WO1999049095A1 - Alliage amorphe a base de titane - Google Patents
Alliage amorphe a base de titane Download PDFInfo
- Publication number
- WO1999049095A1 WO1999049095A1 PCT/JP1999/001469 JP9901469W WO9949095A1 WO 1999049095 A1 WO1999049095 A1 WO 1999049095A1 JP 9901469 W JP9901469 W JP 9901469W WO 9949095 A1 WO9949095 A1 WO 9949095A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amorphous alloy
- alloy
- amorphous
- based amorphous
- supercooled liquid
- Prior art date
Links
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 33
- 239000010936 titanium Substances 0.000 title abstract 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title abstract 2
- 229910052719 titanium Inorganic materials 0.000 title abstract 2
- 239000013526 supercooled liquid Substances 0.000 claims abstract description 21
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 239000000956 alloy Substances 0.000 claims description 32
- 229910045601 alloy Inorganic materials 0.000 claims description 31
- 238000004017 vitrification Methods 0.000 claims description 7
- 230000009477 glass transition Effects 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000001125 extrusion Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910002545 FeCoNi Inorganic materials 0.000 description 2
- 229910018054 Ni-Cu Inorganic materials 0.000 description 2
- 229910018481 Ni—Cu Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/10—Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
Definitions
- the present invention relates to a Ti-based amorphous alloy having a wide supercooled liquid region and excellent tensile strength.
- an amorphous metal material having various shapes such as a ribbon shape, a filament shape, and a granular material shape can be obtained by rapidly cooling a molten alloy.
- Amorphous alloy ribbons can be easily manufactured by a single-roll method, twin-roll method, spinning in liquid spinning method, etc., which can provide a large cooling rate.
- Numerous amorphous alloys have been obtained for Co, Pd, Cu, Zr and Ti alloys, revealing the unique properties of amorphous alloys such as high corrosion resistance and high strength. It has been. Above all, Ti-based amorphous alloys have much better corrosion resistance than other amorphous alloys and are less harmful to the human body. It is expected to be applied to fields such as medical materials and chemical materials.
- amorphous alloys obtained by the above-described manufacturing method are limited to ribbons and thin wires, and it is difficult to process them into a final product shape using them. Was quite limited.
- Ti-Ni-Cu-based and Ti-Ni-Cu- (Fe, Co, Zr, Hi) -based amorphous alloys have a supercooled liquid region above 30 ° C. 00 Amorphous alloy shape obtained because of its low amorphous forming ability, although having strength exceeding OMPa However, they were limited to ribbons, filaments, and powders, and could not be said to have dimensions that could be applied to general industrial materials.
- the present inventors have developed an amorphous material that can achieve practical strength and dimensions that can be applied to industrial materials without impairing the temperature range of the supercooled liquid region.
- a Ti-TM system having a specific composition [TM : a group consisting of FeCoNi and Cu
- TM a group consisting of FeCoNi and Cu
- ⁇ 1 ", ⁇ 1 Si S n and S b One or two or more elements selected from the group consisting of ⁇ 1 ", ⁇ 1 Si S n and S b
- the present invention provides a compound represented by the formula: TiZra TMb Mc wherein TM is one or more elements selected from the group consisting of FeCoNi and Cu, and M is A l is one or more elements selected from the group consisting of S i S n and S b, ab and c each represent atomic%, 0 ⁇ a ⁇ 20 30 ⁇ b ⁇ 70, 0 ⁇ c ⁇ 10, 30 ⁇ a + b + c ⁇ 70] is provided.
- TM is FeCoNiCuCu.
- Ri chi is one or more elements selected Ri chi, the content of this element group 3 0 Nuclear 0/0 or 7 0 atomic% or less, preferably 35 atomic% or more 6 5 atomic% It is as follows. If the content of this element group is less than 30 at% and more than 70 at%, no amorphous phase is formed even by a single roll method with a high cooling rate. If the content of this element group is less than 35 c at % and more than 75 at%, a supercooled liquid region is not exhibited, and workability is deteriorated.
- ⁇ is one or more element group selected from Al, Si, Sn and Sb.
- the single-roll method with a large cooling rate Although an amorphous phase is formed, the ability to form an amorphous phase is not improved, and an amorphous alloy block cannot be obtained by other methods such as mold construction. On the other hand, if it exceeds 10 atomic%, the supercooled liquid region 0 will not be exhibited.
- Zr is not necessarily an essential element, the alloy of the present invention can improve the ability to form an amorphous phase by adding Zr.
