+

WO1999023036A1 - Verfahren zur entfernung hydrophober verunreinigungen mittels spaltbarer nichtionischer tenside - Google Patents

Verfahren zur entfernung hydrophober verunreinigungen mittels spaltbarer nichtionischer tenside Download PDF

Info

Publication number
WO1999023036A1
WO1999023036A1 PCT/EP1998/006767 EP9806767W WO9923036A1 WO 1999023036 A1 WO1999023036 A1 WO 1999023036A1 EP 9806767 W EP9806767 W EP 9806767W WO 9923036 A1 WO9923036 A1 WO 9923036A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
hydrophobic
aqueous
nonionic surfactants
alkenyl oligoglycosides
Prior art date
Application number
PCT/EP1998/006767
Other languages
English (en)
French (fr)
Inventor
Oliver Rhode
Anja Vonderhagen
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Priority to EP98955522A priority Critical patent/EP1044166A1/de
Publication of WO1999023036A1 publication Critical patent/WO1999023036A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used

Definitions

  • the present invention relates to a process for removing hydrophobic contaminants from aqueous systems with the aid of cleavable alkyl and / or alkenyl oligoglycosides, and the use of alkyl and / or alkenyl oligoglycosides as cleavable nonionic surfactants for removing hydrophobic contaminants from aqueous systems.
  • Hydrophobic impurities such as oils, greases or dirt permeated with such substances accumulate in large quantities as aqueous waste water in industries which in the broadest sense deal with the cleaning of surfaces.
  • Corresponding contaminated aqueous systems occur in commercial laundries when cleaning textiles, in the paper industry during the deinking process or in metal processing when cleaning the metal surfaces after the actual metal processing. This is due to the fact that a wide variety of surfaces are to be cleaned from a wide variety of hydrophobic contaminants in these industries, for which purpose surfactants, generally in the form of aqueous cleaning agents, are added. The surfactants are able to associate with the hydrophobic contaminants and thus separate the contaminants from the cleaned surfaces.
  • the separated impurities associated with the surfactants occur as organic loads in aqueous sewage systems that are processed or processed in sewage treatment plants.
  • the aim of such processing is always to reduce the load of organic, hydrophobic waste in the waste water or to reduce the amount of waste water overall.
  • a particularly inexpensive way to do this is to use fissile surfactants.
  • These cleavable surfactants are initially intended to perform their task of removing and associating the hydrophobic contaminants from the surfaces to be cleaned. The cleavable surfactants are then irreversibly split by a certain chemical operation. This creates a hydrophilic and a hydrophobic phase in the aqueous sewage systems.
  • the hydrophobic phase contains the hydrophobic impurities and the hydrophobic fragment of the cleavable surfactants and can be separated from the aqueous phase.
  • the hydrophilic phase can be returned to the cleaning process after the hydrophobic phase has been completely separated off, so that the amount of waste water is reduced overall, which brings cost advantages for the corresponding industries.
  • such surfactants are used as cleavable surfactants, which at acidic pH values, i.e. at pH values below 7, irreversibly split into a hydrophobic and hydrophilic fragment.
  • cleavable surfactants which at acidic pH values, i.e. at pH values below 7, irreversibly split into a hydrophobic and hydrophilic fragment.
  • EP-A-0742177 and EP-A-0742178 acetals or ketals of polyols, in particular of glycerol, are proposed as cleavable nonionic surfactants for this purpose. From the German published application DE 195 24 973, in turn, acetals based on alkyl glycosides are known for this purpose. These acetal compounds are characterized by a sufficiently good stability in the basic environment and are capable of irreversibly cleaving in acidic environments.
  • cleavable surfactants which are less expensive and do not have to be prepared by additional reaction with aldeydes or ketones, but which carry the cleavable group within them.
  • the cleavable surfactants used should be based on renewable raw materials their cleavage provides readily biodegradable hydrophilic and hydrophobic fragments.
  • the cleavable surfactants should have the best possible properties with regard to the requirement profile for surfactants in technical cleaning processes, ie they should be low-foaming, stable in alkaline and ensure high cleaning performance.
  • One object of the present invention therefore relates to a method for removing hydrophobic impurities from aqueous systems with the aid of cleavable nonionic surfactants, where a. the cleavable nonionic surfactants are first irreversibly cleaved and b. subsequently the hydrophobic phase which forms, which essentially contains the hydrophobic impurities and the hydrophobic remainder of the cleaved nonionic surfactants, is at least partially separated from the aqueous phase, characterized in that alkyl and / or alkenyl oligoglycosides with 4 are used as cleavable nonionic surfactants up to 22 carbon atom residues are used.
  • Alkyl and alkenyl oligoglycosides are known nonionic tenisde, which are obtained by the relevant methods of preparative organic chemistry. As representative of the extensive literature, reference is made here to the documents EP-A-0301298 and WO 90/03977. Suitable alkyl and alkenyl oligoglycosides follow the general formula (I),
  • R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10.
  • sugar residues G are glucose, fructose, mannose, galactose, talose, gulose, alose, old rose, idose, arabinose, xylose, lyxose and ribose.
  • Glucose is very particularly preferred.
  • alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides, ie those compounds of the formula (I) in which R 1 is an alkyl and / or Alkenyl radical with 4 to 22 carbon atoms, G stands for a glucose radical and p stands for numbers from 1 to 10.
  • the alkyl or alkenyl radical R can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capron alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 1 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and the technical mixtures described above, which can be obtained as well as their technical mixtures. Alkyl oligoglucosides based on hardened Ci 2 / ⁇ 4 coco alcohol with a DP of 1 to 3 are preferred.
  • the alkyl and / or alkenyl oligoglycosides are irreversibly split in the aqueous systems.
  • This split can, for example by reducing the pH of the aqueous systems to acidic pH values.
  • the pH must be adjusted to be at least sufficiently acidic that the alkyl and / or alkenyl oligoglycosides are irreversibly split into their starting compounds alcohol and glycoside. This is already possible at pH values below 6.
  • a pH value below 5, preferably below 3 and in particular between 0.5 and 1.5 is set.
  • the pH can be adjusted in a conventional manner, for example with known Broenstedt acids.
  • Suitable Broenstedt acids are sulfuric acid, phosphoric acid, phosphorous acid, nitric acid, acetic acid, hydrochloric acid, chloric acid, perchloric acid and / or sulfurous acid.
  • the amount of Broenstedt acids used is determined by the strength of the acid, its application concentration and the application concentration of the cleavable nonionic surfactants.
  • the pH value itself can be determined potentiometrically, for example with glass electrodes or with indicators, in particular color indicators.
  • the alkyl and / or alkenyl oligoglycosides can also be cleaved enzymatically, using enzymes which are able to cleave glycosidic bonds.
  • Suitable glucosidases are alpha-glucosidases such as maltase and isomaltase, beta-glucosidases and amyloglucosidases.
  • the maltase can be obtained, for example, from Bacillus stearothermophilius, brewer's yeast, rice, Saccharomyces cerevisiae and baker's yeast, the isomaltase from baker's yeast and the beta-glucosidases from almonds.
  • the enzymes can be native or in immobilized form on a carrier.
  • the amount of such enzymes used is primarily determined by the use concentration of the surfactants to be cleaved.
  • the enzymes of the type described are advantageously used in amounts of 0.1 to 35% by weight, in particular 1 to 15% by weight, calculated as a native enzyme and based on alkyl and / or alkenyl oligoglucosides.
  • a buffer system Particularly suitable buffer systems are those that work in pH ranges from 4 to 7, i.e. Acetate buffer, phosphate buffer and citrate buffer.
  • the cleavage of the alkyl and / or alkenyl oligoglycosides can be carried out at various ambient pressures, preferably under atmospheric pressure.
  • the reaction temperature during the cleavage is preferably 20 to 100 ° C., in particular 35 to 90 ° C., the enzymatic cleavage even at low temperatures, in particular between 35 and 40 ° C and the cleavage using Broenstedt acids should be in the range between 60 to 90 ° C.
  • a particular advantage of enzymatic cleavage is that the enzymes described above can be reused or recovered after cleavage.
  • the native enzymes are present in the aqueous phase after the cleavage, so that after the aqueous phase is returned to the cleaning process, they are available again for further cleavage. Possibly. it is advisable to add the native enzymes before returning the aqueous phase.
  • the immobilized enzymes can be separated from the phases by filtration and, if necessary, can be used again for the next cleavage after washing to remove hydrophobic impurities.
  • the hydrophobic impurities are removed from the aqueous systems in a circulatory system.
  • the surfaces to be cleaned are first cleaned of the hydrophobic contaminants by means of cleaning agents in a manner known per se.
  • cleaning agents preferably already contain the alkyl and / or alkylene oligoglycosides described.
  • the alkyl and / or alkylene oligoglycosides are then cleaved in the manner described by means of pH reduction or by means of the enzymes described.
  • phase separation into the organic phase, which essentially contains the hydrophobic impurities and the hydrophobic alcohol residue of the alkyl and / or alkenyl oligoglycosides as the hydrohobic cleavage fragment, and into the hydrophilic phase.
  • the hydrohobic phase is at least partially, preferably as completely as possible, separated from the hydrophilic phase.
  • the hydropobic phase is worked up or sent to the sewage treatment plants.
  • the hydrophilic phase is fed back into the cleaning cycle, with at least one subsequent addition of at least the alkyl and / or alkenyl oligoglycosides and possibly further components of the cleaning agents.
  • the method according to the invention is suitable in principle for all waste water which is produced in cleaning processes in which hydrophobic contaminants are to be removed from surfaces.
  • the surfaces to be cleaned can be both hard surfaces, such as those found on glass, ceramic and metal surfaces, and soft surfaces, such as those found in textiles and paper.
  • hydrophobic impurities understand such impurities that do not form a physical solution with water, in particular oils, fats, dust, dirt and pigments.
  • the method according to the invention is particularly suitable for removing hydrophobic impurities from aqueous waste water systems, those used in paper production, in particular de-inking, in industrial laundering and in the cleaning of metal surfaces, in particular in the cleaning of metal surfaces from metalworking aids such as rolling and drawing oils , attack.
  • the method according to the invention can, however, be used with equal success to remove hydrophobic impurities from aqueous sewage systems which are produced, for example, in car laundries.
  • the method according to the invention is particularly preferably used to remove hydrophobic impurities from aqueous waste water systems which have a pH value above 7.5.
  • the alkyl and / or alkenyl oligoglycosides can be used in amounts of 1 to 100% by weight, based on hydrophobic impurities. If, according to the preferred embodiment, the alkyl and / or alkenyl oligoglycosides are already present in the cleaning agents which remove the hydrophobic impurities from the surfaces to be cleaned, an amount of 1 to 30% by weight, based on hydrophobic impurities, is recommended. Of course, customary further constituents, such as further nonionic surfactants, anionic surfactants, and cationic surfactants, can be present in the cleaning agents in customary amounts.
  • hydrophilic phase and aqueous phase are used synonymously after cleavage of the alkyl and / or alkenyl oligoglycosides and the resulting phase separation.
  • Another object of the present invention relates to the use of alkyl and / or alkenyl oligoglycosides having 4 to 22 carbon atoms as cleavable nonionic surfactants for removing hydrophobic impurities from aqueous systems.
  • the residual content of uncleaved alkyl oligoglucoside was determined by means of gas chromatography and HPLC. It was 71% by area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Detergent Compositions (AREA)

Abstract

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen unter Zuhilfenahme von spaltbaren Alkyl- und/oder Alkenyloligoglykosiden, sowie die Verwendung von Alkyl- und/oder Alkenyloligoglykosiden als spaltbare nichtionische Tenside zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen.

Description

Verfahren zur Entfernung hydrophober Verunreinigungen mittels spaltbarer nichtionischer Tenside
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen unter Zuhilfenahme von spaltbaren Alkyl- und/oder Alkenyloligoglykosiden, sowie die Verwendung von Alkyl- und/oder Alkenyloligoglykosiden als spaltbare nichtionische Tenside zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen.
Hydrophobe Verunreinigungen wie Öle, Fette bzw. mit solchen durchsetzter Schmutz fallen als wäßrige Abwässer in großen Mengen in Industrien an, die sich im weitesten Sinne mit der Reinigung von Oberflächen befassen. So fallen entsprechende verunreinigte wäßrige Systeme in gewerblichen Wäschereien bei der Reinigung von Textilien, in der Papierindustrie beim Deinkingprozeß oder in der Metallverarbeitung bei der Reinigung der Metalloberflächen nach der eigentlichen Metallbearbeitung an. Dies ist darauf zurückzuführen, daß in diesen Industrien die verschiedensten Oberflächen von den unterschiedlichsten hydrophoben Verunreinigungen gereinigt werden sollen, wozu Tenside, in der Regel in Form von wäßrigen Reinigungsmitteln, zugesetzt werden. Die Tenside vermögen mit den hydrophoben Verunreinigungen zu assoziieren und so die Verunreinigungen von den gereinigten Oberflächen abzutrennen. Die abgetrennten Verunreinigungen assoziiert mit den Tensiden fallen als organische Fracht in wäßrigen Abwassersystemen an, die aufgearbeitet oder in Kläranlagen aufbereitet werden. Ziel einer solchen Aufarbeitung ist es stets, die Fracht an organischen, hydrophoben Abfällen im Abwasser zu reduzieren bzw. die Menge an Abwasser insgesamt zu reduzieren. Eine besonders günstige Art dies zu erreichen, ist der Einsatz spaltbarer Tenside. Diese spaltbaren Tenside sollen zunächst ihre Aufgabe, die hydrophoben Verunreinigungen von den zu reinigenden Oberflächen zu entfernen und zu assoziieren, erfüllen. Anschließend werden die spaltbaren Tenside durch eine bestimmte chemische Operation irreversibel gespalten. Dadurch bilden sich in den wäßrigen Abwassersystemen eine hydrophile und eine hydrophobe Phase aus. Die hydrophobe Phase enthält die hydrophoben Verunreinigungen sowie das hydrophobe Fragment der spaltbaren Tenside und kann von der wäßrigen Phase abgetrennt werden. Im günstigsten Fall kann die hydrophile Phase nach vollständiger Abtrennung der hydrophoben Phase wieder in den Reinigungsprozeß zurückgeführt werden, so daß sich die Menge an Abwasser insgesamt reduziert, was für die entsprechenden Industrien Kostenvorteile mit sich bringt.
In der Regel werden als spaltbare Tenside solche Tenside eingesetzt, die bei sauren pH- Werten, d.h. bei pH- Werten unter 7, irreversibel in ein hydrophobes und hydrophiles Fragment gespalten werden. Durch die Spaltung der Tenside erfolgt gleichzeitig die Phasenseparierung der organisch beladenen Abwässer in eine hydrohile und eine hydrophobe Phase, wobei letztere die hydrophoben Verunreinigungen sowie die hydrophoben Spaltfragmente der Tenside enthält.
In den europäischen Patentanmeldungen EP-A-0742177 und EP-A-0742178 werden als spaltbare nichtionische Tenside für diesen Zweck Acetale bzw. Ketale von Polyolen, insbesondere von Glycerin, vorgeschlagen. Aus der deutschen Offenlegungsschrift DE 195 24 973 wiederum sind Acetale auf Basis von Alkylglykosiden für diesen Einsatzzweck bekannt. Diese Acetalverbindungen zeichnen sich im basischen Milieu durch eine hinreichend gute Stabilität aus und vermögen im sauren irreversibel zu spalten. Nachteilig an diesen Acetalverbindungen, insbesondere der Alkylglykoside, ist jedoch, daß sie erst durch Umsetzung mit Aldehyden hergestellt werden müssen, was ein zusätzlicher Verfahrensschritt bei der Herstellung der spaltbaren Tenside bedeutet, der diese Verbindungen verteuert.
Aufgabe der vorliegenden Erfindung war es, spaltbare Tenside einsetzen zu können, die kostengünstiger sind und nicht durch zusätzliche Umsetzung mit Aldeyden oder Ketonen hergestellt werden müssen, sondern die die spaltbare Gruppe in sich tragen. Außerdem sollten die eingesetzten spaltbaren Tenside auf Basis nachwachsender Rohstoffe basieren, damit nach ihrer Spaltung biologisch gut abbaubare hydrophile und hydrophobe Fragmente vorliegen. Weiterhin sollten die spaltbaren Tenside möglichst gute Eigenschaften hinsichtlich des Anforderungsprofils an Tenside in technischen Reinigungsprozessen aufweisen, d.h. schaumarm sein, im alkalischen stabil sein und eine hohe Reinigungsleistung gewährleisten.
Die Aufgabe konnte gelöst werden durch Einsatz von Alkyl- und/oder Alkenyloligoglykosiden mit 4 bis 22 Kohlenstoffatomresten.
Ein Gegenstand der vorliegenden Erfindung betrifft daher ein Verfahren zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen unter Zuhilfenahme von spaltbaren nichtionischen Tensiden, wobei a. zunächst die spaltbaren nichtionischen Tenside irreversibel gespalten werden und b. anschließend die sich ausbildende hydrophobe Phase, die im wesentlichen die hydrophoben Verunreinigungen und den hydrophoben Rest der gespalteten nichtionischen Tenside enthält, zumindest teilweise von der wäßrigen Phase abgetrennt wird, dadurch gekennzeichnet, daß als spaltbare nichtionische Tenside Alkyl- und/oder Al- kenyloligoglykoside mit 4 bis 22 Kohlenstoffatomresten eingesetzt werden.
Alkyl- und Alkenyloligoglykoside stellen bekannte nichtionische Tenisde dar, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP-A-0301298 und WO 90/03977 verwiesen. Geeignete Alkyl- und Alkenyloligoglykoside folgen der allgemeinen Formel (I),
Figure imgf000005_0001
in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Beispiele für Zuckerreste G sind Glucose, Fructose, Mannose, Galactose, Talose, Gulose, Alose, Altrose, Idose, Arabinose, Xylose, Lyxose und Ribose. Ganz besonders bevorzugt wird die Glucose. Die bevorzugten Alkyl-und/ oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyl- oligoglucoside, d.h. solche Verbindungen der Formel (I), in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Glucoserest und p für Zahlen von 1 bis 10 steht.
Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP-Grad), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1 ,7 ist und insbesondere zwischen 1 ,2 und 1 ,4 liegt.
Der Alkyl- bzw. Alkenylrest R kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capron- alkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-Cι0 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C -Cι8-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C^-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/n-Oxoalkohole (DP = 1 bis 3).
Der Alkyl- bzw. Alkenylrest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylal- kohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalko- hol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Ci2/ι4-Kokosalkohol mit einem DP von 1 bis 3.
Im Sinne des erfindungsgemäßen Verfahrens werden die Alkyl- und/oder Alkenyloligoglykoside in den wäßrigen Systemen irreversibel gespalten. Diese Spaltung kann beispielsweise durch eine pH- Reduzierung der wäßrigen Systeme hin zu sauren pH- Werten erfolgen. Der pH- Wert muß mindestens so sauer eingestellt werden, daß die Alkyl- und/oder Alkenyloligoglykoside in ihre Ausgangsverbindungen Alkohol und Glykosid irreversibel gespalten werden. Dies gelingt schon bei pH-Werten unter 6. In der Regel wird ein pH-Wert unter 5, vorzugsweise unter 3 und insbesondere zwischen 0,5 und 1,5 eingestellt. Der pH- Wert kann auf herkömmliche Weise, beispielsweise mit bekannten Broenstedt-Säuren eingestellt werden. Geeignete Broenstedt-Säuren sind Schwefelsäure, Phosphorsäure, phosphorige Säure, Salpetersäure, Essigsäure, Salzsäure, Chlorsäure, Perchlorsäure und/oder schweflige Säure. Die Einsatzmenge an Broenstedt-Säuren bestimmt sich nach der Stärke der Säure, ihrer Anwendungskonzentration sowie der Anwendungskonzentration der spaltbaren nichtionischen Tenside. Der pH- Wert selber kann potentiometrisch, zum Beispiel mit Glaselektroden oder mit Indikatoren, insbesondere Farbindikatoren, ermittelt werden.
Die Alkyl- und/oder Alkenyloligoglykoside können auch enzymatisch gespalten werden, wobei solche Enzyme zum Einsatz kommen, die in der Lage sind, glykosidische Bindungen zu spalten. Geeignete Glucosidasen sind alpha-Glucosidasen wie Maltase und Isomaltase, beta- Glucosidasen und Amyloglucosidasen. Die Maltase ist beispielsweise aus Bacillus stearothermophilius, Brauereihefe, Reis, Saccharomyces Cerevisiae und Bäckerhefe, die Isomaltase aus Bäckerhefe und die beta-Glucosidasen aus Mandeln zugänglich. Es handelt sich hierbei um handelsübliche Enzyme. Die Enzyme können dabei nativ oder in immobilisierter Form auf einem Träger vorliegen. Die Einsatzmenge an solchen Enzymen wird in erster Linie bestimmt durch die Anwendungskonzentration der zu spaltenden Tenside. Vorteilhafterweise werden die Enzyme der beschriebenen Art in Mengen von 0,1 bis 35 Gew.%, insbesondere von 1 bis 15 Gew.% - berechnet als natives Enzym und bezogen auf Alkyl- und/oder Alkenyloligoglucosiden - eingesetzt. Um eine möglichst optimale Spaltungsausbeute zu erreichen, ist es von Vorteil, die enzymatische Spaltung in Anwesenheit eines Puffersystems durchzuführen. Besonders geeignete Puffersysteme sind solche, die in pH-Bereichen von 4 bis 7 wirken, d.h. Acetatpuffer, Phosphatpuffer und Citratpuffer.
Die Spaltung der Alkyl- und/oder Alkenyloligoglykoside kann bei verschiedenen Umgebungsdrücken, vorzugsweise unter Atmosphärendruck durchgeführt werden. Die Reaktionstemperatur während der Spaltung beträgt vorzugsweise 20 bis 100°C, insbesondere 35 bis 90°C, wobei die enzymatische Spaltung bereits bei niedrigen Temperaturen, insbesondere zwischen 35 und 40°C und die Spaltung mittels Broenstedt-Säuren eher im Bereich zwischen 60 bis 90°C erfolgen sollte.
Ein besonderer Vorteil der enzymatischen Spaltung liegt darin, daß die oben beschriebenen Enzyme nach der Spaltung wiedereingesetzt bzw. wiedergewonnen werden können. So liegen beispielsweise die nativen Enzyme nach der Spaltung in der wäßrigen Phase vor, so daß sie nach Rückführung der wäßrigen Phase in den Reinigungsprozeß wieder für eine erneute Spaltung zur Verfügung stehen. Ggf. empfiehlt sich eine Nachdosierung der nativen Enzyme vor Rückführung der wäßrigen Phase. Die immobilisierten Enzyme können durch Filtration aus den Phasen abgetrennt und ggf. nach Waschen zur Befreiung von hydrophoben Verunreinigungen erneut für die nächste Spaltung eingesetzt werden.
Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden die hydrophoben Verunreinigungen aus den wäßrigen Systemen in einem Kreislaufsystem entfernt. Dabei werden zunächst auf an und für sich bekannte Weise die zu reinigenden Oberflächen von den hydrophoben Verunreinigungen mittels Reinigungsmittel gereinigt. Vorzugsweise enthalten diese Reinigungsmittel bereits die beschriebenen Alkyl- und/oder Alkylenoligoglykoside. Anschließend erfolgt die Spaltung der Alkyl- und/oder Alkylenoligoglykoside auf beschriebene Weise mittels pH-Reduzierung oder mittels den beschriebenen Enzymen. Dadurch wird eine Phasenseparierung in die organische Phase, die im wesentlichen die hydrophoben Verunreinigungen und den hydrophoben Alkoholrest der Alkyl- und/oder Alkenyloligoglykoside als hydrohobes Spaltfragment enthält, und in die hydrophile Phase bewirkt. Die hydrohobe Phase wird zumindest anteilsweise, vorzugsweise so vollständig wie möglich, von der hydrophilen Phase abgetrennt. Die hydropobe Phase wird aufgearbeitet oder in die Kläranlagen geleitet. Die hydrophile Phase wird zurück in den Reinigungskreislauf geführt, wobei vorher eine Nachdosierung zumindest der Alkyl- und/oder Alkenyloligoglykoside und ggf. weiterer Bestandteile der Reinigungsmittel erfolgt.
Das erfindungsgemäße Verfahren eignet sich prinzipiell für alle Abwässer, die bei Reinigungsverfahren, bei denen hydrophobe Verunreinigungen von Oberflächen entfernt werden sollen, anfallen. Die zu reinigenden Oberflächen können sowohl harte Oberflächen sein, wie sie bei Glas-, Keramik- und Metalloberflächen anzutreffen sind, als auch weiche Oberflächen, wie sie bei Textilien und Papier anzutreffen sind. Als hydrophobe Verunreinigungen sind solche Verunreinigungen zu verstehen, die mit Wasser keine physikalische Lösung bilden, insbesondere Öle, Fette, Staub, Schmutz und Pigmente. Insbesondere geeignet ist das erfindungsgemäße Verfahren zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Abwassersystemen, die bei der Papierherstellung, insbesondere beim Deeinking, die bei der industriellen Wäscherei und die bei der Reinigung von Metalloberflächen, insbesondere bei der Reinigung von Metalloberflächen von Metallbearbeitungshilfsmitteln wie Walz- und Ziehöle, anfallen. Das erfindungsgemäße Verfahren kann aber mit gleichem Erfolg zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Abwassersystemen eingesetzt werden, die beispielsweise in Autowäschereien anfallen.
Besonders bevorzugt wird das erfindungsgemäße Verfahren eingesetzt, um hydrophobe Verunreinigungen aus wäßrigen Abwassersystemen zu entfernen, die einen pH- Wert über 7,5 aufweisen.
Im Sinne der Erfindung können die Alkyl- und/oder Alkenyloligoglykoside in Mengen von 1 bis 100 Gew.% - bezogen auf hydrophobe Verunreinigungen - eingesetzt werden. Sofern nach der bevorzugten Ausführungsform die Alkyl- und/oder Alkenyloligoglykoside bereits in den Reinigungsmitteln enthalten sind, die die zu reinigenden Oberflächen von den hydrophoben Verunreinigungen befreien, empfiehlt sich eine Einsatzmenge von 1 bis 30 Gew.% - bezogen auf hydrophobe Verunreinigungen -. Selbstverständlich können in den Reinigungsmitteln übliche weitere Bestandteile wie weitere nichtionische Tenside, anionische Tenside, kationische Tenside in üblichen Mengen enthalten sein.
Es sei darauf hingewiesen, daß im Sinne der Erfindung die Begriffe hydrophile Phase und wäßrige Phase nach Spaltung der Alkyl- und /oder Alkenyloligoglykoside und der daraus resultierenden Phasenseparierung synonym verwendet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung von Alkyl- und/oder Alkenyloligoglykosiden mit 4 bis 22 Kohlenstoffrestatomen als spaltbare nichtionische Tenside zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen. Beispiele
Beispiel 1
Eine 5 Gew.-%ige Lösung von Alkyloligoglucosid auf Basis von gehärtetem Kokosalkohol (Alkylrest R1 60 Gew.% C12, 40 Gew.% C1 j Oligomerisierungsgrad p=l,4) wurde mit konzentrierter Salzsäure auf einen pH- Wert von 1 eingestellt und bei a) 60°C b) 90°C gerührt.
Nach 48 Stunden trat eine deutliche Phasentrennung auf. Der Restgehalt an nichtgespaltenem Alkyloligoglucosid wurde mittels Gaschromatografie und HPLC bestimmt. Er betrug bei a) 76 Flächen-% und bei b) 32 %.
Beispiel 2
Das Alkyloligoglucosid aus Beispiel 1 wurde mit verdünnter Salzsäure neutralisiert und mit einer Substratkonzentration von 30 mg/ml in einem Phosphatpuffer (pH= 6,8) gelöst. Des weiteren wurde eine Enzymlösung hergestellt aus alpha-Glucosidase aus Bäckerhefe (Maltase, Enzymklasse E.C. 3.2.1.20) und beta-Glucosidase aus Mandeln (Enzymklasse E.C. 3.2.1.21) in einem Phosphatpuffer (pH=6,8) mit einer Enzymkonzentration von je 2mg/ml. 1 ml der Alkylglucosid-Lösung wurde mit 1 ml der Enzymlösung versetzt und 60 Minuten bei 37°C gerührt. Der Restgehalt an nichtgespaltenem Alkyloligoglucosid wurde mittels Gaschromatografie und HPLC bestimmt . Er betrug 29 Flächen-%.
Beispiel 3
Beispiel 3 wurde analog zu Beispiel 2 durchgeführt, jedoch mit einem Citratpuffer (pH=4,8) anstelle eines Phosphatpuffers. Der Restgehalt an nichtgespaltenem Alkyloligoglucosid wurde mittels Gaschromatografie und HPLC bestimmt . Er betrug 71 Flächen-%.

Claims

Patentansprüche
1. Verfahren zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen unter Zuhilfenahme von spaltbaren nichtionischen Tensiden, wobei a. zunächst die spaltbaren nichtionischen Tenside irreversibel gespalten werden und b. anschließend die sich ausbildende hydrophobe Phase, die im wesentlichen die hydrophoben Verunreinigungen und den hydrophoben Rest der gespalteten nichtionischen Tenside enthält, zumindest teilweise von der wäßrigen Phase abgetrennt wird, dadurch gekennzeichnet, daß als spaltbare nichtionische Tenside Alkyl- und/oder Alkenyloligoglykoside mit 4 bis 22 Kohlenstoffatomresten eingesetzt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Alkyl- und/oder Alkenyloligoglykoside der Formel (I),
Figure imgf000011_0001
in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Glucoserest und p für Zahlen von 1 bis 10 steht, eingesetzt werden.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Alkyl- und/oder Alkenyloligoglykoside in Mengen von 1 Gew.% bis 30 Gew.% - bezogen auf hydrophobe Verunreinigungen - eingesetzt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Spaltung der Alkyl- und/oder Alkenyloligoglykoside in den wäßrigen Systemen ein pH- Wert unter 5, vorzugsweise unter 3, eingestellt wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Spaltung der Alkyl- und/oder Alkenyloligoglykoside Enzyme, die glykosidische Bindungen spalten, vorzugsweise alpha-Glucosidasen, beta-Glucosidasen und/oder Aminoglucosidasen, eingesetzt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Enzyme in Mengen von 0,1 bis 35 Gew.% - berechnet als natives Enzym und bezogen auf Alkyl- und/oder Alke- nyloligoglucoside - eingesetzt werden.
7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß immobilisierte Enzyme eingesetzt werden, die nach der Spaltung durch Filtration wiedergewonnen werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß hydrophobe Verunreinigungen aus wäßrigen Abwassersystemen entfernt werden, die bei der Papierherstellung, insbesondere beim Deinking, anfallen.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß hydrophobe Verunreinigungen aus wäßrigen Abwassersystemen entfernt werden, die bei der industriellen Wäscherei anfallen.
10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß hydrophobe Verunreinigungen aus wäßrigen Abwassersystemen entfernt werden, die bei der Reinigung von Metalloberflächen anfallen.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß hydrophobe Verunreinigungen aus wäßrigen Abwassersystemen entfernt werden, die einen pH - Wert über 7,5 aufweisen.
12. Verwendung von Alkyl- und/oder Alkenyloligoglykosiden mit 4 bis 22 Kohlenstoffatomresten als spaltbare nichtionische Tenside zur Entfernung von hydrophoben Verunreinigungen aus wäßrigen Systemen.
PCT/EP1998/006767 1997-11-03 1998-10-24 Verfahren zur entfernung hydrophober verunreinigungen mittels spaltbarer nichtionischer tenside WO1999023036A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98955522A EP1044166A1 (de) 1997-11-03 1998-10-24 Verfahren zur entfernung hydrophober verunreinigungen mittels spaltbarer nichtionischer tenside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748396.8 1997-11-03
DE1997148396 DE19748396A1 (de) 1997-11-03 1997-11-03 Verfahren zur Entfernung hydrophober Verunreinigungen mittels spaltbarer nichtionischer Tenside

Publications (1)

Publication Number Publication Date
WO1999023036A1 true WO1999023036A1 (de) 1999-05-14

Family

ID=7847376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006767 WO1999023036A1 (de) 1997-11-03 1998-10-24 Verfahren zur entfernung hydrophober verunreinigungen mittels spaltbarer nichtionischer tenside

Country Status (3)

Country Link
EP (1) EP1044166A1 (de)
DE (1) DE19748396A1 (de)
WO (1) WO1999023036A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905370A1 (de) * 2008-06-19 2015-08-12 Electrolux Home Products Corporation N.V. Waschverfahren und Waschmaschine mit diesem Verfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011169A (en) * 1973-06-29 1977-03-08 The Procter & Gamble Company Stabilization and enhancement of enzymatic activity
WO1986005187A1 (en) * 1985-03-07 1986-09-12 A.E. Staley Manufacturing Company Detergent composition containing an enzyme and a glycoside surfactant
DE3833047A1 (de) * 1988-09-29 1990-04-05 Henkel Kgaa Saure geschirreinigungsmittel
EP0554943A2 (de) * 1992-02-03 1993-08-11 Unilever N.V. Waschmittelzusammensetzung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011169A (en) * 1973-06-29 1977-03-08 The Procter & Gamble Company Stabilization and enhancement of enzymatic activity
WO1986005187A1 (en) * 1985-03-07 1986-09-12 A.E. Staley Manufacturing Company Detergent composition containing an enzyme and a glycoside surfactant
DE3833047A1 (de) * 1988-09-29 1990-04-05 Henkel Kgaa Saure geschirreinigungsmittel
EP0554943A2 (de) * 1992-02-03 1993-08-11 Unilever N.V. Waschmittelzusammensetzung

Also Published As

Publication number Publication date
EP1044166A1 (de) 2000-10-18
DE19748396A1 (de) 1999-05-06

Similar Documents

Publication Publication Date Title
EP0032252B1 (de) Verfahren zur Reinigung von Alkylglycosiden durch destillative Abtrennung nicht umgesetzter Alkohole
EP0301298B1 (de) Verfahren zur Herstellung von Alkylglykosiden
DE69821249T2 (de) Kationische zuckertenside aus ethoxylierten ammoniumverbindungen und reduzierenden sacchariden
EP2735605A1 (de) Verfahren zur Isolierung von Rhamnolipiden
EP0362671A1 (de) Verfahren zur direkten Herstellung von Alkylglykosiden
EP1406722A1 (de) Wässrige zubereitungen
DE2724757B1 (de) Mittel zur Beseitigung von Trübungen in Serum und Verfahren zu seiner Herstellung
EP1436306B1 (de) Verfahren zur herstellung von tensidgemischen
WO1990000592A1 (de) Detergensmischung aus nichtionischen und anionischen tensiden und deren verwendung
DE69721552T2 (de) Entschäumerzusammensetzungen und verfahren zur herstellung
EP2336280A1 (de) Verwendung von verzweigten Alkyl (oligo)gycosiden in Reinigungsmitteln
EP1044166A1 (de) Verfahren zur entfernung hydrophober verunreinigungen mittels spaltbarer nichtionischer tenside
DE1645011B2 (de) Verfahren zur herstellung von biologisch abbaufaehigen polyaethern
DE60016735T2 (de) Verwendung von alkoxilierten zuckerestern in flüssigen wässrigen weichmacherzusammensetzungen
DE69629972T2 (de) Alkylpolyglykosiden mit hohem Polymerisationsgrad und Verfahren zu ihrer Herstellung
DE3842541A1 (de) Verfahren zur herstellung von oberflaechenaktiven alkylglucosiden
EP0328959A2 (de) Verfahren zur Reinigung von langkettigen Alkylglucosiden
DE10010420A1 (de) Alkylpolyglucosid mit hohem Oligomerisierungsgrad
DE69216631T2 (de) Verfahren zur enzymatischen Herstellung von Alpha-Glykosiden und deren Estern
EP1576078B1 (de) Verfahren zur kontinuierlichen herstellung von biomethanoldiesel
DE3900590A1 (de) Verfahren zur herstellung von alkylglucosiden
DE69219855T2 (de) Verfahren zur Bestimmung der alpha-Amylase-Aktivität
DE69500995T2 (de) Verfahren zur Herstellung von Fettsäurealkylglykosidestern
DE3914906A1 (de) Mischung aus alkylglucosiden und alkoholen als entschaeumer
DE69225375T2 (de) Glycosiduronsäuren (Herstellungsverfahren)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998955522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09530790

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998955522

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998955522

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载