+

WO1997016539A1 - Virus sendai recombinant - Google Patents

Virus sendai recombinant Download PDF

Info

Publication number
WO1997016539A1
WO1997016539A1 PCT/JP1996/003069 JP9603069W WO9716539A1 WO 1997016539 A1 WO1997016539 A1 WO 1997016539A1 JP 9603069 W JP9603069 W JP 9603069W WO 9716539 A1 WO9716539 A1 WO 9716539A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
sendai virus
rna
virus
host
Prior art date
Application number
PCT/JP1996/003069
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Nagai
Atsushi Kato
Fukashi Murai
Tsuneaki Sakata
Mamoru Hasegawa
Tatsuo Shioda
Original Assignee
Dnavec Research Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dnavec Research Inc. filed Critical Dnavec Research Inc.
Priority to DE69638196T priority Critical patent/DE69638196D1/de
Priority to AT96935403T priority patent/ATE470704T1/de
Priority to AU73352/96A priority patent/AU7335296A/en
Priority to DK96935403.4T priority patent/DK0863202T3/da
Priority to CA2236378A priority patent/CA2236378C/en
Priority to EP96935403A priority patent/EP0863202B1/en
Priority to KR10-1998-0703241A priority patent/KR100525687B1/ko
Publication of WO1997016539A1 publication Critical patent/WO1997016539A1/ja
Priority to HK99103083A priority patent/HK1018078A1/xx
Priority to US09/728,207 priority patent/US7101685B2/en
Priority to US11/130,117 priority patent/US7442544B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18851Methods of production or purification of viral material
    • C12N2760/18852Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Definitions

  • the present invention relates to a recombinant Sendai virus and a method for producing the same.
  • Sendai virus is also called HVJ (Hemagglutinating virus of Japan), and is classified into Paramyxoviridae, a parainfluenza virus type 1 belonging to the genus Paramyxovirus.
  • Sendai virus particles are polymorphic, have an envelope of 150 to 200 nm in diameter, and have genomic RNA (hereinafter, referred to as “(1) strand RNA”) that does not become a type II translation.
  • Sendai virus has been historically known as an industrially useful virus, and is widely used for the production of heterokaryons and hybrid cells, that is, for cell fusion. It is also being developed as a material for fusogenic ribosomes and as a vector for gene therapy. In addition, Sendai virus is also used as an inducer for various interferons.
  • Sendai virus belongs to the group of RNA virus, (1) single-stranded RNA virus, and (1) single-stranded RNA virus according to the genomic nucleic acid form.
  • RNA viruses are classified into three types: dsRNA virus (double stranded RNA virus), (+)-strand RM virus and (single-strand) RNA virus.
  • the dsRNA virus group includes reovirus, oral virus, plant reovirus, etc., and has multiple segmented linear dsRNA genomes.
  • (+) Strand RNA viruses include poliovirus, Sindbis virus, Semliki Forest virus, Japanese encephalitis virus, etc.
  • the genomic RNA of the (+)-strand RNA virus itself has a transmitting power.
  • the term “propagation power” refers to “infectious particles or a complex equivalent thereto” after nucleic acid is introduced into cells by infection or artificial techniques, and after the nucleic acids present in cells are replicated. And the ability to transmit to other cells one after another.Sindbis virus classified as (+)-strand RNA virus and Sendai virus classified as (-) strand RNA virus are infectious.
  • Adeno-associated virus which is classified into the Parvoviridae family, has the ability to transmit but does not have the ability to transmit.
  • the (+) strand RNA derived from Sindbis virus which is artificially transcribed in vitro, has a transmitting power (it forms virus particles when introduced into cells).
  • virus-derived vectors have been used as gene therapy vectors.
  • a method for reconstituting virus particles must be established.
  • substitution of virus particles refers to the artificial production of a viral genomic nucleic acid to produce the original virus or recombinant virus in a test tube or in a cell.
  • the virus particles In order to introduce the virus vector all at once, the virus particles must be reconstituted from the viral genome incorporating the exogenous gene by genetic manipulation. If a virus reconstitution technique is established, it becomes possible to introduce a desired exogenous gene into the virus, or to delete or inactivate a desired gene from the virus to produce a virus.
  • virus reconstitution system if a virus reconstitution system is constructed and virus genetic manipulation becomes possible, Clearly, it will be a great tool for genetic analysis of virus function. Genetic analysis of viral function is extremely important from the medical point of view such as disease prevention and treatment. For example, if the mechanism of replication of viral nucleic acids is elucidated, the difference from the mechanism of replication of nucleic acids in the host cells will be used to develop antiviral agents that use nucleic acid replication as an action point with little damage to host cells. It is possible to In addition, by elucidating the functions of the proteins encoded by the viral gene, it is also possible to develop antiviral agents targeting proteins involved in virion infectivity and virion formation. I can do it.
  • genomic DNA As genomic nucleic acid, Reconstitution of DNA viruses using DNA as genomic nucleic acid has been carried out relatively early.
  • purified genomic DNA itself such as SV40 (J. Exp. Cell Res., 43, 415-425 (1983)) Can be introduced into monkey cells.
  • RNA viruses using RNA as genomic nucleic acid were preceded by development for (+)-strand RNA viruses. This is because genomic RNA simultaneously functions as mRNA. For example, in poliovirus, it has been reported in 1959 that purified RNA itself has a transmitting power (Journal of Experimental Medicine, 110, 65-89 (1959)). In addition, Semliki forest virus (SFV) can reconstitute the virus by introducing cDNA into cells by utilizing the DNA-dependent RNA transcription activity of host cells. (Journal of Virology, 65, 4107-4113 (1991)).
  • SFV Semliki forest virus
  • the Sendai virus has many advantages that can be used as an industrially useful virus.
  • it is a (single-stranded) RNA virus, a reconstitution system has been established. Did not. This is because the virion reconstitution system using viral cDNA was extremely difficult.
  • strand RNA virus As described above, (1) strand RNA virus (vRNA; viral RNA) or its complementary strand & ⁇ (; (; 0 immediately 1611661 ⁇ & 11) can be introduced into cells alone (1) strand RNA It has been clarified that no virus is produced, which is a decisive difference from the case of the (+) strand RNA virus.
  • a method for producing a cDNA corresponding to the genome of an RNA virus and an infectious negative-strand RNA virus is described, but the contents of the experiment in the publication are described as it is“ EMB0.J., 9,379-384 (1990) It is clear that there is no reproducibility of the experiment, and the author himself has completely dismissed the contents of the paper (see EMB0.J., 10, 3558 (1991)). Obviously, the technology described in the publication does not correspond to the prior art of the present invention.
  • Influenza virus is a (single-stranded) RNA virus composed of an eight-segment genome. According to these reports, a foreign gene was inserted into one of the cDNAs in advance, and RNA transcribed from all eight cDNAs containing the foreign gene was previously associated with the NP protein derived from the virus. RNP. By supplying these RNPs and RNA-dependent RNA polymerase into cells, reconstitution was established. For (1) single-stranded RNA virus, a report was made on the reconstitution of cDNA from a rabies virus belonging to the Rhabdoviridae family. (J. Virol., 68, 713-719 (1994)).
  • the (1) strand RNA virus reconstitution system technology is basically known, in the case of Sendai virus, the virus cannot be reconstituted even if this method is applied as it is.
  • the virus cannot be reconstituted even if this method is applied as it is.
  • reports of reconstitution of virus particles in rhabdovirus were only confirmed by marker-gene expression and RT-PCR, etc., and were not sufficient in terms of production volume.
  • a virus such as a natural virus / recombinant vaccinia virus and a nucleic acid of a virus to be reconstituted are simultaneously used to supply factors necessary for reconstitution into cells. The problem is that it is not easy to separate the reconstituted desired viruses and their harmful viruses, which are supplied to cells. Disclosure of the invention
  • An object of the present invention is to establish a Sendai virus reconstituting system with high production efficiency, to enable gene manipulation of Sendai virus, and to supply a Sendai virus vector which can be sufficiently practically used in fields such as gene therapy.
  • the present inventors first used a cDNA or Sendai virus minigenome derived from Sendai virus DI particles (see Defective interfering particles / EMBO. J., 10, 3079-3085 (1991)) to apply to a Sendai virus reconstitution test.
  • Various studies were carried out using the cDNA of the above. As a result, we found efficient conditions for the quantitative ratio of the cDNA, the cDNA group involved in transcription and replication, and the recombinant vaccinia virus, which is a T7 RNA polymerase expression unit, to be introduced into cells.
  • the present inventors further obtain both the (+) and (1) chains of Sendai virus full-length cDNA, and intracellularly synthesize (+) or (1) chain Sendai virus RNA.
  • Such a plasmid was constructed and introduced into cells expressing a group of cDNAs related to transcriptional replication. As a result, we succeeded for the first time to reconstitute Sendai virus particles from Sendai virus cDNA. It should be noted that, for efficient particle reconstitution by the present inventors, cDNA to be introduced into cells It is more appropriate that the morphology is circular than linear, and that the efficiency of particle formation is higher when (+)-strand RNA is transcribed in cells than when (+)-strand RNA is transcribed in cells. Was newly found.
  • Sendai virus can be reconstituted without using a recombinant vaccinia virus which is a T7 RNA polymerase expression unit. That is, when Sendai virus full-length RNA transcribed in a test tube was introduced into cells, and cDNA of the initial transcriptase group was transcribed under the control of the T7 promoter, virus particles were reconstituted. This means that by constructing cells that express all of the initial transcription and replication enzymes, it is possible to produce recombinant Sendai virus without using any helper virus such as vaccinia virus. Is shown. Cells expressing all of the initial transcriptase groups are described in ⁇ J.
  • Virology, 68, 841 3-8417 (1994) '' and those skilled in the art can refer to the description and create such cells. It is possible.
  • the cells described in the literature are cells derived from 293 cells having NP and P / L on the chromosome among Sendai virus genes, which are NP, P / C, L Expressed the three proteins.
  • the desired viral gene can be recombined, an exogenous gene can be inserted, or the desired viral gene can be inactivated. It is clear that deletion or deletion can be easily performed by those skilled in the art. That is, it is obvious to those skilled in the art that the first successful reconstitution of Sendai virus particles in the present invention means that the present invention has enabled the genetic manipulation of Sendai virus.
  • the present invention includes the following.
  • a recombinant Sendai virus having a transmitting ability which contains a desired foreign gene or has a genome in which the desired gene has been deleted or inactivated
  • RNA containing cRNA of RNA contained in the recombinant Sendai virus according to any of (1) to (3),
  • a kit comprising: (b) a unit capable of transcribing the RNA according to (4) or (5) in a test tube or in a cell using the DNA as type III in a test tube or in a cell;
  • RNA and RNA are a host expressing the Sendai virus NP protein, P / C protein and L protein (each protein may be a protein having the same activity); and (b) the host described in (4) or (5).
  • a kit comprising RNA and
  • RNA described in (4) or (5) is introduced into a host that expresses the Sendai virus NP protein, P / C protein and L protein (each protein may be a protein having the same activity).
  • a kit including three units capable of transferring the MA described in (5), and
  • a host that expresses the NP protein, P / C protein and L protein of Sendai virus mainly a DNA containing a type III cDNA capable of transcribing the RNA according to (4) or (5);
  • Method for producing body Sendai virus (11) A method for producing an exogenous protein, comprising a step of infecting a host with the recombinant Sendai virus according to (3) and recovering the expressed exogenous protein;
  • a culture or chorioallantoic fluid containing the expressed exogenous protein which can be obtained by introducing the recombinant Sendai virus according to (3) into a host, and recovering the culture or chorioallantoic fluid.
  • exogenous gene incorporated into the Sendai virus vector, comprising an exogenous gene arranged downstream of the promoter in a direction in which the antisense RNA of the coding protein is transcribed, and the promoter. DNA for expressing proteins encoded by sex genes.
  • the recombinant Sendai virus vector of the present invention can be prepared, for example, by transcribing a recombinant cDNA encoding the genome of a recombinant Sendai virus vector produced by genetic engineering in a test tube, and preparing the recombinant Sendai virus genome A And then introducing the RNA into a host that simultaneously expresses the NP protein, P / C protein and L protein of Sendai virus (each protein may be a protein having equivalent activity).
  • the Sendai virus vector of the present invention can be: (1) a recombinant cDNA encoding the genome of a recombinant Sendai virus vector produced by genetic engineering; and (2) the DNA can be used to transcribe RM in a cell. Units can be obtained by introducing them into a host that simultaneously expresses the Sendai virus NP protein, P / C protein and L protein (each protein may be a protein having equivalent activity). In this case, for example, (1) may be connected downstream of a specific bromo overnight, and (2) may be DNA expressing a DNA-dependent MA polymerase acting on the specific promoter.
  • Sendai virus which is a material before inserting a desired exogenous gene or deleting or inactivating a desired gene is classified as parainfluenza type 1.
  • Any strain may be used, and examples include a Z strain (Sendai virus Z strain) and a fushimi strain (Sendai virus Fushiii strain).
  • incomplete viruses such as DI particles and synthesized oligonucleotides Etc. can also be used as part of the material.
  • the recombinant Sendai virus of the present invention has any genomic gene deleted, regardless of the insertion of any foreign gene at any site of the RNA contained in the recombinant, as long as the transmissibility is maintained. Or it may be modified.
  • the exogenous gene to be inserted include genes encoding various cytokines and genes encoding various peptide hormones that can be expressed in the host.
  • an exogenous gene encoding the desired protein is inserted.
  • the expression level of the inserted foreign gene can be controlled by the location of the gene insertion and the RNA base sequence before and after the gene. For example, in Sendai virus RNA, it is known that the closer the insertion position is to the NP gene, the higher the expression level of the inserted gene is.
  • the host for expressing the desired protein may be any host as long as it is a cell infected with the recombinant Sendai virus, and includes, for example, cultured mammalian cells and chicken eggs.
  • an exogenous gene product By infecting these hosts with a recombinant Sendai virus incorporating an expressible exogenous gene and recovering the expressed exogenous gene product, an exogenous gene product can be efficiently produced.
  • the expressed protein can be recovered by a conventional method, for example, from a culture solution when using cultured cells as a host, or from serum when using a chicken egg as a host.
  • the exogenous gene is incorporated into a plasmid that allows biosynthesis of (single-strand) Sendai virus RNA, the direction in which the antisense RNA of the protein encoded by the exogenous gene is transcribed should be It is necessary to insert a foreign gene downstream of the promoter.
  • Such a foreign gene which is incorporated in a Sendai virus vector, comprising a foreign gene disposed downstream of the promoter and the promoter in such a way that the antisense RNA of the encoded protein is transcribed, encodes Protein "DNA for expressing the quality" was first made available by the present invention and is a part of the present invention.
  • a gene involved in RNA replication of a part of Sendai virus may be modified.
  • at least one of the replication factors NP protein, C / P protein and L protein can be modified to enhance or weaken the transcription and replication functions.
  • HN protein one of the structural proteins, has both hemagglutinin (hemagglutinin; /) activity and neuraminidase activity, but it weakens the former, for example. If possible, it would be possible to improve the stability of the virus in the blood, and it would be possible to regulate the infectivity by, for example, modifying the activity of the latter.
  • By modifying the F protein it can be used to improve the membrane fusion ribosome obtained by fusing the reconstituted Sendai virus with an artificial ribosome enclosing a desired drug gene or the like.
  • the present invention it has become possible to introduce point mutations and insertions at arbitrary positions in genomic RNA, but this is expected to accumulate genetic knowledge of viral functions at an accelerating rate.
  • the replication mechanism of viral RNA is elucidated, the difference from the replication mechanism of the nucleic acid derived from the host cell will be used to develop an antiviral agent that has little damage to the host cell and has an action point of replication of the nucleic acid. It is possible to develop.
  • antiviral agents that target proteins associated with virion infectivity and virion-forming ability.
  • F protein and HN protein which can be an antigen molecule on the cell surface.
  • F protein and HN protein which can be an antigen molecule on the cell surface.
  • viral infection with a virus activates a gene involved in virus resistance of a host gene, and when the gene exhibits virus resistance, genetic analysis of virus function can be performed for such activation of the host gene. More important Knowledge will be gained.
  • Sendai virus has been used in various basic experiments because it has the effect of inducing fermentation. By analyzing the region required for this induction, it is conceivable to create a non-viral inducible agent for inferior ferron.
  • the technology of the present invention can also be used for vaccine development.
  • Live vaccines can also be produced by inoculating embryos with recombinant Sendai virus with artificially modified gene, and the findings obtained in this way can be used as other (1) -strand RNA. It can also be applied to viruses that require high protein, such as viruses such as measles virus and mumps virus. Further, the present invention has made it possible to use recombinant Sendai virus as a vector for gene therapy.
  • the virus vector of the present invention is highly safe because it is derived from the Sendai virus, and since the virus vector retains its transmitting power, a large therapeutic effect can be expected even with a small amount of administration. Is done.
  • FIG. 1 shows the structure of pUC18 / T7 (+) HVJRz.DNA.
  • FIG. 2 shows the structure of pUC18 / T7 ( ⁇ ) HVJRz. DNA.
  • FIG. 3 is a graph showing the relationship between the time after infection of CV-1 cells with SeVgpl20, the HAU value, and the expression level of gpl20.
  • the cells were cultured under the conditions for 24 hours.
  • the recombinant vaccinia virus expressing T7 volimerase VTF7- which was prepared to have a moi / multiplicity of infection of 2
  • 3 was added to 0.1 ml of PBS and the suspension was added. Every 15 minutes, the petri dish was shaken so that the virus solution spread over the whole, and the infection was performed for 1 hour. The virus solution was removed and washed with 1 ml of PBS.
  • a medium containing a cDNA solution was added to the dish.
  • a medium containing a cDNA solution was prepared as follows.
  • the nucleic acids (including pGEM-L, pGEM-P / C, and pGEM-NP, which express factors necessary for Sendai virus replication) listed in the table were placed in a 1.5 ml sampling tube, and HBS (Hepes buffered saline; 20 mM Hepes pH 7.4, 150 mM NaCl) was added to bring the total volume to 0.1 ml.
  • HBS Hepes buffered saline; 20 mM Hepes pH 7.4, 150 mM NaCl
  • the (-) or (+) cDNA in the table indicates brasmid pUC18 / T7 (-) HVJRz. DNA or pUC18 / T7 (+) HVJRz. DNA itself, / C remains circular, and / L indicates This indicates that the cells were linearized with the restriction enzyme Mlul and then introduced into cells.
  • HBS 0.07 ml of HBS and 0.03 ml of D0TAP (manufactured by Boehringer Mannheim) were prepared in a polystyrene tube, and the nucleic acid solution was transferred to the polystyrene tube. This , And allowed to stand for 10 minutes. To this, a cell culture solution (2 ml MEM + 10% FBS) was added. The vaccinia virus inhibitors Rifampicin and Cytosin arabinoside C / Ara C were added to the final concentrations of 0.1 mg / ml and 0.04 mg / ml, respectively. Was added. Thus, a medium containing the cDNA solution was prepared.
  • the petri dish 40 hours 5% C0 2 37.
  • the cells were cultured under the conditions of C.
  • the cells in the petri dish were scraped off using a rapper policeman, transferred to an eppendorf tube, and centrifuged at 6,000 rpm for 5 minutes to precipitate only the cell components, and again suspended in 1 ml of PBS.
  • a part of this cell solution was intact or diluted and inoculated into 10-day-old embryonated chicken eggs.
  • This cell solution was diluted with PBS so as to have the number of cells shown in Table 1, and the eggs inoculated with 0.5 ml were cultured at 35 ° C for 72 hours, transferred to 4 ° C and left overnight.
  • the chorioallantoic fluid of this egg was collected as a virus fluid using a syringe and a needle.
  • the HAU (hemmaglutinin unit) and PFU (plaque forming unit) of the recovered virus solution were measured by the following methods.
  • the measurement of HAU was performed as follows. Chicken blood was centrifuged at 400 xg for 10 minutes, and the supernatant was discarded. The remaining precipitate was turbid with 100 times the volume of PBS, and this was further centrifuged at 400 ⁇ g for 10 minutes, and the supernatant was discarded. This operation was repeated twice more to prepare a 0.13 ⁇ 4 blood cell solution.
  • the virus solution was diluted two-fold by a serial dilution method, and 0.05 ml of each was dispensed into a 96-well Thai evening plate. A further 0.05 ml of the blood cell solution was dispensed into the Thai plate, mixed vigorously by gentle shaking, and allowed to stand at 4 ° C for 40 minutes. Thereafter, red blood cell aggregation was visually observed, and among the aggregated red blood cells, the dilution ratio of the highest dilution of the virus solution was indicated as HAU.
  • the measurement of PFU was performed as follows. CV-1 cells were grown as monolayers on 6-well culture plates. The culture plate was discarded, and 0.1 ml of the virus solution diluted 10-fold by serial dilution was dispensed into each culture plate and infected at 37 ° (: 1 hour. Contains no serum 2XMEM and 2% agar were mixed at 55 ° C, and trypsin was added to a final concentration of 0.0075 mg / ml. After infection for 1 hour, the virus solution was removed, and 3 ml of the medium mixed with agar was added to each well of the culture plate, and incubated at 37 ° C for 3 days under 5% CO 2 conditions. Add 0.2 ml of 0.1% phenol red, 37. C After incubation for 3 hours, it was removed. The number of uncolored plaques was counted and the virus titer was evaluated as PFU / ml.
  • Table 1 shows the amounts of type I Sendai virus cDNA introduced into LLC-MK2 cells, the amounts of pGEM-L, p.zGEM-P / C and pGEM-NP, which are cDNAs of factors required for RNA replication, and the incubation.
  • a sample containing both HAU and PFU was precipitated by ultracentrifugation, resuspended, purified by sucrose density gradient centrifugation at 20% to 60 ⁇ , and proteins were separated by 12.53 ⁇ 4 SDS-PAGE.
  • the resulting protein was the same size as the Sendai virus protein.
  • the virus particles were reconstituted more efficiently than when the cDNA was introduced in a linear form.
  • Example 2 An experiment was performed to determine whether all three of them required L, P / C, and NP-expressing brassmids.
  • the method is the same as in Example 2, except that in Example 2, pGEM-L, pGEM-P / C, and pGEM-NP were introduced into the cells together with the cDNA. -Any two or only one of L, pGE MP / C and pGEM-NP were introduced into cells together with cDNA.
  • Table 2 shows the amounts and incubations of Sendai virus cDNA of type III introduced into LLC-MK2 cells, pGEM-L, pGEM-P / C and pGEM-NP, which are cDNAs of factors required for RNA replication. The time, the number of cells inoculated into chicken eggs, HAU, and PFU are shown.
  • (+) cDNA / C 10 40 1.00X10, 6 ⁇ 2 ⁇ 10 (+) cDNA / C 10 40 1.00X 10 6 ⁇ 2 ⁇ 10 was not recognized. This confirms that all three proteins are essential for reconstitution.
  • Example 2 it was shown that Sendai virus is reconstituted from cDNA, but it was further examined whether or not products transcribed from cDNA in vitro, that is, vRM and cRNA, could be used for the same.
  • Sendai virus transcription unit pUC18 / T7 (-) HVJRz.DNA and pUC18 / T7 (+) HVJRz.DNA are linearized with the restriction enzyme Mlul, these are used as type III and purified T7 polymerase (EPICENTRE TECHNOLOGIES: Ampliscribe T7 Transcription Kit) was used for in vitro RNA synthesis.
  • the method of in vitro RNA synthesis followed the kit protocol .
  • the RNA product obtained here was used in place of the cDNA of Example 2, and a similar experiment was performed. Evaluation of virus production was performed by an HA test. ,
  • Primer a (5'-TGCGGCCGCCGTACGGTGGCAATGAGTGAAGGAGAAGT-3 ') (SEQ ID NO:
  • a positive clone was obtained by selecting a clone that was confirmed to contain a DNA fragment of a certain size (hereinafter, this positive clone is referred to as “clone 9”). After confirming that the nucleotide sequence was the desired one, MA was purified by cesium chloride density gradient centrifugation. The thus obtained pSeV18 + into which gpl20 has been inserted is referred to as “pSeVgpl20”. (2) Reconstitution of Sendai virus (SeVgpl20) carrying pSeVgpl20 and analysis of gpl20 expression
  • Example 2 In the same manner as in Example 2, except that pSeVgpl20 was introduced into LLCMK2 cells in addition to pGEM NP, P, and L, the salivary fluid of the embryonated chicken eggs was collected, and the measurement of HAU and the examination of gpl20 expression (ELISA ). HAU measurement was performed in the same manner as in Example 2.
  • ELISA was performed as follows. 100 ⁇ l of the sample was added to a 96-well plate covered with a monoclonal antibody against HIV-1, and reacted at 37 ° C. for 60 minutes. After washing with PBS, 100 ⁇ 1 HRP-conjugated anti-HIV-1 antibody was added and reacted at 37 ° C for 60 minutes. After washing with PBS, tetramethylbenzidine was added, and the expression amount of gpl20 was measured by detecting the amount of the reaction product converted by HRP activity under an acidic condition at an absorbance of 450 nm. The results are shown in Table 4 left.
  • the obtained virus solution was used to infect CV-1 cells, and the same examination was performed.
  • CV-1 cells were grown at 5 x 10 s cells per plate, the medium was discarded, washed with PBS (-), virus solution was added at a multiplicity of infection of 10, and the cells were infected at room temperature for 1 hour. .
  • the virus solution was discarded, washed with PBS (-), plain MEM medium (MEM medium supplemented with antibiotics AraC, Rif and trypsin) was added, and the reaction was carried out at 37 ° C for 48 hours. After the reaction, the medium was recovered, and HAU measurement (the same method as in Example 2) and examination of pl20 expression (ELISA) were performed.
  • HAU measurement the same method as in Example 2
  • ELISA examination of pl20 expression
  • gpl20 was analyzed by Western plotting.
  • the medium of CV-1 cells infected with SeVgpl20 was centrifuged at 20,000 rpm for 1 hour to precipitate the virus, and the supernatant was TCA (10 ((v / v), 15 minutes on ice) or 70 ethanol ( -20 ° C), centrifuged at 15,000 rpm for 15 minutes, and the precipitated protein was mixed with “SDS-PAGE Sample bufferj (Daiichi Kagaku)”, reacted at 90.C for 3 minutes, and placed on a 103 ⁇ 4 acrylamide gel.
  • the proteins were transferred to a PVDF membrane (Daiichi Kagaku) and reacted with the monoclonal antibody 902 at room temperature for 1 hour.
  • the plate was washed with T-TBS, reacted with anti-mlgG (Amersham) for 1 hour at room temperature, washed with T-TBS, and further reacted with HRP-conjugated protein A (Amersham) for 1 hour at room temperature.
  • 4-cloth-1-naphthol (4CNPlus) (Daiichi Kagaku) was added, and gp120 was detected. As a result, a band was detected at the position of the expected molecular weight of gpl20.
  • Example 6 the various types of SeVgpl20 in cell proliferation and g P 120 expression except for using the analysis of various types of cells a manner analogous to that of Example 5, examination of measuring and gpl20 rounds current of HAU (ELISA). Table 5 shows the results.
  • the left side of the table shows the time after infection of various types of cells with SeVgpl20. As a result, proliferation of SeVgpl20 and expression of gpl20 were detected in all cells examined.
  • primers (5, -AAG CGGCCGCCAAAGTTCACGATGGAAGAC-3 '(30mer)) (SEQ ID NO: 3) and primers (5'-TGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGATTATTACAATTTGGACTTTCCGCCC-3' (SEQ ID NO: 69)
  • pHvhiciRT4 a luciferase gene having Notl sites added at both ends was isolated by standard PCR.
  • this was inserted into Notl-digested pSeV18 + to obtain a Sendai virus vector into which the luciferase gene was inserted.
  • the cells are introduced into LLCMK2 cells and transformed into embryonated chicken eggs. Inoculated.
  • the allantois membrane of the embryonated egg is cut off, washed twice with cold PBS (-), added with “lysis buf ferj (Picagene WACO) 25 ⁇ 1, mixed well, and centrifuged at i5000 rpm for 2 minutes. Then, 51 was collected, the substrate (IATRON) 501 was added, put into a 96-mL plate, and the fluorescence intensity was measured with a luminometer overnight (Luminous CT-9000D, DIA-IATRON). As a result, particularly high luciferase activity was detected in CV-1 cells 24 hours after infection (Table 6). Used as a control (indicated by “SeV” in the table). The table also shows the results of detection of two clones.
  • the present invention establishes a system that reconstitutes virus particles more efficiently than Sendai virus cDNA, enables genetic manipulation in Sendai virus, and contains a desired exogenous gene or deletes or inactivates a desired gene. It has become possible to obtain a recombinant Sendai virus that has the genome and retains the transmitting power.
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明細書 組換え体センダイウィルス 技術分野
本発明は、 組換え体センダイウィルスとその製造方法に関する。 技術背景
センダイウィルス (Sendai virus) は、 H V J (Hemagglutinating virus of Japan) とも呼ばれ、 パラミクソウィルス科 (Paramyxoviridae) 、 パラミクソゥ ィルス属 (Paramyxovirus) に属するパラインフルエンザウイルス 1型に分類され る o
センダイウィルス粒子は多形性であり、 直径 150〜200nmのエンベロープを有し 、 中に翻訳の铸型とはならないゲノム RNA (以下 「 (一) 鎖 RNA」 と称する。 ) を 有する。 センダイウィルスは、 歴史的に見ても産業上有用なウィルスとして知ら れており、 とくに細胞のへテロカリオンや雑種細胞の作製、 すなわち細胞融合に 広く利用されている。 また、 膜融合性リボソームの材料として、 遺伝子治療用の ベクターとしても開発が進められている。 さらには、 各種インタ一フヱロンの誘 導剤としてもセンダイウィルスは利用されている。
ゲノム核酸の形態による分類では、 センダイウィルスは、 RNAウィルスの、 ( 一) 鎖 RNAウィルスの、 (一) 1本鎖 RNAウィルスグループに属する。 RNAウィル スは、 dsRNAウィルス (double stranded RNA virus) 、 ( + ) 鎖 RMウィルスお よび (一) 鎖 RNAウィルスの 3者に分類される。 dsRNAウィルスグループには、 レ ォウィルス、 口夕ウィルス、 植物レオウィルス等があり、 分節型の複数の線状 ds RNAゲノムを有している。 (+ ) 鎖 RNAウィルスには、 ポリオウイルス、 シンドビ スウィルス、 セムリキ森林ウィルス、 日本脳炎ウィルス等があり、 1本の (+ ) 鎖 RNAをゲノムとして有しており、 この RNAゲノムは同時に mRNAとしても機能し、 複製や粒子形成に必要な蛋白質を宿主細胞の翻訳機能に依存して生産することが できる。 言い換えれば、 (+ ) 鎖 RNAウィルスが有するゲノム RNA自体が伝播力を 有する。 なお、 本明細書において 「伝播力」 とは、 「感染や人工的な手法で核酸 が細胞内に導入された後、 細胞内に存在する該核酸が複製後、 感染性粒子または それに準ずる複合体を形成し、 別の細胞に次々と伝播することのできる能力 j を 言う。 (+ ) 鎖 RNAウィルスに分類されるシンドビスウィルスや (一) 鎖 RNAウイ ルスに分類されるセンダイウィルスは、 感染能と伝播力とを有するが、 パルボウ ィルス科に分類されるアデノ随伴ウィルス (Adeno-associated virus) は、 感染 能を有するが、 伝播力を有しない (ウィルス粒子が形成されるためには、 アデノ ウィルスの同時感染が必要である) 。 また、 試験管内で人工的に転写されたシン ドビスウィルス由来の (+ ) 鎖 RNAは伝播力を有する (細胞内に導入されるとゥ ィルス粒子を形成する) が、 試験管内で人工的に転写されたセンダイウィルス RN Aは (+ ) 鎖、 (一) 鎖ともに伝播力を有しない (細胞内に導入されてもウィル ス粒子を形成しない) 。
近年では遺伝子治療用のベクターとしてウィルス由来のものが用いられている 。 ウィルスをべクタ一として利用するためには、 ウィルス粒子の再構成のための 手法が確立している必要がある。 ( 「ウィルス粒子の再構成」 とは、 ウィルスゲ ノムの核酸を人工的に作製し、 試験管内または細胞内において、 もとのウィルス または組換え体ウィルスを作製することである。 ) 外来性遺伝子をウィルスべク 夕一に導入するためには、 遺伝子操作によって外来性遺伝子を組み込んだウィル スゲノムからウイルス粒子が再構成されなくてはならないからである。 ウィルス の再構成技術が確立されれば、 ウィルスに所望の外来性遺伝子を導入したり、 ゥ ィルスの所望の遺伝子を欠失させたり、 不活化させたりしたウィルスを作製する ことが可能となる。
また、 ウィルスの再構成系が構築され、 ウィルスの遺伝子操作が可能となれば 、 ウィルスの機能を遺伝学的に解析する大きなツールとなることは明白である。 ウィルス機能の遺伝学的解析は、 疾病の予防、 治療等の医学的見地からきわめて 重要である。 例えば、 ウィルス核酸の複製メカニズムが解明されれば、 その宿主 細胞内の核酸の複製機構との差を利用して、 宿主細胞にダメージの少ない、 核酸 の複製を作用点とした抗ウィルス剤を開発することが可能である。 また、 ウィル ス遗伝子のコードする蛋白質がどのような機能を有するかを解明することにより 、 ウィルス粒子感染能や、 ウィルス粒子形成能に関わる蛋白質をターゲットとし た抗ウィルス剤を開発することもできょう。 また、 膜融合能に関わる遺伝子を改 良することにより、 より優れた膜融合性リボソームを作製し、 遺伝子治療用のベ クタ一として使用することが可能となることが期待できる。 また、 インターフエ ロンに代表されるように、 ウィルスに感染することにより宿主遺伝子のウィルス 抵抗性に関わる遺伝子が活性化され、 ウィルス抵抗性を示す場合もある。 このよ うな宿主遺伝子の活性化に関しても、 ウイルス機能の遺伝学的解析により重要な 知見が得られるであろう。
DNAをゲノム核酸とする DNAウィルスの再構成は比較的早くから行なわれており 、 例えば、 SV40 (J. Exp. Cel l Res. ,43,415-425( 1983)) のように、 精製したゲ ノム DNAそのものをサルの細胞に導入することにより行なうことが可能である。
RNAをゲノム核酸とする RNAウィルスの再構成は、 (+ ) 鎖 RNAウィルスにおい て開発が先行した。 この理由は、 ゲノム RNAが、 同時に mRNAとして機能するから である。 例えば、 ポリオウイルスでは、 精製した RNA自体が伝播力を有すること が、 すでに 1959年に報告されている (Journal of Experimental Medicine, 110, 6 5-89( 1959)) 。 また、 セムリキ森林ウィルス (Seml iki forest virus ; SFV) で は、 宿主細胞の DNA依存性 RNA転写活性を利用することにより、 cDNAを細胞内に導 入することによってウイルスの再構成が可能であることが報告されている (Jour nal of Virology,65, 4107-4113( 1991 ) ) 。
さらにはこれらの再構成技術を利用して、 遺伝子治療用ベクターの開発も進め られている [Bio/Technology, 11,916-920(1993)、 Nucleic Acids Research, 23, 1495-1501(1995)、 Human Gene Therapy,6, 116卜 1167(1995)、 Methods in Cell B iology, 43, 43-53(1994)、 Methods in Cell Biology, 3,55-78(1994)]。
ところが、 前述したとおり、 センダイウィルスは産業的に有用なウィルスとし て利用しうる長所を多数有しているにもかかわらず、 (一) 鎖 RNAウィルスであ るため、 再構成系が確立していなかった。 そのことは、 ウィルス cDNAを経由した ウィルス粒子再構成系がきわめて困難だったことに起因する。
前述したように (一) 鎖 RNAウィルスの RNA(vRNA; viral RNA)またはその相補 鎖&^( ;(;0即1611161^& 11 )を単独で細胞内に導入しても (一) 鎖 RNAウィル スは生成されないことが明らかにされている。 このことは、 (+ ) 鎖 RNAウィル スの場合と決定的に違う点である。 なお、 特開平 4-211377号公報には、 「負鎖 RN Aウィルスのゲノムに対応する cDNAおよび感染性の負鎖 RNAウィルスの製造方法」 について記載があるが、 該公報の実験内容がそのまま記載されている 「EMB0.J., 9,379-384(1990)」 は、 実験の再現性がないことが明らかとなり、 筆者みずから 論文内容を全面的に取り下げている (EMB0.J., 10, 3558(1991)参照) ことからし て、 特開平 4-211377号公報に記載の技術が本発明の先行技術に該当しないのは明 らかである。
(一) 鎖 RNAウィルスの再構成系について、 インフルエンザウイルスに関して は報告がある (Annu.Rev. Microbiol. ,47, 765-790(1993)、 Curr. Op in. Genet. DEV.,2,77-81(1992)) 。 インフルエンザウイルスは、 8分節ゲノムより構成さ れる (一) 鎖 RNAウィルスである。 これらの報告によれば、 あらかじめそのうち の 1つの cDNAに外来性遺伝子を挿入し、 また外来性遺伝子を含む 8本すベての cD NAから転写された RNAをあらかじめウィルス由来の NP蛋白質と会合させて RNPとし た。 これらの RNPと、 RNA依存性 RNAボリメラ一ゼとを細胞内に供給することによ り、 再構成が成立した。 また、 (一) 鎖一本鎖 RNAウィルスについては、 ラブド ウィルス科に属する狂犬病ウィルスで cDNAからのウィルス再構成についての報告 がある (J. Virol . ,68, 713-719( 1994) ) 。
従って、 (一) 鎖 RNAウィルスの再構成系技術は基本的には公知のものとなつ たが、 センダイウィルスの場合は、 この手法をそのまま適用しても、 ウィルスを 再構成することができなかった。 また、 ラブドウィルスにおいてウィルス粒子が 再構成されたという報告については、 マーカ一遺伝子の発現や RT-PCR等で確認を 行なっているだけであり、 生産量の面から十分とはいえなかった。 さらには、 従 来は、 再構成に必要な因子を細胞内で供給する目的で、 天然型のウィルスゃ組換 え型のワクチニァウィルス等のウィルスを、 再構成するべきウィルスの核酸と同 時に細胞に供給しており、 再構成された所望のウィルスとそれらの有害なウィル スの分離が容易でないという問題があつた。 発明の開示
本発明は、 製造効率の良いセンダイウィルス再構成系を確立し、 センダイウイ ルスの遺伝子操作を可能とし、 遺伝子治療等の分野で十分実用に耐えうるセンダ ィウィルスベクターを供給することを課題とする。
本発明者らはまず、 センダイウィルスの再構成試験に適用するため、 センダイ ウィルス DI粒子 (defective interfering particle/EMBO. J. , 10, 3079-3085( 1991 )参照) 由来の cDNAまたはセンダイウィルスミニゲノムの cDNAを用いて、 種々の 検討を行なった。 その結果、 細胞内に導入する、 cDNA、 転写複製に関する cDNA群 、 および T7RNAポリメラーゼ発現ュニットである組換え体ワクチニァウィルスの 量比について、 効率の良い条件を見いだした。 本発明者らは更に、 センダイウイ ルス全長の cDNAを (+ ) 鎖と (一) 鎖の両者とも取得し、 細胞内で (+ ) 鎖また は (一) 鎖のセンダイウィルス RNAが生合成されるようなプラスミ ドを構築し、 転写複製に関する cDNA群を発現している細胞内に導入した。 その結果センダイゥ ィルス cDNAよりセンダイウイルス粒子を再構成することに初めて成功した。 なお 、 本発明者らによって、 効率良い粒子再構成のためには、 細胞内に導入する cDNA の形態が線状よりも環状のほうが適当であり、 また (一) 鎖 RNAが細胞内で転写 されるよりも、 (+ ) 鎖 RNAが細胞内で転写されるほうが粒子形成効率が高いこ とが新たに見い出された。
さらに、 本発明者らは、 T7RNAポリメラーゼ発現ユニットである組換え体ワク チニァウィルスを用いない場合でもセンダイウィルスの再構成を行いうることを 見い出した。 すなわち、 試験管内で転写したセンダイウィルス全長 RNAを細胞内 に導入し、 初期転写複製酵素群の cDNAを T7プロモーター支配下で転写させた場合 、 ウィルス粒子が再構成された。 このことは、 初期転写複製酵素群をすベて発現 する細胞を構築すれば、 ワクチニァウィルスのようなヘルパーウィルスを全く使 用せずに組換え体センダイウィルスを作出することが可能であることを示してい る。 なお、 初期転写複製酵素群をすベて発現する細胞は、 「J. Virology, 68, 841 3-8417( 1994)」 に記載されており、 該記載を参照して当業者が作出することが可 能である。 なお、 該文献記載の細胞は、 センダイウィルス遺伝子のうち、 NP、 P/ Lの 3者を染色体上に有している 293細胞由来の細胞であり、 このものは、 NP、 P/C、 Lの 3者の蛋白質を発現している。
多くのウィルスベクタ一の例から、 核酸からウィルス粒子の再構成が効率よく できるならば、 所望のウィルス遺伝子を組み換えたり、 外来性遗伝子を挿入した り、 または所望のウィルス遺伝子を不活化させたり、 欠失させることは、 当業者 にとつて容易になしうることであることは明らかである。 即ち、 本発明において 初めてセンダイウイルス粒子の再構成に成功したことは、 本発明によってセンダ ィウイルスの遺伝子操作が可能となったことを意味することは、 当業者には自明 のことである。
すなわち本発明は以下のものを含む。
( 1 ) 所望の外来性遺伝子を含むかまたは所望の遺伝子が欠失もしくは不活化 したゲノムを保持し、 伝播力を有する組換え体センダイウィルス、
( 2 ) 1つ以上の機能蛋白質遗伝子が改変されていることを特徴とする ( 1 ) W 1
に記載の組換え体センダイウィルス、
(3) 宿主内で発現可能な外来性遺伝子を有することを特徴とする、 ( 1 ) ま たは (2) に記載の組換え体センダイウィルス、
(4) ( 1) 〜 (3) のいずれかに記載の組換え体センダイウィルスに含まれ る RNAを含む RNA、
(5) ( 1) 〜 (3) のいずれかに記載の組換え体センダイウィルスに含まれ る RNAの cRNAを含む RNA、
(6) (a) (4) または (5) に記載の RNAを転写しうる錶型 cDNAを含む DNAと
、 (b)該 DNAを鎵型として試験管内または細胞内で (4) または (5) に記載の RN Aを転写しうるュニッ卜とを含むキット、
(7) (a)センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質 (各蛋白質 は同等の活性を有する蛋白質でもよい) を発現する宿主と、 (b) (4) または ( 5) に記載の RNAとを含むキット、
(8) センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質 (各蛋白質は同 等の活性を有する蛋白質でもよい) を発現する宿主に、 (4) または (5) に記 載の RNAを導入することを含む、 ( 1 ) 〜 (3) のいずれかに記載の組換え体セ ンダイウィルスの製造方法、
(9) (a)センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質を発現する 宿主、 (b) (4) または (5) のいずれかに記載の RNAまたは cRNAを転写しうる銪 型 cDNAを含む DNA、 (c)該 DNAを鎵型として試験管内または細胞内で (4) または
(5) に記載の MAを転写しうるユニッ トの 3者を含むキッ ト、 および
( 1 0) センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質を発現する宿 主に、 (4) または (5) に記載の RNAを転写しうる铸型 cDNAを含む DNAと、 該 DN Aを鋅型として試験管内または細胞内で (4) または (5) に記載の RNAを転写し うるユニットとを導入することを含む、 ( 1) 〜 (3) のいずれかに記載の組換 え体センダイウィルスの製造方法、 ( 1 1 ) 宿主に (3 ) 記載の組換え体センダイウィルスを感染させ、 発現した 外来性夕ンパク質を回収する工程を含む、 外来性夕ンパク質の製造方法、
( 1 2 ) ( 3 ) 記載の組換え体センダイウィルスを宿主に導入し、 培養液また は漿尿液を回収することによって取得しうる、 発現した外来性タンパク質を含む 培養液または漿尿液、 および
( 1 3 ) コ一ドするタンパク質のアンチセンス R N Aが転写される向きでプロ モーター下流に配置された外来性遗伝子と該プロモーターとを含む、 センダイゥ ィルスべクタ一中に組み込まれた該外来性遗伝子がコ一ドするタンパク質を発現 させるための D N A。
本発明の組換え体センダイウィルスベクターは、 例えば、 遺伝子工学的に製造 した組換え体センダイウィルスベクタ一ゲノムをコ一ドする組換え cDNAを試験管 内で転写し、 組換え体センダイウィルスゲノム Aを製造し、 該 RNAをセンダイゥ ィルスの NP蛋白質、 P/C蛋白質および L蛋白質 (各蛋白質は同等の活性を有する蛋 白質でもよい) を同時に発現する宿主に導入することによって得ることができる 。 また、 別法として、 本発明のセンダイウィルスベクターは、 ①遺伝子工学的に 製造した組換え体センダイウィルスベクターゲノムをコードする組換え cDNA、 ② 該 DNAを铸型として細胞内で RMを転写しうるュニットを、 センダイウィルスの NP 蛋白質、 P/C蛋白質および L蛋白質 (各蛋白質は同等の活性を有する蛋白質でもよ い) を同時に発現する宿主に導入することによって得ることができる。 この場合 、 例えば、 ①は特定のブロモ一夕一下流に接続されおり、 ②は該特定のプロモー 夕一に作用する DNA依存性 MAポリメラ一ゼを発現する DNAでありうる。
本発明の組換え体センダイウィルスにおいて、 所望の外来性遺伝子を挿入する かまたは所望の遗伝子を欠失もしくは不活化させる前の材料となるセンダイウイ ルスとしては、 パラインフルエンザ 1型に分類される株であれば良く、 例えば Z 株 (Sendai virus Z strain) 、 フシミ株 (Sendai virus Fushiii strain) 等が 挙げられる。 また、 DI粒子等の不完全ウィルスや、 合成したオリゴヌクレオチド 等も、 材料の一部として使用することができる。
また、 本発明の組換え体センダイウィルスは、 伝播力を保持する限り、 該組換 え体に含まれる RNAのいかなる部位にいかなる外来性遺伝子が挿入されていても、 またいかなるゲノム遺伝子が欠失または改変されていてもよい。 挿入される外来 性遗伝子としては、 宿主内で発現可能な、 各種サイ トカインをコードする遺伝子 や各種ぺプチドホルモンをコードする遺伝子が挙げられる。 所望のタンパク質を 発現させるためには、 所望のタンパク質をコードする外来性遗伝子を挿入する。 センダイウィルス RNAにおいては、 R1配列 (5,-AGGGTCAAAGT-3,) と R 2配列 (5'-GTAAGAAAAA-3') との間に、 6の倍数の塩基数を有する配列 を挿入することが望ましい (Journal of Virology, Vol, 67,No.8,(1993)p.4822-4 830) 。 発現効率挿入した外来性遺伝子の発現量は、 遗伝子挿入の位置、 また遺伝 子の前後の RNA塩基配列により調節しうる。 例えば、 センダイウィルス RNAにおい ては、 挿入位置が NP遺伝子に近いほど、 挿入された遺伝子の発現量が多いことが 知られている。 なお、 所望のタンパク質を発現させるための宿主としては、 組換 え体センダイウィルスが感染する細胞であればいかなるものでもよいが、 例えば 、 培養された哺乳動物細胞や鶏卵などがあげられる。 これらの宿主に、 発現可能 な外来性遺伝子を組み込んだ組換え体センダイウィルス感染させ、 発現された外 来性遺伝子産物を回収することによって、 外来性遣伝子産物を効率よく製造する ことができる。 発現されたタンパク質は例えば、 培養細胞を宿主とする場合には 培養液から、 鶏卵を宿主とする場合には尿漿液から、 常法によって回収しうる。 なお、 外来性遺伝子を (一) 鎖のセンダイウィルス RNAが生合成されるようなプ ラスミ ドに組み込む際は、 外来性遗伝子がコードするタンパク質のアンチセンス RN Aが転写される向きで、 外来性遺伝子をプロモーター下流に挿入する必要が ある。 このような 「コードするタンパク質のアンチセンス RNAが転写される向 きでプロモーター下流に配置された外来性遺伝子と該プロモーターとを含む、 セ ンダイウィルスベクター中に組み込まれた該外来性遺伝子がコードするタンパク 質を発現させるための D NA」 は、 本発明によって初めて利用可能になったもの であり、 本発明の一部である。
また、 例えば、 免疫原性に関与する遗伝子を不活性化したり、 RNAの転写効率や 複製効率を高めるために、 一部のセンダイウィルスの RNA複製に関与する遺伝子を 改変したものでも良い。 具体的には、 例えば複製因子である NP蛋白質、 C/P蛋白質 、 L蛋白質の少なくとも一つを改変し、 転写、 複製機能を高めたり弱めたりするこ ともできる。 また、 構造体蛋白質の 1つである HN蛋白質は、 赤血球凝集素である へマグルチニン (hemagglutinin;/ 活性とノィラミニダ一ゼ (neuraminidase) 活 性との両者の活性を有するが、 例えば前者の活性を弱めることができれば、 血液 中でのウィルスの安定性を向上させることが可能であろうし、 例えば後者の活性 を改変することにより、 感染能を調節することも可能である。 また、 膜融合に関 わる F蛋白質を改変することにより、 再構成されたセンダイウィルスと所望の薬剤 ゃ遗伝子等を封入した人工的なリボソームとを融合させた膜融合リボソームの改 良に用いることも可能である。
本発明によって、 ゲノム RNAの任意の位置に点変異や挿入を導入することが可 能となったが、 このことによりウイルスの機能の遺伝学的知見が加速度的に蓄積 されることが大いに期待される。 例えば、 ウィルス RNAの複製メカニズムが解明 されれば、 その宿主細胞由来の核酸の複製機構との差を利用して、 宿主細胞にダ メージの少ない、 核酸の複製を作用点とした抗ウィルス剤を開発することが可能 である。 また、 ウィルス遺伝子のコードする蛋白質がどのような機能を有するか を解明することにより、 ウィルス粒子感染能や、 ウィルス粒子形成能に関わる蛋 白質を夕ーゲットとした抗ウィルス剤を開発することもできょう。 具体的には、 例えば、 細胞表面の抗原分子となりうる F蛋白質や HN蛋白質の抗原提示ェビトー プの解析等に利用できる。 また、 ウィルスに感染することにより宿主遠伝子のゥ ィルス抵抗性に関わる遺伝子が活性化され、 ウィルス抵抗性を示す場合、 このよ うな宿主遺伝子の活性化に関しても、 ウイルス機能の遺伝学的解析により重要な 知見が得られるであろう。 センダイウィルスは、 イン夕一フエロンの誘導効果を 持っため、 種々の基礎的実験に用いられている。 この誘導に必要な領域を解析す ることにより、 非ウィルス性のィン夕一フエロンの誘導剤を作製することも考え られる。 また、 本発明の技術はワクチンの開発にも利用できる。 生ワクチンは、 人工的に遣伝子を改変した組換え体センダイウイルスを発育鶏卵に接種して製造 することも可能であるし、 このようにして得られた知見を他の (一) 鎖 RNAウィル ス例えば、 麻疹ウィルス、 おたふく風邪ウィルスのようなヮクチ ンの必要性の高 いウィルスに応用することもできょう。 さらに、 本発明によって、 遺伝子治療用 のべク夕一として組換え体センダイウィルスを用いることも可能となった。 本発 明のウィルスベクタ一はセンダイウィルスに由来しているので安全性が高く、 し かも本ウィルスベクターは伝播力を保持しているので、 少量の投与でも大きな治 療効果を上げられることが期待される。 なお、 治療が完了しウィルスベクターの 増殖を抑止する必要が生じた際または治療中に、 RNA依存性 RNAポリメラ一ゼ阻害 剤を投与すれば、 宿主にダメージを与えずに、 ウィルスベクターの増殖だけを特 異的に抑止することができる。 図面の簡単な説明
図 1は pUC18/T7( + )HVJRz . DNAの構成を示す図である。
図 2は pUC18/T7( - )HVJRz. DNAの構成を示す図である。
図 3は CV-1細胞への SeVgpl20の感染後の時間と HAUの値及び gpl20の発現量との 関係を示す図である。 発明を実施するための最良の形態
以下実施例により本発明を具体的に説明するが、 本発明はこれらの実施例に限 定されるものではない。
[実施例 1 ] センダイウィルス ¾ ^ュニッ ト 18 17( )1^^2.0^ぉょび1]1 C18/T7( + )HVJRz. DNAの作製
T7 プロモーター、 (- )鎖 RNAが転写されるように設計されたセンダイウィルス c DNA, リポザィム遗伝子をこの順に保持する DNAを、 pUC18プラスミ ドに挿入した ブラスミ ド pUC18/T7(-)HVJRz. DNAを作製した。 また、 T7 ブロモ一夕一、 (+ )鎖 &N Aが転写されるように設計されたセンダイウィルス cDNA、 リボザィム遠伝子をこ の順に保持する DNAを、 pUC18プラスミ ドに挿入したブラスミ ド pUC18/T7( + )HVJRz . DNAを作製した。 pUC18/T7( - )HVJRz . DNAおよび pUC18/T7( + )HVJRz . DNAの構成を図 1および図 2に示した。
[実施例 2 ] cDNAからのセンダイウイルス再構成実験
直径 6 c mのプラスチヅクシャーレに通常のトリプシン処理を施した LLC-MK2細 胞を 2,000, 000個と MEM培地 (MEM +FBS 10¾) 2mlとを添加し、 C02 5¾, 37°Cの条件 下で 24時間培養した。 培養液を取り除き、 1mlの PBSを用いて洗浄した後、 多重感 染度 (moi/multipl icity of infection) が 2となるように調製した、 T7ボリメ ラーゼを発現する組換え体ワクチニァウィルス VTF7-3を 0. 1mlの PBSに懋濁したも のを添加した。 15分毎にウィルス液が全体にいきわたるようにシャーレを揺らし 、 1時間の感染を行った。 ウィルス溶液を除去し、 1mlの PBSを用いて洗浄した。 このシャーレに、 cDNA溶液を含む培地を添加した。 cDNA溶液を含む培地の作製は 、 以下のように行なった。
表に記した核酸 (センダイウィルスの複製に必要な因子を発現するプラスミ ド 、 pGEM-L, pGEM-P/C, pGEM-NP を含む) を 1.5mlのサンプリングチューブにとり 、 HBS(Hepes buffered saline ; 20mM Hepes pH7.4, 150mM NaCl )を加えて総量を 0. 1mlにした。 表中の (- )または( + )cDNAは、 ブラスミ ド pUC18/T7(- )HVJRz. DNAま たは pUC18/T7( + )HVJRz. DNAそのものを示し、 /Cは環状のまま、 /Lは制限酵素 Mlul により直鎖化した後に細胞に導入していることを示す。
他方、 ポリスチレンチューブの中で、 HBS 0.07ml , D0TAP (ベ一リンガーマンハ ィム社製) 0.03mlを調合し、 核酸溶液をこのポリスチレンチューブに移した。 こ の状態で、 10分静置した。 これに、 細胞培養液 (2ml MEM +FBS 10¾) を添加した 。 さらにこの中にワクチニァウィルスの阻害剤であるリファンビシン (Rifampic in) とシトシンァラビノシド C (Cytosin arabinoside C/Ara C) を最終濃度が それぞれ 0.1mg/ml, 0.04mg/mlとなるように添加した。 これにより、 cDNA溶液を 含む培地が作製された。
前記のシャーレを 40時間 5%C02 37。Cの条件下で培養した。 ラパーポリスマン を用いてシャーレ内の細胞をかき取り、 エツペンドルフチューブに移し 6,000rpm 、 5分間の遠心を行って細胞成分だけを沈殿し、 再度 lmlの PBSに ^濁した。 この 細胞液の一部をそのままの状態、 あるいは希釈して 1 0日齢の発育鶏卵に接種し た。 この細胞液を第 1表に示した細胞数となるように PBSで希釈し、 0.5ml 接種 した卵を 35°C72時間培養後 4 °Cに移して一晩置いた。 この卵の漿尿液をウィルス 液として注射器と注射針を用いて回収した。
回収したウィルス液の HAU (hemmaglutinin unit)と、 PFU(plaque forming uni t)の測定を以下に示す方法で行った。
HAUの測定は以下のように行なった。 鶏の血液を、 400x g,10分間遠心し、 上清 を捨てた。 残る沈殿を、 沈殿の 100倍量の PBSで想濁し、 これをさらに 400x g, 10 分間遠心し、 上清を捨てた。 この操作をさらに 2回、 繰り返し、 0.1¾血球溶液を 作製した。 ウィルス溶液を段階希釈法により 2倍ずつに希釈し、 その 0.05mlずつ を、 96穴のタイ夕一プレートに分注した。 このタイ夕一プレートに、 さらに 0.05 mlずつの血球溶液を分注し、 軽く振動させてよく混ぜた後、 4°Cで 40分静置した。 その後、 赤血球の凝集を肉眼で観察し、 凝集したもののうち、 もっともウィルス 溶液の希釈率の高いものの希釈率を、 HAUとして示した。
PFUの測定は以下のように行なった。 CV- 1細胞を、 6穴のカルチャープレート上 に単層になるように生育させた。 カルチャープレートの培地を捨て、 段階希釈法 により 10倍づつに希釈したウィルス溶液 0.1mlずつをそれぞれのカルチャープレ 一ト内ゥエルに分注し、 37° (:、 1時間感染させた。 感染中に血清の含まれていな い 2XMEMと 2%寒天を 55°Cで混ぜ合わせ、 さらに最終濃度 0.0075mg/mlとなるよう にトリプシンを加えた。 1時間の感染後、 ウィルス溶液を取り除き、 寒天と混合 した培地 3mlずつをそれぞれのカルチヤ一ブレート内ゥエルに加え、 5%C02条件 下で 37°C3日間保温した。 0.2mlの 0.1%フエノールレツ ドを加え、 37。C 3時間保 温した後、 取り除いた。 色の付いていないプラークの数を数え、 ウィルスの力価 を PFU/mlとして評価した。
表 1には、 LLC-MK2細胞に導入した鎵型となるセンダイウィルス cDNA、 RNA複製 に必要な因子の cDNAである pGEM-L、 p a. zGEM-P/Cおよび pGEM-NPの量、 インキュベー
S
シヨン時間、 鶏卵に接種した細胞数、 HAU、 PFU をそれぞれ示した。
表 1 pGEM- pGE -
¾型 cDNA 合計 ( g) 培 ¾時
Mug) P/C(ug) ia (»?) 細 数 HAU PFU
(+}cDNA/C 10 4 2 4 40 ι.οο ιο5 512 2X109
(+) cDNA/C 10 4 2 4 40 1.00XI05 256. 9X108
(+) cDNA/C 10 4 2 4 40 1.00X106 256 9X Ϊ08
(+) cDNAL 10 4 2 4 40 1.00X105 <2 <10
(+) cDNA/L 10 4 2 4 40 Ι,ΟΟΧ 105 <2 <10
(+) cDNA/L 10 4 2 4 40 1.00 106 <2 <I0
(-) cDNAL 10 4 2 4 40 1.00X104 ' <2 <I0
(-) cDNA/L 10 4 2 4 40 1.00 105 <2 <10
(-) cDNA/L 10 4 2 4 40 1.00 106 <2 <10
(-) cDNAC 10 4 2 4 40 し oox】o4 <2 <I0
(-) cDNA/C 10 4 2 4 40 1.00X I05 <2 <10
(-) cDNAC 10 4 2 4 40 1.00X JO6 4 8XI03
HAU, PFUをともに示したサンブルを超遠心で沈渣とした後、 再浮遊して 20%〜6 0¾のショ糖密度勾配遠心で精製し、 12.5¾SDS-PAGEで蛋白質を分離したところ、 ここに含まれる蛋白質は、 センダイウィルスの蛋白質と同じ大きさのものであつ た。 この結果から、 cDNAを細胞に導入してセンダイウイルスを再構成できることが 示された。 また、 (+ )鎖を転写する cDNAを細胞内に導入したときには、 (-)鎖を転 写する cDNAを導入したときに比べてゥィルス粒子が効率よく再構成されることが 示された。 さらに、 cDNAを環状のままで導入したときには、 直鎖状にして導入し たときに比べてウィルス粒子が効率よく再構成されることが示された。
[実施例 3 ] センダイウィルス再構成に必要な RNA複製因子の検討
L, P/C, NPを発現するブラスミ ドが三者ともに必要かどうかを調べる実験を行 つた。 方法は実施例 2と同様であるが、 実施例 2では cDNAとともに、 pGEM-L, pG EM-P/C, pGEM-NPの 3者を細胞内に導入したのに対し、 本実験では、 pGEM- L, pGE M-P/C, pGEM-NPのうちの任意の 2者または一者のみを cDNAとともに細胞内に導入 した。
表 2は、 LLC-MK2細胞に導入した鋅型となるセンダイウィルス cDNA、 RNA複製に 必要な因子の cDNAである pGEM-L、 pGEM-P/Cおよび pGEM- NPの量、 インキュべ一シ ヨン時間、 鶏卵に接種した細胞数、 HAU、 PFU をそれぞれ示した。
表 2
£SIBcDN 合計 iug) pGEM-L pGEM-P/C pGEM-NP 培 ¾時 (g (時) HAU PFU
C+)cDNA/C 10 4 40 1.00X I05 256 6X 108 (+) cDNA/C 10 4 40 1.00X106 512 4X】09
(+) cDNA/C 10 0 40 6 <2 10 cDNA/C 10 0 40 1.00X106 <2 <10
(+) cDNAC 10 4 40 1.00X106 <2 <I0 • (+) cDNA/C 10 4 40 1.00XI06 <2 <10
(+) cDNA/C 10 4 0 40 1.00X 106 <2 <IO (+) cDNAC LO 4 0 40 1.00X 106 <2 <10
(+) cDNA/C 10 0 4 40 1.OOX 106 <2 <10 (+) cDNAC 10 0 4 40 1.00X106 <2 <10
(+) cDNA/C 10 0 0 40 1.00 106 <2 <10 (+) cDNA/C 10 0 0 40 6
1.00 10' <2 <I0
(+) cDNA/C 10 40 1.00X10 ,6 <2 <10 (+) cDNA/C 10 40 1.00X 106 <2 <10 表 2から、 どの組合わせの 2者を導入した場合もウィルスの生産が認められな かった。 この結果、 この 3種の蛋白質すべてが、 再構成には必須であることが確
4 L o
[実施例 4 ] in vitro転写 RNAからのセンダイウィルス再構成実験
実施例 2で、 cDNAからセンダイウィルスが再構成されることを示したが、 さら に cDNAを in vitroで転写した産物、 すなわち vRMおよび cRNAでも同様のことが できうるかどうかを検討した。
センダイウィルス転写ュニッ ト pUC18/T7(-)HVJRz.DNAおよび pUC18/T7(+)HVJRz .DNAを制限酵素 Mlulで直鎖状にした後、 これを錶型として用い、 精製 T7ポリメラ ーゼ(EPICENTRE TECHNOLOGIES: Ampliscribe T7 Transcription Kit)による in v itro RNA合成を行った。 in vitro RNA合成の方法はキッ 卜のプロトコルに従った 。 ここで得られた RNA産物を、 実施例 2の cDNAの代わりに用い、 同様の実験を行 い、 ウィルス生産の評価は HA試験により行った。 、
結果を表 3に示す。
表 3
铸型 cDNA 合計 (tf g) pOEM-Mug) pGEM-P/C(ug) pGEM-NP(ug) 培巷時間 (時) 細胞数 HA'J PFU in vilro(-)RNA 10 4 2 4 40 1.00E+06 512 2 109 in vitro(-)RNA 10 4 2 4 40 1.00E+06 5 1 2 ^ in vitro(+)RNA 10 4 2 4 40 1.00E+06 2 5 χ [ ()3 in vitro(+)RNA 10 4 2 4 40 I .OOE+06 <2 ND この結果より、 どちらのセンスの RNAを細胞内に導入しても、 ウィルスを再構 成することができた。
[実施例 5 ] センダイウィルスベクター内に挿入した外来遺伝子の宿主内での の 言寸
( 1 ) 外来遺伝子 (HIV- 1 gpl20遺伝子) が挿入されたセンダイウィルスベクタ 一 「pSeVgpl20」 の調製
プライマ一 a (5' -TGCGGCCGCCGTACGGTGGCAATGAGTGAAGGAGAAGT-3' ) (配列番号
: 1 ) 及びプライマー d (5' -TTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTVTTACTACGGC GTACGTCATCTTTTTTCTCTCTGC-3' ) (配列番号: 2 ) を用い、 「pNI432」 上の HIV-1 gpl20遺伝子を標準的な PCR法により増幅した。 TAクローニングを行い、 Notlで消 化し、 これを Notlで消化した 「pSeV18+」 に挿入した。 次いで、 これを E.Coliに形 質転換し、 E.Coliの各コロニーの DNAを 「Miniprep」 法で抽出し、 Drai n消化後電 気泳動を行い、 泳動された DNAのうち挿入により期待される大きさの DNA断片を含 んでいることが確認されたクローンを選抜することで、 陽性クローンを得た (以 下、 この陽性クローンを 「クローン 9」 と称する) 。 目的の塩基配列であることを 確認後、 塩化セシウム密度勾配遠心により、 MAを精製した。 なお、 これにより得 られた、 gpl20の挿入された pSeV18+を 「pSeVgpl20」 と称する。 (2) pSeVgpl20を保持するセンダイウィルス (SeVgpl20) の再構成及び gpl20の 発現の解析
LLCMK2細胞に pGEM NP, P,Lの他に、 さらに pSeVgpl20を導入した以外は、 実施例 2と同様の方法で、 発育鶏卵のしょう尿液を回収し、 HAUの測定及び gpl20発現の 検討 (ELISA) を行った。 HAUの測定は、 実施例 2と同様の方法で行った。
また、 ELISAは以下のように行った。 HIV-1に対するモノクロナ一ル抗体で覆つ た 96ゥエルプレートに 100 i lの試料を添加し、 37°Cで 60分反応させた。 PBSで洗浄 後、 100^ 1の HRP結合抗 HIV-1抗体を添加し、 37°Cで 60分反応させた。 これを PBSで 洗浄後、 テトラメチルベンチジンを添加し、 HRP活性で転換される反応生成物の量 を酸性条件下、 450nmの吸光度で検出することにより gpl20の発現量を測定した。 この結果を表 4左に示す。
また、 得られたウィルス液は、 CV-1細胞に感染させ、 同様の検討を行った。 CV -1細胞を 1プレート当たり 5x10s細胞となるようにまいて生育させ、 培地を捨て、 PBS (- )で洗浄し、 感染多重度 10でウィルス液を添加し、 室温で 1時間感染させた 。 ウィルス液を捨て PBS ( -)で洗浄し、 plainMEM培地 (MEM培地に抗生物質 AraC、Ri f及びトリプシンを添加したもの) を添加して、 37°Cで 48時間反応させた。 反応後 、 培地を回収し、 HAUの測定 (実施例 2と同様の方法) 及び pl20発現の検討 (EL ISA) を行った。 この結果を表 4中央に示す。 なお、 CV-1細胞の培養上清を再度発 育鶏卵に接種し、 これにより得たウィルス液の HAUの測定結果及び gpl20発現の検 討 (ELISA) 結果を表 4右に示す。 表 4
(μ^πιΐ)
Figure imgf000021_0001
表 4から明らかなように、 CV-1細胞で特に高濃度の gpl20が生産され (表中央) 、 また再度発育鶏卵に接種した尿しょう液からも高濃度の gpl20が検出された (表 右) 。 なお、 表 4左と表 4中央には 3クローンの結果を示してある。
さらに、 gpl20の発現をウエスタンプロティング法により解析した。 SeVgpl20を 感染させた CV-1細胞の培地を 20,000rpmで 1時間遠心し、 ウィルスを沈殿させ、 そ の上清を TCA ( 10¾(v/v )、 氷上で 15分) またはで 70 エタノール (-20°C ) で処理し 、 15,000rpmで 15分遠心し、 沈降した蛋白質を 「SDS- PAGE Sample bufferj (第一 化学) と混合し 90。Cで 3分反応させ、 10¾アクリルアミ ドゲル上で SDS -ポリアクリ ルアミ ドゲル電気泳動 (SDS- PAGE) を行った。 泳動後、 蛋白質を PVDF膜 (第一化 学) に転写し、 モノクロナ一ル抗体 902を室温で 1時間反応させた。 次いで、 T- TB Sで洗浄し、 抗 mlgG (アマシャム社) を室温で 1時間反応させ、 T-TBSで洗浄した。 さらに、 HRP結合プロテイン A (アマシャム社) を室温で 1時間反応させ、 T- TBSで 洗浄した。 これに 4-クロ口- 1-ナフトール (4CNPlus) (第一化学) を添加し、 gp 120を検出した。 この結果、 予想される gpl20の分子量の位置にバンドが検出され た。
さらに、 CV-1細胞への SeVgpl20の感染後の時間と HAUの値及び gpl20の発現量と の関係を解析した。 10cmプレートに 5xl06細胞となるように CV-1細胞をまき、 感染 多重度 10で SeVgpl20を感染させ、 その後30,43,53, 70時間目に11111の培地を回収し 、 等量の新鮮培地と混合して、 HAUの測定、 pl20発現の検討 (ELISA) およびゥェ スタンプロティングを行った。 この結果を図 3に示す。 図 3から明らかなように 、 センダイウィルスの HAtiterの増加に伴って gpl20生産量も増加する傾向を示し た。
[実施例 6 ] 種々の型の細胞における SeVgpl20の増殖及び gP120の発現の解析 種々の型の細胞を用いた以外は実施例 5と同様の方法で、 HAUの測及び gpl20発 現の検討 (ELISA) を行った。 この結果を表 5に示す。
表 5
Figure imgf000022_0001
なお、 表左は種々の型の細胞への SeVgpl20の感染後の時間を示す。 この結果、 検討を行ったすべての細胞で SeVgpl20の増殖及び gpl20の発現が検出された。
[実施例 7 ] センダイウィルスベクタ一内に挿入したルシフヱラーゼ遺伝子の 宿主内での発現の検討
ベクター挿入用のルシフェラーゼ遺伝子を単離するため、 ブライマー (5,-AAG CGGCCGCCAAAGTTCACGATGGAAGAC-3' ( 30mer ) ) (配列番号: 3 ) 及びプライマー (5 ' -TGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGATTATTACAATTTGGACTTTCCGCCC- 3' (69mer)) (配列番号: 4 ) を用い、 鎢型として 「pHvhiciRT4」 を用いて、 標準 的な PCR法により両端に Notl部位の付加したルシフェラーゼ遺伝子を単離した。 次 いで、 これを Notlで消化した pSeV18+に挿入し、 ルシフェラ一ゼ遺伝子が挿入され たセンダイウィルスベクタ一を得た。 次いで、 LLCMK2細胞に導入し、 発育鶏卵に 接種した。 発育卵のしょう尿膜を切り取り、 冷 PBS ( - )で 2回洗浄し、 「lysis buf ferj (Picagene WACO) 25^ 1を添加し、 よく攪拌してから i5000rpmで 2分間遠心 した。 その上清を 5 1を採取し、 基質 (IATRON) 50 1を添加し、 96ゥエルプレー 卜に入れ、 ルミノメ一夕一 (Luminous CT-9000D, DIA-IATRON) で蛍光強度を測定 した。 活性は、 cps (counts per second) で表した。 この結果、 感染後 24時間目 の CV-1細胞で、 特に高いルシフェラ一ゼ活性が検出された (表 6 ) 。 なお、 ルシ フェラーゼ遺伝子の導入されていないセンダイウィルスを対照として用いた (表 中の 「SeV」 で示してある) 。 また、 表には 2クローンの検出結果を示した。
表 6 光 ¾i度(counts/10 sec)
w CV-1 (感染後 24時 iL 目)
Luc/ScV 669187
2891560 8707815
SeV 69 48
23 49
産業上の利用の可能忤
本発明によって、 センダイウィルス cDNAより効率よくウィルス粒子を再構成す る系が確立され、 センダイウィルスにおける遺伝子操作が可能となり、 所望の外 来性遺伝子を含むかまたは所望の遺伝子が欠失もしくは不活化したゲノムを保持 し、 伝播力を有する組換え体センダイウィルスを得ることが可能となった。 配列表 配列番号: 1
配列の長さ : 3 8
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列
TGCGGCCGCC GTACGGTGGC AATGAGTGAA GGAGAAGT 38 配列番号: 2
配列の長さ: 6 9
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列
TTGCGGCCGC GATGAACTTT CACCCTAAGT TTTTVTTACT ACGGCGTACG TCATCTTTTT 60 TCTCTCTGC 69 配列番号: 3
配列の長さ : 3 0
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:他の核酸 合成 DNA
配列
AAGCGGCCGC CAAAGTTCAC GATGGAAGAC 30 配列番号: 4
配列の長さ : 6 9
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列
TGCGGCCGCG ATGAACTTTC ACCCTAAGTT TTTCTTACTA CGGATTATTA CAATTTGGAC 60 TTTCCGCCC 69

Claims

請求の範囲
1 . 所望の外来性遺伝子を含むかまたは所望の遺伝子が欠失もしくは不活化した ゲノムを保持し、 伝播力を有する組換え体センダイウィルス。
2 . 1つ以上の機能蛋白質遗伝子が改変されていることを特徴とする請求の範囲 1に記載の組換え体センダイウィルス。
3 . 宿主内で発現可能な外来性遗伝子を有することを特徴とする、 請求の範囲 1 または 2に記載の組換え体センダイウィルス。
4 . 請求の範囲 1〜3のいずれかに記載の組換え体センダイウィルスに含まれる RNAを含む MA。
5 . 請求の範囲 1〜 3のいずれかに記載の組換え体センダイウィルスに含まれる RNAの cRNAを含む RNA。
6 . (a)請求の範囲 4または 5に記載の RNAを転写しうる銪型 cDNAを含む DNAと、 ( b )該 DNAを铸型として試験管内または細胞内で請求の範囲 4または 5に記 載の RN Aを転写しうるュニッ卜とを含むキット。
7 . ( a)センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質 (各蛋白質は同 等の活性を有する蛋白質でもよい) を発現する宿主と、 (b)請求の範囲 4または 5 に記載の RNAとを含むキッ ト。
8 . センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質 (各蛋白質は同等の 活性を有する蛋白質でもよい) を発現する宿主に、 請求の範囲 4または 5に記載 の RNAを導入することを含む、 請求の範囲 1〜 3のいずれかに記載の組換 ぇ体セ ンダイウィルスの製造方法。
9 . ( a)センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質 を発現する宿主 、 (b)請求の範囲 4または 5のいずれかに記載の RNAまたは cRNAを転写しうる銪型 cDNAを含む DNA、 (c )該 DNAを铸型として試験管内または細胞内で請求の範囲 4また は 5に記載の RNAを転写しうるュニットの 3者を含むキット。
1 0 . センダイウィルスの NP蛋白質、 P/C蛋白質および L蛋白質を発現する宿主に 、 請求の範囲 4または 5に記載の RNAを転写しうる錡型 cDNAを含む DNAと、 該 DNAを 銪型として試験管内または細胞内で請求の範囲 4または 5に記載の RNAを転写しう るュニットとを導入することを含む、 請求の範囲 1〜3のいずれかに記載の組換 え体センダイウィルスの製造方法。
1 1 . 宿主に請求の範囲 3記載の組換え体センダイウィルスを感染させ、 発現し た外来性夕ンパク質を回収する工程を含む、 外来性夕ンパク質の製造方法。
1 2 . 請求の範囲 3記載の組換え体センダイウィルスを宿主に導入し、 培養液ま たは漿尿液を回収することによって取得しうる、 発現した外来性タンパク質を含 む培養液または漿尿液。
1 3 . コードするタンパク質のアンチセンス R N Aが転写される向きでプロモー 夕一下流に配置された外来性遺伝子と該プロモーターとを含む、 センダイウィル スベクタ—中に組み込まれた該外来性遺伝子がコードするタンパク質を発現させ るための D N A。
PCT/JP1996/003069 1995-11-01 1996-10-22 Virus sendai recombinant WO1997016539A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE69638196T DE69638196D1 (de) 1995-11-01 1996-10-22 Rekombinantes sendai-virus
AT96935403T ATE470704T1 (de) 1995-11-01 1996-10-22 Rekombinantes sendai-virus
AU73352/96A AU7335296A (en) 1995-11-01 1996-10-22 Recombinant sendai virus
DK96935403.4T DK0863202T3 (da) 1995-11-01 1996-10-22 Rekombinant Sendai-virus
CA2236378A CA2236378C (en) 1995-11-01 1996-10-22 Recombinant sendai virus
EP96935403A EP0863202B1 (en) 1995-11-01 1996-10-22 Recombinant sendai virus
KR10-1998-0703241A KR100525687B1 (ko) 1995-11-01 1996-10-22 재조합체 센다이바이러스
HK99103083A HK1018078A1 (en) 1995-11-01 1999-07-17 Recombinant sendai virus
US09/728,207 US7101685B2 (en) 1995-11-01 2000-12-01 Recombinant Sendai virus
US11/130,117 US7442544B2 (en) 1995-11-01 2005-05-17 Recombinant sendai virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28541795 1995-11-01
JP7/285417 1995-11-01

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09071591 A-371-Of-International 1998-05-01
US7159198A Continuation 1995-11-01 1998-05-01
US09/728,207 Continuation US7101685B2 (en) 1995-11-01 2000-12-01 Recombinant Sendai virus

Publications (1)

Publication Number Publication Date
WO1997016539A1 true WO1997016539A1 (fr) 1997-05-09

Family

ID=17691258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003069 WO1997016539A1 (fr) 1995-11-01 1996-10-22 Virus sendai recombinant

Country Status (11)

Country Link
US (2) US7101685B2 (ja)
EP (1) EP0863202B1 (ja)
KR (1) KR100525687B1 (ja)
CN (1) CN1143892C (ja)
AT (1) ATE470704T1 (ja)
AU (1) AU7335296A (ja)
CA (1) CA2236378C (ja)
DE (1) DE69638196D1 (ja)
DK (1) DK0863202T3 (ja)
HK (1) HK1018078A1 (ja)
WO (1) WO1997016539A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018223A1 (fr) * 1999-09-06 2001-03-15 Dnavec Research Inc. Paramoxyvirus possedant une sequence d'initiation de transcription modifiee
JP2001275684A (ja) * 2000-03-31 2001-10-09 Nippon Medical Research Kk 組換え体イヌジステンパーウイルスおよびその作製方法
JP2002142770A (ja) * 2000-11-08 2002-05-21 Dnavec Research Inc 循環系への遺伝子送達用パラミクソウイルスベクター
US6514728B1 (en) 1998-11-09 2003-02-04 Nippon Biocaptal Limited Process for preparation of cytokines using Sendai virus expression system
JP2003513633A (ja) * 1999-11-02 2003-04-15 株式会社ディナベック研究所 気道上皮細胞への外因性遺伝子導入用組換えセンダイウイルスベクター
US6828138B1 (en) * 1998-08-11 2004-12-07 Dnavec Research Inc. Recombinant sendai virus vector including a gene encoding a chemokine
WO2005042737A1 (ja) 2003-11-04 2005-05-12 Dnavec Research Inc. 遺伝子導入された樹状細胞の製造方法
EP1094115A4 (en) * 1998-07-03 2005-11-02 Dnavec Research Inc NEGATIVE STRENGTH RNA VIRUS VECTOR
WO2006134917A1 (ja) 2005-06-14 2006-12-21 Dnavec Corporation 抗体の作製方法
US7241617B2 (en) 1998-07-03 2007-07-10 Dnavec Research, Inc. Sendai viral vectors comprising foreign genes inserted between the R1 and R2 Loci
WO2007083644A1 (ja) * 2006-01-17 2007-07-26 Dnavec Corporation 新規タンパク質発現系
WO2007139178A1 (ja) 2006-05-31 2007-12-06 Dnavec Corporation アルツハイマー病治療薬
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2008029790A1 (fr) 2006-09-04 2008-03-13 Kyowa Hakko Kirin Co., Ltd. Nouvel acide nucléique
WO2008084319A2 (ja) 2006-12-18 2008-07-17 Kyowa Hakko Kirin Co., Ltd. 新規核酸
WO2008096811A1 (ja) 2007-02-07 2008-08-14 Dnavec Corporation 弱毒化マイナス鎖rnaウイルス
WO2008136438A1 (ja) 2007-04-27 2008-11-13 Kyushu University, National University Corporation 遺伝子治療用ウイルスベクター
WO2009044899A1 (ja) 2007-10-03 2009-04-09 Kyowa Hakko Kirin Co., Ltd. 細胞の増殖を制御する核酸
US7521043B2 (en) 2004-01-13 2009-04-21 Dnavec Research Inc. Gene therapy for tumors using minus-strand RNA viral vectors encoding immunostimulatory cytokines
JP2009268471A (ja) * 2009-08-07 2009-11-19 Dnavec Research Inc センダイウイルスベクターを用いたワクチンおよびワクチンタンパク質
WO2009148137A1 (ja) 2008-06-04 2009-12-10 協和発酵キリン株式会社 肥満細胞の脱顆粒を制御する核酸
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010050586A1 (ja) 2008-10-31 2010-05-06 ディナベック株式会社 組み換え蛋白質の発現を増強する方法
WO2011083881A1 (ja) 2010-01-08 2011-07-14 国立大学法人京都大学 タウオパチー治療用ワクチン
WO2012029770A1 (ja) 2010-08-30 2012-03-08 ディナベック株式会社 多能性幹細胞を誘導するための組成物およびその使用
EP2434020A2 (en) 2004-01-22 2012-03-28 Dnavec Research Inc. Method of producing minus strand RNA virus vector with the use of hybrid promoter containing cytomegalovirus enhancer and avian beta-actin promoter
US8889118B2 (en) 2004-06-24 2014-11-18 Dna Vec Research Inc. Anticancer agent containing dendritic cell having RNA virus transferred thereinto
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2018092887A1 (ja) 2016-11-17 2018-05-24 国立感染症研究所長が代表する日本国 非感染性パラミクソウイルス粒子を用いた感染症ワクチン
WO2019017438A1 (ja) 2017-07-21 2019-01-24 株式会社Idファーマ 標的配列を改変するためのポリヌクレオチドおよびその使用
WO2019142933A1 (ja) 2018-01-22 2019-07-25 国立感染症研究所長が代表する日本国 選択的cd8陽性t細胞誘導ワクチン抗原
WO2022050419A1 (ja) 2020-09-04 2022-03-10 Heartseed株式会社 iPS細胞の品質改善剤、iPS細胞の製造方法、iPS細胞、及びiPS細胞製造用組成物
WO2022138964A1 (ja) 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100525687B1 (ko) * 1995-11-01 2005-11-25 가부시끼가이샤 디나벡 겡뀨쇼 재조합체 센다이바이러스
KR100503016B1 (ko) * 1998-05-18 2005-07-21 세이코 엡슨 가부시키가이샤 잉크카트리지
US6544785B1 (en) 1998-09-14 2003-04-08 Mount Sinai School Of Medicine Of New York University Helper-free rescue of recombinant negative strand RNA viruses
US6490775B1 (en) * 1999-04-23 2002-12-10 Veri-Tek Inc. Press operation verification system
DK1186667T3 (da) * 1999-05-18 2007-10-22 Dnavec Research Inc Kappegendeficient virusvektor af Paramyxoviridae
US7226786B2 (en) 1999-05-18 2007-06-05 Dnavec Research Inc. Envelope gene-deficient Paramyxovirus vector
US20030166252A1 (en) * 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
US7314614B1 (en) 1999-11-02 2008-01-01 Dnavec Research, Inc. Recombinant sendai virus vector for introducing exogenous genes to airway epithelia
EP1228232B1 (en) 1999-11-02 2007-01-17 Dnavec Research Inc. Recombinant sendai virus vector for introducing exogenous genes to airway epithelia
US20030170210A1 (en) * 2000-01-19 2003-09-11 Ichiro Masaki Use of paramyxovirus vector in gene transfer into blood vessel
US20020002143A1 (en) * 2000-03-30 2002-01-03 Munehide Kano AIDS virus vaccines using sendai virus vector
CA2322057A1 (en) 2000-05-18 2001-11-18 Dnavec Research Inc. Paramyxovirus vectors used for transfer of foreign genes
CN100531802C (zh) * 2000-06-01 2009-08-26 株式会社载体研究所 含有血凝素活性膜蛋白质的假型逆转录病毒载体
WO2001092548A2 (en) * 2000-06-01 2001-12-06 St. Jude Children's Research Hospital Vaccine and gene therapy vector and methods of use thereof
KR20030014392A (ko) * 2000-06-27 2003-02-17 가부시키가이샤 디나벡크 겐큐쇼 신장세포에 유전자를 도입하기 위한 바이러스 벡터
US20040053877A1 (en) * 2000-10-06 2004-03-18 Masayuki Fukumura Paramyxovirus vector for transfering foreign gene into skeletal muscle
CA2430112C (en) 2000-11-27 2010-07-27 Dnavec Research Inc. Paramyxovirus vector encoding angiogenesis gene and use thereof
US6596206B2 (en) * 2001-03-30 2003-07-22 Picoliter Inc. Generation of pharmaceutical agent particles using focused acoustic energy
CN1678345B (zh) 2002-04-26 2013-09-11 米迪缪尼有限公司 制备流感病毒的多质粒系统
US7465456B2 (en) 2002-04-26 2008-12-16 Medimmune, Llc Multi plasmid system for the production of influenza virus
CN100358581C (zh) * 2002-04-30 2008-01-02 株式会社载体研究所 具有降低的血凝活性的药物载体组合物或基因载体组合物
AU2003241953A1 (en) * 2002-06-03 2003-12-19 Dnavec Research Inc. Pramyxovirus vectors encoding antibody and utilization thereof
CN1694956A (zh) * 2002-09-04 2005-11-09 株式会社载体研究所 使用衍生自革兰氏阳性菌的唾液酸苷酶产生包含与唾液酸结合的膜蛋白作为包膜成分的病毒载体的方法
CA2503317A1 (en) * 2002-10-24 2004-05-06 Dnavec Research Inc. Method of transferring gene into t cells
CA2529647C (en) 2003-06-16 2013-08-13 Medimmune Vaccines, Inc. Influenza hemagglutinin and neuraminidase variants
CA2530627A1 (en) * 2003-06-30 2005-01-06 Dnavec Research Inc. Minus strand rna viral vectors carrying a gene with altered hypermutable regions
JP4771959B2 (ja) 2003-12-23 2011-09-14 メディミューン,エルエルシー インフルエンザウイルス作製のための多重プラスミド系
KR20070004637A (ko) * 2004-01-22 2007-01-09 가부시키가이샤 디나벡크 겐큐쇼 바이러스 벡터의 제조방법
WO2005087269A1 (ja) * 2004-03-16 2005-09-22 Dnavec Research Inc. 腫瘍増殖を抑制する方法
JPWO2005097988A1 (ja) * 2004-03-23 2008-02-28 株式会社ディナベック研究所 組織の維持および/または修復に関連する骨髄関連細胞
CA2879182C (en) 2004-05-25 2017-02-14 Medimmune, Inc. Influenza hemagglutinin and neuraminidase variants
DE102005006388A1 (de) 2005-02-11 2006-08-24 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Replikationsdefiziente RNA-Viren als Impfstoffe
EP2441471B1 (en) 2005-03-08 2014-10-08 MedImmune, LLC Reassortant influenza viruses
PT1950307E (pt) * 2005-10-28 2016-02-29 Ip Pharma Co Ltd Transferência de gene para as células estaminais epiteliais das vias aéreas utilizando um vetor lentiviral pseudotipado com proteína de espículas de vírus de arn
US7601356B2 (en) 2006-07-21 2009-10-13 Medimmune, Llc Methods and compositions for increasing replication capacity of an influenza virus
US8039002B2 (en) 2006-08-09 2011-10-18 Medimmune, Llc Influenza hemagglutinin and neuraminidase variants
EP2097517B1 (en) 2006-10-16 2014-06-04 Genelux Corporation Recombinant Lister strain vaccinia virus encoding an anti-VEGF single chain antibody
JP4936482B2 (ja) * 2007-04-13 2012-05-23 独立行政法人産業技術総合研究所 改良された持続感染型センダイウイルスベクター
EP2674486A1 (en) 2007-06-18 2013-12-18 MedImmune, LLC Influenza B viruses having alterations in the hemaglutinin polypeptide
CN102149405A (zh) 2008-07-11 2011-08-10 米迪缪尼股份有限公司 流感血凝素和神经氨酸酶变体
CA2752205A1 (en) 2009-02-12 2010-08-19 Medimmune, Llc Influenza hemagglutinin and neuraminidase variants
CN102205118B (zh) * 2011-03-25 2013-05-22 天津济命生生物科技有限公司 一种生物制品及其制备方法
TR201815468T4 (tr) 2011-04-28 2018-11-21 St Jude Childrens Res Hospital Modifiye sendai virüs aşısı ve görüntüleme vektörü.
US9951349B2 (en) * 2011-09-27 2018-04-24 Yale University Compositions and methods for transient expression of recombinant RNA
RU2519763C9 (ru) 2012-11-26 2015-04-27 Ольга Вячеславовна Матвеева Метод иммунотерапии онкологических заболеваний и фармацевтические композиции на основе онколитического вируса сендай
CN112538498B (zh) * 2020-04-20 2023-04-25 梅尔顿(深圳)生物医药技术有限公司 重组仙台病毒的构建方法及其应用
WO2023227758A1 (en) 2022-05-25 2023-11-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Vaccine with reduced anti-vector antigenicity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430791A (ja) * 1990-05-29 1992-02-03 Kunitada Shimotoono 構造蛋白質遺伝子、組換えベクター、組換えウイルス、ポリペプチドおよびポリペプチドの製造方法
JPH04211377A (ja) * 1990-02-02 1992-08-03 Schweiz Serum & Impfinst & Inst Zur Erforshung Der Infektionskrankheiten 負鎖RNAウイルスのゲノムに対応するcDNAおよび感染性の負鎖RNAウイルスの製造方法
JPH0585943A (ja) * 1991-07-18 1993-04-06 Tonen Corp 組換えワクシニアウイルスを用いる非a非b型肝炎ウイルス遺伝子の発現および非a非b型肝炎ワクチン
JPH05301895A (ja) * 1992-04-22 1993-11-16 Nippon Zeon Co Ltd ハイブリッド抗原タンパク質、それを発現する組み換えウイルス、及びその製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217879A (en) * 1989-01-12 1993-06-08 Washington University Infectious Sindbis virus vectors
US5166057A (en) 1989-08-28 1992-11-24 The Mount Sinai School Of Medicine Of The City University Of New York Recombinant negative strand rna virus expression-systems
US5665362A (en) * 1990-09-25 1997-09-09 Cantab Pharmaceuticals Research Limited Viral vaccines
US5173414A (en) * 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
US5318898A (en) 1991-04-02 1994-06-07 Genetics Institute, Inc. Production of recombinant bone-inducing proteins
US5445953A (en) * 1991-08-26 1995-08-29 Immuno Aktiengesellschaft Direct molecular cloning of a modified poxvirus genome
ZA937164B (en) 1992-09-28 1994-05-23 Commw Scient Ind Res Org Delivery system
PT702085E (pt) 1994-07-18 2004-04-30 Karl Klaus Conzelmann Virus de arn de cadeia negativa nao segmentada infeccioso recombinante
US5716821A (en) 1994-09-30 1998-02-10 Uab Research Foundation Prevention and treatment of respiratory tract disease
US5789229A (en) 1994-09-30 1998-08-04 Uab Research Foundation Stranded RNA virus particles
DE69510207T3 (de) 1995-08-09 2007-02-15 Schweiz. Serum- & Impfinstitut Bern Verfahren zur Herstellung von infektiösen minussträngigen RNA-Viren
AU7335196A (en) * 1995-10-31 1997-05-22 Dnavec Research Inc. (-)-strand rna virus vector having autonomously replicating activity
KR100525687B1 (ko) * 1995-11-01 2005-11-25 가부시끼가이샤 디나벡 겡뀨쇼 재조합체 센다이바이러스
CA2253595A1 (en) 1996-05-01 1997-11-06 The Government Of The United States Of America, Represented By The Secre Tary, Department Of Health And Human Services Generation of viral transfectants using recombinant dna-derived nucleocapsid proteins
AT405939B (de) 1997-02-24 1999-12-27 Immuno Ag Verfahren zur inaktivierung von lipidumhüllten viren
US6231868B1 (en) * 1997-09-30 2001-05-15 University Of Maryland-Biotechnology Institute Method for generating nonpathogenic infections birnavirus from synthetic RNA transcripts
US7241617B2 (en) 1998-07-03 2007-07-10 Dnavec Research, Inc. Sendai viral vectors comprising foreign genes inserted between the R1 and R2 Loci
US6828138B1 (en) 1998-08-11 2004-12-07 Dnavec Research Inc. Recombinant sendai virus vector including a gene encoding a chemokine
US6514728B1 (en) * 1998-11-09 2003-02-04 Nippon Biocaptal Limited Process for preparation of cytokines using Sendai virus expression system
US7226786B2 (en) 1999-05-18 2007-06-05 Dnavec Research Inc. Envelope gene-deficient Paramyxovirus vector
US20030166252A1 (en) 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
US20030170210A1 (en) 2000-01-19 2003-09-11 Ichiro Masaki Use of paramyxovirus vector in gene transfer into blood vessel
US20020002143A1 (en) 2000-03-30 2002-01-03 Munehide Kano AIDS virus vaccines using sendai virus vector
CA2322057A1 (en) * 2000-05-18 2001-11-18 Dnavec Research Inc. Paramyxovirus vectors used for transfer of foreign genes
KR20030014392A (ko) 2000-06-27 2003-02-17 가부시키가이샤 디나벡크 겐큐쇼 신장세포에 유전자를 도입하기 위한 바이러스 벡터
US20040053877A1 (en) 2000-10-06 2004-03-18 Masayuki Fukumura Paramyxovirus vector for transfering foreign gene into skeletal muscle
CA2430112C (en) 2000-11-27 2010-07-27 Dnavec Research Inc. Paramyxovirus vector encoding angiogenesis gene and use thereof
CA2503317A1 (en) 2002-10-24 2004-05-06 Dnavec Research Inc. Method of transferring gene into t cells
KR20050100379A (ko) 2003-01-31 2005-10-18 가부시키가이샤 디나벡크 겐큐쇼 리보자임을 코드하는 파라믹소바이러스 벡터 및 그의 이용
CA2530627A1 (en) 2003-06-30 2005-01-06 Dnavec Research Inc. Minus strand rna viral vectors carrying a gene with altered hypermutable regions
CA2544786A1 (en) 2003-11-04 2005-05-12 Dnavec Research Inc. Method for producing gene transferred dendritic cells
KR20060129013A (ko) 2004-01-13 2006-12-14 가부시키가이샤 디나벡크 겐큐쇼 면역자극성 사이토카인을 코드하는 마이너스 가닥 rna 바이러스 벡터를 사용하는 종양의 유전자 치료
CA2553976C (en) 2004-01-22 2013-09-24 Dnavec Research Inc. Method for producing minus-strand rna viral vectors using hybrid promoter comprising cytomegalovirus enhancer and chicken .beta.-actin promoter
KR20070004637A (ko) 2004-01-22 2007-01-09 가부시키가이샤 디나벡크 겐큐쇼 바이러스 벡터의 제조방법
JPWO2005097988A1 (ja) 2004-03-23 2008-02-28 株式会社ディナベック研究所 組織の維持および/または修復に関連する骨髄関連細胞
KR20070028573A (ko) 2004-06-24 2007-03-12 가부시키가이샤 디나벡크 겐큐쇼 마이너스 가닥 rna 바이러스를 포함하는 항암제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211377A (ja) * 1990-02-02 1992-08-03 Schweiz Serum & Impfinst & Inst Zur Erforshung Der Infektionskrankheiten 負鎖RNAウイルスのゲノムに対応するcDNAおよび感染性の負鎖RNAウイルスの製造方法
JPH0430791A (ja) * 1990-05-29 1992-02-03 Kunitada Shimotoono 構造蛋白質遺伝子、組換えベクター、組換えウイルス、ポリペプチドおよびポリペプチドの製造方法
JPH0585943A (ja) * 1991-07-18 1993-04-06 Tonen Corp 組換えワクシニアウイルスを用いる非a非b型肝炎ウイルス遺伝子の発現および非a非b型肝炎ワクチン
JPH05301895A (ja) * 1992-04-22 1993-11-16 Nippon Zeon Co Ltd ハイブリッド抗原タンパク質、それを発現する組み換えウイルス、及びその製造方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
ANNU. REV. MICROBIOL., Vol. 47, (1993), ADOLFO GARCIA-SASTE et al., "Genetic Manipulation of Negative-Strand RNA Virus Genomes", pages 765-790. *
ANNU. REV. MICROBIOL., vol. 47, 1993, pages 765 - 790
CALAIN ET AL., J. OF VIROLOGY, vol. 67, no. 8, 1993, pages 4822 - 30
CURR. OPIN. GENET . DEV., vol. 2, 1992, pages 77 - 81
EMBO J., vol. 10, 1991, pages 3558
EMBO. J., vol. 9, 1990, pages 379 - 384
HUMAN GENE THERAPY, vol. 6, 1995, pages 1161 - 1167
J. VIROL., vol. 68, 1994, pages 713 - 719
JOURNAL OF VIROLOGY, Vol. 66(12), (1992), K.H. PARK et al., "In Vivo Model for Pseudo-Templated Transcription In Sendai Virus", pages 7033-7039. *
JOURNAL OF VIROLOGY, Vol. 67(8), (1993), PHILIPPE CALAIN et al., "The Rule of Six, a Basic Feature For Efficient Replication of Sendai Virus Defective Interfering RNA", pages 4822-4830. *
JOURNAL OF VIROLOGY, vol. 67, no. 8, 1993, pages 4822 - 4830
JOURNAL OF VIROLOGY, Vol. 68(12), (1994), W. WILLEBRINK et al., "Long-Term Replication of Sendai Virus Defective Interfering Particle Nucleocapsids in Stable Helper Cell Lines", pages 8413-8417. *
METHODS IN CELL BIOLOGY, vol. 43, 1994, pages 43 - 53
METHODS IN CELL BIOLOGY, vol. 43, 1994, pages 55 - 78
WILLENBRINK, J. OF VIROLOGY, vol. 68, no. 12, 1994, pages 8413 - 17