- the term “supercooled liquid region” in this specification is defined as the difference between the glass transition temperature and the crystallization temperature obtained by performing differential scanning calorimetry at a heating rate of 40 ° C. per minute.
- the “converted vitrification temperature” is defined as a value obtained by dividing the glass transition temperature obtained by the above calorimetric analysis by the melting point of the total metal.
- the “supercooled liquid region” is a numerical value indicating workability, and the “converted vitrification temperature” is a numerical value indicating the easiness of becoming amorphous.
- the alloy of the present invention has a supercooled liquid region of 30 ° C or higher and a reduced vitrification temperature of 0.55 or higher.
- the Ti-based amorphous alloy of the present invention is cooled and solidified from the molten state by various methods such as a single roll method, a twin roll method, a spinning method in a rotating liquid 0, an atomizing method, etc.
- a body-shaped amorphous solid can be obtained.
- the amorphous solid is inferior to other amorphous alloys in the ability to form an amorphous phase, an amorphous solid of the above-mentioned form can be obtained.
- Gold bullion could not be made.
- the alloy of the present invention has a remarkable improvement in the ability to form an amorphous phase from a conventional Ti-based amorphous alloy, preferably, the molten alloy is filled in a mold so that the cross section is circular.
- a columnar amorphous alloy ingot having a diameter of 0.8 mm, that is, a cross-sectional area of 0.5 mm 2 can be obtained. Further, by changing the mold shape, an amorphous alloy lump having a cross-sectional area of 0.5 mm 2 or more of an arbitrary shape can be obtained.
- the Ti-based amorphous alloy into a molten state and atomizing it, it is possible to obtain an amorphous single-phase powder having a particle size of 750 ⁇ or less.
- Tg glass transition temperature
- Example 1 An alloy composition shown in Table 1 material (Example 1 one 1 1, Comparative Examples 1 to 5) and the single-ended Lumpur method and mold ⁇ method to produce an alloy ingot sample in the ribbon-shaped and the diameter 1 mm c
- the glass transition temperature (Tg), crystallization onset temperature (Tx), and melting point (Tm) of the ribbon-shaped sample were measured by differential scanning calorimetry. From these values, the supercooled liquid region (Tx-T 0 g) and the reduced vitrification temperature (Tg / Tm) were calculated.
- the confirmation of the amorphization of the 1-mm-diameter alloy ingot produced by the die-casting method was performed by X-ray diffraction and optical microscope observation of the sample cross section.
- volume fraction of the amorphous phase contained in the sample (V f-amo) was evaluated for its calorific value during crystallization using differential scanning calorimetry with that of a single-aperture foil strip that was completely amorphized. Further, a tensile test piece was prepared by machining, and the breaking strength ( ⁇ f) was evaluated by a tensile test.
- the amorphous alloys of Examples 1 to 11 show a supercooled liquid region of 30 ° C or more, a reduced vitrification temperature of 0.55 or more, and a non- The crystalline alloy 3 ⁇ 4 also has a strength exceeding 180 OMPa.
- the alloy of Comparative Example 1 does not contain the elements of Group M, the amorphous volume fraction is not only less than 90%, but also has a strength of only 163 OMPa.
- Comparative Example 2 In alloys No. 3 and No. 3, since the elements in Group M exceed 10 atomic%, the supercooled liquid region has a force of less than 30 ° C and the volume fraction of the amorphous phase in the ribbon shape by the single roll method is low. Only about 65% can be obtained. In the alloy of Comparative Example 4, since the total content of the elements in the M group and the TM group exceeds 70 atomic%, the volume fraction of the amorphous phase contained in the alloy lump having a diameter of 1 mm is less than 60%. Since the alloy ingot is brittle and cannot be subjected to a tensile test, it has no mechanical properties that can withstand practical use.
- the Ti-based amorphous alloy was melted at 1600 K and atomized with He gas at a gas pressure of 9.8 MPa to obtain an amorphous single-phase powder having a particle size of 75 / zm or less.
- the alloy composition of this powder is Ti 45 Zr 5 Cu 25 Ni 2 . S n 5 (same as in Example 2).
- Table 2 shows the results.
- the extrusion ratio 1 was obtained by hot pressing a 20 mm ⁇ compact at 1 GPa. As can be seen from these results, extrusion ratios of 4 and 5 are preferred.
- Industrial applicability The Ti-based amorphous alloy of the present invention exhibits a supercooled liquid region of 30 ° C. or more, a reduced vitrification temperature of 0.55 or more, and 180 MPa of amorphous alloy ingot having a diameter of 1 mm. It shows a strength exceeding. For these reasons, it can be used for various applications as a Ti-based amorphous alloy having excellent glass-forming ability, workability, and mechanical strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
L'invention concerne un alliage amorphe à base de titane qui a une composition de formule Ti100-a-b-cZraTMbMc (dans laquelle TM représente au moins un élément sélectionné dans le groupe formé de Fe, Co, Ni et Cu; M représente au moins un élément sélectionné dans le groupe formé de Al, Si, Sn et Sb; et a, b et c représentent respectivement des nombres en atome % répondant aux rapports 0</=a</=70, 30</=b</=70, 0<c</=10 et 30</=a+b+c</=70) et présente une large plage dans laquelle est présent un liquide superrefroidi dont la teneur en phase amorphe est de 90 vol. en % ou plus. Cet alliage est doué d'une excellente résistance à la traction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54808199A JP3933713B2 (ja) | 1998-03-25 | 1999-03-24 | Ti基非晶質合金 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9829698 | 1998-03-25 | ||
JP10/98296 | 1998-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999049095A1 true WO1999049095A1 (fr) | 1999-09-30 |
Family
ID=14215968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/001469 WO1999049095A1 (fr) | 1998-03-25 | 1999-03-24 | Alliage amorphe a base de titane |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3933713B2 (fr) |
WO (1) | WO1999049095A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316784A (ja) * | 2000-05-09 | 2001-11-16 | Toshiba Corp | バルク状非晶質合金、バルク状非晶質合金の製造方法、および高強度部材 |
JP2001316783A (ja) * | 2000-05-09 | 2001-11-16 | Toshiba Corp | バルク状非晶質合金およびこれを用いた高強度部材 |
JP3460206B2 (ja) | 2000-04-19 | 2003-10-27 | ヨンセイ ユニバーシティ | ニッケル基の非晶質合金組成物 |
WO2003101697A3 (fr) * | 2002-05-30 | 2005-01-20 | Leibniz Inst Fuer Festkoerper | Corps façonnes en alliages de titane, a haute rigidite et deformables plastiquement |
CN101817087A (zh) * | 2010-04-22 | 2010-09-01 | 河北科技大学 | 一种钛铁基非晶合金粉末的制备方法 |
CN101892444A (zh) * | 2010-07-09 | 2010-11-24 | 燕山大学 | 一种Ti50-Fe25-Ni25三元非晶合金的制备方法 |
CN101914698A (zh) * | 2010-07-09 | 2010-12-15 | 燕山大学 | 一种Ti基Ti50-Fe22-Ni22-Sn6非晶合金的制备方法 |
CN110129690A (zh) * | 2018-01-19 | 2019-08-16 | 东莞市坚野材料科技有限公司 | 一种非晶合金支架及其制备方法 |
KR20240040178A (ko) * | 2022-09-20 | 2024-03-28 | 한국생산기술연구원 | Ti계 베릴륨 프리 비정질 합금 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219035A (ja) * | 1989-10-13 | 1991-09-26 | Honda Motor Co Ltd | 高強度構造部材用チタン基合金、高強度構造部材用チタン基合金の製造方法およびチタン基合金製高強度構造部材の製造方法 |
JPH0754086A (ja) * | 1993-08-12 | 1995-02-28 | Takeshi Masumoto | Ti−Cu系非晶質合金 |
-
1999
- 1999-03-24 WO PCT/JP1999/001469 patent/WO1999049095A1/fr active Application Filing
- 1999-03-24 JP JP54808199A patent/JP3933713B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219035A (ja) * | 1989-10-13 | 1991-09-26 | Honda Motor Co Ltd | 高強度構造部材用チタン基合金、高強度構造部材用チタン基合金の製造方法およびチタン基合金製高強度構造部材の製造方法 |
JPH0754086A (ja) * | 1993-08-12 | 1995-02-28 | Takeshi Masumoto | Ti−Cu系非晶質合金 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3460206B2 (ja) | 2000-04-19 | 2003-10-27 | ヨンセイ ユニバーシティ | ニッケル基の非晶質合金組成物 |
JP4515596B2 (ja) * | 2000-05-09 | 2010-08-04 | 株式会社東芝 | バルク状非晶質合金、バルク状非晶質合金の製造方法、および高強度部材 |
JP2001316783A (ja) * | 2000-05-09 | 2001-11-16 | Toshiba Corp | バルク状非晶質合金およびこれを用いた高強度部材 |
JP2001316784A (ja) * | 2000-05-09 | 2001-11-16 | Toshiba Corp | バルク状非晶質合金、バルク状非晶質合金の製造方法、および高強度部材 |
JP4557368B2 (ja) * | 2000-05-09 | 2010-10-06 | 株式会社東芝 | バルク状非晶質合金およびこれを用いた高強度部材 |
WO2003101697A3 (fr) * | 2002-05-30 | 2005-01-20 | Leibniz Inst Fuer Festkoerper | Corps façonnes en alliages de titane, a haute rigidite et deformables plastiquement |
CN100352967C (zh) * | 2002-05-30 | 2007-12-05 | 德累斯顿协会莱布尼茨固体材料研究所 | 由钛合金构成的高强度的、可塑变形的成型体 |
JP2005528524A (ja) * | 2002-05-30 | 2005-09-22 | ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオ | チタン合金からなる高張力で、塑性の変形可能な成形体 |
KR101074245B1 (ko) | 2002-05-30 | 2011-10-14 | 레이베니츠-인스티투트 푸어 페스트코르페르 운트 베르크스토프포르숭 드레스덴 에.파우 | 고장력이며, 소성 변형 가능한, 티타늄 합금으로 구성된 성형체 |
CN101817087A (zh) * | 2010-04-22 | 2010-09-01 | 河北科技大学 | 一种钛铁基非晶合金粉末的制备方法 |
CN101892444A (zh) * | 2010-07-09 | 2010-11-24 | 燕山大学 | 一种Ti50-Fe25-Ni25三元非晶合金的制备方法 |
CN101914698A (zh) * | 2010-07-09 | 2010-12-15 | 燕山大学 | 一种Ti基Ti50-Fe22-Ni22-Sn6非晶合金的制备方法 |
CN110129690A (zh) * | 2018-01-19 | 2019-08-16 | 东莞市坚野材料科技有限公司 | 一种非晶合金支架及其制备方法 |
KR20240040178A (ko) * | 2022-09-20 | 2024-03-28 | 한국생산기술연구원 | Ti계 베릴륨 프리 비정질 합금 |
KR102759835B1 (ko) | 2022-09-20 | 2025-01-31 | 한국생산기술연구원 | Ti계 베릴륨 프리 비정질 합금 |
Also Published As
Publication number | Publication date |
---|---|
JP3933713B2 (ja) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3852809B2 (ja) | 高強度・高靭性Zr系非晶質合金 | |
EP2396435B1 (fr) | Alliages amorphes riches en platine | |
EP0018096B1 (fr) | Alliages à base de métaux de transition contenant du bore et renfermant une dispersion d'une phase métallique cristalline très fine, ainsi que procédé pour la fabrication desdits alliages, procédé de fabrication d'un objet en un matériau métallique vitreux | |
KR100784914B1 (ko) | 다단계 변형이 가능한 이상분리 비정질 합금 | |
JP4011316B2 (ja) | Cu基非晶質合金 | |
Lee et al. | Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders | |
JPH1171660A (ja) | 高強度非晶質合金およびその製造方法 | |
JP3860445B2 (ja) | Cu−Be基非晶質合金 | |
JP2004091868A (ja) | Cu基非晶質合金 | |
CN1566394A (zh) | 一类具有等原子比成分特征的多组元非晶态合金 | |
WO1999049095A1 (fr) | Alliage amorphe a base de titane | |
JP4515596B2 (ja) | バルク状非晶質合金、バルク状非晶質合金の製造方法、および高強度部材 | |
Zhang et al. | Bulk glassy alloys with low liquidus temperature in Pt-Cu-P system | |
JP4202002B2 (ja) | 高降伏応力Zr系非晶質合金 | |
JP3761737B2 (ja) | 高比強度Ti系非晶質合金 | |
JP3737056B2 (ja) | 高強度Zr基金属ガラス | |
JP3880245B2 (ja) | 高強度・高耐蝕性Ni基非晶質合金 | |
CN1188540C (zh) | 低密度块状金属玻璃 | |
JP4742268B2 (ja) | 加工性に優れる高強度Co系金属ガラス合金 | |
JP4086195B2 (ja) | 機械的性質と塑性加工性に優れたNi基金属ガラス合金 | |
JP3647281B2 (ja) | 広い過冷却液体領域を有するNi基非晶質合金 | |
JP5321999B2 (ja) | Ni基金属ガラス合金 | |
JP3710698B2 (ja) | Ni−Ti−Zr系Ni基非晶質合金 | |
Zhang et al. | Preparation and properties of Ni68. 6W17. 9B13. 5 metallic glass | |
KR100533334B1 (ko) | 니켈기 비정질 합금조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |