WO1999041797A1 - Lithium ion secondary battery - Google Patents
Lithium ion secondary batteryInfo
- Publication number
- WO1999041797A1 WO1999041797A1 PCT/JP1998/000608 JP9800608W WO9941797A1 WO 1999041797 A1 WO1999041797 A1 WO 1999041797A1 JP 9800608 W JP9800608 W JP 9800608W WO 9941797 A1 WO9941797 A1 WO 9941797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- separator
- electrode
- negative electrode
- positive electrode
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 65
- 239000004840 adhesive resin Substances 0.000 claims abstract description 64
- 229920006223 adhesive resin Polymers 0.000 claims abstract description 64
- 239000011149 active material Substances 0.000 claims abstract description 45
- 239000003792 electrolyte Substances 0.000 claims abstract description 15
- 229920005989 resin Polymers 0.000 claims description 44
- 239000011347 resin Substances 0.000 claims description 44
- 238000000926 separation method Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 38
- 239000007773 negative electrode material Substances 0.000 claims description 21
- 239000007774 positive electrode material Substances 0.000 claims description 19
- 239000011800 void material Substances 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052744 lithium Inorganic materials 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 abstract description 16
- 230000000717 retained effect Effects 0.000 abstract description 3
- 238000004806 packaging method and process Methods 0.000 abstract 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 61
- 239000000463 material Substances 0.000 description 35
- 239000008151 electrolyte solution Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- -1 polyethylene Polymers 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 229920000159 gelatin Polymers 0.000 description 8
- 239000011244 liquid electrolyte Substances 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229920013683 Celanese Polymers 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- 239000005001 laminate film Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000010416 ion conductor Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001654684 Pinda Species 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical group C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium ion secondary battery in which a positive electrode and a negative electrode face each other across a separator holding an electrolyte, and more specifically, to improve the electrical connection between the positive electrode and the negative electrode and the separator.
- the present invention relates to a battery structure that does not require a strong metal outer can and can take any shape such as a thin shape. Background art
- a battery has a positive electrode, a negative electrode, and an ion conductive layer sandwiched between both electrodes as its main components.
- the positive electrode is made of fine particles of active material such as lithium-cobalt oxide and electron conductor particles and a binder resin that binds them.
- a plate that is mixed and coated on an aluminum current collector to form a plate is used, and a fine powder of active material such as graphite or non-graphitizable carbon is used for the negative electrode.
- a material mixed with a binder resin and applied to a copper current collector to form a plate is used.
- the ion conductive layer a porous membrane such as polyethylene or polypropylene filled with a non-aqueous solvent containing lithium ions is used.
- FIG. 11 is a schematic sectional view showing the structure of a conventional cylindrical lithium ion secondary battery disclosed in Japanese Patent Application Laid-Open No. 8-83608.
- 1 is an outer can made of stainless steel or the like also serving as a negative electrode terminal
- 2 is an electrode body housed inside the outer can 1
- 2 is a positive electrode 3, a separator 4 and a negative electrode 5. It has a spirally wound structure.
- the electrode body 2 needs to apply external pressure to the electrode body 2 in order to maintain electrical connection between the opposing surfaces of the positive electrode 3, the separator 4, and the negative electrode 5.
- the electrode body 2 is placed in a strong outer can 1 and pressurized to maintain the above-mentioned contact between the surfaces.
- a method of bundling strip-shaped electrode bodies into a rectangular metal can, and applying force from the outside to hold them down is used.
- a method of bringing the positive electrode and the negative electrode into close contact with each other a method of applying pressure using a strong outer can made of metal or the like is used.
- a strong outer can made of metal or the like is used.
- the opposing surfaces of the electrode body 2 are separated, so that it is difficult to maintain the electrical connection, and the battery characteristics deteriorate.
- this outer can has a large weight and volume occupying the entire battery, which not only causes a decrease in the energy density of the battery as a whole, but also the outer can itself is rigid, so the battery shape is Because it is limited, it is difficult to make it into an arbitrary shape.
- the key to the development of a battery that does not require such an outer can is how to make the electrical connection between the positive and negative electrodes and the ion conductive layer sandwiched between them without applying external force. Is to maintain it.
- Japanese Patent Application Laid-Open No. 5-159802 discloses a manufacturing method in which an ion-conductive solid electrolyte layer and a positive electrode and a negative electrode are integrally formed by heating using a thermoplastic resin binder containing lithium ions. I have. According to this manufacturing method, since the positive electrode and the negative electrode and the solid electrolyte layer as the ion conductive layer are completely adhered to each other with the ion conductive resin binder, the positive electrode and the negative electrode can be connected to the solid without any external force. The electrical connection between the electrolyte layers is maintained and operates as a battery.
- the present invention has been made as a result of intensive studies by the present inventors on a preferable method of adhesion between the positive electrode and the negative electrode and the ion conductive layer.
- the positive and negative electrodes and the ionic conductor can be brought into close contact with each other without using them and without increasing the resistance between the electrodes.
- An object of the present invention is to provide a lithium ion secondary battery having excellent electric characteristics.
- a first lithium ion secondary battery includes a positive electrode formed by bonding a positive electrode active material layer to a positive electrode current collector; a negative electrode formed by bonding a negative electrode active material layer to a negative electrode current collector; Each of the active material layers and the separator are arranged so as to form a gap communicating between the active material layer and the negative electrode active material layer, and a gap communicating between each of the active material layers and the separator.
- the active material layer and the separation can be brought into close contact with each other without using an outer can. Therefore, good ion conductivity between the positive electrode active material layer and the negative electrode active material layer and the separator can be ensured. Therefore, there is an effect that a lithium ion secondary battery which can have a high energy density and a low thickness and has excellent charge / discharge characteristics which can take any shape can be obtained.
- the area of the void is 30% to 9% of the area of each facing surface where each active material layer faces the separator. 0%. According to this battery, there is an effect that the ionic conduction resistance between the electrodes can be reduced while maintaining sufficient adhesion between the electrodes and the separator.
- a third lithium ion secondary battery according to the present invention is the above-described first battery, wherein a distance between each active material layer surface and a separation is 30 / m or less. According to this battery, the ionic conduction resistance between the active material layer and the separator can be sufficiently reduced, and there is an effect that the battery can be used at a high load factor that is not inferior to a battery using a conventional outer can.
- the fourth lithium ion secondary battery according to the present invention is the above first battery, wherein an electronic insulating resin which is solid at room temperature is used as the adhesive resin. It was what was.
- the adhesive resin in the manufacturing process, the adhesive resin is heated to increase the fluidity and is applied to an arbitrary position, and once cooled to room temperature to reduce the fluidity, the active material layer and the separator are separated. After that, the resin is heated again to re-melt the resin and bond the active material and the separator, so that the gap area and the distance between the active material layer and the separator can be adjusted to the desired values. There is an effect that a battery whose value is controlled can be easily manufactured.
- a fifth lithium ion secondary battery according to the present invention is the same as the first battery, except that the fifth lithium ion secondary battery has a plurality of electrode laminates.
- the sixth lithium ion secondary battery according to the present invention is the battery according to the fifth battery, wherein the plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode between a plurality of separated separators. It was formed.
- a seventh lithium ion secondary battery according to the present invention is the above-described fifth battery, wherein the plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode during the separated separation. It was formed.
- An eighth lithium-ion secondary battery according to the present invention in the above-mentioned fifth battery, wherein the plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode during the folded separation. It was done.
- the first battery it is possible to achieve both high adhesive strength between the electrode and the separator overnight and high ionic conductivity. Further, as a result, it is possible to form a structure in which a plurality of electrode laminates that do not require a strong outer can are laminated, that is, a structure of a laminated electrode type battery such as a separated laminated type, a wound type, and a folded type.
- a lithium ion secondary battery having a compact, large capacity, and stable battery characteristics is obtained by forming a stacked electrode type battery structure. be able to.
- FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium ion secondary battery according to one embodiment of the present invention
- FIG. 2 is a diagram showing a coating of an adhesive resin according to one embodiment of the present invention
- FIG. 3 is a schematic view showing an example of a method
- FIG. 3 is a schematic view showing another example of a method of applying an adhesive resin according to an embodiment of the present invention
- FIG. 5 is a schematic diagram showing another example of the method of applying the adhesive resin according to one embodiment.
- FIG. 5 is a schematic view showing another example of the method of applying the adhesive resin according to one embodiment of the present invention.
- FIG. 6 is a schematic view showing another example of the method for applying the adhesive resin according to one embodiment of the present invention
- FIG. 3 is a schematic cross-sectional view showing a battery structure of a lithium ion secondary battery according to one embodiment of the present invention
- FIG. 2 is a diagram showing a coating of an adhesive resin according to one embodiment of the present invention.
- FIG. 7 is a diagram showing a lithium ion according to one embodiment of the present invention.
- FIG. 8 is a schematic cross-sectional view showing a secondary battery, and FIGS. 8, 9 and 10 show a lithium battery according to another embodiment of the present invention.
- the present invention is applied to a battery having a structure in which a positive electrode and a negative electrode and a separator are arranged between the positive electrode and the negative electrode.
- a single-layer electrode battery mainly composed of a single electrode stack of a positive electrode, a separator, and a negative electrode will be described, but a stacked electrode battery in which a single electrode stack is stacked will be described. Also applicable to
- FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium ion secondary battery according to an embodiment of the present invention, that is, a structure of an electrode stack.
- a positive electrode joined to the current collector 31, 5 is a negative electrode obtained by joining the negative electrode active material layer 52 to the negative electrode current collector 51, 4 is disposed between the positive electrode 3 and the negative electrode 5 and contains lithium ions It is a separator that holds non-aqueous electrolyte.
- 6 denotes a positive electrode active material layer 3 2 and a negative electrode active material layer 5 2
- An adhesive resin portion that is partially arranged like a point, a line, or a grid between the surfaces facing the surface 4 and joins each active material layer 32, 52 to the separation 4 is there.
- Reference numeral 7 denotes a gap that connects the positive electrode active material layer 32 and the negative electrode active material layer 52 to the separator 4.
- the void 7, the separator 4, and the active material layers 32, 52 hold a non-aqueous electrolyte containing lithium ions.
- the adhesive resin portion 6 and the void portion 7 are simultaneously formed between the positive and negative electrode active materials 32, 52 and the separator 4, so that the electrolyte is held inside the void 7.
- good ionic conductivity between the two electrodes can be ensured, and the ionic conduction resistance between the two electrodes can be reduced to the level of a conventional battery.
- the electrodes are electrically connected via a liquid electrolyte with low ionic conduction resistance, the amount of lithium ions flowing into and out of the active material layer inside the electrodes and the speed and movement of lithium ions to and from the opposite electrode
- the volume can be made comparable to that of a conventional lithium-ion secondary battery using an outer can.
- the adhesiveness between the electrodes 3 and 5 and the separator 4 is ensured by the adhesive resin 6, the battery structure can be maintained without using an outer can. Therefore, the battery can be reduced in weight and thickness, and can be formed into an arbitrary form, and battery performance such as charge / discharge characteristics comparable to that of a conventional battery can be obtained without an outer can.
- the area of the void 7 formed by the adhesive resin part 6 partially arranged is 30% of the total area of each opposing surface where the active material layers 32, 52 and the separator 4 oppose each other. %, Preferably 90%, and most preferably about 60%. If it is less than 30%, the electric connection between the electrode active material layers 32, 52 and the separator 4 becomes insufficient, and the ion conduction resistance between the electrodes 3, 5 increases, so that a sufficient battery It becomes difficult to obtain characteristics. If it exceeds 90%, the adhesive strength between the electrodes 3 and 5 and the separator 4 becomes insufficient, and peeling occurs.
- the depth of the void 7 formed between the active material layers 32, 52 and the separation layer 4, that is, the distance L between the active material layers 32, 52 and the separation layer 4, is determined as follows. of different but the ion conductivity, in the case of 1 0- 2 S / cm extent that is usually used, 3 if 0 ⁇ M less, between the active material layer 3 2, 5 2 and separator one evening 4 Since the ionic conduction resistance of the battery becomes sufficiently small, and the battery can be used at a high load factor that is not inferior to batteries using conventional outer cans, it is desirable that the ion transport resistance be 30 zm or less.
- the depth L of the void portion 7 is set to 10 ⁇ 1 or less, the diffusion of the reactive species can be facilitated and the ion conduction resistance can be further reduced, so that 10 / m It is more desirable to adjust the following. In addition, it is said that a diffusion layer of several meters exists on the surface of the active material 32, 52 where an electrode reaction occurs.By adjusting the depth L of the void 7 to less than this, Since the diffusion of lithium ions is considered to proceed most easily, it is most desirable to set the depth L of the void 7 to several ⁇ m or less. -The lithium ion secondary battery configured as described above is manufactured, for example, by the following method.
- the adhesive resin 6 is partially applied to at least one of the opposing surfaces of the layer 52 and the separator, the respective surfaces of the positive electrode active material layer 32 and the negative electrode active material are coated on the respective surfaces of the separator 4.
- the opposing surfaces of the layers 52 are superimposed and pressurized while heating, and the adhesive resin 6 is thermally fused to bring the electrodes 3 and 5 into close contact with the separator 4. By doing so, a basic battery structure is manufactured.
- Nittite H-6825A (trade name: manufactured by Nitta Gelatin Co., Ltd.), Bondyne (trade name: manufactured by Sumitomo Chemical Co., Ltd.) and AK—1 (trade name: Kanebowenesushiichi Co., Ltd.)
- Thermoplastic resins such as those manufactured by Toshiba can be used.
- the following methods can be used to apply the adhesive resin 6 locally and to apply a large amount of the adhesive resin to both surfaces of the separator 4 in a short time.
- FIG. 2 is an explanatory view showing the melt printing method, in which (a) is viewed from above and (b) is viewed from the side.
- This is a coating method in which the molten resin 6 is brought into contact with a rotating roll 61 having a point-like depression 61a and transferred to a sheet (for example, a sheet-like separator 4).
- FIG. 3 is an explanatory view showing a method of applying an adhesive resin using a rotating roll having fine holes on the surface, wherein (a) is viewed from above and (b) is viewed from the side.
- a molten adhesive resin is filled into the inside of the rotating roll 62 having the minute holes 62 on the surface, and pressure is applied to the inside of the rotating roll 62 by the pressurizer 63 to remove the small holes 62a from the small holes 62a. Let the adhesive resin flow out.
- the adhesive resin 6 is applied to both surfaces of the separating material 4 in a dot-like manner.
- FIG. 4 there is a method of applying an adhesive resin using a screen and a rotating roll in which holes are formed in dots or lines.
- the adhesive resin is supplied by being dripped onto the screen 64 disposed above, and the supplied adhesive resin is rolled by the rotating rolls 66 to thereby reduce the screen.
- the adhesive resin 6 reflecting the shape of the hole 6 4 a of the resin 6 4 is transferred to the separation material 4. By arranging at least two of them on both surfaces of the separation material 4, the adhesive resin can be applied to both surfaces of the separation material 4 in a dot-like manner.
- FIG. 5 is an explanatory view showing a method of applying an adhesive resin using a spray gun.
- a screen-shaped screen 67 with holes in the form of dots, lines, or grids near the surface of the separation material 4 the molten adhesive resin was charged into the spray gun 68, Spray on Separee overnight material 4 through screen 67.
- the adhesive resin 6 adheres to the separation material 4 in a shape corresponding to the holes of the screen 67, for example, in a dot shape.
- At least one spray gun 6 8 is arranged on each side of the separation material 4 and the adhesive resin liquid is continuously sprayed while moving the separation material 4 so that the separation material 4
- the adhesive resin 6 can be applied in a dot-like manner.
- At least one dispenser 69 filled with an adhesive resin liquid is placed on the separating material 4 and the adhesive melted as the separating material 4 moves.
- the adhesive resin 6 may be applied in a dot-like manner by intermittently dropping the adhesive resin liquid.
- graphite, graphitizable carbon, non-graphitizable carbon, polyacene Preferably used are carbon compounds such as polyacetylene, and aromatic hydrocarbon compounds having an acene structure such as bilen and perylene, but are not limited to these, and occlude and release lithium ions necessary for battery operation. Any other substance that can be used can be used. In addition, these substances are used in the form of particles, and a particle diameter of 0.3 zm to 20 Aim can be used, and particularly preferably 0.3 // m to 5 zm. . Carbon fibers can also be used as the negative electrode active material 52.
- any resin that does not dissolve in the electrolytic solution and does not cause an electrochemical reaction inside the battery can be used.
- homopolymers or copolymers such as vinylidene fluoride, fluorinated ethylene, acrylonitrile, and ethylene oxide, and ethylene propylene diamine rubber can be used.
- the current collectors 31 and 51 can be used as long as the metal is stable inside the battery. However, as the material, aluminum is preferably used for the positive electrode 3 and copper is preferably used for the negative electrode 5.
- the current collectors 31 and 51 may be in the form of foil, mesh, expanded metal or the like, but foil is preferably used in order to obtain electrode smoothness.
- the separator 4 is made of any material such as a porous film made of an electronic insulating material, a nonwoven fabric, a net, and the like, as long as the material has sufficient strength to adhere to the electrodes 3 and 5. Anything can be used.
- a single-layer porous film of polyethylene or polypyrene and a multi-layered porous film thereof are preferable from the viewpoint of adhesion and safety.
- liquid electrolyte used for the electrolyte used as the ion conductor a non-aqueous liquid electrolyte containing lithium ions used in conventional batteries can be used.
- esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and getyl carbonate are used as solvents for the liquid electrolyte.
- Aqueous solvents A single solution of ether solvents such as dimethoxetane, diethoxetane, getyl ether, and dimethyl ether, and a mixed solution of two or more of the above-mentioned solvents of the same system or different types of solvents can be used. is there.
- the electrolyte salt used in the liquid electrolyte L iPF 6, L iA sF 6, L i C 10 4, L iBF 4, L i CF 3 S_ ⁇ 3, L iN (CF 3 S0 2) 2, L i C (CF 3 S0 2) 3, L iN (C 2 F 5 S0 2) 2 , or the like can be used.
- a single-layer electrode type battery has been described.
- the present invention is also applicable to a stacked electrode type battery having a plurality of layers of an electrode stack.
- a lithium ion secondary battery with a large battery capacity can be obtained.
- FIG. 8 a structure having a plurality of electrode laminates in which positive electrodes 3 and negative electrodes 5 are alternately arranged between a plurality of separated separators 4, FIGS. 9 and 10
- the cathode 3 and the anode 5 are alternately arranged between the strip-shaped separators 4 as shown in Fig.
- a stacked electrode type battery is obtained by a structure having a plurality of layers of an electrode stack in which the positive electrode 3 and the negative electrode 5 are alternately arranged between the strip-shaped separators 4.
- the manufacturing method of the stacked electrode type battery shown in FIGS. 8, 9 and 10 will be described in detail in the following examples.
- This embodiment is a method for manufacturing a lithium ion secondary battery having the single-layer electrode type battery shown in FIG.
- a 5% by weight positive electrode active material paste made of polyvinylidene fluoride (produced by Kureha Chemical Industry Co., Ltd., trade name: KF110) is coated on a 20-zm-thick aluminum foil as a current collector.
- the coating was applied to a thickness of about 100 ⁇ m using a Doc Yuichi blade method to produce a positive electrode.
- the peel strength between the positive electrode active material layer portion and the positive electrode current collector was measured, and a value of 20 to 25 / cm was shown. Next, fabrication of the negative electrode will be described.
- Negative electrode with Mesophase Microbeads Carbon (manufactured by Osaka Gas Co., Ltd.) adjusted to 95% by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF110) adjusted to 5% by weight as a binder.
- the active material base was applied to a thickness of about 100 / m by a doctor blade method on a copper foil having a thickness of 12 / m as a current collector, to produce a negative electrode. After the negative electrode 5 was immersed in the electrolytic solution, the peel strength between the negative electrode active material layer portion and the negative electrode current collector was measured, and a value of 10 to 50 gf / cm was shown. The production of the electrode laminate will be described.
- a roll of 12 cm wide, 25 m thick porous polypropylene sheet made by Hoechst Celanese Co., Ltd., trade name: SERGADE # 2400 used as Separete 4 H-6285 (product number: Nitta Gelatin Co., Ltd.) as an adhesive resin 6 on both surfaces thereof was melt-printed (the molten resin was rolled with a roll 61 having dot-shaped depressions 6 la). (Method of transferring to a wiped sheet). At the time of application, the thickness of the adhesive resin 6 was about 35 m, and the application area was 60% of the entire Separet.
- the coating pattern of the resin 6 can be changed by changing the shape of the recess 61 a of the opening 61. Further, the coating area can be changed by changing the number of the grooves 61 a of the take-up roll 61.
- the adhesive resin 6 was sandwiched between heating rolls whose surface temperature was set at 70 ° C., and the adhesive resin 6 was re-melted to fuse the resin between the electrodes 3 and 5 and the separator 4 to produce an electrode laminate.
- the thickness of the adhesive resin portion 6 calculated from the total thickness of the fused electrode laminate, that is, the distance between the separator 4 and the active material layers 32, 52 was about 30 m.
- the distance between the separator 4 and the active material layers 32, 52 depends on the thickness or amount of the adhesive resin 6 at the time of application, and the temperature of the heating roll when the electrodes 3, 5 and the separator 4 are brought into close contact. It can be controlled by adjustment or the like.
- the electrode laminate was cut into a length of 10 cm, and current collectors were welded to the current collectors 31 and 51, respectively. Thereafter, the internal electrode stack, the ethylene carbonate Jechiru as a solvent, an electrolytic solution was injected to the L i PF 6 as a solute. At this stage, when the peel strengths of the positive electrode active material layer 32 and the separator 4 and the negative electrode active material layer 52 and the separator 4 were measured, the peel strength was 30 gf / cm or more and 20 gf / cm, respectively. cm or more. After the injection of the electrolytic solution, the electrode laminate other than the current collector was packed with an aluminum laminated film, heat-sealed and sealed to complete the lithium ion secondary battery.
- FIG. 7 is a schematic cross-sectional view showing the lithium ion secondary battery manufactured as described above.
- 20 is an electrode laminate
- 22 is an aluminum laminate film of the exterior
- 33 and 53 are current collecting tabs.
- the electrode laminate 20 includes a positive electrode 3, a separator 4, and a negative electrode 5.
- the adhesive resin 6 is located between the positive electrode 3 and the separator 4 and between the negative electrode 5 and the separator 4, and partially joins the positive electrode 3 and the negative electrode 5 to the separator 4.
- An electrolyte is held in the gap 7 between the positive electrode 3 and the separator 4 and between the anode 5 and the separator 4, in the electrode active materials 32 and 52, and in the separator 4.
- Example 1 Bondine (trade name: manufactured by Sumitomo Chemical Co., Ltd.) or AK 1 (trade name: manufactured by Kanebo Wenussichi Co., Ltd.) was used as the material for the adhesive resin, and the other materials were the same as in Example 1.
- the electrode laminated body was produced by the manufacturing method. Also in this case, it was possible to adhere the electrode and the separator overnight with a gap. Thereafter, the same electrolytic solution as in Example 1 was injected into the electrode laminate, and the peel strength was examined. The same result as in Example 1 was obtained. After the injection of the electrolytic solution, the electrode laminate is packed with an aluminum laminate film, heat-sealed, and sealed to form a lithium ion secondary battery that is thin, light, and has excellent charge / discharge characteristics, as in Example 1. A battery was obtained.
- the positive electrode 3 and the negative electrode 5 are sandwiched between the separators 4. And placed in close contact with each other. Thereafter, it was sandwiched between heating rolls whose surface temperature was set to 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3, 5 and the separator 4 to prepare an electrode laminate.
- the thickness of the adhesive resin portion 6 calculated from the total thickness of the fused electrode laminate was 10 ⁇ m or less.
- the peel strengths of the positive electrode active material 32 and Separation 4 and the negative electrode active material 52 and Separation 4 were measured, and the strength was 30 g / cm or more, respectively. Met.
- the electrode laminate was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery.
- the distance between the electrode active materials 32, 52 and the separator 4 is 10 / m or less, so that the diffusion of the reactive species generated by the electrode reaction is more easily performed.
- the ionic conduction resistance at the interface between the active material and the separator can be reduced, thin lithium-ion secondary batteries using this can be used at a high load factor that is not inferior to batteries using conventional outer cans. Became possible.
- a porous polypropylene having a width of 12 cm and a thickness of 25 / m which is bundled in a roll as a separator material 6.
- a separator material 6 Take out the sheet (manufactured by Hoechst Celanese Co., Ltd., trade name: Celgard # 2400), and on both sides of the sheet, use H-6825 as the adhesive resin 6 (product number: Nitta Gelatin Co., Ltd.) was applied dotwise by a melt printing method.
- Adhesive resin 6 is applied on the separator by reducing the number of roll dents compared to Example 1. The area of the site was adjusted to 40% of the whole.
- the temperature was once lowered to room temperature, and the positive electrode 3 and the negative electrode 5 were arranged so as to face each other with the separator 4 interposed therebetween, and were brought into close contact with each other. Thereafter, the resin was sandwiched between heating rolls whose surface temperature was set to 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3 and 5 and the separator 4 to prepare an electrode laminate.
- the L i PF 6 was ethylene carbonate Jechiru a solvent in the electrode laminate portion injected electrolytic solution as a solute.
- the peel strengths of the positive electrode active material 32 and Separation 4 and the negative electrode active material 52 and Separation 4 were measured, the peel strengths were 30 / cm or more and 20 gf / cm or more, respectively. there were.
- the electrode stack other than the current collector after the injection of the electrolyte was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery.
- the area of the adhesive resin applied to the separator 4 was 40% of the total area, so that the ion conduction resistance at the interface between the active material and the separator was reduced. Therefore, a thin lithium-ion rechargeable battery using this can be used at a high load factor that is not inferior to a battery using a conventional outer can.
- a porous polypropylene sheet having a width of 12 cm and a thickness of 25 zm bundled in a roll as a separation material 4 is provided.
- H—6285 product number: Nitta Gelatin Co., Ltd.
- the temperature was once lowered to room temperature, and the positive electrode 3 and the negative electrode 5 were arranged so as to face each other with the separator 4 interposed therebetween, and were brought into close contact with each other. Thereafter, the resin was sandwiched between heating rolls whose surface temperature was set at 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3, 5 and the separator 4, thereby producing an electrode laminate.
- the peel strengths of the positive electrode active material 32 and Separation 4 and the negative electrode active material 52 and Separation 4 were both measured to be 5 / cm or less. At this strength, separation between the electrodes 3 and 5 and Separation 4 occurred during use when the battery was used.
- This embodiment is a method of manufacturing a lithium-on secondary battery having the flat-plate laminated battery body shown in FIG.
- the resin portion 6 and the void portion 7 are shown without distinction.
- the active material thin film 32 was formed by applying a thickness of 300 / m by the Yuichi blade method.
- An aluminum foil with a thickness of 30 m to be the cathode current collector 31 was placed on the upper part, and a cathode active material base adjusted to a thickness of 300 m by the Doc Yuichi blade method was applied on the aluminum foil again. .
- Positive electrode 3 was produced by lightly rolling the produced laminate using a rotating roll with the gap between the rolls adjusted to 550 ⁇ 1 and bringing the laminate into close contact. After the positive electrode 3 was immersed in the electrolytic solution, the peel strength between the positive electrode active material layer portion and the positive electrode current collector was measured, and a value of 20 to 25 gf / cm was shown. Next, the fabrication of the negative electrode 5 will be described.
- Negative active material paste prepared by dispersing 95 parts by weight of mesophase microbead carbon (manufactured by Osaka Gas Co., Ltd.) and 5 parts by weight of polyvinylidene fluoride in NMP was thickened by the Doc Yuichi blade method.
- the active material thin film 52 was formed by applying the composition to a thickness of 30 O / m.
- a copper foil having a thickness of 20 / m to be a negative electrode current collector 51 is placed on the upper part, and a negative electrode active material base adjusted to a thickness of 300 / m again by the Doc Yuichi blade method is further placed on the copper foil.
- the produced laminate was lightly rolled using a rotating roll with the gap between the rolls adjusted to 550 zm, and the laminate was brought into close contact to produce a negative electrode 5.
- the peel strength between the negative electrode active material layer portion and the negative electrode current collector was measured, and a value of 10 to 55 gf / cm was shown.
- the production of the electrode laminate will be described.
- Separation material 4 A roll of a porous polypropylene sheet (Hexist Celanese Co., Ltd., trade name: Celgard # 2400) with a width of 12 cm and a thickness of 25 zm, which is bundled in a roll shape as a material 4 Each of them was taken out, and H-6285 (product number: Nitta Gelatin Co., Ltd.) was applied to one surface of each side in a dot-like manner by a melt print method. The thickness and coating area of the resin 6 were the same as in Example 1. Next, the temperature of the adhesive resin 6 was once lowered to room temperature, and one negative electrode 5 (or positive electrode) was placed so as to be opposed to and sandwiched between two sheets of separator 4.
- H-6285 product number: Nitta Gelatin Co., Ltd.
- the resin 6 was re-melted to fuse between the electrodes 3 and 5 and Separee overnight 4.
- the resin 6 is applied to one of the four surfaces of the negative electrode 5 with the separator 5 cut into a predetermined size using a melt printing method.
- the positive electrode 3 (or negative electrode) punched into a predetermined size was brought into close contact with it, and heated with a jar to heat-bond.
- a resin 6 was applied to one of the four surfaces of the separator 5 with the new negative electrode 5 with a separate separator, adhered to the other surface of the previously bonded positive electrode 3, and thermally fused. This process was repeated a predetermined number of times to obtain a flat-plate laminated battery body as shown in FIG.
- the positive electrode and negative electrode current collectors 31 and 51 of this flat plate-shaped laminated battery body were spot-welded to the positive and negative electrodes of the positive and negative electrodes, respectively. Electrically connected in parallel.
- the L i PF 6 was ethylene carbonate Jechiru the solvent within electrode stack the electrolyte solution was injected to the solute. After the electrolyte was injected, the battery body was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery with stacked electrodes.
- This embodiment is a method for manufacturing a lithium ion secondary battery having the flat-plate-shaped battery structure shown in FIG.
- the resin portion 6 and the void portion 7 are shown without distinction.
- the temperature of the adhesive resin 6 was once lowered to room temperature, and one positive electrode 3 (or negative electrode) was arranged so as to be opposed to each other while being sandwiched between two separate separators 4. After that, it is sandwiched between heating rolls whose surface temperature is set at 70 ° C, resin 6 is re-melted, and the negative electrode 5 (or positive electrode) and the separator are separated. 4 was fused.
- the wound battery body on the ellipse is heated and fused by a roll, and the positive electrode 3 and the negative electrode 5 are adhered to the separator 4 to obtain a flat-plate wound laminated battery body as shown in FIG. Was.
- the positive and negative electrode current collectors 31 and 51 of the flat laminated battery body were spot-welded to the positive and negative electrodes of the current collecting tabs connected to the respective ends of the current collectors 31 and 51, so that the laminated battery body was electrically connected. Were connected in parallel.
- the L i PF 6 was ethylene carbonate Jechiru the solvent within electrode stack the electrolyte solution was injected to the solute. After injecting the electrolyte solution, the battery body was packed with an aluminum film, heat-sealed, and sealed to complete a thin lithium ion secondary battery in which electrodes were wound and laminated.
- Embodiment 7
- Example 6 an example was shown in which the separator 4 was wound up. However, the strip-shaped separator 4 in which the positive electrode 3 (or the negative electrode) was joined was folded, and the negative electrode 5 (or the positive electrode) was attached to the separator. The process of folding overnight 4 may be repeated to obtain a flat-type foldable laminated battery body.
- This embodiment is directed to a lithium battery having the flat wound type laminated structure battery body shown in FIG.
- This is a method for manufacturing a pumion secondary battery, which is different from Example 6 above in that each electrode and separator are simultaneously wound.
- the resin portion 6 and the void portion 7 are shown without distinction.
