+

WO1998015819A1 - Dichtelement für messfühler und verfahren zu seiner herstellung - Google Patents

Dichtelement für messfühler und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO1998015819A1
WO1998015819A1 PCT/DE1997/002012 DE9702012W WO9815819A1 WO 1998015819 A1 WO1998015819 A1 WO 1998015819A1 DE 9702012 W DE9702012 W DE 9702012W WO 9815819 A1 WO9815819 A1 WO 9815819A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
layer
light metal
sensor according
sensor
Prior art date
Application number
PCT/DE1997/002012
Other languages
English (en)
French (fr)
Inventor
Karl-Hermann Friese
Helmut Weyl
Hans-Martin Wiedenmann
Anton Hans
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP10517063A priority Critical patent/JP2000502456A/ja
Priority to EP97909120A priority patent/EP0865608A1/de
Publication of WO1998015819A1 publication Critical patent/WO1998015819A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases

Definitions

  • the invention relates to a sensor according to the preamble of claim 1.
  • Sensors according to the preamble of claim 1 have a solid electrolyte body which, for. B. executed as a closed tube and tightly fixed in a metallic housing. A seal must be implemented between the solid electrolyte body and the housing.
  • Solid electrolyte base in which electrically conductive metal or graphite sealing rings are used for the tight fixation of the solid electrolyte body in the housing.
  • This type of sealing leads to oxidation and corrosion of the metal or graphite surface at elevated temperatures. Furthermore, it can lead to diffusion of the resulting metal ions into the solid electrolyte. This changes and affects its properties with regard to its trouble-free function.
  • Aluminum-clad steel foils are known from the literature (RG DELAGI & S. IHA, Adv. Mat. Proc. 1995, 27) Treatment form a highly stable Fe / Al alloy and its surface is converted to A1 2 0 3 .
  • the inventive sensor with the characterizing features of the main claim has the advantage that temperature and corrosion-resistant sealing elements can be used to seal the ceramic body, which also have a ductile surface layer made of a light metal or an alloy of a light metal. Due to the deformability of the compact seal, the sealing element lies against the surface of the ceramic body without any gaps. This ensures that even under extreme thermal
  • the surface coating of the sealing element which is particularly advantageous for the sealing function, by means of readily deformable aluminum, is irreversibly oxidized in whole or in part after the assembly by thermal treatment and thus additionally acts as an electrical insulator.
  • the measures listed in the subclaims enable advantageous developments and improvements of the sensor according to the invention and of the method according to the invention.
  • the additional metal layer on the aluminum layer improves the adhesion to the solid electrolyte ceramic. During a thermal treatment, this metal layer oxidizes and forms a stable mixed oxide layer in the form of metal aluminates with the aluminum layer, which is also oxidized. As a result, the metal oxides formed during the oxidation or the metal cations are diffused into sensitive surface layers of the Sensor element hindered.
  • the aluminum layer on the outside is also oxidized to A1 2 0 3 and acts as an electrical insulator.
  • the metallic carrier forms a high-temperature and corrosion-resistant Fe-Al alloy with the non-oxidized part of the aluminum. This process advantageously combines the ductility of metals with the toughness and resistance of ceramics and specific alloys.
  • FIG. 1 shows a longitudinal section through the exhaust-side part of a sensor
  • FIG. 2 shows an enlarged section of a sealing zone according to FIG. 1
  • FIG. 3 shows a coated sealing ring
  • FIG. 4 shows the enlarged section of the sealing zone with the sealing element according to FIG. 3 before the thermal treatment
  • FIG 5 the enlarged section of the sealing zone with a sealing ring according to FIG. 3 after the thermal treatment.
  • the electrochemical measuring sensor 10 shown in FIG. 1 has a metallic housing 11, which has a key hexagon 12 on its outside and a thread 13 as a fastening means for installation in a measuring gas tube, not shown.
  • the housing 11 has a longitudinal bore 17 with a sealing seat 20 which carries a sealing ring 21.
  • a sealing surface 28 on the sensor element side is formed on the bead-shaped head 15 of the sensor element 14 between the sealing ring 21 and the sensor element 14 out.
  • the sealing seat 20 in turn forms a sealing surface on the house side.
  • the sealing zone 55 which forms on the sealing ring 21 is shown enlarged in FIGS. 2, 4 and 5.
  • the sensor element 14 is an oxygen probe which is known per se and which is preferably used for measuring the oxygen partial pressure in exhaust gases.
  • the sensor element 14 has a tubular solid electrolyte body 29, the end section on the measuring gas side of which is closed by means of a base 30.
  • On the outside exposed to the measuring gas is a layered, gas-permeable measuring electrode 31 on the solid electrolyte body 29 and on the side facing the interior a reference gas, for. B. air, exposed, gas-permeable and layered reference electrode 32.
  • the measuring electrode 31 is guided with a measuring electrode conductor 33 to a first electrode contact 39 and the reference electrode 32 with a reference electrode conductor 34 to a second electrode contact 40.
  • the electrode contacts 39, 40 are each located on an end face 42 formed by the open end of the solid electrolyte body 29.
  • a porous protective layer 35 is placed over the measuring electrode 31 and partly over the measuring electrode conductor tracks 33.
  • the electrodes 31, 32 and the conductor tracks 27, 28 are advantageously constructed as cermet layers and are co-sintered.
  • the sensor element 14 protruding from the longitudinal bore 18 of the housing 11 on the measuring gas side is surrounded at a distance by a protective tube 50 which has openings 51 for the entry and exit of the measuring gas and is held at the end of the housing 11 on the measuring gas side.
  • the interior of the sensor element 14 is filled, for example, by a rod-shaped heating element 46, which, not shown, is locked away from the sample gas and is provided with line connections.
  • a first contact part 44 rests on the first electrode contact 39 and a second contact part 45 rests on the second electrode contact 40.
  • the contact parts 44, 45 are shaped such that they bear against the tubular heating element 40 and are contacted with a measuring electrode connection 47 and a reference electrode connection 48.
  • the connections 47, 48 are not shown
  • an insulating sleeve 49 is also introduced, which preferably consists of a ceramic material. With the help of a mechanical means, not shown, the insulating sleeve 49 is pressed onto the contact parts 44, 45, as a result of which the electrical connection to the electrode contacts 39 and 40 is produced.
  • Solid electrolyte body 29 and the housing 11 can be seen in FIG. 2.
  • the cover layer 27 has a layer thickness of 20 to 100 ⁇ m.
  • the cover layer 27 is drawn over the entire area of the conductor track 33 and around the circumference of the solid electrolyte body 29, which is adjacent to the housing 11.
  • the protective layer 30 consists, for. B. from plasma-sprayed magnesium spinel.
  • the material of the cover layer 27 is selected so that it withstands the compressive forces of the sealing ring 21, which occur when the sensor element 14 is joined in the housing 11. In addition, it must withstand application temperatures up to 700 ° C in the area of the joint. This is achieved in that a crystalline, non-metallic material forms a load-bearing protective structure in a glaze layer in a homogeneous distribution and the transformation temperature of the glaze is above the application temperature.
  • Possible materials are: A1 2 0 3 , Mg spinel, forsterite, MgO stabilized Zr0 2 , CaO and / or Y 2 0 3 stabilized Zr0 2 with low stabilizer contents, advantageously with a maximum of 2/3 of the stabilizer oxide of the full stabilization, non-stabilized Zr0 2 or Hf0 2 or a mixture of these substances.
  • Alkaline earth silicate for example Ba-Al silicate, is used as the glass-forming material.
  • the Ba-Al silicate for example, has a thermal one
  • the sealing ring 21 In order to realize an electrically insulating and gas-tight fastening of the sensor element 14 in the housing 11, the shoulder 16 formed on the bead-shaped head 15 is seated on the housing 11 by means of the sealing ring 21.
  • the sealing ring 21 according to FIG. 2 consists of a solid core 23 which forms a support and is made of an iron-chromium or V2A alloy, preferably of Fe-22Cr-MM stainless steel with a thickness of approximately 1.5 mm which is covered on each side by an aluminum layer 24 which is at least 0.01 mm thick. The material is particularly gas, water and fuel impermeable due to its high compression.
  • FIG. 3 shows an exemplary embodiment of the sealing ring 21, which is composed of several different metal layers.
  • the additional metal layer 25 is deposited without current, for example.
  • the thickness of the additional metal layer 25 is, for example, 0.8 ⁇ m.
  • FIG. 4 shows the sealing zone 55 with the metallic sealing ring according to FIG. 3 before the thermal treatment.
  • the additional metal layer 25 lies on the protective layer 27 of the sensor element 14.
  • the second aluminum layer 24 lies against the metallic housing 11.
  • FIG. 5 shows the sealing zone 55 from FIG. 4 after the thermal treatment.
  • the protective layer 27 of the sensor element 10 remained unchanged.
  • the layer 58 which follows it consists of an Fe-Al alloy which has ceramic-like properties.
  • the core 23 remained unchanged.
  • Another layer 58 made of the Fe-Al alloy follows above it. Part of the aluminum from layer 24 has converted on the surface to an A10 3 layer 59, which at the same time has an electrically insulating effect. In contrast, the metallic housing 11 of the sensor 10 remained unchanged.
  • the sealing ring 21 it is also possible, for example, to subject the sealing ring 21 to a thermal treatment of approximately 600 ° C. under a protective gas before it is inserted into the housing 11, only the Fe-Al alloy 58 being at least partially formed.
  • the core 23 remains unchanged.
  • the sensor is heated again to at least 500 ° C., on the sealing ring 21 the surface of the aluminum layer oxidizes to an Al 2 0 3 layer 59, or the additional metal layer 25 with the mixed oxide layer 57 forms the non-oxidized part of the aluminum layer 24.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

Es wird ein elektrochemischer Meßfühler (10) zur Bestimmung des Sauerstoffgehaltes von Gasen, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Verbrennungsmotoren vorgeschlagen, mit einem Festelektrolytkörper (29), der mit einem Dichtring (21) in einem Gehäuse (11) eingesetzt ist. Der Dichtring (21) ist aus verschiedenen metallischen Schichten aufgebaut. Die Anordnung dieser metallischen Schichten geht von einem metallischen Träger (23) aus, der aus einer Stahllegierung besteht. Dieser Träger (23) ist an den beiden Ringflächen mit einer Aluminiumschicht (24) überzogen. Eine der Aluminiumschichten (24) kann zusätzlich von einer weiteren Metallschicht (25) bedeckt sein. Bei einer thermischen Behandlung, vor oder nach dem Fügeprozeß, bildet ein Teil der Aluminiumschicht (24) mit dem Träger (23) eine Fe-Al Legierung aus, die keramische Eigenschaften aufweist. Die Oberfläche der Aluminiumschicht (24) wird dabei oxidiert und bildet eine Aluminiumoxidschicht. Im Falle einer zusätzlich aufgebrachten Metallschicht auf der Aluminiumschicht wird eine Mischoxidschicht gebildet.

Description

Dichtelement für Meßfühler und Verfahren zu seiner Herstellung
Stand der Technik
Die Erfindung geht aus von einem Meßfühler nach dem Oberbegriff des Anspruchs 1. Meßfühler gemäß dem Oberbegriff des Anspruchs 1 haben einen Festelektrolytkörper, der z. B. als geschlossenes Rohr ausgeführt und in einem metallischen Gehäuse dicht festgelegt ist . Zwischen Festelektrolytkörper und Gehäuse muß eine Dichtung realisiert sein.
Aus der DE-OS 43 42 731 sind Meßfühler auf
Festelektrolytbasis bekannt, bei denen zur dichten Fixierung des Festelektroytkörpers im Gehäuse elektrisch leitende Metall- bzw. Graphitdichtringe verwendet werden. Diese Abdichtungsart führt bei erhöhten Temperaturen zu Oxidation und Korrosion der Metall- bzw. Graphitoberfläche. Darüberhinaus kann es zu Diffusion der dabei entstehenden Metallionen in den Festkörperelektrolyt führen. Dies verändert und beeinträchtigt dessen Eigenschaften im Hinblick auf seine störungsfreie Funktion. Aus der Literatur (R. G. DELAGI & S. IHA, Adv. Mat . Proc . 1995, 27) sind aluminiumplattierte Stahlfolien bekannt, die bei thermischer Behandlung eine hochstabile Fe/Al Legierung ausbilden und deren Oberfläche dabei zu A1203 umgewandelt wird.
Vorteile der Erfindung
Der erfindungsgemäße Meßfühler mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß zur Abdichtung des keramischen Körpers temperatur- und korrosionsbeständige Dichtelemente eingesetzt werden können, die darüberhinaus eine duktile Oberflächenschicht aus einem Leichtmetall- bzw. einer Legierung eines Leichtmetalls aufweisen. Durch die Verformbarkeit der kompakten Dichtung legt sich das Dichtelement spaltfrei insbesondere an die Oberfläche des keramischen Körpers an. Dadurch wird gewährleistet, daß auch unter extremen thermischen
Bedingungen keine korrosiven Substanzen an die Keramik des Festelektrolytkörpers gelangen und deren Eigenschaften beeinträchtigen. Die für die Abdichtfunktion besonders vorteilhafte Oberflächenbeschichtung des Dichtelementes durch gut verformbares Aluminium wird nach dem Zusammenfügen durch thermische Behandlung ganz oder teilweise irreversibel oxidiert und wirkt dadurch zusätzlich als elektrischer Isolator.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des erfindungsgemäßen Meßfühlers und des erfindungsgemäßen Verfahrens möglich. Die zusätzliche Metallschicht auf der Aluminiumschicht verbessert die Haftung auf der Festelektrolytkeramik. Bei einer thermischen Behandlung oxidiert diese Metallschicht und bildet mit der ebenfalls oxidierten Aluminiumschicht eine stabile Mischoxidschicht in Form von Metallaluminaten aus. Dadurch werden die bei der Oxidation entstehenden Metalloxide bzw. die Metallkationen an der Diffusion in sensible Oberflächenschichten des Sensorelementes gehindert. Die außen liegende Aluminiumschicht wird ebenfalls zu A1203 oxidiert und wirkt als elektrischer Isolator. Der metallische Träger bildet mit dem nicht oxidierten Teil des Aluminiums eine hochtemperatur- und korrosionsbeständige Fe-Al-Legierung. Bei diesem Verfahren wird vorteilhaft die Duktilität von Metallen mit der Zähigkeit und Beständigkeit von Keramiken und spezifischen Legierungen kombiniert.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Längsschnitt durch den abgasseitigen Teil eines Meßfühlers, Figur 2 einen vergrößerten Ausschnitt einer Dichtzone gemäß Figur 1, Figur 3 einen beschichteten Dichtring, Figur 4 zeigt dem vergrößerten Ausschnitt der Dichtzone mit dem Dichtelement gemäß Figur 3 vor der thermischen Behandlung und Figur 5 dem vergrößerten Ausschnitt der Dichtzone mit einem Dichtring gemäß Figur 3 nach der thermischen Behandlung.
Ausführungsbeispiele
Der in Figur 1 dargestellte elektrochemische Meßfühler 10 hat ein metallisches Gehäuse 11, das an seiner Außenseite ein Schlüsselsechskant 12 und ein Gewinde 13 als Befestigungsmittel für den Einbau in ein nicht dargestelltes Meßgasrohr aufweist. Das Gehäuse 11 hat eine Längsbohrung 17 mit einem Dichtsitz 20, welcher einen Dichtring 21 trägt. Auf dem mit dem Dichtring 21 versehenen Dichtsitz 20 liegt ein Sensorelement 14 mit einer an einem wulstförmigen Kopf 15 ausgebildeten Schulter 16 auf. Am wulstförmigen Kopf 15 des Sensorelements 14 bildet sich zwischen Dichtring 21 und Sensorelement 14 eine sensorelementseitige Dichtfläche 28 aus. Der Dichtsitz 20 bildet seinerseits eine gehauseseitige Dichtfläche. Die sich am Dichtring 21 ausbildende Dichtzone 55 ist in den Figuren 2, 4 und 5 vergrößert dargestellt.
Das Sensorelement 14 ist im vorliegenden Ausführungsbeispiel eine an sich bekannte Sauerstoffsonde, die bevorzugterweise für das Messen des Sauerstoffpartialdruckes in Abgasen Verwendung finde . Das Sensorelement 14 hat einen rohrförmigen Festelektrolytkörper 29, dessen meßgasseitiger Endabschnitt mittels eines Bodens 30 verschlossen ist. Auf der dem Meßgas ausgesetzten Außenseite ist auf dem Festelektrolytkörper 29 eine schichtförmige, gasdurchlässige Meßelektrode 31 und auf der dem Innenraum zugewandten Seite eine einem Referenzgas, z. B. Luft, ausgesetzte, gasdurchlässige und schichtförmige Referenzelektrode 32 angeordnet. Die Meßelektrode 31 wird mit einer Meßelektrodenleiterbahn 33 zu einem ersten Elektrodenkontakt 39 und die Referenzelektrode 32 mit einer Referenzelektrodenleiterbahn 34 zu einem zweiten Elektrodenkontakt 40 geführt. Die Elektrodenkontakte 39, 40 befinden sich jeweils auf einer vom offenen Ende des Festelektrolytkörpers 29 gebildeten Stirnfläche 42. Über die Meßelektrode 31 und teilweise über die Meßelektrodenleiterbahnen 33 ist eine poröse Schutzschicht 35 gelegt. Die Elektroden 31, 32 und die Leiterbahnen 27, 28 sind vorteilhafterweise als Cermet-Schichten aufgebaut und ko-gesintert .
Das meßgasseitig aus der Längsbohrung 18 des Gehäuses 11 herausragende Sensorelement 14 ist mit Abstand von einem Schutzrohr 50 umgeben, welches für den Ein- bzw. Austritt des Meßgases Öffnungen 51 besitzt, und am meßgasseitigen Ende des Gehäuses 11 gehalten ist. Der Innenraum des Sensorelements 14 ist beispielsweise durch ein stabförmiges Heizelement 46 ausgefüllt, welches, nicht dargestellt, meßgasfern arretiert und mit Leitungsanschlüssen versehen ist.
Auf dem ersten Elektrodenkontakt 39 liegt ein erstes Kontaktteil 44 und auf dem zweiten Elektrodenkontakt 40 ein zweites Kontaktteil 45 auf. Die Kontaktteile 44, 45 sind so geformt, daß sie am rohrförmigen Heizelement 40 anliegen und mit einem Meßelektrodenanschluß 47 und einem Referenzelektrodenanschluß 48 kontaktiert sind. Die Anschlüsse 47, 48 werden mit nicht dargestellten
Anschlußkabeln kontaktiert und nach außen zu einem Meß- oder Steuergerät geführt. In der Längsbohrung 17 des Gehäuses 11 ist ferner eine Isolierhülse 49 eingebracht, welche bevorzugst aus einem keramischen Material besteht. Mit Hilfe eines nicht dargestellten mechanischen Mittels wird die Isolierhülse 49 auf die Kontaktteile 44, 45 gedrückt, wodurch die elektrische Verbindung zu den Elektrodenkontakten 39 und 40 erzeugt wird.
Eine deutliche Darstellung der Dichtzone 55 zwischen dem
Festelektrolytkörper 29 und dem Gehäuse 11 geht aus Figur 2 hervor. Zum Schutz der Leiterbahn 33 wird gemäß Figur 2 im Bereich der sensorelementseitigen Dichtfläche 28 diese mit einer zusätzlich schützenden Abdeckschicht 27 bedeckt. Die Abdeckschicht 27 besitzt eine Schichtdicke von 20 bis 100 μm. im vorliegenden Ausführungsbeispiel ist die Abdeckungsschicht 27 über den gesamten Bereich der Leiterbahn 33 und um den Umfang des Festelektrolytkörpers 29 gezogen, der dem Gehäuse 11 benachbart ist. Es ist aber genauso denkbar, die Abdeckschicht 27 nur auf den Bereich der Dichtfläche 28 zu beschränken bzw. die Abdeckschicht 27 meßgasseitig bis hin zur Schutzschicht 36 auszudehnen, was vorteilhaft ist, da dadurch Verunreinigungen durch Ruß und/oder andere leitfähige Ablagerungen aus dem Abgas vermieden werden. Die Schutzschicht 30 besteht z. B. aus plasmagespritztem Magnesiumspinell .
Das Material der Abdeckschicht 27 wird so gewählt, daß es den Druckkräften des Dichtrings 21 standhält, die beim Fügen des Sensorelements 14 im Gehäuse 11 auftreten. Darüberhinaus muß es Anwendungstemperaturen im Bereich der Fügestelle bis zu 700° C standhalten. Dies wird dadurch erreicht, daß ein kristallines, nicht metallisches Material in homogener Verteilung ein tragendes Schutzgerüst in einer Glasurschicht bildet und die Transformationstemperatur der Glasur oberhalb der Anwendungstemperatur liegt. Als Material kommen in Frage: A1203, Mg Spinell, Forsterit, MgO stabilisiertes Zr02, CaO und/oder Y203 stabilisiertes Zr02 mit geringen Stabilisatorgehalten, vorteilhaft mit maximal 2/3 des Stabilisatoroxids der Vollstabilisierung, nicht stabilisiertes Zr02 oder Hf02 oder ein Gemisch dieser Stoffe. Als glasbildendes Material wird Erdalkalisilikat, beispielsweise Ba-Al-Silikat eingesetzt. Das Ba-Al-Silikat hat beispielsweise einen thermischen
Ausdehnungskoeffizienten von > 8,5 * 10" K" . Das Barium kann bis zu 30 % der Atome durch Strontium ersetzt werden.
Zur Realisierung einer elektrisch isolierenden und gasdichten Befestigung des Sensorelements 14 im Gehäuse 11 sitzt die am wulstförmigen Kopf 15 ausgebildete Schulter 16 mittels des Dichtrings 21 auf dem Gehäuse 11 auf. Um den Innenraum des Sensorelements 14 abzudichten, besteht der Dichtring 21 gemäß Figur 2 aus einem einen Träger bildenden massiven Kern 23 aus einer Eisen-Chrom oder V2A-Legierung, vorzugsweise aus Fe-22Cr-MM Edelstahl mit einer Dicke von ungefähr 1,5 mm, der auf jeder Seite von einer mindestens 0,01 mm dicken Aluminiumschicht 24 bedeckt ist. Das Material ist wegen seiner hohen Verdichtung besonders gas-, wasser- und kraftstoffundurchlässig. Ein Ausführungsbeispiel für den Dichtring 21, der aus mehreren verschiedenen Metallschichten aufgebaut ist, zeigt Figur 3. Danach ist beispielsweise auf einer der beiden Aluminiumschichten 24 eine zusätzliche Metallschicht 25 aus einem Metall, wie Kupfer, Nickel, Chrom, Molybdän oder Wolfram aufgetragen. Die zusätzliche Metallschicht 25 wird beispielsweise stromlos abgeschieden. Die Dicke der zusätzlichen Metallschicht 25 beträgt beispielsweise 0,8 μm.
Figur 4 zeigt die Dichtzone 55 mit dem metallischen Dichtring gemäß Figur 3 vor der thermischen Behandlung. Dabei liegt die zusätzliche Metallschicht 25 auf der Schutzschicht 27 des Sensorelementes 14 auf. Die zweite Aluminiumschicht 24 liegt am metallischen Gehäuse 11 an.
Figur 5 zeigt die Dichtzone 55 aus Figur 4 nach der thermischen Behandlung. Die Schutzschicht 27 des Sensorelementes 10 blieb unverändert. An der Grenzfläche zu dem Dichtring 21 gemäß Figur 3 hat sich eine
Mischoxidschicht 57 ausgebildet. Die darüber folgende Schicht 58 besteht aus einer Fe-Al-Legierung, die keramikähnliche Eigenschaften aufweist. Der Kern 23 blieb unverändert. Über ihm folgt eine weitere Schicht 58 aus der Fe-Al-Legierung. Ein Teil des Aluminiums von Schicht 24 hat sich an der Oberfläche zu einer A103 Schicht 59 umgewandelt, die gleichzeitig elektrisch isolierend wirkt. Das metallische Gehäuse 11 des Meßfühlers 10 blieb demgegenüber unverändert .
Ebenso ist es beispielsweise möglich, den Dichtring 21 vor dem Einsetzen in das Gehäuse 11 einer thermischen Behandlung von ca. 600°C unter Schutzgas zu unterziehen, wobei sich nur die Fe-Al Legierung 58 zumindest teilweise ausbildet. Der Kern 23 bleibt unverändert. Nach dem Einsetzen des Festelektrolytkörpers 29 in das Gehäuse 11 vermittels des thermisch vorbehandelten Dichtringes 21 wird der Meßfühler noch einmal auf mindestens 500° C erhitzt, wobei am Dichtring 21 die Oberfläche der Aluminiumschicht zu einer Al203-Schicht 59 oxidiert, bzw. die zusätzliche Metallschicht 25 mit dem nichtoxidierten Teil der Aluminiumschicht 24 die Mischoxidschicht 57 bildet.

