WO1998014793A1 - Detecteur a couche mince sensible au champ magnetique, presentant une couche barriere a effet tunnel - Google Patents
Detecteur a couche mince sensible au champ magnetique, presentant une couche barriere a effet tunnel Download PDFInfo
- Publication number
- WO1998014793A1 WO1998014793A1 PCT/DE1997/002236 DE9702236W WO9814793A1 WO 1998014793 A1 WO1998014793 A1 WO 1998014793A1 DE 9702236 W DE9702236 W DE 9702236W WO 9814793 A1 WO9814793 A1 WO 9814793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- magnetic
- sensor according
- layers
- measuring
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 50
- 239000010409 thin film Substances 0.000 title claims abstract description 26
- 230000000694 effects Effects 0.000 title abstract description 10
- 230000005291 magnetic effect Effects 0.000 claims abstract description 69
- 229910052771 Terbium Inorganic materials 0.000 claims description 14
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 20
- 239000010410 layer Substances 0.000 description 142
- 230000005415 magnetization Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 230000010287 polarization Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000005294 ferromagnetic effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910020637 Co-Cu Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 229910001291 heusler alloy Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Definitions
- the invention relates to a magnetic field-sensitive thin film sensor with a multilayer system, which has at least one magnetic layer on both sides of a tunnel barrier layer.
- a corresponding thin-film sensor can be found in the publication “Phys. Rev. Let t. ", Vol. 74, No. 26, June 26, 1995, pages 5260 to 5263 and WO96 / 07208.
- the well-known thin film sensor represents a magnetic field sensor with an electron spin valve effect, which acts as a
- Spin valve transistor is referred to.
- This transistor has a semiconductor / metal / semiconductor structure, in which the metallic base is constructed in particular from a Co-Cu multilayer system with four periods.
- Such multilayer systems can have a high magnetoresistive effect show that can be over 2% at room temperature and is then generally referred to as “giant magnetoresistive effects” (GMR).
- GMR giant magnetoresistive effects
- the number of periods of 4 provided in the known thin-film device leads to a total thickness of the base of the order of magnitude of 140 ⁇ .
- the so-called collector efficiency F c I c / Ie / ie the ratio of the collector current I c to the emitter current I e is given by the following relationship:
- W b and ⁇ are the base width and the free path length of the electrons, respectively.
- the free path length is at room temperature in magnetic multilayer systems around 80 ⁇ and 5 ⁇ for majority electrons and minority electrons, respectively (see e.g. W094 / 15223).
- the typical thickness of a sensor with a GMR multilayer system is approximately 150 ⁇ , so that a value of the collector efficiency F c of 0.15 results for the majority electrons. If the basic width W b is only 30 ⁇ , the value for F c is 0.7 or three times the collector current.
- a semiconductor is used on the injector side, which forms a Schottky barrier with the GMR multilayer system.
- this barrier is difficult to implement due to the structural sensitivity of the semiconductor material.
- a first possibility is the deposition of the semiconductor material on the GMR multilayer system by vapor deposition or sputtering.
- semiconductor materials deposited on metals are mostly amorphous or polycrystalline, so that Schottky barriers that are hardly reproducible can be realized.
- a second possibility is a so-called "vacuum bonding", in which a monocrystalline Si wafer is pressed onto the GMR multilayer system.
- the corresponding method must be carried out in an ultra-high vacuum.
- the emitter wafer is etched from the back to a membrane however, such technology is difficult to implement on an industrial scale and cannot be combined, in particular, with standard planar techniques.
- a non-magnetic layer made of insulating or semiconducting material between adjacent magnetic layers forms a tunnel barrier layer within its multilayer system.
- the layer or layers arranged on both sides of the tunnel barrier layer have an at least largely identical, different relatively low magnetic rigidity. It turns out, however, that with this known transistor the tunnel current through this tunnel barrier layer is dependent to a relatively lesser extent on external field changes. The measurement signal to be taken from the known transistor is accordingly inaccurate and difficult to reproduce.
- the object of the present invention is to provide a magnetic-field-sensitive thin-film sensor with the features mentioned at the beginning, in which the aforementioned manufacturing difficulties are reduced.
- this sensor is said to have an improved tunnel current dependency with regard to external field changes.
- Magnetic rigidity in the sense of the magnetic hardness of the entire (sub) system of the layer sequence is to be understood (cf. for example“ IEEE Transactions on Magnet i es ”, vol. 32, pages 4624 to 4626 or“ Journal of Magnetism and Magnetic Materials ", vol. 165, 1996, pages 524 to 526).
- the starting point here is the knowledge that the tunnel current change can be improved in the desired manner by increasing the magnetic rigidity of the layer sequence forming, for example, a magnetic injector.
- the reason for this can be seen in the following:
- the magnetization on one side of the tunnel barrier layer is practically fixed in the area of the layer sequence. This then results in two spin channels, namely a channel for majority electrons in a parallel magnetization alignment and a channel for minority electrons in an opposite alignment.
- the electron transport current therefore depends on the direction of magnetization of the measuring layer located on the opposite side of the tunnel barrier layer from. Depending on this direction, the energy level densities on the measuring layer side change for the two spin channels and thus the tunnel probability accordingly.
- a high signal swing and a high reversibility of the response function of the sensor therefore result in the highest possible magnetic rigidity of the layer sequence and a magnetically soft measuring layer.
- differences in the scattering of the electrons are primarily exploited in the known spin valve transistor.
- the magnetically softer, relatively thin measuring layer is arranged on a semiconductor region of the transistor and serves as the base.
- FIG. 1 shows a schematic arrangement of several sensors according to the invention
- FIGS. 2 to 5 show different sensors according to the invention with different magnetic injectors
- FIGS. 6 and 7 show the differences between a tunnel sensor with and without a semiconducting area
- FIG. 8 shows the differences Energy level density distribution in different bands for the two spin polarization directions of the majority and minority electrons
- 9 shows a circuit diagram for reducing the temperature dependence of the tunnel current
- FIGS. 10 and 11 show the differences between a spin valve transistor with a GMR multilayer system and a thin film sensor
- FIGS. 12 and 13 show two further basic training options for thin film sensors according to the invention.
- H1 is a layer made of a semiconductor material such as Si or a corresponding substrate
- Ms is a soft magnetic measuring layer
- Tb is a tunnel barrier layer
- Ij is a magnetic injector
- Bs is a bias layer
- Sf is a layer sequence that is magnetically stiffer (harder) than the measuring layer.
- a corresponding basic structure is shown in Figure 1.
- a matrix of islands made of semiconducting material Hl is defined on a Si wafer 2 and is electrically isolated from one another, for example, by being impressed by a voltage. These islands H1 form, for example, the collectors K1 from a magnetic transistor structure Ts of a thin-film sensor 3 according to the invention.
- a metallic, soft-magnetic measuring layer Ms is applied to each island, which is indicated by a reinforced line
- Schottky barrier Sb forms at the interface with the semiconductor Hl.
- This measuring layer is separated by means of a tunnel barrier layer Tb from a layer sequence Sf of at least two layers of a hard magnetic injector Ij.
- Figures 2 to 5 show transistor structures with different training options for the layer sequence Sf serving as injector Ij.
- a semiconducting layer H1 can have a collector Kl with a Schottky barrier on it
- the injector Ij can, for example, in accordance with FIG. 2 in the sensor 4 shown there, by a so-called “exchange-biased” layer sequence with a bias layer Bs and an antiferromagnetic layer 5, or in accordance with FIG. 3 in the sensor 8 shown there by an artificial one Antiferromagnetic layer sequence with a magnetic layer 6, which is antiferromagnetic via a coupling layer 7 to a
- Bias layer Bs is coupled (cf. the W094 / 15223 mentioned).
- its injector Ij is constructed from several layers in order to to combine temporal electron polarization and hard magnetic properties.
- the magnetization of the magnetic layer Bs which is preferably a ferromagnetic layer, is caused by the antiferromagnetic layer 5, which can also be a ferrimagnetic layer with a compensation temperature in the vicinity of the operating temperature of the sensor uniform condition recorded.
- the magnetic layer Bs which must take care of the polarization of the electrons and which can optionally also be composed of several layers, lies directly on the tunnel barrier layer Tb.
- the injector Ij resting on the tunnel barrier layer Tb as an artificial antiferromagnet
- its individual layers can also consist of several layers.
- the desired magnetic rigidity can advantageously be provided by the choice of material of an alloy of a rare earth and a transition metal and by the arrangement of the ferromagnetic layer directly on the tunnel barrier layer Tb for a desired spin polarization. Compared to an "Exchange-biased system", higher temperature stability can be expected here.
- a system acting as an artificial antiferromagnet is much thinner and advantageously has a lower p.