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241617B2 (en) 1998-07-03 2007-07-10 Dnavec Research, Inc. Sendai viral vectors comprising foreign genes inserted between the R1 and R2 Loci
EP1094115A4 (en) * 1998-07-03 2005-11-02 Dnavec Research Inc NEGATIVE STRENGTH RNA VIRUS VECTOR
US6828138B1 (en) * 1998-08-11 2004-12-07 Dnavec Research Inc. Recombinant sendai virus vector including a gene encoding a chemokine
US6514728B1 (en) 1998-11-09 2003-02-04 Nippon Biocaptal Limited Process for preparation of cytokines using Sendai virus expression system
WO2001018223A1 (fr) * 1999-09-06 2001-03-15 Dnavec Research Inc. Paramoxyvirus possedant une sequence d'initiation de transcription modifiee
JP2003513633A (ja) * 1999-11-02 2003-04-15 株式会社ディナベック研究所 気道上皮細胞への外因性遺伝子導入用組換えセンダイウイルスベクター
JP4838962B2 (ja) * 1999-11-02 2011-12-14 株式会社ディナベック研究所 気道上皮細胞への外因性遺伝子導入用組換えセンダイウイルスベクター
JP2001275684A (ja) * 2000-03-31 2001-10-09 Nippon Medical Research Kk 組換え体イヌジステンパーウイルスおよびその作製方法
JP2002142770A (ja) * 2000-11-08 2002-05-21 Dnavec Research Inc 循環系への遺伝子送達用パラミクソウイルスベクター
EP1662003A2 (en) 2000-11-08 2006-05-31 DNAVEC Research, Inc. Paramyxovirus vector for gene transfer to the cardiovascular system
WO2005042737A1 (ja) 2003-11-04 2005-05-12 Dnavec Research Inc. 遺伝子導入された樹状細胞の製造方法
US7521043B2 (en) 2004-01-13 2009-04-21 Dnavec Research Inc. Gene therapy for tumors using minus-strand RNA viral vectors encoding immunostimulatory cytokines
US8741650B2 (en) 2004-01-22 2014-06-03 Dnavec Research Inc. Methods for producing minus-strand RNA viral vectors using hybrid promoter comprising cytomegalovirus enhancer and chicken β-actin promoter
EP2434020A2 (en) 2004-01-22 2012-03-28 Dnavec Research Inc. Method of producing minus strand RNA virus vector with the use of hybrid promoter containing cytomegalovirus enhancer and avian beta-actin promoter
US8889118B2 (en) 2004-06-24 2014-11-18 Dna Vec Research Inc. Anticancer agent containing dendritic cell having RNA virus transferred thereinto
WO2006134917A1 (ja) 2005-06-14 2006-12-21 Dnavec Corporation 抗体の作製方法
JPWO2007083644A1 (ja) * 2006-01-17 2009-06-11 ディナベック株式会社 新規タンパク質発現系
WO2007083644A1 (ja) * 2006-01-17 2007-07-26 Dnavec Corporation 新規タンパク質発現系
WO2007139178A1 (ja) 2006-05-31 2007-12-06 Dnavec Corporation アルツハイマー病治療薬
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
EP2374884A2 (en) 2006-09-04 2011-10-12 Kyowa Hakko Kirin Co., Ltd. Human miRNAs isolated from mesenchymal stem cells
WO2008029790A1 (fr) 2006-09-04 2008-03-13 Kyowa Hakko Kirin Co., Ltd. Nouvel acide nucléique
WO2008084319A2 (ja) 2006-12-18 2008-07-17 Kyowa Hakko Kirin Co., Ltd. 新規核酸
WO2008096811A1 (ja) 2007-02-07 2008-08-14 Dnavec Corporation 弱毒化マイナス鎖rnaウイルス
WO2008136438A1 (ja) 2007-04-27 2008-11-13 Kyushu University, National University Corporation 遺伝子治療用ウイルスベクター
WO2009044899A1 (ja) 2007-10-03 2009-04-09 Kyowa Hakko Kirin Co., Ltd. 細胞の増殖を制御する核酸
WO2009148137A1 (ja) 2008-06-04 2009-12-10 協和発酵キリン株式会社 肥満細胞の脱顆粒を制御する核酸
EP3075850A1 (en) 2008-07-16 2016-10-05 IP Pharma Co., Ltd. Method for production of reprogrammed cell using chromosomally unintegrated virus vector
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010050586A1 (ja) 2008-10-31 2010-05-06 ディナベック株式会社 組み換え蛋白質の発現を増強する方法
JP2009268471A (ja) * 2009-08-07 2009-11-19 Dnavec Research Inc センダイウイルスベクターを用いたワクチンおよびワクチンタンパク質
WO2011083881A1 (ja) 2010-01-08 2011-07-14 国立大学法人京都大学 タウオパチー治療用ワクチン
WO2012029770A1 (ja) 2010-08-30 2012-03-08 ディナベック株式会社 多能性幹細胞を誘導するための組成物およびその使用
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2018092887A1 (ja) 2016-11-17 2018-05-24 国立感染症研究所長が代表する日本国 非感染性パラミクソウイルス粒子を用いた感染症ワクチン
WO2019017438A1 (ja) 2017-07-21 2019-01-24 株式会社Idファーマ 標的配列を改変するためのポリヌクレオチドおよびその使用
WO2019142933A1 (ja) 2018-01-22 2019-07-25 国立感染症研究所長が代表する日本国 選択的cd8陽性t細胞誘導ワクチン抗原
WO2022050419A1 (ja) 2020-09-04 2022-03-10 Heartseed株式会社 iPS細胞の品質改善剤、iPS細胞の製造方法、iPS細胞、及びiPS細胞製造用組成物
WO2022138964A1 (ja) 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法

Also Published As

Publication number Publication date
US20020098576A1 (en) 2002-07-25
EP0863202A4 (en) 1999-03-03
CA2236378C (en) 2011-01-25
US20050266566A1 (en) 2005-12-01
ATE470704T1 (de) 2010-06-15
EP0863202B1 (en) 2010-06-09
CN1207124A (zh) 1999-02-03
CN1143892C (zh) 2004-03-31
HK1018078A1 (en) 1999-12-10
US7442544B2 (en) 2008-10-28
KR100525687B1 (ko) 2005-11-25
KR19990067271A (ko) 1999-08-16
US7101685B2 (en) 2006-09-05
CA2236378A1 (en) 1997-05-09
DK0863202T3 (da) 2010-09-27
AU7335296A (en) 1997-05-22
DE69638196D1 (de) 2010-07-22
EP0863202A1 (en) 1998-09-09

Similar Documents

Publication Publication Date Title
WO1997016539A1 (fr) Virus sendai recombinant
KR100754091B1 (ko) 자율 복제 능력을 갖는 (-)쇄 rna 바이러스 벡터
KR100702275B1 (ko) 백신 및 유전자 치료용 재조합 인플루엔자 바이러스
US12186386B2 (en) Recombinant RSV with silent mutations, vaccines, and methods related thereto
CA2379012A1 (en) In vitro reconstitution of segmented negative-strand rna viruses
JP3992200B2 (ja) 組換え体センダイウイルスを利用した膜融合性リポソーム
JP3638019B2 (ja) 組換え体センダイウイルス
JP3991339B2 (ja) 組換え体センダイウイルス
PT1194580E (pt) Recostituição in victro de vírus de rna de cadeia negativa segmentados
JP3732204B2 (ja) 自律複製能を有する(−)鎖rnaウイルスベクター
JP2005102702A (ja) 組換え体センダイウイルス
CA2236113C (en) Negative strand rna viral vector having autonomous replication capability
WO2020256099A1 (ja) 外来遺伝子を安定的に保持する人工組換えrnaウイルスの作製方法
JP2001275684A (ja) 組換え体イヌジステンパーウイルスおよびその作製方法
CN117683737A (zh) 建立基于水疱性口炎病毒载体的复制型重组病毒用于研究SADS-CoV入侵和疫苗开发
JP2004187533A (ja) 非分節(−)鎖rnaウイルス発現ベクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199476.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2236378

Country of ref document: CA

Ref document number: 2236378

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980703241

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996935403

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996935403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980703241

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980703241

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载