WO1999031750A1 - Adhesive for cells, a cell using the same and a process for producing cells - Google Patents
Adhesive for cells, a cell using the same and a process for producing cells Download PDFInfo
- Publication number
- WO1999031750A1 WO1999031750A1 PCT/JP1997/004677 JP9704677W WO9931750A1 WO 1999031750 A1 WO1999031750 A1 WO 1999031750A1 JP 9704677 W JP9704677 W JP 9704677W WO 9931750 A1 WO9931750 A1 WO 9931750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- adhesive
- separator
- electrode
- polyvinyl alcohol
- Prior art date
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 118
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 46
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 45
- 239000000243 solution Substances 0.000 claims abstract description 35
- 239000003960 organic solvent Substances 0.000 claims abstract description 19
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 9
- 239000011149 active material Substances 0.000 claims description 27
- 239000003792 electrolyte Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 238000007127 saponification reaction Methods 0.000 claims description 19
- 238000006116 polymerization reaction Methods 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000013543 active substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 45
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 30
- 239000012790 adhesive layer Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- -1 polyethylene Polymers 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 238000007718 adhesive strength test Methods 0.000 description 3
- 238000007606 doctor blade method Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- SZNYYWIUQFZLLT-UHFFFAOYSA-N 2-methyl-1-(2-methylpropoxy)propane Chemical compound CC(C)COCC(C)C SZNYYWIUQFZLLT-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- FYELSNVLZVIGTI-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-5-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1CC)CC(=O)N1CC2=C(CC1)NN=N2 FYELSNVLZVIGTI-UHFFFAOYSA-N 0.000 description 1
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 1
- MVYGFAZZLWOFNN-UHFFFAOYSA-N 4,4-dimethyl-1,3-dioxolane Chemical compound CC1(C)COCO1 MVYGFAZZLWOFNN-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J129/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
- C09J129/02—Homopolymers or copolymers of unsaturated alcohols
- C09J129/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/10—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery adhesive, a battery using the same, and a method for manufacturing a battery.
- the present invention relates to a secondary battery used for portable electronic devices and the like. More specifically, the present invention relates to an adhesive capable of forming a high-performance battery in a thin shape, a battery using the same, and a method for manufacturing the battery. is there. Background art
- Lithium-ion batteries are secondary batteries that are expected to achieve the highest voltage and highest energy density among batteries to date, and improvements are being actively pursued today.
- a lithium ion battery has a positive electrode, a negative electrode, and an ion conductive layer sandwiched between them as main components.
- a positive electrode is formed by applying a powder of lithium cobalt oxide or the like as an active material to a current collector to form a plate, and a negative electrode is similarly made of a carbon-based material as an active material. Is applied to a current collector and applied on a plate.
- the ion conductive layer is filled with a non-aqueous electrolyte with a separator made of a porous film made of polyethylene and polypropylene interposed therebetween.
- a layer of an ion-conductive solid electrolyte and a layer of an electrode material are heated with a thermoplastic resin binder.
- a manufacturing method is shown in which a battery is integrated by binding.
- the electrodes and the electrolyte are integrated to maintain electrical contact, they function as a battery without external pressure.
- a battery using a polymer gel as an ionic conductor is known. By using vinylidene fluoride and hexafluoropropylene copolymer as the gel, the positive electrode, separator and negative electrode are integrated.
- the conventional battery is configured as described above, in order to make the electrode layer and the electrolyte layer electrically contact sufficiently, use a strong outer can made of metal or the like that can apply pressure from the outside. As a result, the ratio of the outer case other than the power generation unit to the volume and weight of the battery has increased, and there has been a problem that it is disadvantageous to form a battery with a high energy density.
- the electrode-electrolyte interface is covered with a solid binder.
- This is disadvantageous compared to a battery that uses a liquid electrolyte and applies pressure from the outside with an outer can.
- a binder having conductivity equal to or higher than that of the liquid electrolyte has not been generally found, and the same conductivity as that of a battery using the liquid electrolyte cannot be obtained.
- a gel electrolyte having a conductivity equal to or higher than that of a liquid electrolyte has not been generally found, and it is possible to obtain the same charge / discharge characteristics as a battery using a liquid electrolyte. Can not.
- the present invention has been made in order to solve the above-mentioned problems, and the electrode-electrolyte can be formed without using a strong outer can for applying pressure from the outside by joining the electrode layer and the electrolyte layer.
- the first battery adhesive according to the present invention is an adhesive for bonding an active material layer bonded to a current collector to a separator for holding a battery electrolyte, and the adhesive is It consists of an organic solvent solution containing polyvinyl alcohol. This makes it possible to achieve high adhesiveness between each active material layer and the separator and high charge-discharge characteristics of the battery, and is a practical battery that is thin, has high reliability, and has high charge-discharge characteristics. Can be obtained at low cost.
- the second battery adhesive according to the present invention is the resin according to the first battery adhesive, wherein the resin is incompatible with polyvinyl alcohol in an organic solvent solution and swells or dissolves in a battery electrolyte. Are further mixed. Thereby, the ion conductivity of the interface layer between each active material layer formed by the adhesive and the separation layer can be made higher.
- a third battery adhesive according to the present invention is the above-mentioned first battery adhesive, wherein the degree of saponification of polyvinyl alcohol is 95% or more.
- a fourth battery adhesive according to the present invention is the first battery adhesive, wherein the degree of polymerization of polyvinyl alcohol is 100 or more. Thereby, a battery having high bonding strength and more preferable characteristics can be obtained.
- the active material layers of the positive electrode and the negative electrode each having the active material layer adhered to the current collector are separated from the active material layer for holding the battery electrolyte, and the organic solvent contains polyvinyl alcohol. It has an electrode laminate bonded with a battery adhesive. As a result, it is possible to achieve high adhesion between each active material layer and the separator and high charge / discharge characteristics of the battery, and realize a thin, reliable, and practical battery with high charge / discharge characteristics. It can be obtained at low cost.
- the second battery according to the present invention is the battery according to the first battery, wherein the battery adhesive is further incompatible with polyvinyl alcohol and further swells or dissolves in the battery electrolyte. It becomes. Thereby, the ionic conductivity of the interface layer between each active material layer formed by the adhesive and the separation layer can be made higher.
- a third battery according to the present invention is the same as the first battery, except that the third battery includes a plurality of layers of the electrode laminate.
- a fourth battery according to the present invention is a battery according to the third battery, wherein a plurality of layers of the electrode laminate are formed by alternately arranging a plurality of layers of the positive electrode and the negative electrode separated from each other. is there.
- a plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode between the wound separators.
- a plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode in a folded separator.
- the adhesive strength and high ionic conductivity can be ensured, a strong outer can is required even in a configuration having a plurality of layers of the electrode laminate.
- a compact, high-performance, large-capacity stacked electrode battery can be obtained.
- the first method for producing a battery according to the present invention comprises the steps of:
- the method includes a step of integrating the above-mentioned electrode and the separator by removing at least a part of the organic solvent.
- the method for producing a second battery according to the present invention is the method for producing a battery according to the first battery, wherein the adhesive for a battery is applied to the surface of the separator, and then the adhesive for the battery is applied to the application surface of the separator.
- the method further comprises a step of gelling the battery adhesive by adding a second solvent capable of gelling the adhesive solution. Thereby, the ionic conductivity of the interface layer between each active material layer formed by the adhesive and the separator can be further increased.
- a third method for producing a battery according to the present invention is the method for producing a battery according to the first method, wherein the battery adhesive is incompatible with polyvinyl alcohol in the organic solvent solution and swells in the battery electrolyte.
- the saponification degree of polyvinyl alcohol is 95% or more in the first method for producing a battery.
- a fifth method for producing a battery according to the present invention is the method for producing a battery according to the first method, wherein the degree of polymerization of polyvinyl alcohol is 100 or more. You.
- FIG. 1 is a schematic cross-sectional view of a main part of an embodiment of a battery according to the present invention.
- FIGS. 2, 3, and 4 show other embodiments of the battery according to the present invention. It is a principal part cross-section schematic diagram demonstrated. BEST MODE FOR CARRYING OUT THE INVENTION
- the present inventors have conducted intensive studies on a preferred method of bonding the active material layer surfaces of a pair of electrodes having the active material layer bonded to the current collector to the separator, and have reached the present invention.
- the present invention provides a positive electrode 1 in which a positive electrode active material layer 3 is bonded to a positive electrode current collector 2, and a negative electrode 4 in which a negative electrode active material layer 6 is bonded to a negative electrode current collector 5.
- the present invention relates to a battery having an electrode laminate 9 in which a separator 7 holding an electrolytic solution between a positive electrode 1 and a negative electrode 4 is joined by an adhesive layer 8.
- a feature of the present invention resides in the composition of the battery adhesive forming the adhesive layer 8 that joins the electrodes (positive and negative electrodes) 1 and 4 and the separator.
- the present inventor has conducted various studies on a secondary battery that has been studied as to how thin and reliable the battery is, and how to increase the charge / discharge efficiency.
- the inventors have found that a thin and reliable secondary battery with high charge / discharge efficiency can be manufactured by using, and the present invention has been completed.
- the battery adhesive for the adhesive layer 8 for example, “Poval” (Koichi Nagano et al. Polymer Publishing Association Showa 45 First Edition
- the adhesive develops a strong adhesive force, and the battery can be integrated with a small amount of adhesive.
- the adhesive strength obtained can be obtained, and the adhesive layer 8 is made porous by drying and removing the solvent in the adhesive, or the adhesive layer 8 is gelated by partially distilling off the solvent. 8, the ionic conductivity can be increased, and the charge / discharge characteristics can be improved.
- a mixture of polyvinyl alcohol and another resin can be used.
- the adhesive layer 8 is incompatible with polyvinyl alcohol and a phase exhibiting an adhesive function.
- a battery having particularly excellent performance can be obtained by having a resin electrolyte and a resin that dissolves or swells in the battery electrolyte and has two phases, ie, a phase that exhibits ionic conduction.
- the degree of saponification of polyvinyl alcohol is preferably 95% or more, and the degree of polymerization of polyvinyl alcohol is preferably 100 or more.
- the active material layer of the pair of electrodes having the active material layer bonded to the current collector is applied to the coating surface of the separator.
- at least a part of the organic solvent is distilled off to integrate the electrode and the separator to produce a single electrode laminate 9 shown in FIG.
- a part of the adhesive layer 8 is gelled when the electrolytic solution is injected, and the ionic conductivity of the adhesive layer 8 is increased, and the charge / discharge characteristics are excellent. A battery is obtained.
- FIG. 1 shows a single-electrode battery composed of a single electrode stack 9; As shown in FIGS. 3 and 4, a stacked electrode battery having a structure having a plurality of electrode stacks 9 can be manufactured. This manufacturing method will be described in detail in the following examples.
- a second solvent capable of gelling the battery adhesive solution is added to the coating surface of the separator, thereby forming the battery.
- the adhesive for use is gelled, the ionic conductivity of the adhesive layer 8 is increased, and the battery performance can be improved.
- any solvent that does not dissolve polyvinyl alcohol can be used.
- hydrocarbons, ketone compounds, ester compounds, ether compounds, alcohols and the like and mixed solvents thereof can be used.
- the adhesive layer 8 has two phases of a phase exhibiting an adhesive function and a phase exhibiting ionic conduction, and a battery having particularly excellent performance can be obtained.
- Examples of the resin that is incompatible with the polyvinyl alcohol and that dissolves or swells in the battery electrolyte include polystyrene, polyacrylate, polyacrylonitrile, polyvinyl acetate, polyacetal, and mixtures or copolymers thereof. it can.
- a solution in which a lithium salt is dissolved in a non-protonic organic solvent can be used.
- the lithium salt L i C 10 4, L iBF 4, L iAs F 6, L i CF 3 S0 3, L i PF 6, L il, L iB r, L i S CN, L i 2 B 10 C l 10 , Li CF 3 C ⁇ 2 and the like.
- aprotic organic solvents propylene glycol, butyl lactone, ethylene glycol, tetrahydrofuran, 2-tetrahydrofuran Drofuran, 1,3-dioxolan, 4,4-dimethyl-1,3-dioxolan, getylcapone, dimethylcapone, sulfolane, 3-methylsulfolane, tert-butylether, iso-butylether, 1 , 2-Dimethoxetane, 1,2-ethoxymethoxetane, and the like, and a mixed solvent obtained by combining them can be used.
- organic solvent constituting the adhesive N-methyl-2-pyrrolidone, dimethylsulfoxide, acetoamide, arptyrolactone, and the like, and a mixed solvent obtained by combining these can be used.
- a filler such as an inorganic oxide can be added to the battery adhesive.
- the adhesive layer 8 becomes porous by adding the filler, it is expected that the ionic conductivity of the adhesive layer 8 is improved and the battery characteristics are improved.
- any material having sufficient strength such as a porous film made of an electrically insulating material, a net, and a nonwoven fabric, can be used.
- the material is not particularly limited, but a single porous film or a laminated porous film of polyethylene or polypropylene is preferable from the viewpoint of battery performance.
- the adhesive strength of the battery was 180 degrees of the test piece (20 mm XI 00 mm X 0.2 mm) in which the positive electrode 1, the negative electrode 4 and the separator 7 were bonded together with an adhesive.
- the peel strength was measured.
- UTM11-20 manufactured by Toyo Baldwin Co., Ltd. was used as a test device, and the measurement was performed at a tensile speed of 10 mm / min and a measurement temperature of 25 ° C.
- the battery charge / discharge characteristics were measured under the following conditions, for example, using the method described in the Battery Handbook (Battery Handbook Editing Committee, published by Maruzen Publishing Co., Ltd. in 1990). did.
- a negative electrode active material paste adjusted to 95% by weight of mesophase microbeads (Osaka Gas) and 5% by weight of polyvinylidene fluoride is applied by a doctor blade method while adjusting the thickness to 300 mm.
- An active material thin film was formed.
- a 20-m-thick strip-shaped copper net serving as a negative-electrode current collector was placed on the upper portion, and a negative-electrode active material paste was applied thereon by adjusting the thickness to 300-m by a doctor blade method. This was left in a dryer at 60 ° C. for 60 minutes to make it semi-dry.
- a negative electrode was produced by rolling the produced laminate to 400 zm.
- NMP N-methyl-2-pyrrolidone
- Porous polypropylene sheet (to text, trade name Celgard # 2400) used as a separator evening the adhesive 3mg applied per separator Isseki 1 cm 2 to, there to be brought into close contact with the positive and negative electrodes becomes a predetermined thickness Then, it was heated at 80 ° C for 1 hour and then cut into a predetermined size.
- Porous polypropylene sheet (to text, trade name Celgard # 2400) used as separator Isseki adhesive separator evening 1 cm 2 per then 3mg coated according to claim 1 or later on both sides of where adhesion to the positive electrode and the negative electrode Then, after laminating so as to have a predetermined thickness, it was heated and breathed under a vacuum of 80 ° C for 1 hour to obtain an electrode laminate.
- Example 2 Instead of the adhesive in Example 1, 3 g of polyvinyl alcohol having a polymerization degree of 1000 and a saponification degree of 98 mol% was added to 97 g of N_methyl-1-piperidone, heated to 80 ° C. and stirred. The solution that was used while the solution was used.
- Example 3 Instead of the adhesive in Example 1, 3 g of polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 98 mol% was added to 97 g of N-methyl-2-piperone, heated to 80 ° C. and stirred. The solution that was used while the solution was used.
- an adhesive was prepared in the following manner, and a test piece for an adhesive strength test and a battery were prepared.
- the above adhesive was applied to a porous polypropylene sheet (made by Hext, product name Celgard # 2400) used as a separator overnight, 3 mg per cm 2 of the separator, and isopropyl alcohol was sprayed on the application surface. Thereafter, the positive electrode and the negative electrode were brought into close contact with each other so as to be bonded to a predetermined thickness, heated and pressed at 80 ° C. for 1 hour, and then cut into a predetermined size.
- a porous polypropylene sheet made by Hext, product name Celgard # 2400
- Example 4 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 1000 and a saponification degree of 98 mol% was added to 97 g of N-methyl-2-vinylidone, and the mixture was heated to 80 ° C. and stirred. The solution was used as it was.
- Example 4 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 98 mol% was added to 97 g of N-methyl-2-pyrrolidone, and the mixture was heated to 80 ° C. and stirred. The solution was used.
- Example 8 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 87 mo 1% was added to 97 g of N-methyl-2-pyrrolidone, and the mixture was heated to 80 ° C. and stirred. A solution was used.
- Example 8
- Example 4 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 1000 and a degree of saponification of 87 mol% was added to 97 g of N-methyl-12-piperidine, heated to 80 ° C. and stirred. The solution that was used while the solution was used.
- Example 10 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 87 mol% was added to 97 g of N-methyl-2-bilidone, and the mixture was heated to 80 ° C. and stirred. The solution was used.
- Example 10
- Example 4 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 98% mo, and 3 g of polymethyl methacrylate were converted to 94 g of N-methyl-2-pyrrolidone. In addition, a solution which was heated to 80 ° C. and stirred while stirring was used.
- Example 4 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 100 and a saponification degree of 98%, and 3 g of polymethyl methacrylate were replaced with 94 g of N-methyl-2-pyrrolidone. In addition to 80. A solution which was heated to C while stirring was used.
- Example 4 instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 240 and a saponification degree of 98 mol%, and 3 g of polymethyl methacrylate were added to 94 g of N-methyl-2-pyrrolidone. The solution was heated to 80 ° C. and stirred to form a solution.
- the preparation of the negative electrode and the positive electrode and the adjustment of the adhesive were performed in the same manner as in Example 1 above.
- the adjusted adhesive was applied to one surface of each of the two separators, and the negative electrode was sandwiched between the coated surfaces.
- the NMP was put in a hot air drier at 80 ° C. for 2 hours to evaporate NMP.
- the separator with the negative electrode bonded in between was punched out to a predetermined size, the adhesive adjusted above was applied to one surface of the punched-out separator, and the positive electrode punched to a predetermined size was stuck, Further, the above-prepared adhesive was applied to one surface of another separator punched out to a predetermined size, and the coated surface of the separate separator was bonded to the surface of the positive electrode previously bonded. This step is repeated to form a battery body having a plurality of electrode laminates. The pond was dried while being pressurized to produce a flat-plate laminated battery as shown in FIG.
- an adhesive was applied to the surface of the separator where the positive electrode was adhered and adhered in the same manner as described above, and the negative electrode was adhered to the coated surface.
- the step of bonding another positive electrode with two positive electrodes bonded together during one separation may be repeated.
- the preparation of the negative electrode and the positive electrode and the adjustment of the adhesive were performed in the same manner as in Example 1 described above.
- the adjusted adhesive was applied to one surface of each of the two strip-shaped separators, and a belt-shaped adhesive was applied between the applied surfaces.
- the adjusted adhesive was applied to one side of the strip-shaped separator with the positive electrode bonded between them, one end of the separator was bent by a certain amount, the negative electrode was sandwiched in the fold, and the laminate was passed through the laminator. . Subsequently, the adjusted adhesive is applied to the other side of the strip-shaped separator, and another negative electrode is attached to a position opposite to the negative electrode sandwiched between the folds, and the separator is rolled up in an oval shape. Further, the step of winding up the separator while attaching another negative electrode is repeated to form a battery body having a plurality of electrode laminates, and the battery body is dried while being pressed, and is then pressed as shown in FIG. A wound-type laminated structure battery body was produced. An electrolytic solution was poured into the plate-shaped wound laminated battery body in the same manner as in Example 1 described above, and the battery was sealed to obtain a lithium ion secondary battery.
- an example is shown in which the negative electrode is adhered to the belt-shaped separator while the band-shaped positive electrode is joined and rolled up in the evening.
- a method in which the positive electrode is bonded while the band-shaped negative electrode is joined is rolled up.
- the method of winding up the separator is shown, but a method of bonding the positive electrode or the negative electrode while folding the band-shaped negative electrode or the positive electrode in the band-shaped separator may be used.
- Preparation of the negative electrode and the positive electrode, and adjustment of the adhesive are performed in the same manner as in Example 1 above.
- the strip-shaped positive electrode is placed between two strip-shaped separators, and the strip-shaped negative electrode is placed so as to protrude outside of one of the separators by a certain amount.
- the adjusted adhesive is applied to the inner surface of each separator and the outer surface of the separator where the negative electrode is placed, and the positive electrode, the two separators and the negative electrode are overlapped and passed through the laminator.
- the adjusted adhesive is applied to the outer surface of the other separator, and the protruding negative electrode is bent and adhered to this coated surface, and the laminated separator is wrapped inside so that the folded negative electrode is long. It is rolled up in a circular shape to form a battery body having a plurality of electrode laminates, and the battery body is dried while being pressurized to form a flat-plate wound type laminated structure battery body as shown in FIG. Made.
- a strip-shaped positive electrode is arranged in a strip-shaped separator and a negative electrode is arranged outside one separator and rolled up, but conversely, a strip-shaped separator is formed in a strip-shaped separator.
- a method in which a negative electrode is arranged, and a positive electrode is arranged outside one separator and wound up may be used.
- Comparative Example 1 17 Instead of the adhesive in Example 4, 3 g of polyvinylidene fluoride was added to 97 g of N-methyl-2-pyrrolidone, and a solution was used while heating to 80 ° C. and stirring.
- Example 4 In place of the adhesive in Example 4 above, 6 g of polyvinylidene fluoride was added to 94 g of N-methyl-2-pyrrolidone, and the mixture was dried. The solution which was heated to C and stirred while stirring was used.
- Example 3 XXX Using the adhesive test pieces obtained in the above Examples and Comparative Examples, the adhesive strength of the adhesive was determined according to the following criteria (1) and (2). The results are shown in Table 1 above.
- ⁇ The peel adhesion between the electrode and the separator was 40 gf / cm or more.
- X The peel adhesion between the electrode and the separator was less than 40 gf / cm. Also, the batteries obtained in the above Examples and Comparative Examples were used. The charge-discharge was repeated for 100 cycles, and the charge and discharge characteristics at the first cycle and at the 100th cycle were determined based on the following criteria of X and X. The results are shown in Table 1 above.
- the positive electrode 1-separator was used.
- the bonding strength between the negative electrode 7 and the negative electrode 4 and the separator 7 was increased. This is because the adhesive solution gels and the amount absorbed into the porous electrode active material layer decreases, resulting in the amount of adhesive remaining at the electrode-separator interface and contributing to the development of adhesive strength. This is thought to be the result of the increase.
- Comparative Example 2 when polyvinylidene fluoride was used as the adhesive and the concentration of the adhesive solution was increased to twice that of Examples 1 to 12, sufficient adhesive strength was obtained. However, the charge / discharge characteristics of the battery deteriorated.
- It is used as a secondary battery in portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped as well as improving battery performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
An adhesive for easily adhering an electrode and a separator, a cell using the same, and a process for producing cells, in order to obtain practical secondary cells having a reduced thickness and excellent charge/discharge characteristics. The adhesive for cells works to adhere active substance layers (3, 6) adhered to collectors (2, 5) to a separator (7) which holds an electrolytic solution for a cell. The adhesive comprises an organic solvent solution containing a polyvinyl alcohol. Use of the above adhesive makes it possible to cheaply and efficiently produce practical secondary cells having a reduced thickness, secured reliability and a high charge/discharge efficiency.
Description
明細書 電池用接着剤並びにそれを用いた電池および電池の製造方法 技術分野 TECHNICAL FIELD The present invention relates to a battery adhesive, a battery using the same, and a method for manufacturing a battery.
本発明は携帯用電子機器等に使用される二次電池に関するものである 詳しくは、 薄型の形状で高性能の電池を形成し得る接着剤並びにそれを 用いた電池および電池の製造方法に関するものである。 背景技術 The present invention relates to a secondary battery used for portable electronic devices and the like. More specifically, the present invention relates to an adhesive capable of forming a high-performance battery in a thin shape, a battery using the same, and a method for manufacturing the battery. is there. Background art
携帯用電子機器の小型 ·軽量化への要望は非常に大きいが、 その実現 のためには電池の性能向上と小型化が不可欠であり、 そのために現在、 種々の電池開発、改良が進められている。電池に要求されている特性は、 高電圧、 高エネルギー密度、 信頼性、 形状の任意性などである。 リチウ ムイオン電池は、 これまでの電池の中で最も高電圧かつ高工ネルギ一密 度が実現されることが期待される二次電池であり、 現在でもその改良が 盛んに進められている。 There is a great demand for smaller and lighter portable electronic devices, but in order to achieve this, it is essential to improve the performance and size of batteries, and various battery developments and improvements are currently being pursued. I have. The characteristics required for batteries include high voltage, high energy density, reliability, and arbitrary shape. Lithium-ion batteries are secondary batteries that are expected to achieve the highest voltage and highest energy density among batteries to date, and improvements are being actively pursued today.
リチウムイオン電池はその主要な構成要素として正極、 負極とそれら に挟まれるイオン伝導層を有する。 現在実用されているリチウムイオン 電池においては、 正極には活物質としてのリチウムコバルト酸化物等の 粉末を集電体に塗布し板状にしたもの、 負極には同様に活物質として炭 素系材料の粉末を集電体に塗布し板上にしたものが用いられている。 ィ オン伝導層に関してはポリエチレン、 ポリプロピレンからなる多孔質フ イルムであるセパレ一夕を挟み、 非水系の電解液で満たされたものが用 いられている。 A lithium ion battery has a positive electrode, a negative electrode, and an ion conductive layer sandwiched between them as main components. In a lithium-ion battery currently in practical use, a positive electrode is formed by applying a powder of lithium cobalt oxide or the like as an active material to a current collector to form a plate, and a negative electrode is similarly made of a carbon-based material as an active material. Is applied to a current collector and applied on a plate. The ion conductive layer is filled with a non-aqueous electrolyte with a separator made of a porous film made of polyethylene and polypropylene interposed therebetween.
従来のリチウムイオン電池においては、 例えば特閧平 8 - 8 3 6 0 8
号公報に示されるように、 正極、 セパレ一夕および負極の電気的接触を 維持するために、 これらに金属等の強固な外装缶により外部から圧力を 与えることにより、 全ての面内の接触を保つ必要がある。 For conventional lithium-ion batteries, for example, As shown in the publication, in order to maintain the electrical contact between the positive electrode, the separator, and the negative electrode, by applying pressure from the outside with a strong outer can made of metal or the like, all in-plane contact is maintained. Need to keep.
また、 例えば特開平 5— 1 5 9 8 0 2号公報に記載された固体二次電 池の例では、 イオン導電性固体電解質の層と電極材料の層を熱可塑性樹 脂結着剤で加熱結着することにより、 電池を一体化する製造方法が示さ れている。 この場合、 電極と電解質とを一体化することにより電気的接 触を維持しているため外部から圧力を加えなく とも電池として働くもの である。 さらに薄型電池に関しては、 米国特許 5 , 4 6 0 , 9 0 4号に 記載されているようにイオン導電体に高分子ゲルを用いたものが知られ ているが、 この薄型電池においては高分子ゲルとしてフッ化ビ二リデン とへキサフルォロプロピレン共重合体を用いることにより、 正極、 セパ レー夕および負極を一体化させることが特徴となっている。 Further, for example, in the example of the solid secondary battery described in Japanese Patent Application Laid-Open No. 5-159802, a layer of an ion-conductive solid electrolyte and a layer of an electrode material are heated with a thermoplastic resin binder. A manufacturing method is shown in which a battery is integrated by binding. In this case, since the electrodes and the electrolyte are integrated to maintain electrical contact, they function as a battery without external pressure. Further, as for a thin battery, as described in U.S. Pat. No. 5,460,904, a battery using a polymer gel as an ionic conductor is known. By using vinylidene fluoride and hexafluoropropylene copolymer as the gel, the positive electrode, separator and negative electrode are integrated.
従来の電池は以上のように構成されているので、 電極層と電解質層を 電気的に充分に接触させるために、 外部から圧力をかけ得るような金属 等でできた強固な外装缶を使用しなければならず、その結果電池の体積、 重量における、 発電部以外である外装缶の占める割合が大きくなり、 ェ ネルギ一密度の高い電池を形成するには不利であるという問題点があつ た。 Since the conventional battery is configured as described above, in order to make the electrode layer and the electrolyte layer electrically contact sufficiently, use a strong outer can made of metal or the like that can apply pressure from the outside. As a result, the ratio of the outer case other than the power generation unit to the volume and weight of the battery has increased, and there has been a problem that it is disadvantageous to form a battery with a high energy density.
また、 電極層と電解質層を結着剤で接合した電池においては、 電極一 電解質界面が固体の結着剤で覆われているため、 電極 -電解質界面にお ける導電性の観点から、 例えば上記の液体電解質を用い外装缶で外部か ら圧力をかけるタイプの電池に比べ不利である。 また結着剤を使用した 場合においても液体電解質と同等以上の導電性を有する結着剤は一般に 見いだされておらず、 液体電解質を用いた電池と同等の導電性を得るこ とができない。
さらに、 高分子ゲルを用いる薄型電池においても、 液体電解質と同等 以上の導電性を有するゲル電解質は一般に見いだされておらず、 液体電 解質を用いた電池と同等の充放電特性を得ることができない。 In a battery in which an electrode layer and an electrolyte layer are joined with a binder, the electrode-electrolyte interface is covered with a solid binder. This is disadvantageous compared to a battery that uses a liquid electrolyte and applies pressure from the outside with an outer can. Also, even when a binder is used, a binder having conductivity equal to or higher than that of the liquid electrolyte has not been generally found, and the same conductivity as that of a battery using the liquid electrolyte cannot be obtained. Further, even in a thin battery using a polymer gel, a gel electrolyte having a conductivity equal to or higher than that of a liquid electrolyte has not been generally found, and it is possible to obtain the same charge / discharge characteristics as a battery using a liquid electrolyte. Can not.
本発明は上記のような問題点を解消するためになされたものであり、 電極層と電解質層との接合によって、 外部から圧力を与えるための強固 な外装缶を使用することなく、 電極一電解質層間の良好な電気的接触を 有する電極体を形成せしめる接着剤とそれにより薄型、 軽量で、 かつ信 頼性が高く、 充放電特性が優れた電池を安価で効率よく得ることを目的 とするものである。 発明の開示 The present invention has been made in order to solve the above-mentioned problems, and the electrode-electrolyte can be formed without using a strong outer can for applying pressure from the outside by joining the electrode layer and the electrolyte layer. An adhesive that forms an electrode body having good electrical contact between layers, and is intended to obtain a thin, lightweight, highly reliable battery with excellent charge / discharge characteristics at low cost and efficiency. It is. Disclosure of the invention
本発明に係る第 1の電池用接着剤は、集電体に接着された活物質層を、 電池用電解液を保持するためのセパレ一夕に接着する接着剤であって、 この接着剤が、 ボリビニルアルコールを含む有機溶媒溶液からなるもの である。 これにより、 各活物質層とセパレ一タ間の大きな接着性と、 電 池の高い充放電特性を実現することができ、 薄型で信頼性が確保され、 なおかつ充放電特性が高い実用的な電池を安価に得ることができる。 本発明に係る第 2の電池用接着剤は、 上記第 1の電池用接着剤におい て、 有機溶媒溶液に、 ポリビニルアルコールと非相溶で、 かつ電池用電 解液に膨潤もしくは溶解しうる樹脂をさらに混合してなるものである。 これにより、 接着剤が形成する各活物質層とセパレー夕間の界面層のィ オン伝導性をより高いものとすることができる。 The first battery adhesive according to the present invention is an adhesive for bonding an active material layer bonded to a current collector to a separator for holding a battery electrolyte, and the adhesive is It consists of an organic solvent solution containing polyvinyl alcohol. This makes it possible to achieve high adhesiveness between each active material layer and the separator and high charge-discharge characteristics of the battery, and is a practical battery that is thin, has high reliability, and has high charge-discharge characteristics. Can be obtained at low cost. The second battery adhesive according to the present invention is the resin according to the first battery adhesive, wherein the resin is incompatible with polyvinyl alcohol in an organic solvent solution and swells or dissolves in a battery electrolyte. Are further mixed. Thereby, the ion conductivity of the interface layer between each active material layer formed by the adhesive and the separation layer can be made higher.
本発明に係る第 3の電池用接着剤は、 上記第 1の電池用接着剤におい て、 ポリビニルアルコールのけん化度が 9 5 %以上であるものである。 本発明に係る第 4の電池用接着剤は、 上記第 1の電池用接着剤におい て、 ポリビニルアルコールの重合度が 1 0 0 0以上であるものである。
これにより、 接合強度が大きく、 より好ましい特性の電池が得られる。 本発明に係る第 1の電池は、 活物質層を集電体に接着した正極および 負極の活物質層を、 電池用電解液を保持するためのセパレ一夕に、 有機 溶媒にポリビニルアルコールを含む電池用接着剤で接着した電極積層体 を有するものである。 これにより、 各活物質層とセパレ一夕間の大きな 接着性と、 電池の高い充放電特性を実現することができ、 薄型で信頼性 が確保され、 なおかつ充放電特性が高い実用的な電池を安価に得ること ができる。 A third battery adhesive according to the present invention is the above-mentioned first battery adhesive, wherein the degree of saponification of polyvinyl alcohol is 95% or more. A fourth battery adhesive according to the present invention is the first battery adhesive, wherein the degree of polymerization of polyvinyl alcohol is 100 or more. Thereby, a battery having high bonding strength and more preferable characteristics can be obtained. In the first battery according to the present invention, the active material layers of the positive electrode and the negative electrode each having the active material layer adhered to the current collector are separated from the active material layer for holding the battery electrolyte, and the organic solvent contains polyvinyl alcohol. It has an electrode laminate bonded with a battery adhesive. As a result, it is possible to achieve high adhesion between each active material layer and the separator and high charge / discharge characteristics of the battery, and realize a thin, reliable, and practical battery with high charge / discharge characteristics. It can be obtained at low cost.
本発明に係る第 2の電池は、 上記第 1の電池において、 電池用接着剤 が、 ポリビニルアルコールと非相溶で、 かつ電池用電解液に膨潤もしく は溶解しうる樹脂をさらに混合してなるものである。 これにより、 接着 剤が形成する各活物質層とセパレ一夕間の界面層のイオン伝導性をより 高いものとすることができる。 The second battery according to the present invention is the battery according to the first battery, wherein the battery adhesive is further incompatible with polyvinyl alcohol and further swells or dissolves in the battery electrolyte. It becomes. Thereby, the ionic conductivity of the interface layer between each active material layer formed by the adhesive and the separation layer can be made higher.
本発明に係る第 3の電池は、 上記第 1の電池において、 電極積層体の 複数層を備えるものである。 A third battery according to the present invention is the same as the first battery, except that the third battery includes a plurality of layers of the electrode laminate.
本発明に係る第 4の電池は、 上記第 3の電池において、 電極積層体の 複数層が、 正極と負極を切り離された複数のセパレ一夕間に交互に配置 することにより形成されたものである。 A fourth battery according to the present invention is a battery according to the third battery, wherein a plurality of layers of the electrode laminate are formed by alternately arranging a plurality of layers of the positive electrode and the negative electrode separated from each other. is there.
本発明に係る第 5の電池は、 上記第 3の電池において、 電極積層体の 複数層が、 正極と負極を巻き上げられたセパレ一タ間に交互に配置する ことにより形成されたものである。 According to a fifth battery of the present invention, in the third battery, a plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode between the wound separators.
本発明に係る第 6の電池は、 上記第 3の電池において、 電極積層体の 複数層が、 正極と負極を折り畳んだセパレ一夕間に交互に配置すること により形成されたものである。 According to a sixth battery of the present invention, in the third battery, a plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode in a folded separator.
本発明では、 接着強度と高イオン伝導性が確保できたので、 このよう に電極積層体の複数層を有する構成としても、 強固な外装缶を必要とせ
ず、 コンパク トで、 かつ高性能で電池容量が大きな積層電極型電池が得 られる。 In the present invention, since the adhesive strength and high ionic conductivity can be ensured, a strong outer can is required even in a configuration having a plurality of layers of the electrode laminate. In addition, a compact, high-performance, large-capacity stacked electrode battery can be obtained.
本発明に係る第 1の電池の製造方法は、 有機溶剤にポリビニルアルコ The first method for producing a battery according to the present invention comprises the steps of:
—ルを含む電池用接着剤を、 セパレ一夕表面に塗布する工程、 活物質層 を集電体に接着した一対の電極の活物質層を上記セパレ一夕の上記塗布 面に貼り合せる工程、 有機溶剤を少なく とも一部留去することにより上 記電極とセパレ一夕とを一体化する工程を備えたものである。 これによ り、 各活物質層とセパレ一夕間の大きな接着性と、 電池の高い充放電特 性を実現することができ、 薄型で信頼性が確保され、 なおかつ充放電持 性が高い実用的な電池を安価に得ることができる。 A step of applying an adhesive for a battery containing a battery to the surface of the separator, and a step of bonding the active material layers of the pair of electrodes having the active material layer bonded to the current collector to the application surface of the separator. The method includes a step of integrating the above-mentioned electrode and the separator by removing at least a part of the organic solvent. As a result, it is possible to achieve high adhesion between each active material layer and the separator and high charge / discharge characteristics of the battery, and it is thin and reliable, and practically has high charge / discharge durability. Battery can be obtained at low cost.
本発明に係る第 2の電池の製造方法は、 上記第 1の電池の製造方法に おいて、 電池用接着剤をセパレ一タ表面に塗布した後、 上記セパレー夕 の塗布面に、 上記電池用接着剤溶液をゲル化させることのできる第 2の 溶媒を添加することにより、 上記電池用接着剤をゲル化させる工程を備 えるものである。 これにより、 接着剤が形成する各活物質層とセパレー タ間の界面層のイオン伝導性をより高いものとすることができる。 本発明に係る第 3の電池の製造方法は、 上記第 1の電池の製造方法に おいて、 電池用接着剤が、 有機溶媒溶液にポリビニルアルコールと非相 溶で、 かつ電池用電解液に膨潤もしくは溶解しうる樹脂をさらに混合し てなるものである。 これにより、 接着剤が形成する各活物質層とセパレ —夕間の界面層のイオン伝導性をより高いものとすることができる。 本発明に係る第 4の電池の製造方法は、 上記第 1の電池の製造方法に おいて、 ポリビニルアルコールのけん化度が 9 5 %以上であるものであ る。 The method for producing a second battery according to the present invention is the method for producing a battery according to the first battery, wherein the adhesive for a battery is applied to the surface of the separator, and then the adhesive for the battery is applied to the application surface of the separator. The method further comprises a step of gelling the battery adhesive by adding a second solvent capable of gelling the adhesive solution. Thereby, the ionic conductivity of the interface layer between each active material layer formed by the adhesive and the separator can be further increased. A third method for producing a battery according to the present invention is the method for producing a battery according to the first method, wherein the battery adhesive is incompatible with polyvinyl alcohol in the organic solvent solution and swells in the battery electrolyte. Alternatively, it is obtained by further mixing a soluble resin. Thereby, the ionic conductivity of each active material layer formed by the adhesive and the interface layer between the separation and the evening can be made higher. In a fourth method for producing a battery according to the present invention, the saponification degree of polyvinyl alcohol is 95% or more in the first method for producing a battery.
本発明に係る第 5の電池の製造方法は、 上記第 1の電池の製造方法に おいて、 ポリビニルアルコールの重合度が 1 0 0 0以上であるものであ
る。 A fifth method for producing a battery according to the present invention is the method for producing a battery according to the first method, wherein the degree of polymerization of polyvinyl alcohol is 100 or more. You.
これにより、接合強度が大きく、 より好ましい特性の電池が得られる。 図面の簡単な説明 Thereby, a battery having high bonding strength and more preferable characteristics can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明になる電池の一実施形態を説明する主要部断面模式 図であり、 第 2図、 第 3図および第 4図は、 本発明になる電池の他の実 施形態を説明する主要部断面模式図である。 発明を実施するための最良の形態 FIG. 1 is a schematic cross-sectional view of a main part of an embodiment of a battery according to the present invention. FIGS. 2, 3, and 4 show other embodiments of the battery according to the present invention. It is a principal part cross-section schematic diagram demonstrated. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 活物質層を集電体に接着した一対の電極の活物質層面 とセパレー夕との好ましい接着方法に関し鋭意検討した結果、 本発明に 達した。 The present inventors have conducted intensive studies on a preferred method of bonding the active material layer surfaces of a pair of electrodes having the active material layer bonded to the current collector to the separator, and have reached the present invention.
すなわち本発明は、 第 1図ないし第 4図に示すように、 正極集電体 2 に正極活物質層 3を接着した正極 1、 負極集電体 5に負極活物質層 6を 接着した負極 4、 正極 1 と負極 4との間にある、 電解液を保持するセパ レー夕 7を接着層 8で接合した電極積層体 9を有する電池に関するもの である。 That is, as shown in FIGS. 1 to 4, the present invention provides a positive electrode 1 in which a positive electrode active material layer 3 is bonded to a positive electrode current collector 2, and a negative electrode 4 in which a negative electrode active material layer 6 is bonded to a negative electrode current collector 5. The present invention relates to a battery having an electrode laminate 9 in which a separator 7 holding an electrolytic solution between a positive electrode 1 and a negative electrode 4 is joined by an adhesive layer 8.
本発明の特徴は、 電極 (正極および負極) 1、 4とセパレ一夕とを接 合する接着層 8を形成する電池用接着剤の組成にある。 A feature of the present invention resides in the composition of the battery adhesive forming the adhesive layer 8 that joins the electrodes (positive and negative electrodes) 1 and 4 and the separator.
本発明者は、 二次電池にあって、 いかに薄型で信頼性が確保され、 な おかつ充放電効率を高くするかに関し、 種々の研究を重ねた結果、 接着 剤にポリビニルアルコールを含有するものを用いることにより、 薄型で 信頼性が確保され、 なおかつ充放電効率が高い二次電池を作製できるこ とを見いだし、 本発明を完成させたのである。 The present inventor has conducted various studies on a secondary battery that has been studied as to how thin and reliable the battery is, and how to increase the charge / discharge efficiency. The inventors have found that a thin and reliable secondary battery with high charge / discharge efficiency can be manufactured by using, and the present invention has been completed.
即ち、 本発明者の研究によれば、 接着層 8の電池用接着剤として、 例 えば 「ポバール」 (長野浩一ら著 (株) 高分子刊行会 昭和 4 5年初版
発行) に記載されているような接着剤として用いられるポリビニルアル コールを、 電池用接着剤として使用することにより、 接着剤が強力な接 着力を発現し、 少量の接着剤で電池を一体化せしめ得る接着強度を得る ことができるとともに、 接着剤中の溶媒を乾燥 · 除去することにより接 着層 8を多孔性にする、 あるいは溶媒を一部留去することによって接着 層 8をゲル化し接着層 8のイオン伝導性を高め、 充放電特性を向上させ ることができる。 That is, according to the research of the present inventor, as the battery adhesive for the adhesive layer 8, for example, “Poval” (Koichi Nagano et al. Polymer Publishing Association Showa 45 First Edition By using polyvinyl alcohol, which is used as an adhesive as described in “Issues”, as a battery adhesive, the adhesive develops a strong adhesive force, and the battery can be integrated with a small amount of adhesive. The adhesive strength obtained can be obtained, and the adhesive layer 8 is made porous by drying and removing the solvent in the adhesive, or the adhesive layer 8 is gelated by partially distilling off the solvent. 8, the ionic conductivity can be increased, and the charge / discharge characteristics can be improved.
また、 ポリビニルアルコールと他の樹脂の混合物を使用することもで きる。 特にポリビニルアルコールと非相溶でかつ電池用電解液に溶解ま たは膨潤する樹脂を使用することによって、 接着層 8が、 ポリビニルァ ルコールからなる接着機能を発現する相と、 ポリビニルアルコールと非 相溶でかつ電池用電解液に溶解または膨潤する樹脂からなり、 イオン伝 導を発現する相との 2相を有することで、 特に優れた性能を有する電池 を得ることができる。 Also, a mixture of polyvinyl alcohol and another resin can be used. In particular, by using a resin that is incompatible with polyvinyl alcohol and that dissolves or swells in the battery electrolyte, the adhesive layer 8 is incompatible with polyvinyl alcohol and a phase exhibiting an adhesive function. A battery having particularly excellent performance can be obtained by having a resin electrolyte and a resin that dissolves or swells in the battery electrolyte and has two phases, ie, a phase that exhibits ionic conduction.
ボリビニルアルコールのけん化度は 9 5 %以上であるものが好ましく、 また、 ポリビニルアルコールの重合度は 1 0 0 0以上であるものが好ま しレ、。 The degree of saponification of polyvinyl alcohol is preferably 95% or more, and the degree of polymerization of polyvinyl alcohol is preferably 100 or more.
上記有機溶剤にポリビニルアルコールを含む電池用接着剤を、 セパレ 一夕表面に塗布した後、 活物質層を集電体に接着した一対の電極の活物 質層を上記セパレー夕の上記塗布面に貼り合せ、 その後、 有機溶剤を少 なくとも一部留去することにより上記電極とセパレー夕とを一体化し、 第 1図に示した単一の電極積層体 9を製造する。 このように、 有機溶剤 を少なくとも一部留去することにより、 電解液を注入したときに接着層 8の一部がゲル化して接着層 8のイオン伝導性が高くなり、 充放電特性 に優れた電池が得られる。 After applying the battery adhesive containing polyvinyl alcohol to the organic solvent on the surface of the separator, the active material layer of the pair of electrodes having the active material layer bonded to the current collector is applied to the coating surface of the separator. After laminating, at least a part of the organic solvent is distilled off to integrate the electrode and the separator to produce a single electrode laminate 9 shown in FIG. As described above, by removing at least a part of the organic solvent, a part of the adhesive layer 8 is gelled when the electrolytic solution is injected, and the ionic conductivity of the adhesive layer 8 is increased, and the charge / discharge characteristics are excellent. A battery is obtained.
第 1図は単一の電極積層体 9からなる単電極型電池であるが、 第 2図
第 3図および第 4図に示すように、 電極積層体 9の複数層を有する構造 の積層電極型電池を製造することができる。 この製造方法については、 下記実施例において詳細に説明する。 FIG. 1 shows a single-electrode battery composed of a single electrode stack 9; As shown in FIGS. 3 and 4, a stacked electrode battery having a structure having a plurality of electrode stacks 9 can be manufactured. This manufacturing method will be described in detail in the following examples.
また、 電池用接着剤をセパレ一夕表面に塗布した後、 セパレ一夕の塗 布面に、 上記電池用接着剤溶液をゲル化させることのできる第 2の溶媒 を添加することにより、 上記電池用接着剤をゲル化させ、 接着剤層 8の イオン伝導性を高く し、 電池性能を向上させることができる。 Further, after the battery adhesive is applied to the surface of the separator, a second solvent capable of gelling the battery adhesive solution is added to the coating surface of the separator, thereby forming the battery. The adhesive for use is gelled, the ionic conductivity of the adhesive layer 8 is increased, and the battery performance can be improved.
この電池用接着剤溶液をゲル化させる溶媒は、 ポリビニルアルコール を溶解しない溶剤であれば使用可能である。 例えば、 炭化水素、 ケトン 化合物、 エステル化合物、 ェ一テル化合物、 アルコール等およびそれら の混合溶剤が使用できる。 As a solvent for gelling the battery adhesive solution, any solvent that does not dissolve polyvinyl alcohol can be used. For example, hydrocarbons, ketone compounds, ester compounds, ether compounds, alcohols and the like and mixed solvents thereof can be used.
また、 ポリ ビニルアルコールを含む有機溶媒溶液にポリビニルアルコ 一ルと非相溶で、 かつ電池用電解液に膨潤もしくは溶解しうる樹脂をさ らに混合した電池用接着剤を使用することによって、 上記説明のように 接着層 8が、 接着機能を発現する相と、 イオン伝導を発現する相との 2 相を有し、 特に優れた性能を有する電池を得ることができる。 In addition, by using a battery adhesive further mixed with a resin which is incompatible with polyvinyl alcohol in an organic solvent solution containing polyvinyl alcohol and which can swell or dissolve in a battery electrolyte. As described above, the adhesive layer 8 has two phases of a phase exhibiting an adhesive function and a phase exhibiting ionic conduction, and a battery having particularly excellent performance can be obtained.
上記ポリビニルアルコールと非相溶でかつ電池用電解液に溶解または 膨潤する樹脂の例としては、 ポリスチレン、 ポリアクリル酸エステル、 ポリアクリロニトリル、 ポリ酢酸ビニル、 ポリアセタール及びこれらの 混合物もしくは共重合体などが使用できる。 Examples of the resin that is incompatible with the polyvinyl alcohol and that dissolves or swells in the battery electrolyte include polystyrene, polyacrylate, polyacrylonitrile, polyvinyl acetate, polyacetal, and mixtures or copolymers thereof. it can.
電池用電解液には、 リチウム塩を非プロ トン性有機溶媒に溶解した溶 液を用いることができる。 リチウム塩としては L i C 104、 L iBF4、 L iAs F6、 L i CF3S03、 L i P F 6、 L i l、 L iB r、 L i S CN、 L i2B10C l 10、 L i CF3C〇2等を挙げることができる。 ま た非プロトン性有機溶媒として、 プロピレン力一ポネート、 ァーブチル ラク トン、 エチレン力一ポネート、 テトラヒ ドロフラン、 2—テトラヒ
ドロフラン、 1, 3—ジォキソラン、 4, 4—ジメチル一 1 , 3—ジォ キソラン、 ジェチルカ一ポネート、 ジメチルカ一ポネート、 スルホラン、 3—メチルスルホラン、 t e r t—ブチルェ一テル、 i s o—ブチルェ 一テル、 1, 2—ジメ トキシェタン、 1 , 2—エトキシメ トキシェタン 等及びそれらを組み合わせてなる混合溶媒を用いることができる。 As the battery electrolyte, a solution in which a lithium salt is dissolved in a non-protonic organic solvent can be used. The lithium salt L i C 10 4, L iBF 4, L iAs F 6, L i CF 3 S0 3, L i PF 6, L il, L iB r, L i S CN, L i 2 B 10 C l 10 , Li CF 3 C〇 2 and the like. As aprotic organic solvents, propylene glycol, butyl lactone, ethylene glycol, tetrahydrofuran, 2-tetrahydrofuran Drofuran, 1,3-dioxolan, 4,4-dimethyl-1,3-dioxolan, getylcapone, dimethylcapone, sulfolane, 3-methylsulfolane, tert-butylether, iso-butylether, 1 , 2-Dimethoxetane, 1,2-ethoxymethoxetane, and the like, and a mixed solvent obtained by combining them can be used.
接着剤を構成する有機溶媒としては、 N—メチルー 2—ピロリ ドン、 ジメチルスルホキシド、 ァセトアミ ド、 ァープチロラク トン等及びこれ らを組み合わせてなる混合溶媒を用いることができる。 As the organic solvent constituting the adhesive, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetoamide, arptyrolactone, and the like, and a mixed solvent obtained by combining these can be used.
また、 場合によっては上記電池用接着剤に無機酸化物などのフイラ一 を添加することも可能である。 この場合フイラ一添加により接着剤層 8 が多孔性になるため、 接着層 8でイオン伝導性が良くなり電池特性が向 上することが期待できる。 In some cases, a filler such as an inorganic oxide can be added to the battery adhesive. In this case, since the adhesive layer 8 becomes porous by adding the filler, it is expected that the ionic conductivity of the adhesive layer 8 is improved and the battery characteristics are improved.
電池作製時に使用されるセパレ一夕としては、 電気絶縁性材料からな る多孔質膜、 網、 不織布など、 十分な強度を有するものであれば、 どの ようなものでも使用可能である。 材質は特に限定しないが、 ボリエチレ ン、 ポリプロビレンの単独多孔質膜あるいは積層多孔質膜が電池性能の 観点から望ましい。 As the separator used during the production of the battery, any material having sufficient strength, such as a porous film made of an electrically insulating material, a net, and a nonwoven fabric, can be used. The material is not particularly limited, but a single porous film or a laminated porous film of polyethylene or polypropylene is preferable from the viewpoint of battery performance.
以下に実施例及び比較例を挙げて本発明をさらに詳しく説明するが、 本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
なお、 電池の接着強度は、 正極 1、 負極 4とセパレ一タ 7を、 それそ れ接着剤により貼り合わせた試験片 ( 2 0 m m X I 0 0 m m X 0 . 2 m m) の 1 8 0度ピール強度を測定した。 試験装置には東洋ボールドウイ ン社製 U T M 1 1 - 2 0を用い、 引張速度 1 0 mm/m i n、 測定温度 2 5 °Cで測定した。 The adhesive strength of the battery was 180 degrees of the test piece (20 mm XI 00 mm X 0.2 mm) in which the positive electrode 1, the negative electrode 4 and the separator 7 were bonded together with an adhesive. The peel strength was measured. UTM11-20 manufactured by Toyo Baldwin Co., Ltd. was used as a test device, and the measurement was performed at a tensile speed of 10 mm / min and a measurement temperature of 25 ° C.
また電池充放電特性は例えば電池便覧 (電池便覧編集委員会編 丸善 出版 (株) 平成 2年発行) に記載されている方法で、 以下の条件で測定
した。 The battery charge / discharge characteristics were measured under the following conditions, for example, using the method described in the Battery Handbook (Battery Handbook Editing Committee, published by Maruzen Publishing Co., Ltd. in 1990). did.
充電:定電流 +定電圧法、 上限電圧 4. 2 V Charging: constant current + constant voltage method, upper limit voltage 4.2 V
放電:定電流法 下限電圧 2. 5 V Discharge: Constant current method Lower limit voltage 2.5 V
電池電極容量: 1 00 mAh Battery electrode capacity: 100 mAh
充放電電流値: 100mA Charge / discharge current value: 100mA
充放電効率 (%) =放電電気容量—充電電気容量 X 1 00 Charge / discharge efficiency (%) = Discharge electric capacity-Charge electric capacity X 100
実施例 1. Example 1.
〈正極の作成〉 <Creation of positive electrode>
L i C 002を 87重量%、 黒鉛粉を 8重量%、 ポリフヅ化ビ二リデン を 5重量%に調整した正極活物質ぺ一ス トを、 ドク夕一ブレード法で厚 さ 300〃mに調整しつつ塗布して活物質薄膜を形成した。 その上部に 正極集電体となる厚さ 30 /zmのアルミニウム網を載せ、 さらにその上 部にドクターブレード法で厚さ 30 0〃mに調整して正極活物質ペース トを塗布した。 これを 6 0°Cの乾燥機中に 60分間放置して半乾き状態 にした。 この作製した積層体を 40 O/ mになるように圧延することに より正極を作製した。 L i C 00 2 to 87 wt%, the graphite powder 8% by weight, the positive electrode active material pace preparative adjusting the Porifudzu mold two isopropylidene 5 wt%, the thickness 300〃M at Doc evening one blade method The active material thin film was formed by coating while adjusting. An aluminum net having a thickness of 30 / zm serving as a positive electrode current collector was placed on the upper part thereof, and a positive electrode active material paste was applied thereon by adjusting the thickness to 300 μm by a doctor blade method. This was left in a dryer at 60 ° C for 60 minutes to make it semi-dry. A positive electrode was produced by rolling the produced laminate to 40 O / m.
〈負極の作成〉 <Creation of negative electrode>
メソフェーズマイクロビーズ力一ボン (大阪ガス製) を 95重量%、 ポリフッ化ビニリデンを 5重量%に調整した負極活物質ペーストを、 ド クタ一ブレード法で厚さ 300〃mに調整しつつ塗布して活物質薄膜を 形成した。 その上部に負極集電体となる厚さ 20〃mの帯状の銅網を載 せ、 さらにその上部にドクターブレード法で厚さ 300〃mに調整して 負極活物質ペーストを塗布した。 これを 60°Cの乾燥機中に 60分間放 置して半乾き状態にした。 この作製した積層体を 400 zmになるよう に圧延することにより負極を作製した。 A negative electrode active material paste adjusted to 95% by weight of mesophase microbeads (Osaka Gas) and 5% by weight of polyvinylidene fluoride is applied by a doctor blade method while adjusting the thickness to 300 mm. An active material thin film was formed. A 20-m-thick strip-shaped copper net serving as a negative-electrode current collector was placed on the upper portion, and a negative-electrode active material paste was applied thereon by adjusting the thickness to 300-m by a doctor blade method. This was left in a dryer at 60 ° C. for 60 minutes to make it semi-dry. A negative electrode was produced by rolling the produced laminate to 400 zm.
〈接着剤の調合〉
重合度 300、 けん化度 98 mo 1 %のポリビニルアルコール 3 gを 97 gの N—メチルー 2—ピロリ ドン (NMP) に加え、 80°Cに加熱 し攪袢させながら溶液とした。 <Formulation of adhesive> 3 g of polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 98 mo 1% was added to 97 g of N-methyl-2-pyrrolidone (NMP), and heated to 80 ° C to form a solution while stirring.
〈接着強度試験の試験片作成〉 <Preparation of test piece for adhesive strength test>
セパレー夕として用いる多孔性ポリプロピレンシート (へキスト製、 商品名セルガード # 2400 )に上記接着剤をセパレ一夕 1 cm2あたり 3mg塗布し、 そこに正極及び負極を密着させて所定厚さになるように 貼り合わせた後、 80°Cで 1時間加熱ブレスし、 その後、 所定のサイズ に切り出した。 Porous polypropylene sheet (to text, trade name Celgard # 2400) used as a separator evening the adhesive 3mg applied per separator Isseki 1 cm 2 to, there to be brought into close contact with the positive and negative electrodes becomes a predetermined thickness Then, it was heated at 80 ° C for 1 hour and then cut into a predetermined size.
〈電池の作成〉 <Creating batteries>
セパレ一夕として用いる多孔性ポリプロピレンシート (へキスト製、 商品名セルガード # 2400 ) の両面に請求項 1以降に記載した接着剤 をセパレー夕 1 cm2あたり 3mg塗布し、そこに正極及び負極を密着さ せて所定厚さになるように貼り合わせた後、 80°C真空下で 1時間加熱 ブレスし、 電極積層体を得た。 さらに、 この電極積層体をアルミラミネ 一トフイルム袋に挿入し、 減圧下で、 炭酸エチレンと炭酸ジェチルの重 量比 1: 1の混合溶剤に L i P F6を 1 mo 1 / 1溶解させてなる電解液 を含浸させた後、 ヒートシールで封口処理を行うことにより、 フィルム 状の単電極型電池 (サイズ : 10 Ommx 100 mmx 0. 4 mm) を 作成した。 Porous polypropylene sheet (to text, trade name Celgard # 2400) used as separator Isseki adhesive separator evening 1 cm 2 per then 3mg coated according to claim 1 or later on both sides of where adhesion to the positive electrode and the negative electrode Then, after laminating so as to have a predetermined thickness, it was heated and breathed under a vacuum of 80 ° C for 1 hour to obtain an electrode laminate. Further, by inserting the electrode laminate Arumiramine one Tofuirumu bag, under vacuum, Weight ratio of ethylene carbonate Jechiru 1: comprising a L i PF 6 1 mo 1/ 1 was dissolved in 1 mixed solvent of electrolyte After impregnation with the liquid, the film was sealed by heat sealing to produce a film-shaped single-electrode battery (size: 10 Ommx 100 mmx 0.4 mm).
実施例 2. Example 2.
上記実施例 1における接着剤にかえて、 重合度 1000、 けん化度 9 8mo l%のポリビニルアルコール 3 gを 97 gの N_メチル一 2—ピ 口リ ドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用い た。 Instead of the adhesive in Example 1, 3 g of polyvinyl alcohol having a polymerization degree of 1000 and a saponification degree of 98 mol% was added to 97 g of N_methyl-1-piperidone, heated to 80 ° C. and stirred. The solution that was used while the solution was used.
実施例 3.
上記実施例 1における接着剤にかえて、 重合度 2400、 けん化度 9 8mo l%のボリビニルアルコール 3 gを 97 gの N—メチルー 2—ピ 口リ ドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用い た。 Example 3. Instead of the adhesive in Example 1, 3 g of polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 98 mol% was added to 97 g of N-methyl-2-piperone, heated to 80 ° C. and stirred. The solution that was used while the solution was used.
実施例 4. Example 4.
上記実施例 1記載の正極、 負極を用いて、 以下の要領で接着剤を調製 し、 接着強度試験の試験片作成および電池の作成を行った。 Using the positive electrode and the negative electrode described in Example 1 above, an adhesive was prepared in the following manner, and a test piece for an adhesive strength test and a battery were prepared.
〈接着剤の調製〉 <Preparation of adhesive>
重合度 300、 けん化度 98 mo 1%のポリビニルアルコール 3 gを 97 gの N—メチル— 2—ピロリ ドンに加え、 80°Cに加熱し攪拌させ ながら溶液とした。 3 g of polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 98 mo 1% was added to 97 g of N-methyl-2-pyrrolidone, and the mixture was heated to 80 ° C. and stirred to form a solution.
〈接着強度試験の試験片作成〉 <Preparation of test piece for adhesive strength test>
セパレ一夕として用いる多孔性ポリプロピレンシ一ト (へキス ト製、 商品名セルガード # 2400 )に上記接着剤をセパレ一夕 1 cm2あたり 3mg塗布し、 塗布面にイソプロピルアルコールをスプレーで吹付けた 後、そこに正極及び負極を密着させて所定厚さになるように貼り合わせ、 80°Cで 1時間加熱プレスし、 その後、 所定のサイズに切り出した。 The above adhesive was applied to a porous polypropylene sheet (made by Hext, product name Celgard # 2400) used as a separator overnight, 3 mg per cm 2 of the separator, and isopropyl alcohol was sprayed on the application surface. Thereafter, the positive electrode and the negative electrode were brought into close contact with each other so as to be bonded to a predetermined thickness, heated and pressed at 80 ° C. for 1 hour, and then cut into a predetermined size.
〈電池の作成〉 <Creating batteries>
セパレ一夕として用いる多孔性ポリプロピレンシート (へキス ト製、 商品名セルガード # 2400 ) の両面に請求項 1以降に記載した接着剤 をセパレ一夕 1 cm2あたり 3 mg塗布し、塗布面に炭酸ジェチルをスブ レーで吹付けた後、 そこに正極及び負極を密着させて所定厚さになるよ うに貼り合わせ、 80°C真空下で 1時間加熱プレスし、 電極積層体を得 た。 さらに、 この電極積層体をアルミラミネートフィルム袋に挿入し、 減圧下で、 炭酸エチレンと炭酸ジェチルの重量比 1 : 1の混合溶剤に L iPF6を lmo 1/1溶解させてなる電解液を含浸させた後、ヒートシ
一ルで封口処理を行うことにより、フィルム状の単電極型電池(サイズ:Separator used as Isseki porous polypropylene sheet (to kiss preparative trade name Celgard # 2400) adhesive separator Isseki 1 cm 2 per 3 mg coated according to claim 1 or later on both sides of carbonate coating surface After spraying getyl with a sprayer, the positive electrode and the negative electrode were adhered to each other so as to have a predetermined thickness, and heated and pressed under a vacuum of 80 ° C. for 1 hour to obtain an electrode laminate. Further, this electrode laminate is inserted into an aluminum laminate film bag, and impregnated with an electrolyte solution obtained by dissolving LiPF6 in a mixed solvent of ethylene carbonate and getyl carbonate at a weight ratio of 1: 1 in lmo 1/1 under reduced pressure. After heating A single electrode battery (size:
100 mm X 10 Ommx 0. 4 mm) を作成した。 100 mm X 10 Ommx 0.4 mm).
実施例 5. Example 5.
上記実施例 4における接着剤にかえて、 重合度 1000、 けん化度 9 8mo l%のボリビニルアルコール 3 gを 97 gの N—メチルー 2—ビ ロリ ドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用い た。 Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 1000 and a saponification degree of 98 mol% was added to 97 g of N-methyl-2-vinylidone, and the mixture was heated to 80 ° C. and stirred. The solution was used as it was.
実施例 6. Example 6.
上記実施例 4における接着剤にかえて、 重合度 2400、 けん化度 9 8mo l%のポリビニルアルコール 3 gを 97 gの N—メチルー 2—ピ ロリ ドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用い た。 Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 98 mol% was added to 97 g of N-methyl-2-pyrrolidone, and the mixture was heated to 80 ° C. and stirred. The solution was used.
実施例 7. Example 7.
上記実施例 4における接着剤にかえて、 重合度 300、 けん化度 87 mo 1%のポリビニルアルコール 3 gを 97 gの N—メチルー 2—ピロ リ ドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用いた。 実施例 8. Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 87 mo 1% was added to 97 g of N-methyl-2-pyrrolidone, and the mixture was heated to 80 ° C. and stirred. A solution was used. Example 8.
上記実施例 4における接着剤にかえて、 重合度 1000、 けん化度 8 7mo l%のポリビニルアルコール 3 gを 97 gの N—メチル一 2—ピ 口リ ドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用い た。 Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 1000 and a degree of saponification of 87 mol% was added to 97 g of N-methyl-12-piperidine, heated to 80 ° C. and stirred. The solution that was used while the solution was used.
実施例 9. Example 9.
上記実施例 4における接着剤にかえて、 重合度 2400、 けん化度 8 7mo l%のポリビニルアルコール 3 gを 97 gの N—メチルー 2—ビ 口リドンに加え、 80°Cに加熱し攪拌させながら溶液としたものを用い た。
実施例 1 0 . Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 87 mol% was added to 97 g of N-methyl-2-bilidone, and the mixture was heated to 80 ° C. and stirred. The solution was used. Example 10
上記実施例 4における接着剤にかえて、 重合度 3 0 0、 けん化度 9 8 m o 1 %のポリビニルアルコール 3 gと、 ポリメタクリル酸メチル 3 g を 9 4 gの N—メチルー 2 —ピロリ ドンに加え、 8 0 °Cに加熱し攪拌さ せながら溶液としたものを用いた。 Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 98% mo, and 3 g of polymethyl methacrylate were converted to 94 g of N-methyl-2-pyrrolidone. In addition, a solution which was heated to 80 ° C. and stirred while stirring was used.
実施例 1 1 . Example 11 1.
上記実施例 4における接着剤にかえて、 重合度 1 0 0 0、 けん化度 9 8 m o 1 %のポリビニルアルコール 3 gと、 ポリメタクリル酸メチル 3 gを 9 4 gの N—メチルー 2 —ピロリ ドンに加え、 8 0。Cに加熱し攪拌 させながら溶液としたものを用いた。 Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 100 and a saponification degree of 98%, and 3 g of polymethyl methacrylate were replaced with 94 g of N-methyl-2-pyrrolidone. In addition to 80. A solution which was heated to C while stirring was used.
実施例 1 2 . Example 1 2.
上記実施例 4における接着剤にかえて、 重合度 2 4 0 0、 けん化度 9 8 m o l %のポリビニルアルコール 3 gヒヽ ポリメタクリル酸メチル 3 gを 9 4 gの N—メチルー 2—ピロリ ドンに加え、 8 0 °Cに加熱し攪拌 させながら溶液としたものを用いた。 Instead of the adhesive in Example 4, 3 g of polyvinyl alcohol having a degree of polymerization of 240 and a saponification degree of 98 mol%, and 3 g of polymethyl methacrylate were added to 94 g of N-methyl-2-pyrrolidone. The solution was heated to 80 ° C. and stirred to form a solution.
実施例 1 3 . Example 13
負極および正極の作製、 接着剤の調整を上記実施例 1 と同様に行い、 2枚のセパレ一夕のそれぞれの片面に調整した接着剤を塗布し、 この塗 布した面の間に負極を挟み、 密着させて張り合わせた後、 8 0 °Cの温風 乾燥機に 2時間入れ N M Pを蒸発させた。 The preparation of the negative electrode and the positive electrode and the adjustment of the adhesive were performed in the same manner as in Example 1 above. The adjusted adhesive was applied to one surface of each of the two separators, and the negative electrode was sandwiched between the coated surfaces. Then, the NMP was put in a hot air drier at 80 ° C. for 2 hours to evaporate NMP.
負極を間に接合したセパレ一夕を所定の大きさに打ち抜き、 この打ち 抜いたセパレ一タの一方の面に上記調整した接着剤を塗布し、 所定の大 きさに打ち抜いた正極を張り合わせ、 さらに、 所定の大きさに打ち抜い た別のセパレー夕の一方の面に上記調整した接着剤を塗布し、 この別の セパレー夕の塗布面を先に張り合わせた正極の面に張り合わせた。 この 工程を繰り返し、 複数層の電極積層体を有する電池体を形成し、 この電
池体を加圧しながら乾燥し、 第 2図に示すような平板状積層構造電池体 を作製した。 The separator with the negative electrode bonded in between was punched out to a predetermined size, the adhesive adjusted above was applied to one surface of the punched-out separator, and the positive electrode punched to a predetermined size was stuck, Further, the above-prepared adhesive was applied to one surface of another separator punched out to a predetermined size, and the coated surface of the separate separator was bonded to the surface of the positive electrode previously bonded. This step is repeated to form a battery body having a plurality of electrode laminates. The pond was dried while being pressurized to produce a flat-plate laminated battery as shown in FIG.
この平板状積層構造電池体に、上記実施例 1 と同様に電解液を注入し、 封口処理してリチウムイオン二次電池を得た。 An electrolytic solution was injected into the plate-shaped laminated structure battery body in the same manner as in Example 1 and sealing was performed to obtain a lithium ion secondary battery.
本実施例において、 2枚のセパレ一夕間に上記と同様の方法で正極を 密着させて張り合わせたセパレ一夕の面に接着剤を塗布して、 塗布面に 負極を張り合わせ、 この上に、 2枚のセパレ一夕間に正極を張り合わせ た別のセパレ一夕を張り合わせる工程を繰り返してもよい。 In this example, an adhesive was applied to the surface of the separator where the positive electrode was adhered and adhered in the same manner as described above, and the negative electrode was adhered to the coated surface. The step of bonding another positive electrode with two positive electrodes bonded together during one separation may be repeated.
実施例 1 4 . Example 14.
負極および正極の作製、 接着剤の調整を上記実施例 1 と同様に行い、 帯状の 2枚のセパレ一夕のそれぞれの片面に調整した接着剤を塗布し、 この塗布した面の間に帯状の正極を挟み、 密着させて張り合わせた後、 6 0 °Cの温風乾燥機に 2時間入れ N—メチルー 2 —ピロリ ドンを蒸発さ せた。 The preparation of the negative electrode and the positive electrode and the adjustment of the adhesive were performed in the same manner as in Example 1 described above. The adjusted adhesive was applied to one surface of each of the two strip-shaped separators, and a belt-shaped adhesive was applied between the applied surfaces. After the positive electrode was sandwiched and adhered to each other, it was placed in a hot air drier at 60 ° C for 2 hours to evaporate N-methyl-2-pyrrolidone.
正極を間に接合した帯状のセパレ一夕の一方の面に調整した接着剤を 塗布し、 このセパレ一夕の一端を一定量折り曲げ、 折り目に負極を挟み、 重ね合わせてラミネ一夕に通した。 引き続いて、 帯状のセパレ一夕の他 方の面に調整した接着剤を塗布し、 先に折り目に挟んだ負極と対向する 位置に別の負極を張り合わせ、 セパレ一夕を長円状に巻き上げ、 さらに 別の負極を張り合わせつつセパレータを卷き上げる工程を繰り返し、 複 数層の電極積層体を有する電池体を形成し、 この電池体を加圧しながら 乾燥し、 第 3図に示したような平板状卷型積層構造電池体を作製した。 この平板状卷型積層構造電池体に、 上記実施例 1 と同様に電解液を注 入し、 封口処理してリチウムイオン二次電池を得た。 The adjusted adhesive was applied to one side of the strip-shaped separator with the positive electrode bonded between them, one end of the separator was bent by a certain amount, the negative electrode was sandwiched in the fold, and the laminate was passed through the laminator. . Subsequently, the adjusted adhesive is applied to the other side of the strip-shaped separator, and another negative electrode is attached to a position opposite to the negative electrode sandwiched between the folds, and the separator is rolled up in an oval shape. Further, the step of winding up the separator while attaching another negative electrode is repeated to form a battery body having a plurality of electrode laminates, and the battery body is dried while being pressed, and is then pressed as shown in FIG. A wound-type laminated structure battery body was produced. An electrolytic solution was poured into the plate-shaped wound laminated battery body in the same manner as in Example 1 described above, and the battery was sealed to obtain a lithium ion secondary battery.
本実施例では、 帯状のセパレ一夕間に帯状の正極を接合したものを卷 き上げつつ、 負極を張り合わせる例を示したが、 逆に、 帯状のセパレ一
夕間に帯状の負極を接合したものを巻き上げつつ、 正極を張り合わせる 方法でも良い。 In the present embodiment, an example is shown in which the negative electrode is adhered to the belt-shaped separator while the band-shaped positive electrode is joined and rolled up in the evening. In the evening, a method in which the positive electrode is bonded while the band-shaped negative electrode is joined is rolled up.
また、 本実施例においてはセパレータを巻き上げる方法を示したが、 帯状のセパレー夕間に帯状の負極または正極を接合したものを折り畳み つつ、 正極または負極を張り合わせる方法でも良い。 Further, in this embodiment, the method of winding up the separator is shown, but a method of bonding the positive electrode or the negative electrode while folding the band-shaped negative electrode or the positive electrode in the band-shaped separator may be used.
実施例 1 5 . Example 15
負極および正極の作製、 接着剤の調整を上記実施例 1と同様に行う。 帯状の正極を帯状の 2枚のセパレー夕間に配置し、 帯状の負極を一方 のセパレ一夕の外側に一定量突出させて配置する。 各セパレー夕の内側 の面および負極を配置したセパレ一夕の外側の面に、 調整した接着剤を 塗布し、 正極と 2枚のセパレー夕と負極とを重ね合わせてラミネ一夕に 通し、引き続き他方のセパレ一夕の外側の面に調整した接着剤を塗布し、 突出した負極をこの塗布面に折り曲げて張り合わせ、 この折り曲げた負 極を内側に包み込むようにラミネ一トしたセパレ一タを長円状に巻き上 げ、 複数層の電極積層体を有する電池体を形成し、 この電池体を加圧し ながら乾燥し、 第 4図に示したような、 平板状卷型積層構造電池体を作 製した。 Preparation of the negative electrode and the positive electrode, and adjustment of the adhesive are performed in the same manner as in Example 1 above. The strip-shaped positive electrode is placed between two strip-shaped separators, and the strip-shaped negative electrode is placed so as to protrude outside of one of the separators by a certain amount. The adjusted adhesive is applied to the inner surface of each separator and the outer surface of the separator where the negative electrode is placed, and the positive electrode, the two separators and the negative electrode are overlapped and passed through the laminator. The adjusted adhesive is applied to the outer surface of the other separator, and the protruding negative electrode is bent and adhered to this coated surface, and the laminated separator is wrapped inside so that the folded negative electrode is long. It is rolled up in a circular shape to form a battery body having a plurality of electrode laminates, and the battery body is dried while being pressurized to form a flat-plate wound type laminated structure battery body as shown in FIG. Made.
この平板状卷型積層構造電池体に、 上記実施例 1と同様に電解液を注 入し、 封口処理してリチウムイオン二次電池を得た。 An electrolytic solution was poured into the plate-shaped wound type laminated structure battery body in the same manner as in Example 1 and sealed to obtain a lithium ion secondary battery.
本実施例では、 帯状のセパレ一夕間に帯状の正極を配置し、 一方のセ パレー夕の外側に負極を配置して巻き上げる例を示したが、 逆に、 帯状 のセパレー夕間に帯状の負極を配置し一方のセパレ一夕の外側に正極を 配置して巻き上げる方法でも良い。 In the present embodiment, an example is shown in which a strip-shaped positive electrode is arranged in a strip-shaped separator and a negative electrode is arranged outside one separator and rolled up, but conversely, a strip-shaped separator is formed in a strip-shaped separator. A method in which a negative electrode is arranged, and a positive electrode is arranged outside one separator and wound up may be used.
上記実施例 1 3〜 1 5において、 積層数を種々変化させた結果、 積層 数に比例して電池容量が増加した。 In Examples 13 to 15 described above, as a result of changing the number of layers in various ways, the battery capacity increased in proportion to the number of layers.
比較例 1 .
17 上記実施例 4における接着剤にかえて、 ポリフッ化ビニリデン 3 gを 9 7 gの N—メチルー 2 —ピロリ ドンに加え、 8 0 °Cに加熱し攪拌させ ながら溶液としたものを用いた。 Comparative Example 1. 17 Instead of the adhesive in Example 4, 3 g of polyvinylidene fluoride was added to 97 g of N-methyl-2-pyrrolidone, and a solution was used while heating to 80 ° C. and stirring.
比較例 2 . Comparative example 2.
上記実施例 4における接着剤にかえて、 ポリフッ化ビニリデン 6 gを 9 4 gの N—メチルー 2 —ピロリ ドンに加え、 8 0。Cに加熱し攪袢させ ながら溶液としたものを用いた。 In place of the adhesive in Example 4 above, 6 g of polyvinylidene fluoride was added to 94 g of N-methyl-2-pyrrolidone, and the mixture was dried. The solution which was heated to C and stirred while stirring was used.
比較例 3 . Comparative example 3.
上記実施例 4における接着剤にかえて、 ポリメタクリル酸メチル 3 g を 9 7 gの N—メチルー 2 —ピロリ ドンに加え、 8 0 °Cに加熱し攪拌さ せながら溶液としたものを用いた。 表 1 接着強度 電池充放電特性 正極ーセパレータ 負極—セパレー夕 Instead of the adhesive in Example 4, 3 g of poly (methyl methacrylate) was added to 97 g of N-methyl-2-pyrrolidone, and the mixture was heated to 80 ° C. and stirred to form a solution. . Table 1 Adhesive strength Battery charge / discharge characteristics Positive electrode-separator Negative electrode-separator
1 Δ △ 〇 1 Δ △ 〇
施 2 〇 〇 〇 Out 2 〇 〇 〇
例 3 〇 〇 〇 Example 3 〇 〇 〇
4 〇. Δ 〇 4 〇. Δ 〇
5 ◎ 〇 〇 5 ◎ 〇 〇
6 ◎ ◎ 〇 6 ◎ ◎ 〇
7 Δ Δ 〇 7 Δ Δ 〇
8 〇 0 〇 8 〇 0 〇
9 〇 〇" 〇 9 〇 〇 "〇
10 〇 〇 〇 10 〇 〇 〇
11 . ◎ ◎. 〇 11. ◎ ◎. 〇
12 © ◎ 〇 12 © ◎ 〇
比 1 X X X Ratio 1 X X X
較 2 Δ Δ . X Comparison 2 Δ Δ. X
例 3 X X X
上記実施例及び比較例で得られた接着試験片を用いて、 接着剤のビー ル接着強度を下記〇、 Xの基準で判定し、 結果を上記表 1に示した。 Example 3 XXX Using the adhesive test pieces obtained in the above Examples and Comparative Examples, the adhesive strength of the adhesive was determined according to the following criteria (1) and (2). The results are shown in Table 1 above.
◎ :電極—セパレー夕間のピール接着強度が 8 0 g f / c m以上 〇 :電極ーセパレ一夕間のピール接着強度が 6 0 g f / c m以上◎: Peel adhesion between electrode and separator is 80 gf / cm or more 〇: Peel adhesion between electrode and separator is 60 gf / cm or more
△: 電極—セパレー夕間のピール接着強度が 4 0 g f / c m以上 x : 電極ーセパレー夕間のピール接着強度が 4 0 g f / c m未満 また、 上記実施例、 比較例で得られた電池を用いて、 充電一放電を 1 0 0サイクル繰り返し、 1サイクル目及び 1 0 0サイクル目の充放電特 性を下記〇及び Xの基準で判定し、 結果を上記表 1に示した。 Δ: The peel adhesion between the electrode and the separator was 40 gf / cm or more. X: The peel adhesion between the electrode and the separator was less than 40 gf / cm. Also, the batteries obtained in the above Examples and Comparative Examples were used. The charge-discharge was repeated for 100 cycles, and the charge and discharge characteristics at the first cycle and at the 100th cycle were determined based on the following criteria of X and X. The results are shown in Table 1 above.
〇 : 充放電効率が 7 0 %以上 〇: Charge and discharge efficiency is 70% or more
X : 充放電効率が 7 0 %未満もしくは充放電が不可能 上記表 1の結果に明らかに示されているように、 実施例 1〜 1 2によ れば、 正極 1ーセパレータ 7間及び負極 4 —セパレ一夕 7間の接着強度 が大きく、 かつ電池充放電特性に優れた電池が得られる。 X: The charging / discharging efficiency is less than 70% or charging / discharging is impossible. As clearly shown in the results in Table 1 above, according to Examples 1 to 12, according to Examples 1 to 12, between the positive electrode 1 and the separator 7 and between the negative electrode 4 -Batteries with high adhesive strength during separation and excellent battery charge / discharge characteristics can be obtained.
特に、 セパレー夕に接着剤を塗布した後、 セパレ一夕の塗布面に接着 剤をゲル化させる第 2の溶媒を添加する生成方法を用いた実施例 4〜 1 2において正極 1—セパレ一夕 7間及び負極 4ーセパレータ 7間の接着 強度が大きくなつた。 これは接着剤溶液がゲル化することにより、 多孔 質である電極活物質層に吸い込まれる量が少なくなった結果、 電極ーセ パレー夕界面に残存し、 接着力発現に寄与しうる接着剤量が多くなつた 結果と考えられる。 In particular, in Examples 4 to 12 using the production method in which the adhesive was applied to the separator and then the second solvent for gelling the adhesive was added to the coating surface of the separator, the positive electrode 1-separator was used. The bonding strength between the negative electrode 7 and the negative electrode 4 and the separator 7 was increased. This is because the adhesive solution gels and the amount absorbed into the porous electrode active material layer decreases, resulting in the amount of adhesive remaining at the electrode-separator interface and contributing to the development of adhesive strength. This is thought to be the result of the increase.
また、 けん化度が高いポリビニルアルコールを使用した方が、 正極 1
—セパレー夕 7間及び負極 4—セパレータ 7間の接着強度が大きくなつ たが、 これはけん化度が高いポリビニルアルコールの溶液ほど、 ゲル化 溶媒により効果的にゲル化しうるためと考えられる。 In addition, the use of polyvinyl alcohol, which has a high degree of saponification, The adhesive strength between the separator 7 and the anode 4 and the separator 7 was increased. This is considered to be because the polyvinyl alcohol solution having a higher degree of saponification can be more effectively gelled by the gelling solvent.
比較例 1に示したように、 接着剤にポリフッ化ビニリデンを用いた場 . 合、 実施例 1〜 1 2と比べて樹脂濃度、 接着剤塗布量が同じにもかかわ らず、 正極 1、 セパレ一夕 7及び負極 4を電池として一体化するに十分 な接着強度が得られなかつた。 As shown in Comparative Example 1, when polyvinylidene fluoride was used for the adhesive, the positive electrode 1 and the separator were used irrespective of the same resin concentration and adhesive application amount as compared with Examples 1 to 12. Adhesive strength sufficient to integrate overnight 7 and negative electrode 4 as a battery could not be obtained.
また比較例 2に示したように、接着剤にポリフッ化ビ二リデンを用い、 接着剤溶液の濃度を実施例 1〜 1 2の 2倍に増やした場合では、 十分な 接着強度は得られたものの電池の充放電特性が悪くなつた。 Further, as shown in Comparative Example 2, when polyvinylidene fluoride was used as the adhesive and the concentration of the adhesive solution was increased to twice that of Examples 1 to 12, sufficient adhesive strength was obtained. However, the charge / discharge characteristics of the battery deteriorated.
また比較例 3に示したように、 接着剤にボリメ夕クリル酸メチルを用 いた場合でも、 実施例 1〜 1 2と比べて樹脂濃度、 接着剤塗布量が同じ にもかかわらず、 正極 1、 セパレ一タ 7及び負極 4を電池として一体化 するに十分な接着強度が得られなかった。 In addition, as shown in Comparative Example 3, even when methyl methacrylate was used as the adhesive, the positive electrode 1 and the positive electrode 1 had the same resin concentration and adhesive application amount as compared with Examples 1 to 12. Adhesive strength sufficient to integrate separator 7 and negative electrode 4 as a battery could not be obtained.
なお、 上記表 1の結果は実施例 1〜 1 2はについて示しているが、 実 施例 1 3〜 1 5に示した積層電極型電池についても同様の結果が得られ た。 産業上の利用可能性 Although the results in Table 1 above are shown for Examples 1 to 12, similar results were obtained for the stacked electrode type batteries shown in Examples 13 to 15. Industrial applicability
携帯パソコン、 携帯電話等の携帯用電子機器の二次電池として用いら れ、 電池の性能向上とともに、 小型,軽量化、 任意形状化が可能となる。
It is used as a secondary battery in portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped as well as improving battery performance.
Claims
1 . 集電体に接着された活物質層を電池用電解液を保持するためのセパ レー夕に接着する接着剤であって、 この接着剤が、 ボリビニルアルコー ルを含む有機溶媒溶液からなることを特徴とする電池用接着剤。 1. An adhesive for adhering the active material layer adhered to the current collector to a separator for holding a battery electrolyte, the adhesive being made of an organic solvent solution containing polyvinyl alcohol. An adhesive for a battery, comprising:
2 . 有機溶媒溶液に、 ポリビニルアルコールと非相溶で、 かつ電池用電 解液に膨潤もしくは溶解しうる樹脂をさらに混合してなることを特徴と する請求の範囲第 1項記載の電池用接着剤。 2. The adhesive for a battery according to claim 1, wherein the organic solvent solution is further mixed with a resin that is incompatible with polyvinyl alcohol and swells or dissolves in an electrolyte solution for a battery. Agent.
3 . ポリビニルアルコールのけん化度が 9 5 %以上であることを特徴と する請求の範囲第 1項記載の電池用接着剤。 3. The battery adhesive according to claim 1, wherein the degree of saponification of polyvinyl alcohol is 95% or more.
4 . ポリビニルアルコールの重合度が 1 0 0 0以上であることを特徴と する請求の範囲第 1項記載の電池用接着剤。 4. The adhesive for batteries according to claim 1, wherein the degree of polymerization of polyvinyl alcohol is 100 or more.
5 . 活物質層を集電体に接着した一対の電極の活物質層を、 電池用電解 液を保持するためのセパレ一夕に、 有機溶媒にポリビニルアルコールを 含む電池用接着剤で接着した電極積層体を有することを特徴とする電池。 5. An electrode in which the active material layers of a pair of electrodes in which the active material layer is bonded to the current collector are bonded with a battery adhesive containing polyvinyl alcohol in an organic solvent during the separation for holding the battery electrolyte. A battery having a laminate.
6 . 電池用接着剤が、 ポリビニルアルコールと非相溶で、 かつ電池用電 解液に膨潤もしくは溶解しうる樹脂をさらに混合してなることを特徴と する請求の範囲第 5項記載の電池。 6. The battery according to claim 5, wherein the battery adhesive is further mixed with a resin that is incompatible with polyvinyl alcohol and swells or dissolves in the battery electrolyte.
7 . 電極積層体の複数層を備えることを特徴とする請求の範囲第 5項記 載の電池。 7. The battery according to claim 5, comprising a plurality of layers of the electrode laminate.
8 . 電極積層体の複数層が、 正極と負極を切り離された複数のセパレ一 夕間に交互に配置することにより形成されたことを特徴とする請求の範 囲第 7項記載の電池。 8. The battery according to claim 7, wherein the plurality of layers of the electrode laminate are formed by alternately arranging the positive electrode and the negative electrode in a plurality of separated separators.
9 . 電極積層体の複数層が、 正極と負極を巻き上げられたセパレ一夕間 に交互に配置することにより形成されたことを特徴とする請求の範囲第 9. The plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode in a wound separator.
7項記載の電池。
The battery according to item 7.
1 0 . 電極積層体の複数層が、 正極と負極を折り畳んだセパレー夕間に 交互に配置することにより形成されたことにより形成されたことを特徴 とする請求の範囲第 7項記載の電池。 10. The battery according to claim 7, wherein the plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode in a folded separator.
1 1 . 有機溶剤にポリビニルアルコールを含む電池用接着剤を、 セパレ 1 1. Separate the battery adhesive containing polyvinyl alcohol into the organic solvent.
—夕表面に塗布する工程、 活物質層を集電体に接着した一対の電極の活 物質層を上記セパレー夕の上記塗布面に貼り合せる工程、 有機溶剤を少 なくとも一部留去することにより上記電極とセパレー夕とを一体化する 工程を備えたことを特徴とする電池の製造方法。 —Applying the active material layer on the evening surface, attaching the active material layer of the pair of electrodes with the active material layer adhered to the current collector to the application surface of the separator, removing at least part of the organic solvent A process for integrating the electrode and the separator with the above method.
1 2 . 電池用接着剤をセパレ一夕表面に塗布した後、 上記セパレ一夕の 塗布面に、 上記電池用接着剤溶液をゲル化させることのできる第 2の溶 媒を添加することにより、 上記電池用接着剤をゲル化させる工程を備え ることを特徴とする請求の範囲第 1 1項記載の電池の製造方法。 1 2. After applying the battery adhesive to the surface of the separator, the second solvent capable of gelling the battery adhesive solution is added to the coating surface of the separator. 12. The method for producing a battery according to claim 11, further comprising a step of gelling the battery adhesive.
1 3 . 電池用接着剤が、 有機溶媒溶液にポリビニルアルコールと非相溶 で、 かつ電池用電解液に膨潤もしくは溶解しうる樹脂をさらに混合して なることを特徴とする請求の範囲第 1 1項記載の電池の製造方法。 13. The battery adhesive according to claim 11, wherein the battery adhesive is further mixed with a resin that is incompatible with polyvinyl alcohol in an organic solvent solution and swells or dissolves in a battery electrolyte solution. 13. The method for producing a battery according to the above item.
1 4 . ポリビニルアルコールのけん化度が 9 5 %以上であることを特徴 とする請求の範囲第 1 1項記載の電池の製造方法。 14. The method for producing a battery according to claim 11, wherein the degree of saponification of polyvinyl alcohol is 95% or more.
1 5 . ポリビニルアルコールの重合度が 1 0 0 0以上であることを特徴 とする請求の範囲第 1 1項記載の電池の製造方法。
15. The method for producing a battery according to claim 11, wherein the degree of polymerization of polyvinyl alcohol is 1000 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1997/004677 WO1999031750A1 (en) | 1997-12-18 | 1997-12-18 | Adhesive for cells, a cell using the same and a process for producing cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1997/004677 WO1999031750A1 (en) | 1997-12-18 | 1997-12-18 | Adhesive for cells, a cell using the same and a process for producing cells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999031750A1 true WO1999031750A1 (en) | 1999-06-24 |
Family
ID=14181682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/004677 WO1999031750A1 (en) | 1997-12-18 | 1997-12-18 | Adhesive for cells, a cell using the same and a process for producing cells |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999031750A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008093575A1 (en) | 2007-01-30 | 2008-08-07 | Asahi Kasei E-Materials Corporation | Multilayer porous membrane and method for producing the same |
WO2009025332A1 (en) * | 2007-08-22 | 2009-02-26 | Japan Vilene Company, Ltd. | Lithium ion secondary battery |
JP2010192248A (en) * | 2009-02-18 | 2010-09-02 | Japan Vilene Co Ltd | Lithium ion secondary battery |
JP2011054502A (en) * | 2009-09-04 | 2011-03-17 | Hitachi Maxell Ltd | Lithium secondary cell and manufacturing method thereof |
JP2011124074A (en) * | 2009-12-10 | 2011-06-23 | Japan Vilene Co Ltd | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery |
JP2011165501A (en) * | 2010-02-10 | 2011-08-25 | Japan Vilene Co Ltd | Thermal runaway inhibitor for lithium ion secondary battery, and lithium ion secondary battery |
KR101143307B1 (en) | 2007-07-23 | 2012-05-08 | 주식회사 엘지화학 | Bilayer Binder Based upon Polyvinyl Acetate-Polyvinyl Alcohol Prepared by Emulsion Polymerization and Secondary Battery Employing the Same |
WO2012128026A1 (en) * | 2011-03-18 | 2012-09-27 | 協立化学産業株式会社 | Aqueous metal surface treatment agent for lithium ion secondary cell |
JP2014026986A (en) * | 2013-10-04 | 2014-02-06 | Hitachi Maxell Ltd | Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor |
US9525189B2 (en) | 2011-09-26 | 2016-12-20 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
US9843049B2 (en) | 2011-09-26 | 2017-12-12 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
WO2020255802A1 (en) * | 2019-06-17 | 2020-12-24 | 株式会社クラレ | Separator for non-aqueous electrolyte secondary battery and manufacturing method therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58120680A (en) * | 1982-01-12 | 1983-07-18 | Daicel Chem Ind Ltd | High-speed adhesive for paper |
JPH06150939A (en) * | 1992-11-05 | 1994-05-31 | Mitsubishi Cable Ind Ltd | Porous electrolyte base, its manufacture, and solid electrolyte |
JPH09293518A (en) * | 1996-04-26 | 1997-11-11 | Asahi Chem Ind Co Ltd | Thin film electrolyte and battery using this electrolyte |
-
1997
- 1997-12-18 WO PCT/JP1997/004677 patent/WO1999031750A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58120680A (en) * | 1982-01-12 | 1983-07-18 | Daicel Chem Ind Ltd | High-speed adhesive for paper |
JPH06150939A (en) * | 1992-11-05 | 1994-05-31 | Mitsubishi Cable Ind Ltd | Porous electrolyte base, its manufacture, and solid electrolyte |
JPH09293518A (en) * | 1996-04-26 | 1997-11-11 | Asahi Chem Ind Co Ltd | Thin film electrolyte and battery using this electrolyte |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008093575A1 (en) | 2007-01-30 | 2008-08-07 | Asahi Kasei E-Materials Corporation | Multilayer porous membrane and method for producing the same |
US9293752B2 (en) | 2007-01-30 | 2016-03-22 | Asahi Kasei E-Materials Corporation | Multilayer porous membrane and production method thereof |
KR101479822B1 (en) * | 2007-01-30 | 2015-01-06 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | Multilayer porous membrane and method for producing the same |
KR101143307B1 (en) | 2007-07-23 | 2012-05-08 | 주식회사 엘지화학 | Bilayer Binder Based upon Polyvinyl Acetate-Polyvinyl Alcohol Prepared by Emulsion Polymerization and Secondary Battery Employing the Same |
JP2013258150A (en) * | 2007-08-22 | 2013-12-26 | Japan Vilene Co Ltd | Lithium ion secondary battery |
WO2009025332A1 (en) * | 2007-08-22 | 2009-02-26 | Japan Vilene Company, Ltd. | Lithium ion secondary battery |
EP2192648A4 (en) * | 2007-08-22 | 2011-01-19 | Japan Vilene Co Ltd | LITHIUM-ION SECONDARY BATTERY |
JP5458304B2 (en) * | 2007-08-22 | 2014-04-02 | 日本バイリーン株式会社 | Lithium ion secondary battery |
US8546025B2 (en) | 2007-08-22 | 2013-10-01 | Japan Vilene Company, Ltd. | Lithium ion secondary battery |
JP2010192248A (en) * | 2009-02-18 | 2010-09-02 | Japan Vilene Co Ltd | Lithium ion secondary battery |
JP2011054502A (en) * | 2009-09-04 | 2011-03-17 | Hitachi Maxell Ltd | Lithium secondary cell and manufacturing method thereof |
JP2011124074A (en) * | 2009-12-10 | 2011-06-23 | Japan Vilene Co Ltd | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery |
JP2011165501A (en) * | 2010-02-10 | 2011-08-25 | Japan Vilene Co Ltd | Thermal runaway inhibitor for lithium ion secondary battery, and lithium ion secondary battery |
WO2012128026A1 (en) * | 2011-03-18 | 2012-09-27 | 協立化学産業株式会社 | Aqueous metal surface treatment agent for lithium ion secondary cell |
JPWO2012128026A1 (en) * | 2011-03-18 | 2014-07-24 | 協立化学産業株式会社 | Water-based metal surface treatment agent for lithium ion secondary batteries |
US9525189B2 (en) | 2011-09-26 | 2016-12-20 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
US9843049B2 (en) | 2011-09-26 | 2017-12-12 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
JP2014026986A (en) * | 2013-10-04 | 2014-02-06 | Hitachi Maxell Ltd | Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor |
WO2020255802A1 (en) * | 2019-06-17 | 2020-12-24 | 株式会社クラレ | Separator for non-aqueous electrolyte secondary battery and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3997573B2 (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP3393145B2 (en) | Lithium ion secondary battery | |
JP3225867B2 (en) | Lithium ion secondary battery and method of manufacturing the same | |
WO1999026306A1 (en) | Lithium ion secondary battery and manufacture thereof | |
JPH10302843A (en) | Adhesive for battery, battery using it, and its manufacture | |
JP3474853B2 (en) | Manufacturing method of lithium ion secondary battery | |
JP4008508B2 (en) | Method for producing lithium ion secondary battery | |
JPH10284131A (en) | Lithium ion secondary battery and its manufacture | |
WO1999031748A1 (en) | Lithium ion secondary battery | |
US20010008726A1 (en) | Adhesive for battery, battery using the same and method of fabricating a battery using the same | |
WO1999031751A1 (en) | Lithium ion secondary battery and its manufacture | |
WO1999031750A1 (en) | Adhesive for cells, a cell using the same and a process for producing cells | |
WO1999034469A1 (en) | Lithium ion secondary battery | |
JP2000251944A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
US6472105B2 (en) | Bonding agent for cells and cell using the same | |
WO1999034470A1 (en) | Process for manufacture of lithium ion secondary battery | |
WO1999026308A1 (en) | Bonding agent for cells and cell using the same | |
JP2003151638A (en) | Lithium-ion secondary battery | |
JPH11149916A (en) | Organic electrolytic battery | |
WO1999033136A1 (en) | Lithium ion secondary battery and its manufacture | |
WO1999048164A1 (en) | Secondary battery and method for forming the same | |
KR100329294B1 (en) | Method for manufacturing lithium ion battery | |
CN1244296A (en) | Lithium ion secondary battery and manufacture thereof | |
CN1237651C (en) | Lithium-ion secondary battery | |
KR100301996B1 (en) | Manufacture of lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 2000539541 Format of ref document f/p: F |