- the difference in resistance of the artificial antiferromagnet between the two spin channels can be made as large as possible by choosing the size ⁇ of the layers of the artificial antiferromagnet so that between the flux-guiding layer Fs and the bias layers
- the quantity ⁇ is a characteristic quantity for the spin dependence of the GMR effect and is expressed by the ratio pj, / p ⁇ (cf., for example, the book “Ferro agnetic materials”, vol. 3, ed.: EP Wohlfarth, North Holland Publ. Co., Amsterdam et al., 1982, pages 747 to 804, especially pages 758 to 762), where pj and pt are the resistivities of the minority and majority electrons, respectively.
- the thin film sensors according to the invention operate according to two different sensor principles, namely
- type I tunnel sensors with or type II tunnel sensors without semiconductor areas are referred to below as type I tunnel sensors with or type II tunnel sensors without semiconductor areas.
- FIGS. 6 and 7 show simple versions of a tunnel sensor 12 of type II and a tunnel sensor 3 of type
- the tunnel sensor 12 without a semiconductor region has a substrate 13 made of a common material without forming a Schottky barrier.
- the tunnel probability depends above all on the energy level densities on both sides of the barrier at approximately the Fermi level. In the case of magnetic layers, a given this density from the spin direction, the
- Density n for the minority electrons is significantly greater than nt for the majority electrons.
- FIG. 8 in which d-band structures are shown in the form of a diagram based on known parameters in a conventional manner (see, for example, the book “Handbook of the band structure of elemental solids” by DA. Papconstantopoulus, Plenum Press, New York et al., 1986, especially pages 73 to 126.
- the diagram shows the energy level E of the electrons in the ordinate direction and the state densities Z mi for the minority electrons and Z ma for the majority electrons in the abscissa direction
- the Fermi level is labeled E F.
- the state densities for the s and p bands are also shown in the diagram, and the corresponding, much smaller area for these bands is highlighted in the diagram by a different hatching and with s + marked p.
- the change in the tunnel current I is:
- n ⁇ / nt The ratio n ⁇ / nt is known to be about 2 for both Co and Fe at room temperature, so that ⁇ l / Itj. 25% would result. Concrete measured values of 11% are known. According to equation (5), the result for nj./n ⁇ is approximately 1.6.
- the thin-film sensor 3 according to FIG. 1 is considered below. Two extreme cases have to be distinguished here: Case I: The majority electrons are completely scattered in the measuring layer Ms and do not reach the semiconductor region H1 functioning as collector Kl, while the minority electrons can reach the base without being scattered. Case II: The minority electrons are completely scattered in the measuring layer and do not reach the collector, while the majority electrons can reach the base without being scattered.
- the desired reinforcement can also be achieved due to boundary surface scattering with effective ⁇ > 1.
- the exchange coupling should be ferromagnetic across the interlayers. This can be achieved simply by choosing the intermediate layer thicknesses to be sufficiently small.
- the collector current In c is when the magnetizations are aligned in parallel
- ni / nt 2 or 1.6
- ⁇ l c / In c have the same values as in case I of 100% and 60%.
- a profit of a factor of 4 or 6 for nj, / n ⁇ of 2 or 1.6 is also achieved here.
- the tunnel current shows a relatively strong temperature dependence. It is therefore possible to use a constant current source to reduce this influence. It can be seen from the circuit diagram indicated in FIG. 9 how this can be achieved with a relatively high resistance Rj in series with the injector Ij.
- the resistance Rj should be chosen so high that the voltage across the tunnel barrier
- the base voltage U i is practically independent of the base current due to the relatively low values of the voltage divider resistors Ri and R 2 .
- a collector resistor is also designated R 3 .
- a corresponding constant current principle is not appropriate in the case of a simple tunnel barrier. Therefore, the following only checks to what extent a relative current swing changes. A limitation is made to the above approaches for cases I and II:
- the collector current In c is when the magnetizations are aligned in parallel
- the constant current control not only has advantages in terms of temperature sensitivity, but also entails an increased relative current change.
- the signal swing is the same in both cases.
- I ⁇ i c exp (-W b / ⁇ i) / 2 + exp (-W b / ⁇ ) / 2 (10b)
- FIG. 10 shows a simple embodiment of a spin valve transistor 14 with a GMR multilayer system GMR known per se as the base.
- This multilayer system has a soft magnetic measuring layer Ms, a hard magnetic layer Hs and an intermediate decoupling layer Es.
- This layer system lies between two semiconductor layers serving as collector K1 and emitter Em.
- this transistor 14 is compared with FIG. 11 to a tunnel sensor 3 according to the invention (of type I), according to FIG. 1).
- a normalized constant injection current is assumed for both this transistor 14 and the sensor 3 according to the invention.
- the collector current for transistor 14 can be derived from the following relationships. A collector current then results for a parallel alignment of the magnetization of the measuring layer Ms and the hard magnetic layer Hs
- the signal advantage in the sensor according to the invention becomes clear when one takes into account the magnetic rigidity of the layer sequence according to the invention and the requirement regarding the decoupling of the measuring layer from the harder layer sequence. Due to the required rigidity, measures such as alloying of hard magnetic layers, exchange biasing with an antiferromagnet or an implementation of a layer sequence forming an artificial antiferromagnet in the base are required.
- the decoupling leads to relatively large decoupling layer thicknesses or buffer layers in the base and to relatively high specific resistances. For many applications, however, the size is not ⁇ l c / I ⁇ . c , but ⁇ l c / I ⁇ nj decisive, the embodiments according to the invention being regarded as particularly advantageous.
- layer sequence with the minimum number of layers 2 layer sequence with the minimum number of layers 2.
- This layer package fulfills the same function within the sensor as the replaced individual layer or the replaced layer subsystem.
- corresponding layer packages can have periodically repeating layer subsystems.
- FIGS. 12 and 13 show two corresponding exemplary embodiments of thin-film sensors 15 and 16, each with two tunnel barrier layers Tb and Tb '.
- the embodiments shown differ in the fact that in the sensor 15, between the two tunnel barrier layers, the soft magnetic region with at least one measuring layer Ms is arranged, which consists of outer, magnetically more rigid layer sequences Sf and Sf through the tunnel barrier layers Tb and Tb 'is separated (see FIG. 12).
- the two layer sequences Sf and Sf do not necessarily have to have the same structure. If necessary, it is also possible to provide only a single layer instead of one of the layer sequences.
- the sensor 16 has a magnetically stiffer layer sequence Sf arranged between the tunnel barrier layers Tb and Tb 'and outer, soft magnetic measuring layers Ms and Ms'.
- the two measuring layers Ms and Ms' do not necessarily have to be identical.
- the substrate present in these sensors which carries their multilayer systems, can in turn consist of a semiconducting material with the formation of a Schottky barrier or of one of the usual non-magnetic substrate materials without Schottky barrier formation.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
- Bipolar Transistors (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9907727A GB2333900B (en) | 1996-10-02 | 1997-09-29 | Magnetic-field sensitive thin film sensor having a tunnel effect barrier layer |
JP10516141A JP2001501309A (ja) | 1996-10-02 | 1997-09-29 | トンネル障壁層を有する磁界感応薄膜センサ |
DE19781061T DE19781061D2 (de) | 1996-10-02 | 1997-09-29 | Magnetfeldempfindlicher Dünnfilmsensor mit einer Tunnelbarrierenschicht |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19640632 | 1996-10-02 | ||
DE19640632.3 | 1996-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998014793A1 true WO1998014793A1 (fr) | 1998-04-09 |
Family
ID=7807665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1997/002236 WO1998014793A1 (fr) | 1996-10-02 | 1997-09-29 | Detecteur a couche mince sensible au champ magnetique, presentant une couche barriere a effet tunnel |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2001501309A (fr) |
DE (1) | DE19781061D2 (fr) |
GB (1) | GB2333900B (fr) |
WO (1) | WO1998014793A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0971423A1 (fr) * | 1998-07-10 | 2000-01-12 | Interuniversitair Micro-Elektronica Centrum Vzw | Structure à valve de spin et méthode de fabrication |
EP0971424A2 (fr) * | 1998-07-10 | 2000-01-12 | Interuniversitair Microelektronica Centrum Vzw | Structure à valve de spin et procédé de fabrication |
DE10009944A1 (de) * | 2000-03-02 | 2001-09-13 | Forschungszentrum Juelich Gmbh | Anordnung zum Messen eines Magnetfeldes und Verfahren zum Herstellen einer Anordnung zum Messen eines Magnetfeldes |
DE10309244A1 (de) * | 2003-03-03 | 2004-09-23 | Siemens Ag | Magnetisches Speicherelement, insbesondere MRAM-Element, mit einem TMR-Dünnschichtensystem |
DE10017374B4 (de) * | 1999-05-25 | 2007-05-10 | Siemens Ag | Magnetische Koppeleinrichtung und deren Verwendung |
DE10222395B4 (de) * | 2002-05-21 | 2010-08-05 | Siemens Ag | Schaltungseinrichtung mit mehreren TMR-Sensorelementen |
US11500042B2 (en) | 2020-02-28 | 2022-11-15 | Brown University | Magnetic sensing devices based on interlayer exchange-coupled magnetic thin films |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196661A (ja) * | 1999-10-27 | 2001-07-19 | Sony Corp | 磁化制御方法、情報記憶方法、磁気機能素子および情報記憶素子 |
EP1345277A4 (fr) * | 2000-12-21 | 2005-02-16 | Fujitsu Ltd | Dispositif magnetoresistant, tete magnetique et lecteur de disque magnetique |
JP2002305335A (ja) * | 2001-04-06 | 2002-10-18 | Toshiba Corp | スピンバルブトランジスタ |
DE10128964B4 (de) * | 2001-06-15 | 2012-02-09 | Qimonda Ag | Digitale magnetische Speicherzelleneinrichtung |
DE10217593C1 (de) * | 2002-04-19 | 2003-10-16 | Siemens Ag | Schaltungsteil mit mindestens zwei magnetoresistiven Schichtelementen mit invertierten Ausgangssignalen |
DE10217598C1 (de) * | 2002-04-19 | 2003-10-16 | Siemens Ag | Schaltungseinrichtung mit mindestens zwei invertierte Ausgangssignale erzeugenden magnetoresistiven Schaltungselementen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994015223A1 (fr) * | 1992-12-21 | 1994-07-07 | Siemens Aktiengesellschaft | Detecteur magneto-resistif muni d'une substance antiferromagnetique et son procede de fabrication |
US5416353A (en) * | 1992-09-11 | 1995-05-16 | Kabushiki Kaisha Toshiba | Netoresistance effect element |
WO1996007208A1 (fr) * | 1994-08-31 | 1996-03-07 | Douwe Johannes Monsma | Structure conductrice de courant avec au moins une barriere de potentiel, et procede de fabrication de cette structure |
-
1997
- 1997-09-29 DE DE19781061T patent/DE19781061D2/de not_active Expired - Fee Related
- 1997-09-29 JP JP10516141A patent/JP2001501309A/ja active Pending
- 1997-09-29 GB GB9907727A patent/GB2333900B/en not_active Expired - Fee Related
- 1997-09-29 WO PCT/DE1997/002236 patent/WO1998014793A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5416353A (en) * | 1992-09-11 | 1995-05-16 | Kabushiki Kaisha Toshiba | Netoresistance effect element |
WO1994015223A1 (fr) * | 1992-12-21 | 1994-07-07 | Siemens Aktiengesellschaft | Detecteur magneto-resistif muni d'une substance antiferromagnetique et son procede de fabrication |
WO1996007208A1 (fr) * | 1994-08-31 | 1996-03-07 | Douwe Johannes Monsma | Structure conductrice de courant avec au moins une barriere de potentiel, et procede de fabrication de cette structure |
Non-Patent Citations (1)
Title |
---|
BERG VAN DEN H A M ET AL: "GMR SENSOR SCHEME WITH ARTIFICIAL ANTIFERROMAGNETIC SUBSYSTEM", IEEE TRANSACTIONS ON MAGNETICS, vol. 32, no. 5, September 1996 (1996-09-01), pages 4624 - 4626, XP000634087 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0971423A1 (fr) * | 1998-07-10 | 2000-01-12 | Interuniversitair Micro-Elektronica Centrum Vzw | Structure à valve de spin et méthode de fabrication |
EP0971424A2 (fr) * | 1998-07-10 | 2000-01-12 | Interuniversitair Microelektronica Centrum Vzw | Structure à valve de spin et procédé de fabrication |
US6721141B1 (en) | 1998-07-10 | 2004-04-13 | Interuniversitair Microelektronica Centrum (Imecvzw) | Spin-valve structure and method for making spin-valve structures |
EP0971424A3 (fr) * | 1998-07-10 | 2004-08-25 | Interuniversitair Microelektronica Centrum Vzw | Structure à valve de spin et procédé de fabrication |
DE10017374B4 (de) * | 1999-05-25 | 2007-05-10 | Siemens Ag | Magnetische Koppeleinrichtung und deren Verwendung |
DE10009944A1 (de) * | 2000-03-02 | 2001-09-13 | Forschungszentrum Juelich Gmbh | Anordnung zum Messen eines Magnetfeldes und Verfahren zum Herstellen einer Anordnung zum Messen eines Magnetfeldes |
US6664785B2 (en) | 2000-03-02 | 2003-12-16 | Forschungszentrum Julich Gmbh | Assembly for measuring a magnetic field, using a bridge circuit of spin tunnel elements and a production method for the same |
DE10222395B4 (de) * | 2002-05-21 | 2010-08-05 | Siemens Ag | Schaltungseinrichtung mit mehreren TMR-Sensorelementen |
DE10309244A1 (de) * | 2003-03-03 | 2004-09-23 | Siemens Ag | Magnetisches Speicherelement, insbesondere MRAM-Element, mit einem TMR-Dünnschichtensystem |
US11500042B2 (en) | 2020-02-28 | 2022-11-15 | Brown University | Magnetic sensing devices based on interlayer exchange-coupled magnetic thin films |
Also Published As
Publication number | Publication date |
---|---|
DE19781061D2 (de) | 1999-07-01 |
GB2333900A (en) | 1999-08-04 |
JP2001501309A (ja) | 2001-01-30 |
GB9907727D0 (en) | 1999-05-26 |
GB2333900B (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0674769B1 (fr) | Detecteur magneto-resistif muni d'une substance antiferromagnetique et son procede de fabrication | |
DE60013079T2 (de) | Doppeltes magnetisches Element mit zwei magnetischen Zuständen und Herstellungsverfahren dafür | |
DE602004005905T2 (de) | Magnetoresistive Vorrichtung mit austauschgekoppelte Struktur mit halbmetallischer ferromagnetischer Heuslerschen Legierung in der Pinning-Schicht | |
DE69533636T2 (de) | Magnetowiderstandseffektvorrichtung und hiermit versehener Magnetkopf, Speicher- und Verstärkungsanordnung | |
DE69624323T2 (de) | Magnetoresistives Element, magnetoresistiver Kopf und magnetoresistiver Speicher | |
DE69826090T2 (de) | Magnetische Tunnelübergangseinrichtung mit verbesserten ferromagnetischen Schichten | |
DE19528245B4 (de) | Magneto-Widerstandskopf und dessen Verwendung in einer Magnetaufzeichnungsvorrichtung | |
EP0674770B1 (fr) | Detecteur magneto-resistif comportant des couches de mesure raccourcies | |
DE4427495C2 (de) | Sensoreinrichtung mit einem GMR-Sensorelement | |
DE102019126320B4 (de) | Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor | |
WO1999018578A1 (fr) | Agencement de cellules de memoire | |
EP1417690B1 (fr) | Systeme de couches a effet magnetoresistif renforce et son utilisation | |
DE19936378B4 (de) | Magnetowiderstands-Dünnschichtelement vom Spin-Valve-Typ | |
WO1998014793A1 (fr) | Detecteur a couche mince sensible au champ magnetique, presentant une couche barriere a effet tunnel | |
DE102019113815B4 (de) | Magnetsensor | |
DE69825031T2 (de) | Magnetfeldsensor mit spin tunnelübergang | |
DE69932701T2 (de) | Pinning-Lage für magnetische Anordnungen | |
DE19507303A1 (de) | Sensoreinrichtung mit einer Brückenschaltung von magnetoresistiven Sensorelementen | |
DE69635362T2 (de) | Magnetowiderstandseffekt-Element | |
WO2004017085A1 (fr) | Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches | |
DE10046782B4 (de) | Magnetisches Bauelement mit einem magnetischen Schichtsystem und dessen Verwendung | |
DE19720197C2 (de) | Dünnschichtenaufbau eines magnetfeldempfindlichen Sensors mit einem einen erhöhten magnetoresistiven Effekt zeigenden Magnetschichtensystem | |
DE19652536C2 (de) | Dünnschichtenaufbau eines magnetfeldempfindlichen Sensors mit einem magnetoresistiven Magnetschichtsystem | |
DE19844890C2 (de) | Dünnschichtenaufbau eines magnetfeldempfindlichen Sensors mit einem magnetoresistiven Mehrschichtensystem mit Spinabhängigkeit der Elektronenstreuung | |
DE10325741B4 (de) | Magnetisches Schichtsystem mit hoher Exchange-Bias-Feldstärke und Verfahren zur Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE GB JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 1998 516141 Country of ref document: JP Kind code of ref document: A Ref document number: 9907727 Country of ref document: GB Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09283594 Country of ref document: US |
|
REF | Corresponds to |
Ref document number: 19781061 Country of ref document: DE Date of ref document: 19990701 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19781061 Country of ref document: DE |