+

WO1998037255A1 - Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film - Google Patents

Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film Download PDF

Info

Publication number
WO1998037255A1
WO1998037255A1 PCT/JP1998/000708 JP9800708W WO9837255A1 WO 1998037255 A1 WO1998037255 A1 WO 1998037255A1 JP 9800708 W JP9800708 W JP 9800708W WO 9837255 A1 WO9837255 A1 WO 9837255A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
resistance
group
Prior art date
Application number
PCT/JP1998/000708
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Mitsui
Original Assignee
Asahi Glass Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company Ltd. filed Critical Asahi Glass Company Ltd.
Priority to DE69820639T priority Critical patent/DE69820639T2/en
Priority to EP98904403A priority patent/EP1004687B1/en
Publication of WO1998037255A1 publication Critical patent/WO1998037255A1/en
Priority to US09/175,964 priority patent/US6042752A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a transparent conductive film, a sputtering target, and a substrate with a transparent conductive film.
  • Transparent conductive films have both high visible light transmittance and high conductivity, and are used as transparent electrodes for display devices such as liquid crystal display devices and plasma light-emitting devices, transparent electrodes for solar cells, heat ray reflective films for automotive and architectural glass, and CRT. It is widely used as an antistatic film, or as a transparent heating element for various anti-fog applications such as freezing and refrigeration showcases.
  • an ITO (tin-doped indium oxide) film is mainly used as a transparent conductive film because a low-resistance film can be easily obtained.
  • ITO films are widely used as electrodes for display elements.
  • a low-cost transparent conductive film of zinc oxide and a low-cost transparent transparent conductive film of tin oxide are also known.
  • ITO which is a main component of ITO
  • Zinc oxide-based transparent conductive films have low chemical resistance to acids and alkalis. Therefore, it is difficult to apply the zinc oxide-based transparent conductive film to industrial products such as display elements.
  • the tin oxide-based transparent conductive film has extremely excellent chemical resistance as compared with the ITO film and the zinc oxide-based transparent conductive film.
  • Tin oxide is produced by spraying or CVD as an industrial production method, but it is difficult to form a uniform film thickness.
  • chlorine and hydrogen chloride were generated during film formation, and there was a problem of environmental pollution due to these exhaust gases (or effluents).
  • the tin oxide-based transparent conductive film is useful, it has the various problems described above. Further, since the tin oxide-based transparent conductive film is crystalline, there is a problem that scratch resistance is low. The reason why the scratch resistance is low is considered to be that fine irregularities formed during crystal growth are present on the surface of the film, and these are clogged.
  • a sputtering method that can easily obtain a uniform thin film and has low environmental pollution is suitable.
  • Sputtering methods can be broadly classified into radio frequency (RF) sputtering methods that use a high-frequency power supply, and direct current (DC) sputtering methods that use a DC power supply.
  • the RF sputtering method is excellent in that an electrically insulating material can be used for the target, but a high-frequency power supply is expensive, has a complicated structure, and is not preferable for forming a large-area film. .
  • DC sputtering method data one rodents preparative material is limited force in highly conductive material?, Easy to operate because the device structure is the use of a simple DC power source.
  • the DC sputtering method is preferable.
  • Japanese Patent Application Laid-Open No. 1-97315 proposes a method of forming a tin oxide conductive film by a sputtering method, but describes only an RF sputtering method and does not describe a DC sputtering method. . Also, film resistivity also only such have obtained 8 X 1 0- 3 ⁇ cm or more relatively high-resistance film Les,
  • JP-7- 33 50 3 0, ln 2 0 3, Z n O, S N_ ⁇ 2, and G a 2 0 3 1 kind selected Ri by the group consisting of or a transparent conductive consisting more Oxides have been proposed. However, there is no specific description of the composite oxide containing tin oxide.
  • Japanese Patent Application Laid-Open No. 4-272612 proposes a gallium-containing ITO film, in which s and indium oxide are the main components, and tin oxide is not the main component.
  • the present invention solves the above-mentioned disadvantages of the prior art, and provides a tin oxide-based transparent conductive film having low resistance and high abrasion resistance, a method for producing the same, and a sputtering target for forming the tin oxide-based transparent conductive film.
  • the purpose is to provide
  • the present invention is a transparent conductive film of tin oxide containing a Gariumu and Lee indium, converting the gully um to G a 2 0 3, by converting the Lee indium to I n 2 0 3, tin S n
  • the gas re um containing 0.1 to 3 0 mol% G a 2 0 in terms of And indium is In 2
  • FIG. 1 is an X-ray diffraction pattern of a film in Example 2 which is an example of the present invention.
  • the content of the gully um is from 1 1 to 5 mole 0/0 G a 2 0 3 in terms of the content ratio of Katsui indium is at I n 2 0 3 in terms of 1 is preferably 1 to 5 mol 0/0.
  • Antimony is a S b 2 0 5 terms in tellurium T E_ ⁇ 2 terms, G a 2 0 3 and I n 2 0 3 and S with respect to the total amount of n0 2, 0. 0 1 in total
  • the transparent conductive film of the present invention in order to further improve the abrasion resistance, a group consisting of group 3 (including lanthanide and excluding actinide), group 4 and group 5 in the long-period periodic table. It is preferable to contain at least one metal selected from the following (hereinafter, referred to as a Group 3 to 5 metal).
  • the Group 3 to 5 metal is preferably contained in the film in the form of an oxide (hereinafter, referred to as Group 3 to 5 metal oxide).
  • Group 3 to 5 metal oxide 3-5 group metal oxide, S n0 2 and I n 2 0 3 and G a
  • the amount is less than 0.05 mol%, the effect of further improving the scratch resistance is small. On the other hand, if it exceeds 5 mol%, the specific resistance of the film becomes high.
  • the content ratio of the Group 3 to 5 metal oxide it is calculated based on an oxide (described later) exemplified as the Group 3 to 5 metal oxide. The same applies to the definition of the content ratio of Group 3 to 5 metal oxides.
  • Group 3 includes Sc, Y, and Lanyu noise (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu ).
  • Y, La, Ce, Pr, and Nd are relatively inexpensive and have high chemical resistance. preferable.
  • Group 4 includes Ti, Zr, and Hf.
  • Ti and Zr are preferable because they are relatively inexpensive and have high chemical resistance.
  • the oxide of Group 4 metal T i 0 2, Z r 0 2, H f 0 2 and the like.
  • Group 5 includes V, Nb, and Ta.
  • Nb and Ta are preferred because they are relatively inexpensive and have high chemical resistance.
  • Oxides of Group 5 metals V 2 0 5, Nb 2 0 5, T a 2 0 5 and the like.
  • the specific resistance of the transparent conductive film of the present invention is preferably 1 ⁇ cm or less from a practical viewpoint.
  • resistivity 1 0- 5 ⁇ cm or more Preferably, there is.
  • the visible light transmittance of the transparent conductive film of the present invention is preferably 70% or more from a practical viewpoint.
  • the present invention also provides a sputter phosphorus Gutage' bets tin oxide containing gallium and indium, converting the gallium G a 2 0 3, by converting the indium I n 2 0, tin S n 0 2 when converted into, based on the total amount of the G a 2 0 3 and I n 2 0 3 and S n 0 2, gallium containing from 0.1 to 3 0 mol% in G a 2 0 3 in terms of, or the final indium provides Supattari Ngutage' you want to, characterized in that it contains 0.1 to 3 0 mol% in I eta 0 3 terms.
  • the content ratio of either gallium or indium is less than 0.1 mol% in terms of oxide, the specific resistance of the formed film becomes high, and the film becomes crystalline. Furthermore, had the content of the Zureka often Ri by 3 0 mol% in terms of oxide, since the film obtained resistivity of the film is high is lower resistance, the content of the gully um is G a 2 0 3 conversion is 1 to 1 5 mole 0/0 by calculation, and the content of indium 1 in I n 2 0 3 in terms of
  • the target of the present invention preferably contains antimony and Z or tellurium, since a film with lower resistance can be obtained.
  • Antimony is a S b 2 ⁇ 5 conversion, tellurium at T e 0 2 terms, the.
  • the total amount is preferably in the range of 0.01 to 10 mol. If the content is more than 10 mol%, the resistance of the target and the obtained film tends to increase. In addition, the target density (density) tends to decrease, and the discharge during sputtering tends to be unstable. If the amount is less than 0.01 mol%, the effect of lowering the resistance is small.
  • the relative density of the target is preferably about 80% or more, that is, the target density is preferably 5.5 gZc c or more.
  • the group 3 to 5 metal is preferably contained in the target in the form of an oxide (that is, a group 3 to 5 metal oxide).
  • Group 3 to 5 metal and the Group 3 to 5 metal oxide are the same as described above.
  • 3-5 group metal oxide based on the total amount of the S n0 2 and I n 2 0 3 and G a 2 0 3, it is preferable to 0.0 5-5 mole 0 / o containing in total. If it is less than 0.05 mol% or more than 5 mol%, the target density tends to decrease.
  • the specific resistance of the sputtering target is preferably 1 ⁇ cm or less.
  • Gallium in the target is preferably present in an oxide state or a solid solution state.
  • the oxide state tri-state gallium oxide (G a 2 0 3) or oxide Lee indium (I n 2 0 3) and Z or a composite oxide of tin oxide (S n 0 2) Means the state.
  • a solid solution state means a state of tin oxide gallium is solid-solved (S n ⁇ ") and Z or oxidation Injiumu which Gariumu is solid-solved (I n 2 0 3).
  • gallium large that Part is S n 0 2 or I n 2 0
  • the oxide state is defined as I n, 0, (S ⁇ , or G a 0 3 is meant the state of the composite oxide of the state of solid solution or may be) or S n 0 2 and / or G a 2 0 3,.
  • a solid solution state, S n 0 2 and Roh or Lee indium which Lee indium is solid-solved is meant G a 2 0 3 was dissolved.
  • indium is present in that state in which most of a solid solution to I n 2 0 3 (S n 0 2 or G a 2 0 3 is good even if dissolved Les) state or S n 0 2 of Preferably
  • the gallium and the alloy exist in an oxide state or a solid solution state in that the transparent conductive film can be easily produced.
  • the object of the present invention is not spoiled.
  • the maximum particle size of the crystal grains of the oxide is less 2 0 0 ⁇ m.
  • the presence of oxide particles having a maximum particle size of more than 200 m is not preferable because sputtering discharge becomes unstable.
  • the average particle size is preferably 0.01 m or more from the viewpoint of handling of the powder and moldability. If the average particle size is more than 50 m, the sinterability is reduced, and it becomes difficult to obtain a dense sintered body. Therefore, the average particle size is preferably 50 m or less.
  • the target of the present invention may contain other components to such an extent that the object and effects of the present invention are not impaired, but it is desirable to keep the target as small as possible.
  • composition of the film approximately matches the composition of the target. However, the composition of the film may deviate from the target composition depending on the sputtering conditions during film formation.
  • the target of the present invention can be produced by a method for producing ceramics in general, such as a normal pressure sintering method and a hot press method.
  • normal pressure sintering In the case of normal pressure sintering, firing at a high temperature is necessary. At high temperatures, oxides are decomposed and easily evaporated, and the target is difficult to densify, so it contains oxygen such as air It is preferable to perform sintering in an atmosphere. For example, normal pressure sintering is performed in air at a temperature of 130 to 160.
  • sintering can be performed at a relatively low temperature, so that an oxidizing atmosphere (an atmosphere containing an oxidizing gas) and a non-oxidizing atmosphere (an atmosphere containing no oxidizing gas) can be used.
  • an oxidizing atmosphere an atmosphere containing an oxidizing gas
  • a non-oxidizing atmosphere an atmosphere containing no oxidizing gas
  • hot press 7 may be used, but in the case of a hot press, carbon is generally used for the mold material, and it is preferable to perform the treatment in a non-oxidizing atmosphere from the viewpoint of preventing oxidation of the mold material.
  • hot press at 800 to 110 ° C in a non-oxidizing atmosphere.
  • a target can be produced, for example, as follows.
  • G a 2 0 3 powder was prepared I n 2 0 3 powder and S n 0 2 powder, mixing these powders in a predetermined ratio.
  • water is used as a dispersant and mixed by a wet ball mill method.
  • the powder is dried and then filled in a rubber mold, and is subjected to pressure molding with a cold isostatic press (CIP) at a pressure of 1500 kg Zcm 2 . Then in the air 1
  • CIP cold isostatic press
  • a target can be produced, for example, as follows. After mixing and drying the raw material powders as in the case of normal pressure sintering, the powder is filled into a carbon hot-press die, and the powder is filled into argon (Ar) 900. It is kept at a temperature of C and a pressure of 300 kgcm 2 for 2 hours and sintered. Thereafter, the same machining and metal bonding as in normal pressure sintering is performed to produce the target.
  • the target of the present invention has a high conductivity, so that a large-area film can be formed, and the target can sufficiently cope with the DC sputtering method in which the film forming speed is high, and the RF sputtering can be performed. Any sputtering method such as a sputtering method can be used.
  • the transparent conductive film of the present invention preferably has a geometric film thickness (hereinafter simply referred to as a film thickness) in the range of 3 nm to 5 m. If the film thickness exceeds 5, the film formation time becomes longer and the cost increases. When the film thickness is less than 3 nm, the specific resistance increases. In particular, the range of 3 to 300 nm is preferable.
  • the present invention also provides a method for producing a transparent conductive film containing tin oxide as a main component on a substrate by a sputtering method, wherein the sputtering target is used as the sputtering target.
  • a method for producing a transparent conductive film is provided.
  • the oxidizing atmosphere is an atmosphere containing an oxidizing gas.
  • the oxidizing gas means an oxygen atom-containing gas such as 0 2 H 2 0 CO C0 2
  • Oxidizing gas concentration greatly affects film properties such as film conductivity and light transmittance
  • Ar-0 as the sputtering gas.
  • System or A r _ C 0 2 system making the transparent low-resistance film, preferably in that easily controlling the composition of the gas.
  • 0 2 concentration is preferably 5 2 5 vol%. If it is less than 5% by volume, the film will be colored yellow and the resistance of the film will be high. If the content is more than 25% by volume, the resistance of the film increases.
  • C0 2 concentration is preferably 1 0 5 0 vol 0/0. 1 0 vol 0/0 good small and film is colored yellow is, the resistance of the membrane becomes higher. If it exceeds 50% by volume, the resistance of the film increases.
  • a colored film or high resistance may be required, and the concentration is not limited to the above.
  • any sputtering method such as a DC sputtering method and an RF sputtering method can be used.
  • the DC sputtering method having excellent industrial productivity is preferable.
  • the transparent conductive film of the present invention can be manufactured as follows. Using a magnetron DC Supattari ring device, using the target described above, 1 a chamber 0 1 0- 4 T
  • the power density during sputtering (the value obtained by dividing the input power by the area of the target surface) is preferably 110 W / cm 2 . lWZc m 2 is smaller than the discharge is not stable. If it is higher than 1 OW / cm 2 , the possibility that the target is cracked by the generated heat increases.
  • the sputtering pressure is preferably from 10 to 10 Trr. Ten- If it is smaller than 4T orr or higher than 10—orr, the discharge tends to be unstable.
  • Examples of a substrate on which a film is formed include glass, ceramics, plastics, and metal.
  • the substrate temperature during film formation is not particularly limited, but is preferably 300 ° C. or lower from the viewpoint that an amorphous film can be easily obtained.
  • the temperature of the substrate may be about room temperature when no intentional heating is performed, that is, about room temperature.
  • the substrate may be post-heated (heat treated).
  • the heat treatment is preferably performed at 60 to 400 ° C. in the air. If the temperature is lower than 60 ° C, the effects of lowering the resistance by heat treatment and imparting resistance stability are small. If it is higher than 400 ° C, the resistance will be higher. Also, heat treatment can be performed in a non-oxidizing atmosphere (for example, Ar or nitrogen).
  • the temperature at this time is preferably from 60 to 600 ° C. If the temperature is lower than 60 ° C, the effects of lowering the resistance and providing resistance stability by heat treatment are small. If the temperature is higher than 600 ° C, the film is reduced and tends to be colored.
  • the film is preferably amorphous. However, even if it is slightly crystallized, the adhesive strength of the crystal grain boundary of the transparent conductive film of the present invention is high, and high scratch resistance can be obtained.
  • the transparent conductive film of the present invention is extremely excellent in acid resistance and alkali resistance.
  • the present invention provides a substrate with a transparent conductive film, wherein a tin oxide-based transparent conductive film containing gallium and indium is formed on the substrate.
  • This substrate with a transparent conductive film can be used as a transparent surface heater or an antistatic article. Also, it can be used for antistatic wafer transport chucks for semiconductor manufacturing.
  • the transparent surface heater can also be obtained by directly coating the transparent conductive film of the present invention on a glass or plastic film.
  • the thickness is preferably from 10 to 300 nm from the viewpoint of the resistance value.
  • Antistatic articles can also be obtained by directly coating the transparent conductive film of the present invention on glass or plastic film.
  • the thickness is preferably 3 to 100 nm from the viewpoint of the resistance value.
  • the wafer transporting chuck with antistatic for semiconductor production can also be obtained by directly coating the transparent conductive film of the present invention on a ceramics chuck.
  • the thickness is preferably from 3 to 300 nm from the viewpoint of the resistance value.
  • one or more undercoat films can be provided between the transparent conductive film layer and the substrate for the purpose of adjusting the appearance.
  • the transmission / reflection color tone and the visible light reflectance can be adjusted by utilizing the light interference phenomenon and the film absorption phenomenon.
  • Oxide, nitride or oxynitride films can be used for undercoat and overcoat.
  • gallium oxide and indium oxide act as sintering aids when sintering tin oxide, the main component. At this time, gallium oxide and indium oxide strengthen each other's action. Gallium oxide and indium oxide also serve as additives for imparting conductivity to the target. Also in this case, the gallium oxide and the indium oxide reinforce each other's action and lower the resistance.
  • gallium oxide and indium oxide serve as additives for imparting conductivity to the film.
  • gallium oxide and indium oxide strengthen each other's action and lower the resistance.
  • gallium oxide and zinc oxide work to make the film amorphous by the effect of impurities. It lowers the resistance of the transparent conductive film and the target of the present invention.
  • oxides of the elements 3a, 4a and 5a act as sintering aids.
  • the transparent conductive film of the present invention has a function of strengthening the bond, it works to enhance the scratch resistance.
  • Examples 1 to 26 and Examples 30 to 31 correspond to Examples, and Examples 27 to 29 correspond to Comparative Examples.
  • G a 2 0 3 powder was prepared I n 2 0 3 powder and S n0 2 powder, these powders in the proportions indicated in Table 1, were mixed in a dry ball mill.
  • the target compositions shown in Table 1 were calculated from the weighed values of each raw material powder.
  • the composition of the sintered body was measured by the ICP method (inductively coupled plasma emission spectroscopy), and it was confirmed that the composition matched the composition calculated from the weighed value of the raw material powder. The same applies to the following.
  • the average particle size of the powder used was, G a 2 0 3 powder, I n 2 0 3 powder and S n 0 2 powder each 2. 0 ⁇ M, 0. 8 ⁇ M and 1.1 0 ⁇ M met was. These average particle diameters were measured with a microphone mouth track particle size analyzer manufactured by Nikkiso Co., Ltd.
  • This mixed powder is filled in a rubber mold, pressed with a CIP device, and then in air.
  • Table 1 shows the density and specific resistance of this sintered body. The density was measured by the Archimedes method. The specific resistance is 3 X 3 X
  • a 30 mm square sample was cut out and measured by a four-terminal method.
  • a target hereinafter referred to as a GIT target.
  • GIT film one S n 0 2 based transparent conductive film (hereinafter, referred to as GIT film) formed the film, applied power: 50 0 W, introduced gas: a r- C 0 2 mixed gas (a r + C 0 2 1 00 volume 0/0 as C0 2 3 0 vol 0/0, the total flow rate 5 0 sccm), pressure: 4 X 1 0- 3 T orr , substrate temperature was carried out in a non-heated condition.
  • the board has a
  • a lime glass substrate (hereinafter simply referred to as a glass substrate) was used.
  • the film thickness is approximately
  • Example 1 to 15 the optimal values of CO and concentration were found to be 10 to 50% by volume ( It was the introduction ratio of C0 2 to the sum of A r and C0 2 gas). Note that the Example 1 to 1-5 in Table 2, the representative value in the form of the C_ ⁇ 2: shows the experimental results in the case of 3 0% by volume. Table 2 shows the specific resistance and transmittance of the various GIT films obtained.
  • the film compositions in Table 2 were measured by the ICP method.
  • the composition of the target and the composition of the GIT film almost matched.
  • FIG. 1 shows an X-ray diffraction pattern of the GIT film obtained in Example 2.
  • a target was prepared in the same manner as in Example 1.
  • Table 1 shows the density and specific resistance of this sintered body (target).
  • Film formation was performed under the same conditions as in Example 1 using a magnetron DC sputtering apparatus.
  • Table 2 shows the composition, specific resistance, and transmittance of the film at this time.
  • the film compositions in Table 2 were measured by the ICP method. Comparing the film composition with the target composition, the content of Sb0— and TeO, in the film was decreasing.
  • the film was identified using an X-ray diffractometer. All of the films of Examples 16 to 19 had flat X-ray diffraction patterns and were amorphous.
  • Table 1 shows the mixing ratio of the powders.
  • a target was prepared in the same manner as in Example 1.
  • Table 1 shows the density and specific resistance of this sintered body (target).
  • Example 2 Under the same conditions as in Example 1, a film was formed using a magnetron DC sputtering apparatus. Table 2 shows the composition, specific resistance, and transmittance of the film at this time.
  • Example 27 to 28 The film was identified using an X-ray diffractometer. All of the films of Examples 20 to 26 were amorphous by X-ray diffraction and flat in the turn. (Example 27 to 28)
  • G a 2 0 3 powder was prepared I n 2 0 3 powder and S n 0 2 powder, these powders in the proportions indicated in Table 1, were mixed in a dry ball mill.
  • Example 1 In the same manner as in Example 1, a target was produced. Table 1 shows the density and specific resistance of this sintered body (target).
  • Example 1 and the same conditions (however, the sputtering gas is set to A r - ⁇ 2 mixed gas
  • the proportion of oxygen was 3% by volume. This is because the preliminary experiments have shown that the ratio of oxygen that forms a low-resistance and transparent film is 3% by volume.
  • Other conditions were the same as in Example 1), and a film was formed using a magnetron DC sputtering apparatus.
  • Table 2 shows the composition, specific resistance, and transmittance of the transparent conductive film at this time.
  • Table 2 shows the specific resistance and transmittance of the obtained various transparent conductive films.
  • the film compositions in Table 2 were measured by the ICP method.
  • the composition of the target and the composition of the GIT film almost matched.
  • a target was prepared in the same manner as in Example 1.
  • Table 1 shows the density and specific resistance of this sintered body (target).
  • the target of this composition had high resistance and could not perform DC sputtering. Therefore, film formation was performed using a magnetron RF sputtering apparatus.
  • the conditions other than the power supply were the same as in Example 27.
  • Table 2 shows the specific resistance and transmittance of the film at this time. The specific resistance was higher than in Examples 1-26.
  • the film compositions in Table 2 were measured by the ICP method.
  • the composition of the target and the composition of the GIT film almost matched.
  • each of the films of Examples 1 to 29 was left in a 5 wt% hydrochloric acid aqueous solution at room temperature for 2 hours. As a result, no erosion of the membrane and no change in resistance were observed for any of the membranes of Examples 1 to 26. A similar test was conducted for a 5 wt% sulfuric acid aqueous solution. No resistance change was observed.
  • the resistance of the film of Example 28 was increased by 20% and 10%, respectively, in the hydrochloric acid resistance test and the sulfuric acid resistance test.
  • Rate of change in resistance (%) ((resistance after experiment) Z (initial resistance)-1) X 100.
  • the films of Examples 1 to 29 were each left in a 5 wt% aqueous sodium hydroxide solution at 80 ° C. for 30 minutes. As a result, no erosion was observed for any of the membranes of Examples 1 to 26.
  • the resistance change of each of the films of Examples 1 to 26 was as small as 0 to + 5% or less.
  • the film of Example 27 had a 45% increase in resistance.
  • the film of Example 28 had a 70% increase in resistance.
  • the films of Examples 1 to 29 were each left in a mixed aqueous solution of 2 wt% HF + 2 wt% nitric acid at room temperature for 30 minutes. As a result, no erosion of the membrane and no change in resistance were observed for any of the membranes of Examples 1 to 26.
  • the membranes of Examples 27 and 28 all dissolved.
  • the films of Examples 1 to 29 were each left for 150 hours in an atmosphere at a temperature of 40 ° C. and a relative humidity of 90%. As a result, the resistance change of each of the films of Examples 1 to 26 was as small as ⁇ 2% or less.
  • the film of Example 28 had a 10% increase in resistance in moisture resistance.
  • a sand erasing rubber (a type eraser TYPE 48—1005 mm diameter manufactured by Plus Co., Ltd.) was used for each of the films of Examples 1 to 29.
  • the test was performed under the following conditions: load: 500 g, speed: 50 mm / min, number of times: 5 reciprocations. Evaluation: A: almost no damage, B: same damage as glass Nikure, C: Slightly damaged compared to glass, D: Severely damaged.
  • the transparent conductive films of Examples 1 to 19 were ranked B, and the transparent conductive films of Examples 20 to 26 were ranked A, indicating that they exhibited high scratch resistance.
  • the films of Examples 27 and 28 were ranked C.
  • the film of Example 29 had a D rank.
  • the GIT film obtained in Example 2 was heat-treated in air at 250 ° C. for 30 minutes. As a result, the specific resistance was reduced to 1.8 ⁇ 10 3 ⁇ cm. The visible light transmittance was unchanged at 82%. In addition, the GIT film obtained in Example 2 was set to N. During,
  • a GIT film was formed in the same manner as in Example 2 except that the geometric film thickness of the GIT film was set to 150 nm.
  • the electrode and the electrode take-out part were printed on the GIT film by a screen printing method, and baked at 300 ° C. After that, a lead wire was soldered to the electrode take-out part.
  • a glass substrate having the same dimensions was prepared, and the glass substrate and the glass substrate on which the GIT film and the like had been formed were sealed with a sealant via a spacer to form a double-layer glass.
  • the visible light transmittance of the produced double-glazed glass was 80%.
  • the color tone was neutral.
  • the resistance between the bus bar and the electrode was measured with a lead wire that penetrated the sealant and was taken out, it was 135 ⁇ .
  • a voltage of 32 V was applied between the bus bars to conduct a current test, the resistance value and appearance did not change even after 6 weeks, and were constant.
  • the double-layer glass functioned well as electrothermal glass.
  • a tin oxide-based transparent conductive film having excellent chemical resistance can be obtained.
  • the transparent conductive film obtained by the present invention is amorphous, there is no unevenness on the surface, Since it is smooth, it has excellent abrasion resistance and is conductive, so that it can be used as an overcoat of an insulating material to have an effect as a highly durable antistatic film.
  • a transparent film can be obtained without heating the substrate, it can be used for an antistatic film having a protective film function such as a plastic film.
  • the target of the present invention is conductive and can perform DC sputtering at a high film formation rate.
  • the target is dense and can be sputtered by a stable discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A tin oxide type transparent conductive film containing gallium and indium, wherein, when gallium, indium and tin are converted into Ga2O3, In2O3 and SnO2, respectively, the gallium content as converted into Ga2O3 is 0.1 to 30 mol% to the sum of Ga2O3, In2O3 and SnO2 and the indium content as converted into In2O3 is 0.1 to 30 mol%. This invention provides also a sputtering target and a substrate equipped with a transparent conductive film. The transparent conductive film has high chemical resistance and abrasion resistance, and is useful as a high-durability antistatic film. The target of this invention is compact and can be sputtered by stable discharge.

Description

明 細 書  Specification
透明導電膜、 スパッタリ ングタ一ゲッ トおよび透明導電膜付き基体  Transparent conductive film, sputtering target and substrate with transparent conductive film
技術分野 Technical field
本発明は、 透明導電膜、 スパッ タ リ ングターゲッ トおよび透明導電膜付き基体 に関する。  The present invention relates to a transparent conductive film, a sputtering target, and a substrate with a transparent conductive film.
背景技術 Background art
透明導電膜は高い可視光透過率と高い導電性を合わせ持ち、 液晶表示素子、 プ ラズマ発光素子などの表示素子の透明電極、 太陽電池の透明電極、 自動車および 建築用ガラスの熱線反射膜、 C R Tの帯電防止膜あるいは冷凍冷蔵ショーケース をはじめとする各種防曇用の透明発熱体として広く利用されている。  Transparent conductive films have both high visible light transmittance and high conductivity, and are used as transparent electrodes for display devices such as liquid crystal display devices and plasma light-emitting devices, transparent electrodes for solar cells, heat ray reflective films for automotive and architectural glass, and CRT. It is widely used as an antistatic film, or as a transparent heating element for various anti-fog applications such as freezing and refrigeration showcases.
従来、 透明導電膜としては、 低抵抗膜が容易に得られることから I T O (錫ド ープ酸化イ ンジウム) 膜が主として用いられている。 特に、 表示素子用電極とし て I T O膜は広く使われている。 また、 そのほかに、 低コス トの酸化亜鉛系透明 導電膜や、 低コス トで耐薬品性の高い酸化錫系透明導電膜が知られている。  Conventionally, an ITO (tin-doped indium oxide) film is mainly used as a transparent conductive film because a low-resistance film can be easily obtained. In particular, ITO films are widely used as electrodes for display elements. In addition, a low-cost transparent conductive film of zinc oxide and a low-cost transparent transparent conductive film of tin oxide are also known.
従来の透明導電膜材料の問題点として、 I T Oは、 その主成分であるインジゥ ムが高価であり、 低コスト化の障害になっている。 酸化亜鉛系透明導電膜につい ては、 酸やアルカリなどに対する耐薬品性が低い。 したがって、 酸化亜鉛系透明 導電膜を表示素子など工業製品に応用することが困難となっている。  As a problem of the conventional transparent conductive film material, ITO, which is a main component of ITO, is expensive, which is an obstacle to cost reduction. Zinc oxide-based transparent conductive films have low chemical resistance to acids and alkalis. Therefore, it is difficult to apply the zinc oxide-based transparent conductive film to industrial products such as display elements.
酸化錫系透明導電膜は、 I T O膜や酸化亜鉛系透明導電膜と比較して、 耐薬品 性が極めて優れている。  The tin oxide-based transparent conductive film has extremely excellent chemical resistance as compared with the ITO film and the zinc oxide-based transparent conductive film.
酸化錫系については、 工業的製法としてスプレー法あるいは C V D法で作製さ れているが、 膜厚を均一に成膜するのは困難である。 また、 成膜時に塩素や塩化 水素などが生成され、 これらの排ガス (または排液) による環境汚染の問題があ つた。 酸化錫系透明導電膜は有用である一方、 前記した種々の問題を有する。 また、 酸化錫系透明導電膜は結晶質であるため、 耐擦傷性が低いという問題が あった。 耐擦傷性が低い理由として、 膜の表面に、 結晶成長のときに形成される 微細な凹凸があり、 これが引つかかり となっているためと考えられる。  Tin oxide is produced by spraying or CVD as an industrial production method, but it is difficult to form a uniform film thickness. In addition, chlorine and hydrogen chloride were generated during film formation, and there was a problem of environmental pollution due to these exhaust gases (or effluents). While the tin oxide-based transparent conductive film is useful, it has the various problems described above. Further, since the tin oxide-based transparent conductive film is crystalline, there is a problem that scratch resistance is low. The reason why the scratch resistance is low is considered to be that fine irregularities formed during crystal growth are present on the surface of the film, and these are clogged.
ところで一般に、 大面積の成膜法と しては、 均一な薄膜が得られやすく、 環境 汚染の少ないスパッタリング法が適している。 スパッタリ ング法には、 大き く分けて高周波電源を使用する高周波 (R F) ス パッ夕リング法と、 直流電源を使用する直流 (DC) スパッ タリ ング法がある。 R Fスパッ タ リ ング法は、 ターゲッ トに電気絶縁性の材料を使用できる点で優れ ているが、 高周 ·波電源は価格も高く、 構造が複雑で、 大面積の成膜には好ましく ない。 By the way, in general, as a large-area film forming method, a sputtering method that can easily obtain a uniform thin film and has low environmental pollution is suitable. Sputtering methods can be broadly classified into radio frequency (RF) sputtering methods that use a high-frequency power supply, and direct current (DC) sputtering methods that use a DC power supply. The RF sputtering method is excellent in that an electrically insulating material can be used for the target, but a high-frequency power supply is expensive, has a complicated structure, and is not preferable for forming a large-area film. .
D Cスパッタリング法は、 タ一ゲッ ト材が良導電性の材料に限られる力 ?、 装置 構造が簡単な直流電源を使用するので操作しやすい。 工業的成膜法としては DC スパッタリング法の方が好ましい。 特開平 1— 9 73 1 5に、 スパッタリング法 による酸化錫導電膜の形成方法が提案されているが、 R Fスパッタリング法につ いてのみ記載されており、 D Cスパッタ リ ング法については記載されていない。 また、 膜の比抵抗も 8 X 1 0—3Ω c m以上の比較的高抵抗の膜しか得られていな レ、 DC sputtering method, data one rodents preparative material is limited force in highly conductive material?, Easy to operate because the device structure is the use of a simple DC power source. As the industrial film forming method, the DC sputtering method is preferable. Japanese Patent Application Laid-Open No. 1-97315 proposes a method of forming a tin oxide conductive film by a sputtering method, but describes only an RF sputtering method and does not describe a DC sputtering method. . Also, film resistivity also only such have obtained 8 X 1 0- 3 Ω cm or more relatively high-resistance film Les,
また、 特開平 7— 33 50 3 0に、 l n203、 Z n O、 S n〇2、 および G a 2 03からなる群よ り選択された 1種または複数種からなる透明導電性酸化物が提 案されている。 しかし、 酸化錫を含有する複合酸化物の具体的記載はない。 Further, in JP-7- 33 50 3 0, ln 2 0 3, Z n O, S N_〇 2, and G a 2 0 3 1 kind selected Ri by the group consisting of or a transparent conductive consisting more Oxides have been proposed. However, there is no specific description of the composite oxide containing tin oxide.
また、 特開平 4一 2 72 6 1 2に、 ガリゥムを含有する I TO膜が提案されて いる力 s、 酸化イ ンジウムが主成分であり、 酸化錫は主成分ではない。 In addition, Japanese Patent Application Laid-Open No. 4-272612 proposes a gallium-containing ITO film, in which s and indium oxide are the main components, and tin oxide is not the main component.
本発明は、 従来技術の前述の欠点を解消するものであり、 低抵抗で耐擦傷性の 高い酸化錫系透明導電膜とその製造方法および該酸化錫系透明導電膜を形成する ためのスパッタリ ングターゲッ トの提供を目的とする。  The present invention solves the above-mentioned disadvantages of the prior art, and provides a tin oxide-based transparent conductive film having low resistance and high abrasion resistance, a method for producing the same, and a sputtering target for forming the tin oxide-based transparent conductive film. The purpose is to provide
発明の開示 Disclosure of the invention
本発明は、 ガリゥムとイ ンジウムとを含有する酸化錫系の透明導電膜であって 、 ガリ ウムを G a 2 03 に換算し、 イ ンジウムを I n 2 03 に換算し、 錫を S nThe present invention is a transparent conductive film of tin oxide containing a Gariumu and Lee indium, converting the gully um to G a 2 0 3, by converting the Lee indium to I n 2 0 3, tin S n
02 に換算したとき、 G a 2 03 と I n2 03 と S n 02 との総量に対して、 ガ リ ウムを G a 2 0 換算で 0. 1〜 3 0モル%含有し、 かつイ ンジウムを I n 2 0 2 when converted into, based on the total amount of the G a 2 0 3 and I n 2 0 3 and S n 0 2, the gas re um containing 0.1 to 3 0 mol% G a 2 0 in terms of And indium is In 2
03 換算で 0. 1〜 3 0モル%含有することを特徴とする透明導電膜を提供する 図面の簡単な説明 0 equivalent to 3 0.1 to 3 0 mol% trivial drawings to provide a transparent conductive film, characterized in containing explained
図 1は、 本発明の実施例である例 2における膜の X線回折パターンである。 発明を実施するための最良の形態 FIG. 1 is an X-ray diffraction pattern of a film in Example 2 which is an example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
ガリウムおよびィンジゥムの含有割合の定義については以下も同様とする。 ガリ ウムとイ ンジウムのいずれかの含有割合が酸化物換算で 0. 1モル%未満 であると、 膜の ·比抵抗が高くなり、 また、 膜が結晶性となる。 また、 いずれかの 含有割合が酸化物換算で 3 0モル%よ り多いと、 膜の比抵抗が高くなる。  The same applies to the definition of the content ratios of gallium and indium. If the content ratio of either gallium or indium is less than 0.1 mol% in terms of oxide, the specific resistance of the film becomes high and the film becomes crystalline. When the content of any one of them is more than 30 mol% in terms of oxide, the specific resistance of the film increases.
よ り低抵抗の膜が得られることから、 ガリ ウムの含有割合が G a 2 03 換算で 1〜 1 5モル0 /0であり、 かつイ ンジウムの含有割合が I n 2 03 換算で 1〜 1 5 モル0 /0であることが好ましい。 Since good Ri low resistance film can be obtained, the content of the gully um is from 1 1 to 5 mole 0/0 G a 2 0 3 in terms of the content ratio of Katsui indium is at I n 2 0 3 in terms of 1 is preferably 1 to 5 mol 0/0.
また、 より低抵抗の膜が得られることから、 アンチモンおよびノまたはテルル を含有することが好ましい。 アンチモンは S b 2 05 換算で、 テルルは T e〇 2 換算で、 G a2 03 と I n2 03 と S n02 との総量に対して、 合量で 0. 0 1Further, it is preferable to contain antimony and phosphorus or tellurium because a film with lower resistance can be obtained. Antimony is a S b 2 0 5 terms in tellurium T E_〇 2 terms, G a 2 0 3 and I n 2 0 3 and S with respect to the total amount of n0 2, 0. 0 1 in total
〜 10モル%の範囲で含むことが好ましい。 1 0モル0 /0よ り多いと抵抗が高くな る傾向にある。 また、 0. 0 1モル%よ り少ないと低抵抗化の効果は小さい。 ァ ンチモンおよび Zまたはテルルの含有割合の定義については以下も同様とする。 本発明の透明導電膜において、 耐擦傷性をよ り向上する点で、 長周期型周期表 における 3族 (ラン夕ノィ ドを含む、 ァクチノィ ドは含まず) 、 4族および 5族 からなる群から選ばれる 1種以上の金属 (以下、 3〜5族金属という) を含有す ることが好ましい。 Preferably, it is contained in the range of 10 to 10 mol%. 1 is in the 0 mole 0/0 good More than the resistance that a high trend. If the amount is less than 0.01 mol%, the effect of lowering the resistance is small. The same applies to the definition of the content ratio of antimony and Z or tellurium. In the transparent conductive film of the present invention, in order to further improve the abrasion resistance, a group consisting of group 3 (including lanthanide and excluding actinide), group 4 and group 5 in the long-period periodic table. It is preferable to contain at least one metal selected from the following (hereinafter, referred to as a Group 3 to 5 metal).
3〜5族金属は、 膜中に酸化物 (以下、 3〜 5族金属酸化物という) の状態で 含有されることが好ましい。 3〜 5族金属酸化物は、 S n02と I n2 03と G aThe Group 3 to 5 metal is preferably contained in the film in the form of an oxide (hereinafter, referred to as Group 3 to 5 metal oxide). 3-5 group metal oxide, S n0 2 and I n 2 0 3 and G a
2 03との総量に対して、 合量で 0. 0 5〜 5モル0 /0含有されることが好ましいBased on the total amount of the 2 0 3, are preferably 0.0 5-5 mole 0/0 containing in total
。 0. 05モル%よ り少ないと耐擦傷性をより向上させる効果が小さい。 また、 5モル%より多いと、 膜の比抵抗が高くなる。 . If the amount is less than 0.05 mol%, the effect of further improving the scratch resistance is small. On the other hand, if it exceeds 5 mol%, the specific resistance of the film becomes high.
3〜 5族金属酸化物の含有割合の計算に際しては、 3〜 5族金属酸化物として 例示される酸化物 (後述) を基に計算される。 3〜 5族金属酸化物の含有割合の 定義については以下も同様とする。  In calculating the content ratio of the Group 3 to 5 metal oxide, it is calculated based on an oxide (described later) exemplified as the Group 3 to 5 metal oxide. The same applies to the definition of the content ratio of Group 3 to 5 metal oxides.
3族としては、 S c、 Yおよびラン夕ノイ ド (L a、 C e、 P r、 Nd、 Pm 、 Sm、 E u、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、 L u ) があげられ る。 特に、 比較的安価で、 耐薬品性が高い点で、 Y、 L a、 C e、 P r、 Ndが 好ましい。 Group 3 includes Sc, Y, and Lanyu noise (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu ). In particular, Y, La, Ce, Pr, and Nd are relatively inexpensive and have high chemical resistance. preferable.
3族金属の酸化物としては、 S c 203、 Y 203、 L a 203、 C e 02、 P r 60 ] 1、 N d203、 Pm 203、 Sm 203、 E u 203、 G d 203、 T b 407、 D y 203 、 H o 203、 E.r 203、 Tm20:i、 Yb 23、 L u 203があげられる。 The oxide of Group 3 metals, S c 2 0 3, Y 2 0 3, L a 2 0 3, C e 0 2, P r 6 0] 1, N d 2 0 3, Pm 2 0 3, Sm 2 0 3, E u 2 0 3, G d 2 0 3, T b 4 0 7, D y 2 0 3, H o 2 0 3, Er 2 0 3, Tm 2 0: i, Yb 2 〇 3, L u 2 0 3, and the like.
4族としては、 T i、 Z r、 H f があげられる。 特に、 比較的安価で、 耐薬 品性が高い点で、 T i、 Z rが好ましい。  Group 4 includes Ti, Zr, and Hf. In particular, Ti and Zr are preferable because they are relatively inexpensive and have high chemical resistance.
4族金属の酸化物としては、 T i 02、 Z r 02、 H f 02があげられる。 The oxide of Group 4 metal, T i 0 2, Z r 0 2, H f 0 2 and the like.
5族としては、 V、 N b、 T aがあげられる。 特に、 比較的安価で、 耐薬品性 が高い点で、 N b、 T aが好ましい。  Group 5 includes V, Nb, and Ta. In particular, Nb and Ta are preferred because they are relatively inexpensive and have high chemical resistance.
5族金属の酸化物は、 V 205、 Nb 205、 T a 205があげられる。 Oxides of Group 5 metals, V 2 0 5, Nb 2 0 5, T a 2 0 5 and the like.
本発明の透明導電膜の比抵抗は、 実用的な観点から 1 Ω c m以下であることが 好ましい。 一方、 比抵抗が小さすぎると、 所定の抵抗値を得るために必要な膜厚 が薄すぎるため、 連続した膜が得られにく くなることから、 比抵抗は 1 0—5Ω c m以上であることが好ましい。 The specific resistance of the transparent conductive film of the present invention is preferably 1 Ωcm or less from a practical viewpoint. In contrast, if the resistivity is too small, since the film thickness required to obtain a predetermined resistance value is too small, since the continuous film difficulty to obtain Kunar, resistivity 1 0- 5 Ω cm or more Preferably, there is.
本発明の透明導電膜の可視光透過率は、 実用的な観点から 7 0 %以上あること が好ましい。  The visible light transmittance of the transparent conductive film of the present invention is preferably 70% or more from a practical viewpoint.
本発明は、 また、 ガリウムとインジウムとを含有する酸化錫系のスパッタリン グターゲッ トであって、 ガリウムを G a 2 03 に換算し、 インジウムを I n2 0 に換算し、 錫を S n 02 に換算したとき、 G a 2 03 と I n2 03 と S n 02 との総量に対して、 ガリウムを G a 2 03 換算で 0. 1〜3 0モル%含有し、 か つイ ンジウムを I η 03 換算で 0. 1〜 3 0モル%含有することを特徴とする スパッタリ ングターゲッ トを提供する。 The present invention also provides a sputter phosphorus Gutage' bets tin oxide containing gallium and indium, converting the gallium G a 2 0 3, by converting the indium I n 2 0, tin S n 0 2 when converted into, based on the total amount of the G a 2 0 3 and I n 2 0 3 and S n 0 2, gallium containing from 0.1 to 3 0 mol% in G a 2 0 3 in terms of, or the final indium provides Supattari Ngutage' you want to, characterized in that it contains 0.1 to 3 0 mol% in I eta 0 3 terms.
ガリ ウムとィ ンジゥムのいずれかの含有割合が酸化物換算で 0. 1モル%未満 であると、 成膜した膜の比抵抗が高くなり、 また、 膜が結晶性となる。 また、 い ずれかの含有割合が酸化物換算で 3 0モル%よ り多いと、 膜の比抵抗が高くなる 得られる膜がより低抵抗となることから、 ガリ ウムの含有割合が G a 2 03 換 算で 1〜 1 5モル0 /0であり、 かつインジウムの含有割合が I n 2 03 換算で 1〜If the content ratio of either gallium or indium is less than 0.1 mol% in terms of oxide, the specific resistance of the formed film becomes high, and the film becomes crystalline. Furthermore, had the content of the Zureka often Ri by 3 0 mol% in terms of oxide, since the film obtained resistivity of the film is high is lower resistance, the content of the gully um is G a 2 0 3 conversion is 1 to 1 5 mole 0/0 by calculation, and the content of indium 1 in I n 2 0 3 in terms of
1 5モル0 /0であることが好ましい。 また、 本発明のターゲッ トには、 よ り低抵抗の膜が得られることから、 アンチ モンおよび Zまたはテルルを含むことが好ましい。 アンチモンは S b25 換算 で、 テルルは T e 02 換算で、 S b2 05 と T e 02 と G a2 03 と I n2 03 と S n02 との.総量に対して、 合量で 0. 0 1〜 10モルの範囲で含むことが好 ましい。 1 0モル%ょり多いとターゲッ トおよび得られる膜の抵抗が高ぐなる傾 向にある。 さらに、 ターゲッ トの密度 (緻密さ) が低下し、 スパッタリ ング時の 放電が不安定になる傾向にある。 また、 0. 0 1モル%より少ないと低抵抗化の 効果は小さい。 1 is preferably 5 mol 0/0. Further, the target of the present invention preferably contains antimony and Z or tellurium, since a film with lower resistance can be obtained. Antimony is a S b 25 conversion, tellurium at T e 0 2 terms, the. Total amount of S b 2 0 5 and T e 0 2 and G a 2 0 3 and I n 2 0 3 and S n0 2 On the other hand, the total amount is preferably in the range of 0.01 to 10 mol. If the content is more than 10 mol%, the resistance of the target and the obtained film tends to increase. In addition, the target density (density) tends to decrease, and the discharge during sputtering tends to be unstable. If the amount is less than 0.01 mol%, the effect of lowering the resistance is small.
安定なスパッ夕リ ングを可能にするために、 タ一ゲッ トの相対密度はおよそ 8 0%以上、 すなわち、 ターゲッ トの密度としては、 5. 5 gZc c以上であるこ とが好ましい。  In order to enable stable sputtering, the relative density of the target is preferably about 80% or more, that is, the target density is preferably 5.5 gZc c or more.
また、 より高密度のターゲッ トが得られることから、 前述の 3〜 5族金属を含 むことが好ましい。 3〜 5族金属は、 ターゲッ ト中に酸化物 (すなわち、 3〜5 族金属酸化物) の状態で含有されることが好ましい。  In addition, since a higher density target can be obtained, it is preferable to contain the above-described Group 3 to 5 metal. The group 3 to 5 metal is preferably contained in the target in the form of an oxide (that is, a group 3 to 5 metal oxide).
3〜 5族金属および 3〜 5族金属酸化物の具体例は前記と同様である。  Specific examples of the Group 3 to 5 metal and the Group 3 to 5 metal oxide are the same as described above.
3〜 5族金属酸化物は、 S n02と I n2 03と G a2 03との総量に対して、 合量で 0. 0 5〜 5モル0 /o含有することが好ましい。 0. 0 5モル%未満あるい は 5モル%超であるとターゲッ トの密度が低下する傾向にある。 3-5 group metal oxide, based on the total amount of the S n0 2 and I n 2 0 3 and G a 2 0 3, it is preferable to 0.0 5-5 mole 0 / o containing in total. If it is less than 0.05 mol% or more than 5 mol%, the target density tends to decrease.
安定なスパッタリ ング放電を行ううえでは、 スパッタリングターゲッ トの比抵 抗は 1 Ω c m以下であることが好ましい。  For stable sputtering discharge, the specific resistance of the sputtering target is preferably 1 Ωcm or less.
ターゲッ ト中のガリウムは、 酸化物状態あるいは固溶状態で存在していること が好ましい。 ここで、 酸化物状態とは、 三酸化ガリウム (G a 2 03 ) の状態、 あるいは、 酸化イ ンジウム ( I n 2 03 ) および Zまたは酸化錫 (S n 02 ) と の複合酸化物の状態を意味している。 固溶状態とは、 ガリウムが固溶した酸化錫 (S n◦„ ) および Zまたはガリゥムが固溶した酸化ィンジゥム ( I n 2 03 ) の状態を意味している。 特に、 ガリウムはその大部分が S n 02 または I n2 0Gallium in the target is preferably present in an oxide state or a solid solution state. Here, the oxide state, tri-state gallium oxide (G a 2 0 3) or oxide Lee indium (I n 2 0 3) and Z or a composite oxide of tin oxide (S n 0 2) Means the state. A solid solution state means a state of tin oxide gallium is solid-solved (S n◦ ") and Z or oxidation Injiumu which Gariumu is solid-solved (I n 2 0 3). In particular, gallium large that Part is S n 0 2 or I n 2 0
へ固溶した状態で存在していることが好ましい。 : It is preferable that it exists as a solid solution in ί .
夕一ゲッ ト中のイ ンジウムは、 酸化物状態あるいは固溶状態で存在しているこ とが好ましい。 ここで、 酸化物状態とは、 I n, 0, (S ηθ, または G a 0 3 が固溶していてもよい) の状態、 あるいは S n 0 2 および/または G a 2 0 3 との複合酸化物の状態を意味している。 固溶状態とは、 イ ンジウムが固溶した S n 0 2 およびノまたはイ ンジウムが固溶した G a 2 0 3 を意味している。 特に、 インジウムはその大部分が I n 2 0 3 ( S n 0 2 または G a 2 0 3 が固溶してい てもよレ、) の状態または S n 0 2 へ固溶した状態で存在していることが好ましい o It is preferable that indium in the evening get exist in an oxide state or a solid solution state. Here, the oxide state is defined as I n, 0, (S ηθ, or G a 0 3 is meant the state of the composite oxide of the state of solid solution or may be) or S n 0 2 and / or G a 2 0 3,. A solid solution state, S n 0 2 and Roh or Lee indium which Lee indium is solid-solved is meant G a 2 0 3 was dissolved. In particular, indium is present in that state in which most of a solid solution to I n 2 0 3 (S n 0 2 or G a 2 0 3 is good even if dissolved Les) state or S n 0 2 of Preferably
ガリゥムおよびィンジゥムは、 酸化物状態あるいは固溶状態で存在することが 透明導電膜を作製しやすい点で好ましい。 しかし、 支障がない程度で酸化物状態 あるいは固溶状態以外の状態、 たとえば、 金属、 炭化物、 窒化物等で含まれてい ても本発明の目的を損なう ものではない。  It is preferable that the gallium and the alloy exist in an oxide state or a solid solution state in that the transparent conductive film can be easily produced. However, even if it is contained in a state other than the oxide state or the solid solution state to the extent that there is no problem, for example, metal, carbide, nitride, etc., the object of the present invention is not spoiled.
スパッタリ ングターゲッ ト中のガリウムおよびィンジゥムが酸化物状態で存在 する場合、 その酸化物の結晶粒子の最大粒径は 2 0 0 Λ m以下であることが好ま しい。 最大粒径が 2 0 0 mよ り大きい酸化物粒子が存在すると、 スパッタリン グの放電が不安定となるため好ましくない。 また、 平均粒径は、 粉末の取り扱い 、 および成形性の観点から、 0 . 0 1 m以上であることが好ましい。 また、 平 均粒径が 5 0 mより大きいと、 焼結性が低下して、 緻密な焼結体が得られにく くなることから、 平均粒径は 5 0 m以下が好ましい。 If Supattari Ngutage' gallium in bets and Injiumu are present in oxide state, arbitrary preferred that the maximum particle size of the crystal grains of the oxide is less 2 0 0 Λ m. The presence of oxide particles having a maximum particle size of more than 200 m is not preferable because sputtering discharge becomes unstable. The average particle size is preferably 0.01 m or more from the viewpoint of handling of the powder and moldability. If the average particle size is more than 50 m, the sinterability is reduced, and it becomes difficult to obtain a dense sintered body. Therefore, the average particle size is preferably 50 m or less.
本発明のターゲッ トには他の成分が本発明の目的、 効果を損なわない程度に含 まれていても支障ないが可及的に少量にとどめることが望ましい。  The target of the present invention may contain other components to such an extent that the object and effects of the present invention are not impaired, but it is desirable to keep the target as small as possible.
膜の組成は、 ターゲッ トの組成とほぼ一致する。 しかし、 成膜時のスパッタリ ング条件等により膜の組成はターゲッ トの組成からずれることもある。  The composition of the film approximately matches the composition of the target. However, the composition of the film may deviate from the target composition depending on the sputtering conditions during film formation.
本発明のターゲッ トは、 たとえば常圧焼結法、 ホッ トプレス法などの一般にセ ラミ ツクスを作製する方法で作製できる。  The target of the present invention can be produced by a method for producing ceramics in general, such as a normal pressure sintering method and a hot press method.
常圧焼結の場合、 高温度での焼成が必要であり、 高温度では、 酸化物が分解し て、 蒸発しやすくなり、 ターゲッ トは緻密化しにく くなるので、 空気などの酸素 を含む雰囲気下で焼結することが好ましい。 たとえば空気中で 1 3 0 0 〜 1 6 0 0 の温度条件で常圧焼結する。  In the case of normal pressure sintering, firing at a high temperature is necessary. At high temperatures, oxides are decomposed and easily evaporated, and the target is difficult to densify, so it contains oxygen such as air It is preferable to perform sintering in an atmosphere. For example, normal pressure sintering is performed in air at a temperature of 130 to 160.
また、 ホッ トプレスの場合、 比較的低温度で焼結できるので酸化性雰囲気 (酸 化性ガスを含む雰囲気) および非酸化性雰囲気 (酸化性ガスを含まない雰囲気) T/JP9 /00708 In the case of hot pressing, sintering can be performed at a relatively low temperature, so that an oxidizing atmosphere (an atmosphere containing an oxidizing gas) and a non-oxidizing atmosphere (an atmosphere containing no oxidizing gas) can be used. T / JP9 / 00708
7 のどちらでもよいが、 ホッ トプレスの場合、 型材にカーボンを用いるのが一般的 であり、 型材の酸化防止の観点から非酸化性雰囲気で行うことが好ましい。 たと えば非酸化性雰囲気で 8 0 0〜 1 1 0 0 °Cの条件でホッ トプレスする。  7 may be used, but in the case of a hot press, carbon is generally used for the mold material, and it is preferable to perform the treatment in a non-oxidizing atmosphere from the viewpoint of preventing oxidation of the mold material. For example, hot press at 800 to 110 ° C in a non-oxidizing atmosphere.
前記空気中での常圧焼結の場合、 たとえば次のようにして、 ターゲッ トを作製 できる。 G a 2 0 3 粉末、 I n 2 0 3 粉末および S n 0 2 粉末を用意し、 これ ら粉末を所定の割合で混合する。 このとき、 水を分散材とし、 湿式ボールミル法 で混合する。 次に、 この粉末を乾燥後ゴム型に充填し、 冷間等方プレス装置 (C I P装置) で 1 5 0 0 k g Z c m 2の圧力で加圧成形する。 その後、 大気中で 1In the case of the normal-pressure sintering in the air, a target can be produced, for example, as follows. G a 2 0 3 powder was prepared I n 2 0 3 powder and S n 0 2 powder, mixing these powders in a predetermined ratio. At this time, water is used as a dispersant and mixed by a wet ball mill method. Next, the powder is dried and then filled in a rubber mold, and is subjected to pressure molding with a cold isostatic press (CIP) at a pressure of 1500 kg Zcm 2 . Then in the air 1
5 0 0 °Cの温度で、 2時間保持し焼成し、 焼結体を得る。 この焼結体を所定の寸 法に機械加工し、 ターゲッ ト素材を作製する。 ターゲッ ト素材は、 銅などの金属 製のバッキングプレー トにメタルボンディ ングされ、 ターゲッ トが作製される。 また、 ホッ トプレスの場合では、 たとえば次のようにして、 ターゲッ トを作製 できる。 常圧焼結の場合と同様に原料粉末を混合乾燥後、 カーボン性のホッ トプ レス用ダイスに粉末を充填し、 アルゴン (A r ) 中 9 0 0。Cの温度と 3 0 0 k g c m 2の圧力で、 2時間保持し焼結する。 以降、 常圧焼結の場合と同様の機械 加工、 メタルボンディ ングを行い、 ターゲッ トが作製される。 It is kept at a temperature of 500 ° C. for 2 hours and fired to obtain a sintered body. The sintered body is machined to a predetermined size to produce a target material. The target material is metal-bonded to a backing plate made of a metal such as copper to produce a target. In the case of a hot press, a target can be produced, for example, as follows. After mixing and drying the raw material powders as in the case of normal pressure sintering, the powder is filled into a carbon hot-press die, and the powder is filled into argon (Ar) 900. It is kept at a temperature of C and a pressure of 300 kgcm 2 for 2 hours and sintered. Thereafter, the same machining and metal bonding as in normal pressure sintering is performed to produce the target.
また、 本発明のタ一ゲッ トは、 高い導電性を有していることから、 大面積の成 膜が可能で、 成膜速度が速い D Cスパッ タ リ ング法に充分対応できる他、 R Fス パッタリング法等いずれのスパッタリング法にも対応できる。  In addition, the target of the present invention has a high conductivity, so that a large-area film can be formed, and the target can sufficiently cope with the DC sputtering method in which the film forming speed is high, and the RF sputtering can be performed. Any sputtering method such as a sputtering method can be used.
本発明の透明導電膜は、 幾何学的膜厚 (以下、 単に膜厚という) が 3 n m〜 5 mの範囲にあることが好ましい。 膜厚が 5 を超えると成膜時間が長くなり 、 コス トが増大する。 膜厚が 3 n mよ り薄いと比抵抗が高くなる。 特に、 3 〜 3 0 0 n mの範囲が好ましい。  The transparent conductive film of the present invention preferably has a geometric film thickness (hereinafter simply referred to as a film thickness) in the range of 3 nm to 5 m. If the film thickness exceeds 5, the film formation time becomes longer and the cost increases. When the film thickness is less than 3 nm, the specific resistance increases. In particular, the range of 3 to 300 nm is preferable.
本発明は、 また、 スパッ タリ ング法により基体上に酸化錫を主成分とする透明 導電膜を製造する方法において、 スパッ タ リ ングターゲッ トとして、 前記のスパ ッタリングターゲッ トを用いることを特徴とする透明導電膜の製造方法を提供す る。  The present invention also provides a method for producing a transparent conductive film containing tin oxide as a main component on a substrate by a sputtering method, wherein the sputtering target is used as the sputtering target. A method for producing a transparent conductive film is provided.
本発明においては、 酸化性雰囲気下でスパッタ リ ングすることが好ましい。 酸 化性雰囲気とは酸化性ガスを含む雰囲気である。 酸化性ガスとは、 02 H20 C O C02などの酸素原子含有ガスを意味するIn the present invention, it is preferable to perform sputtering in an oxidizing atmosphere. The oxidizing atmosphere is an atmosphere containing an oxidizing gas. The oxidizing gas means an oxygen atom-containing gas such as 0 2 H 2 0 CO C0 2
。 酸化性ガスの濃度は、 膜の導電性、 光透過率などの膜の特性に大きく影響する. Oxidizing gas concentration greatly affects film properties such as film conductivity and light transmittance
。 したがって、 酸化性ガスの濃度は装置、 基板温度、 スパッタリ ング圧力などの 使用する条件で 最適化する必要がある。 . Therefore, it is necessary to optimize the concentration of the oxidizing gas under the conditions to be used, such as the apparatus, the substrate temperature, and the sputtering pressure.
スパッタリ ングのガスとしては、 A r— 0。系あるいは A r _ C 02系が、 透明 で低抵抗の膜を作製する際、 ガスの組成を制御しやすい点で好ましい。 特に A r — C02系がより制御性が優れている点でより好ましい。 Ar-0 as the sputtering gas. System or A r _ C 0 2 system, making the transparent low-resistance film, preferably in that easily controlling the composition of the gas. Particularly A r - C0 preferable in that 2 system is more controllability is excellent.
A r _02ガス系においては、 透明で低抵抗の膜が得られることから、 02濃度 は 5 2 5体積%であることが好ましい。 5体積%よ り小さいと膜が黄色く着色 し、 膜の抵抗が高くなる。 2 5体積%よ り多いと膜の抵抗が高くなる。 In A r _0 2 gas system, since the transparent low resistance film can be obtained, 0 2 concentration is preferably 5 2 5 vol%. If it is less than 5% by volume, the film will be colored yellow and the resistance of the film will be high. If the content is more than 25% by volume, the resistance of the film increases.
また、 A r— C02ガス系においては、 透明で低抵抗の膜が得られることから、In the A r- C0 2 gas system, since the transparent low resistance film can be obtained,
C02濃度は 1 0 5 0体積0 /0であることが好ましい。 1 0体積0 /0よ り小さいと 膜が黄色く着色し、 膜の抵抗が高くなる。 50体積%より多いと膜の抵抗が高く なる。 C0 2 concentration is preferably 1 0 5 0 vol 0/0. 1 0 vol 0/0 good small and film is colored yellow is, the resistance of the membrane becomes higher. If it exceeds 50% by volume, the resistance of the film increases.
ただし、 用途によっては、 着色した膜や高い抵抗が要求される場合があり、 前 述の濃度に限定されるものではない。  However, depending on the application, a colored film or high resistance may be required, and the concentration is not limited to the above.
スパッタリ ング法と しては、 D Cスパッ タリ ング法、 R Fスパッ タリ ング法な どあらゆるスパッ タ リ ング法を用いることができる。 特に、 工業的な生産性の優 れた D Cスパッタリ ング法が好ましい。  As the sputtering method, any sputtering method such as a DC sputtering method and an RF sputtering method can be used. In particular, the DC sputtering method having excellent industrial productivity is preferable.
本発明の透明導電膜は、 次のように作製できる。 マグネトロン D Cスパッタリ ング装置を使用して、 前述のターゲッ トを用いて、 チャンバを 1 0 1 0— 4TThe transparent conductive film of the present invention can be manufactured as follows. Using a magnetron DC Supattari ring device, using the target described above, 1 a chamber 0 1 0- 4 T
0 r rに真空引きする。 チヤンバ内の圧力が 1 0— 4T 0 r rより高いと真空中に 残った残留水分の影響を受けるので、 抵抗制御がしにく くなる。 また、 チャンバ 内の圧力が 1 0— 7T 0 r rよ り低いと真空引きに時間を要するため、 生産性が悪 くなる。 スパッタリ ング時の電力密度 (投入電力をターゲッ トの面の面積で割つ た値) は、 1 1 0W/ c m2であることが好ましい。 lWZc m2より小さいと 放電が安定しない。 1 OW/ c m2よ り高いとターゲッ トが発生した熱で割れる 可能性が高くなる。 Vacuum to 0 rr. Since the pressure in Chiyanba is 1 0- 4 T 0 rr affected remaining residual moisture in a vacuum and higher, the resistance controlling difficulty Kunar. In addition, since it takes time to vacuum and low Ri by 1 0- 7 T 0 rr pressure in the chamber, productivity is evil Kunar. The power density during sputtering (the value obtained by dividing the input power by the area of the target surface) is preferably 110 W / cm 2 . lWZc m 2 is smaller than the discharge is not stable. If it is higher than 1 OW / cm 2 , the possibility that the target is cracked by the generated heat increases.
スパッタリ ング圧力は、 1 0― 1 0—】 T 0 r rであることが好ましい。 1 0— 4 T o r r よ り小さい、 あるいは 1 0— o r r よ り高いと放電が安定しない傾 向にある。 The sputtering pressure is preferably from 10 to 10 Trr. Ten- If it is smaller than 4T orr or higher than 10—orr, the discharge tends to be unstable.
成膜される基体としては、 ガラス、 セラミ ックス、 プラスチックス、 金属など が挙げられる。 成膜中の基体温度は、 特に制約されないが、 非晶質膜を得られや すいという点で、 3 0 0 °C以下であることが好ましい。  Examples of a substrate on which a film is formed include glass, ceramics, plastics, and metal. The substrate temperature during film formation is not particularly limited, but is preferably 300 ° C. or lower from the viewpoint that an amorphous film can be easily obtained.
また、 基体温度は、 特に意図的な加熱をしない場合すなわち室温程度でもよい また、 成膜後、 基体を後加熱 (熱処理) することもできる。 熱処理は、 大気中 で 6 0 〜 4 0 0 °Cで行うことが好ましい。 6 0 °Cよ り低いと熱処理による低抵抗 化と抵抗安定性付与の効果が小さい。 4 0 0 °Cより高いと逆に抵抗が高くなる。 また、 の非酸化性雰囲気 (たとえば A rや窒素など) でも熱処理できる。 この ときの温度は、 6 0〜 6 0 0 °Cであることが好ましい。 6 0 °Cよ り低いと熱処理 による低抵抗化と抵抗安定性付与の効果が小さい。 6 0 0 °Cよ り高いと膜が還元 され、 着色する傾向にある。  The temperature of the substrate may be about room temperature when no intentional heating is performed, that is, about room temperature. After the film is formed, the substrate may be post-heated (heat treated). The heat treatment is preferably performed at 60 to 400 ° C. in the air. If the temperature is lower than 60 ° C, the effects of lowering the resistance by heat treatment and imparting resistance stability are small. If it is higher than 400 ° C, the resistance will be higher. Also, heat treatment can be performed in a non-oxidizing atmosphere (for example, Ar or nitrogen). The temperature at this time is preferably from 60 to 600 ° C. If the temperature is lower than 60 ° C, the effects of lowering the resistance and providing resistance stability by heat treatment are small. If the temperature is higher than 600 ° C, the film is reduced and tends to be colored.
高い耐擦傷性を得るには、 膜は非晶質であることが好ましい。 しかし、 若干結 晶化している場合でも、 本発明の透明導電膜の結晶粒界の接着強度は高く、 高い 耐擦傷性が得られる。  In order to obtain high scratch resistance, the film is preferably amorphous. However, even if it is slightly crystallized, the adhesive strength of the crystal grain boundary of the transparent conductive film of the present invention is high, and high scratch resistance can be obtained.
また、 本発明の透明導電膜は、 耐酸性および耐アルカリ性に極めて優れており Further, the transparent conductive film of the present invention is extremely excellent in acid resistance and alkali resistance.
、 強酸、 強アルカリにもほとんど侵されず、 膜抵抗の変化もほとんどない。 またIt is hardly affected by strong acids and strong alkalis, and there is almost no change in film resistance. Also
、 フッ酸 (H F ) 水溶液にもほとんど侵されず、 膜抵抗の変化もほとんどない。 さらに、 C F 4のようなフッ化物ガスに対しても同様の高い耐食性を有している It is hardly affected by hydrofluoric acid (HF) aqueous solution, and there is almost no change in film resistance. Furthermore, it has the same high corrosion resistance against a fluoride gas such as CF 4
本発明は、 基体上に、 ガリウムとインジウムとを含有する酸化錫系の透明導電 膜が形成されたことを特徴とする透明導電膜付き基体を提供する。 この透明導電 膜付き基体は、 透明面ヒータや帯電防止物品として使用できる。 また、 半導体製 造用の帯電防止付きウェハ搬送用チヤックに使用できる。 The present invention provides a substrate with a transparent conductive film, wherein a tin oxide-based transparent conductive film containing gallium and indium is formed on the substrate. This substrate with a transparent conductive film can be used as a transparent surface heater or an antistatic article. Also, it can be used for antistatic wafer transport chucks for semiconductor manufacturing.
透明面ヒータは、 ガラスまたはプラスチックフィルム上に本発明の透明導電膜 を直接コー ト しても得られる。 膜厚は、 抵抗値の観点から、 1 0 〜 3 0 0 n mが 好ましい。 帯電防止物品は、 ガラスまたはプラスチッ クフィ ルム上に本発明の透明導電膜 を直接コー ト しても得られる。 膜厚は、 抵抗値の観点から、 3 〜 1 0 0 n mが好 ましい。 The transparent surface heater can also be obtained by directly coating the transparent conductive film of the present invention on a glass or plastic film. The thickness is preferably from 10 to 300 nm from the viewpoint of the resistance value. Antistatic articles can also be obtained by directly coating the transparent conductive film of the present invention on glass or plastic film. The thickness is preferably 3 to 100 nm from the viewpoint of the resistance value.
また、 半導体製造用の帯電防止付きウェハ搬送用チャックは、 セラミ ックス製 チャックの上に本発明の透明導電膜を直接コー トしても得られる。 膜厚は、 抵抗 値の観点から、 3 〜 3 0 0 n mが好ましい。  Further, the wafer transporting chuck with antistatic for semiconductor production can also be obtained by directly coating the transparent conductive film of the present invention on a ceramics chuck. The thickness is preferably from 3 to 300 nm from the viewpoint of the resistance value.
本発明の透明導電膜付き基体においては、 外観を調整する目的で、 透明導電膜 層と基体の間に 1層以上のアンダーコー ト膜を設けることができる。 あるいは透 明導電膜の上に 1層以上のオーバ—コー ト膜を設けて、 光の干渉現象や膜の吸収 現象を利用して透過 · 反射色調や可視光線反射率を調整できる。 アンダーコー ト およびオーバーコー トとしては、 酸化物、 窒化物または酸窒化物の膜を使用でき る。  In the substrate with a transparent conductive film of the present invention, one or more undercoat films can be provided between the transparent conductive film layer and the substrate for the purpose of adjusting the appearance. Alternatively, by providing one or more layers of an overcoat film on the transparent conductive film, the transmission / reflection color tone and the visible light reflectance can be adjusted by utilizing the light interference phenomenon and the film absorption phenomenon. Oxide, nitride or oxynitride films can be used for undercoat and overcoat.
空気中の水分および酸素が本発明の透明導電膜に拡散してくることを有効に遮 断できる、 あるいは、 基板ガラス中のナトリウムなどのアルカリイオンが本発明 の透明導電膜に拡散してくることを有効に遮断できることから、 S i O x膜、 S i Ν χ膜、 S i 0 N 膜などが好ましい。 It can effectively block moisture and oxygen in the air from diffusing into the transparent conductive film of the present invention, or alkali ions such as sodium in the substrate glass diffuse into the transparent conductive film of the present invention. because it can effectively block, S i O x film, S i New chi film, such as S i 0 N film is preferable.
ターゲッ トを製造する際、 酸化ガリウムおよび酸化イ ンジウムは、 主成分であ る酸化錫を焼結するときの焼結を促進する助剤と して働く。 このとき、 酸化ガリ ゥムと酸化インジウムが互いの作用を強め合う。 また、 酸化ガリウムと酸化イン ジゥムは、 ターゲッ トに導電性を付与する添加物としても働く。 この場合も、 酸 化ガリゥムと酸化ィンジゥムが互いの作用を強め合い、 より低抵抗化する。  In manufacturing targets, gallium oxide and indium oxide act as sintering aids when sintering tin oxide, the main component. At this time, gallium oxide and indium oxide strengthen each other's action. Gallium oxide and indium oxide also serve as additives for imparting conductivity to the target. Also in this case, the gallium oxide and the indium oxide reinforce each other's action and lower the resistance.
また、 本発明の透明導電膜においても、 ターゲッ トと同様に酸化ガリゥムと酸 化イ ンジウムは、 膜に導電性を付与する添加物として働く。 この場合も、 酸化ガ リウムと酸化インジウムが互いの作用を強め合い、 よ り低抵抗化する。 また、 酸 化ガリゥムと酸化ィンジゥムは、 不純物効果によ り膜を非晶質化するように働く また、 アンチモンおよびテルルは、 本発明の透明導電膜およびターゲッ ト中の キヤリァ電子を増加するように働き、 本発明の透明導電膜およびターゲッ トを低 抵抗化する。 また、 3 a元素、 4 a元素および 5 a元素の酸化物は、 焼結助剤として働く。 また、 結合を強める働きがあるため、 本発明の透明導電膜において、 耐擦傷性を 高めるように働く。 Further, in the transparent conductive film of the present invention, as in the case of the target, gallium oxide and indium oxide serve as additives for imparting conductivity to the film. In this case as well, gallium oxide and indium oxide strengthen each other's action and lower the resistance. In addition, gallium oxide and zinc oxide work to make the film amorphous by the effect of impurities. It lowers the resistance of the transparent conductive film and the target of the present invention. Also, oxides of the elements 3a, 4a and 5a act as sintering aids. In addition, since the transparent conductive film of the present invention has a function of strengthening the bond, it works to enhance the scratch resistance.
実施例 ·  Example ·
以下において、 例 1〜 2 6および例 3 0〜 3 1が実施例、 例 2 7〜 2 9が比較 例に相当する。  In the following, Examples 1 to 26 and Examples 30 to 31 correspond to Examples, and Examples 27 to 29 correspond to Comparative Examples.
(例 1〜 1 5 )  (Examples 1 to 15)
G a 2 03 粉末、 I n 2 03 粉末および S n02 粉末を用意し、 これら粉末を 表 1に示す割合で、 乾式ボールミ ルで混合した。 表 1に示すターゲッ ト組成は、 各原料粉末の秤量値から算出した。 また、 焼結体の組成について I C P法 (誘導 結合プラズマ発光分光分析法) で測定し、 原料粉末の秤量値から算出される組成 と一致することを確認した。 以下も同様である。 G a 2 0 3 powder was prepared I n 2 0 3 powder and S n0 2 powder, these powders in the proportions indicated in Table 1, were mixed in a dry ball mill. The target compositions shown in Table 1 were calculated from the weighed values of each raw material powder. In addition, the composition of the sintered body was measured by the ICP method (inductively coupled plasma emission spectroscopy), and it was confirmed that the composition matched the composition calculated from the weighed value of the raw material powder. The same applies to the following.
なお、 使用した粉末の平均粒径は、 G a 2 03 粉末、 I n 2 03 粉末および S n 02 粉末それぞれ 2. 0〃m、 0. 8〃mおよび 1. 0〃mであった。 これ らの平均粒径は、 日機装社製のマイク口 トラック粒度測定装置で測定した。 The average particle size of the powder used was, G a 2 0 3 powder, I n 2 0 3 powder and S n 0 2 powder each 2. 0〃M, 0. 8〃M and 1.1 0〃M met Was. These average particle diameters were measured with a microphone mouth track particle size analyzer manufactured by Nikkiso Co., Ltd.
この混合粉末をゴム型に充塡し、 C I P装置で加圧成形し、 その後、 空気中で This mixed powder is filled in a rubber mold, pressed with a CIP device, and then in air.
1 50 0 °Cの温度、 大気圧、 保持時間 2時間で焼成した。 この焼結体の密度およ び比抵抗を表 1に示す。 密度はアルキメデス法で測定した。 比抵抗は、 3 X 3 XFiring was performed at a temperature of 1500 ° C, an atmospheric pressure, and a holding time of 2 hours. Table 1 shows the density and specific resistance of this sintered body. The density was measured by the Archimedes method. The specific resistance is 3 X 3 X
3 0mmの角柱サンプルを切り出し、 4端子法で測定した。 A 30 mm square sample was cut out and measured by a four-terminal method.
つぎに、 前述の焼結体を直径 6ィンチ、 厚さ 5 mmの寸法に切り出し、 ターゲ ッ トを作製した (以下、 G I Tターゲッ トと呼ぶ) 。  Next, the above-mentioned sintered body was cut into a size of 6 inches in diameter and 5 mm in thickness to prepare a target (hereinafter referred to as a GIT target).
これら各種 G I Tターゲッ トを用いて、 マグネト口ン D Cスパッタリング装置 を使用して、 G a 2 03 - I n 2 03 一 S n 02 系透明導電膜 (以下、 G I T膜 と呼ぶ) の成膜を、 投入電力 : 50 0 W、 導入ガス : A r— C 02 混合ガス (A r + C 02 を 1 00体積0 /0として C02 が 3 0体積0 /0、 全流量は 5 0 s c c m) 、 圧力 : 4 X 1 0— 3T o r r、 基板温度:無加熱の条件で行った。 基板には、 ソUsing these various GIT targets, using the magneto port down DC sputtering apparatus, G a 2 0 3 - I n 2 0 3 one S n 0 2 based transparent conductive film (hereinafter, referred to as GIT film) formed the film, applied power: 50 0 W, introduced gas: a r- C 0 2 mixed gas (a r + C 0 2 1 00 volume 0/0 as C0 2 3 0 vol 0/0, the total flow rate 5 0 sccm), pressure: 4 X 1 0- 3 T orr , substrate temperature was carried out in a non-heated condition. The board has a
—ダライムガラス基板 (以下、 単にガラス基板という) を用いた。 膜厚はおよそ—A lime glass substrate (hereinafter simply referred to as a glass substrate) was used. The film thickness is approximately
1 00 n mとなるように行った。 It was performed so as to be 100 nm.
例 1〜 1 5では、 予察実験によ り CO, 濃度の最適値は、 1 0〜 5 0体積% ( 導入ガスの A r と C02 の合計に対する C02 の割合) であった。 なお、 表 2の 例 1〜 1 5には、 代表値である C〇2 : 3 0体積%の場合の実験結果を示した。 得られた各種の G I T膜の比抵抗と透過率を表 2に示す。 In Examples 1 to 15, the optimal values of CO and concentration were found to be 10 to 50% by volume ( It was the introduction ratio of C0 2 to the sum of A r and C0 2 gas). Note that the Example 1 to 1-5 in Table 2, the representative value in the form of the C_〇 2: shows the experimental results in the case of 3 0% by volume. Table 2 shows the specific resistance and transmittance of the various GIT films obtained.
表 2の膜組成は、 I C P法で測定した。 ターゲッ トの組成と、 G I T膜の組成 はほぼ一致していた。  The film compositions in Table 2 were measured by the ICP method. The composition of the target and the composition of the GIT film almost matched.
X線回折計によ り、 膜の同定を行った。 例 1〜 1 5すべて、 X線回折パターン はフラッ トであり、 非晶質であった。 図 1に、 例 2で得られた G I T膜の X線回 折パターンを示す。  The film was identified using an X-ray diffractometer. In all of Examples 1 to 15, the X-ray diffraction pattern was flat and amorphous. FIG. 1 shows an X-ray diffraction pattern of the GIT film obtained in Example 2.
(例 1 6〜: L 9 )  (Example 16: L 9)
S b 2 05 粉末、 または T e 02 粉末を加えた系についても検討した。 粉末の 混合割合は表 1に示すとおりである。 Was also examined S b 2 0 5 powder or T e 0 2 powder was added system. The mixing ratio of the powder is as shown in Table 1.
例 1 と同様に、 ターゲッ トを作製した。 この焼結体 (ターゲッ ト) の密度およ び比抵抗を表 1に示す。  A target was prepared in the same manner as in Example 1. Table 1 shows the density and specific resistance of this sintered body (target).
例 1 と同様の条件で、 マグネトロン DCスパッタリ ング装置を使用して、 成膜 を行った。 このときの膜の組成、 比抵抗、 透過率を表 2に示す。  Film formation was performed under the same conditions as in Example 1 using a magnetron DC sputtering apparatus. Table 2 shows the composition, specific resistance, and transmittance of the film at this time.
表 2の膜組成は、 I C P法で測定した。 膜の組成とターゲッ ト組成と比較する と、 膜中の S b 0— および T e O, 含有量は少なくなつていた。  The film compositions in Table 2 were measured by the ICP method. Comparing the film composition with the target composition, the content of Sb0— and TeO, in the film was decreasing.
X線回折計によ り、 膜の同定を行った。 例 1 6〜 1 9の膜はすべて、 X線回折 パターンはフラッ トであり、 非晶質であつた。  The film was identified using an X-ray diffractometer. All of the films of Examples 16 to 19 had flat X-ray diffraction patterns and were amorphous.
(例 2 0〜 2 6 )  (Example 20 to 26)
3 a元素、 4 a元素および 5 a元素として Y 203、 L a 203、 C e 02、 P r 6 0, i、 d , 0 T i 09, N b„0rのそれぞれの粉末を加えた系についても検討 した。 粉末の混合割合は表 1に示すとおりである。 Y 2 O 3 , La 2 O 3 , Ce 0 2 , Pr 60 , i, d, 0 Ti 0 9 , N b „0 r as 3 a, 4 a and 5 a elements Table 1 shows the mixing ratio of the powders.
例 1 と同様に、 ターゲッ トを作製した。 この焼結体 (ターゲッ ト) の密度およ び比抵抗を表 1に示す。  A target was prepared in the same manner as in Example 1. Table 1 shows the density and specific resistance of this sintered body (target).
例 1 と同様の条件で、 マグネ トロン D Cスパッタリ ング装置を使用して、 成膜 を行った。 このときの膜の組成、 比抵抗、 透過率を表 2に示す。  Under the same conditions as in Example 1, a film was formed using a magnetron DC sputtering apparatus. Table 2 shows the composition, specific resistance, and transmittance of the film at this time.
X線回折計によ り、 膜の同定を行った。 例 2 0〜2 6の膜はすべて、 X線回折 ノ、°ターンはフラッ トであり、 非晶質であった。 (例 2 7〜 2 8 ) The film was identified using an X-ray diffractometer. All of the films of Examples 20 to 26 were amorphous by X-ray diffraction and flat in the turn. (Example 27 to 28)
G a 2 0 3 粉末、 I n 2 0 3 粉末および S n 0 2 粉末を用意し、 これら粉末を 表 1に示す割合で、 乾式ボールミルで混合した。 G a 2 0 3 powder was prepared I n 2 0 3 powder and S n 0 2 powder, these powders in the proportions indicated in Table 1, were mixed in a dry ball mill.
例 1 と同様に ·、 ターゲッ トを作製した。 この焼結体 (ターゲッ ト) の密度およ び比抵抗を表 1 に示す。  In the same manner as in Example 1, a target was produced. Table 1 shows the density and specific resistance of this sintered body (target).
例 1 と同様の条件 (ただし、 スパッタリングガスは、 A r —◦ 2混合ガスとしExample 1 and the same conditions (however, the sputtering gas is set to A r -◦ 2 mixed gas
、 酸素の割合は 3体積%とした。 これは、 予察実験により、 低抵抗でかつ透明膜 となる酸素の割合が 3体積%であることを得たからである。 それ以外は例 1 と同 様の条件) で、 マグネ トロン D Cスパッタリ ング装置を使用して、 成膜を行った 。 このときの透明導電膜の組成、 比抵抗、 透過率を表 2に示す。 The proportion of oxygen was 3% by volume. This is because the preliminary experiments have shown that the ratio of oxygen that forms a low-resistance and transparent film is 3% by volume. Other conditions were the same as in Example 1), and a film was formed using a magnetron DC sputtering apparatus. Table 2 shows the composition, specific resistance, and transmittance of the transparent conductive film at this time.
得られた各種の透明導電膜の比抵抗と透過率を表 2に示す。  Table 2 shows the specific resistance and transmittance of the obtained various transparent conductive films.
表 2の膜組成は、 I C P法で測定した。 ターゲッ トの組成と、 G I T膜の組成 はほぼ一致していた。  The film compositions in Table 2 were measured by the ICP method. The composition of the target and the composition of the GIT film almost matched.
(例 2 9 )  (Example 2 9)
I n 2 0 3 - S n 0 2 粉末系についても検討した。 粉末の混合割合は表 1に 示すとおりである。 I n 2 0 3 - were also examined S n 0 2 powder system. The mixing ratio of the powder is as shown in Table 1.
例 1 と同様に、 ターゲッ トを作製した。 この焼結体 (ターゲッ ト) の密度およ び比抵抗を表 1に示す。  A target was prepared in the same manner as in Example 1. Table 1 shows the density and specific resistance of this sintered body (target).
この組成のターゲッ トは、 抵抗が高く、 D Cスパッタリ ングはできなかった。 そこで、 マグネトロン R Fスパッタリング装置を使用して、 成膜を行った。 電源 以外の条件は例 2 7 と同様に行った。 このときの膜の比抵抗と透過率を表 2に示 す。 比抵抗は例 1 〜 2 6より高かった。  The target of this composition had high resistance and could not perform DC sputtering. Therefore, film formation was performed using a magnetron RF sputtering apparatus. The conditions other than the power supply were the same as in Example 27. Table 2 shows the specific resistance and transmittance of the film at this time. The specific resistance was higher than in Examples 1-26.
表 2の膜組成は、 I C P法で測定した。 ターゲッ トの組成と、 G I T膜の組成 はほぼ一致していた。  The film compositions in Table 2 were measured by the ICP method. The composition of the target and the composition of the GIT film almost matched.
(耐久性テスト)  (Durability test)
得られた透明導電膜の耐酸性を調べるために、 例 1 〜 2 9の膜をそれぞれ 5 w t %塩酸水溶液に室温で 2時間放置した。 その結果、 例 1 〜 2 6のいずれの膜に ついても膜の侵食および抵抗変化は全く見られなかった。 5 w t %硫酸水溶液に ついても同様に試験したところ、 例 1 〜 2 6のいずれの膜についても侵食および 抵抗変化は全く見られなかった。 In order to examine the acid resistance of the obtained transparent conductive film, each of the films of Examples 1 to 29 was left in a 5 wt% hydrochloric acid aqueous solution at room temperature for 2 hours. As a result, no erosion of the membrane and no change in resistance were observed for any of the membranes of Examples 1 to 26. A similar test was conducted for a 5 wt% sulfuric acid aqueous solution. No resistance change was observed.
例 2 8の膜は、 耐塩酸、 耐硫酸テス トにおいて、 抵抗がそれぞれ 2 0 %、 1 0 %上昇した。  The resistance of the film of Example 28 was increased by 20% and 10%, respectively, in the hydrochloric acid resistance test and the sulfuric acid resistance test.
抵抗変化率 (·%) は、 抵抗変化率 (%) = ( (実験後の抵抗) Z (はじめの抵 抗) - 1 ) X 1 0 0の式で求めた。  The rate of change in resistance (·%) was determined by the following equation: Rate of change in resistance (%) = ((resistance after experiment) Z (initial resistance)-1) X 100.
また、 耐ァルカリ性を調べるために、 例 1 〜 2 9の膜をそれぞれ 5 w t %水酸 化ナトリゥム水溶液に 8 0 °Cで 3 0分放置した。 その結果、 例 1 〜 2 6のいずれ の膜についても侵食は全く見られなかった。 例 1 〜 2 6のいずれの膜についても 抵抗変化はいずれも 0〜+ 5 %以内と小さかった。 例 2 7の膜は抵抗が 4 5 %上 昇した。 例 2 8の膜は抵抗が 7 0 %上昇した。  In addition, in order to examine the alkali resistance, the films of Examples 1 to 29 were each left in a 5 wt% aqueous sodium hydroxide solution at 80 ° C. for 30 minutes. As a result, no erosion was observed for any of the membranes of Examples 1 to 26. The resistance change of each of the films of Examples 1 to 26 was as small as 0 to + 5% or less. The film of Example 27 had a 45% increase in resistance. The film of Example 28 had a 70% increase in resistance.
また、 耐フッ酸性を調べるために、 例 1 〜 2 9の膜をそれぞれ 2 w t % H F + 2 w t %硝酸の混合水溶液に室温で 3 0分放置した。 その結果、 例 1 〜 2 6のい ずれの膜についても膜の侵食および抵抗変化は全く見られなかった。 例 2 7およ び例 2 8の膜は全部溶解した。  Further, in order to examine the hydrofluoric acid resistance, the films of Examples 1 to 29 were each left in a mixed aqueous solution of 2 wt% HF + 2 wt% nitric acid at room temperature for 30 minutes. As a result, no erosion of the membrane and no change in resistance were observed for any of the membranes of Examples 1 to 26. The membranes of Examples 27 and 28 all dissolved.
また、 耐湿性を調べるために、 例 1 〜 2 9の膜をそれぞれ気温 4 0 °C、 相対湿 度 9 0 %の雰囲気に 1 5 0 0時間放置した。 その結果、 例 1 〜 2 6のいずれの膜 についても抵抗変化はいずれも ± 2 %以内と小さかった。 例 2 8の膜は、 耐湿性 において、 抵抗が 1 0 %上昇した。  Further, in order to examine the moisture resistance, the films of Examples 1 to 29 were each left for 150 hours in an atmosphere at a temperature of 40 ° C. and a relative humidity of 90%. As a result, the resistance change of each of the films of Examples 1 to 26 was as small as ± 2% or less. The film of Example 28 had a 10% increase in resistance in moisture resistance.
また、 得られた透明導電膜の C F 4ガスに対する耐性を調べるために、 例 1 〜In addition, in order to examine the resistance of the obtained transparent conductive film to CF 4 gas, Examples 1 to
2 9の膜それぞれについて、 スパッタエッチング装置を用いて、 C F 4ガスによ るエツチング試験を、 R F電力 : 2 0 0 W、 導入ガス : C F 4 ( 2 0 s c c m )An etching test using CF 4 gas was performed on each of the 29 films using a sputter etching apparatus. RF power: 200 W, introduced gas: CF 4 (20 sccm)
、 圧力 : 1 0— 2 T 0 r r、 処理時間 3 0分の条件で行った。 その結果、 例 1 〜 2Pressure: 1 0- 2 T 0 rr, was carried out under conditions of processing time 3 0 minutes. As a result, Examples 1-2
6のいずれの膜も、 エッチングされず、 C F 4ガスに対して高い耐性を有してい た。 また、 例 2 7および 2 8の膜は全部エッチングされた。 例 2 9の膜はエッチ ングされなかった。 All of the films 6 were not etched and had high resistance to CF 4 gas. Also, the films of Examples 27 and 28 were all etched. The film of Example 29 was not etched.
また、 得られた透明導電膜の耐擦傷性を調べるために、 例 1 〜 2 9の膜それぞ れについて、 砂消ゴム (プラス社製字消しゴム T Y P E 4 8— 1 0 0 5 m m径 ) を用いて、 荷重: 5 0 0 g、 速度 : 5 0 m m / m i n、 回数: 5往復の条件で テス トを行った。 評価は、 A : ほとんど傷つかない、 B : ガラスと同等に傷つき にくレ 、 C : ガラスに比べ少し傷つきやすい、 D : ひどく傷つく、 の 4段階で行 つた。 例 1 〜 1 9の透明導電膜は Bランクであり、 例 2 0〜 2 6の透明導電膜は Aランクであり、 高い耐擦傷性を示すことがわかった。 例 2 7および例 2 8の膜 は Cランクであった。 例 2 9の膜は Dランクであった。 In addition, in order to examine the scratch resistance of the obtained transparent conductive film, a sand erasing rubber (a type eraser TYPE 48—1005 mm diameter manufactured by Plus Co., Ltd.) was used for each of the films of Examples 1 to 29. The test was performed under the following conditions: load: 500 g, speed: 50 mm / min, number of times: 5 reciprocations. Evaluation: A: almost no damage, B: same damage as glass Nikure, C: Slightly damaged compared to glass, D: Severely damaged. The transparent conductive films of Examples 1 to 19 were ranked B, and the transparent conductive films of Examples 20 to 26 were ranked A, indicating that they exhibited high scratch resistance. The films of Examples 27 and 28 were ranked C. The film of Example 29 had a D rank.
これらの結果を、 表 2にまとめた。  Table 2 summarizes these results.
(例 3 0 )  (Example 30)
例 2で得られた G I T膜について、 空気中、 2 5 0 °C、 3 0分の条件で熱処理 した。 この結果、 比抵抗は、 1 . 8 X 1 0 _ 3 Ω c mに減少した。 可視光透過率は 変化無く、 8 2 %であった。 また、 例 2で得られた G I T膜について、 N。中、The GIT film obtained in Example 2 was heat-treated in air at 250 ° C. for 30 minutes. As a result, the specific resistance was reduced to 1.8 × 10 3 Ωcm. The visible light transmittance was unchanged at 82%. In addition, the GIT film obtained in Example 2 was set to N. During,
5 0 0 °C、 3 0分の条件で熱処理した。 この結果、 比抵抗は、 1 . 3 X 1 0— 3 Ω c mに減少した。 可視光透過率は変化無く、 8 2 %であった。 Heat treatment was performed at 500 ° C. for 30 minutes. As a result, the specific resistance was reduced to 1. 3 X 1 0- 3 Ω cm. The visible light transmittance was unchanged and was 82%.
(例 3 1 )  (Example 3 1)
G I T膜の幾何学的膜厚を 1 5 0 n mとした以外は例 2 と同様にして G I T膜 を成膜した。  A GIT film was formed in the same manner as in Example 2 except that the geometric film thickness of the GIT film was set to 150 nm.
次いで、 G I T膜上に、 スクリーン印刷法により電極および電極取り出し部を 印刷して、 3 0 0 °Cで焼き付けた。 その後、 電極取り出し部にリー ド線を半田付 けした。  Next, the electrode and the electrode take-out part were printed on the GIT film by a screen printing method, and baked at 300 ° C. After that, a lead wire was soldered to the electrode take-out part.
次いで、 同一寸法のガラス基板を用意し、 該ガラス基板とスぺーサ一を介して 前記 G I T膜等が形成されたガラス基板とをシーラン トで封着し、 複層ガラスと した。  Next, a glass substrate having the same dimensions was prepared, and the glass substrate and the glass substrate on which the GIT film and the like had been formed were sealed with a sealant via a spacer to form a double-layer glass.
作製した複層ガラスの可視光透過率は 8 0 %であった。 色調はニュー トラルで あった。 シーラン トを貫通させ外部へ取り出したリード線でバスバ一電極間の抵 抗を測定したところ 1 3 5 Ωであった。 バスバー間に電圧 3 2 Vを印加して通電 試験をおこなったところ、 6週間経過後も、 抵抗値、 外観とも変化を示さず、 一 定であった。 以上のように、 前記複層ガラスは、 電熱ガラスと して良好に機能す るものであった。  The visible light transmittance of the produced double-glazed glass was 80%. The color tone was neutral. When the resistance between the bus bar and the electrode was measured with a lead wire that penetrated the sealant and was taken out, it was 135 Ω. When a voltage of 32 V was applied between the bus bars to conduct a current test, the resistance value and appearance did not change even after 6 weeks, and were constant. As described above, the double-layer glass functioned well as electrothermal glass.
産業上の利用の可能性 Industrial applicability
本発明によれば、 耐薬品性が優れる酸化錫系透明導電膜を得ることができる。 また、 本発明によ り得られる透明導電膜は非晶質なので、 表面の凹凸がなく、 滑らかであるので、 耐擦傷性に富み、 かつ、 導電性であるので、 絶縁物のオーバ ーコ一 トに用いることによ り、 高耐久の带電防止膜と しての効果を有する。 特に 、 基板加熱しなくても、 透明な膜が得られるので、 プラスチックフ ィルムなどの 保護膜機能を兼ね備えた帯電防止膜に利用できる。 According to the present invention, a tin oxide-based transparent conductive film having excellent chemical resistance can be obtained. Further, since the transparent conductive film obtained by the present invention is amorphous, there is no unevenness on the surface, Since it is smooth, it has excellent abrasion resistance and is conductive, so that it can be used as an overcoat of an insulating material to have an effect as a highly durable antistatic film. In particular, since a transparent film can be obtained without heating the substrate, it can be used for an antistatic film having a protective film function such as a plastic film.
また、 本発明のターゲッ トは、 導電性であり、 成膜速度が速い D Cスパッタリ ングが可能である、 しかもターゲッ トは緻密質であり、 安定した放電でスパッタ リ ングできる。  In addition, the target of the present invention is conductive and can perform DC sputtering at a high film formation rate. In addition, the target is dense and can be sputtered by a stable discharge.

Claims

1フ 請 求 の 範 囲 1) Scope of billing
1. ガリウムとインジウムとを含有する酸化錫系の透明導電膜であって、 ガリウ ムを G a 2 03 に換算し、 イ ンジウムを I n 2 0 に換算し、 錫を S η 02 に 換算したとき、. G a 2 03 と I n 2 03 と S n 02 との総量に対して、 ガリゥ ムを G a 2 0„ 換算で 0. 1〜 3 0モル0 /0含有し、 かつィ ンジゥムを I n 2 01. A transparent conductive film of tin oxide containing gallium and indium, converting the Gallium to G a 2 0 3, the Lee indium I n 2 0: in terms of I, tin S eta 0 when converted into 2,. G a 2 0 3 and I n 2 0 3 and S n 0 with respect to the total amount of 2, 0.1 1 of Gariu beam in G a 2 0 "terms 3 0 mole 0/0 Contained, and the insulator was In 20
3 換算で 0. 1〜 3 0モル%含有することを特徴とする透明導電膜。 A transparent conductive film containing 0.1 to 30 mol% in terms of 3 in conversion.
2. ガリ ウムの含有割合が、 G a 2 03 換算で 1〜 1 5モル0 /0であり、 かつイン ジゥムの含有割合が、 I n 2 03 換算で 1〜 1 5モル%である請求項 1記載の 2. The content of the gully um is a 1-1 5 mole 0/0 G a 2 0 3 in terms of, and the content of the in-Jiumu is from 1 1 to 5 mol% in I n 2 0 3 in terms of Claim 1
3. アンチモンおよびノまたはテルルを含有する請求項 1記載の透明導電膜。3. The transparent conductive film according to claim 1, which contains antimony and phosphorus or tellurium.
4 · 長周期型周期表における 3族 (ランタノィ ドを含む、 ァクチノィ ドは含まず ) 、 4族および 5族からなる群から選ばれる 1種以上の金属を含有する請求項 1記載の透明導電膜。 4. The transparent conductive film according to claim 1, comprising at least one metal selected from the group consisting of Group 3 (including lanthanides, excluding actinides), Group 4 and Group 5 in the long-period periodic table. .
5. 基体上に請求項 1記載の透明導電膜が形成されたことを特徴とする透明導電 膜付き基体。  5. A substrate with a transparent conductive film, wherein the transparent conductive film according to claim 1 is formed on the substrate.
6. ガリウムとインジウムとを含有する酸化錫系のスパッタリ ングターゲッ トで あって、 ガリウムを G aリ 03 に換算し、 イ ンジウムを I n, 0, に換算し、 錫を S n 02 に換算したとき、 G a 2 03 と I n 2 03 と S n 02 との総量に 対して、 ガリウムを G a 2 03 換算で 0. 1〜 3 0モル%含有し、 かつインジ ゥムを I n 2 03 換算で 0. 1〜 3 0モル0 /0含有することを特徴とするスパッ タリングターゲッ ト。 6. A Supattari Ngutage' capital of tin oxide containing gallium and indium, converting the gallium G a Li 0 3, converts the Lee indium I n, 0, a, a tin S n 0 2 when converted, for the total amount of G a 2 0 3 and I n 2 0 3 and S n 0 2, gallium containing from 0.1 to 3 0 mol% G a 2 0 3 in terms of, and indicator © sputtering Taringutage' you want to, characterized in that 0.1 to 3 0 mol 0/0 containing beam at I n 2 0 3 basis.
7. ガリ ウムの含有割合が、 G a 23 換算で 1〜 1 5モル0 /0で、 かつインジゥ ムの含有割合が、 I n 2 03 換算で 1〜 1 5モル0 /0である請求項 6記載のスパ ッタリ ングターゲッ ト。 7. content of gully um is in 1-1 5 mole 0/0 G a 23 basis, and the content of Injiu arm is in 1-1 5 mole 0/0 I n 2 0 3 basis 7. The sputtering target according to claim 6, wherein:
8. アンチモンおよび/またはテルルを含有する請求項 6記載のスパッタリング ターゲッ ト。 8. The sputtering target according to claim 6, comprising antimony and / or tellurium.
9. 長周期型周期表における 3族 (ランタノイ ドを含む、 ァクチノイ ドは含まず ) 、 4族および 5族からなる群から選ばれる 1種以上の金属を含有する請求項 6記載のスノ、。ッタリングターゲッ ト。  9. The snowboard according to claim 6, comprising at least one metal selected from the group consisting of Group 3 (including lanthanoids, not including lactinoids), Group 4 and Group 5 in the long-periodic table. Tatting target.
PCT/JP1998/000708 1997-02-21 1998-02-20 Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film WO1998037255A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69820639T DE69820639T2 (en) 1997-02-21 1998-02-20 Substrate is coated with a transparent, conductive film and sputtering target to deposit the film
EP98904403A EP1004687B1 (en) 1997-02-21 1998-02-20 SUBSTRATE COATED WITH A TRANSPARENT CONDUCTIVE FILM and SPUTTERING TARGET FOR THE DEPOSITION OF SAID FILM
US09/175,964 US6042752A (en) 1997-02-21 1998-10-21 Transparent conductive film, sputtering target and transparent conductive film-bonded substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP03813397A JP3925977B2 (en) 1997-02-21 1997-02-21 Transparent conductive film, method for producing the same, and sputtering target
JP9/38133 1997-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/175,964 Continuation-In-Part US6042752A (en) 1997-02-21 1998-10-21 Transparent conductive film, sputtering target and transparent conductive film-bonded substrate

Publications (1)

Publication Number Publication Date
WO1998037255A1 true WO1998037255A1 (en) 1998-08-27

Family

ID=12516947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000708 WO1998037255A1 (en) 1997-02-21 1998-02-20 Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film

Country Status (4)

Country Link
EP (1) EP1004687B1 (en)
JP (1) JP3925977B2 (en)
DE (1) DE69820639T2 (en)
WO (1) WO1998037255A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact
CN114592175A (en) * 2018-03-30 2022-06-07 Jx金属株式会社 Sputtering target component and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002537B1 (en) 2002-08-02 2010-12-17 이데미쓰 고산 가부시키가이샤 Sputtering target, sintered compact, conductive film manufactured using these, organic EL element, and board | substrate used for this
TWI417905B (en) * 2004-09-13 2013-12-01 Sumitomo Metal Mining Co A transparent conductive film and a method for manufacturing the same, and a transparent conductive substrate and a light-emitting device
JP2006289901A (en) * 2005-04-14 2006-10-26 Asahi Glass Co Ltd Antireflection film and display device
KR20120120130A (en) * 2009-10-15 2012-11-01 우미코르 Tin oxide ceramic sputtering target and method of producing it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178414A (en) * 1987-01-20 1988-07-22 三井金属鉱業株式会社 Transparent conductive film and material for manufacturing the same
JPH04272612A (en) * 1991-02-26 1992-09-29 Kojundo Chem Lab Co Ltd Transparent electrode
JPH04277408A (en) * 1991-03-01 1992-10-02 Kojundo Chem Lab Co Ltd Transparent electrode
US5473456A (en) * 1993-10-27 1995-12-05 At&T Corp. Method for growing transparent conductive gallium-indium-oxide films by sputtering
JPH07335030A (en) * 1994-06-14 1995-12-22 Idemitsu Kosan Co Ltd Conductive laminate
JPH08264022A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707478B2 (en) * 1992-08-24 1998-01-28 新日本製鐵株式会社 High corrosion resistant multi-layer electroplated steel sheet
US5407602A (en) * 1993-10-27 1995-04-18 At&T Corp. Transparent conductors comprising gallium-indium-oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178414A (en) * 1987-01-20 1988-07-22 三井金属鉱業株式会社 Transparent conductive film and material for manufacturing the same
JPH04272612A (en) * 1991-02-26 1992-09-29 Kojundo Chem Lab Co Ltd Transparent electrode
JPH04277408A (en) * 1991-03-01 1992-10-02 Kojundo Chem Lab Co Ltd Transparent electrode
US5473456A (en) * 1993-10-27 1995-12-05 At&T Corp. Method for growing transparent conductive gallium-indium-oxide films by sputtering
JPH07335030A (en) * 1994-06-14 1995-12-22 Idemitsu Kosan Co Ltd Conductive laminate
JPH08264022A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EDWARDS D. D., ET AL.: "A NEW TRANSPARENT CONDUCTING OXIDE IN THE GA2O3-IN2O3-SNO2 SYSTEM.", APPLIED PHYSICS LETTERS, A I P PUBLISHING LLC, US, vol. 70., no. 13., 31 March 1997 (1997-03-31), US, pages 1706 - 1708., XP002912329, ISSN: 0003-6951, DOI: 10.1063/1.118676 *
See also references of EP1004687A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact
CN114592175A (en) * 2018-03-30 2022-06-07 Jx金属株式会社 Sputtering target component and method of manufacturing the same

Also Published As

Publication number Publication date
EP1004687B1 (en) 2003-12-17
JP3925977B2 (en) 2007-06-06
JP2002012964A (en) 2002-01-15
DE69820639D1 (en) 2004-01-29
EP1004687A1 (en) 2000-05-31
EP1004687A4 (en) 2001-05-23
DE69820639T2 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6042752A (en) Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
CN1777690B (en) Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal
CN101460425B (en) Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
EP1080245B2 (en) Coated article comprising a sputter deposited dielectric layer
JP4730204B2 (en) Oxide sintered compact target and method for producing oxide transparent conductive film using the same
CN104919340B (en) Light-absorbing layer systems, their production and sputtering targets suitable for them
JP3836163B2 (en) Method for forming high refractive index film
US9051211B2 (en) Effects of methods of manufacturing sputtering targets on characteristics of coatings
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
JPH07197250A (en) Durable sputtered metal oxide coating
WO2007142330A1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2010018707A1 (en) Gallium oxide-tin oxide based oxide sintered body and oxide film
JP2010070418A (en) SnO2-In2O3-BASED OXIDE SINTERED COMPACT AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
JPH08111123A (en) Transparent conductive film, method for producing the same, and sputtering target
JP2000281431A (en) Tin dioxide-based sintered compact, material for thin film formation and electroconductive film
JP2002363732A (en) Method for producing transparent conductive film and transparent substrate with transparent conductive film
WO1998037255A1 (en) Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film
WO2007055231A1 (en) SnO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME
JPH07196365A (en) Sintered ito, ito clear conductive layer and formation thereof
JP2003100154A (en) Transparent conductive film, method for producing the same, and use thereof
CN112752863A (en) Laminated film and Ag alloy sputtering target
JP5167575B2 (en) Oxide sintered body, sputtering target, and transparent conductive film
JP2003231966A (en) Process for forming titanium oxide film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09175964

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998904403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998904403

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998904403

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载