Claims

Ansprüche
1. Meßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Verbrennungsmotoren, mit einem keramischen Körper (29) , der mit einem Dichtelement (21) in ein Gehäuse (11) eingesetzt ist, dadurch gekennzeichnet, daß das Dichtelement (21) einen metallischen Träger (23) aufweist, der zumindest an der den keramischen Körper (14, 29) berührenden Fläche mit einer Leichtmetallschicht (24) versehen ist.
2. Meßfühler nach Anspruch 1, dadurch gekennzeichnet, daß der metallische Träger (23) auf zwei gegenüberliegenden Seiten mit der Leichtmetallschicht (24) versehen ist.
3. Meßfühler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schichtdicke der Leichtmetallschicht (24) mindestens der maximalen Rauhtiefe Rmax nach DIN 4768 der Leichtmetallschicht (24) entspricht, die aufgrund des Aufbringverfahren der Leichtmetallschicht (24) auf den metallischen Träger (23) erzielbar ist.
4. Meßfühler nach Anspruch 1 , 2 oder 3 , dadurch gekennzeichnet, daß die Schichtdicke der Leichtmetallschicht (24) mindestens 0,01 mm und maximal 0 , 2 mm beträgt.
5. Meßfühler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zumindest auf der zum keramischer Körper
(29) weisenden Seite auf die Leichtmetallschicht (24) eine zusätzliche Metallschicht (25) aufgebracht ist.
6. Meßfühler nach Anspruch 4, dadurch gekennzeichnet, daß die zusätzliche Metallschicht (25) aus Cu, Ni, Cr, Mo, W oder einer Legierung dieser Metalle besteht.
7. Meßfühler nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die zusätzliche Metallschicht (25) eine Schichtdicke von < 1 μm aufweist .
8. Meßfühler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der metallische Träger (23) aus einer korrosions- und/oder temperaturbeständigen Stahllegierung, vorzugsweise Fe-Cr, Fe-Cr-V, Fe-Cr-Mo, Fe-Cr-Ni besteht.
9. Meßfühler nach Anspruch 1, 2 oder 7, dadurch gekennzeichnet, daß der metallische Träger (23) ein Dichtring (21) ist.
10. Meßfühler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Leichtmetallschicht aus Mg, AI oder aus einer Legierung von Leichtmetallen, vorzugsweise aus AI, besteht .
11. Verfahren zur Herstellung eines Meßfühlers, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von
Verbrennungsmotoren, nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das beschichtete Dichtelement (21) einer thermischen Behandlung unterzogen wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß nach dem Einsetzen des keramischen Körpers (29) in das Gehäuse (11) der Meßfühler einer thermischen Behandlung unterzogen wird, derart, daß die Leichtmetallschicht aus Aluminium (24) zu einer Aluminiumlegierung (58) und zu A1203 (59) umgewandelt wird.
13. Verfahren nach Anspruch 11, wobei zwischen der Aluminiumschicht (24) und dem metallischen Träger (23) eine zusätzliche Metallschicht (25) aufgebracht wird, dadurch gekennzeichnet, daß die Aluminiumschicht (24) und die zusätzliche Metallschicht (25) bei der thermischen Behandlung oxidiert werden und sich dabei eine Mischoxidschicht (57) ausbildet.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß vor dem Einsetzen in das Gehäuse (11) das Dichtelement (21) einer thermischen Vorbehandlung unter Schutzgas unterzogen wird, bei der die Leichtmetallschicht (24) mit einem Teil des metallischen Trägers (23) zur Aluminiumlegierung (58) umgewandelt wird.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die zusätzliche Metallschicht (25) in einem stromlosen Verfahren aufgebracht wird.
PCT/DE1997/002012 1996-10-10 1997-09-10 Dichtelement für messfühler und verfahren zu seiner herstellung WO1998015819A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10517063A JP2000502456A (ja) 1996-10-10 1997-09-10 センサ用のシール部材及びその製造方法
EP97909120A EP0865608A1 (de) 1996-10-10 1997-09-10 Dichtelement für messfühler und verfahren zu seiner herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996141808 DE19641808A1 (de) 1996-10-10 1996-10-10 Dichtelement für Meßfühler und Verfahren zu seiner Herstellung
DE19641808.9 1996-10-10

Publications (1)

Publication Number Publication Date
WO1998015819A1 true WO1998015819A1 (de) 1998-04-16

Family

ID=7808382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002012 WO1998015819A1 (de) 1996-10-10 1997-09-10 Dichtelement für messfühler und verfahren zu seiner herstellung

Country Status (4)

Country Link
EP (1) EP0865608A1 (de)
JP (1) JP2000502456A (de)
DE (1) DE19641808A1 (de)
WO (1) WO1998015819A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257564B2 (en) 2004-11-30 2012-09-04 Ngk Spark Plug Co., Ltd. Gas sensor, and gas sensor manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605783B2 (ja) * 2004-11-30 2011-01-05 日本特殊陶業株式会社 ガスセンサ及びガスセンサの製造方法
JP2007163307A (ja) * 2005-12-14 2007-06-28 Denso Corp ガスセンサ
JP5931664B2 (ja) * 2011-11-04 2016-06-08 日本特殊陶業株式会社 ガスセンサ
JP7131365B2 (ja) * 2018-12-21 2022-09-06 株式会社デンソー ガスセンサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342731A1 (de) * 1993-07-27 1995-02-02 Bosch Gmbh Robert Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement und Verfahren zu seiner Herstellung
DE9409684U1 (de) * 1994-06-16 1995-10-12 Robert Bosch Gmbh, 70469 Stuttgart Elektrochemischer Meßfühler
DE4447306A1 (de) * 1994-12-31 1996-07-04 Bosch Gmbh Robert Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342731A1 (de) * 1993-07-27 1995-02-02 Bosch Gmbh Robert Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement und Verfahren zu seiner Herstellung
DE9409684U1 (de) * 1994-06-16 1995-10-12 Robert Bosch Gmbh, 70469 Stuttgart Elektrochemischer Meßfühler
DE4447306A1 (de) * 1994-12-31 1996-07-04 Bosch Gmbh Robert Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. G. DELAGI ET AL: "High-aluminum ferritic stainless alloys synthesized for catalytic converters", ADVANCED MATERIALS & PROCESSES, vol. 147, no. 1, January 1995 (1995-01-01), pages 27 - 28, XP002052744 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257564B2 (en) 2004-11-30 2012-09-04 Ngk Spark Plug Co., Ltd. Gas sensor, and gas sensor manufacturing method

Also Published As

Publication number Publication date
DE19641808A1 (de) 1998-04-16
EP0865608A1 (de) 1998-09-23
JP2000502456A (ja) 2000-02-29

Similar Documents

Publication Publication Date Title
DE2907032C2 (de) Polarographischer Sauerstoffmeßfühler für Gase, insbesondere für Abgase von Verbrennungsmotoren
EP0701693B1 (de) Gassensor
DE3217951C2 (de)
DE2937048C2 (de) Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen von Brennkraftmaschinen
DE2938179C2 (de)
DE19641809C2 (de) Dichtelement für Meßfühler
EP0168589A1 (de) Sauerstoffmessfühler
DE3327991A1 (de) Gasmessfuehler
DE19703636A1 (de) Luft/Kraftstoff-Verhältnissensor
DE19621689A1 (de) Elektrischer Widerstands-Temperaturfühler
EP0056837B1 (de) Elektrochemischer Messfühler zur Bestimmung des Sauerstoffgehaltes in Gasen
WO1996021148A1 (de) Elektrochemischer messfühler
DE4342731B4 (de) Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement und Verfahren zu seiner Herstellung
DE3129107C2 (de) Sensor zur Messung der Zusammensetzung eines Gases
EP0865608A1 (de) Dichtelement für messfühler und verfahren zu seiner herstellung
DE3871686T2 (de) Elektrochemische zelle, mit integrierter struktur, zur messung der relativen konzentrationen von reaktiven stoffen.
WO1996021147A1 (de) Elektrochemischer messfühler mit einem potentialfrei angeordneten sensorelement
WO2018036768A1 (de) Dichtung für einen sensor zur erfassung mindestens einer eigenschaft eines messgases in einem messgasraum
DE19545590C2 (de) Ko-gesinterte Cermet-Schicht auf einem Keramikkörper und ein Verfahren zu ihrer Herstellung
DE102012201977A1 (de) Sensor und Verfahren zum Bestimmen einer Konzentration eines Bestandteils eines zu analysierenden Fluids
WO1996011393A1 (de) Elektrochemischer messfühler und verfahren zu seiner herstellung
DE2654892C3 (de) Verfahren und Vorrichtung zum Abtasten der Änderung des Luft-Brennstoff-Verhältnisses eines einer Brennkraftmaschine zugeführten Gemisches
DE102004056417A1 (de) Gasmessfühler
DE2817350C3 (de) Sauerstoffühler für die Messung der Sauerstoffkonzentration in industriellen Rauch- bzw. Abgasen und Verfahren zu seiner Herstellung
DE102008005973B4 (de) Verfahren zur Herstellung einer Messsonde und mit diesem Verfahren hergestellte Messsonde

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997909120

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 517063

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09077736

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997909120

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997909120

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载