- resin coating 6 was applied by melt printing.
- the strip-shaped negative electrode 5 (or the positive electrode) was arranged so as to protrude by a certain amount on one side of the positive electrode 3 (or the negative electrode) with a separation. Bend the protruding negative electrode 5 (or positive electrode) and wrap it around the positive electrode 3 (or negative electrode) with the separator, and then bond the positive electrode 3 (or negative electrode) with the separator, and then fold the negative electrode 5 (or negative electrode). (Or positive electrode). After repeating this operation, the whole was fused with a heating roll to obtain a wound laminated battery body as shown in FIG.
- the positive and negative electrode current collectors 31 and 51 of this flat laminated battery body were spot-welded to the positive and negative electrodes of the positive and negative electrodes, respectively. As a result, the stacked battery bodies were electrically connected in parallel.
- the inside electrode stack was carbonated Echiren and carbonate Jechiru solvent L i PF s an electrolytic solution was injected to the solute.
- the battery body was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery having a rolled-up laminated battery body.
- It is used as a secondary battery in portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped as well as improving battery performance.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
A lithium ion secondary battery which is capable of airtightly adhering a positive and a negative pole to a separator without using a strong outer packaging can and increasing a resistance between the poles, and which can have a high energy density, can be made thin and formed into any shape, and has excellent charging and discharging characteristics. The lithium ion secondary battery is provided with an electrode laminate having a positive pole (3) made by putting a positive pole active material layer (32) and a positive pole current collector (31) together, a negative pole (5) made by putting a negative pole active material layer (52) and a negative pole current collector (51) together, a separator (4) located between the positive pole active material layer (32) and the negative pole active material layer (52), and adhesive resin (6) which is located in parts of a space between each of the active material layers (32, 52) and the separator (4) so that spaces (7) to connect each of the active material layers (32, 52) and the separator (4) may be formed. An electrolyte including lithium ions is retained in the spaces (7), the separator (4), the positive pole active material layer (32), and the negative pole active material layer (52). Due to this structure, the active material layers and the separator can be airtightly adhered to each other by means of the adhesive resin without using an outer packaging can. The electrolyte is retained in the spaces formed by forming adhesive resin non-existence sections, and so a good ion conduction can be secured between the positive and the negative pole active material and the separator.
Description
明 細 書 リチウムイオン二次電池 技術分野 Description Lithium-ion secondary battery technology
本発明は電解質を保持するセパレ一夕を挟んで正極および負極が対向 してなるリチウムイオン二次電池に関するもので、 詳しくは、 正極およ び負極とセパレー夕との電気的接続を改良し、 強固な金属製の外装缶が 不要で薄型などの任意の形状を取り得る電池構造に関するものである。 背景技術 The present invention relates to a lithium ion secondary battery in which a positive electrode and a negative electrode face each other across a separator holding an electrolyte, and more specifically, to improve the electrical connection between the positive electrode and the negative electrode and the separator. The present invention relates to a battery structure that does not require a strong metal outer can and can take any shape such as a thin shape. Background art
携帯用電子機器の小型 ·軽量化への要望は大きく高まってきており、 その実現のためにはその動力源である二次電池の性能向上が必要不可欠 である。 近年、 この電池性能の向上を図るために、 種々の電池の開発や 改良が進められてきている。 電池に期待されている特性の向上には、 高 電圧化、 高エネルギー密度化、 耐高負荷化、 形状の任意化、 安全性の確 保などが現在考えられているが、 リチウムイオン電池は現有する電池の 中で最も高電圧、 高エネルギー密度、 耐高負荷などの点で最も優れた二 次電池として考えられており、 現在でも特性向上のための改良が盛んに 進められている。 The demand for smaller and lighter portable electronic devices has been greatly increased, and in order to achieve this, it is indispensable to improve the performance of secondary batteries, which are the power source for them. In recent years, various batteries have been developed and improved in order to improve the battery performance. Higher voltage, higher energy density, higher load resistance, arbitrary shape, and safety are currently considered to improve the characteristics expected of batteries, but lithium ion batteries are currently available. It is considered to be the most excellent secondary battery in terms of high voltage, high energy density, high load resistance, etc. among batteries that can be used, and improvements are being actively made to improve its characteristics even today.
一般に電池は、 その主要な構成要素として正極、 負極およびこの両電 極に挟まれるイオン伝導層を有する。 現在実用化されている丸型または 角型のリチウムイオン二次電池においては、 正極にはリチウム—コバル ト酸化物などの活物質微粒子を電子伝導体粒子とこれらを結着するバイ ンダ一樹脂と混合し、 アルミニウム集電体に塗布し板状としたものなど が用いられ、 また負極には黒鉛や難黒鉛化炭素などの活物質微粉末をノ
ィンダ一樹脂と混合し、 銅集電体に塗布して板状にしたものなどが用い られている。 またイオン伝導層にはポリエチレンやポリプロピレンなど の多孔質膜をリチウムイオンを含む非水系の溶媒で満たしたものが使用 されている。 In general, a battery has a positive electrode, a negative electrode, and an ion conductive layer sandwiched between both electrodes as its main components. In a round or square lithium-ion secondary battery currently in practical use, the positive electrode is made of fine particles of active material such as lithium-cobalt oxide and electron conductor particles and a binder resin that binds them. A plate that is mixed and coated on an aluminum current collector to form a plate is used, and a fine powder of active material such as graphite or non-graphitizable carbon is used for the negative electrode. For example, a material mixed with a binder resin and applied to a copper current collector to form a plate is used. As the ion conductive layer, a porous membrane such as polyethylene or polypropylene filled with a non-aqueous solvent containing lithium ions is used.
例えば、 第 1 1図は、 特開平 8-83608号公報に開示された従来の円筒 型のリチウムイオン二次電池の構造を示す断面模式図である。 第 1 1図 において、 1は負極端子を兼ねるステンレス製などの外装缶、 2はこの 外装缶 1内部に収納された電極体であり、 電極体 2は正極 3、 セパレ一 夕 4および負極 5を渦巻状に巻いた構造になっている。この電極体 2は、 正極 3、 セパレ一夕 4および負極 5の各対向面間の電気的接続を維持す るために、外部からの圧力を電極体 2に加える必要がある。そのために、 電極体 2を強固な外装缶 1に入れて加圧することで、 上記の各面間の接 触を維持している。 また角形電池では、 短冊状の電極体を束ねて角形の 金属缶に入れ、 外部から力を加えて押さえつける方法が行われている。 上述のように、 現在の市販のリチウムイオン二次電池においては、 正 極と負極を密着させる方法として、 金属などでできた強固な外装缶を用 いて加圧する方式が行われている。 前述のように、 外装缶がなければ電 極体 2の各対向面間が剥離するため、 電気的な接続を維持することが困 難になり、 電池特性が悪くなる。 一方この外装缶は、 電池全体に占める 重量および体積が大きいために、 電池全体としてのエネルギー密度が低 下する要因になっているだけでなく、 外装缶自身が剛直であるために電 池形状が限定されてしまい、 任意の形状とすることが困難である。 このような背景のもと、 軽量化や薄型化を目指し、 強固な外装缶の不 要なリチウムィオン二次電池の開発が進められている。 このような外装 缶が不要な電池の開発のポイントは、 正極および負極とそれらに挟まれ るイオン伝導層との電気的な接続を外部から力を加えることなしに如何
に維持するかということである。 For example, FIG. 11 is a schematic sectional view showing the structure of a conventional cylindrical lithium ion secondary battery disclosed in Japanese Patent Application Laid-Open No. 8-83608. In Fig. 11, 1 is an outer can made of stainless steel or the like also serving as a negative electrode terminal, 2 is an electrode body housed inside the outer can 1, and 2 is a positive electrode 3, a separator 4 and a negative electrode 5. It has a spirally wound structure. The electrode body 2 needs to apply external pressure to the electrode body 2 in order to maintain electrical connection between the opposing surfaces of the positive electrode 3, the separator 4, and the negative electrode 5. For this purpose, the electrode body 2 is placed in a strong outer can 1 and pressurized to maintain the above-mentioned contact between the surfaces. For rectangular batteries, a method of bundling strip-shaped electrode bodies into a rectangular metal can, and applying force from the outside to hold them down is used. As described above, in current commercially available lithium ion secondary batteries, as a method of bringing the positive electrode and the negative electrode into close contact with each other, a method of applying pressure using a strong outer can made of metal or the like is used. As described above, without the outer can, the opposing surfaces of the electrode body 2 are separated, so that it is difficult to maintain the electrical connection, and the battery characteristics deteriorate. On the other hand, this outer can has a large weight and volume occupying the entire battery, which not only causes a decrease in the energy density of the battery as a whole, but also the outer can itself is rigid, so the battery shape is Because it is limited, it is difficult to make it into an arbitrary shape. Against this background, the development of lithium-ion rechargeable batteries that do not require strong outer cans is being pursued with the aim of reducing weight and thickness. The key to the development of a battery that does not require such an outer can is how to make the electrical connection between the positive and negative electrodes and the ion conductive layer sandwiched between them without applying external force. Is to maintain it.
このような外力が不要な接合手段のひとつとして、樹脂などを用いて 正極および負極とイオン伝導層とを密着させる方法が提唱されている。 例えば、特開平 5- 159802号に公報には、イオン伝導性の固体電解質層 と正極および負極をリチウムイオンを含む熱可塑性樹脂結着剤を用いて 加熱により一体ィ匕する製造方法が示されている。この製造方法によれば、 正極および負極とィォン伝導層である固体電解質層とをィォン伝導性の 樹脂結着剤により全面密着させているので、 外部から力を加えることな く正極および負極と固体電解質層間の電気的な接続が維持され、 電池と して動作する。 As one of the joining means that does not require such external force, a method of adhering the positive electrode and the negative electrode to the ion conductive layer using a resin or the like has been proposed. For example, Japanese Patent Application Laid-Open No. 5-159802 discloses a manufacturing method in which an ion-conductive solid electrolyte layer and a positive electrode and a negative electrode are integrally formed by heating using a thermoplastic resin binder containing lithium ions. I have. According to this manufacturing method, since the positive electrode and the negative electrode and the solid electrolyte layer as the ion conductive layer are completely adhered to each other with the ion conductive resin binder, the positive electrode and the negative electrode can be connected to the solid without any external force. The electrical connection between the electrolyte layers is maintained and operates as a battery.
しかし、特開平 5-159802号公報の例では、正極および負極と固体電解 質との界面が全て結着剤で覆われてしまうために、 各電極と固体電解質 間の電気的な接続は悪くなる。 すなわち本例ではイオン伝導性を有する 固体樹脂結着剤を電極全面に塗着しているが、 現状では液体電解質と同 等以上のイオン伝導性を有する固体樹脂材料は一般に見出されておらず、 液体電解質を用いた電池と同程度に電極とイオン伝導体間の電気的な接 続を確保できないため、 液体電解質を用いた電池と同程度の電池性能を 得ることは困難であるなどの問題点があつた。 However, in the example of JP-A-5-159802, since the interface between the positive electrode and the negative electrode and the solid electrolyte is entirely covered with the binder, the electrical connection between each electrode and the solid electrolyte deteriorates. . That is, in this example, a solid resin binder having ion conductivity is applied to the entire surface of the electrode, but at present, a solid resin material having ion conductivity equal to or higher than that of the liquid electrolyte has not been generally found. However, it is difficult to obtain the same level of battery performance as a battery using a liquid electrolyte because it is not possible to secure an electrical connection between the electrode and the ionic conductor to the same extent as a battery using a liquid electrolyte. I got a point.
本発明は、 上記の問題点を解決するために、 本発明者らが正極および 負極とイオン伝導層間の好ましい密着方法に関し、 鋭意検討を行った結 果なされたものであり、 強固な外装缶を使用せずに、 また電極間の抵抗 を増大させずに正極および負極とイオン伝導体とを密着させることがで き、 高エネルギー密度化、 薄型化が可能で、 任意の形態を取りうる充放 電特性に優れたリチウムイオン二次電池を提供することを目的とする。 発明の開示
本発明に係る第 1のリチウムィオン二次電池は、 正極活物質層を正極集 電体に接合してなる正極と、 負極活物質層を負極集電体に接合してなる 負極と、 上記正極活物質層と上記負極活物質層の間に配置されるセパレ —夕と、 上記各活物質層と上記セパレー夕との間を連通する空隙を形成 するように上記各活物質層と上記セパレ一夕の間にそれぞれ部分的に配 置された接着性樹脂とを有する電極積層体を備え、 上記空隙、 セパレ一 夕、 および各活物質層にそれぞれリチウムイオンを含む電解液を保持し たものである。 この電池によれば、 接着性樹脂を用いることにより活物 質層とセパレ一夕とを外装缶を用いずに密着させることができ、 さらに 接着性樹脂未配置部により形成された空隙に電解液が保持されるため、 正極活物質層および負極活物質層とセパレー夕との間の良好なイオン伝 導性を確保できる。 よって、 高エネルギー密度化、 薄型化が可能で、 任 意の形状をとり得る充放電特性に優れたリチウムィォン二次電池が得ら れる効果がある。 In order to solve the above problems, the present invention has been made as a result of intensive studies by the present inventors on a preferable method of adhesion between the positive electrode and the negative electrode and the ion conductive layer. The positive and negative electrodes and the ionic conductor can be brought into close contact with each other without using them and without increasing the resistance between the electrodes. An object of the present invention is to provide a lithium ion secondary battery having excellent electric characteristics. Disclosure of the invention A first lithium ion secondary battery according to the present invention includes a positive electrode formed by bonding a positive electrode active material layer to a positive electrode current collector; a negative electrode formed by bonding a negative electrode active material layer to a negative electrode current collector; Each of the active material layers and the separator are arranged so as to form a gap communicating between the active material layer and the negative electrode active material layer, and a gap communicating between each of the active material layers and the separator. An electrode laminate having an adhesive resin partially disposed during the evening, wherein an electrolyte containing lithium ions is held in each of the voids, the separator, and each active material layer. is there. According to this battery, by using the adhesive resin, the active material layer and the separation can be brought into close contact with each other without using an outer can. Therefore, good ion conductivity between the positive electrode active material layer and the negative electrode active material layer and the separator can be ensured. Therefore, there is an effect that a lithium ion secondary battery which can have a high energy density and a low thickness and has excellent charge / discharge characteristics which can take any shape can be obtained.
本発明に係る第 2のリチウムイオン二次電池は、 上記第 1の電池にお いて、 空隙部の面積が、 各活物質層とセパレー夕が対向する各対向面の 面積の 3 0 %ないし 9 0 %であるものである。 この電池によれば、 電極 とセパレ一夕間の十分な密着性を保ちながら電極間のイオン伝導抵抗を 低くできる効果がある。 In the second lithium ion secondary battery according to the present invention, in the first battery, the area of the void is 30% to 9% of the area of each facing surface where each active material layer faces the separator. 0%. According to this battery, there is an effect that the ionic conduction resistance between the electrodes can be reduced while maintaining sufficient adhesion between the electrodes and the separator.
本発明に係る第 3のリチウムイオン二次電池は、 上記第 1の電池にお いて、 各活物質層表面とセパレ一夕間の距離が 3 0 /m以下であるもの である。 この電池によれば、 活物質層とセパレ一夕間のイオン伝導抵抗 は充分小さくなり、 従来の外装缶を用いた電池に劣らない高負荷率での 使用が可能となる効果がある。 A third lithium ion secondary battery according to the present invention is the above-described first battery, wherein a distance between each active material layer surface and a separation is 30 / m or less. According to this battery, the ionic conduction resistance between the active material layer and the separator can be sufficiently reduced, and there is an effect that the battery can be used at a high load factor that is not inferior to a battery using a conventional outer can.
本発明に係る第 4のリチウムイオン二次電池は、 上記第 1の電池にお いて、 接着性樹脂として常温において固体である電子絶縁性の樹脂を用
いたものである。 この電池によれば、 その製造工程において、 接着性樹 脂の加熱により流動性を高めて任意の位置に塗着し、 一旦室温に降温し てその流動性を下げてから活物質層とセパレ一夕を対向させ、 その後、 再加熱して樹脂を再溶融させて活物質とセパレー夕の間を接着させるこ とができるので、 空隙部面積や活物質層とセパレ一夕間の距離を所望の 値に制御した電池が容易に製造できる効果がある。 The fourth lithium ion secondary battery according to the present invention is the above first battery, wherein an electronic insulating resin which is solid at room temperature is used as the adhesive resin. It was what was. According to this battery, in the manufacturing process, the adhesive resin is heated to increase the fluidity and is applied to an arbitrary position, and once cooled to room temperature to reduce the fluidity, the active material layer and the separator are separated. After that, the resin is heated again to re-melt the resin and bond the active material and the separator, so that the gap area and the distance between the active material layer and the separator can be adjusted to the desired values. There is an effect that a battery whose value is controlled can be easily manufactured.
本発明に係る第 5のリチウムイオン二次電池は、 上記第 1の電池にお いて、 電極積層体を複数層有するものである。 A fifth lithium ion secondary battery according to the present invention is the same as the first battery, except that the fifth lithium ion secondary battery has a plurality of electrode laminates.
本発明に係る第 6のリチウムイオン二次電池は、 上記第 5の電池にお いて、 電極積層体の複数層は、 切り離された複数のセパレー夕間に正極 と負極を交互に配置することにより形成されたものである。 The sixth lithium ion secondary battery according to the present invention is the battery according to the fifth battery, wherein the plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode between a plurality of separated separators. It was formed.
本発明に係る第 7のリチウムィォン二次電池は、 上記第 5の電池にお いて、 電極積層体の複数層は、 巻き上げられたセパレ一夕間に正極と負 極を交互に配置することにより形成されたものである。 A seventh lithium ion secondary battery according to the present invention is the above-described fifth battery, wherein the plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode during the separated separation. It was formed.
本発明に係る第 8のリチウムイオン二次電池は、 上記第 5の電池にお いて、 電極積層体の複数層は、 折り畳まれたセパレ一夕間に正極と負極 を交互に配置することにより形成されたものである。 An eighth lithium-ion secondary battery according to the present invention, in the above-mentioned fifth battery, wherein the plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode during the folded separation. It was done.
上記第 1の電池では、 電極とセパレ一夕間の高い接着強度と高イオン 伝導性の両立が可能となる。 また、 その結果強固な外装缶を必要としな い電極積層体を複数重ねた構造、 すなわち切り離し積層型、 巻き型、 折 り畳み型等の積層電極型電池の構造の形成が可能となる。 上記第 5ない し第 8のリチウムイオン二次電池では、 積層電極型電池の構造を形成す ることにより、 コンパクトで容量が大きく、 かつ安定な電池特性を有す るリチウムィォン二次電池を得ることができる。 図面の簡単な説明
第 1図は、 本発明の一実施の形態によるリチウムイオン二次電池の電 池構造を示す断面模式図であり、 第 2図は、 本発明の一実施の形態に係 る接着性樹脂の塗布方法の一例を示す模式図であり、 第 3図は、 本発明 の一実施の形態に係る接着性樹脂の塗布方法の別の例を示す模式図であ り、 第 4図は、 本発明の一実施の形態に係る接着性樹脂の塗布方法の別 の例を示す模式図であり、 第 5図は、 本発明の一実施の形態に係る接着 性樹脂の塗布方法の別の例を示す模式図であり、 第 6図は、 本発明の一 実施の形態に係る接着性樹脂の塗布方法の別の例を示す模式図であり、 第 7図は、 本発明の一実施の形態によるリチウムィオン二次電池を示す 断面模式図であり、 第 8図、 第 9図および第 1 0図は、 本発明の他の実 施の形態に係るリチウムイオン二次電池の電池構造を示す断面模式図で あり、 第 1 1図は、 従来のリチウムイオン二次電池を示す断面模式図で め 。 発明を実施するための最良の形態 In the first battery, it is possible to achieve both high adhesive strength between the electrode and the separator overnight and high ionic conductivity. Further, as a result, it is possible to form a structure in which a plurality of electrode laminates that do not require a strong outer can are laminated, that is, a structure of a laminated electrode type battery such as a separated laminated type, a wound type, and a folded type. In the fifth to eighth lithium ion secondary batteries described above, a lithium ion secondary battery having a compact, large capacity, and stable battery characteristics is obtained by forming a stacked electrode type battery structure. be able to. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium ion secondary battery according to one embodiment of the present invention, and FIG. 2 is a diagram showing a coating of an adhesive resin according to one embodiment of the present invention. FIG. 3 is a schematic view showing an example of a method, FIG. 3 is a schematic view showing another example of a method of applying an adhesive resin according to an embodiment of the present invention, and FIG. FIG. 5 is a schematic diagram showing another example of the method of applying the adhesive resin according to one embodiment. FIG. 5 is a schematic view showing another example of the method of applying the adhesive resin according to one embodiment of the present invention. FIG. 6 is a schematic view showing another example of the method for applying the adhesive resin according to one embodiment of the present invention, and FIG. 7 is a diagram showing a lithium ion according to one embodiment of the present invention. FIG. 8 is a schematic cross-sectional view showing a secondary battery, and FIGS. 8, 9 and 10 show a lithium battery according to another embodiment of the present invention. A schematic cross-sectional view showing a cell structure of the ion secondary battery, the first 1 figure because a cross-sectional view schematically showing a conventional lithium-ion secondary battery. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 正極および負極とこれら正極および負極との間にセパレ一 夕が配置される構造の電池に適用されるものである。 以下の実施の形態 は主に正極、 セパレ一夕および負極の単一の電極積層体からなる単層電 極型電池について説明されるが、 単一の電極積層体を積み重ねた積層電 極型電池にも適用できる。 The present invention is applied to a battery having a structure in which a positive electrode and a negative electrode and a separator are arranged between the positive electrode and the negative electrode. In the following embodiment, a single-layer electrode battery mainly composed of a single electrode stack of a positive electrode, a separator, and a negative electrode will be described, but a stacked electrode battery in which a single electrode stack is stacked will be described. Also applicable to
第 1図は、 本発明の一実施の形態によるリチウムイオン二次電池の電 池構造、 即ち電極積層体の構造を示す断面模式図であり、 図において、 3は正極活物質層 3 2を正極集電体 3 1に接合してなる正極、 5は負極 活物質層 5 2を負極集電体 5 1に接合してなる負極、 4は正極 3と負極 5の間に配置されリチウムイオンを含む非水系の電解液を保持するセパ レー夕である。 6は正極活物質層 3 2および負極活物質層 5 2とセパレ
一夕 4との対向面間に点状、 線状、 または格子状のように部分的に配置 され、 各活物質層 3 2、 5 2とセパレ一夕 4とを接合する接着性樹脂部 である。 7は正極活物質層 3 2および負極活物質層 5 2とセパレ一夕 4 とを連通する空隙部である。 この空隙部 7、 セパレー夕 4、 および活物 質層 3 2、 5 2にリチウムイオンを含む非水系の電解液が保持される。 この実施の形態では、 正極および負極活物質 3 2 , 5 2とセパレ一夕 4の間に接着性樹脂部 6と空隙部 7が同時に形成されることによって空 隙 7内部に電解液が保持され、 両電極間の良好なイオン伝導性を確保で き、 従来の電池程度に両電極間のイオン伝導抵抗を低減することができ る。 電極間はイオン伝導抵抗の低い液体電解質を介して電気的に接合さ れているので、 電極内部の活物質層中で起こるリチウムイオンの出入り 量並びに対向する電極へのリチウムイオンの移動速度および移動量を従 来の外装缶を用いたリチウムイオン二次電池と同程度にすることが可能 となる。 また接着性樹脂 6により電極 3、 5とセパレー夕 4間の密着性 が確保されているので、 外装缶を用いなくても電池構造を維持すること が可能になる。 従って電池の軽量化、 薄型化が可能になり、 任意の形態 にすることができ、 外装缶無しに従来の電池と同程度の充放電特性など の電池性能が得られる。 FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium ion secondary battery according to an embodiment of the present invention, that is, a structure of an electrode stack. In FIG. A positive electrode joined to the current collector 31, 5 is a negative electrode obtained by joining the negative electrode active material layer 52 to the negative electrode current collector 51, 4 is disposed between the positive electrode 3 and the negative electrode 5 and contains lithium ions It is a separator that holds non-aqueous electrolyte. 6 denotes a positive electrode active material layer 3 2 and a negative electrode active material layer 5 2 An adhesive resin portion that is partially arranged like a point, a line, or a grid between the surfaces facing the surface 4 and joins each active material layer 32, 52 to the separation 4 is there. Reference numeral 7 denotes a gap that connects the positive electrode active material layer 32 and the negative electrode active material layer 52 to the separator 4. The void 7, the separator 4, and the active material layers 32, 52 hold a non-aqueous electrolyte containing lithium ions. In this embodiment, the adhesive resin portion 6 and the void portion 7 are simultaneously formed between the positive and negative electrode active materials 32, 52 and the separator 4, so that the electrolyte is held inside the void 7. However, good ionic conductivity between the two electrodes can be ensured, and the ionic conduction resistance between the two electrodes can be reduced to the level of a conventional battery. Since the electrodes are electrically connected via a liquid electrolyte with low ionic conduction resistance, the amount of lithium ions flowing into and out of the active material layer inside the electrodes and the speed and movement of lithium ions to and from the opposite electrode The volume can be made comparable to that of a conventional lithium-ion secondary battery using an outer can. In addition, since the adhesiveness between the electrodes 3 and 5 and the separator 4 is ensured by the adhesive resin 6, the battery structure can be maintained without using an outer can. Therefore, the battery can be reduced in weight and thickness, and can be formed into an arbitrary form, and battery performance such as charge / discharge characteristics comparable to that of a conventional battery can be obtained without an outer can.
また、 部分的に配置された接着性樹脂部 6によって形成された空隙部 7の面積は、 活物質層 3 2、 5 2とセパレ一夕 4とが対向する各対向面 の全面積の 3 0 %乃至 9 0 %とすることが望ましく、 6 0 %程度にする ことが最も望ましい。 3 0 %未満では、 電極活物質層 3 2、 5 2とセパ レー夕 4間の電気的な接合が不充分になり、 電極間 3、 5のイオン伝導 抵抗が大きくなるために、 充分な電池特性を得ることが困難になる。 ま た 9 0 %を越えると、 電極 3、 5とセパレ一夕 4間の接着強度が不充分 になり、 剥離が起こる。
また、 活物質層 3 2、 5 2とセパレ一夕 4の間に形成される空隙部 7 の深さすなわち活物質層 3 2、 5 2とセパレー夕 4の間の距離 Lは、 電 解液のイオン伝導度により異なるが、通常使用される 1 0— 2 S/ c m程 度の場合には、 3 0〃m以下であれば、 活物質層 3 2、 5 2とセパレ一 夕 4の間のイオン伝導抵抗は充分小さくなり、 従来の外装缶を用いた電 池に劣らない高負荷率での使用が可能となるので、 3 0 zm以下とする のが望ましい。 また、 空隙部 7の深さ Lを 1 0 Ζ Π1以下にすることによ り、 反応種の拡散がより容易に進みイオン伝導抵抗のより一層の低減を 図ることができるため、 1 0 /m以下に調整するのがより望ましい。 さ らに、 電極反応の起こる活物質 3 2、 5 2の表面には、 数 mの拡散層 が存在すると言われており、 空隙部 7の深さ Lをこれ以下に調整するこ とにより、 リチウムイオンの拡散が最も容易に進むと考えられることか ら、 空隙部 7の深さ Lを数〃 m以下にすることが最も望ましい。 ― そして、 上記のように構成されたリチウムイオン二次電池は、 例えば 以下の方法により製造される。 正極活物質層 3 2、 負極活物質層 5 2を それぞれ集電体 3 1、 5 1に塗着する工程、 正極活物質層 3 2とセパレ —夕 4の対向面の少なくとも一方および負極活物質層 5 2とセパレ一夕 の対向面の少なくとも一方の面に接着性樹脂 6を部分的に塗布するェ 程、 セパレ一夕 4の各面に正極活物質層 3 2の対向面および負極活物質 層 5 2の対向面を重ね合わせて加熱しながら加圧し、 接着性樹脂 6を熱 融着させることによって電極 3、 5とセパレー夕 4を密着させると同時 に、 空隙部 7を形成する工程を施すことによって、 電池基本構造が製造 される。 In addition, the area of the void 7 formed by the adhesive resin part 6 partially arranged is 30% of the total area of each opposing surface where the active material layers 32, 52 and the separator 4 oppose each other. %, Preferably 90%, and most preferably about 60%. If it is less than 30%, the electric connection between the electrode active material layers 32, 52 and the separator 4 becomes insufficient, and the ion conduction resistance between the electrodes 3, 5 increases, so that a sufficient battery It becomes difficult to obtain characteristics. If it exceeds 90%, the adhesive strength between the electrodes 3 and 5 and the separator 4 becomes insufficient, and peeling occurs. In addition, the depth of the void 7 formed between the active material layers 32, 52 and the separation layer 4, that is, the distance L between the active material layers 32, 52 and the separation layer 4, is determined as follows. of different but the ion conductivity, in the case of 1 0- 2 S / cm extent that is usually used, 3 if 0〃M less, between the active material layer 3 2, 5 2 and separator one evening 4 Since the ionic conduction resistance of the battery becomes sufficiently small, and the battery can be used at a high load factor that is not inferior to batteries using conventional outer cans, it is desirable that the ion transport resistance be 30 zm or less. Further, by setting the depth L of the void portion 7 to 10 以下 1 or less, the diffusion of the reactive species can be facilitated and the ion conduction resistance can be further reduced, so that 10 / m It is more desirable to adjust the following. In addition, it is said that a diffusion layer of several meters exists on the surface of the active material 32, 52 where an electrode reaction occurs.By adjusting the depth L of the void 7 to less than this, Since the diffusion of lithium ions is considered to proceed most easily, it is most desirable to set the depth L of the void 7 to several 〃 m or less. -The lithium ion secondary battery configured as described above is manufactured, for example, by the following method. A step of applying the positive electrode active material layer 32 and the negative electrode active material layer 52 to the current collectors 31 and 51, respectively, at least one of the opposing surfaces of the positive electrode active material layer 32 and the separator 4 and the negative electrode active material As the adhesive resin 6 is partially applied to at least one of the opposing surfaces of the layer 52 and the separator, the respective surfaces of the positive electrode active material layer 32 and the negative electrode active material are coated on the respective surfaces of the separator 4. The opposing surfaces of the layers 52 are superimposed and pressurized while heating, and the adhesive resin 6 is thermally fused to bring the electrodes 3 and 5 into close contact with the separator 4. By doing so, a basic battery structure is manufactured.
また、 電極とセパレ一夕間の接着には常温において固体である電子絶 縁性の樹脂を塗布時に加熱により溶融させて用いると所望の位置に所望 の高さで樹脂を配置した電池が容易に製造可能になる。 このような接着
性樹脂としては、 電解液には溶解せず電池内部で電気化学反応を起こさ ないものであれば使用可能である。 具体的にはニッタイト H- 6825A (商 品名:新田ゼラチン(株)製)やボンダイン(商品名:住友化学工業(株) 製) や A K— 1 (商品番号:カネボウェヌエスシ一 (株) 製) などの熱 可塑性樹脂が使用可能である。 In addition, for bonding between the electrode and the separator overnight, a battery in which a resin having a desired height is easily disposed at a desired position can easily be obtained by using a resin having an electronic insulating property which is solid at room temperature and melting by heating at the time of coating. Manufacturable. Such bonding Any resin can be used as long as it does not dissolve in the electrolyte solution and does not cause an electrochemical reaction inside the battery. Specifically, Nittite H-6825A (trade name: manufactured by Nitta Gelatin Co., Ltd.), Bondyne (trade name: manufactured by Sumitomo Chemical Co., Ltd.) and AK—1 (trade name: Kanebowenesushiichi Co., Ltd.) Thermoplastic resins such as those manufactured by Toshiba can be used.
なお、 局部的に接着性樹脂 6を付着させる手段、 セパレー夕 4両面に 短時間で大量に接着性樹脂を塗布する方法としては下記のような方法が ある。 The following methods can be used to apply the adhesive resin 6 locally and to apply a large amount of the adhesive resin to both surfaces of the separator 4 in a short time.
第 2図はメルトプリント法を示す説明図で、 (a)は上方から、 (b)は側 方から見たところである。 溶融樹脂 6を点状の窪み 6 1 aを有する回転 ロール 6 1で接き取り、 これをシート (例えばシート状セパレー夕 4 ) に転写する塗布法である。 FIG. 2 is an explanatory view showing the melt printing method, in which (a) is viewed from above and (b) is viewed from the side. This is a coating method in which the molten resin 6 is brought into contact with a rotating roll 61 having a point-like depression 61a and transferred to a sheet (for example, a sheet-like separator 4).
第 3図は表面に微小穴を有する回転ロールを用いた接着性樹脂の塗布 方法を示す説明図で、(a)は上方から、(b)は側方から見たところである。 表面に微小穴 6 2 aを有する回転ロール 6 2の内部に溶融した接着性樹 脂を充填し、 加圧器 6 3で回転ロール 6 2内部に圧力を加えることによ り微小穴 6 2 aから接着性樹脂を流出させる。 同時にセパレ一夕ロール から供給されるセパレー夕材 4を移動させながら回転ロール 6 2全体を 回転させることにより、 セパレ一夕材 4両面に接着性樹脂 6を点状に塗 布する。 FIG. 3 is an explanatory view showing a method of applying an adhesive resin using a rotating roll having fine holes on the surface, wherein (a) is viewed from above and (b) is viewed from the side. A molten adhesive resin is filled into the inside of the rotating roll 62 having the minute holes 62 on the surface, and pressure is applied to the inside of the rotating roll 62 by the pressurizer 63 to remove the small holes 62a from the small holes 62a. Let the adhesive resin flow out. At the same time, by rotating the entire rotating roll 62 while moving the separating material 4 supplied from the separating material roll, the adhesive resin 6 is applied to both surfaces of the separating material 4 in a dot-like manner.
また、 第 4図の説明図に示すような、 点状あるいは線状に空孔を開け たスクリーンと回転ロールを用いる接着性樹脂の塗布方法がある。 点状 に空孔 6 4 aを開けたキヤ夕ビラ状のスクリーン 6 4をセパレー夕材 4 表面近傍に設置し、 接着性樹脂滴下口 6 5から接着性樹脂 6を移動する セパレー夕材 4の上に配置したスクリーン 6 4上に滴下して供給し、 供 給された接着性樹脂を回転ロール 6 6で圧延することにより、 スクリ一
ン 6 4の空孔 6 4 aの形状を反映した接着性樹脂 6のパ夕一ンをセパレ —夕材 4に転写する。 これらを少なくとも 2台セパレ一夕材 4の両面に 配設することにより、 セパレー夕材 4の両面に接着性樹脂を点状に塗布 することができる。 Further, as shown in the explanatory view of FIG. 4, there is a method of applying an adhesive resin using a screen and a rotating roll in which holes are formed in dots or lines. Set up a billet-shaped screen 6 4 with holes 6 4 a in the vicinity of the surface of the separator material 4, and move the adhesive resin 6 from the adhesive resin dropping port 6 5. The adhesive resin is supplied by being dripped onto the screen 64 disposed above, and the supplied adhesive resin is rolled by the rotating rolls 66 to thereby reduce the screen. The adhesive resin 6 reflecting the shape of the hole 6 4 a of the resin 6 4 is transferred to the separation material 4. By arranging at least two of them on both surfaces of the separation material 4, the adhesive resin can be applied to both surfaces of the separation material 4 in a dot-like manner.
また、 第 5図はスプレーガンを用いる接着性樹脂の塗布方法を示す説 明図である。 点状、 線状あるいは格子状に空孔を開けたキヤ夕ビラ状の スクリーン 6 7をセパレ一夕材 4表面近傍に設置し、 溶融した接着性樹 脂をスプレーガン 6 8に充填した後に、 スクリーン 6 7を介してセパレ 一夕材 4上に噴霧する。 これにより、 セパレ一夕材 4上にスクリーン 6 7の空孔に即した形状、 例えば点状に接着性樹脂 6が付着する。 このス プレーガン 6 8をセパレ一夕材 4両面にそれぞれ少なくとも 1台以上並 ベ、 セパレ一夕材 4を移動させながら接着性樹脂液を連続的に噴霧させ ることにより、 セパレ一夕材 4両面に接着性樹脂 6を点状に塗布するこ とができる。 なお、 スクリーン 6 7の代わりに網等を用いてもよい。 また、 第 6図の説明図に示すように、 セパレー夕材 4上に接着性樹脂 液を充填した少なくとも 1個以上のディスペンサー 6 9を配置し、 セパ レー夕 4の移動に合わせて溶融した接着性樹脂液を断続的に滴下させる ことにより、 点状に接着性樹脂 6を塗布するようにしてもよい。 なお、 同図(a)は上方から、 (b)は側方から見たところである。 FIG. 5 is an explanatory view showing a method of applying an adhesive resin using a spray gun. After installing a screen-shaped screen 67 with holes in the form of dots, lines, or grids near the surface of the separation material 4, the molten adhesive resin was charged into the spray gun 68, Spray on Separee overnight material 4 through screen 67. As a result, the adhesive resin 6 adheres to the separation material 4 in a shape corresponding to the holes of the screen 67, for example, in a dot shape. At least one spray gun 6 8 is arranged on each side of the separation material 4 and the adhesive resin liquid is continuously sprayed while moving the separation material 4 so that the separation material 4 The adhesive resin 6 can be applied in a dot-like manner. Note that a net or the like may be used instead of the screen 67. In addition, as shown in the explanatory diagram of FIG. 6, at least one dispenser 69 filled with an adhesive resin liquid is placed on the separating material 4 and the adhesive melted as the separating material 4 moves. The adhesive resin 6 may be applied in a dot-like manner by intermittently dropping the adhesive resin liquid. (A) is viewed from above, and (b) is viewed from the side.
本発明に使用される電極活物質としては、 正極 3においては例えば、 リチウムとコバルト、 ニッケル、 マンガンなどの遷移金属との酸化物、 リチウムを含むカルコゲン化合物あるいはこれらの複合酸化物、 さらに 上記の遷移金属酸化物、 リチウムを含むカルコゲン化合物あるいはこれ らの複合酸化物に種々の元素を微量に添加したもの等が用いられ、 これ らの物質に電子伝導体として黒鉛が加えられたものが使用される。 また 負極 5においては、 黒鉛、 易黒鉛化炭素、 難黒鉛化炭素、 ポリアセン、
ポリアセチレンなどの炭素系化合物、 ビレン、 ペリレンなどのァセン構 造を含む芳香族炭化水素化合物が好ましく用いられるが、 これに限るも のではなく、 電池動作のために必要であるリチウムイオンを吸蔵、 放出 できる物質ならば他のものでも使用可能である。 また、 これらの物質は 粒子状のものが用いられ、 粒径としては 0 . 3 zm乃至 2 0 Aimのもの が使用可能であり、特に好ましくは 0 . 3 //m乃至 5 zmのものである。 また負極活物質 5 2としては、 炭素繊維も使用することができる。 As the electrode active material used in the present invention, in the positive electrode 3, for example, an oxide of lithium and a transition metal such as cobalt, nickel, or manganese; a chalcogen compound containing lithium or a composite oxide thereof; Metal oxides, chalcogen compounds containing lithium, or composite oxides of these with a small amount of various elements added are used, and those obtained by adding graphite as an electron conductor to these substances are used. . In the negative electrode 5, graphite, graphitizable carbon, non-graphitizable carbon, polyacene, Preferably used are carbon compounds such as polyacetylene, and aromatic hydrocarbon compounds having an acene structure such as bilen and perylene, but are not limited to these, and occlude and release lithium ions necessary for battery operation. Any other substance that can be used can be used. In addition, these substances are used in the form of particles, and a particle diameter of 0.3 zm to 20 Aim can be used, and particularly preferably 0.3 // m to 5 zm. . Carbon fibers can also be used as the negative electrode active material 52.
また、活物質を電極ィ匕するために使用されるバインダ一樹脂としては、 電解液に溶解せず、 電池内部で電気化学反応を起こさないものであれば 使用可能である。 具体的には、 フヅ化ビニリデン、 フッ化工チレン、 ァ クリロニトリル、 エチレンォキシドなどの単独重合体または共重合体、 エチレンプロピレンジァミンゴムなどが使用可能である。 Further, as the binder resin used for electrode-forming the active material, any resin that does not dissolve in the electrolytic solution and does not cause an electrochemical reaction inside the battery can be used. Specifically, homopolymers or copolymers such as vinylidene fluoride, fluorinated ethylene, acrylonitrile, and ethylene oxide, and ethylene propylene diamine rubber can be used.
また、 集電体 3 1、 5 1は電池内部で安定な金属であれば使用可能で あるが、 材質としては正極 3ではアルミニウム、 負極 5では銅が好まし く使用される。 集電体 3 1、 5 1の形状としては、 箔状、 網状、 ェクス パンドメタルなどが使用可能であるが、 電極の平滑性を得るために箔状 のものが好ましく使用される。 The current collectors 31 and 51 can be used as long as the metal is stable inside the battery. However, as the material, aluminum is preferably used for the positive electrode 3 and copper is preferably used for the negative electrode 5. The current collectors 31 and 51 may be in the form of foil, mesh, expanded metal or the like, but foil is preferably used in order to obtain electrode smoothness.
また、 セパレー夕 4は電子絶縁性の材料で作製された多孔質膜、 不織 布、 網など、 電極 3、 5との密着に対して充分な強度を有するものであ れば、 どのようなものでも使用可能である。 特にポリエチレン、 ポリプ 口ピレンの単層多孔質膜およびこれらの多層化した多孔質膜が接着性お よび安全性の観点から好ましい。 The separator 4 is made of any material such as a porous film made of an electronic insulating material, a nonwoven fabric, a net, and the like, as long as the material has sufficient strength to adhere to the electrodes 3 and 5. Anything can be used. In particular, a single-layer porous film of polyethylene or polypyrene and a multi-layered porous film thereof are preferable from the viewpoint of adhesion and safety.
また、 イオン伝導体として用いる電解液に使用する液体電解質として は、 従来の電池に使用されているリチウムイオンを含む非水系の液体電 解質が使用可能である。 具体的には、 液体電解質の溶剤として、 炭酸ェ チレン、 炭酸プロピレン、 炭酸ジメチル、 炭酸ジェチルなどのエステル
系溶剤ゃジメ トキシェタン、 ジエトキシェタン、 ジェチルエーテル、 ジ メチルエーテルなどのエーテル系溶剤の単独液、 および前述の同一系統 の溶剤同士あるいは異種系統の溶剤からなる 2種以上の混合液が使用可 能である。 また液体電解質に使用する電解質塩は、 L iPF6、 L iA sF 6、 L i C 104, L iBF 4, L i CF3S〇 3、 L iN (CF3 S02) 2、 L i C (CF3S02) 3、 L iN (C2F5S02) 2などが使 用可能である。 As the liquid electrolyte used for the electrolyte used as the ion conductor, a non-aqueous liquid electrolyte containing lithium ions used in conventional batteries can be used. Specifically, esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and getyl carbonate are used as solvents for the liquid electrolyte. Aqueous solvents: A single solution of ether solvents such as dimethoxetane, diethoxetane, getyl ether, and dimethyl ether, and a mixed solution of two or more of the above-mentioned solvents of the same system or different types of solvents can be used. is there. The electrolyte salt used in the liquid electrolyte, L iPF 6, L iA sF 6, L i C 10 4, L iBF 4, L i CF 3 S_〇 3, L iN (CF 3 S0 2) 2, L i C (CF 3 S0 2) 3, L iN (C 2 F 5 S0 2) 2 , or the like can be used.
上記実施の形態では、 単層電極型電池について説明したが、 電極積層 体の複数層を有する積層電極型電池にも適用できるものであり、 積層電 極型電池とすることによって、 コンパクトで安定した電池容量が大きな リチウムイオン二次電池を得ることができる。 例えば、 第 8図に示すよ うな、 複数の切り離されたセパレ一夕 4間に正極 3と負極 5を交互に配 置した、 電極積層体の複数層を有する構造、 第 9図および第 10図に示 すような卷き上げられ帯状のセパレ一夕 4間に正極 3と負極 5を交互に 配置した、 電極積層体の複数層を有する構造の他、 図示していないが折 り畳まれた帯状のセパレ一夕 4間に正極 3と負極 5を交互に配置した、 電極積層体の複数層を有する構造によつて積層電極型電池が得られる。 第 8図、 第 9図および第 10図に示した積層電極型電池の製造方法につ いては、 下記実施例において詳細に説明する。 In the above embodiment, a single-layer electrode type battery has been described. However, the present invention is also applicable to a stacked electrode type battery having a plurality of layers of an electrode stack. A lithium ion secondary battery with a large battery capacity can be obtained. For example, as shown in FIG. 8, a structure having a plurality of electrode laminates in which positive electrodes 3 and negative electrodes 5 are alternately arranged between a plurality of separated separators 4, FIGS. 9 and 10 In addition to the structure having multiple layers of electrode laminates, the cathode 3 and the anode 5 are alternately arranged between the strip-shaped separators 4 as shown in Fig. A stacked electrode type battery is obtained by a structure having a plurality of layers of an electrode stack in which the positive electrode 3 and the negative electrode 5 are alternately arranged between the strip-shaped separators 4. The manufacturing method of the stacked electrode type battery shown in FIGS. 8, 9 and 10 will be described in detail in the following examples.
以下、 実施例を示し本発明を説明するが、 勿論これらにより本発明が 限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but it should be understood that the present invention is not limited by these.
実施例 1. Example 1.
本実施例は第 1図に示した単層電極型電池を有するリチウムイオン二 次電池の製造方法である。 This embodiment is a method for manufacturing a lithium ion secondary battery having the single-layer electrode type battery shown in FIG.
まず、 正極の作製について説明する。 First, the fabrication of the positive electrode will be described.
L i CoO,を 87重量%、 黒鉛粉末を 8重量%、 パインダ樹脂とし
9/ 1 87% by weight Li CoO, 8% by weight graphite powder, Pinda resin 9/1
13 てポリフッ化ビニリデン (呉羽化学工業 (株) 製、 商品名: K F 1 1 0 0 ) を 5重量%に調整した正極活物質ペーストを、 集電体となる厚さ 2 0 zmのアルミ箔上にドク夕一ブレード法で厚さ約 1 0 0〃mに塗布し、 正極を作製した。 13 A 5% by weight positive electrode active material paste made of polyvinylidene fluoride (produced by Kureha Chemical Industry Co., Ltd., trade name: KF110) is coated on a 20-zm-thick aluminum foil as a current collector. The coating was applied to a thickness of about 100 μm using a Doc Yuichi blade method to produce a positive electrode.
この正極 3を電解液に浸潰させた後に正極活物質層部と正極集電体と の剥離強度を測定したところ、 2 0〜2 5 / c mの値を示した。 次に負極の作製について説明する。 After the positive electrode 3 was immersed in the electrolytic solution, the peel strength between the positive electrode active material layer portion and the positive electrode current collector was measured, and a value of 20 to 25 / cm was shown. Next, fabrication of the negative electrode will be described.
メソフェーズマイクロビーズカーボン (大阪ガス (株) 製) を 9 5重 量%、 バインダとしてポリフヅ化ビニリデン (呉羽化学工業 (株) 製、 商品名: K F 1 1 0 0 ) を 5重量%に調整した負極活物質べ一ストを、 集電体となる厚さ 1 2 / mの銅箔上にドクターブレード法で厚さ約 1 0 0 /mに塗布し、 負極を作製した。 この負極 5を電解液に浸潰させた後に負極活物質層部と負極集電体—と の剥離強度を測定したところ、 1 0〜5 0 g f / c mの値を示した。 電極積層体の作製について説明する。 Negative electrode with Mesophase Microbeads Carbon (manufactured by Osaka Gas Co., Ltd.) adjusted to 95% by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF110) adjusted to 5% by weight as a binder. The active material base was applied to a thickness of about 100 / m by a doctor blade method on a copper foil having a thickness of 12 / m as a current collector, to produce a negative electrode. After the negative electrode 5 was immersed in the electrolytic solution, the peel strength between the negative electrode active material layer portion and the negative electrode current collector was measured, and a value of 10 to 50 gf / cm was shown. The production of the electrode laminate will be described.
セパレ一夕 4として用いるロール状に束ねられた幅 1 2 c m、 厚さ 2 5 mの多孔性のポリプロピレンシート (へキストセラニーズ (株)製、 商品名:セルガ一ド # 2 4 0 0 ) を取り出し、 その両面に接着性樹脂 6 として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメルトプリ ント法 (溶融樹脂を点状のくぼみ 6 l aを有するロール 6 1で搔き取り シートに転写する方法) により点状に塗着した。 塗布時の接着性樹脂 6 の厚さは約 3 5〃m、 塗着面積はセパレ一夕全体の 6 0 %であった。 な お樹脂 6の塗着パターンは、 搔き取り口一ル 6 1のくぼみ 6 1 aの形状 を変えることで変更可能である。 また塗着面積は、 搔き取りロール 6 1 のくぽみ 6 1 aの数を変更することにより可能である。 A roll of 12 cm wide, 25 m thick porous polypropylene sheet (made by Hoechst Celanese Co., Ltd., trade name: SERGADE # 2400) used as Separete 4 H-6285 (product number: Nitta Gelatin Co., Ltd.) as an adhesive resin 6 on both surfaces thereof was melt-printed (the molten resin was rolled with a roll 61 having dot-shaped depressions 6 la). (Method of transferring to a wiped sheet). At the time of application, the thickness of the adhesive resin 6 was about 35 m, and the application area was 60% of the entire Separet. The coating pattern of the resin 6 can be changed by changing the shape of the recess 61 a of the opening 61. Further, the coating area can be changed by changing the number of the grooves 61 a of the take-up roll 61.
次に、 室温に一旦降温した後正極 3および負極 5をセパレ一夕 4を挟
んで対向するように配置し密着させた。その後表面温度を 70°Cに設定し た加熱ロールで挟み込み、 接着性樹脂 6を再融解させて電極 3、 5とセ パレー夕 4の間を樹脂融着させ、 電極積層体を作製した。 融着後の電極 積層体の全厚さから算出される接着性樹脂部 6の厚さすなわちセパレー 夕 4と活物質層 3 2、 5 2間の距離は約 3 0〃mであった。 なおセパレ —夕 4と活物質層 3 2、 5 2間の距離は、 塗布時の接着性樹脂 6の厚さ または量、 電極 3、 5とセパレー夕 4を密着させる際の加熱ロールの温 度調整等により制御可能である。 Next, after the temperature is once lowered to room temperature, the positive electrode 3 and the negative electrode 5 And placed in close contact with each other. Thereafter, the adhesive resin 6 was sandwiched between heating rolls whose surface temperature was set at 70 ° C., and the adhesive resin 6 was re-melted to fuse the resin between the electrodes 3 and 5 and the separator 4 to produce an electrode laminate. The thickness of the adhesive resin portion 6 calculated from the total thickness of the fused electrode laminate, that is, the distance between the separator 4 and the active material layers 32, 52 was about 30 m. The distance between the separator 4 and the active material layers 32, 52 depends on the thickness or amount of the adhesive resin 6 at the time of application, and the temperature of the heating roll when the electrodes 3, 5 and the separator 4 are brought into close contact. It can be controlled by adjustment or the like.
続いてこの電極積層体を長さ 1 0 c mに切断し、 各集電体 3 1、 5 1 にそれぞれ集電夕ブを溶接接合した。 その後、 電極積層体内部に、 炭酸 エチレンと炭酸ジェチルを溶媒とし、 L i P F 6を溶質とする電解液を 注入した。 この段階で、 正極活物質層 3 2とセパレー夕 4、 負極活物質 層 5 2とセパレー夕 4の剥離強度を測定したところ、 その強度はそれぞ れ 3 0 g f / c m以上、 2 0 g f / c m以上であった。 この電解液注入 後に集電夕ブ部以外の電極積層体をアルミラミネートフィルムでパック し、 熱融着して封口処理を行うことによりリチウムイオン二次電池が完 成した。 Subsequently, the electrode laminate was cut into a length of 10 cm, and current collectors were welded to the current collectors 31 and 51, respectively. Thereafter, the internal electrode stack, the ethylene carbonate Jechiru as a solvent, an electrolytic solution was injected to the L i PF 6 as a solute. At this stage, when the peel strengths of the positive electrode active material layer 32 and the separator 4 and the negative electrode active material layer 52 and the separator 4 were measured, the peel strength was 30 gf / cm or more and 20 gf / cm, respectively. cm or more. After the injection of the electrolytic solution, the electrode laminate other than the current collector was packed with an aluminum laminated film, heat-sealed and sealed to complete the lithium ion secondary battery.
第 7図は上記のように作製されたリチウムイオン二次電池を示す断面 模式図である。 図において、 2 0は電極積層体、 2 2は外装のアルミ二 ゥムラミネートフィルム、 3 3、 5 3は集電タブである。 電極積層体 2 0は正極 3、 セパレ一夕 4、 負極 5により構成されている。 接着性樹脂 6は正極 3とセパレー夕 4との間および負極 5とセパレ一夕 4との間に あり、 正極 3および負極 5とセパレ一夕 4とを部分的に接合している。 正極 3とセパレ一夕 4間および負極 5とセパレ一夕 4間の空隙 7、 電極 活物質 3 2、 5 2中、 並びにセパレ一夕 4内部には電解液が保持されて いる。 正極 3および負極 5とセパレ一夕 4の間は、 接着性樹脂 6で覆わ
れ尽くされることなく、 また接着性樹脂 6が塗着されない部位に生じる 空隙 7の内部にはリチウムイオンを含む電解液が保持されることにより、 正極 3と負極 5の間の内部抵抗の上昇が抑制され、 良好なイオン伝導性 が確保され、 かつ接着性樹脂 6により電極 3、 5とセパレ一夕 4との密 着性が保たれるので、 外部からの加圧を必要としない、 即ち外装缶を必 要としない薄型で、 軽量で、 充放電特性に優れたリチウムイオン二次電 池が得られた。 FIG. 7 is a schematic cross-sectional view showing the lithium ion secondary battery manufactured as described above. In the figure, 20 is an electrode laminate, 22 is an aluminum laminate film of the exterior, and 33 and 53 are current collecting tabs. The electrode laminate 20 includes a positive electrode 3, a separator 4, and a negative electrode 5. The adhesive resin 6 is located between the positive electrode 3 and the separator 4 and between the negative electrode 5 and the separator 4, and partially joins the positive electrode 3 and the negative electrode 5 to the separator 4. An electrolyte is held in the gap 7 between the positive electrode 3 and the separator 4 and between the anode 5 and the separator 4, in the electrode active materials 32 and 52, and in the separator 4. Cover between the positive electrode 3 and the negative electrode 5 and the separator 4 with adhesive resin 6 The electrolyte containing lithium ions is retained inside the voids 7 that are formed at the portion where the adhesive resin 6 is not applied without being exhausted, so that the internal resistance between the positive electrode 3 and the negative electrode 5 increases. Suppressed, good ionic conductivity is ensured, and the adhesion between the electrodes 3, 5 and Separation 4 is maintained by the adhesive resin 6, so no external pressurization is required. A lithium-ion secondary battery that is thin, lightweight, and does not require a can and has excellent charge / discharge characteristics has been obtained.
実施例 2 . Example 2.
接着性樹脂用材料として、 ボンダイン (商品名:住友化学工業 (株) 製) や A K 1 (商品番号:カネボウェヌエスシ一 (株) 製) を使用し、 他は実施例 1と同様の材料および製造方法により電極積層体を作製した。 この場合にも、 電極とセパレ一夕間を空隙がある状態で密着させること ができた。 その後、 電極積層体内部に、 実施例 1と同様の電解液を注入 し、 剥離強度を調べたところ実施例 1と同様の結果が得られた。 この電 解液注入後に電極積層体をアルミラミネ一トフィルムでパヅクし、 熱融 着して封口処理を行うことにより、 実施例 1と同様に薄型、 軽量で、 充 放電特性に優れたリチウムィオン二次電池が得られた。 Bondine (trade name: manufactured by Sumitomo Chemical Co., Ltd.) or AK 1 (trade name: manufactured by Kanebo Wenussichi Co., Ltd.) was used as the material for the adhesive resin, and the other materials were the same as in Example 1. And the electrode laminated body was produced by the manufacturing method. Also in this case, it was possible to adhere the electrode and the separator overnight with a gap. Thereafter, the same electrolytic solution as in Example 1 was injected into the electrode laminate, and the peel strength was examined. The same result as in Example 1 was obtained. After the injection of the electrolytic solution, the electrode laminate is packed with an aluminum laminate film, heat-sealed, and sealed to form a lithium ion secondary battery that is thin, light, and has excellent charge / discharge characteristics, as in Example 1. A battery was obtained.
実施例 3 . Example 3.
実施例 1記載と同様の材料および方法で、 正極 3および負極 5を作製 した後、 セパレ一夕材 4としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5 mの多孔性のポリプロピレンシート(へキストセラニーズ (株)製、 商品名:セルガード # 2 4 0 0 ) を取り出し、 その両面に接着性樹脂 6 として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメルトプリ ント法により点状に塗着した。 ロールのくぼみを実施例 1の場合よりも 浅くすることにより、 塗布時の接着性樹脂 6の厚さは約 1 5〃mとなつ た。 次に、 室温に一旦降温して正極 3および負極 5をセパレ一夕 4を挟
んで対向するように配置し密着させた。その後表面温度を 70°Cに設定し た加熱ロールで挟み込み、 樹脂 6を再融解させて電極 3、 5とセパレ一 夕 4の間を融着させ、 電極積層体を作製した。 融着後の電極積層体の全 厚さから算出される接着性樹脂部 6の厚さは 1 0〃m以下であった。 続いてこの電極積層体を長さ 1 0 c mに切断し、 その後電極積層体内 部に炭酸エチレンと炭酸ジェチルを溶媒とし L i P F 6を溶質とする電 解液を注入した。 この段階で、 正極活物質 3 2とセパレ一夕 4および負 極活物質 5 2とセパレ一夕 4の剥離強度を測定したところ、 その強度は それぞれ 3 0 / c m以上、 2 0 g f / c m以上であった。 この電解 液注入後、 電極積層体をアルミラミネートフィルムでパックし、 熱融着 して封口処理を行うことにより、 薄型リチウムィオン二次電池が完成し た。 After preparing the positive electrode 3 and the negative electrode 5 using the same materials and methods as described in Example 1, a porous polypropylene sheet having a width of 12 cm and a thickness of 25 m, which is bundled in a roll shape as a separation material 4. (Made by Hoechst Celanese Co., Ltd., trade name: Celgard # 240), and on both sides of it, H—6285 (product number: Nitta Gelatin Co., Ltd.) as adhesive resin 6 It was applied dotwise by the melt printing method. By making the recess of the roll shallower than in the case of Example 1, the thickness of the adhesive resin 6 at the time of application was about 15 μm. Next, once the temperature is lowered to room temperature, the positive electrode 3 and the negative electrode 5 are sandwiched between the separators 4. And placed in close contact with each other. Thereafter, it was sandwiched between heating rolls whose surface temperature was set to 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3, 5 and the separator 4 to prepare an electrode laminate. The thickness of the adhesive resin portion 6 calculated from the total thickness of the fused electrode laminate was 10 μm or less. Followed by cutting the electrode stack to the length 1 0 cm, followed the L i PF 6 was ethylene carbonate Jechiru a solvent in the electrode laminate portion injected electrolytic solution as a solute. At this stage, the peel strengths of the positive electrode active material 32 and Separation 4 and the negative electrode active material 52 and Separation 4 were measured, and the strength was 30 g / cm or more, respectively. Met. After the injection of the electrolyte, the electrode laminate was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery.
この実施例 3による電極積層体は、 電極活物質 3 2、 5 2とセパレ一 夕 4間の距離が 1 0 /m以下となっているため、 電極反応により生ずる 反応種の拡散がより容易に進み、 活物質—セパレ一夕界面のイオン伝導 抵抗の低減を図ることができるので、 これを用いた薄型リチウムイオン 二次電池では従来の外装缶を用いた電池に劣らない高負荷率での使用が 可能となった。 In the electrode laminate according to the third embodiment, the distance between the electrode active materials 32, 52 and the separator 4 is 10 / m or less, so that the diffusion of the reactive species generated by the electrode reaction is more easily performed. As the ionic conduction resistance at the interface between the active material and the separator can be reduced, thin lithium-ion secondary batteries using this can be used at a high load factor that is not inferior to batteries using conventional outer cans. Became possible.
実施例 4 . Example 4.
実施例 1記載と同様の材料および方法で、 正極 3および負極 5を作製 した後、 セパレ一タ材 6としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5 /mの多孔性のポリプロピレンシート(へキストセラニーズ (株)製、 商品名:セルガード # 2 4 0 0 ) を取り出し、 その両面に接着性樹脂 6 として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメルトプリ ント法により点状に塗着した。 ロールのくぼみの数を実施例 1の場合よ りも減らすことにより、 セパレー夕上に接着性樹脂 6が塗着されている
部位の面積は全体の 4 0 %に調整した。 次に、 室温に一旦降温して正極 3および負極 5をセパレー夕 4を挟んで対向するように配置し密着させ た。 その後表面温度を 7 0 °Cに設定した加熱ロールで挟み込み、 樹脂 6 を再融解させて電極 3、 5とセパレ一夕 4の間を融着させ、 電極積層体 を作製した。 After preparing the positive electrode 3 and the negative electrode 5 using the same materials and method as described in Example 1, a porous polypropylene having a width of 12 cm and a thickness of 25 / m, which is bundled in a roll as a separator material 6. Take out the sheet (manufactured by Hoechst Celanese Co., Ltd., trade name: Celgard # 2400), and on both sides of the sheet, use H-6825 as the adhesive resin 6 (product number: Nitta Gelatin Co., Ltd.) Was applied dotwise by a melt printing method. Adhesive resin 6 is applied on the separator by reducing the number of roll dents compared to Example 1. The area of the site was adjusted to 40% of the whole. Next, the temperature was once lowered to room temperature, and the positive electrode 3 and the negative electrode 5 were arranged so as to face each other with the separator 4 interposed therebetween, and were brought into close contact with each other. Thereafter, the resin was sandwiched between heating rolls whose surface temperature was set to 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3 and 5 and the separator 4 to prepare an electrode laminate.
続いてこの電極積層体を長さ 1 0 c mに切断し、 その後電極積層体内 部に炭酸エチレンと炭酸ジェチルを溶媒とし L i P F 6を溶質とする電 解液を注入した。 この段階で、 正極活物質 3 2とセパレ一夕 4および負 極活物質 5 2とセパレー夕 4の剥離強度を測定したところ、 その強度は それぞれ 3 0 / c m以上、 2 0 g f / c m以上であった。 この電解 液注入後の集電夕ブ以外の電極積層体をアルミラミネ一トフイルムでパ ヅクし、 熱融着して封口処理を行うことにより、 薄型リチウムイオン二 次電池が完成した。 Followed by cutting the electrode stack to the length 1 0 cm, followed the L i PF 6 was ethylene carbonate Jechiru a solvent in the electrode laminate portion injected electrolytic solution as a solute. At this stage, when the peel strengths of the positive electrode active material 32 and Separation 4 and the negative electrode active material 52 and Separation 4 were measured, the peel strengths were 30 / cm or more and 20 gf / cm or more, respectively. there were. The electrode stack other than the current collector after the injection of the electrolyte was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery.
この実施例の電極積層体は、 セパレ一夕 4への接着性樹脂の塗着面積 が全体の 4 0 %となっているため、 活物質ーセパレ一夕界面のイオン伝 導抵抗の低減を図ることができるので、 これを用いた薄型リチウムィォ ン二次電池では従来の外装缶を用いた電池に劣らない高負荷率での使用 が可能となった。 In the electrode laminate of this example, the area of the adhesive resin applied to the separator 4 was 40% of the total area, so that the ion conduction resistance at the interface between the active material and the separator was reduced. Therefore, a thin lithium-ion rechargeable battery using this can be used at a high load factor that is not inferior to a battery using a conventional outer can.
比較例 1 . Comparative Example 1.
実施例 1記載と同様の材料および方法で、 正極 3および負極 5を作製 した後、 セパレ一夕材 4としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5 zmの多孔性のポリプロピレンシート(へキストセラニーズ (株)製、 商品名:セルガード # 2 4 0 0 ) を取り出し、 その両面に接着性樹脂 6 として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメルトプリ ント法により点状に塗着した。 ロールのくぼみの数を実施例 4の場合よ りもさらに減らすことにより、 セパレ一夕 4上に接着性樹脂 6が塗着さ
れている部位の面積は全体の 20%に調整した。 次に、 室温に一旦降温 して正極 3および負極 5をセパレー夕 4を挟んで対向するように配置し 密着させた。その後表面温度を 70°Cに設定した加熱ロールで挟み込み、 樹脂 6を再融解させて電極 3、 5とセパレー夕 4の間を融着させ、 電極 積層体を作製した。 After preparing the positive electrode 3 and the negative electrode 5 using the same materials and methods as described in Example 1, a porous polypropylene sheet having a width of 12 cm and a thickness of 25 zm bundled in a roll as a separation material 4 is provided. (Made by Hoechst Celanese Co., Ltd., trade name: Celgard # 240), and on both sides of it, H—6285 (product number: Nitta Gelatin Co., Ltd.) as adhesive resin 6 It was applied dotwise by the melt printing method. By further reducing the number of depressions in the roll than in Example 4, the adhesive resin 6 was applied onto the separation 4. The area of the part that has been adjusted has been adjusted to 20% of the total. Next, the temperature was once lowered to room temperature, and the positive electrode 3 and the negative electrode 5 were arranged so as to face each other with the separator 4 interposed therebetween, and were brought into close contact with each other. Thereafter, the resin was sandwiched between heating rolls whose surface temperature was set at 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3, 5 and the separator 4, thereby producing an electrode laminate.
続いてこの電極積層体を長さ 10 cmに切断し、 その後電極積層体内 部に炭酸エチレンと炭酸ジェチルを溶媒とし L iPF 6を溶質とする電 解液を注入した。 この段階で、 正極活物質 32とセパレー夕 4および負 極活物質 52とセパレ一夕 4の剥離強度を測定したところ、 その強度は 共に 5 /cm以下となった。 この強度では、 電池化を行った際に使 用中に電極 3、 5とセパレ一夕 4間の剥離が起こった。 Followed by cutting the electrode stack to the length 10 cm, after which the L iPF 6 was ethylene carbonate Jechiru a solvent in the electrode laminate portion injected electrolytic solution as a solute. At this stage, the peel strengths of the positive electrode active material 32 and Separation 4 and the negative electrode active material 52 and Separation 4 were both measured to be 5 / cm or less. At this strength, separation between the electrodes 3 and 5 and Separation 4 occurred during use when the battery was used.
実施例 5. Example 5.
本実施例は第 8図に示した平板状積層構造電池体を有するリチウム オン二次電池の製造方法である。 なお、 第 8図では樹脂部 6と空隙部 7 を区別しないで示している。 This embodiment is a method of manufacturing a lithium-on secondary battery having the flat-plate laminated battery body shown in FIG. In FIG. 8, the resin portion 6 and the void portion 7 are shown without distinction.
まず、 正極 3の作製について説明する。 First, the fabrication of the positive electrode 3 will be described.
L i Co02 を 87重量部、 黒鉛粉末を 8重量部、 ポリフツイ匕ビニリ デンを 5重量部を N—メチルピロリ ドン (NMPと略記する) に分散す ることにより調整した正極活物質ペーストを、 ドク夕一ブレード法にて 厚さ 300 /mに塗布して活物質薄膜 32を形成した。 その上部に正極 集電体 31となる厚さ 30〃mのアルミニウム箔を載せ、 さらにその上 部に再度ドク夕一ブレード法で厚さ 300〃mに調整した正極活物質べ —ストを塗布した。 これを 60°Cの乾燥機中に 60分間放置して半乾き 状態にした。 この作製した積層体をロールの隙間を 550 Π1に調整し た回転ロールを用いて軽く圧延して積層体を密着させることにより、 正 極 3を作製した。
この正極 3を電解液に浸潰させた後に正極活物質層部と正極集電体と の剥離強度を測定したところ、 2 0〜2 5 g f / c mの値を示した。 次に負極 5の作製について説明する。 A positive electrode active material paste prepared by dispersing 87 parts by weight of LiCoO 2 , 8 parts by weight of graphite powder, and 5 parts by weight of polyvinylidene vinylidene in N-methylpyrrolidone (abbreviated as NMP) was used to prepare a positive electrode active material paste. The active material thin film 32 was formed by applying a thickness of 300 / m by the Yuichi blade method. An aluminum foil with a thickness of 30 m to be the cathode current collector 31 was placed on the upper part, and a cathode active material base adjusted to a thickness of 300 m by the Doc Yuichi blade method was applied on the aluminum foil again. . This was left in a dryer at 60 ° C for 60 minutes to make it semi-dry. Positive electrode 3 was produced by lightly rolling the produced laminate using a rotating roll with the gap between the rolls adjusted to 550Π1 and bringing the laminate into close contact. After the positive electrode 3 was immersed in the electrolytic solution, the peel strength between the positive electrode active material layer portion and the positive electrode current collector was measured, and a value of 20 to 25 gf / cm was shown. Next, the fabrication of the negative electrode 5 will be described.
メソフェーズマイクロビーズカーボン (大阪ガス (株) 製) を 9 5重 量部、 ポリフッ化ビニリデンを 5重量部を NM Pに分散して作製した負 極活物質ペーストを、 ドク夕一ブレード法にて厚さ 3 0 O / mに塗布し て活物質薄膜 5 2を形成した。 その上部に負極集電体 5 1となる厚さ 2 0 /mの銅箔を載せ、 さらにその上部に再度ドク夕一ブレード法で厚さ 3 0 0 /mに調整した負極活物質べ一ストを塗布した。 これを 6 0 °Cの 乾燥機中に 6 0分間放置して半乾き状態にした。 この作製した積層体を ロールの隙間を 5 5 0 zmに調整した回転ロールを用いて軽く圧延して 積層体を密着させ、 負極 5を作製した。 Negative active material paste prepared by dispersing 95 parts by weight of mesophase microbead carbon (manufactured by Osaka Gas Co., Ltd.) and 5 parts by weight of polyvinylidene fluoride in NMP was thickened by the Doc Yuichi blade method. The active material thin film 52 was formed by applying the composition to a thickness of 30 O / m. A copper foil having a thickness of 20 / m to be a negative electrode current collector 51 is placed on the upper part, and a negative electrode active material base adjusted to a thickness of 300 / m again by the Doc Yuichi blade method is further placed on the copper foil. Was applied. This was left in a dryer at 60 ° C for 60 minutes to make it semi-dry. The produced laminate was lightly rolled using a rotating roll with the gap between the rolls adjusted to 550 zm, and the laminate was brought into close contact to produce a negative electrode 5.
この負極 5を電解液に浸潰させた後に負極活物質層部と負極集電体と の剥離強度を測定したところ、 1 0〜5 5 g f / c mの値を示した。 電極積層体の作製について説明する。 After the negative electrode 5 was immersed in the electrolytic solution, the peel strength between the negative electrode active material layer portion and the negative electrode current collector was measured, and a value of 10 to 55 gf / cm was shown. The production of the electrode laminate will be described.
セパレ一夕材 4としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5 z mの多孔性のポリプロピレンシート (へキストセラニーズ (株)製、 商品 名:セルガード # 2 4 0 0 ) を 2個取り出し、 それぞれ片面に接着性樹 脂 6として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメルト プリント法により点状に塗着した。 樹脂 6の厚さおよび塗着面積は実施 例 1と同じとした。 次に、 接着性樹脂 6温度を室温に一旦降温して 1枚 の負極 5 (または正極) を 2枚のセパレ一夕 4で挟んで対向するように 配置し密着させた。 その後表面温度を 7 0 °Cに設定した加熱ロールで挟 み込み、 樹脂 6を再融解させて電極 3、 5とセパレ一夕 4の間を融着さ せた。 次いで、 所定の大きさに切断したセパレ一夕付き負極 5の一方の セパレ一夕 4面に、 メルトプリント法を用いて上記樹脂 6を塗着し、 そ
の上に所定の大きさに打ち抜いた正極 3 (または負極) を密着させて口 ールで加熱し、 熱融着させた。 次いで、 新たなセパレ一夕付き負極 5の 一方のセパレ一夕 4面に樹脂 6を塗着し、 先に接着した正極 3の他方の 面に密着させ、 熱融着させた。 この工程を所定回繰り返し、 第 8図に示 すような平板状積層構造電池体を得た。 Separation material 4 A roll of a porous polypropylene sheet (Hexist Celanese Co., Ltd., trade name: Celgard # 2400) with a width of 12 cm and a thickness of 25 zm, which is bundled in a roll shape as a material 4 Each of them was taken out, and H-6285 (product number: Nitta Gelatin Co., Ltd.) was applied to one surface of each side in a dot-like manner by a melt print method. The thickness and coating area of the resin 6 were the same as in Example 1. Next, the temperature of the adhesive resin 6 was once lowered to room temperature, and one negative electrode 5 (or positive electrode) was placed so as to be opposed to and sandwiched between two sheets of separator 4. Thereafter, it was sandwiched between heating rolls whose surface temperature was set at 70 ° C., and the resin 6 was re-melted to fuse between the electrodes 3 and 5 and Separee overnight 4. Next, the resin 6 is applied to one of the four surfaces of the negative electrode 5 with the separator 5 cut into a predetermined size using a melt printing method. The positive electrode 3 (or negative electrode) punched into a predetermined size was brought into close contact with it, and heated with a jar to heat-bond. Next, a resin 6 was applied to one of the four surfaces of the separator 5 with the new negative electrode 5 with a separate separator, adhered to the other surface of the previously bonded positive electrode 3, and thermally fused. This process was repeated a predetermined number of times to obtain a flat-plate laminated battery body as shown in FIG.
この平板状積層構造電池体の正極および負極集電体 3 1、 5 1それぞ れの端部に接続した集電夕ブを正極同士、 負極同士スポット溶接するこ とにより、 積層構造電池体を電気的に並列に接続した。 The positive electrode and negative electrode current collectors 31 and 51 of this flat plate-shaped laminated battery body were spot-welded to the positive and negative electrodes of the positive and negative electrodes, respectively. Electrically connected in parallel.
続いて、 電極積層体内部に炭酸エチレンと炭酸ジェチルを溶媒とし L i P F 6を溶質とする電解液を注入した。 電解液注入後に電池体をアル ミラミネートフィルムでパックし、 熱融着して封口処理を行うことによ り、 電極が積層化された薄型リチウムィォン二次電池が完成した。 Subsequently, the L i PF 6 was ethylene carbonate Jechiru the solvent within electrode stack the electrolyte solution was injected to the solute. After the electrolyte was injected, the battery body was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery with stacked electrodes.
実施例 6 · Example 6
本実施例は第 9図に示した平板状卷型構造電池体を有するリチウムィ オン二次電池の製造方法である。 なお、 第 9図では樹脂部 6と空隙部 7 を区別しないで示している。 This embodiment is a method for manufacturing a lithium ion secondary battery having the flat-plate-shaped battery structure shown in FIG. In FIG. 9, the resin portion 6 and the void portion 7 are shown without distinction.
実施例 5記載と同様の材料および方法で、 正極 3および負極 5を作製 した後、 セパレ一夕材 4としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5 mの多孔性のポリプロピレンシート(へキストセラニーズ (株)製、 商品名:セルガード # 2 4 0 0 ) を 2個取り出し、 それぞれ片面に接着 性樹脂 6として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメ ルトプリント法により点状に塗着した。 樹脂 6の厚さおよび塗着面積は 実施例 1と同じとした。 次に、 接着性樹脂 6温度を室温に一旦降温して 1枚の正極 3 (または負極) を 2枚のセパレ一夕 4で挟んで対向するよ うに配置し密着させた。 その後表面温度を 7 0 °Cに設定した加熱ロール で挟み込み、 樹脂 6を再融解させて負極 5 (または正極) とセパレ一夕
4の間を融着させた。 After preparing the positive electrode 3 and the negative electrode 5 using the same materials and methods as described in Example 5, a porous polypropylene sheet having a width of 12 cm and a thickness of 25 m, which is bundled in a roll shape as a separation material 4. Take out two (Hegist Celanese Co., Ltd., product name: Celgard # 2400), and use H—6825 as an adhesive resin 6 on one side (product number: Nitta Gelatin Co., Ltd.) ) Was applied dotwise by melt printing. The thickness and coating area of the resin 6 were the same as in Example 1. Next, the temperature of the adhesive resin 6 was once lowered to room temperature, and one positive electrode 3 (or negative electrode) was arranged so as to be opposed to each other while being sandwiched between two separate separators 4. After that, it is sandwiched between heating rolls whose surface temperature is set at 70 ° C, resin 6 is re-melted, and the negative electrode 5 (or positive electrode) and the separator are separated. 4 was fused.
次いで、 帯状のセパレ一夕付き正極 3 (または負極) の一方のセパレ —夕 4面に樹脂 6を塗布し、 セパレ一夕付き正極 3 (または負極) の一 端を一定量折り曲げ、折り目に所定の大きさに切断しておいた負極 5 (ま たは正極) を挟んだ。 引き続いて負極 5 (または正極) とセパレ一夕付 き正極 3 (または負極) を重ねあわせてから、 全体をロールで加熱融着 させた。 その後、 セパレ一夕付き正極 3 (または負極) において先般樹 脂 6を塗着した面の反対側に樹脂 6を塗着し、 弓 Iき続いて長円上に卷き 込んでいった。 Next, apply resin 6 to one side of the positive electrode 3 (or negative electrode) with a strip-shaped separator, and apply a resin 6 to the 4th surface, bend one end of the positive electrode 3 (or negative electrode) with the separator separately, Negative electrode 5 (or positive electrode), which had been cut to the size of, was sandwiched. Subsequently, the negative electrode 5 (or the positive electrode) and the positive electrode 3 (or the negative electrode) with separation were overlapped, and the whole was heated and fused with a roll. After that, on the positive electrode 3 (or the negative electrode) with the separator, the resin 6 was applied on the opposite side of the surface on which the resin 6 was previously applied, followed by the bow I and then wound on an ellipse.
卷き上げた長円上の電池体をロールにより加熱融着させ、 正極 3およ び負極 5とセパレー夕 4を接着して第 9図に示すような平板状卷型積層 構造電池体を得た。 The wound battery body on the ellipse is heated and fused by a roll, and the positive electrode 3 and the negative electrode 5 are adhered to the separator 4 to obtain a flat-plate wound laminated battery body as shown in FIG. Was.
この平板状積層構造電池体の正極および負極集電体 3 1、 5 1それぞ れの端部に接続した集電タブを正極同士、 負極同士スポット溶接するこ とにより、 積層構造電池体を電気的に並列に接続した。 The positive and negative electrode current collectors 31 and 51 of the flat laminated battery body were spot-welded to the positive and negative electrodes of the current collecting tabs connected to the respective ends of the current collectors 31 and 51, so that the laminated battery body was electrically connected. Were connected in parallel.
続いて、 電極積層体内部に炭酸エチレンと炭酸ジェチルを溶媒とし L i P F 6を溶質とする電解液を注入した。 電解液注入後に電池体をアル ミラミネ一トフィルムでパヅクし、 熱融着して封口処理を行うことによ り、 電極が巻き積層化された薄型リチウムイオン二次電池が完成した。 実施例 7 . Subsequently, the L i PF 6 was ethylene carbonate Jechiru the solvent within electrode stack the electrolyte solution was injected to the solute. After injecting the electrolyte solution, the battery body was packed with an aluminum film, heat-sealed, and sealed to complete a thin lithium ion secondary battery in which electrodes were wound and laminated. Embodiment 7.
上記実施例 6においてはセパレー夕 4を巻き上げる例を示したが、 正 極 3 (または負極) を間に接合した帯状のセパレ一夕 4を折り畳み、 負 極 5 (または正極) を貼り合わせつつセパレ一夕 4を折り畳む工程を繰 り返して平板状折畳み型積層構造電池体としてもよい。 In Example 6 above, an example was shown in which the separator 4 was wound up. However, the strip-shaped separator 4 in which the positive electrode 3 (or the negative electrode) was joined was folded, and the negative electrode 5 (or the positive electrode) was attached to the separator. The process of folding overnight 4 may be repeated to obtain a flat-type foldable laminated battery body.
実施例 8 . Example 8
本実施例は第 1 0図に示した平板状卷型積層構造電池体を有するリチ
ゥムイオン二次電池の製造方法であり、 上記実施例 6と異なり、 各電極 およびセパレー夕を同時に巻き上げる例である。 なお、 第 1 0図におい ては、 樹脂部 6と空隙部 7を区別しないで示している。 This embodiment is directed to a lithium battery having the flat wound type laminated structure battery body shown in FIG. This is a method for manufacturing a pumion secondary battery, which is different from Example 6 above in that each electrode and separator are simultaneously wound. In FIG. 10, the resin portion 6 and the void portion 7 are shown without distinction.
実施例 5記載と同様の材料および方法で、 正極 3および負極 5を作製 した後、 セパレー夕材 4としてロール状に束ねられた幅 1 2 c m、 厚さ After preparing the positive electrode 3 and the negative electrode 5 by using the same materials and the same method as described in Example 5, a width of 12 cm and a thickness bundled in a roll as a separation material 4 were prepared.
2 5 mの多孔性のポリプロピレンシート(へキストセラニーズ (株)製、 商品名:セルガード # 2 4 0 0 ) を 2個取り出し、 それぞれ片面に接着 性樹脂 6として H— 6 8 2 5 (商品番号:新田ゼラチン (株) 製) をメ ルトプリント法により点状に塗着した。 樹脂 6の厚さおよび塗着面積は 実施例 1と同じとした。 次に、 樹脂 6温度を室温に一旦降温して 1枚の 正極 3 (または負極) を 2枚のセパレ一夕 4で挟んで対向するように配 置し密着させた。 その後表面温度を 7 0 °Cに設定した加熱ロールで挟み 込み、 樹脂 6を再融解させて正極 3 (または負極) とセパレ一夕 4の間 を融着させ、 セパレ一夕 4を正極 3 (または負極) の両面に融着させた セパレ一夕付き正極 3 (または負極) を得た。 このセパレ一夕付き正極Take out two 25 m porous polypropylene sheets (made by Hoechst Celanese Co., Ltd., product name: Celgard # 240), each of which has an adhesive resin 6 on one side as H—68 25 (product No .: Nitta Gelatin Co., Ltd.) was applied dot-wise by melt printing. The thickness and coating area of the resin 6 were the same as in Example 1. Next, the temperature of the resin 6 was once lowered to room temperature, and one positive electrode 3 (or negative electrode) was placed so as to be opposed to and sandwiched between two sheets of the separator 4 so as to be in close contact with each other. After that, it is sandwiched between heating rolls whose surface temperature is set at 70 ° C, resin 6 is re-melted, and the positive electrode 3 (or the negative electrode) is fused between the positive electrode 3 (or negative electrode 4) and the positive electrode 3 (positive electrode 3). (Or negative electrode) to obtain positive electrode 3 (or negative electrode) with separate separation fused to both sides. Positive electrode with this separation
3 (または負極) の両側のセパレ一夕 4面にもメルトプリント法にて樹 且旨 6を塗着した。 On both sides of Separation 3 on both sides of 3 (or the negative electrode), resin coating 6 was applied by melt printing.
次に、 帯状の負極 5 (または正極) をセパレ一夕付き正極 3 (または 負極) の片側に一定量突出させて配置した。 突出した負極 5 (または正 極) を折り曲げてセパレ一夕付きの正極 3 (または負極) を包み込むよ うにして貼り合わせ、 次いでセパレ一夕付きの正極 3 (または負極) を 折り曲げて負極 5 (または正極) を包み込むようにして貼り合わた。 こ の操作を繰り返し行つた後、加熱ロールで全体を融着させることにより、 第 1 0図に示したような卷型積層構造電池体を得た。 Next, the strip-shaped negative electrode 5 (or the positive electrode) was arranged so as to protrude by a certain amount on one side of the positive electrode 3 (or the negative electrode) with a separation. Bend the protruding negative electrode 5 (or positive electrode) and wrap it around the positive electrode 3 (or negative electrode) with the separator, and then bond the positive electrode 3 (or negative electrode) with the separator, and then fold the negative electrode 5 (or negative electrode). (Or positive electrode). After repeating this operation, the whole was fused with a heating roll to obtain a wound laminated battery body as shown in FIG.
この平板状積層構造電池体の正極および負極集電体 3 1、 5 1それぞ れの端部に接続した集電夕ブを正極同士、 負極同士スポット溶接するこ
とにより、 積層構造電池体を電気的に並列に接続した。 The positive and negative electrode current collectors 31 and 51 of this flat laminated battery body were spot-welded to the positive and negative electrodes of the positive and negative electrodes, respectively. As a result, the stacked battery bodies were electrically connected in parallel.
続いて、 電極積層体内部に炭酸ェチレンと炭酸ジェチルを溶媒とし L i P F sを溶質とする電解液を注入した。 電解液注入後に電池体をアル ミラミネートフィルムでパックし、 熱融着して封口処理を行うことによ り、 卷型積層構造電池体を有する薄型リチウムィォン二次電池が完成し た。 Subsequently, the inside electrode stack was carbonated Echiren and carbonate Jechiru solvent L i PF s an electrolytic solution was injected to the solute. After the electrolyte was injected, the battery body was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery having a rolled-up laminated battery body.
なお、 上記各実施例ではセパレ一夕 4に接着性樹脂 6を塗着した場合 について説明したが、 活物質層 3 2、 5 2に塗着してもよく、 さらにセ パレ一夕 4と活物質層 3 2、 5 2の両方に塗着してもよい。 産業上の利用可能性 In each of the above embodiments, the case where the adhesive resin 6 is applied to the separator 4 is described. However, the active material layers 32 and 52 may be applied. Both the material layers 32 and 52 may be applied. Industrial applicability
携帯パソコン、 携帯電話等の携帯用電子機器の二次電池として用いら れ、 電池の性能向上とともに、 小型 ·軽量化、 任意形状化が可能とな—る。
It is used as a secondary battery in portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped as well as improving battery performance.
Claims
1 . 正極活物質層を正極集電体に接合してなる正極と、 負極活物質層 を負極集電体に接合してなる負極と、 上記正極活物質層と上記負極活物 質層の間に配置されるセパレ一夕と、 上記各活物質層と上記セパレー夕 との間を連通する空隙を形成するように上記各活物質層と上記セパレー 夕の間にそれぞれ部分的に配置された接着性樹脂とを有する電極積層体 を備え、 上記空隙、 セパレー夕、 および各活物質層にそれぞれリチウム イオンを含む電解液を保持したことを特徴とするリチウムイオン二次電 池。 1. A positive electrode in which a positive electrode active material layer is joined to a positive electrode current collector, a negative electrode in which a negative electrode active material layer is joined to a negative electrode current collector, and between the positive electrode active material layer and the negative electrode active material layer The bonding is partially arranged between each of the active material layers and the separation layer so as to form a gap communicating between each of the active material layers and the separation layer. A lithium ion secondary battery comprising: an electrode laminate having a conductive resin; and an electrolyte containing lithium ions in each of the space, the separator, and each active material layer.
2 . 空隙部の面積が、 各活物質層とセパレー夕が対向する各対向面の全 面積の 3 0 %ないし 9 0 %であることを特徴とする請求の範囲第 1項記 載のリチウムィオン二次電池。 2. The lithium ion according to claim 1, wherein an area of the void portion is 30% to 90% of a total area of each opposing surface of each active material layer and the separator. Rechargeable battery.
3 . 各活物質層とセパレ一夕間の距離が 3 0 zm以下であることを特徴 とする請求の範囲第 1項記載のリチウムィォン二次電池。 3. The lithium ion secondary battery according to claim 1, wherein a distance between each active material layer and the separator is 30 zm or less.
4 . 接着性樹脂として常温において固体である電子絶縁性の樹脂を用い たことを特徴とする請求の範囲第 1項記載のリチウムイオン二次電池。 4. The lithium ion secondary battery according to claim 1, wherein an electronically insulating resin that is solid at room temperature is used as the adhesive resin.
5 . 電極積層体を複数層有することを特徴とする請求の範囲第 1項記載 のリチウムイオン二次電池。 5. The lithium ion secondary battery according to claim 1, comprising a plurality of electrode laminates.
6 . 電極積層体の複数層は、 切り離された複数のセパレ一夕間に正極と 負極を交互に配置することにより形成されたものであることを特徴とす る請求の範囲第 5項記載のリチウムィオン二次電池。 6. The method according to claim 5, wherein the plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode during a plurality of separated separations. Lithium secondary battery.
7 . 電極積層体の複数層は、 巻き上げられたセパレ一夕間に正極と負極 を交互に配置することにより形成されたものであることを特徴とする請 求の範囲第 5項記載のリチウムィオン二次電池。 7. The lithium ion according to claim 5, wherein the plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode during the separated separation. Rechargeable battery.
8 . 電極積層体の複数層は、 折り畳まれたセパレ一夕間に正極と負極を
交互に配置することにより形成されたものであることを特徴とする請求 の範囲第 5項記載のリチウムィオン二次電池。
8. The multiple layers of the electrode stack consist of a positive electrode and a negative electrode The lithium ion secondary battery according to claim 5, wherein the lithium ion secondary battery is formed by alternately arranging the lithium ion secondary batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1998/000608 WO1999041797A1 (en) | 1998-02-16 | 1998-02-16 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1998/000608 WO1999041797A1 (en) | 1998-02-16 | 1998-02-16 | Lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999041797A1 true WO1999041797A1 (en) | 1999-08-19 |
Family
ID=14207614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/000608 WO1999041797A1 (en) | 1998-02-16 | 1998-02-16 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999041797A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016535923A (en) * | 2013-11-04 | 2016-11-17 | エルジー・ケム・リミテッド | Method for forming adhesive layer for secondary battery |
CN107431187A (en) * | 2015-03-17 | 2017-12-01 | 株式会社Lg化学 | Electrode with porous binder coating, manufacturing method thereof, and lithium secondary battery including the same |
US20220115709A1 (en) * | 2020-10-09 | 2022-04-14 | Prime Planet Energy & Solutions, Inc. | Non-aqueous electrolyte secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS628471A (en) * | 1985-07-04 | 1987-01-16 | Matsushita Electric Ind Co Ltd | Air button cell |
JPS6341864U (en) * | 1986-09-03 | 1988-03-18 | ||
JPS63184560U (en) * | 1987-05-19 | 1988-11-28 | ||
US5437692A (en) * | 1994-11-02 | 1995-08-01 | Dasgupta; Sankar | Method for forming an electrode-electrolyte assembly |
JPH09500485A (en) * | 1993-11-30 | 1997-01-14 | ベル コミュニケーションズ リサーチ,インコーポレイテッド | Electrolyte activatable lithium-ion rechargeable battery cell and method of manufacturing the same |
JPH09293518A (en) * | 1996-04-26 | 1997-11-11 | Asahi Chem Ind Co Ltd | Thin film electrolyte and battery using this electrolyte |
-
1998
- 1998-02-16 WO PCT/JP1998/000608 patent/WO1999041797A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS628471A (en) * | 1985-07-04 | 1987-01-16 | Matsushita Electric Ind Co Ltd | Air button cell |
JPS6341864U (en) * | 1986-09-03 | 1988-03-18 | ||
JPS63184560U (en) * | 1987-05-19 | 1988-11-28 | ||
JPH09500485A (en) * | 1993-11-30 | 1997-01-14 | ベル コミュニケーションズ リサーチ,インコーポレイテッド | Electrolyte activatable lithium-ion rechargeable battery cell and method of manufacturing the same |
US5437692A (en) * | 1994-11-02 | 1995-08-01 | Dasgupta; Sankar | Method for forming an electrode-electrolyte assembly |
JPH09293518A (en) * | 1996-04-26 | 1997-11-11 | Asahi Chem Ind Co Ltd | Thin film electrolyte and battery using this electrolyte |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016535923A (en) * | 2013-11-04 | 2016-11-17 | エルジー・ケム・リミテッド | Method for forming adhesive layer for secondary battery |
US10193120B2 (en) | 2013-11-04 | 2019-01-29 | Lg Chem, Ltd. | Method for forming adhesion layer for secondary battery |
CN107431187A (en) * | 2015-03-17 | 2017-12-01 | 株式会社Lg化学 | Electrode with porous binder coating, manufacturing method thereof, and lithium secondary battery including the same |
US20170365841A1 (en) * | 2015-03-17 | 2017-12-21 | Lg Chem, Ltd. | Electrode with porous binder coating layer, method for manufacturing the same, and lithium secondary battery comprising the same |
JP2018508939A (en) * | 2015-03-17 | 2018-03-29 | エルジー・ケム・リミテッド | Electrode provided with porous binder coating layer, method for producing the same, and lithium secondary battery including the same |
US10468663B2 (en) | 2015-03-17 | 2019-11-05 | Lg Chem, Ltd. | Electrode with porous binder coating layer, method for manufacturing the same, and lithium secondary battery comprising the same |
CN107431187B (en) * | 2015-03-17 | 2021-03-16 | 株式会社Lg化学 | Electrode with porous binder coating, method of making the same, and battery including the same |
US20220115709A1 (en) * | 2020-10-09 | 2022-04-14 | Prime Planet Energy & Solutions, Inc. | Non-aqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3225864B2 (en) | Lithium ion secondary battery and method of manufacturing the same | |
KR100279071B1 (en) | Lithium ion secondary battery | |
EP0954042B1 (en) | Lithium ion secondary battery and manufacture thereof | |
KR100287004B1 (en) | Lithium-ion Secondary Battery and Manufacturing Method Thereof | |
EP0959513B1 (en) | Lithium ion secondary battery and manufacture thereof | |
JP4008508B2 (en) | Method for producing lithium ion secondary battery | |
US6291102B1 (en) | Lithium ion secondary battery | |
JP3474853B2 (en) | Manufacturing method of lithium ion secondary battery | |
KR101663351B1 (en) | Cell for electrochemical device and preparation method thereof | |
WO1999048163A1 (en) | Lithium ion battery and method for forming the same | |
WO1999031751A1 (en) | Lithium ion secondary battery and its manufacture | |
JP2000030742A (en) | Lithium-ion secondary battery element | |
JPH10284055A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
WO1999034469A1 (en) | Lithium ion secondary battery | |
WO1999048162A1 (en) | Lithium ion battery and method of manufacture thereof | |
JPH11154534A (en) | Lithium ion secondary battery element | |
WO1999034470A1 (en) | Process for manufacture of lithium ion secondary battery | |
WO1999040645A1 (en) | Lithium battery and method for manufacturing the same | |
WO1999031750A1 (en) | Adhesive for cells, a cell using the same and a process for producing cells | |
JP2003151638A (en) | Lithium-ion secondary battery | |
WO1999033136A1 (en) | Lithium ion secondary battery and its manufacture | |
WO1999026308A1 (en) | Bonding agent for cells and cell using the same | |
WO1999048164A1 (en) | Secondary battery and method for forming the same | |
WO1999041797A1 (en) | Lithium ion secondary battery | |
KR20010005879A (en) | Method for manufacturing lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |