WO2000063990A2 - Dispositif et procede d'humidification d'une membrane de pile a combustible et pile a combustible - Google Patents
Dispositif et procede d'humidification d'une membrane de pile a combustible et pile a combustible Download PDFInfo
- Publication number
- WO2000063990A2 WO2000063990A2 PCT/DE2000/001299 DE0001299W WO0063990A2 WO 2000063990 A2 WO2000063990 A2 WO 2000063990A2 DE 0001299 W DE0001299 W DE 0001299W WO 0063990 A2 WO0063990 A2 WO 0063990A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- sorption
- cathode
- moisture
- accumulator material
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 51
- 210000004027 cell Anatomy 0.000 title claims description 33
- 210000000170 cell membrane Anatomy 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 10
- 238000001179 sorption measurement Methods 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 32
- 239000008187 granular material Substances 0.000 claims abstract description 5
- 238000003795 desorption Methods 0.000 claims description 6
- 239000004744 fabric Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 abstract description 13
- 239000007789 gas Substances 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a device and a method for moistening a fuel cell membrane, and a fuel cell.
- a chemical reaction generates electricity in a fuel cell. Fuel and oxygen are converted into electrical energy and water as a reaction product.
- a fuel cell or PEM fuel cell essentially consists of an anode, a membrane and a cathode, which together form membrane
- Electrode unit or MEA can be called.
- the membrane consists of porous, electrically conductive material and is arranged between the anode and cathode in order to exchange ions.
- a fuel such as Hydrogen or methanol is supplied, while oxygen or air is supplied on the side of the cathode.
- oxygen or air is supplied on the side of the cathode.
- Protons or hydrogen ions are generated that move through the membrane to the cathode.
- the hydrogen ions react with the oxygen and water is formed.
- the reaction at the electrodes is as follows:
- Membrane of a fuel cell is effectively protected from drying out without having to carry an additional water tank. Furthermore, a fuel cell is to be created, the membrane of which is kept moist in an inexpensive and reliable manner
- the inventive device for moistening a fuel cell membrane comprises a sorption device with a Akkumulatorenmate ⁇ al for absorbing and releasing heat and moisture by means of sorption, which in this way to the
- Cathode exhaust gas flow and to the gas supply, in particular cathode gas supply, of a fuel cell can be coupled or coupled, that the accumulator material comes into contact with the cathode exhaust gas flow and with the gas supply alternately at times. This makes it possible to take the required moisture from the cathode exhaust gas flow or exhaust air flow and onto it Fuel cell supplied gas stream after
- the sorption device is advantageously rotatably mounted, for example in order to transfer the moisture by means of a rotational movement. This can be done alternately Moisture absorbing and releasing accumulator material come into contact cyclically with the respective gas streams.
- the device can have a plurality of flow areas separated from one another, which are preferably arranged in segments. This can do that
- Accumulator material is loaded and unloaded evenly and particularly effectively with the moisture.
- the sorption device is advantageously designed in a wheel-shaped or cylindrical manner, for example as a sorption wheel, in which the accumulator material is located. This allows particularly effective and effective moisture transfer to be carried out with little design effort.
- the sorption device can, for example, also be designed in the form of a wire barrel, which preferably contains a fabric, in particular a textile fabric, as the accumulator material. This solution is particularly inexpensive and less prone to failure.
- the accumulator material advantageously comprises a moisture-absorbing granulate such as, for example, silica gel, which results in a particularly high storage capacity for the moisture and thus a particularly high effectiveness in moisture transmission.
- a moisture-absorbing granulate such as, for example, silica gel
- moisture is absorbed from the cathode exhaust gas of a fuel cell by means of sorption from an accumulator material, and the accumulator material is subsequently fed to the cathode or
- cathode exhaust air and cathode supply air are alternately conveyed by a sorptive device or individual areas thereof.
- the sorption device advantageously rotates, as a result of which the moisture can be transferred effectively and in a space-saving manner.
- the sorption device is preferably simultaneously flowed through in different areas in each case by the cathode exhaust gas stream and by the gas which is fed to the cathode or anode, for example in the opposite direction. As a result, moisture transfer can take place continuously without a large amount
- a fuel cell is created which has a device according to the invention for moistening the fuel cell membrane.
- the device according to the invention is in particular a moisture exchanger through which the cathode exhaust air flow is dehumidified and the supply air flow is humidified.
- Fig. 2 shows schematically the side view of a sorption wheel
- Fig. 3 shows a fuel cell with a moisture exchanger according to the invention.
- Fig. 4 shows a modified version of the sorption unit.
- the moisture exchanger 1 shown in FIG. 1 consists of a sorption unit, which is designed here as a sorption wheel 10, which contains an accumulator material 21 in the form of a granulate.
- the accumulator material 21 is silica gel, which is particularly suitable for absorbing moisture.
- the sorption wheel 10 is coupled to the cathode exhaust air stream or cathode exhaust gas stream 20 of a fuel cell, which is not shown, via first connecting pieces 2a, 2b.
- the moisture exchanger 1 or the sorption wheel 10 is coupled to a gas feed stream 30, which leads to the fuel cell, via second connecting pieces 3a, 3b.
- the gas supply stream 30 is the outside air which is supplied as cathode supply air on the cathode side of the fuel cell.
- the sorption wheel 10 is rotatably supported about its axis A, the axis of rotation A and the directions of the cathode exhaust gas stream 20 and the gas feed stream 30 run parallel to each other.
- the direction of rotation of the sorption wheel is indicated by arrow B.
- the sorption wheel 10 has a first end face 11 and a second end face 12 which are provided with openings around the cathode exhaust gas or the cathode exhaust air and
- the openings on the two end faces 11, 12 of the moisture exchanger 1 are each arranged opposite one another, a plurality of openings forming a circle on each side of the sorption wheel 10.
- the radius of the circle or the distance of the openings from the axis of rotation A is chosen so that when the sorption wheel 10 rotates, the openings come to coincide with the respectively opposite first and second connecting pieces 2a, 2b, 3a, 3b.
- the connecting pieces 2a, 2b, 3a, 3b do not necessarily have to be part of the moisture exchanger 1, but can also be a cathode exhaust line or a
- the accumulator material 21 offers as large a surface as possible in order to be in contact with the cathode exhaust air flow or with the cathode supply air flow or generally with the gas flow to the cathode. In the present case, this is brought about by the design of the accumulator material 21 as fine-grained granules, which the respective gas stream permeates during operation.
- the interior of the first area 1 a is penetrated by the warm and moist cathode exhaust air from the fuel cell.
- the moist cathode exhaust air is conveyed through the first region 1 a of the moisture exchanger 1
- the accumulator mass or the accumulator material 21 which is located in the first region 1 a of the moisture exchanger, absorbs heat and moisture from the air flow by sorption.
- the moist air or moisture is bound or stored by accumulator material 21 in the first area 1 a. Due to the rotating movement of the moisture exchanger 1 in the direction of arrow B, the first region 1 a, which has taken up the warm air and the moisture, is conveyed to the gas supply stream 30 or to the cathode supply air. During the rotation of the moisture exchanger 1, further areas of its interior come into contact with the moist and warm cathode exhaust air and also absorb moisture and heat.
- the cathode air on the side located downstream of the moisture exchanger 1 is therefore relatively dry and cold in comparison to the cathode air before the moisture exchanger 1 flows through it.
- first area 1 a of the moisture exchanger 1 absorbs heat and moisture
- second area 1 b between the second connection pieces 3a, 3b of the gas supply to the fuel cell.
- This area 1 b previously absorbed heat and moisture from the cathode exhaust air and is now flowed through by the cathode supply air.
- the cathode inlet is e.g. Outside air, which is relatively dry and cold compared to the cathode air.
- the cathode supply air is heated by contact with the battery mass or the battery material 21 and absorbs the moisture stored in the battery material 21.
- the gas leading to the fuel cell is therefore moist and warm after flowing through the second region 1 b of the moisture exchanger 1. This moisture is then fed to the membrane or the MEA of the fuel cell.
- moisture exchanger 1 is divided into segments which are arranged in a star shape around the axis of rotation A.
- Connectors 3a, 3b which are arranged on the end faces 11, 12 of the moisture exchanger 1, are adapted to the shape of the respective individual segments. This results in a particularly uniform flow through the different areas of the moisture exchanger 1.
- the moisture exchanger 1 according to the invention connected in the cathode exhaust air flow and in the cathode supply air flow can be implemented very inexpensively and is therefore particularly suitable for series production.
- the MEA is effectively protected from drying out
- Figure 2 shows schematically a side view of the sorption wheel 10, as shown in Figure 1
- the connecting pieces 2a, 2b, 3a, 3b are connected to a housing that completely encloses the sorption wheel 10. This is shown partially broken away in FIG. 2. From this way, one can see directly onto the accumulator material 21 of the sorption wheel 10.
- the connecting pieces 2a, 2b, 3a , 3b are arranged in a fixed position, while the sorption wheel 10 rotates about an axis in the housing, as indicated by the arrow
- the cathode part 24 of the fuel cell 22 is connected to the cathode gas supply line 27, which in turn is connected to the connector 3a.
- the cathode gas line 28 connects the cathode part 24 to the connector 2a.
- the anode gas is supplied to the anode part 23 by the anode gas line 25
- the sorption wheel 10 is preferably divided into eight segments by a plurality of inner walls - as can be seen in FIG. 2 - if the sorption wheel rotates, each segment comes into flow contact with the connecting pieces 2a, 2b, 3a, 3b one after the other
- the line 25 can also be connected to the connector 3a in order to humidify the anode gas (gaseous fuel such as hydrogen) and not the cathode gas
- the sorption wheel 10 can be equipped with a number of short tubes filled with accumulator material instead of with inner segments, which are then arranged parallel to one another (and parallel to the axis of rotation) around the inner surface of the cylindrical wheel.
- the use of inner walls or pipes is advantageous because the mixture of water-containing exhaust gas with fresh cathode or anode gas is kept to a minimum. On the other hand, it is not always necessary to carry out this strict separation of the two different gas flows from one another. In the case of humidification of cathode gas, a mixture is tolerable to a certain degree.
- the body of the sorption wheel can be designed like a wire barrel without inner walls or tubes, as shown in FIG. 4.
- Such a bin is filled with accumulator material selected from any water absorbent fabric.
- the material can be a flat material such as cardboard or corrugated cardboard. It may be rolled up spirally so as to obtain preferable flow channels for the gas flow between adjacent layers of the spirally rolled material. In this way the mixing is limited.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Cette invention concerne un échangeur d'humidité (1) destiné à une pile à combustible. Ledit échangeur est couplé au flux gazeux de sortie de la cathode et au flux gazeux d'entrée de la pile à combustible. Par sorption, la chaleur et l'humidité provenant du flux gazeux de sortie de la cathode (20) sont recueillies par un matériau d'accumulation (21) puis transportées vers le flux gazeux d'entrée (30) de la pile à combustible. Le matériau d'accumulation (21) est mis en contact de manière alternative avec le flux gazeux de sortie de la cathode (20) et avec le flux gazeux d'entrée ou le flux d'entrée d'air extérieur (30). Le matériau d'accumulation forme une roue de sorption (10). L'humidité est transportée par rotation de la roue de sorption (10). Le matériau d'accumulation (21) est un granulat d'absorption d'humidité. L'absorption de l'humidité contenue dans l'air de sortie de la cathode (20) et l'humidification de l'air d'entrée (30) permettent d'éviter le dessèchement de l'ensemble membrane-électrodes de la pile à combustible.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19918849.1 | 1999-04-19 | ||
DE19918849A DE19918849C2 (de) | 1999-04-19 | 1999-04-19 | Vorrichtung zur Befeuchtung einer Brennstoffzellenmembran, sowie deren Verwendung |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000063990A2 true WO2000063990A2 (fr) | 2000-10-26 |
WO2000063990A3 WO2000063990A3 (fr) | 2001-04-05 |
Family
ID=7905865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/001299 WO2000063990A2 (fr) | 1999-04-19 | 2000-04-19 | Dispositif et procede d'humidification d'une membrane de pile a combustible et pile a combustible |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19918849C2 (fr) |
WO (1) | WO2000063990A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075907A3 (fr) * | 2001-03-21 | 2004-02-26 | Nissan Motor | Dispositif de pile a combustible |
US7534510B2 (en) | 2004-09-03 | 2009-05-19 | The Gillette Company | Fuel compositions |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004342372A (ja) | 2003-05-13 | 2004-12-02 | Toyota Motor Corp | 燃料電池システム及びこれを搭載した車両 |
DE10329201B4 (de) * | 2003-06-28 | 2007-09-27 | Robert Bosch Gmbh | Brennstoffzellensystem |
DE102011077692A1 (de) * | 2011-06-17 | 2012-12-20 | Siemens Ag | Elektrischer Energiespeicher |
DE102011114721A1 (de) | 2011-10-01 | 2013-04-04 | Daimler Ag | Brennstoffzellensystem |
DE102017221896A1 (de) * | 2017-12-05 | 2019-06-06 | Audi Ag | Fahrzeug mit einem Brennstoffzellensystem und Verfahren zur Behandlung eines aus dem Brennstoffzellensystem austretenden Fluids |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5250368A (en) * | 1992-11-19 | 1993-10-05 | Ergenics, Inc. | Extended cycle-life metal hydride battery for electric vehicles |
DE19704888A1 (de) * | 1997-02-10 | 1998-08-13 | Bhf Verfahrenstechnik Gmbh | Verfahren zum Betrieb eines Heizkessels mit Brennwertnutzung und Heizkessel zur Realisierung des Verfahrens |
US6013385A (en) * | 1997-07-25 | 2000-01-11 | Emprise Corporation | Fuel cell gas management system |
US5935726A (en) * | 1997-12-01 | 1999-08-10 | Ballard Power Systems Inc. | Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell |
WO2000016425A1 (fr) * | 1998-09-14 | 2000-03-23 | Questor Industries Inc. | Generateur de courant electrique |
DE19902219C1 (de) * | 1999-01-21 | 2000-06-08 | Daimler Chrysler Ag | Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem |
-
1999
- 1999-04-19 DE DE19918849A patent/DE19918849C2/de not_active Expired - Fee Related
-
2000
- 2000-04-19 WO PCT/DE2000/001299 patent/WO2000063990A2/fr active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075907A3 (fr) * | 2001-03-21 | 2004-02-26 | Nissan Motor | Dispositif de pile a combustible |
US7033689B2 (en) | 2001-03-21 | 2006-04-25 | Nissan Motor Co., Ltd. | Fuel cell system |
US7534510B2 (en) | 2004-09-03 | 2009-05-19 | The Gillette Company | Fuel compositions |
US7989117B2 (en) | 2004-09-03 | 2011-08-02 | The Gillette Company | Fuel compositions |
Also Published As
Publication number | Publication date |
---|---|
DE19918849C2 (de) | 2003-04-30 |
DE19918849A1 (de) | 2000-10-26 |
WO2000063990A3 (fr) | 2001-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10102358B4 (de) | Befeuchter für eine Brennstoffzelle | |
DE10201302B4 (de) | Brennstoffzellensystem und Befeuchtungsverfahren | |
DE19918850C2 (de) | Befeuchtungsvorrichtung für Brennstoffzelle, Verfahren zur Befeuchtung einer Brennstoffzellenmembran und Verwendung der Befeuchtungsvorrichtung in einer Brennstoffzelle | |
DE69929731T2 (de) | Polymerelektrolyt-Brennstoffzelle | |
DE112005001084B4 (de) | Gasseparator und Verfahren zu dessen Betrieb | |
DE4201632C2 (de) | Verfahren und Anordnung zur Befeuchtung der einer Brennstoffzelle zuströmenden Reaktanten | |
DE102011087904A1 (de) | Membran-Befeuchtungsvorrichtung für eine Brennstoffzelle | |
DE7800463U1 (de) | Vorrichtung zum entfeuchten von gas | |
DE102015225515A1 (de) | Membranbefeuchter für eine Brennstoffzelle | |
DE69915632T2 (de) | Brennstoffzellenanlage mit direktem masse- und wärmetransport | |
WO2017037197A1 (fr) | Procédé et dispositif de condensation et évaporation en parallèle pour un système de pile à combustible comportant un dispositif de condensation/évaporation, et système de pile à combustible pourvu d'un tel dispositif de condensation/évaporation | |
DE19918849C2 (de) | Vorrichtung zur Befeuchtung einer Brennstoffzellenmembran, sowie deren Verwendung | |
WO2021121464A1 (fr) | Échangeur d'humidité, en particulier humidificateur pour une pile à combustible et système de pile à combustible | |
WO2009095238A1 (fr) | Système de piles à combustible doté d’un accumulateur de chaleur à adsorption | |
EP1527492A2 (fr) | Dispositif et procede pour humidifier un flux gazeux | |
WO2004028671A1 (fr) | Dispositif permettant l'échange d'humidité entre un flux de gaz humide et un flux de gaz sec | |
DE10297258T5 (de) | Funktionale Integration multipler Komponenten für eine Brennstoffzellen-Stromerzeugungsanlage | |
EP1022796B1 (fr) | Procédé pour faire fonctionner un système de piles à combustible et système de piles à combustible | |
DE102004017281B4 (de) | Brennstoffzellen-System und Verwendung eines Brennstoffzellen-Systems in einem Fahrzeug | |
DE102014221241A1 (de) | Befeuchtungseinrichtung für ein Brennstoffzellensystem sowie Brennstoffzellensystem | |
DE102004022021A1 (de) | Feuchtigkeitsaustauschmodul mit einem Bündel von für Feuchtigkeit durchlässigen Hohlfasermembranen | |
DE102018215217A1 (de) | Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung | |
WO2003090301A2 (fr) | Plaque d'electrodes comportant une zone d'humidification | |
WO2021018429A1 (fr) | Empilement de cellules élémentaires comportant une plaque terminale à humidificateur intégré | |
WO2022096287A2 (fr) | Contacteur à membrane destiné au transfert de vapeur d'eau entre deux flux gazeux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |