conditions for DNA:DNA hybrids include hybridization at an ionic strength of 0.1X SSC (0.157 M Na + ) at a temperature of between about 20°C and about 35°C, more preferably, between about 28°C and about 40°C, and even more preferably, between about 35°C and about 45 °C.
- stringent hybridization conditions for DNA:RNA hybrids include hybridization at an ionic strength of 0.1X SSC (0.157 M Na + ) at a temperature of between about 30°C and about 45°C, more preferably, between about 38°C and about 50°C, and even more preferably, between about 45°C and about 55°C.
- the agent used for inhibiting EL- 10 is an antibody.
- the antibody selectively binds to EL-10 in a manner such that EL-10 is inhibited or prevented from binding to its receptor.
- the antibody selectively binds to EL-10 in a manner such that EL-10 is inhibited or prevented from activating its receptor, even though the EL-10 may at least partially bind to its receptor.
- the antibody selectively binds to EL-10R in a manner such that EL-10 is inhibited or prevented from binding to EL- 1 OR. In yet another aspect, the antibody selectively binds to EL- 1 OR in a manner such that EL- 10 is inhibited or prevented from activating EL- 1 OR, even though EL-10 may at least partially bind to EL-10R.
- the term "selectively binds to” refers to the ability of antibodies of the present invention to preferentially bind to specified proteins (e.g., EL-10 or EL-10R). Binding can be measured using a variety of methods standard in the art including enzyme immunoassays (e.g., ELISA), immunoblot assays, radioimmunoassays, etc.
- Isolated antibodies of the present invention can include serum containing such antibodies, or antibodies that have been purified to varying degrees.
- Antibodies of the present invention can be polyclonal or monoclonal, functional equivalents such as antibody fragments (e.g., Fab fragments or Fab 2 fragments) and genetically-engineered antibodies, including single chain antibodies or chimeric antibodies, including bi-specific antibodies that can bind to more than one epitope.
- Antibodies which bind to EL-10 receptors are disclosed, for example, in U.S. Patent No. 5,863,796, incorporated herein by reference in its entirety.
- an antibody in the production of an antibody, a suitable experimental animal, such as a rabbit, hamster, guinea pig or mouse, is exposed to an antigen against which an antibody is desired.
- an animal is immunized with an effective amount of antigen that is injected into the animal.
- An effective amount of antigen refers to an amount needed to induce antibody production by the animal.
- the animal's immune system is then allowed to respond over a pre-determined period of time. The immunization process can be repeated until the immune system is found to be producing antibodies to the antigen.
- serum is collected from the animal that contains the desired antibodies. Such serum is useful as a reagent.
- Polyclonal antibodies can be further purified from the serum by, for example, treating the serum with ammonium sulfate.
- the immunized animal is sacrificed and B lymphocytes are recovered from the spleen.
- the differentiating and proliferating daughter cells of the B lymphocytes are then fused with myeloma cells to obtain a population of hybridoma cells capable of continual growth in suitable culture medium.
- Hybridomas producing a desired antibody are selected by testing the ability of an antibody produced by a hybridoma to bind to the antigen.
- therapeutic molecules known as ribozymes.
- a ribozyme typically contains stretches of complementary RNA bases that can base-pair with a target RNA ligand, including the RNA molecule itself, giving rise to an active site of defined structure that can cleave the bound RNA molecule (See Maulik et al., 1997, supra). Therefore, a ribozyme can serve as a targeting delivery vehicle for the nucleic acid molecule encoding EL-10 or EL-IOR, or alternatively, the ribozyme can target and bind to RNA encoding a EL- 10 or EL- 1 OR protein, and thereby effectively inhibit the translation of the EL- 10 or EL-IOR protein.
- soluble EL-10 receptors are included in the present invention.
- Soluble EL-10 receptors are useful agents for inhibiting EL- 10 because such receptors compete with naturally occurring EL- 10 receptors for binding to EL- 10, thereby reducing the biological activity of the EL-10.
- EL-10 receptors have been described in detail in U.S. Patent No. 5,863,796, U.S. Patent No. 5,789,192 and U.S. Patent No. 5,843,697, each of which is incorporated herein by reference in their entirety.
- Another agent for use in the present invention includes EL-10 analogs and EL-10 receptor analogs which are antagonists of EL-10 and/or EL-10 receptor activity (i.e., EL-10 antagonists or EL-IOR antagonists, respectively).
- Such analogs are defined herein as homologues or mimetics of a naturally occurring EL-10 protein or EL-IOR, wherein such compound has reduced biological activity as compared to the naturally occurring peptide (i.e., prototype) upon which the homologue or mimetic is based.
- Such a compound is effective to antagonize the biological activity of EL-10 or its receptor by a mechanism which can include blocking the action of EL- 10, for example by binding to and blocking the receptor for EL-10.
- Such an antagonist is typically sufficiently similar in structure to EL-10 or it receptor that is effectively a competitive inhibitor of EL-10 or its receptor.
- the term "homologue” is used to refer to a peptide which differs from a naturally occurring peptide (i.e., the "prototype") by minor modifications to the naturally occurring peptide, but which maintains the basic peptide and side chain structure of the naturally occurring form.
- Such changes include, but are not limited to: changes in one or a few amino acid side chains; changes in one or a few amino acids, including deletions (e.g., a truncated version of the peptide) insertions and/or substitutions; changes in stereochemistry of one or a few atoms; and/or minor derivatizations, including but not limited to: methylation, glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation, amidation and/or addition of glycosylphosphatidyl inositol.
- a homologue that is an antagonist has diminished biological activity as compared to the naturally occurring protein.
- a mimetic refers to any peptide or non-peptide compound that is able to mimic the biological action of a naturally occurring peptide, often because the mimetic has a basic structure that mimics the basic structure of the naturally occurring peptide and or has the salient biological properties of the naturally occurring peptide.
- Mimetics can include, but are not limited to: peptides that have substantial modifications from the prototype such as no side chain similarity with the naturally occurring peptide (such modifications, for example, may decrease its susceptibility to degradation); anti-idiotypic and/or catalytic antibodies, or fragments thereof; non- proteinaceous portions of an isolated protein (e.g., carbohydrate structures); or synthetic or natural organic molecules, including nucleic acids and drugs identified through combinatorial chemistry, for example.
- Such mimetics can be designed, selected and/or otherwise identified using a variety of methods known in the art.
- Various methods of drug design, useful to design mimetics or other therapeutic compounds useful in the present invention are disclosed in Maulik et al., 1997, supra, and have been discussed above in detail.
- Antagonists (homologues and mimetics) of EL- 10 and EL- 1 OR have been previously described in the art, and all are intended to be encompassed for use in the method of the present invention.
- such antagonists are disclosed in U.S. PatentNo.5,837,232 and U.S. PatentNo.5,716,804, incorporated herein by reference in their entireties.
- Methods for using EL-10 receptors to identify EL-10 antagonists are described in U.S. Patent No. 5,863,796, U.S. Patent No. 5,789,192 and U.S. Patent No. 5,843,697, supra.
- acceptable protocols to administer an agent including the route of administration and the effective amount of an agent to be administered to an animal can be accomplished by those skilled in the art.
- An agent of the present invention can be administered in vivo or ex vivo.
- Suitable in vivo routes of administration can include, but are not limited to, oral, nasal, inhaled, topical, intratracheal, transdermal, rectal, and parenteral routes.
- Preferred parenteral routes can include, but are not limited to, subcutaneous, intradermal, intravenous, intramuscular, and intraperitoneal routes.
- Preferred topical routes include inhalation by aerosol (i.e., spraying) or topical surface administration to the skin of amammal.
- an agent is administered by nasal, inhaled, intratracheal, topical, or intravenous routes.
- Ex vivo refers to performing part of the administration step outside of the patient, such as by transfecting a population of cells removed from a patient with a recombinant molecule comprising an EL- 10 anti-sense molecule or by contacting cells expressing an EL-10 receptor with a regulatory agent of the present invention.
- Ex vivo methods are particularly suitable when the cell to which the agent is to be delivered can easily be removed from and returned to the patient.
- an effective amount of a agent that inhibits EL-10 (also referred to simply as "an agent") to administer to an animal comprises an amount that is capable of reducing airway hyperresponsiveness (AHR) without being toxic to the mammal.
- An amount that is toxic to an animal comprises any amount that causes damage to the structure or function of an animal (i.e., poisonous).
- the effectiveness of an EL- 10 inhibiting agent to protect an animal from AHR in an animal having or at risk of developing AHR can be measured in doubling amounts.
- the ability of an animal to be protected from AHR (i.e., experience a reduction in or a prevention of) by administration of a given EL-10 inhibitor is significant if the animal's is at 1 mg/ml before administration of the EL-10 inhibitor and is at 2 mg/ml of Mch after administration of the EL-10 inhibitor.
- an EL-10 inhibitor is considered effective if the animal's PC 20methacho ** ne FEN* is at 2 mg/ml before administration of the EL-10 inhibitor and is at 4 mg/ml of Mch after administration of the EL- 10 inhibitor.
- an effective amount of an agent to administer to an animal in an animal that has AHR, is an amount that measurably reduces AHR in the animal as compared to prior to administration of the agent. In another embodiment, an effective amount of an agent to administer to an animal is an amount that measurably reduces AHR in the animal as compared to a level of airway AHR in a population of animals with inflammation that is associated with AHR wherein the agent was not administered.
- an effective amount of an agent to administer to an animal includes an amount that is capable of decreasing methacholine responsiveness without being toxic to the animal.
- a preferred effective amount of an agent comprises an amount that is capable of increasing the PC 20methaoholine FEV 1 of an animal treated with the an agent by about one doubling concentration towards the PC 20methacholine FEV, of a normal animal.
- a normal animal refers to an animal known not to suffer from or be susceptible to abnormal AHR.
- a test animal refers to an animal suspected of suffering from or being susceptible to abnormal AHR.
- an effective amount of an agent according to the method of the present invention comprises an amount that results in an improvement in an animal's P omethacho ii ne FEN ! value such that the P o ⁇ th ⁇ - ⁇ FEN ! value obtained before administration of the an agent when the animal is provoked with a first concentration of methacholine is the same as the P o ⁇ thac oHne FEN, value obtained after administration of the an agent when the animal is provoked with double the amount of the first concentration of methacholine.
- a preferred amount of an agent comprises an amount that results in an improvement in an animal's PC 20methacholine FEN 1 value such that the PC Mmetta ⁇ Iil J ⁇ V 1 value obtained before administration of the an agent is between about 0.01 mg/ml to about 8 mg/ml of methacholine is the same as the PC 20methachoI *.JF ⁇ N 1 value obtained after administration of the an agent is between about 0.02 mg/ml to about 16 mg/ml of methacholine.
- an effective amount of an agent comprises an amount that is capable of reducing the airflow limitation of an animal such that the FEVJFVC value of the animal is at least about 80%. In another embodiment, an effective amount of an agent comprises an amount that is capable of reducing the airflow limitation of an animal such that the FEV,/FVC value of the animal is improved by at least about 5%, or at least about lOOcc or PGFRG lOL/min.
- an effective amount of an agent comprises an amount that improves an animal's FEV, by at least about 5%, and more preferably by between about 6% and about 100%, more preferably by between about 7% and about 100%, and even more preferably by between about 8% and about 100% (or about 200 ml) of the animal's predicted FEV,.
- an effective amount of an agent comprises an amount that improves an animal's FEV, by at least about 5%, and preferably, at least about 10%, and even more preferably, at least about 25%, and even more preferably, at least about 50%, and even more preferably, at least about 75%. It is within the scope of the present invention that a static test can be performed before or after administration of a provocative agent used in a stress test. Static tests have been discussed in detail above.
- a suitable single dose of an EL- 10-inhibitory agent to administer to an animal is a dose that is capable of reducing or preventing airway hyperresponsiveness in an animal when administered one or more times over a suitable time period.
- a suitable single dose of an agent comprises a dose that improves AHR by a doubling dose of a provoking agent or improves the static respiratory function of an animal.
- a preferred single dose of an agent comprises between about 0.01 microgram x kilogram "1 and about 10 milligram x kilogram "1 body weight of an animal.
- a more preferred single dose of an agent comprises between about 1 microgram x kilogram "1 and about 10 milligram x kilogram "1 body weight of an animal.
- An even more preferred single dose of an agent comprises between about 5 microgram x kilogram "1 and about 7 milligram x kilogram "1 body weight of an animal.
- An even more preferred single dose of an agent comprises between about 10 microgram x kilogram "1 and about 5 milligram x kilogram "1 body weight of an animal.
- a particularly preferred single dose of an agent comprises between about 0.1 milligram x kilogram "1 and about 5 milligram x kilogram "1 body weight of an animal, if the an agent is delivered by aerosol.
- Another particularly preferred single dose of an agent comprises between about 0.1 microgram x kilogram "1 and about 10 microgram x kilogram "1 body weight of an animal, if the agent is delivered parenterally.
- the EL-10-inhibitory agent is administered with a pharmaceutically acceptable carrier, which includes pharmaceutically acceptable excipients and or delivery vehicles, for administering the agent to a patient (e.g., a liposome delivery vehicle).
- a pharmaceutically acceptable carrier refers to any substance suitable for delivering an EL- 10-inhibitory agent useful in the method of the present invention to a suitable in vivo or ex vivo site.
- Preferred pharmaceutically acceptable carriers are capable of maintaining a recombinant nucleic acid molecule or other agent of the present invention in a form that, upon arrival of the agent in the animal, the agent is capable of interacting with its target (e.g., EL-10, EL-10R or genes encoding EL-10 or EL-10R) such that AHR is reduced or prevented.
- Suitable excipients of the present invention include excipients or formularies that transport or help transport, but do not specifically target an agent to a cell (also referred to herein as non-targeting carriers).
- Examples of pharmaceutically acceptable excipients include, but are not limited to water, phosphate buffered saline, Ringer's solution, dextrose solution, serum-containing solutions, Hank's solution, other aqueous physiologically balanced solutions, oils, esters and glycols.
- Aqueous carriers can contain suitable auxiliary substances required to approximate the physiological conditions of the recipient, for example, by enhancing chemical stability and isotonicity.
- Suitable auxiliary substances include, for example, sodium acetate, sodium chloride, sodium lactate, potassium chloride, calcium chloride, and other substances used to produce phosphate buffer, Tris buffer, and bicarbonate buffer.
- Auxiliary substances can also include preservatives, such as thimerosal, — or o-cresol, formalin and benzol alcohol.
- Compositions of the present invention can be sterilized by conventional methods and or lyophilized.
- One type of pharmaceutically acceptable carrier includes a controlled release formulation that is capable of slowly releasing a composition of the present invention into an animal.
- a controlled release formulation comprises an agent of the present invention in a controlled release vehicle.
- Suitable controlled release vehicles include, but are not limited to, biocompatible polymers, other polymeric matrices, capsules, microcapsules, microparticles, bolus preparations, osmotic pumps, diffusion devices, liposomes, lipospheres, and transdermal delivery systems.
- Suitable delivery vehicles have been previously described herein, and include, but are not limited to liposomes, viral vectors or other delivery vehicles, including ribozymes.
- Natural lipid-containing delivery vehicles include cells and cellular membranes.
- Artificial lipid-containing delivery vehicles include liposomes and micelles. As discussed above, a delivery vehicle of the present invention can be modified to target to a particular site in a patient, thereby targeting and making use of an EL-10 inhibitory agent at that site.
- Suitable modifications include manipulating the chemical formula of the lipid portion of the delivery vehicle and/or introducing into the vehicle a targeting agent capable of specifically targeting a delivery vehicle to a preferred site, for example, a preferred cell type.
- a targeting agent capable of specifically targeting a delivery vehicle to a preferred site, for example, a preferred cell type.
- Other suitable delivery vehicles include gold particles, poly-L-lysine/DNA-molecular conjugates, and artificial chromosomes.
- Isolated nucleic acid molecules to be administered in a method of the present invention include: (a) isolated nucleic acid molecules useful in the method of the present invention in a non-targeting carrier (e.g., as "naked” DNA molecules, such as is taught, for example in Wolff et al., 1990, Science 247, 1465-1468); and (b) isolated nucleic acid molecules of the present invention complexed to a delivery vehicle of the present invention.
- a non-targeting carrier e.g., as "naked” DNA molecules, such as is taught, for example in Wolff et al., 1990, Science 247, 1465-1468
- isolated nucleic acid molecules of the present invention complexed to a delivery vehicle of the present invention.
- Particularly suitable delivery vehicles for local administration of nucleic acid molecules comprise liposomes, viral vectors and ribozymes. Delivery vehicles for local administration can further comprise ligands for targeting the vehicle to a particular site.
- a pharmaceutically acceptable carrier which is capable of targeting is herein referred to as a "delivery vehicle.”
- Delivery vehicles of the present invention are capable of delivering a formulation, including an EL-10-inhibitory agent to a target site in a mammal.
- a "target site” refers to a site in a mammal to which one desires to deliver a therapeutic formulation.
- a target site can be any cell which is targeted by direct injection or delivery using liposomes, viral vectors or other delivery vehicles, including ribozymes.
- Examples of delivery vehicles include, but are not limited to, artificial and natural lipid- containing delivery vehicles, viral vectors, andribozymes. Natural lipid-containing delivery vehicles include cells and cellular membranes.
- Artificial lipid-containing delivery vehicles include liposomes and micelles.
- a delivery vehicle of the present invention can be modified to target to a particular site in a mammal, thereby targeting and making use of a nucleic acid molecule at that site. Suitable modifications include manipulating the chemical formula of the lipid portion of the delivery vehicle and/or introducing into the vehicle a compound capable of specifically targeting a delivery vehicle to a preferred site, for example, a preferred cell type.
- targeting refers to causing a delivery vehicle to bind to a particular cell by the interaction of the compound in the vehicle to a molecule on the surface of the cell.
- Suitable targeting compounds include ligands capable of selectively (i.e., specifically) binding another molecule at a particular site.
- ligands include antibodies, antigens, receptors and receptor ligands.
- Manipulating the chemical formula of the lipid portion of the delivery vehicle can modulate the extracellular or intracellular targeting of the delivery vehicle.
- a chemical can be added to the lipid formula of a liposome that alters the charge of the lipid bilayer of the liposome so that the liposome fuses with particular cells having particular charge characteristics.
- a liposome is capable of remaining stable in an animal for a sufficient amount of time to deliver a nucleic acid molecule described in the present invention to a preferred site in the animal.
- a liposome, according to the present invention comprises a lipid composition that is capable of delivering a nucleic acid molecule described in the present invention to a particular, or selected, site in a mammal.
- a liposome according to the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver a nucleic acid molecule into a cell.
- Suitable liposomes for use with the present invention include any liposome.
- Preferred liposomes of the present invention include those liposomes typically used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes comprise liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol.
- a liposome comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver a nucleic acid molecule and/or inhibitory agent into a cell.
- the transfection efficiency of a liposome is at least about 0.5 microgram ( ⁇ g) of DNA per 16 nanomole (nmol) of liposome delivered to about 10 6 cells, more preferably at least about 1.0 ⁇ g of DNA per 16 nmol of liposome delivered to about 10 6 cells, and even more preferably at least about 2.0 ⁇ g of DNA per 16 nmol of liposome delivered to about 10 6 cells.
- a preferred liposome is between about 100 and about 500 nanometers (nm), more preferably between about 150 and about 450 nm and even more preferably between about 200 and about 400 nm in diameter.
- Complexing a liposome with a nucleic acid molecule or inhibitory agent of the present invention can be achieved using methods standard in the art.
- a suitable concentration of a nucleic acid molecule or inhibitory agent to add to a liposome includes a concentration effective for delivering a sufficient amount of nucleic acid molecule and/or inhibitory agent to a cell such that the expression and/or biological activity of EL- 10 or EL- 10 receptor is reduced in a desired manner.
- nucleic acid molecules are combined with liposomes at aratio offrom about 0.1 ⁇ gto about 10 ⁇ g ofnucleic acid molecule of the present invention per about 8 nmol liposomes, more preferably from about 0.5 ⁇ g to about 5 ⁇ g of nucleic acid molecule per about 8 nmol liposomes, and even more preferably about 1.0 ⁇ g of nucleic acid molecule per about 8 nmol liposomes.
- Another preferred delivery vehicle comprises a viral vector.
- a viral vector includes an isolated nucleic acid molecule useful in the method of the present invention, in which the nucleic acid molecules are packaged in a viral coat that allows entrance of DNA into a cell.
- viral vectors can be used, including, but not limited to, those based on alphaviruses, poxviruses, adenoviruses, herpesviruses, lentiviruses, adeno-associated viruses and retroviruses.
- the present invention also includes a formulation that reduces or prevents airway hyperresponsiveness in an animal.
- the formulation comprises: (a) an inhibitor of EL-10 selected from the group of: an isolated nucleic acid molecule that reduces expression of EL- 10 by selectively hybridizing to a nucleic acid molecule encoding EL- 10; a ribozyme specific for EL- 10 RNA; an EL- 10 antagonist; an antibody that selectively binds to EL- 10; a soluble EL- 10 receptor; an EL- 10 receptor antagonist; and an antibody which binds to an EL- 10 receptor and blocks EL-10 from binding to said receptor; and, (b) an anti-inflammatory agent suitable for reducing inflammation in an animal that has, or is at risk of developing, airway hyperresponsiveness associated with inflammation.
- the anti-inflammatory agent can be any anti-inflammatory agent which is suitable for use in reducing inflammation in a patient that has an inflammatory condition associated with airway hyperresponsiveness, including, but not limited to: corticosteroids, (oral, inhaled and injected), ⁇ -agonists (long or short acting), leukotriene modifiers (inhibitors or receptor antagonists), cytokine or cytokine receptor antagonists, anti-IgE, phosphodiesterase inhibitors, sodium cromoglycate, nedocrimal, theophylline, and inhibitors of T cell function.
- Particularly preferred anti-inflammatory agents for use in the present formulation include, corticosteroids, leukotriene modifiers, and cytokine or cytokine receptor antagonists.
- Yet another embodiment of the present invention relates to a method to identify a compound that reduces or prevents airway hyperresponsiveness associated with inflammation.
- a method includes the steps of: (a) contacting a putative regulatory compound with a cell that expresses EL-10 wherein in the absence of the putative regulatory compound, the EL-10 can be expressed and is biologically active; (b) detecting whether the putative regulatory compound inhibits EL-10 expression or activity by the cell; and, (c) administering the putative regulatory compound to a non-human animal in which airway hyperresponsiveness can be induced and identifying animals in which airway hyperresponsiveness is reduced or prevented as compared to in the absence of the putative regulatory compound.
- a putative regulatory compound that inhibits EL-10 expression or activity and that reduces or prevents airway hyperresponsiveness in the non-human animal is indicated to be a compound for reducing or preventing hyperresponsiveness associated with inflammation.
- the step (b) of detecting can include, but is not limited to, a method selected from the group of measurement of EL-10 transcription, measurement of EL-10 translation, measurement of EL- 10 receptor ligand binding activity, and measurement of EL- 10 biological activity associated with the cell.
- Such methods of detecting an interaction of a ligand with a receptor including the interaction of a ligand with an EL- 10 receptor, are known in the art as discussed above, and include immunoblots, phosphorylation assays, kinase assays, immunofluorescence microscopy, RNA assays, immunoprecipitation, and other biological assays.
- Assay kits for EL-10 biological activity are commercially available, for example, from Pharmingen.
- step (a) of contacting includes contacting the putative regulatory compound with a cell containing transcripts encoding EL- 10, and step (b) of detecting includes detecting translational inhibition of the EL-10 transcript.
- such a method can include the steps of: (a) contacting a putative regulatory compound with an isolated EL-10 protein and determining whether the putative regulatory compound binds to the EL-10 protein; an optional step (b) of further detecting whether compounds that bind to EL- 10 in (a) inhibit biological activity of EL- 10 in an assay for EL- 10 biological activity; and (c) administering the putative regulatory compound to a non-human animal in which airway hyperresponsiveness can be induced and identifying animals in which airway hyperresponsiveness is reduced or prevented as compared to in the absence of the putative regulatory compound.
- Yet another alternate embodiment of the method to identify a compound that reduces or prevents airway hyperresponsiveness associated with inflammation includes the steps of: (a) contacting a cell or cell lysate which expresses an interleukin-10 (EL-10) receptor with a putative regulatory compound; (b) detecting whether the putative regulatory compound inhibits an EL-10 receptor function selected from the group of EL-10 receptor expression, EL- 10 receptor ligand binding or EL-10 receptor biological activity; and (c) administering the putative regulatory compound to a non-human animal in which airway hyperresponsiveness can be induced, and identifying animals in which airway hyperresponsiveness is reduced or prevented as compared to in the absence of the putative regulatory compound.
- a putative regulatory compound that inhibits EL-10 receptor expression, ligand binding or biological activity and that reduces or prevents airway hyperresponsiveness in the non-human animal is indicated to be a compound for reducing or preventing hyperresponsiveness associated with inflammation.
- step (a) of contacting comprises contacting the putative regulatory compound with a cell or cell lysate containing a reporter gene operatively associated with a regulatory element of the EL-10 receptor, and step (b) of detecting comprises detecting inhibition of the expression of the reporter gene product.
- step (a) of contacting comprises contacting the putative regulatory compound with a cell or cell lysate containing transcripts of the EL-10 receptor, and step (b) of detecting comprises detecting translational inhibition of the EL-10 receptor transcript.
- the term "putative" refers to compounds having an unknown or previously unappreciated regulatory activity in a particular process. As such, the term “putative” refers to compounds having an unknown or previously unappreciated regulatory activity in a particular process. As such, the term “putative” refers to compounds having an unknown or previously unappreciated regulatory activity in a particular process. As such, the term “putative” refers to compounds having an unknown or previously unappreciated regulatory activity in a particular process. As such, the term “putative”
- identify is intended to include all compounds, the usefulness of which as a regulatory compound of EL-10 expression or biological activity for the purposes of reducing airway hyperresponsiveness is determined by a method of the present invention.
- test cells can be grown in liquid culture medium or grown on solid medium in which the liquid medium or the solid medium contains the compound to be tested.
- the liquid or solid medium contains components necessary for cell growth, such as assimilable carbon, nitrogen and micro-nutrients.
- the above described methods involve contacting cells with the compound being tested for a sufficient time to allow for interaction of the putative regulatory compound with EL-10 with an EL-10 receptor expressed by the cell.
- the period of contact with the compound being tested can be varied depending on the result being measured, and can be determined by one of skill in the art. For example, for binding assays, a shorter time of contact with the compound being tested is typically suitable, than when activation is assessed.
- contact period refers to the time period during which cells are in contact with the compound being tested.
- incubation period refers to the entire time during which cells are allowed to grow prior to evaluation, and can be inclusive of the contact period.
- the incubation period includes all of the contact period and may include a further time period during which the compound being tested is not present but during which growth is continuing (in the case of a cell based assay) prior to scoring.
- the incubation time for growth of cells can vary but is sufficient to allow for the binding of the EL- 10 or EL- 10 receptor and or inhibition of FL- 10 or EL- 10 receptor. It will be recognized that shorter incubation times are preferable because compounds can be more rapidly screened.
- a preferred incubation time is between about 1 minute to about 48 hours.
- the conditions under which the cell or cell lysate of the present invention is contacted with a putative regulatory compound are any suitable culture or assay conditions and includes an effective medium in which the cell can be cultured or in which the cell lysate can be evaluated in the presence and absence of a putative regulatory compound.
- Cells of the present invention can be cultured in a variety of containers including, but not limited to, tissue culture flasks, test tubes, microtiter dishes, and petri plates. Culturing is carried out at a temperature, pH and carbon dioxide content appropriate for the cell. Such culturing conditions are also within the skill in the art. Acceptable protocols to contact a cell with a putative regulatory compound in an effective manner include the number of cells per container contacted, the concentration of putative regulatory compound(s) administered to a cell, the incubation time of the putative regulatory compound with the cell, and the concentration of compound administered to a cell.
- a preferred amount of putative regulatory compound(s) comprises between about 1 nM to about 10 mM of putative regulatory compound(s) per well of a 96-well plate.
- Suitable cells for use with the present invention include any cell that endogenously expresses EL-10 or an EL-10 receptor, or which has been transfected with and expresses recombinant EL-10 or a recombinant EL-10 receptor.
- host cells genetically engineered to express a functional EL- 10 receptor that respond to activation by EL- 10 or agonists thereof can be used as an endpoint in the assay; e.g., as measured by a chemical, physiological, biological, or phenotypic change, induction of a host cell gene or a reporter gene, change in cAMP levels, activity of other intracellular signal transduction molecules, proliferation, differentiation, etc.
- Cytokine-producing cells for use with the present invention include mammalian, invertebrate, plant, insect, fungal, yeast and bacterial cells.
- Preferred cells include mammalian, amphibian and yeast cells.
- Preferred mammalian cells include primate, non-human primate, mouse and rat.
- the test cell should express a functional EL- 10 receptor that gives a significant response to EL- 10, preferably greater than 2, 5, or 10-fold induction over background.
- a cell expressing an EL-IOR is contacted with EL-10, or an agonist thereof, that binds to and activates the receptor.
- the EL- 10 can be contacted with the EL- 10 receptor (or the cell expressing such receptor) prior to, simultaneous with, or after contact of the putative regulatory compound with the cell, depending on how the assay is to be evaluated.
- the EL-10 is contacted with the receptor after the cell is contacted with the putative regulatory compound so that the test compound can be evaluated for its ability to inhibit activation of the receptor by EL-10.
- the EL- 10 can be contacted with the receptor at the same time as the test compound.
- the EL-10 is contacted with the cell/receptor in the presence and absence of the test compound for a controlled assay.
- the present methods also make use of non-cell based assay systems to identify compounds that can regulate AHR.
- isolated membranes may be used to identify compounds that interact with the EL-10 receptor being tested.
- Membranes can be harvested from cells expressing EL-10 receptors by standard techniques and used in an in vitro binding assay. 125 I-labeled EL-10 is bound to the membranes and assayed for specific activity; specific binding is determined by comparison with binding assays performed in the presence of excess unlabeled EL-10.
- Membranes are typically incubated with labeled ligand in the presence or absence of test compound. Compounds that bind to the receptor and compete with labeled ligand for binding to the membranes reduced the signal compared to the vehicle control samples.
- soluble EL-10 receptors may be recombinantly expressed and utilized in non-cell based assays to identify compounds that bind to EL- 10 receptors.
- Recombinantly expressed EL- 10 receptor polypeptides or fusion proteins containing one or more extracellular domains of an EL-10 receptor can be used in the non-cell based screening assays.
- peptides corresponding to one or more of the cytoplasmic domains of the EL- 10 receptor or fusion proteins containing one or more of the cytoplasmic domains of the EL-10 receptor can be used in non-cell based assay systems to identify compounds that bind to the cytoplasmic portion of the EL-10 receptor; such compounds may be useful to modulate the signal transduction pathway of the EL-10 receptor.
- the recombinantly expressed EL-10 receptor is attached to a solid substrate such as a test tube, microtitre well or a column, by means well known to those in the art. The test compounds are then assayed for their ability to bind to the EL-10 receptor.
- DNA encoding a reporter molecule can be linked to a regulatory element of the EL-10 gene or the EL-10 receptor gene and used in appropriate intact cells, cell extracts or lysates to identify compounds that modulate EL-10 or EL-10 receptor gene expression, respectively.
- Appropriate cells or cell extracts are prepared from any cell type that normally expresses the EL-10 or EL-10 receptor gene, thereby ensuring that the cell extracts contain the transcription factors required for in vitro or in vivo transcription.
- the screen can be used to identify compounds that modulate the expression of the reporter construct.
- the level of reporter gene expression is determined in the presence of the test compound and compared to the level of expression in the absence of the test compound.
- cells or in vitro cell lysates containing EL- 10 or EL- 10 receptor transcripts may be tested for modulation of EL-10 or EL-10 receptor mRNA translation.
- test compounds are assayed for their ability to modulate the translation of EL- 10 or EL- 10 receptor mRNA in in vitro translation extracts.
- Compounds that decrease the level of EL-10 or EL-10 receptor expression, either at the transcriptional or translational level, may be useful for reduction of AHR.
- a putative regulatory compound of the present invention can be evaluated by administering putative regulatory compounds to a non-human test animal and detecting whether the putative regulatory compound reduces AHR in the test animal.
- Animal models of disease are invaluable to provide evidence to support a hypothesis or justify human experiments. For example, mice have many proteins which share greater than 90% homology with corresponding human proteins.
- Preferred modes of administration, including dose, route and other aspects of the method are as previously described herein for the therapeutic methods of the present invention.
- the test animal can be any suitable non-human animal, including any test animal described in the art for evaluation of AHR.
- the test animal can be, for example, an established mouse model of AHR, as previously described, for example, in Takeda et al., (1997). J. Exp.
- This non-human model system is an antigen-driven murine system that is characterized by an immune (IgE) response, a dependence on a Th2-type response, and an eosinophil response.
- the model is characterized by both a marked and evolving hyperresponsiveness of the airways.
- mice typically BALB/c
- OVA ovalbumin
- the mice are then chronically exposed (i.e., challenged) for 8 days (i.e., 8 exposures of 30 minutes each in 8 days) to aerosolized OVA. It should be noted that both immunization and subsequent antigen challenge are required to observe a response in mice.
- pulmonary function measurements of airway resistance (R L ) and dynamic compliance (C and hyperresponsiveness are obtained as described in Example 1 below.
- test animal can be a genetically modified non-human animal comprising a deletion of EL-10 genes as described in Example 1.
- the non-human EL-10 -/- animal can be reconstituted to restore AHR and compounds can be evaluated for their ability to reduce or inhibit the restoration of AHR as compared to reconstituted test animals in the absence of treatment with the putative test compound.
- Example 1 The following example demonstrates that allergic sensitization does not lead to airway hyperresponsiveness in EL-10-/- mice.
- mice Homozygous EL- 10-deficient mice (EL-10-/-) on a C57BL/6 background (C57BL/6-EL-10(tmlCgn) 13 were originally obtained for use by the present inventors from Dr. Werner Mtlller, Cologne, FRG. These mice were housed in specific pathogen-free conditions and maintained on an ovalbumin (OVA)-free diet in the Biological
- OVA ovalbumin
- mice were sensitized by intraperitoneal inj ection of 20 ⁇ g of ovalbumin (OVA) (Grade V; Sigma Chemical Co., St. Louis, MO) emulsified in 2.25 mg alum (Alumlmuject; Pierce, Rockford, IL) or received PBS alone in a total volume of 100 ⁇ l on days 0 and 14.
- OVA ovalbumin
- mice were challenged via the airways by OVA (1% in PBS) or PBS for 20 min. on days 28, 29 and 30 by ultrasonic nebulization (De Vilbiss Health Care Inc., Somerset, PA, particle size 1-5 ⁇ m). On day 32, airway function was measured as described below after which mice were sacrificed and specimens were collected for further analysis 14 .
- Airway resistance and Cdyn were determined before and after inhalation of aerosolized MCh. Anesthetized, tracheostomized mice were mechanically ventilated and lung function was assessed by a modification of previously described work 14 .
- a four way connector was attached to the tracheostomy tube (stainless steel cannula, 18G), with two ports connected to the inspiratory and expiratory sides of two ventilators. Ventilation was achieved at a rate of 160 breaths/min, tidal volume of 150 ⁇ l with a positive end-expiratory pressure of 2-3 cm H 2 O (ventilator model 683; Harvard Apparatus, South Natick, MA).
- Aerosolized MCh was administered for 10 breaths at a rate of 60 breaths/min, tidal volume of 500 ⁇ l by the second ventilator (model SN-480-7- 3-2T; Shinano Manufacturing Co., Tokyo, Japan) in increasing concentrations (6.25, 12.5, 25, 50, 100 mg/ml). After each aerosol MCh challenge, the data was continuously collected for 1 to 5 min and maximum values of RL and minimum values of Cdyn were taken to express changes in these functional parameters.
- OVA Intraperitoneal ovalbumin sensitization and airway challenge of mice is an established model consistently leading to allergic sensitization and airway hyperresponsiveness (AHR) in BALB/c and C57BL/6 mice 19 .
- Airway responsiveness was monitored by measuring lung resistance (RL; Fig.
- BAL fluid was obtained from the groups shown in Fig. 1. Briefly, lungs were lavaged via the tracheal tube with Hank's balanced salt solution, (HBSS, lx 1 ml, RT). The volume of collected bronchoalveolar lavage fluid (BALF) was measured in each sample and the number of BALF cells was counted by cell counter (Coulter Counter; Coulter Co., Hialeah, FL).
- Fig.2 shows the cellular composition of BAL fluid (BALF) in EL- 10-deficient (EL- 10- /-) and wild-type mice after sensitization and challenge to ovalbumin as described in Example 1. The results for each group are expressed as means ⁇ SEM. Significant differences between the groups (ANOVA and Tukey-Kramer, p ⁇ 0.05) are designated (*). Specifically, Fig. 2 illustrates that eosinophils comprised up to 70% of the cells in WT mice and approximately 50% in the EL-10-/- mice (p ⁇ 0.01).
- Neutrophils were 15% of the total cell population in the EL-10-/- mice and approximately 5% in the WT mice (p ⁇ 0.01). There were no significant differences in total cell numbers, macrophages or numbers of lymphocytes.
- the lungs were inflated through the tracheal tube with 2 ml air and fixed in 10% formalin. Blocks of lung tissue were cut around the main bronchus and embedded in paraffin blocks. Tissue sections, 5 ⁇ m thick, were affixed to microscope slides, and deparaffinized. The slides were stained with hematoxylin and eosin (H&E), as well as periodic acid Schiff (PAS) for identification of mucus containing cells, and examined under light microscopy.
- H&E hematoxylin and eosin
- PAS periodic acid Schiff
- MBP major basic protein
- the slides were examined in a blinded fashion with a Nikon microscope equipped with a fluorescein filter system. Number of eosinophils in the perivascular, peribronchial and peripheral tissues were evaluated using the EPLab2 software (Signal Analytics, Vienna, VA) for the Macintosh computer counting 5 sections pre animal (3 mice per group).
- Lung histology showed a heavy infiltration of inflammatory cells in the perivascular and to a slightly lesser extent, peribronchial spaces, in the OVA sensitized and challenged EL-10-/- and in the WT mice. Both strains of mice exposed to only 3 days of nebulization with OVA alone had no signs of inflammation (data not shown). There were no obvious differences between the two mouse strains when sections stained with hematoxylin and eosin were examined (data not shown). Staining of the mucus producing goblet cells with PAS- stain failed to reveal any differences between the strains of mice (data not shown). Numbers of eosinophils in the lung tissue were evaluated by immunohistochemistry staining for the major basic protein (MBP).
- MBP major basic protein
- the following example describes additional characterization and comparison of the bronchoalveolar lavage fluid from OVA sensitized and challenged wild-type and EL-10 -/- mice.
- Cytokine Levels in BALF To further characterize any differences between wild- type and EL-10 -/- mice which might correlate with the differences in airway hyperresponsiveness, levels of EL-4, EL-5, EL- 13 and EFN- ⁇ were assayed in EL- 10+/+ (i.e., WT) and EL-10-/- mice after sensitization and challenge as described in Example 1. Briefly, EFN- ⁇ , EL-4 and EL-5 in the BALF supernatants were detected by enzyme immunoassay (ELA) as previously described 19 . For interleukin-10, the OptEIA set was used according to the manufacturer's directions (PharMingen). For EL-13, a commercial kit was used (R and D Systems). Cytokine levels were determined by comparison with the known standards. The limits of detection were 30 pg/ml for EL-10 and 10 pg/ml for the other cytokines.
- Samples for leukotriene measurements were prepared by adding 50 ⁇ l of 100% methanol to 200 ⁇ l of the BALF supernatants. These samples were loaded onto C-18 Sep-
- the rabbit antiserum against leukotriene had the following cross reactivities: LTC4 (100%), LTD4 (100%), LTE4 (67%), and N-acetyl-LTE4 (10.5%), but not 5, 12, 15-HETE, LTB4, 20-hydroxy LTB4 or prostaglandins ( ⁇ 0.01%).
- the limit of detection was 12 pg/ml.
- Eosinophil peroxidase was measured in BAL supernatants collected 48 h after the last airway challenge with o-phenylenediamine hydrochloride substrate as previously described 20 .
- Horse radish peroxidase was used as a standard starting from 1000 pg/ml with 3-fold dilutions to create a standard curve. EPO levels of the samples were calculated based on this standard curve.
- Serum levels of total IgE, OVA-specific IgE and IgGl were measured by ELISA as previously described 18 .
- the anti-OVA antibody titers of samples were related to internal pooled standards and expressed as ELISA units (EU).
- Total IgE level was calculated by comparison with known mouse IgE standard (PharMingen). The limit of detection was 100 pg/ml for IgE.
- Table 1 demonstrates that the total IgE level was more than 7-fold higher and serum levels of OVA-specific IgE more than 2-fold higher in the EL-10-/- mice than the WT mice.
- OVA-specific IgGl and IgG2a levels were also significantly higher in the EL-10-/- mice. TABLE 1 Concentration of total IgE and OVA-specific IgE and lgG1 in the sera of IL10 -/- and WT mice.
- Example 4 The following example demonstrates that EL- 10-/- mice are hyporesponsive following electric field stimulation of trachea smooth muscle.
- mice were sensitized by exposure to aerosolized OVA (1 % w/vol in PBS, 20-30 min per day) or PBS for 10 consecutive days. 48 hours after the last challenge, tracheas were removed and 0.5 cm long preparations were placed in Krebs-Henseleit solution suspended by triangular supports transducing the force of contractions. Electrical field stimulation (EFS) with an increasing frequency from 0.5 to 30 Hz was applied and the contractions measured. The duration of the stimulation was 1 millisecond.
- EFS electrical field stimulation
- ES 50 maximum contractile response
- the following example demonstrates that adenovirus-mediated transfer of the EL-10 gene reconstitutes airway hyperresponsiveness in EL-10-/- mice.
- mice 24 hours before the first aerosolized challenge (5 days before measurement of airway function), mice were anaesthetized with an intraperitoneal (i.p.) injection of tribromoethanol (Avertin, 250 mg/kg of 2.5% solution in PBS), after which 1 x 10 8 PFU of either construct was applied in the nostril with a micropipette in a total volume of 30 ul of PBS vehicle (two 15 ⁇ l administrations, 2 min. apart). Airway responsiveness was monitored, following OVA sensitization and challenge, by measuring lung resistance (RL; Fig. 5A) and dynamic compliance (Cdyn; Fig. 5B) as described in Example 1.
- RL lung resistance
- Fig. 5B dynamic compliance
- Ad/C The control adenovirus construct (Ad/C; Figs. 5A and 5B, circles) induced a low level, but not significant, increase in airway resistance in the sensitized and challenged EL-10-/- mice (open circle) compared to those mice receiving no construct (triangle).
- WT mice administered the Ad/EL-10 Fig. 5 A, black square
- Significant differences between the groups (ANOVA and Tukey-Kramer, p ⁇ 0.05) are designated (*).
- EL-10-mediated reconstitution of AHR was EL-5/ eosinophil-dependent, since AHR has been shown to be EL-5/eosinophil dependent in other related models using a similar sensitization and challenge protocol 16 ' 21 , EL-10 -/- mice sensitized to OVA and administered Ad/EL-10 were treated with anti-EL-5 antibody 2 hours before the first airway challenge with OVA.
- Anti-mouse EL-5 mAb, TRFK-5 (IgG2b) was used in this study for studying effects on AHR 16 .
- One hundred ⁇ g of the stock mAb was diluted with PBS in a total volume of 100 ⁇ l, which was then given to i.p.
- Fig. 6 shows that treatment of sensitized EL-10 -/- mice with EL-5 prior to airway challenge resulted in a dramatic decrease in airway eosinophil numbers (from 55% to 6%) and a concomitant normalization of lung function.
- EL-10 the effects of EL-10 on airway function are dependent, at least in part, on allergen-induced eosinophilic inflammation.
- Adenovirus-mediated EL-10 reconstitution was also assessed by in vitro measurements of airway function following 10 consecutive days of OVA exposure. In this experiment, the constructs were administered 4 days before measurement of the response to electrical field stimulation (day 12) as described in Example 4.
- Ad EL-10, but not Ad C reconstituted the response to EFS (ES 50 2.1 ⁇ 0.2 Hz and 3.8 ⁇ 0.2 Hz, respectively) (Fig. 4).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Pharmacology & Pharmacy (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Physics & Mathematics (AREA)
- Endocrinology (AREA)
- Food Science & Technology (AREA)
- Plant Pathology (AREA)
- Analytical Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01918368A EP1265634A4 (fr) | 2000-03-14 | 2001-03-06 | Procede et composition pour traiter une hyperreactivite bronchique |
CA002403196A CA2403196A1 (fr) | 2000-03-14 | 2001-03-06 | Procede et composition pour traiter une hyperreactivite bronchique |
AU2001245453A AU2001245453B2 (en) | 2000-03-14 | 2001-03-06 | Method and composition for treating airway hyperresponsiveness |
AU4545301A AU4545301A (en) | 2000-03-14 | 2001-03-06 | Method and composition for treating airway hyperresponsiveness |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52504300A | 2000-03-14 | 2000-03-14 | |
US09/525,043 | 2000-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001068130A1 true WO2001068130A1 (fr) | 2001-09-20 |
Family
ID=24091672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/007069 WO2001068130A1 (fr) | 2000-03-14 | 2001-03-06 | Procede et composition pour traiter une hyperreactivite bronchique |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1265634A4 (fr) |
AU (2) | AU4545301A (fr) |
CA (1) | CA2403196A1 (fr) |
WO (1) | WO2001068130A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997026279A1 (fr) * | 1996-01-18 | 1997-07-24 | Steeno Research Group A/S | Analogues synthetiques d'il-10 |
US5837232A (en) * | 1991-08-06 | 1998-11-17 | Schering Corporation | Use of an interleukin-10 antagonist to treat a B cell mediated autoimmune disorder |
US5959085A (en) * | 1993-11-23 | 1999-09-28 | Schering Corporation | Human monoclonal antibodies against human cytokines and methods of making and using such antibodies |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2062497A (en) * | 1996-02-28 | 1997-09-16 | University Of Medicine And Dentistry Of New Jersey | Antisense interleukin 10 and methods of use |
US5843697A (en) * | 1996-07-17 | 1998-12-01 | University Of Medicine And Dentistry Of New Jersey | Cells expressing IL-10 receptor and the CRFB4 gene product, an IL-10 receptor accessory protein |
WO1998010792A1 (fr) * | 1996-09-11 | 1998-03-19 | Prendergast Patrick T | Therapie a but immunitaire |
BE1011571A3 (fr) * | 1997-11-26 | 1999-11-09 | Hubriphar | Procede d'inhibition de la production cellulaire de cytokines. |
US20020018787A1 (en) * | 1999-05-21 | 2002-02-14 | Roger V. Kendall | Methods and compositions for modulating immune response and for the treatment of inflammatory disease |
-
2001
- 2001-03-06 WO PCT/US2001/007069 patent/WO2001068130A1/fr active IP Right Grant
- 2001-03-06 AU AU4545301A patent/AU4545301A/xx active Pending
- 2001-03-06 CA CA002403196A patent/CA2403196A1/fr not_active Abandoned
- 2001-03-06 AU AU2001245453A patent/AU2001245453B2/en not_active Ceased
- 2001-03-06 EP EP01918368A patent/EP1265634A4/fr not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5837232A (en) * | 1991-08-06 | 1998-11-17 | Schering Corporation | Use of an interleukin-10 antagonist to treat a B cell mediated autoimmune disorder |
US5959085A (en) * | 1993-11-23 | 1999-09-28 | Schering Corporation | Human monoclonal antibodies against human cytokines and methods of making and using such antibodies |
WO1997026279A1 (fr) * | 1996-01-18 | 1997-07-24 | Steeno Research Group A/S | Analogues synthetiques d'il-10 |
Non-Patent Citations (2)
Title |
---|
MOORE K.W. ET AL.: "Interleukin-10", ANNU. REV. IMMUNOL., vol. 11, 1993, pages 165 - 190, XP002943245 * |
See also references of EP1265634A4 * |
Also Published As
Publication number | Publication date |
---|---|
AU4545301A (en) | 2001-09-24 |
EP1265634A1 (fr) | 2002-12-18 |
EP1265634A4 (fr) | 2005-12-28 |
AU2001245453B2 (en) | 2005-08-25 |
CA2403196A1 (fr) | 2001-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cates et al. | Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism | |
Hamelmann et al. | Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. | |
Kumar et al. | Role of interleukin‐13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma | |
US20020006410A1 (en) | Method for treating inflammatory diseases using heat shock proteins | |
US7560530B1 (en) | IL-33 receptor | |
US20100272739A1 (en) | Modulation of Gamma-Delta T Cells to Regulate Airway Hyperresponsiveness | |
Hamelmann et al. | Interleukin (IL)-5 but not immunoglobulin E reconstitutes airway inflammation and airway hyperresponsiveness in IL-4–deficient mice | |
KR20070014181A (ko) | 면역글로불린 생성 및 아토피 질환의 조절 | |
EP2340850A9 (fr) | Inhibition du facteur B et de la voie du complément alternative et procédés associés | |
US20160326528A1 (en) | Methods and compositions for panic disorders | |
US6248723B1 (en) | Method for treatment of inflammatory disease | |
US20240076393A1 (en) | Regulating il-4 and il-13 levels by blocking high affinity binding by il-3, il-5 and gm-csf to their common receptor | |
JP3502229B2 (ja) | アレルゲン遺伝子を含む組換え真核細胞プラスミドおよびアレルギー性疾患の予防および/または治療のためのその使用 | |
AU2001245453B2 (en) | Method and composition for treating airway hyperresponsiveness | |
US20020141995A1 (en) | Method for treatment of inflammatory disease | |
JP2008500289A (ja) | 炎症性気道疾患の治療 | |
US20090131359A1 (en) | Antifibrotic therapy | |
EP1229790A1 (fr) | MODULATION DES LEUCOCYTES T $g(g)$g(d) DESTINEE A REGULER L'HYPERSENSIBILITE DES BRONCHES | |
WO2009015279A2 (fr) | Agents et procédés pour inhiber l'hyperréactivité des voies aériennes | |
US6762341B2 (en) | Uses of mammalian CCR8 receptors and related reagents | |
AU2005200731B2 (en) | Method for reducing allergen-induced airway hyperresponsiveness | |
AU2001249207B2 (en) | Method for reducing allergen-induced airway hyperresponsiveness | |
EP2913060A1 (fr) | Inhibition de l'interaction de récepteur de fractalkine pour le traitement de la dermatite atopique | |
US20100196376A1 (en) | Method for reducing allergen-induced airway hyperresponsiveness | |
Inflammation | Intranasal Exposure of Mice to House Dust |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2403196 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001245453 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001918368 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001918368 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001245453 Country of ref document: AU |