+

WO1997003226A1 - Traitements de surface de metaux, procede de traitement de surface de metaux et materiau metallique ayant subi un traitement de surface - Google Patents

Traitements de surface de metaux, procede de traitement de surface de metaux et materiau metallique ayant subi un traitement de surface Download PDF

Info

Publication number
WO1997003226A1
WO1997003226A1 PCT/JP1996/001902 JP9601902W WO9703226A1 WO 1997003226 A1 WO1997003226 A1 WO 1997003226A1 JP 9601902 W JP9601902 W JP 9601902W WO 9703226 A1 WO9703226 A1 WO 9703226A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal surface
surface treatment
resin
treatment agent
compound
Prior art date
Application number
PCT/JP1996/001902
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Kanda
Atsuhiko Tounaka
Yasuhiro Shibata
Toshiaki Shimakura
Kiyotada Yasuhara
Susumu Maekawa
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17323995A external-priority patent/JP3871361B2/ja
Priority claimed from JP31236795A external-priority patent/JP3881392B2/ja
Priority claimed from JP7475196A external-priority patent/JPH09263682A/ja
Priority claimed from JP7475696A external-priority patent/JPH09263952A/ja
Priority claimed from JP15223396A external-priority patent/JPH101780A/ja
Priority claimed from JP15223496A external-priority patent/JPH101788A/ja
Priority claimed from JP15223696A external-priority patent/JP3789553B2/ja
Priority claimed from JP15223596A external-priority patent/JPH101781A/ja
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to EP96922270A priority Critical patent/EP0838537B1/en
Priority to DE69616066T priority patent/DE69616066T2/de
Publication of WO1997003226A1 publication Critical patent/WO1997003226A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • Metal surface treatment agent Metal surface treatment agent, metal surface treatment method and surface treated metal material
  • the present invention relates to a metal surface treatment agent, a treatment method, and a metal material subjected to a surface treatment, particularly a metal surface treatment agent having improved corrosion resistance, lubricity (lubricity), treatment appearance retention (colorability), and coating film adhesion.
  • a method and a surface treated metal material are particularly a metal surface treatment agent having improved corrosion resistance, lubricity (lubricity), treatment appearance retention (colorability), and coating film adhesion.
  • phosphate treatment chromate treatment, non-chromate treatment, and the like.
  • an organic film such as a paint or an adhesive
  • a phosphate film is formed on the metal surface by a phosphate treatment as a pretreatment.
  • an organic film such as a paint is formed on the upper surface, thereby improving corrosion resistance and coating film adhesion.
  • Metal surface treatment agents used in conventional phosphate treatment methods, etc. are required to meet the recent demands for corrosion resistance, coating film adhesion and friction resistance (also called “slipperiness”). Was not enough.
  • a “composite coating film” disclosed in Japanese Patent Application Laid-Open No. 5-117869 is published. "Forming metal surface treatment agent" has been proposed.
  • the metal surface treating agent disclosed in the above publication contains a cationic organic high molecular compound having at least one cationic nitrogen atom and a molecular weight of 100 to 100,000 or a salt thereof. It is disclosed that it consists of an acid salt surface treatment solution.
  • Japanese Patent Application Laid-Open No. 51-73938 discloses “Surface treatment of aluminum and its base metal”.
  • a metal surface treatment method is proposed, which aims to impart corrosion resistance and coating film adhesion by limiting the metal to be surface-treated to aluminum or the like.
  • a treatment solution mainly containing a water-soluble titanium compound and an organic polymer film-forming substance containing a water-soluble resin such as vinyl acetate / vinylidene chloride or acrylic acid or an emulsion resin is used. Has been described.
  • a chemical conversion treatment or the like performed later is performed. This chemical treatment is performed for the purpose of improving corrosion resistance, coating film adhesion, and slipperiness.
  • chromate treatment there are two types of chemical conversion treatment: chromate treatment and non-chromate treatment.
  • non-chromate treatment has been mainly performed from the viewpoint of pollution prevention.
  • a zirconium phosphate-based treatment agent is widely used as the non-chromium conversion treatment agent in the non-chromate treatment.
  • the “Surface treatment method for aluminum” disclosed in Japanese Patent Publication No. 57-39314 discloses a method of treating the surface of aluminum with an acidic aqueous solution containing a zirconium salt, hydrogen peroxide and phosphoric acid. Method power has been proposed.
  • “Surface treatment liquid and treatment method for aluminum DI can and tin can DI can” described in Japanese Patent Application Laid-Open No. 7-48767 includes phosphate ions and zirconium compounds, and contains pH 2.0 to 4.
  • the aluminum can is thoroughly washed, drained and dried open, and then printed and painted.
  • the width of the belt conveyor that transports aluminum cans sharply decreases. At this time, there is a possibility that the cans come into contact with each other, or the cans come into contact with the guides of the belt conveyor, causing jamming (transfer failure). Will decrease.
  • composition for surface treatment of aluminum-containing metal material and surface treatment method includes phosphate ions, a water-soluble zirconium compound, a fluoride, and a tertiary compound.
  • a composition for surface treatment comprising a water-soluble polyamide having at least one selected from an amine group and a polyalkyl glycol group.
  • the water-soluble zirconium compound in the composition for surface treatment described in the above publication forms a zirconium phosphate film on the metal surface to a certain thickness or more, the film also aggregates. There was a problem that the film was broken and the adhesion of the coating film was reduced.
  • the "Surface treatment solution for aluminum and aluminum alloy" disclosed in Japanese Patent Application Laid-Open No. 4-66671 includes phosphate ions of 130 g / 1 and condensed phosphate ions of 0.1 to 10 g. g Zl and a water-soluble resin represented by the following general formula (1) as a solid content of 0.1 to 20 g Zl, and a pH of 2.0 to 6. 5, a surface treatment liquid has been proposed.
  • n 10 to 80
  • X and Y are hydrogen or Z represented by the following formula and H
  • R 2 is -C 1 () alkyl group or inhibit mud hexyl alkyl group is introduction rate of the aromatic rings per Z of a 30 to 200 mol%. )
  • Japanese Patent Application Laid-Open No. 7-278410 proposes a "polymer composition for surface treatment of metal material and a treatment method" which proposes a treating agent capable of forming an inorganic film and also forming an organic film of a phenolic resin. I have.
  • a processing method of contacting a metal surface with a processing agent of -6.5 is disclosed.
  • Japanese Patent Application Laid-Open No. Hei 7-278836 entitled “Surface Treatment Composition and Surface Treatment Method for Aluminum-Containing Metal Material” includes a treatment agent that forms an inorganic film and also forms an organic film of bisphenol A-based resin. Proposed. That is, the treating agent contains phosphate ions, condensed phosphate ions, and an aqueous polymer in a weight ratio of 1 to 30: 0.1 to 10: 0.2 to 20, and 2.0 to 6.5. PH treatment agent And the above material surface at 30 to 65 ° C. for 5 to 60 seconds, washing with water, and drying by heating.
  • the water-soluble polymer has a chemical structure represented by the following chemical formula (6), wherein Y 1 and Y 2 in the formula (V) are an H atom or a compound represented by the following chemical formula (7) or (8).
  • Z group average number of Z group substitution of benzene ring in polymer molecule 0.2 to 1.0.
  • any of the surface treatment agents disclosed in JP-A-4-66671, JP-A-7-278410 and JP-A-7-278836 described above does not include gold. Unless an organic coating layer having a certain thickness or more is formed on the metal surface, there is a problem that the unpainted corrosion resistance becomes insufficient. On the other hand, when the thickness of the organic film is increased, interference colors derived from the organic polymer compound are generated, and the appearance is deteriorated.
  • the present invention has been made in view of the above-mentioned conventional problems, and has as its object to improve the corrosion resistance of unpainted (in the case of aluminum DI cans, blackening resistance to boiling water), and to improve the slipperiness (lubricity) of metal surfaces.
  • the organic polymer compound or a salt thereof contained in the metal surface treating agent according to the present invention is, for example, any of a water-soluble, water-dispersible or emulsion polymer compound or a salt thereof, and at least a nitrogen atom.
  • a water-soluble, water-dispersible or emulsion polymer compound or a salt thereof Contains one or more atoms.
  • the organic polymer compound has one or more resin skeletons of an epoxy resin, an acrylic resin, a phenol resin, a urethane resin, a polybutadiene resin, a polyamide resin, and an olefin resin.
  • Compound It is more preferable that at least one of the nitrogen atoms in the organic polymer compound has a structure represented by the chemical formula (9) or the chemical formula (10).
  • R, RR 5 hydrogen, hydroxyl group, straight-chain or branched alkyl group having 1 to 10 carbon atoms which may be substituted, straight or branched alkyl group or 1 to 10 carbon atoms which may be substituted.
  • Base
  • At least one of the nitrogen atoms in the organic polymer compound has any of the structures represented by chemical formula (11).
  • Examples of the salt of the organic polymer compound include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. Equal strength.
  • the molecular weight of the organic polymer compound or a salt thereof in the invention is preferably from 300 to 100,000.
  • the molecular weight is less than 300, corrosion resistance and friction resistance (hereinafter referred to as “slipperiness”) are poor.
  • the molecular weight exceeds 1000, the water solubility is poor.
  • the content of the organic polymer compound or a salt thereof with respect to the metal surface treatment composition is preferably from 0.01 to: L Og, more preferably from 0.1 to 5 g / 1. is there.
  • L Og the binder effect of the organic polymer compound or its salt is not exerted, and the physical durability of the undercoat coating film is not exhibited. Is inferior.
  • the content of the organic polymer compound or its salt exceeds 1 Og / 1, the corrosion resistance deteriorates.
  • the organic polymer compound in the present invention more preferably contains 1 to 5 fluoro groups, 1 to 5 hydroxyl groups, and 1 to 10 nitrogen atoms per 500 molecular weight. It is to be. If the number of phenyl groups is less than 1 per 500 units, the corrosion resistance and the slipperiness are deteriorated. On the other hand, when the number of phenyl groups exceeds 5 per 500 molecular weight, water solubility, corrosion resistance and coating film adhesion are deteriorated. If the number of hydroxyl groups is less than 1 per 500 molecular weight, the adhesion to the coating film and the water solubility in the metal surface treatment liquid are deteriorated.
  • the nitrogen-containing organic polymer compound according to the present invention has, for example, an acryl-based resin skeleton
  • a copolymer of the following monomers is suitable. That is, (a) the nitrogen-containing acrylic monomer has 1 to 5 carbon atoms and includes (meth) acrylamide, dimethylacrylamide, N-methylolacrylamide, N-methylaminoalkyl (meth) acrylamide, N-dimethylaminoalkyl (meth) acryl, N-methylalkyl (meth) acrylamide, N-methylolaminoal Examples thereof include kill (meth) acrylamide and N-trimethylaminoalkyl (meth) acrylamide.
  • the hydroxyl group-containing acrylic monomer includes a hydroxyalkyl (meth) acrylate and an alkyl acrylate having 1 to 5 carbon atoms.
  • a nitrogen-containing acrylic monomer and (b) the hydroxyl-containing acrylic monomer in combination use a nitrogen- and hydroxyl-containing acrylyl monomer such as (meth) hydroxyalkyldimethylamine acrylate. Is also good.
  • phenol group-containing monomer examples include styrene, t-butylstyrene, vinylphenol, vinyltoluene, benzyl (meth) acrylate, and halides thereof.
  • acrylic monomers that may be further added include acrylic acid, methacrylic acid, alkyl (meth) acrylate, and isobonyl acrylate having 1 to 5 carbon atoms.
  • the copolymerization ratio of the copolymer comprising the above monomers is as follows: the nitrogen-containing acrylic monomer (a) is 5 to 60% by weight, the hydroxyl group-containing acrylic monomer (b) is 20 to 80% by weight, and the It is preferred that (c) is 5 to 50% by weight and the other acrylic monomer (d) is 0 to 30% by weight. More preferably, the content of the nitrogen-containing acrylic monomer is 10 to 40% by weight, the content of the hydroxyl group-containing acrylyl monomer is 40 to 70% by weight, and the content of the phenyl group-containing monomer is 10 to 30% by weight.
  • the copolymerization ratio is described on the assumption that the copolymer was formed at the S »ratio based on the monomer mixing ratio during the production of the copolymer.
  • the copolymerization ratio of the nitrogen-containing acrylyl monomer in the above copolymer is less than 5% by weight, the nitrogen atoms of the nitrogen-containing acrylyl monomer-copolymerization site cannot be coordinated to the metal surface, and the coating film adhesion also decreases. I do.
  • the copolymerization ratio of the nitrogen-containing acryl monomer in the above copolymer exceeds 60% by weight, the adhesion of the undercoating film itself to the metal surface is deteriorated.
  • the copolymerization ratio of the hydroxyl group-containing acrylic monomer in the above copolymer is less than 20% by weight, the adhesion of the coating film is deteriorated.
  • the copolymerization ratio of the hydroxyl group-containing acrylyl monomer in the above copolymer exceeds 80% by weight, the corrosion resistance deteriorates. Further, when the copolymerization ratio of the phenyl group-containing monomer in the above copolymer is less than 5% by weight, the sliding property and the boiling water blackening resistance are inferior. On the other hand, when the copolymerization ratio of the phenyl group-containing monomer in the above copolymer exceeds 50% by weight, water solubility and coating film adhesion are poor.
  • the boiling water-resistant blackening refers to a phenomenon in which the uncoated portion of the food can (aluminum) becomes black due to the action of the metal in the water during boiling water treatment with tap water or the like for sterilization.
  • the organic polymer compound containing a cationic ion atom or a salt thereof according to the present invention is, for example, any of a water-soluble, water-dispersible or emulsion resin or a salt thereof.
  • the cationic zeo atom-containing resin is one or more of an epoxy resin, an acrylic resin, a urethane resin, a polybutadiene resin, a polyamide resin, a phenol resin, and an olefin resin. It is a compound having a resin skeleton.
  • At least one of the cationic y-atom-containing resin or a salt thereof has the structure represented by the chemical formula (12).
  • R l, R hydrogen, hydroxyl group, linear or branched alkyl group having 1 to 15 carbon atoms which may be substituted, linear or branched alkanol having 1 to 15 carbon atoms which may be substituted.
  • Group particularly preferably, at least one of the i-atoms in the cationic i-atom-containing resin.
  • Examples of the salt of the cationic zeo atom-containing resin include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts.
  • the molecular weight of the cationic i-atom-containing resin or a salt thereof in the present invention is:
  • 100 to 100 is preferable.
  • the molecular weight is less than 1000, the corrosion resistance and the slipperiness are poor.
  • the molecular weight exceeds 100,000, the water solubility is poor.
  • the content of the cationic zeo atom-containing resin or its salt relative to the metal surface treatment composition is preferably from 0.01 to 10 gZl, more preferably from 0.1 gZl to 0.1 gZl. 5 gZl. If the content of the cationic zeo atom-containing resin or a salt thereof is less than 0.01 gZl, the binder effect of the cationic zeo atom-containing resin or a salt thereof is not exerted, and the physical properties of the coating film for the undercoating are not exhibited. Inferior durability. On the other hand, when the content of the cationic y-atom-containing resin or its salt exceeds 101, the corrosion resistance deteriorates.
  • the cationic zeo atom-containing resin of the present invention has 1 to 5 phenyl groups, 1 to 12 hydroxyl groups, and 0.1 to 7 zeo atoms per 500 molecular weight. And. If the number of phenyl groups is less than 1 per 500 molecular weight, corrosion resistance and slipperiness are deteriorated. On the other hand, when the number of phenyl groups exceeds 5 per 500 molecular weight, water solubility and coating film adhesion deteriorate. If the number of hydroxyl groups is less than 1 with a molecular weight of 500, the coating film adhesion and the water solubility in the metal surface treatment liquid will be deteriorated.
  • the corrosion resistance and the slipperiness are poor. Further, when the number of the cationic zeo atoms is less than 0.1 per 500 molecular weight, the adhesion to the coating film and the water solubility in the metal surface treatment liquid are deteriorated. On the other hand, when the number of cationic zeo atoms exceeds 500 per 500 molecular weight, the corrosion resistance is poor.
  • Rl, R 2 Water ⁇ , water 3 ⁇ 4 i, alkyl also be ⁇ JFI or branched Fushimi to E conversion charcoal purple C 1-15
  • charcoal of 1 to 15 S may be replaced with iSig or branched Al-Knol
  • R 3 10-18 carbon atoms or branched alkyl-
  • R 1 2 (R 1 2:. Water 3 ⁇ 4, water ®S, MAY conversion charcoal purple number 1 to 5 of the S conversion and may be Olffl or branched alkyl S, or 3 ⁇ 4 number 1 to 5 Qaifl or (Branched Al-force) OH
  • R t 2 'im water i3 ⁇ 4i5, tiii 1 - 15 of; MAY ⁇ / ⁇ or min * Y facedown
  • S ⁇ may be ⁇ or branched
  • R 3 « «» 10-: I 8 ⁇ or branched alkyl ⁇ )
  • R 1 R 2 is hydrogen, a hydroxyl group, and may be substituted with 1 to 15 carbon atoms.
  • the hydroxyl group in the compounds of the above formulas (13) to (17) is used to coat the coating.
  • the film adhesion is improved.
  • the fluorinated blackening resistance and the sliding property of the coating are improved by the phenyl group site in the compound of the above formula (13).
  • the iodine atoms in the compound of the above formula (13) improve the adhesion of the film to the metal.
  • the zeo atom in the compound of formula (13) is ionized, the treatment bath becomes stable.
  • the boiling water-resistant blackening refers to a phenomenon in which an unpainted portion of the food (aluminum) becomes black due to the action of the metal in the water during the boiling water treatment with tap water or the like performed for sterilization.
  • phenolic resin It is a resin that has a structure represented by the following chemical formula (18) as a repeating unit.
  • R R R .R is hydrogen, substituted with 1 to 5 carbon atoms.
  • the phenolic resin described above is a phenolic resin having a structural formula represented by the following chemical formula (19).
  • examples of the phenols include phenol, cresol, xylenol, ethylphenol, propylphenol, butylphenol, resorcinol, pyrogallol, and the like, and these may be used alone or in combination of two or more.
  • dialkylbenzene glycols examples include para-xylene glycol dimethyl ether, para-xylene glycol, meta-xylene glycol dimethyl ether, meta-xylene glycol, ortho-xylene glycol dimethyl ether, and ortho-xylene diol. A combination of more than two types may be used.
  • organic acids such as oxalic acid, paratoluenesulfonic acid, xylenesulfonic acid, and phenolsulfonic acid
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • the amount of the catalyst added is in the range of 0.01 to 3.0% by weight based on the sum of the charged amounts of the phenols and dialkylbenzene glycols.
  • the number of moles of the dialkylbenzene glycol is preferably from 0.02 to 0.6, more preferably from 0.03 to 0.5, per mole of the phenols represented by the chemical formula (19). If the mozole number of the dialkylbenzene glycolones exceeds 0.6, the stability of the resulting phenol compound, for example, a metal surface treatment solution, will be reduced. Furthermore, it may become insoluble in an acid, for example, making it impossible to perform a desired metal surface treatment. On the other hand, when the number of moles of dialkylbenzene glycosole is less than 0.02, the obtained phenolic compound has a high liquid solubility and the amount of resin adhered to the surface treatment decreases, resulting in corrosion resistance and slippage. Is reduced.
  • the sum of the number of moles of dialkylbenzene glycolones and formaldehyde is optimally 0.7 to 0.9 with respect to 1 mole of the phenols represented by the above chemical formula (19). If the sum of the number of moles of dialkylbenzene glycols and formaldehyde exceeds 0.9, gelation occurs during the polycondensation reaction. On the other hand, when the sum of the number of moles of dialkylbenzene glycols and formaldehyde is less than 0.7, the solution viscosity (or molecular weight) of the polycondensate itself does not increase, and the liquid stability becomes too good. The amount of resin adhered to the surface decreases, and the corrosion resistance and slipperiness decrease.
  • the amines represented by (21) are preferably 0.5 to 2.0 moles, and more preferably 0.7 to 1.5. If the number of moles of amines is more than 2.0, the liquid stability becomes too good, the amount of resin adhered to the treated surface is reduced, and the corrosion resistance and slipperiness are reduced. In addition, unreacted amines and formaldehyde may remain, which increases wastewater treatment. On the other hand, when the number of moles of the amines is less than 0.5, the obtained phenolic compound becomes high in hydrophobicity, the liquid stability is reduced, and the desired phenolic compound becomes insoluble in, for example, a metal surface treatment liquid and becomes insoluble. In some cases, surface treatment cannot be performed.
  • examples of the amines include diethanolamine, N-methylaminoethanol, ketimine, and diketimine, and these may be used alone or in combination of two or more.
  • the weight ratio of the resin of the repeating unit of phenol (e) to the resin of the repeating unit of bisphenol of (f) is 90:10 to 10:90.
  • the weight ratio of the resin (e) to the resin (f) is 90:10 to L0: 90, preferably 30:70 to 70:30.
  • the resin (e) or ( ⁇ ) is contained in an amount of 0.01 to 10 g per liter of the metal surface treatment agent, and preferably 0.1 to 5 g.
  • the amount of the above mixture is less than 0.01 g per liter of the metal surface treatment agent, the thickness of the resin film on the metal surface becomes insufficient and the barrier effect is reduced, so that the corrosion resistance and the slipperiness are reduced.
  • it exceeds 10 g the resin film on the metal surface becomes unnecessarily thick, resulting in poor appearance and high cost, resulting in poor economy.
  • the phenolic resin of the present invention comprises a copolymer of (g) a phenolic compound represented by the following chemical formula (25), (h) a bisphenol compound represented by the following chemical formula (26), and formaldehyde: A phenol-pisphenol mono-formaldehyde copolymer or a salt thereof having at least one functional group represented by the following chemical formula (27) or (28), and the phenol compound of the above (g): The mozole ratio of (h) to the bisphenol compound is 9: 1 to 1: 9.
  • R 2 , R 3 , R 4 , R 5 , X, ⁇ ⁇ , ⁇ 2 : hydrogen, hydroxyl group, carbon number 1 to: L 0 linear or branched alkyl group or carbon number 1
  • the molar ratio between the compound (g) and the compound (h) is 9: 1 to 1: 9, preferably 3: 7 to 7: 3.
  • the molar ratio of the compound (g) is more than the above range, browning or yellowing occurs in the appearance after draining and drying.
  • the mole ratio of the compound (h) is more than the above range, the above browning or yellowing is suppressed, but the corrosion resistance is deteriorated.
  • the above-mentioned copolymer contains 0.01 to 0 g of L per 1 liter of the metal surface treatment agent, and preferably 0.1 to 5 g.
  • the amount of the above copolymer is less than 0.01 g per liter of the metal surface treating agent, the thickness of the resin film on the metal surface becomes insufficient and the barrier effect is reduced, so that the corrosion resistance and the slipperiness are reduced. .
  • the weight exceeds 10 g, the resin film on the metal surface becomes unnecessarily thick, resulting in poor appearance, high cost and poor economic efficiency.
  • the lubricity is good, but browning or yellowing occurs in the appearance after draining and drying.
  • browning or yellowing does not occur in the appearance after draining and drying, but there is a problem that it lacks corrosion resistance.
  • the metal surface treating agent of the present invention can form a resin film containing both a phenolic resin and a bisphenolic resin on a metal surface by complementing each other's defects by containing both resins at a certain ratio. it can. For this reason, browning or yellowing after draining and drying can be suppressed, and slipperiness can be improved. Accordingly, the slipperiness is improved, so that the occurrence of jamming can be suppressed, and the coil coating has lubricity. In addition, since browning or yellowing of the film appearance can be suppressed, there is no risk that the subsequent steps, for example, the painting step will be hindered.
  • the metal surface treating agent according to the present invention may contain a heavy metal.
  • the heavy metal Zirconium (Zr), Titanium (Ti :), Molybdenum (Mo), Tungsten (W), Niobium (Nb), Nickel (Ni), Cobalt (Co), Manganese (Mn), Tantalum ( T a).
  • the heavy metal is zirconium (Zr), titanium (Ti), niobium (Nb), manganese (Mn), tantalum (Ta).
  • the source of the heavy metal is preferably a complex fluoride of the above heavy metal, and other examples include nitrate and phosphate.
  • the content of the complex fluoride of the heavy metal with respect to the metal surface treatment composition according to the present invention is preferably from 0.01 to: L 0 gZ 1. If the content of heavy metal complex fluoride is less than 0.01 gZ1, the corrosion resistance deteriorates. On the other hand, when the content of the heavy metal complex fluoride exceeds 10 g1, the corrosion resistance also deteriorates.
  • Another metal surface treating agent according to the present invention is a water-soluble, ⁇ -dispersible or emulsion-type organic polymer compound having at least one nitrogen atom or at least one cationic ion atom or a salt thereof. 0 containing an oxidizing agent
  • the content of the organic polymer compound with respect to the metal surface treating agent is preferably from 0.01 to 10 g 1 force (preferably, more preferably from 0.1 to 5 g). If the content of the organic high-molecular-weight compound is less than 0.01 gZl, the thickness of the organic resin film becomes insufficient and the barrier effect is reduced, so that the corrosion resistance is reduced. On the other hand, when the content of the organic high-molecular compound exceeds 10 g / l, an excess of the organic high-molecular compound is present in the processing solution, and the stability of the surface processing solution is reduced. However, the cost is high and the economy is low.
  • the oxidizing agent has the effect of promoting chemical stabilization of the metal surface or promoting densification and uniformity of the resin film, it improves the corrosion resistance.
  • the oxidizing agent is one or more oxidizing agents selected from hydrogen peroxide, nitrous acid, nitrite, perboric acid, perborate, chloric acid, chlorate, bromate, and bromate. Preferred are hydrogen peroxide and nitrite.
  • the content of the oxidizing agent with respect to the metal surface treating agent is preferably from 0.01 to: L 0 gZ 1 More preferably, it is 0.1 to 2 gZl. When the content of the oxidizing agent is less than 0.1 OlgZl, the effect as the oxidizing agent cannot be exhibited, and the corrosion resistance is poor.
  • metal surface treatment agent of the present invention further includes an inorganic acid, a heavy metal But good c inorganic acid
  • the inorganic acid examples include phosphoric acid and nitric acid. Of these, phosphoric acid is most preferable.
  • the salt of the acid salts of sodium, potassium, magnesium and the like are preferable.
  • the concentration of phosphoric acid is preferably 0.01 to 10 gZl, more preferably 0.25 to 5 gZl, based on the metal surface treating agent. When the content of phosphoric acid is less than 0.01 g, the acidity becomes insufficient and the organic polymer compound power becomes difficult to dissolve.On the other hand, when the content exceeds 10 g Z1, resin precipitation during surface treatment occurs. The corrosion resistance is reduced and the corrosion resistance deteriorates.
  • Nb, Ni, Co, Mn, Ti, Ta, Mo, and W may be used in combination.
  • the content of the heavy metal with respect to the metal surface treating agent is preferably less than 10gZl. If the content of heavy metals exceeds 10 gZ1, the corrosion resistance, coating film adhesion and slipperiness decrease.
  • the metal surface treating agent according to the present invention may contain the above-mentioned water-soluble, water-dispersible or emulsion organic high compound, a phosphate ion and an aluminum ion.
  • the organic polymer compound is the above-mentioned compound, and the content of the organic polymer compound with respect to the metal surface treating agent is preferably 0.01 to 10 gZ1, more preferably 0.1 to 51.
  • the content of the organic polymer compound is less than 0.011, the thickness force of the organic resin film becomes insufficient and the barrier effect is reduced, so that the corrosion resistance is reduced.
  • the content of the organic polymer compound exceeds 10 gZl, the organic resin film becomes unnecessarily thick and interferes with the workpiece after the surface treatment. Causes color and poor appearance.
  • an excessive amount of the above organic polymer compound is strongly present in the treatment bath, so that the stability of the surface treatment bath is reduced, and the cost is increased, resulting in poor economic efficiency.
  • the source of phosphate ions is phosphoric acid or a salt thereof.
  • As the salt sodium, potassium, magnesium and the like are preferable.
  • Phosphate ions are used for acidifying an aqueous solution to dissolve the organic polymer compound or for etching a metal surface.
  • the concentration of the phosphate ion is preferably 0.01 to 8 g / 1 with respect to the metal surface treating agent. If the content of phosphoric acid is less than 0.1 lgZl, the etching becomes insufficient, the acidity becomes insufficient, and the organic polymer compound becomes difficult to dissolve. For this reason, the organic film hardly precipitates on the metal surface, and the corrosion resistance is reduced. On the other hand, if it exceeds 0.8 g / 1, the etching effect is saturated and uneconomical, and the load on wastewater treatment is large.
  • Aluminum ions have the effect of accelerating the deposition rate of the resin film (that is, containing the organic polymer compound), and promoting the densification and uniformity of the film.
  • the supply source of aluminum ions may be aluminum nitrate, aluminum hydroxide, aluminum fluoride, or aluminum eluted by etching when the surface-treated metal is an aluminum alloy material.
  • the content of aluminum ion with respect to the metal surface treatment agent is preferably from 0.01 gZl to 0.5 gZl, more preferably from 0.1 gZl.
  • the organic polymer compound is unlikely to precipitate on the metal surface, and the corrosion resistance becomes insufficient.
  • the aluminum ion content exceeds 0.5 gZl, the organic polymer compound and the insoluble compound are formed in the treatment liquid, and turbidity is generated in the treatment liquid or sludge is generated. For this reason, the appearance deteriorates.
  • the above-mentioned metal surface treating agent according to the present invention may contain a water-soluble, water-dispersible or emulsion organic polymer compound and a polyvalent anion.
  • the content of the organic polymer compound with respect to the metal surface treating agent is preferably 0.01 to 10 g / l, more preferably 0.1 to 5 gZl. If the content of the organic high ⁇ F compound is less than 0.01 g / l, the thickness of the organic resin film becomes insufficient and the barrier effect is reduced, so that the corrosion resistance is reduced.
  • the content of the high organic compound is more than 10 g / g, the greased film becomes thicker than necessary, causing interference colors on the object to be treated after the surface treatment, resulting in poor appearance.
  • an excessive amount of the above-mentioned organic polymer is present in the treatment bath, so that the stability of the surface treatment bath is reduced, and the cost is increased, resulting in poor economic efficiency.
  • polyvalent anions examples include condensed phosphoric acid (pyrophosphoric acid, metaphosphoric acid, hexamecrylic acid, tripolyphosphoric acid, tetraphosphoric acid, etc.), molybdic acid, tungstic acid, nonazinic acid, phosphomolybdic acid, phosphotungstic acid, gaytungstic acid And its salts.
  • the content of the polyvalent anion with respect to the metal surface treating agent is preferably 0.003 gZl to 10. OgZl, more preferably 0.01 gZl to 2 g1.
  • the treatment liquid refers to the metal surface treatment agent according to the present invention or a liquid appropriately diluted with water.
  • the metal surface treating agent according to the present invention may contain the following etching agents and etching aids as necessary.
  • the etching agent examples include hydrofluoric acid and salts thereof.
  • the content of the etching agent relative to the metal surface treatment agent is preferably from 0.005 gZl to 5 gZl. If the fluoride ion content is less than 0.005 gZl, the metal surface will be insufficiently etched, and the interfacial pH will be insufficiently increased, making it difficult for the resin film to precipitate on the metal surface, resulting in poor corrosion resistance. Inferior. On the other hand, the fluoride ion content exceeds 5 gZl In such cases, excessive etching will result, making it difficult for the resin film to deposit on the metal surface, reducing the corrosion resistance and making the lubricity insufficient.
  • etching aid gay hydrofluoric acid, borofluoric acid and salts thereof can be used.
  • the content of the etching aid with respect to the metal surface treatment agent is preferably from 0.003 gZl to 5 gZl. If the content of the etching aid is less than 0.003 gZl, the metal surface will be insufficiently etched, the resin film will not easily deposit on the metal surface, and the corrosion resistance will be poor. On the other hand, if the content of the etching aid exceeds 5 gZl, the etching will be excessive, so that the resin film will not easily deposit on the metal surface, the corrosion resistance will be reduced, and the slipperiness will be insufficient.
  • the metal surface treatment method of the present invention is a method in which a metal surface treatment agent is brought into contact with a metal surface, followed by washing with water and drying.
  • the pH of the metal surface treating agent is about 2.0 to 5.0, preferably 2.5 to 4.0. At this time, the pH is adjusted with NaOH, aqueous ammonia, nitric acid, or the like.
  • the contact temperature between the metal surface treating agent of the present invention and the metal material is preferably room temperature (for example, 20 ° C.) to 90 ° C., and more preferably 35 to 65 ° C. In general, the contact time between the metal material and the metal surface treating agent according to the present invention becomes shorter as the contact temperature becomes higher.
  • the time is about 5 seconds to 5 minutes, preferably 10 to 60 seconds.
  • a contact time longer than the above contact time is required.
  • contact may be made by dipping, flow coating, or roll coating.
  • the chemical material that has been subjected to the chemical conversion treatment is washed with water and enters a drying step, but the drying temperature is 150 to 240 ° C. If the drying temperature is less than 150 ° C, Poor corrosion resistance.
  • metal material to which the metal surface treatment method of the present invention is used include, in addition to aluminum and aluminum alloy such as aluminum cans, iron, zinc, zinc alloy, tin plate, stainless steel, and the like.
  • the nitrogen atom or the cationic zeo atom in the organic polymer compound or its salt coordinates to the surface of the metal material, so that the coating film adhesion and corrosion resistance are improved. Is improved. Further, since the organic polymer or a salt thereof is substantially uniformly present on the surface of the metal material, the frictional resistance can be reduced, and the slipperiness can be improved.
  • the corrosion resistance and the adhesion of the coating film can be remarkably improved as compared with the prior art, and the lubricity can be further imparted.
  • metal surface treatment composition of the present invention when manufacturing a food can using aluminum or an alloy thereof, jamming can be prevented, and lubricating properties are imparted in coil coating. be able to.
  • the polymer compound used in the present invention is a phenol resin composition having a structure represented by the above chemical formula (18)
  • the phenol resin composition has a hydrophilic property. Is suppressed, so that the film has good slipperiness. Furthermore, when the film is dried, the phenol skeletal force in the film is low, so even if conjugate coloring of phenol occurs, there is no danger of the film being colored. For this reason, since the lubricating property is good, the occurrence of jamming can be prevented, and the coil coating has lubricity. In addition, since discoloration of coloring can be prevented, there is no possibility that a later process, for example, a painting process will be hindered.
  • the copolymer ((g), (h)) or the mixture ((e), (f) force, etc.) in a specific range by adjusting the ratio of the phenol component to the bisphenol component to brown the appearance of the object to be treated. Can be suppressed, and the sliding property, coating film adhesion, and corrosion resistance can be further improved.
  • the metal surface treating agent and the treating method according to the present invention by adding an oxidizing agent to the metal surface treating agent containing an organic high: ⁇ compound, the metal surface being treated is kept in a high oxidized state. Can passivate metal surfaces. Therefore, the metal surface is stabilized.
  • the oxidizing agent enhances the etching rate of the metal surface during processing, and also enhances the rate of increase of the bow I and the interface pH of the metal surface. For this reason, the deposition rate of the organic film is accelerated, and a dense organic (chemical) film is formed on the metal surface. Therefore, the barrier properties (ion resistance and water permeability resistance) of the coating are improved, and as a result, the corrosion resistance when not coated is improved.
  • the organic film since it is mainly composed of an organic film, even if it contains an inorganic (metal salt) film that is slippery and causes cohesive failure, the organic film serves as a binder between the ⁇ film and the metal material. This improves the coating adhesion.
  • the organic polymer compound contained in the metal surface treatment agent forms an insoluble compound with aluminum ion
  • aluminum ion is previously contained in the metal surface treatment agent.
  • the inclusion speed can accelerate the deposition rate of the organic film on the metal surface. Therefore, the organic film can be deposited on the metal surface in the presence of phosphate ions at a lower concentration than before.
  • a dense and uniform organic film can be formed on the metal surface due to the presence of aluminum ions, corrosion resistance, coating film adhesion, and slipperiness can be satisfied at the same time. Since the concentration of phosphate ions can be reduced, an environmentally friendly metal surface treatment agent can be provided.
  • the metal surface treating agent and the treating method according to the present invention by adding a polyvalent anion to the metal surface treating agent containing the organic polymer compound, the pH of resin precipitation is shifted to the acidic side. be able to.
  • the above organic polymer compound is
  • A1-Mn series (JIS-A3004) ⁇ 3 ⁇ 4 cans obtained by DI processing aluminum alloy plate.
  • compositions of this example and comparative examples were immersed in boiling tap water for 30 minutes, and the appearance was evaluated according to the following criteria.
  • the material subjected to the chemical conversion treatment by the method of the present example was subjected to a “HE IDON-14 type” tester to determine the dynamic friction coefficient at a load of 50 g and a stylus speed of 30 Omm / min.
  • a paint manufactured by BASF (EB-70-001N 15 Omg / m 2 / EB-69-002N 60 mg gZm 2 ) is applied to the object to be treated by Barco. Then, the coated workpiece was subjected to edge pending processing, and the peeling evaluation of the coating film when the bent portion was tape-peeled with a tape made of Nichiban was performed according to the following criteria.
  • a 1-Mn (JIS-A3004) cans were degreased with 30gZl of acidic degreasing agent (“Surf Cleaner-I NHC250J, Nippon Paint Co., Ltd.”) (spray at 75 ° C for 60 seconds) and washed with water. Dissolve 0.2 g / 1 of the water-soluble organic compound 1 shown in Table 1 in an aqueous solution diluted with 20 g of a zirconium phosphate-based treating agent ("Arsaif 440", manufactured by Nippon Paint Co., Ltd.). The treatment liquid shown in 2 was prepared, and spray treatment was performed at 50 ° C for 20 seconds using the treatment liquid. After the treatment, it was washed with tap water and then dried by heating at 190 ° C for 2 minutes. Table 3 shows the evaluation results.
  • Examples 2 to 12 and Comparative Examples 1 to 4 are metal surface treatment compositions containing a water-soluble organic polymer (shown in Table 1) and a complex fluoride of a heavy metal in the amounts shown in Table 2 below. Then, these metal surface treatment compositions were subjected to metal surface treatment according to Example 1 described above. Table 3 shows the evaluation results.
  • Type content (g / 1)
  • Type content (g / I)
  • a 1-Mn (JIS-A3004) molded cans were degreased with 30 gZl of acidic degreasing agent (“SALF CLEANER — NHC 250J, Nippon Paint Co., Ltd.”) (sprayed at 75 ° C for 60 seconds) and then washed with water
  • the zirconium phosphate treatment agent (“Alsurf 440”, manufactured by Nippon Paint Co., Ltd.) was added to an aqueous solution diluted with 20 gZU as shown in Table 4.
  • the processing solution shown in Table 5 was prepared by dissolving 0.2 gZl of the water-soluble resin C-11 shown below, and spraying was performed at 50 ° C. for 20 seconds using the processing solution. After the treatment, it was washed with tap water and then dried by heating at 190 ° C for 2 minutes. Table 6 shows the evaluation results.
  • Examples 14 to 23 and Comparative Examples 5 to 12 are metal surface treatment compositions containing a water-soluble resin (shown in Table 4) and a complex fluoride of a heavy metal in the amounts shown in Table 5 below. These metal surface treatment compositions were subjected to metal surface treatment according to Example 13 above. Table 6 shows the evaluation results.
  • R 1 water, water 3 ⁇ 4iS, ⁇ 3 ⁇ 423 ⁇ 4 1 to 15; S3 ⁇ 4 may be fliiH or 4 min.
  • ⁇ 3 ⁇ 45 may be ⁇ or branched Alkinol 35
  • Example 1 1 C-1 10 .005 Alsurf 440 2 0
  • composition for metal surface treatment of the present invention also improved the resistance to blackening with boiling water, the slipperiness, the adhesion of the upper film, and the performance of displacement as compared with the conventional composition. .
  • the polymer compound power used in the present invention (the phenolic resin according to claims 6, 7, 8) A preferred embodiment in the case is shown below.
  • the reaction was performed with the composition shown in Table 7.
  • a reactor equipped with a stirrer, a reflux condenser and a thermometer was charged with 1 mol (108 g) of m-cresol, 0.03 mol (5 g) of m-xylene glycol dimethyl ether, and 0.3 g of p-toluenesulfonic acid.
  • the reaction was performed at 160 ° C for 2 hours.
  • the internal temperature was lowered to 100 ° C, 0.75 mol (61 g) of a 37% aqueous formaldehyde solution was added over 1 hour, and the mixture was refluxed at 100 ° C for 2 hours. went.
  • the resulting resin solution has a viscosity of 0.11 Pas, free formaldehyde of 0%, free phenol of 0%, non-volatile content at 180 ° C for 1 hour of 31.2%, and pH2 phosphate water. Dissolved in the solution.
  • the reaction was performed with the composition shown in Table 7.
  • a reactor equipped with a stirrer, reflux condenser and thermometer was charged with 1 mol of phenol (94 g) and 0.3 g of p-toluenesulfonic acid, the internal temperature was raised to 100 ° C, and a 37% aqueous formaldehyde solution was added. 8 mol (65 g) was added over 1 hour, a reflux reaction was performed at 100 ° C. for 2 hours, and a vacuum dehydration reaction was performed up to 14 CTC. Next, vacuum dehydration is performed, and the temperature in the system becomes 16 (TC When the reaction was completed, the reaction was terminated.
  • the resulting resin solution had a viscosity of 0.12 Pas, a free formaldehyde of 0%, a free phenol of 0.2%, a non-volatile content of 180 C for 1 hour of 31.2%, and a phosphorus content of PH2. Dissolved in aqueous acid solution.
  • the reaction was performed with the composition shown in Table 7.
  • a reactor equipped with a stirrer, a reflux condenser and a thermometer was charged with 200 g of sorbitol at the mouth of a butyl, polyvinyl phenol (weight average molecular weight).
  • MXDM a-Xylene ⁇ - ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ . ⁇ ...........
  • A11-Mn (JIS-A3004) Molded cans obtained by DI processing aluminum alloy plate.
  • the objects to be treated which had been surface-treated with the treating agents of this example and comparative examples, were immersed in boiling tap water for 30 minutes, and the appearance was evaluated according to the following criteria.
  • the kinetic friction coefficient of the object to be treated which had been subjected to the surface treatment by the method of this example was determined by using a “HE IDON-14” type test Sm with a load of 50 g and a stylus speed of 30 OmmZmin.
  • a paint manufactured by BASF (EB-70-001N 150 mg / m 2 / EB-69-002N 6 OmgXm 2 ) is applied to the workpiece by Barco overnight.
  • the coated workpiece was subjected to edge bending, and the bent portion was peeled off with a Nichiban tape.
  • the coating film was stripped according to the following criteria.
  • a 1 one Mn system JIS- A 3004 molded cans acidic degreasing agent ( "Made in Surf cleaner one NHC250J Nippon Paint Co., Ltd.) 308 / / 1 at a concentration 75.Rei, after 60 Byosu play degreasing, 7 washing and, ⁇ 3. 5 with a metal surface treating agent comprising a formulation shown in Table 9, 50 ° C, 20 seconds after spraying the chemical conversion treatment, the c evaluation results of the washing and drying 190 ° C, 2 min Table 10 Show.
  • a 1—Mn (JIS-A3004) Molded can obtained by DI processing of aluminum alloy plate.
  • the objects to be treated which had been surface-treated with the compositions of this example and comparative examples, were immersed in boiling tap water for 30 minutes, and the appearance was evaluated according to the following criteria.
  • the kinetic friction coefficient of the workpiece treated with the method of this example was determined using a “HE I DON-14” type test with a 5 mm ⁇ steel ball, a load of 50 g, and a stylus speed of 30 OmmXmin. .
  • a reactor equipped with a stirrer, a reflux condenser and a thermometer was charged with 3 moles of phenol (282 g) ⁇ 3 moles of bisphenol A (684 g) and 0.3 g of p-toluenesulfonic acid at 160 ° C. The reaction was performed for 2 hours. Next, the internal temperature was lowered to 100 ° C, a 37% aqueous solution of formaldehyde (5 mol as formaldehyde) (406 g) was added over 1 hour, and the mixture was refluxed at 100 ° C for 2 hours, and the atmospheric pressure was increased to 140 ° C. A dehydration reaction was performed.
  • the reaction was performed with C for 1.5 hours.
  • the resulting resin solution had a viscosity of 0.15 Pa ⁇ s, free formaldehyde potassium of 0%, and free phenol of 0%, 180. It had a non-volatile content of 31.1% for 1 hour and was dissolved in a phosphoric acid aqueous solution of pH 2.
  • the content of other components was changed by changing the amount of the phenolic Z-bisphenol and the amount of the copolymer added in the copolymers represented by the following formulas (30) to (34).
  • Table 11 shows the evaluation results.
  • the copolymers represented by the chemical formulas (30) to (34) were synthesized according to the method for synthesizing the copolymer represented by the chemical formula (29).
  • Type Molar ratio of added amount (g / 1) Blackening resistance to boiling water Slipperiness Coating film adhesion Browning resistance
  • Al-Mn (JI S-A3004) molded cans are spray-degreased with 30 g Z1 concentration acidic degreasing agent ("Surf Cleaner NHC 250" manufactured by Nippon Paint Co., Ltd.) at 75 ° C for 60 seconds, and then washed with water.
  • Spray chemical conversion treatment was performed at 50 ° C for 20 seconds with a metal surface treatment agent containing 0.6 gZl of modified bisphenol A-based resin and adjusted to PH 3.5. After the treatment, it was washed with water and drained and dried at 190 ° C for 2 minutes. Table 12 shows the evaluation results.
  • the content of the amine-modified phenolic resin represented by the chemical formula (33) and the content of the amine-modified bisphenol A-based resin represented by the chemical formula (34) were changed, and the content of other components was the same metal surface treatment agent as mss described above. Surface treatment was performed according to Example 38 above. Table 12 shows the evaluation results.
  • Appearance evaluation was performed according to the following criteria after immersing the can bottom portion of the object to be treated which had been subjected to the surface treatment with the compositions of the present example and the comparative example in boiling tap water for 30 minutes.
  • the kinetic friction coefficient of the workpiece subjected to the chemical conversion treatment according to the method of this example was determined using a “HE I DON-14” type testing machine with a 5 mm 0 steel ball, a load of 50 g, and a stylus speed of 30 Omm / min. .
  • a 1 -Mn system JIS- A3004 75 Te at a concentration of molding cans acidic degreasing agent ( "mono-Fukurina one NHC250J Nippon Paint Co., Ltd.) 308/1, after 60 Byosu play degreased, washed with water, Phosphoric acid 5 g / l, hydrofluoric acid 0.5 g / 1, containing nitrogen atom-containing acrylic tree flour as an organic compound 1.OgZl, containing 0.5 ⁇ 1 hydrogen peroxide as oxidant
  • a spraying ⁇ treatment was performed for 20 seconds with the metal surface treating agent adjusted to 5. After the treatment, washing and drying with water at 190 ° C for 2 minutes were performed, and the evaluation results are shown in Table 13.
  • the corrosion resistance (boiling water blackening resistance) is excellent, and further, both the slipperiness and the adhesion of the topcoat film are improved as compared with the conventional one. Turned out to be.
  • A11-Mn (JIS-A3004) Molded cans obtained by DI processing aluminum alloy plate.
  • the objects to be treated which had been surface-treated with the compositions of this example and comparative examples, were immersed in boiling tap water for 30 minutes, and the appearance was evaluated according to the following criteria.
  • the kinetic friction coefficient of the workpiece subjected to the chemical conversion treatment by the method of this example was determined using a “HE I DON-14” type testing machine with a 5 mm 0 steel ball, a load of 50 g, and a stylus speed of 300 mm / min. Was.
  • a paint made by BASF (EB-70-001N 150 mg / m 2 , CLIA: EB-69—002N 6 Omg / m 2 ) is applied to the workpiece by Barco. Then, the coated workpiece was subjected to edge-pending processing, and the peeling evaluation of the coating film when the bent portion was peeled off with a tape made of Nichiban tape was performed according to the following criteria. ⁇ Tape peel length less than 15 mm
  • Example 14 As shown in Table 14, the type, content, phosphate ion concentration, aluminum ion concentration, and pH of the above organic high ⁇ compound were changed, and the content of other components was the same as in Example 42 above. A surface treatment was carried out with the agent according to Example 42 above. Table 14 shows the evaluation results.
  • Phenol resin resin represented by the following chemical formula (37)
  • Appearance evaluation was performed according to the following criteria after immersing the can bottom portion of the object to be treated, which had been subjected to the surface treatment with the compositions of this example and comparative examples, in boiling tap water for 30 minutes.
  • the specimen subjected to the chemical conversion treatment according to the method of the present embodiment was subjected to a “HE IDON-14” type test, and the dynamic friction coefficient was determined using a 5 mm0 steel ball, a load of 50 g, and a stylus speed of 30 Omm / min.
  • a 1 Mn-based (JIS-A3004) cans are acid degreaser ("Surf Cleaner-NHC 250J made by Nippon Paint Co., Ltd.”).
  • Spray chemical conversion treatment was performed with the adjusted metal surface treatment agent at 50 ° C for 20 seconds, after which it was washed with water, dried at 190 ° C for 2 minutes, and dried.
  • Table 15 Composition of gold metastatic agent Evaluation item Organic polymer compound Polyvalent anion pH Resistance to blackening of boiling water Slipperiness Coating film adhesion ⁇ Content (g /) mm (g / ⁇ )
  • Example 59 (P) 1.0 Molybdic acid 0.02 3.5 ⁇ ⁇ ⁇
  • the corrosion resistance blackening resistance to boiling water
  • the performance of any of the slipperiness and the adhesion of the overcoat film is improved as compared with the conventional one. It turned out.
  • the metal surface treatment agent and the metal surface treatment method according to the present invention can be used for metal surface treatment of food cans, car bodies, coil coating of steel plates, building materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

明細書
発明の名称
金属表面処理剤、 金属表面処理方法及び表面処理金属材料
技術分野
本発明は金属表面処理剤、 処理方法及び表面処理された金属材料、 特に耐食性、 滑り性 (潤滑性) 、 処理外観維持性 (着色性) 、 塗膜密着性を改良した金属表面 処理剤、 処理方法及び表面処理された金属材料に関する。
背景技術
食缶、 自動車のボディ一、 鋼板のコイルコーティング等の金属材の表面処理と して、 従来はリン酸塩処理、 クロメ一ト処理ゃノンクロメ一ト処理等力行われて いた。 例えば、 鉄、 亜鉛、 アルミニウム等の金属表面に塗料、接着剤等の有機皮 膜を塗布する場合、前処理としてリン酸塩処理によって金属表面にリン酸塩皮膜 を形成させる。 次いで、 塗料等の有機皮膜がその上面に形成されることによって 耐食性、 塗膜密着性が向上する。 し力、し、 従来のリン酸塩処理方法等における金 属表面処理剤は、 耐食性、 塗膜密着性や摩擦抵抗性 (「滑り性」 ともいう) が必 ずしも近年の要求に対して十分ではなかった。
そこで、通常更に耐食性の向上を図るために、 リン酸塩処理の後、 プライマー 塗料を塗布してから塗料を塗装する方法力行われていた。 し力、し、 プライマ一を 塗装すると、耐食性及び塗膜密着性は向上するものの、塗装工程が増加して作業 が煩雑になると共に、 塗装コストが高くなるという課題を有していた。
そこで、 高度な耐食性及び塗膜密着性を付与しつつ、 プライマー塗装を省略す ることを目的とする金属表面処理剤として、 例えば特開平 5—1 1 7 8 6 9号公 報の 「複合皮膜形成用金属表面処理剤」が提案されている。 上記公報の金属表面 処理剤は、 陽ィォン性窒素原子を 1個以上含み、 分子量が 1 0 0 0〜 1 0 0 0 0 0 0である陽イオン性有機高分子化合物又はその塩を含有するリン酸塩表面処理 液からなることが開示されている。
また、 特開昭 5 1—7 3 9 3 8号公報の 「アルミニウム及びその台金の表面処 理法」 には、 特に、表面処理を行う金属をアルミニウム等に限定して、 耐食性及 び塗膜密着性を付与するすることを目的とする金属表面処理法が提案されている。 この金属表面処理法は、 酢酸ビニル ·塩化ビニリデン、 ァクリル酸等の水溶性樹 脂又はエマルシヨン樹脂を含む有機高分子皮膜形成物質と、 水溶性チタン化合物 とを主成分とする処理液を用いることが記載されている。
しかしながら、 上記金属表面処理剤や処理液は、 従来の金属表面処理剤等に比 ベれば耐食性及び塗膜密着性が向上するものの、 近年の要求水準には、 未だ到達 していない。
特に、 アルミニウム又はその合金を用いて食缶を製造する場合には、 従来及び 上記金属表面処理剤等では、 ジャミング防止が図れず、 また鋼板のコイルコ一テ ィングにおいては、 潤滑性に欠けるという問題点があった。
また、 金属表面処理について更に詳説すると、 例えばアルミニウム缶の製造ェ 程においては、 D I加工 (Dr awi ng & I ron i ng ) の後、 酸性クリナ一によつてス マツトを除去し、 更に水洗した後に行われる化成処理等が行われる。 この化成処 理は、 耐食性、塗膜密着性、 滑り性を向上させる目的で行われる。 化成処理とし ては、 上述したようにクロメート処理とノンクロメート処理の 2種類があり、近 年では公害防止の観点からノンクロメート処理が主に行われている。 このノンク ロメ一ト処理のノンクロム化成処理剤としては、 例えばリン酸ジルコニウム系処 理剤が広く使用されている。
例えば、特公昭 5 7 - 3 9 3 1 4号公報の 「アルミ二ゥムの表面処理法」 には、 ジルコニウム塩と過酸化水素とリン酸を含有する酸性水溶液によってアルミニゥ ムの表面を処理する方法力提案されている。 また、 特開平 7— 4 8 6 7 7号公報 の 「アルミ D I缶及びぶりき D I缶兼用表面処理液並びに処理方法」 には、 リン 酸イオンとジルコニウム化合物を含み p H 2. 0〜4. 0を有し、 更に 5 0 0 P p m以下の酸化剤と、 フッ酸又はフッ化物の少なくとも種をフッ素として 2 0 0 0 p p m以下含有する D I缶処理液によってアルミ D I缶の表面処理を行う方法 が提案されている。 通常、 アルミニウム缶の製造工程では、 ィヒ成処理後、 アルミニウム缶は充分水 洗され、 オープンで水切り乾燥され、 次いで印刷、 塗装がなされる。 この印刷、 塗装の工程に移る際に、 アルミ二ゥム缶を搬送するベルトコンベアの幅は急激に 狭くなる。 この時、 缶同士力《接触したり、 缶がベルトコンベアのガイドに接触し て、 ジャミング (搬送不良) を起こす可能性があり、 このジャミングによって、 缶の搬送スピードが低下して缶の生産効率が低下してしまう。
一般に、 上記リン酸ジルコニウム系処理剤を用いて処理すると、 アルミニウム 表面に酸化ジルコニウムゃリン酸ジルコニウムの皮膜が形成され、 この皮膜が一 定以上の厚みになると、 凝集破壊の原因となり、塗膜密着性の不良が生じやすか つた。 また、上記無機質の皮膜は、 表面の滑り性がないため、 上述したように缶 をベルトコンベアで搬送する際にジャミング (搬送不良) を生じ、 缶の生産効率 が低下してしまうおそれがあつた。
そこで、近年では、 無機質の皮膜だけでなく、有機質の皮膜を形成する処理剤 が提案されている。 例えば、 特開平 7— 3 3 1 2 7 6号公報の 「アルミニウム含 有金属材料の表面処理用組成物及び表面処理方法」 には、 リン酸イオンと水溶性 ジルコニウム化合物とフッ化物と第三級ァミン基及びポリアルキルグリコール基 から選ばれた少なくとも 1種を有する水溶性ポリアミ ドとを含有する表面処理用 組成物が提案されている。
しかしながら、 上記公報の記載の表面処理用組成物中の水溶性ジルコ二ゥム化 合物によって、 金属表面にリン酸ジルコニウム皮膜膚がある厚さ以上に形成され た場合には、 やはり皮膜が凝集破壊を生じて塗膜密着性力低下してしまうという 問題があつた。
そこで、 無機質皮膜を形成することなく有機質皮膜単独の皮膜を金属表面に形 成する処理剤が提案されている。 例えば、 特開平 4 - 6 6 6 7 1号公報の 「アル ミニゥム及びアルミニウム合金用表面処理液」 には、 リン酸イオンを 1 3 0 g / 1、 縮合リン酸イオンを 0. 1〜1 0 g Z l及び下記化学式 ( 1 ) の一般式で 示される水溶性樹脂を固形分として 0. 1 ~ 2 0 g Z l含有し、 p H 2. 0〜6. 5である表面処理液が提案されている。
0H.
X I Y
("
そ CH-CH2 n
(式中、 nは 10~80であり、 X及び Yは水素或いは次式で示される Zであり H
2 = - C-N
I R2
H
Rj_ . R2 は 〜C1()のアルキル基或いはヒ ドロキシルアルキル基であり 芳香環当たり Zの導入率は 30〜200モル%である。 )
また、特開平 7 -278410号公報の 「金属材料表面処理用重合体組成物及 び処理方法」 には、 無機質皮膜を形成すると共にフエノール系樹脂の有機質皮膜 をも形成させる処理剤力提案されている。 すなわち、 この処理剤は、酸性化合物 と、 下記化学式 (2) に示す重合体 [X = H, C1-5 アルキル、 _5 ヒドロキ シアルキル、 下記化学式 (3) に示す基など、 R1 , R2 =H, OH, じト^ァ ルキル、 10ヒドロキシアルキノレ基など、 Y1 , Y2 =H又は下記化学式 (4) 又は下記化学式 (5) に示す Z基、 R3 ~RT -C^― 1()アルキル、 ヒドロ キシアルキル基など、 重合体分子中の各ベンゼン環の置換 Z基数平均値 =0. 2 〜1. 0, n = 2〜50] とを含み、 pH = 2. 0〜6. 5の処理剤を金属表面 とを接触させる処理方法が開示されている。
Figure imgf000007_0001
R マ? H (3)
R
3
R
一 CH2 — N (4)
4
R
R
/
CH9 一 6
N— R (5)
' \
7
R
また、特開平 7— 278836号公報の 「アルミニウム含有金属材料用表面処 理組成物及び表面処理方法」 には、 無機質皮膜を形成すると共にビスフエノール A系樹脂の有機質皮膜をも形成させる処理剤が提案されている。 すなわち、 この 処理剤は、 リン酸イオン、 縮合リン酸イオン及び水性重合体を、 1〜30 : 0. 1-10 : 0. 2〜20の重量配合割合で含み、 2. 0〜6. 5の pHの処理剤 と、上記材料表面とを、 30〜65°Cにおいて、 5〜60秒間接触させ、 水洗し、 加熱乾燥する表面処理方法が開示されている。 ここで、 上記水溶性重合体は、下 記化学式 (6) に示す化学構造を有し、 式 (V) 中 Y1, Y2 は、 H原子又は下 記化学式 (7)又は (8) の Z基であり、 重合体分子中のベンゼン環の平均 Z基 置換数 0. 2〜1. 0である。
(6)
Figure imgf000008_0001
3
R R
ノ /
CH2 -N (7) 一 CH9 -N-R C8)
L \
2 5
R R
しかしながら、上記特開平 4— 66671号公報、 特開平 7— 278410号 公報及び特開平 7— 278836号公報に開示されたいずれの表面処理剤も、 金 属表面にある一定の厚み以上の有機質皮膜層を形成しない限り、 未塗装耐食性が 不十分になってしまうという問題があった。 一方、 有機質皮膜の膜厚が厚くなる と、 上記有機高分子化合物由来の干渉色が発生し、 外観が劣化するという問題が あ 発明の開示
本発明は上記従来の課題に鑑みたものであり、 その目的は、 未塗装時の耐食性 (アルミニウム D I缶の場合には耐沸水黒変性) を向上させると共に、 金属表面 の滑り性 (潤滑性) 、 塗膜密着性、 処理外観維持性 (着色性) 、 塗装後の耐食性 を改良した金属表面処理剤及び処理方法を提供すると共に、 これらの性能を有す る表面処理された金属材料を提供することである。
本発明に係る金属表面処理剤に含有される有機高分子化合物又はその塩は、例 えば水溶性、 水分散性又はエマルシヨン性の高分子化合物又はその塩のいずれか であって、 少なくとも窒素原子を 1原子以上含有する。 好ましくは、有機高分子 化合物は、 エポキシ系樹脂、 アクリル系樹脂、 フエノール系樹脂、 ウレタン系樹 脂、 ポリブタジエン系樹脂、 ポリアミ ド系樹脂、 ォレフィン系樹脂の 1種又は 2 種以上の樹脂骨格を有する化合物である。 より好ましくは、 有機高分子化合物中 の窒素原子の少なくとも 1つ力く、 化学式 (9) 又は化学式 (1 0) に示す構造を 有することである。
R
/
- N ( 9 )
\
R 2
(式中、 R R 2 :水紫、 水酸基、 炭索数 1〜: L 0の S換してもよい
1
直逍又は分岐状のアルキル基又は炭索数 1〜 1 0 の置換してもよい直鑌又は分岐状のアル力ノール 基) R
/
-N - R 4 (10)
\
R,
(式中、
R, R R5 :水素、 水酸基、 炭素数 1~10の置換してもよい 直鉞又は分岐状のアルキル基又は炭索数 1〜 10 の置換してもよい直鎖又は分岐状のアル力ノール 基)
更に好ましくは、 有機高分子化合物中の窒素原子の少なくとも 1つは、 化学式 (11) に示すいずれかの構造である。
Figure imgf000010_0001
/ / /
- N -N N
(11)
\ \
C H, C H, H
また、 有機高分子化合物の塩としては、 ナトリウム、 カリウム等のアルカリ金 属塩や、 カルシウム、 マグネシウム等のアルカリ土類金属塩や、 アンモニゥム塩 等力挙げられる。
また、 本発明における有機高分子化合物又はその塩の分子量は、 3 0 0〜1 0 0 0 0力好ましい。 分子量が 3 0 0未満の場合には、 耐食性、 摩擦抵抗性 (以下 「滑り性」 という) が劣る。 一方、 分子量が 1 0 0 0 0を越えると、 水溶性が劣 る。
また、 本発明において、 金属表面処理組成物に対して有機高分子化合物又はそ の塩の含有量は、 0. 0 1〜: L O.g が好ましく、 より好ましくは 0. 1〜5 g/ 1である。 有機高分子化合物又はその塩の含有量が 0. 0 1 g/ 1未満の場 合には、 有機高分子化合物又はその塩のバインダー効果が発揮されず、 塗装下地 用皮膜の物理的な耐久性が劣る。 一方、 有機高分子化合物又はその塩の含有量が 1 O g/ 1を超えると、 耐食性が劣化する。
本発明における有機高分子化合物は、 より好ましくは分子量 5 0 0当り、 フヱ 二ル基を 1〜5個と、 水酸基を 1〜5個と、 窒素原子を 1〜1 0個と、 を含有す ることである。 量 5 0 0当りフエニル基が 1個未満の場合には、耐食性及び 滑り性が劣化する。 一方、分子量 5 0 0当りフヱニル基が 5個を超える場合には、 水溶性、耐食性及び塗膜密着性が劣化する。 また、 分子量 5 0 0当り水酸基が 1 個未満の場合には、 塗膜密着性及び金属表面処理液中への水溶性が劣化する。一 方、分子量 5 0 0当り水酸基が 5個を超える場合にも、 耐食性及び滑り性が劣る。 更に、分子量 5 0 0当り窒素原子が 1個未満の場合には、塗膜密着性及び金属表 面処理液中への水溶性が劣化する。 一方、 分子量 5 0 0当り窒素原子が 1 0個を 超えると、 耐食性が劣る。
本発明に係る窒素含有有機高分子化合物は、 例えばァクリル系樹脂骨格を有す る場合には、 次に示すモノマーの共重合体が好適である。 すなわち、 (a ) 窒素 含有アクリルモノマーとしては、 炭素数 1〜5であって、 (メタ) アクリルアミ ド、 ジメチルアクリルアミ ド、 N—メチロールアクリルアミ ド、 N—メチルアミ ノアルキル (メタ) ァクリルァミ ド、 N—ジメチルァミノアルキル (メタ) ァク リル、 N—メチルアルキル (メタ) アクリルアミ ド、 N—メチロールアミノアル キル (メタ) ァクリルアミ ド、 N—トリメチルアミノアルキル (メタ) ァクリル アミ ド等が挙げられる。
また、 (b ) 水酸基含有アクリルモノマ一としては、 炭素数 1〜5であって、 ヒドロキシアルキル (メタ) ァクリレート、 アルキルァクリレートが挙げられる。 なお、上記 ( a ) 窒素含有アクリルモノマーと (b ) 水酸基含有アクリルモノ マーを併用するのに代えて、 (メタ) ァクリル酸ヒドロキシアルキルジメチルァ ミン等の窒素及び水酸基含有ァクリルモノマーを使用してもよい。
( c ) フエ二ノレ基含有モノマーとしては、 スチレン、 t—プチルスチレン、 ビ 二ルフヱノール、 ビニルトルエン、 ベンジル (メタ) ァクリレート及びそれらの ハロゲン化物が挙げられる。
( d) その他、 更に加えてもよいアクリルモノマーとしては、 炭素数 1〜5で あって、 アクリル酸、 メタクリル酸、 アルキル (メタ) ァクリレート、 イソボニ ルァクリレート等が挙げられる。
上記モノマーからなる共重合体の共重合比は、 窒素含有アクリルモノマー (a ) が 5〜6 0重量%、 水酸基含有アクリルモノマー (b ) が 2 0〜8 0重量%、 フ ェ ル基含有モノマー (c ) が 5〜5 0重量%、 その他のアクリルモノマ一 (d) が 0〜3 0重量%であること力好ましい。 より好ましくは、 窒素含有アクリルモ ノマーが 1 0〜4 0重量%、 水酸基含有ァクリルモノマ一が 4 0〜7 0重量%、 フヱニル基含有モノマーが 1 0〜3 0重量%である。
尚、 本実施の態様において、 共重合比は、 共重合体製造時のモノマー配合比を 基にその S»比で生成したものと仮定して記載した。
上記共重合体における窒素含有ァクリルモノマーの共重合比が 5重量%未満の 場合には、 窒素含有ァクリルモノマ一共重合部位の窒素原子が金属表面に配位し きれないため、 塗膜密着性も低下する。 一方、 上記共重合体における窒素含有ァ クリルモノマーの共重合比が 6 0重量%を超えると、 塗装下地用皮膜自体の金属 表面への付着性が劣化する。 また、 上記共重合体における水酸基含有アクリルモ ノマ一の共重合比が 2 0重量%未満の場合には、 塗膜密着性が劣化する。 一方、 上記共重合体における水酸基含有ァクリルモノマーの共重合比が 8 0重量%を超 える場合には、 耐食性性が劣化する。 更に、 上記共重合体におけるフヱニル基含 有モノマーの共重合比が 5重量%未満の場合には、 滑り性及び耐沸水黒変性が劣 る。 一方、上記共重合体におけるフエニル基含有モノマ一の共重合比が 5 0重量 %を超える場合には、 水溶性、塗膜密着性が劣る。 ここで、 耐沸水黒変性とは、 食缶 (アルミ) において、 殺菌のために行う水道水等による沸水処理時に、 未塗 装部の が水中の金属と作用して黒色化する現象をいう。
また、 本発明に係る陽ィォン性ィォゥ原子を含有する有機高分子化合物又はそ の塩は、 例えば水溶性、 水分散性又はェマルジヨン性の樹脂又はその塩のいずれ かである。 好ましくは、 陽イオン性ィォゥ原子含有樹脂が、 エポキシ系樹脂、 ァ クリル系樹脂、 ウレタン系樹脂、 ポリブタジエン系樹脂、 ポリアミ ド系樹脂、 フ ヱノール系樹脂、 ォレフィン系樹脂の 1種又は 2種以上の樹脂骨格を有する化合 物である。
上記樹脂骨格を有することにより、 金属表面の皮膜に更なる耐食性を付与する ことができる。
例えば、 陽イオン性ィォゥ原子含有樹脂又はその塩の少なくとも 1つ力く、 化学 式 (1 2) に示す構造を有する。
R l
/
+
一 S
( 1 2 )
\
R 2
(式中、
R l、 R :水素、 水酸基、 炭素数 1〜1 5の置換してもいてよい直 鎖又は分岐状のアルキル基、 炭素数 1〜1 5の置換して もよい直鎖又は分岐状のアルカノール基) 特に好ましくは、 陽イオン性ィォゥ原子含有樹脂中のィォゥ原子の少なくとも つは、 以下に示すいずれかの構造である <
+ s
H C H, OH
/ / 一 S
\ \ \
C H, C H, OH CH2 C H2 OH 0 H
C H, C H, OH C H2 C H2 OH
Figure imgf000014_0001
\ \
C H2 C H 0 H C H2 C H2 C N H2
II
C H, 0
C H2 OH + S
/
\
C H2 0 H
CH。 C H. OH
'2
/
\
C H, CHCH2一 0— CH2 CHCH2 -0-CH2 CHCH2一 0 - CH2 CH2 OH
0 H C H. OH
2 上記陽ィォン性ィォゥ原子含有樹脂によれば、 樹脂の金属への配位量が増加し、 より以上の耐食性、 滑り性が向上する。
また、 陽イオン性ィォゥ原子含有樹脂の塩としては、 ナトリウム、 カリウム等 のアルカリ金属塩や、 カルシウム、 マグネシウム等のアルカリ土類金属塩や、 ァ ンモニゥム塩等が挙げられる。
また、 本発明における陽イオン性ィォゥ原子含有樹脂又はその塩の分子量は、
1 0 0 0〜1 0 0 0 0が好ましい。 分子量が 1 0 0 0未満の場合には、耐食性、 滑り性が劣る。 一方、 分子量が 1 0 0 0 0を越えると、 水溶性が劣る。
また、 本発明において、金属表面処理組成物に対して陽イオン性ィォゥ原子含 有樹脂又はその塩の含有量は、 0. 0 1〜: 1 0 gZ lが好ましく、 より好ましく は 0. l〜5 gZ lである。 陽イオン性ィォゥ原子含有樹脂又はその塩の含有量 が 0. 0 1 gZ l未満の場合には、 陽イオン性ィォゥ原子含有樹脂又はその塩の バインダー効果が発揮されず、 塗装下地用皮膜の物理的な耐久性が劣る。 一方、 陽イオン性ィォゥ原子含有樹脂又はその塩の含有量が 1 0 1を超えると、耐 食性が劣化する。
本発明における陽イオン性ィォゥ原子含有樹脂は、 より好ましくは分子量 5 0 0当り、 フエ二ル基を 1〜5個と、 水酸基を 1〜1 2個と、 ィォゥ原子を 0. 1 〜7個と、 を含有することである。 分子量 5 0 0当りフヱニル基が 1個未満の場 合には、耐食性及び滑り性が劣化する。 一方、 分子量 5 0 0当りフエニル基が 5 個を超える場合には、 水溶性及び塗膜密着性が劣化する。 また、 分子量 5 0 0当 り水酸基が 1個未満の場合には、 塗膜密着性及び金属表面処理液中への水溶性が 劣化する。 一方、 分子量 5 0 0当り水酸基が 1 2個を超える場合には、耐食性及 び滑り性が劣る。 更に、 分子量 5 0 0当り陽イオン性ィォゥ原子が 0. 1個未満 の場合には、 塗膜密着性及び金属表面処理液中への水溶性が劣化する。 一方、分 子量 5 0 0当り陽イオン性ィォゥ原子が 7個を超えると、耐食性が劣る。
上記条件を満たす陽イオン性ィォゥ原子含有樹脂の例を下記化学式 (1 3) 〜
( 1 7 ) に示す。 S- [A]n— S
/ \ (13)
R2 R2
A :-CH2 R -CH-CH2 -ΪΒ]―。 。Η2 - C H - C H2 -
Figure imgf000016_0001
O SH \ OH
R
B : -0-<gH<g>-0-CH2 - CH - CH2 -.
OH
又は 一 0— R3 — 0— CH2 — CH— CH2
OH
Rl , R2 :水^、 水 ¾ i、 炭紫数 1~15の E換してもよい^ jfi又は分岐伏 のアルキル
又は炭 ¾数1〜15の S換してもよい iSig又は分岐状の アル力ノール
R3 :炭¾数 10-18の ΰϊίΛ又は分岐状のアルキル -)
CH,
(14)
CH-0H
Figure imgf000016_0002
(R1 . 2 : 水 ¾、 水 ®S、 炭紫数 1 ~ 1 5の S換してもよい Olffl又は分岐状 のアルキル S, 又は ¾数 1 ~1 5の 換してもよい Qaifl又は分 岐状のアル力ノール ) OH
0 H ♦ R,
R 1 Cll„一 Cll一 CH2 - [C] 一
B一 S、
S [C] - CIi„ CH CH
in i / (15) R
N普 CH2 N
R / \
CH„ - CH-CH,一 [C] B一 S
S一 [C] C H0 - C 11 - C H
2 R,
y
R
2 OH
0 H
(式中、
[Cj :- CH2 - CH - CH2 -[D]-0- g>-)-<g-0-
OH
[D] : -0-<gHg>-0-CH2 -CH-CH2
OH 又は 一 0 - R3 - O - C II 2 - C H - C II 2 -
I
OH
Rt . 2 : 'im 水 i¾i5、 tiii 1 - 15の; してもよい ύϊί/Ι又は分 *ϋ伏
のアルキル ii,
又は £¾ί¾ί¾1〜15の; S换してもよい ϊίίίΐ又は分枝伏の
アル力ノール ίΙ·
R3 : ί¾ «10〜: I 8の άϊΐίΐ又は分枝伏のアルキル ϋ)
C H.
- C H2 C H - C II , [E] [E]
n — CH0 -CH C H„
i , 一
R (16)
0 M C H, CH, OH
Rl o R2 Rl R2
C II,
(式中, [E]: - 0-<g)- C -<g)-0-CH2 - CH c I CH,
/ \
OH
/C ,,2 C H3 C、"2
s. c.
Rl R2 Rl R2 ; o H s
( R, , R? :水素、 水酸基、 炭素 ¾1〜15の置換してもよい直鎮又は分岐伏のアルキル基. 又は炭素 ¾1〜15の置換して
もよぃ直艄又は分岐状のアル力ノール基 )
R R Η2 (17)
Figure imgf000019_0001
(式中、 R 1 R2 :水素、 水酸基、 炭素数 1 ~ 15の置換してもよい直繽又
は分岐状のアルキル基又は炭素数 115の置換してもよ り直鎖又は分岐状のアル力ノール基) 上記化学式 (13)〜 (17)の化合物中の水酸基によって、 皮膜の塗膜密着 性が向上する。 また、 上記化学式 (13)の化合物中のフヱニル基の部位によつ て、 皮膜の耐沸水黒変性、 滑り性が向上する。 更に上記化学式 (13) の化合物 中のィォゥ原子によって、 皮膜の金属に対する付着性が向上する。 更に、上記ィ匕 学式 (13)の化合物中のィォゥ原子はイオン化しているので、 処理浴が安定に なる。 ここで、耐沸水黒変性とは、 食击 (アルミ) において、殺菌のために行う 水道水等による沸水処理時に、 未塗装部の素地が水中の金属と作用して黒色化す る現象をいう。
更に本発明に係る窒素含有有機高 ^化合物について述べる。 フエノール系樹 脂の一例力下記化学式 (18) に示す構造を繰り返し単位とする樹脂である。
(18)
Figure imgf000019_0002
(式中、 R R R . R , :水素、 炭素数 1~5の置換 .非置換アルキ
ル基又はアル力ノール基、
X X— X, X , ' :水素、 水酸基、 炭素数: 5の置換
' 非 s換アルキル基
k , m 1-3) 上述のフヱノール系樹脂は、 下記化学式 (19) に示す構造式を有するフヱノ
7 ール類の 1モルに対し、 下記化学式 (20) の構造式を有するジアルキルべンゼ ングリコール類を 0. 02〜0. 6モルと、 前記ジアルキルベンゼングリコール 類との和が 0. 7〜0. 9モルとなる量のホルムアルデヒドと、 を有機酸又は無 機酸を «として反応させてフユノ一ル縮合化合物を得て、 前記フヱノ一ル縮合 化合物に、 下記化学式 (21) に示す構造式を有するアミン類を 0. 5〜2. 0 モルと、 前記ァミン類と同モノレ量のホルムアルデヒドとを反応させて (アミノメ チル化反応、 マンニッヒ反応により) 得られるフヱノール樹脂組成物である。
Figure imgf000020_0001
(式中、 , Χχ ' . Χ9. Χ„ ' :水菜、 水酸基、 炭素数 1~ 5の ϋ換
非 a换アルキル基)
Figure imgf000020_0002
(式中、 R , RR :水素、 炭素数 1~5の ¾換 .非 S换アルキル基
5 ' Α、6
5)
R
/ / 3
HN 又は N-R
R, \ 4
R,
(21)
(式中、 ~R5 :水素、 水酸基、 炭素数 1〜10の置換してもいてよい
直鎮又は分岐伏のアルキル基、 炭素数 1〜10の置換 してもよい直繽又は分岐状のアル力ノール基)
8 ここで、 フヱノール類としては、 例えばフエノール、 クレゾール、 キシレノー ル、 ェチルフヱノール、 プロピルフヱノール、 プチルフヱノール、 レゾルシン、 ピロガロール等が挙げられ、 これらの単独又は 2種類以上の組み合わせで使用し てもよい。
また、 ジアルキルベンゼングリコール類としては、 パラキシレングリコールジ メチルエーテル、 パラキシレングリコール、 メタキシレングリコールジメチルェ —テル、 メタキシレングリコール、 オルソキシレングリコールジメチルエーテル、 オルソキシレンダリコールなどがあり、 これらを単独又は 2種類以上組み合わせ て使用しても良い。
重縮合触媒としては、 蓚酸、 パラトルエンスルホン酸、 キシレンスルホン酸、 フエノールスルホン酸などの有機酸や、 塩酸、 硫酸などの無機酸を用いることが できる。 触媒の添加量は、 フエノール類とジアルキルベンゼングリコール類の仕 込み量の和に対して、 0. 0 1〜3. 0重量%の範囲である。
上記化学式 (1 9 ) に示すフヱノール類 1モルに対して、 ジアルキルベンゼン グリコール類のモル数は 0. 0 2〜0. 6が好ましく、 より好ましくは、 0. 0 3〜0. 5である。 ジアルキルベンゼングリコーノレ類のモゾレ数が 0. 6を越える と、得られたフヱノール化合物の例えば金属表面処理液の液安定性が低下する。 更には、 酸に不溶となり、 例えば目的の金属表面処理が行えなくなる場合がある。 —方、 ジアルキルベンゼングリコ一ノレ類のモル数が 0. 0 2未満の場合には、 得 られたフエノール化合物の液溶解性力高くなり、 表面処理における樹脂付着量が 低下して、耐食性、 滑り性が低下する。
また、上記化学式 (1 9) に示すフエノール類 1モルに対して、 ジアルキルべ ンゼングリコーノレ類とホルムアルデヒドのモル数の和は、 0. 7 ~ 0. 9が最適 である。 ジアルキルベンゼングリコール類とホルムアルデヒドのモル数の和が、 0. 9を越えると重縮合反応中にゲル化してしまう。 一方、 ジアルキルベンゼン グリコール類とホルムアルデヒドのモル数の和が、 0. 7未満の場合には重縮合 物自体の溶液粘度 (又は分子量) 力 <上がらず、 液安定が良くなり過ぎて、 処理表 面への樹脂の付着量が低下し、 耐食性、 滑り性が低下する。
また、 上記化学式 (1 9 ) に示すフヱノール類 1モルに対して、上記化学式
(2 1 ) に示すアミン類は、 0. 5〜2. 0モル力好ましく、 より好ましくは 0. 7〜1. 5である。 ァミン類のモル数が 2. 0を越える場合には、 液安定が良く なり過ぎて、 処理表面への樹脂の付着量力く低下し、 耐食性、 滑り性が低下する。 また、 未反応のアミン類、 ホルムアルデヒドが残存する可能性があり、 廃水処理 の付加が大きくなる。 一方、 ァミン類のモル数が 0. 5未満の場合には、 得られ たフヱノール化合物の疎水性が高くなり、 液安定性が低下し、 また例えば金属表 面処理液に不溶となって目的の表面処理が行えな t、場合がある。
ここで、 アミン類としては、 ジエタノールァミン、 N—メチルアミノエ夕ノー ル、 ケチミン、 ジケチミンなどが挙げられ、 これらの単独又は 2種類以上を組み 合わせても良い。
また、 本発明に係る他のフヱノール系樹脂の例としては、 (e ) 下記化学式
(2 2 ) で表わされる少なくとも窒素原子を 1個以上含有するフヱノールの繰り 返し単位と、 (f ) 下記化学式 (2 3 ) 及び/又は化学式 (2 4) で表わされる 少なくとも窒素原子を 1個以上含有するビスフヱノールの繰り返し単位とを含む 混合物である。 前記 (e ) のフヱノールの繰り返し単位の樹脂と前記 (f ) のビ スフヱノールの繰り返し単位の樹脂との重量比が 9 0 : 1 0〜1 0 : 9 0である。
Figure imgf000022_0001
2
Figure imgf000023_0001
1
Figure imgf000023_0002
(式中、 R6, R7, R8, R9 ' Ri0, ½' Xi ' Y3, Y4, Y5, Υ6 水素、 水酸基、 炭素数 1〜10の直鎖又は分岐状のアルキル基又は炭素数 1〜1 0の直鎖又は分岐状のアル力ノール基、 m, n, pはそれぞれ 2〜50。 これら アルキル基およびアルカノ一ル基は官能基によって置換されていてもよい) 本発明に係る上記混合物に関して、 (e) の樹脂と (f) の樹脂との重量比が 90 : 10〜: L 0 : 90であり、 好ましくは 30 : 70〜 70 : 30である。 (e) の樹脂の重量比が上記範囲より多くなると、 水切り乾燥後の外観に褐変又 は黄変が生じる。 一方、 ( f ) の樹脂の重量比が上記範囲より多くなると、 上記 褐^ Xは黄変は抑制されるものの、 耐食性が劣化する。
また、 上記 (e)又は (ί) の樹脂は金属表面処理剤 1リットル当たり 0. 0 l〜10g含有されており、 好ましくは 0. l〜5gである。
上記混合物が金属表面処理剤 1リットル当たり 0. 01 g未満の場合には、金 属表面の樹脂皮膜厚さ力不十分となり、 バリヤ一効果が低下するため、耐食性及 び滑り性が低下する。 一方、 10 gを超えると、 金属表面の樹脂皮膜は必要以上 に厚くなり、 外観不良を起こすと共に、 コスト高になって経済性に劣る。
また、 本発明のフヱノール系樹脂は、 (g)下記化学式 (25) で表わされる フエノール化合物と、 (h)下記化学式 (26) で表わされるビスフエノール化 合物と、 ホルムアルデヒドとの共重合物に、 下記化学式 (27), (28) で表 わされる官能基が少なくとも 1種結合されているフヱノールーピスフエノ一ルー ホルムアルデヒド共重合体又はその塩を含み、 前記 (g) のフエノール化合物と 前記 (h) のビスフエノールイ匕合物とのモゾレ比が 9 : 1〜1 : 9である。
Figure imgf000024_0001
Figure imgf000025_0001
00
-J
OS
(式中、 , R2 , R 3 , R 4 , R 5 , X, Ύ { , Υ 2 , :水素、 水酸基、炭 素数 1〜: L 0の直鎖又は分岐状のアルキル基又は炭素数 1〜 1 0の直鎖又は分岐 状のアルカノ一ノレ基。 これらアルキノレ基およびアルカノ一ル基は官能基によって 置換されていてもよい)
上記 ( g) の化合物と (h) の化合物とのモル比は 9 : 1〜1 : 9であり、 好 ましくは 3 : 7〜7 : 3である。 (g) の化合物のモル比が上記範囲より多くな ると、水切り乾燥後の外観に褐変又は黄変が生じる。 一方、 (h) の化合物のモ ル比が上記範囲より多くなると、上記褐変又は黄変は抑制されるものの、 耐食性 が劣化する。
また、 上記共重合体は金属表面処理剤 1リッ トル当たり 0. 0 1〜: L 0 g含有 されており、好ましくは 0. l〜5 gである。
上記共重合体が金属表面処理剤 1リットル当たり 0. 0 1 g未満の場合には、 金属表面の樹脂皮膜厚さが不十分となり、 バリヤ一効果が低下するため、耐食性 及び滑り性が低下する。 一方、 1 0 gを超えると、 金属表面の樹脂皮膜は必要以 上に厚くなり、 外観不良を起こすと共に、 コスト高になって経済性に劣る。 上述したように、 フヱノール系樹脂を含む表面処理剤を用いると、 滑り性は良 好であるが、 水切り乾燥後の外観に褐変又は黄変が生じる。 一方、 ビスフエノー ル系榭脂を含む表面処理剤を用いると、 水切り乾燥後の外観に褐変又は黄変が生 じることはな L、が、耐食性に欠けるという問題があつた。
本発明の金属表面処理剤は、 フヱノール系樹脂及びビスフヱノール系樹脂の両 樹脂をある一定の比率で含有することにより、 互いの欠点を相補する両樹脂含有 の樹脂皮膜を金属表面に形成することができる。 このため、 水切り乾燥後の褐変 又は黄変を抑制し、 滑り性を向上させることができる。 従って、 滑り性が向上す るため、 ジャミングの発生を抑制することができ、 更にコイルコ一ティングにお いては、 潤滑性を有することとなる。 また、 皮膜外観の褐変又は黄変を抑制する ことができるので、 後工程、 例えば塗装工程にも支障をきたすおそれがない。 本発明に係る金属表面処理剤は、 重金属を含有してもよい。 重金属としては、 ジルコニウム (Z r ) 、 チタン (T i:) 、 モリブデン (M o ) 、 タングステン (W) 、 ニオブ (N b) 、 ニッケル (N i ) 、 コバルト (C o ) 、 マンガン (M n) 、 タンタル (T a ) の少なくとも 1種である。 好ましくは、 重金属は、 ジル コニゥム (Z r ) 、 チタン (T i ) 、 ニオブ (N b) 、 マンガン (Mn) 、 タン タル (T a ) が好ましい。 上記重金属の供給源は、 上記重金属の錯フッ化物が好 ましく、 その他硝酸塩、 リン酸塩等が挙げられる。
本発明に係る金属表面処理組成物に対する重金属の錯フッ化物の含有量は、 0. 0 1〜: L 0 gZ 1力好ましい。 重金属の錯フッ化物の含有量が 0. 0 1 gZ 1未 満の場合には、 耐食性が劣化する。 一方、 重金属の錯フッ化物の含有量が 1 0 g 1を超える場合にも、 耐食性が劣化する。
本発明に係る他の金属表面処理剤は、 水溶性、 τΚ分散性又はエマルシヨン性の 形態を有する、 少なくとも窒素原子、 または陽イオン性ィォゥ原子を 1個以上含 有する有機高分子化合物又はその塩と酸化剤とを含有する 0
有機高分子化合物
金属表面処理剤に対する上記有機高分子化合物の含有量は、 0. 0 1〜1 0 g 1力《好ましく、 より好ましくは 0. 1〜5 g である。 上記有機高^?化合 物の含有量は、 0. 0 1 gZ l未満の場合には、有機樹脂皮膜の厚さが不十分と なり、 バリヤ一効果が低下するため、 耐食性が低下する。 一方、 上記有機高好 化合物の含有量が、 1 0 g/ lを超える場合には、処理液中に過剰の上記有機高 分子化合物力存在することになり、 表面処理液の安定性力《低下し、 ま ^コスト高 になって経済性に劣る。
酸化剤
酸化剤は、 金属表面の化学的安定化、 又は樹脂皮膜の緻密化、 均一化を促進す る効果を有するので、 耐食性を向上させる。 酸化剤としては、 過酸化水素、 亜硝 酸、亜硝酸塩、 過ホウ酸、 過ホウ酸塩、 塩素酸、 塩素酸塩、 臭素酸、 臭素酸塩か ら選ばれる 1種以上の酸化剤であり、 好ましくは過酸化水素、 亜硝酸塩である。 酸化剤の金属表面処理剤に対する含有量は、 0. 0 1〜: L 0 gZ 1力く好ましく、 より好ましくは 0. 1〜2 gZlである。 酸化剤の含有量が 0. OlgZl未満 の場合には、酸化剤としての効果が発揮できず、耐食性に劣る。 一方、酸化剤の 含有量が 10 g/ 1を超えると、酸化剤としての効果が緩和され、 不経済となる c また、 上述の本発明の金属表面処理剤は、 更に無機酸、重金属を含んでもよい c 無機酸
無機酸としては、 リン酸、 硝酸等が挙げられるが、 リン酸が最も好ましく、 そ の酸の塩としては、 ナトリウム、 カリウム、 マグネシウム等の塩が好ましい。 リ ン酸の濃度としては、 金属表面処理剤に対して 0. 01〜10 gZlであること が好ましく、 より好ましくは 0. 25〜5gZlである。 リン酸の含有量が 0. 01 g 未満の場合には、 酸性度力く不十分となり前記有機高分子化合物力《溶解 しにくくなり、一方 10 g Z 1を越えると、 表面処理時の樹脂析出性が抑制され 耐食性が劣化する。
Nb, Ni, Co, Mn, Ti, Ta, Mo, Wの 1種又は 2画以上を組み合 わせて良い。 上記金属の錯フッ化物力好ましく、 その他硝酸塩、 リン酸塩等が挙 げられる。 重金属の金属表面処理剤に対する含有量は、 lOgZl未満であるこ とか'好ましい。 重金属の含有量が 10 gZ 1を越えると、耐食性、塗膜密着性や 滑り性が低下する。
更に、 本発明に係る金属表面処理剤は、上述の水溶性、水分散性又はエマルシ ヨン性有機高 化合物と、 リン酸イオン、 アルミニウムイオンと、 を含有して もよい。
有機高分子化合物は、 上述の化合物であり、 金属表面処理剤に対する上記有機 高分子化合物の含有量は、 0. 01〜 10 gZ 1が好ましく、 より好ましくは 0. 1〜 5 1である。 上記有機高分子化合物の含有量は、 0. 01 1未満の 場合には、 有機樹脂皮膜の厚さ力 <不十分となり、 バリヤ一効果が低下するため、 耐食性が低下する。 一方、 上記有機高分子化合物の含有量が、 10 gZlを超え る場合には、 有機樹脂皮膜が必要以上に厚くなり、 表面処理後の被処理物に干渉 色を生じて、 外観不良を起こす。 また、 処理浴中に過剰の上記有機高分子化合物 力く存在することになり、 表面処理浴の安定性が低下し、 またコスト高になって経 済性に劣る。
リン酸ィ才ン
リン酸イオンの供給源は、 リン酸又はその塩である。 塩としては、 ナトリゥム、 カリウム、 マグネシウム等が好ましい。 リン酸イオンは、 水溶液を酸性にし、上 記有機高分子化合物を溶解させる、 又は金属表面のェッチングのために用いられ る。 このリン酸イオンの濃度としては、 金属表面処理剤に対して 0. 0 1〜 8 g/ 1であること力く好ましい。 リン酸の含有量が 0. O l gZ l未満の場合に は、 エッチングが不十分となると共に、酸性度が不十分となり、 上記有機高分子 化合物が溶解しにくくなる。 このため、 有機皮膜が金属表面に析出しにくくなり 耐食性が低下する。一方、 0. 8 g/ 1を超えると、 エツチング効果が飽和し不 経済であると共に、 廃水処理時の負荷が大きい。
アルミニウムイオン
アルミニウムイオンは、 樹脂皮膜 (すなわち有機高分子化合物を含有する ) の析出速度を促進し、 皮膜の緻密化、 均一ィ匕を促す効果を有する。 アルミニウム イオンの供給源としては、 硝酸アルミニウム、 水酸化アルミニウム、 フッ化アル ミニゥム、 及び表面処理金属がアルミニゥム合金材である場合は、 エツチングに より溶出したアルミニウムでもよい。 アルミニウムィォンの金属表面処理剤に対 する含有量は、 0. 0 1 gZ l〜0. 5 gZ l力く好ましく、 より好ましくは 0.
0 5 g/ l〜0. 2 g/ 1である。 アルミニウムイオンの含有量が 0. O l gZ
1未満の場合には、上記有機高分子化合物が金属表面に析出しにくくなり、耐食 性が不十分となる。 一方、 アルミニウムイオンの含有量が 0. 5 gZ lを超える 場合には、 処理液中で上記有機高分子化合物と不溶性化合物を形成し、 処理液に 濁り力 <生じたり、 スラッジが発生する。 このため、 外観が劣化する。
また、 本発明に係る上述の金属表面処理剤は、 水溶性、 水分散性又はエマルシ ヨン性有機高分子化合物と、 多価ァニオンと、 を含有してもよい。 金属表面処理剤に対する上記有機高分子化合物の含有量は、 0. 01〜10g /1力く好ましく、 より好ましくは 0. 1〜5 gZlである。 上記有機高^ F化合 物の含有量は、 0. 01 gノ 1未満の場合には、 有機樹脂皮膜の厚さが不十分と なり、 バリヤ一効果が低下するため、 耐食性が低下する。 一方、 上記有機高 化合物の含有量が、 lOg/1を超える場合には、 有 脂皮膜が必要以上に厚 くなり、 表面処理後の被処理物に干渉色を生じて、 外観不良を起こす。 また、処 理浴中に過剰の上記有機高分子ィ匕合物が存在することになり、 表面処理浴の安定 性が低下し、 またコスト高になって経済性に劣る。
多価ァニオン
多価ァニオンとしては、縮合リン酸 (ピロリン酸、 メタリン酸、 へキサメクリ ン酸、 トリポリリン酸、 テトラリン酸等) 、 モリブデン酸、 タングステン酸、 ノ ナジン酸、 リンモリブデン酸、 リンタングステン酸、 ゲイタングステン酸等及び その塩が挙げられる。 多価ァニオンの金属表面処理剤に対する含有量は、 0. 0 03gZl〜10. OgZl力く好ましく、 より好ましくは 0. 01gZl〜2g 1である。 多価ァニオンの含有量が 0. 003 gZl未満の場合には、 金属表 面のエツチング不足となり、 樹脂^ が金属表面に析出しにくくなり、耐食性が 劣り、 滑り性が低下する。 一方、 多価ァニオンの含有量が 1 OgZIを超える場 合には、 処理液安定性力低下し、耐食性、 滑り性も低下する。 ここで、処理液と は、 本発明に係る金属表面処理剤又は適宜水で希釈したものをいう。
また、 本発明に係る金属表面処理剤は、 必要に応じて以下のエッチング剤、 ェ ツチング助剤を含んでもよい。
エッチング剤
エッチング剤としては、 フッ化水素酸及びその塩が挙げられる。 エッチング剤 の金属表面処理剤に対する含有量は、 0. 005 gZl〜5gZlが好ましい。 フッ化物イオンの含有量が 0. 005 gZl未満の場合には、 金属表面のエッチ ング不足となり、 界面 pHの上昇力く不十分となるため、 樹脂皮膜が金属表面に析 出しにくくなり、 耐食性が劣る。 一方、 フッ化物イオンの含有量が 5 gZlを超 える場合には、 エッチング過多となり、 やはり樹脂皮膜が金属表面に析出しにく くなり、 耐食性が低下し、 滑り性も不十分となる。
エッチング助剤
エッチング助剤としては、 ゲイフッ酸、 ホウフッ酸及びその塩を用いることが できる。 エッチング助剤の金属表面処理剤に対する含有量は、 0. 0 0 3 gZ l 〜5 gZ lが好ましい。 エッチング助剤の含有量が 0. 0 0 3 gZ l未満の場合 には、 金属表面のエッチング不足となり、 樹脂皮膜が金属表面に析出しにくくな り、耐食性が劣る。一方、 エッチング助剤の含有量が 5 gZ lを超える場合には、 エッチング過多となり、 やはり樹脂皮膜が金属表面に析出しにくくなり、耐食性 力低下し、 滑り性も不十分となる。
本発明の金属表面処理方法は、 金属表面処理剤を金属表面に接触させ、 次いで 水洗、 乾燥させる方法である。
処理条件と処理方法
上記金属表面処理剤の p Hは、 約 2. 0〜5. 0であり、好ましくは 2. 5〜 4. 0である。 この時、 p Hの調整は、 N a O H、 アンモニア水溶液、 硝酸等に より行う。 本発明の金属表面処理剤と金属材料との接触温度は、 常温 (例えば 2 0°C) 〜9 0°Cが好ましく、 より好ましくは 3 5〜6 5°Cである。 一般には、 金 属素材と本発明に係る金属表面処理剤との接触時間は、接触温度が高 ヽほど短く なる。
金属材料に対してスプレー塗布の場合には、 約 5秒間〜 5分間、 好ましくは 1 0〜6 0秒間である。 浸漬法を用いる場合には、上記接触時間より長い接触時間 を要する。 その他、 浸漬法、 フローコート法、 ロールコート法で接触させても良 い。
上記のように、 化成処理を施された金属材料は、 水洗され、 乾燥工程が入るが、 乾燥温度は 1 5 0〜2 4 0 °Cであり、 乾燥温度が 1 5 0 °C未満では、 耐食性が劣 。
金属表面上への本発明の有機高分子化合物の析出機構を以下に述べる。 酸性水 溶液中では、 上記有機高分子化合物が窒素原子 (ァミン由来) を含有する場合に は、 陽イオン性を呈する。 そして、 金属をエッチングした際の金属界面の p HI 昇により、 この陽ィォン性が失われ金属表面に上記有機高分子化合物が凝集沈着 する。 更に、 この窒素原子のローン 'ペア (孤立電子対) を金属と共有 (キレー ト化) することによつても金属への樹 fl旨の析出力 <生じる。
また、 本発明の金属表面処理方法が用いられる金属材料としては、 例えばアル ミニゥム缶等のアルミニウムやアルミニウム合金の他に、鉄、 亜鉛、亜鉛合金、 スズメツキ板、 ステンレス等も挙げられる。
以上のように、 本発明に係る金属表面処理剤によれば、 有機高分子化合物又は その塩中の窒素原子又は陽イオン性ィォゥ原子は、 金属材表面に配位するので塗 膜密着性及び耐食性が向上する。 更に、上記有機高分子又はその塩が金属材表面 にほぼ均一に存在するので、 摩擦抵抗を下げることができ、 滑り性を向上させる ことができる。
従って、本発明に係る金属表面処理剤によれば、 従来に比べ著しく耐食性や塗 膜密着性を改善することができ、 更に滑り性を付与することができる。
また、 本発明に係る金属表面処理組成物によれば、 アルミニウム又はその合金 を用いて食缶を製造する場合には、 ジャミングを防止することができ、 コイルコ 一ティングにおいては、 潤滑性を付与することができる。
また、 本発明において用いる高分子ィヒ合物が、上記化学式 ( 1 8) に示す構造 を有するフェノ一ル樹脂組成物である場合には、 このフヱノ一ノレ樹脂組成物によ つて、 親水性が抑えられているため、 皮膜の滑り性が良好となる。 更に、 皮膜を 乾燥させた場合、 皮膜中のフエノール骨格力《少ないため、 例えフヱノールの共役 発色力起きたとしても、 皮膜が着色するおそれはない。 このため、 滑り性が良好 なため、 ジャミングの発生を防止することができ、 更にコイルコーティングにお いては、 潤滑性を有することとなる。 また、 着色の変色を防止できるので、 後工 程、 例えば塗装工程にも支障をきたすおそれがない。
また、 本発明の金属表面処理剤及び処理方法によれば、 上記共重合体 ( (g) , (h) からなる) あるいは混合物 ( ( e ) , ( f ) 力、らなる) 中のフヱノール成 分とビスフヱノール成分との比率を特定の範囲内で調整することにより、 被処理 物の外観の褐変を抑制することができ、 更に滑り性、 塗膜密着性、 耐食性を向上 させることができる。
また、 本発明に係る金属表面処理剤及び処理方法によれば、 有機高: ^化合物 を含有する金属表面処理剤に、 酸化剤を添加することにより、 処理中の金属表面 を高い酸化状態に保つことができ、 金属表面を不動態化させることができる。 従 つて、 金属表面が安定化する。 更に、 酸化剤は処理中の金属表面のエッチング速 度が促進され、 弓 Iいては金属表面の界面 p Hの上昇速度も促進される。 このため、 有機質皮膜の析出速度が促進され、 緻密な有機 (化成) 皮膜が金属表面に形成さ れる。 従って、 皮膜のバリヤ一性 (耐イオン透過性、耐透水性) が向上し、 その 結果未塗装時の耐食性が向上する。 更に、 主に有機質皮膜からなるため、 滑り性 を有し凝集破壊の原因となる無機質 (金属塩) 皮膜を含んでいても、 有機質皮膜 が ± 塗膜と金属材料とのバインダ一の役目を果たすにより塗膜密着性が向上す 。
また、 本発明に係る金属表面処理剤及び処理方法によれば、 金属表面処理剤に 含まれる有機高分子化合物が、 アルミニウムイオンと不溶性化合物を形成するた め、予め金属表面処理剤中にアルミニウムイオンを含有させておけば、 金属表面 への有機皮膜の析出速度を促進することができる。 従って、従来に比べて低濃度 のリン酸イオンの存在下で、 有機皮膜を金属表面に析出させることができる。 更 に、 アルミニウムイオンの存在により、 緻密で均一な有機皮膜を金属表面に形成 させることができるので、耐食性、 塗膜密着性、 滑り性を同時に満足することが できる。 し力、も、 リン酸イオン濃度を低減できるので、 環境に優しい金属表面処 理剤を提供することができる。
また、 本発明に係る金属表面処理剤及び処理方法によれば、 有機高分子化合物 を含有する金属表面処理剤に、 多価ァニオンを添加することにより、 樹脂の析出 p Hを酸性側にシフトさせることができる。 上記有機高分子化合物は、 酸性側で
3 は溶解する力 弱酸性から中性領域の p Hになると水溶 から凝集析出する。 従って、 多価ァニオンを添加すると、 樹脂皮膜の析出速度が促進され、 金属表面 に析出する上記有機高分子化合物由来の樹脂の皮膜量が増大し、 処理時間が短縮 化できる。 更に、 比較的低皮膜量であっても、 緻密な皮膜が金属表面に形成され るため、 未塗装時の耐食性 (アルミニウム D I缶の場合には耐沸水黒変性) 力向 上する。 更に、 主に有機質皮膜からなるため、 滑り性を有し凝集破壊の原因とな る無機質 (金属塩) 成分を有していても、 塗膜密着性も向上する。 発明を実施するための最良の形態
次に、 実施例及び比較例を挙げて、 本発明を具体的に説明する。
¾ϋ例 1〜23及び比較例 1〜12
(1)被処理物:
A 1一 Mn系 (J I S-A3004) アルミニウム合金板を D I加工等して得 られた β¾ 缶。
(2)塗装下地用皮膜評価方法:
a)耐沸水黒変性:
本実施例及び比較例の組成物によつて表面処理を行つた被処理物を沸騰水道水 中に 30分間浸潰した後の外見評価を次の基準で行った。
〇 : 外観の変化なし
Δ : 僅かに黒変
X : 黒変
b)塗装下地用皮膜表面の滑り性:
本実施例の方法で化成処理を行った被処理物を 「HE I DON— 14型」試験 機で荷重 50 g、 触針速度 30 Omm/m i n. で動摩擦係数を求めた。
〇 0. 6未'/^
Δ 0, 6-0. 8
X 0. 8を超える場合 C ) 塗膜密着性:
バーコ一夕によって B AS F社製塗料 (EB-70-001N 15 Omg/ m2 / EB-69-002N 60 m gZm2 ) を被処理物に塗装する。 そ してこの塗装された被処理物を、 ゥエッジペンディング加工し、折れ曲り部を二 チバン製セ口テープによりテ一プ剥離した時の塗膜剥離評価を次の基準で行つた。
〇 テープ剥離幅が 15 mm未満
Δ テープ剥離幅が 15〜2 Omm
X テープ剥離幅が 20mmを超える
(3)金属表面処理条件:
(実施例 1 )
A 1— Mn系 (J I S— A3004)成型缶を酸性脱脂剤 (「サーフクリーナ 一 NHC250J、 日本ペイント (株) 製) 30gZlを用いて脱脂した (75 °C、 60秒スプレー) 後、 水洗して、 リン酸ジルコニウム系処理剤 (「アルサ一 フ 440」、 日本ペイント (株) 製) を 20 g に希釈した水溶液に表 1に 示す水溶性有機高 1を 0. 2 g/ 1溶解して表 2に示す処理液を作成し、 その処理液を用いて、 50°Cで 20秒間スプレー処理を行った。 処理した後、水 道水で水洗し、 次いで 190°Cで 2分間加熱乾燥を行った。 その評価結果を表 3 に示す。
(実施例 2〜 12及び比較例 1〜 4 )
実施例 2〜12及び比較例 1〜4は、 水溶性有機高分子 (表 1に示した) と重 金属の錯フッ化物とを下記の表 2に示す配合量で含有する金属表面処理組成物で あって、 これらの金属表面処理組成物を上記実施例 1に準じて、 金属表面処理を 行った。 その評価結果を表 3に示す。
(以下余白) 表
水 溶 性 有 機 髙 分 _子 化一合 物
A Η
A - 2 H
Figure imgf000036_0001
Α- Ξ H E A/MMA*7/S t /DMAEA - 50/10/20/20 4000
A— 4 H P A*8/ S t /A Am*9 一 50/30/20 2000 A- 5 HE A/VP*10 /DMA E A ― 60/20/20 3000 A一ら H E A/E HA*11 /V P/DMA PMA 1500
一 0/20/15/15
B一 _ H E A/p-T B S 一 _ 70/30 4000
(註) *1: HEA ヒ ドロキシェチルァクリレート
: p-TB s パラー t—プチルスチレン
*3: DMAE A N—ジメチルアミノエチルァクリレート *4: HEMA ヒ ドロキシェチルメタクリ レート
*5 : S t スチレン
*6: DMAPMA; N—ジメチルアミノプロピルメタクリルアミ ド
*7: MMA メチルメタクリレート
*8: HP A ヒ ドロキシプロピルァクリ レート
*9: AAm ァクリルァミ ド
*10: VP ビニルフヱノール
*11: EHA 2—ェチルへキシルァクリ レート 水溶性有機高分子化合物 属 化 合 物
種 類 含有量 (g/1) 種 類 含有量 (g/I)
1 A - 1 0. 2 アルサーフ 440*1 20
2 A— 2 n アルサ一フ 4 4 0 2 0
3 A一 3 1 アルサ一フ 440 20
4 A一 4 0. 5 アルサ一フ 440 20
5 A— 5 0. 2 アルサーフ 440 20
施 6 A— 6 o . 2 アルサーフ 440 2 0
7 A - 1 0. 2 (NH4 ) 2 Z r F6 1
8 A一 1 0. 2 1
(N H4 ) 2 T a F6
例 9 A一 1 0. 2 ( H ) 9 N b 1
1 0 A— 1 0. 2 1
1 1 A - 1 0. 01 アルサーフ 440 20
1 2 A— 1 1 0 アルサーフ 440 20
1 B - 1 0. 2 アルサーフ 440 20
比 2 A一 1 0. 2
(N H4 ) 2 T i F6 1
較 3 A - 1 0. 2 (NH4 ) „ Z n Fg 1 例 4 アルサーフ 440 20
註) *1 :アルサーフ 440 ; リン酸ジルコニム系処理剤、 日本ペイント (株) 製 評 価 結 果
耐沸水黒変性 すべり性— (動摩擦係数) 上塗塗膜密着性
0 〇 0. 49 〇
2 〇 〇 0. 48 〇 実 3 〇 〇 0. 47 〇
4 〇 〇 0, 48 〇
5 〇 〇 0. 45 〇 施 6 O o 0 46 〇
7 o 〇 0 48 〇
8 〇 〇 0. 49 O 9 o 〇 0. 48 〇
0 〇 〇 0. 48 〇
〇 〇 0. 49 〇
2 〇 o 0. 49 〇
X X 0. 90 < X 比 2 X 〇 0. 51 〇 較 3 X 〇 0. 52 〇 例 4 〇 X 0. 90 < X
これらの結果から、 本発明の金属表面処理用組成物によれば、耐沸水黒変性、 すべり性、 ± ^塗膜密着性のいずれの性能も従来のものに比べ向上していること が判明した。
(実施例 13 )
A 1—Mn系 (J I S— A3004) 成型缶を酸性脱脂剤 (「サ一フクリーナ — NHC 250J、 日本ペイント (株) 製) 30gZlを用いて脱脂した (75 °C、 60秒スプレー) 後、 水洗して、 リン酸ジルコニウム系処理剤 (「アルサー フ 440」、 日本ペイント (株) 製) を 20 gZUこ希釈した水溶液に表 4に 示す水溶性の樹脂 C一 1を 0. 2 gZ l溶解して表 5に示す処理液を作成し、 そ の処理液を用いて、 5 0°Cで 2 0秒間スプレー処理を行った。 処理した後、 水道 水で水洗し、 次いで 1 9 0°Cで 2分間加熱乾燥を行った。 その評価結果を表 6に 示す。
(実施例 1 4〜2 3及び比較例 5〜1 2 )
例 1 4〜2 3及び比較例 5〜1 2は、 水溶性の樹脂 (表 4に示した) と重 金属の錯フッ化物とを下記の表 5に示す配合量で含有する金属表面処理組成物で あって、 これらの金属表面処理組成物を上記実施例 1 3に準じて、 金属表面処理 を行った。 その評価結果を表 6に示す。
表 4 水 溶 —性 有 機—高 分 —子—化 合 物
構 分子量 (H Q
c一 1 ビスフヱノール Α型エポキシ樹脂に 1 8 0 0
スルフォニル基を付加した化合物
c - 2 ノボラック型エポキシ樹脂に 2 5 0 0
スルホ二ゥム基を変成させた化合物
c一 3 ビニルフヱノール樹脂に 4 6 0 0
スルホ二ゥム基を変成させた化合物
C一 4 ビスフヱノール A型エポキシ樹脂に 2 0 0 0
スルホ二ゥム基を変成させた化合物.
D— 1 : 前記化学式 (1 3 ) に示す化合物 2 0 0 0 0
D— 2 : ビスフヱノール A型エポキシ樹脂を 4 6 0
アルコールにより開環した化合物
D— 3 : ビスフヱノール A型エポキシ樹脂に 6 1 0
スルホ二ゥム基を変成させた化合物 8 ε
η
= 〇
〇 η
η— ο =
= 二
^ ο ο
\ 一
0 Η 0
〇一一. 一一 0一 ο
C 0一 0一一 c 〇 CH 0 C I
ο一一H—
C一一
C一一
Figure imgf000040_0001
ο
Z06l0/96dr/13d 9 εο 6 OAV 6 ε
Figure imgf000041_0001
Η 0 HD
HO ΗΟ
ζ - ο
;06I0/96dT/X3J 9 £0/ 6 OAV C - 3
Figure imgf000042_0001
CH2 CHCH2 -0 - CH2 CHCH2 -0-CH2 CHCH2 -0 - CH2 CHg OH o 2 2
OH CH, OH
C一 4
CH,
CH
^S-CH2一 CH一 CH2 0一^) - C一 一 0一 CH2一 CH— CH2«j~ S 3
HOCH2 CH2 / Λ CHn OH l2
OH CIし CH. OH
CH„ CH, CH.
HO-CH ?"2 ' ^
» HO-CH i
OH , OH
CH
2 CH 0
CH
2
H 3C-CH c
H 3C-CH
0
CH
i CH
2
HO-CH
HO-CH
CH
2 CH
2
0
CHr
CH
2
CHfl
CH
OH OH
D一
R R .
+ノ
S - CA]n- S
ノ 、
R R,
2
A :-?* 一 C H一 C H2 "iBュ一 0-<g>-Kg>-0 - C H2 ~ C H - C ¾ -
O R O H
B : - 0-<g>-Kg>-0- C H2 ~ C H- CH2 -.
O H
又は 一 0— R3 — 0— C H2 — C H - C H2
O H
R1 . R2 :水お、 水 ¾iS、 Κ¾2¾ 1 ~ 1 5の; S¾して よい fliiH又は分 4 のァノレキノレ 25,
又は ί¾ 5の «sしてもよい Είβ又は分岐状の アル力ノール 35
R, :炭 数 1 0- 1 8の ΟΪ«ί又は分岐状のアルキル -)
D - 2 .
C H,
O
II o c ii2 C II 0 - C II Cll一 Cll2 {o-<g- C-<g>-0-CH2 - CH C H, 0- C II, C H OH
'2
OH C II. OH
D - 3 :
H
Figure imgf000046_0001
陽イオン性有機高分子化合物 化 合 物 種 類 含有量(g/1) 種 類 含有量(g/1)
13 C - 1 0. 2 アルサ一フ 440 ^ 2 0
14 C - 2 0. 2 アルサーフ 440 2 0
15 C - 3 0. 2 アルサ一フ 440 20
16 C - 4 0. 2 アルサーフ 440 20
17 C一 1 0. 2 1
(N H4 ) 2 Z r F6
施 18 C一 1 0. 2 (NH4 ) 2 T a Fg 1
19 C一 1 0. 2 ( H4 ) 2 Nb F6 1
20 C一 1 0. 2 1
例 21 C - 1 0. 2 O 1
O
22 C一 1 0. 01 アルサーフ 440' 20
23 C - 1 5 アルサーフ 440 20
5 D- 1 0 2 アルサーフ 440 20
6 D - 2 0. 2 アルサ一フ 440 2 0 比 7 C一 1 0. 2 1
(Ν Η4 ) 2 T i F6
8 C - 1 0. 2 ' ( H4 ) Z n F 1 較 9 アルサーフ 440 2 0
10 D— 3 0. 2 アルサーフ 440 2 0
例 1 1 C一 1 0. 005 アルサーフ 440 2 0
12 C - 1 1 0 アルサーフ 440 2 0
註) *1:アルサーフ 440 ; リン酸ジルコニウム系処理剤、 日本ペイン卜㈱製 表 6 評 価 結
耐沸水黒変性 すべり性 (動摩擦係数) 上塗塗膜密着性
13 〇 〇 0. 45 〇
14 〇 〇 0. 42 〇
15 〇 〇 0. 49 〇
16 〇 〇 0. 41 〇
17 〇 〇 0. 45 〇
施 18 〇 〇 0. 46 〇
19 〇 〇 0. 46 〇
20 〇 〇 0. 44 〇
例 21 〇 〇 0. 45 〇
22 〇 〇 0. 49 〇
23 _ 〇 〇 0. 43 〇
5 △ △ 69 X
6 X X 90 < X
比 7 X 〇 45 〇
8 X 〇 45 〇
9 〇 X 90 < X
0 X 厶 74 Δ
例 X X 79 X
Δ 〇 42 〇
これらの結果から、 本発明の金属表面処理用組成物によれば、 耐沸水黒変性、 滑り性、 上^ 膜密着性の 、ずれの性能も従来のものに比べ向上していることが 判明した。
本発明で用いる高分子化合物力 (、 請求項 6, 7, 8に係るフユノール系樹脂の 場合の好ましい実施形態を以下に示す。
実施例 24〜33及び比較例 13〜18
く重縮合物 Eの製造方法〉
表 7に示す配合で反応を行った。 攪拌装置、 還流冷却機及び温度計を備えた反 応装置に m—クレゾール 1モル (108g)、 m—キシレングリコールジメチル エーテル 0. 03モル (5g) 、 p—トルエンスルホン酸 0. 3gを仕込み、 1 60°Cで 2時間反応させた。 内温を 100°Cまで下げ、 37%ホルムアルデヒド 水溶液 0. 75モル (61 g) を 1時間かけて添加し、 100°Cで 2時間還流反 応を行い、 140°Cまで常圧脱水反応を行った。 次いで、 真空脱水を行い、 系内 の温度が 160°Cまで昇温したところで重縮合反応を終了とした。 次いで、表 8 に示すように 120°Cまで温度を下げ、 ブチルセルソルブ 194 gを添加し、 重 縮合物を完全に溶解させ、純水 194 gを 100°C以下で添加し、 系内の温度が 50°Cまで下^つたところで、 N—メチルアミノエタノール 1モル (75g) を 添加し、 37%ヒルムアルデヒド水溶液 1モル (81. 1 ) を 1時間かけて逐 添し、 50°Cで 1時間反応させ、 更に 90°Cで 1. 5時間反応させた。 得られた 樹脂溶液は、 粘度が 0. 11 P a · s、遊離ホルムアルデヒドが 0%、 遊離フヱ ノールが 0%、 180°C1時間の不揮発分が 31. 2%あり、 pH2のリン酸水 溶液に溶解した。
く重縮合物 F〜 Hの製造方法〉
表 7及び 8に示した配合で重縮合物 Eの製造方法に準じて反応を行 L、、 表 8に 示す一般特性を有する樹脂溶液を得た。
く重縮合物 Iの製造方法 >
表 7に示す配合で反応を行った。 攪拌装置、 還流冷却機及び温度計を備えた反 応装置にフエノール 1モル (94g)、 p—トルエンスルホン酸 0. 3gを仕込 み、 内温を 100°Cまで上げ、 37%ホルムアルデヒド水溶液 0. 8モル (65 g) を 1時間かけて添加し、 100°Cで 2時間還流反応を行い、 14CTCまで' 圧脱水反応を行った。 次いで、 真空脱水を行い、 系内の温度が 16 (TCまで^温 したところで 合反応を終了とした。 次いで、 表 8に示すように 120°Cまで 温度を下げ、 ブチルセルソルブ 156 gを添加し、重縮合物を完全に溶解させ、 純水 156 gを 100°C以下で添加し、 系内の温度が 50°Cまで下がったところ で、 N—メチルアミノエタノール 1モル (75g) を添 ¾1し、 37%ヒルムアル デヒド水溶液 1モル (81. 1 ) を 1時間かけて逐添し、 50。Cで 1時間反応 させ、更に 90°Cで 3. 5時間反応させた。 得られた樹脂溶液は、 粘度が 0. 1 2 P a · s、 遊離ホルムアルデヒドが 0%、 遊離フヱノールが 0. 2%、 180 C 1時間の不揮発分が 31. 2%あり、 PH 2のリン酸水溶液に溶解した。
<¾¾合物】, Kの製造方法〉
表 7及び 8に示した配合で 合物 Eの製造方法に準じて反応を行 ^、、表 8に 示す 特性を有する樹脂溶液を得た。
<麵合物 Lの製造方法 >
表 7に示した配合で反応を行った。 攪拌装置、 還流冷却機及び温度計を備えた 反応装置にプチルセ口ソルブ 200 g、 ポリビニルフヱノール (重量平均分子量
(Mw) =3, 000) 1モル (フヱノ一ノレ繰り返し分子量をフヱノールの森数 として 120 g) を仕込み、 内温を 110°Cまで上げ 1時間撹拌し、 ポリビニル フエノールを完全に溶解させた。 系内の温度を下げ、 100°C以下になったとこ ろで、 ジエタノールァミン 1モル (105g) を添加し、 50°Cで 1時間反応さ せ、 更に 90°Cで 3時間反応させた。 得られた樹脂溶液は、 粘度が 0. 12 P a
• s、 ■ホルムアルデヒドが 0. 7%、 遊離フヱノールが 0%、 180。C1時 間の不揮発分が 30. 3%あり、 pH2のリン酸水溶液に溶解した。
(以下余白)
表 7
Figure imgf000051_0001
注 I) PXDM: P-キシレンク'リコ - Wメチ W-ift
0XDM: 0-キシレンク'リ〕 -ルシ'; (iJVI-ift
MXDM: a-キシレンク'リ〕-クシ チ Μ-ϊ» 注 .2) ( )內の敎 (1はさ AWiVテ 'ヒドの ift牧を示す ·
表 8
ϋΐ
ο
Figure imgf000052_0001
注 I) ( )内の数 ifiは^ム テ 't の 敉を示す.
注 2) PB2のリン K水 ί§液に不揮¾分 ffiKO.Zffi Λ·-ίントになるように樹脂を添加したときの g解性,
(1) 被処理物:
A 1一 Mn系 (J I S-A 3004) アルミニウム合金板を D I加工等して得 られた成型缶。
(2) 塗装下地用皮膜評価方法:
a ) 耐沸水黒変性:
本実施例及び比較例の処理剤によつて表面処理を行つた被処理物を沸騰 水道水中に 30分間浸漬した後の外見評価を次の基準で行つた。
〇 外観の変化なし
△ 僅かに黒変
X
b) 塗装下地用皮膜表面の滑り性:
本実施例の方法で表面処理を行った被処理物を 「HE I DON— 14」 型試 Smで荷重 50 g、 触針速度 30 OmmZm i n. で動摩擦係数を求 めた。
〇 : 0. 7未満
Δ : 0. 7〜0. 8
X : 0. 8を超える場合
c ) 塗膜密着性:
バーコ一夕によって B AS F社製塗料 (EB-70-001N 150 mg/m2 /EB-69-002N 6 OmgXm2 ) を被処理物に塗装 する。 そしてこの塗装された被処理物を、 ゥエッジベンディング加工し、 折れ曲り部をニチバン製セ口テープによりテープ剥離した時の塗膜剥 価を次の基準で行った。
〇 テープ剥離長さが 15mm未満
△ テープ剥離長さが 15〜2 Omm
X テープ剥離長さが 2 Ommを超える
d) 処理外観維持性 (着色性) 化成処理後、 210°C、 3分乾燥後の外観を目視観察した
〇 : 着色なし
X : 着色あり
e )処理液安定性:
液作成時の状態を目視観察した。
〇 白濁なし
Δ 白濁
X 沈降、凝集物あり
f)廃水処理性:
廃水付加の有無を遊離フェノール及び遊離ホルムアルデヒドの樹脂溶液 中に含まれるトータル%で評価した。
〇 トータル 0. 5%未満
Δ トータル 0. 5〜5%
X トータル 5%を超える
(3)処理条件;
A 1一 Mn系 ( J I S— A 3004)成型缶を酸性脱脂剤 (「サーフクリーナ 一 NHC250J 日本ペイント (株) 製) 308//1の濃度で75。〇、 60秒ス プレー脱脂した後、 7洗し、 表 9に示す配合からなる金属表面処理剤で ρΗ 3. 5、 50°C、 20秒スプレー化成処理後、水洗し 190°C、 2分間乾燥を行った c 評価結果を表 10に示す。
(以下余白)
表 9
金 属 表 面 処 理 剤 の 配 合 量
つ »ia
重縮台物 リ ン酸 フ ッ酸 過睽 匕フ K累 卜 リ ボリ リ ノ酸 ケィ フ ッ酸 ンノレ J ノノ ッ酸 τ¾ ?;
種類 (g/1) (g/1) ^g/l)
24 E 1.0 0. 5 0. o
25 ω F 1.0 0. 5 0 · 5
26 G 1.0 0. D 0. 5
27 H 1.0 0. 5 0. 5
28 E 1.0 0. 5 0. 5 0. 1
CO
施 29 E 1.0 U . 5 U . U . 1 u . 1
30 E 1.0 0. 5 0. 5 0. 01
31 E 9 5
例 32 E 0.05 0. 1 0. 1
33 E 0.2 0.03 0. 03
1 3 I 1.0 0. 5 0. 5
比 14 J 1.0 0. 5 0. 5
1 5 K 1.0 0. 5 0. 5
較 16 L 1.0 0. 5 0. 5
1 7 0. 5 0. 5
18 E 1.0 30
〇 〇 O 〇 〇 〇 〇 〇 〇 〇 <1 < <1 〇 X « 0 ΐ
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 x 〇 〇 〇 X nn ^^ « ^¾翻^蚝翻翻
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 X
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 x X
〇 〇 o 〇 〇 〇 〇 〇 〇 〇 x 〇 x x O
〇 〇 〇 〇 〇 〇 〇 〇 〇 o 〇 X X
ID CD ∞ o CO マ CD 00 CM CM (M C CO CO CO
これらの結果から、 本発明の金属表面処理剤及び処理方法によれば、耐 性 (耐沸水黒変性、 耐レトルト性) 、 滑り性、 上塗塗膜密着性のいずれの性能も従 来のものに比べ向上した表面処理金属材が得られることが判明した。
本発明で用いる高分子化合物力《請求項 9, 1 0に係るフヱノール系樹脂の場合 の好ましい実施形態を以下に示す。 実施例 34〜41及び比較例 19〜22
(1)被処理物:
A 1— Mn系 (J I S-A3004) アルミニウム合金板を D I加工等して得 られた成型缶。
(2)塗装下地用皮膜評価方法:
a)耐沸水黒変性 (耐食性) :
本実施例及び比較例の組成物によつて表面処理を行つた被処理物を沸騰 水道水中に 30分間浸漬した後の外見評価を次の基準で行つた。
〇 外観の変化なし
△ 僅かに黒変
X
b)塗装下地用皮膜表面の滑り性:
本実施例の方法で表面処理を行った被処理物を 「HE I DON— 14」 型試,で 5mm ø鋼球、 荷重 50 g、 触針速度 30 OmmXm i n. で動 摩擦係数を求めた。
〇 : 0. 55未満
△ : 0. 55〜0. 8
X : 0. 8を超える場合
c)塗膜密着性:
ノくーコ一夕によって BASF社!^料 (EB-70-001 150 mg/m2、 クリヤー; EB— 69— 002N 6 Omg/m2 ) を被処 理物に塗装する。 そしてこの塗装された被処理物を、 ゥヱッジベンディン グ加ェし、 折れ曲り部をニチバン製セ口テープによりテープ剥離した時の 塗膜剥離評価を次の基準で行った。
〇 テープ剥離長さが 15mm未満
△ テープ剥離長さが 15〜2 Omm
X テープ剥離長さが 2 Ommを超える d)耐褐変性 (変色性) :
水切り乾燥後の被処理物の外観を目視観察した。
〇 褐変なし
Δ やや褐変
X 褐変
(3)金属表面処理条件;
<実施例 34>
A1— Mn系 (J I S-A3004)成型缶を 30 g Z 1濃度の酸性脱脂剤 (「サーフクリーナー NHC 250」 日本ペイント (株) 製) で 75て、 60秒 スプレー脱脂した後、 水洗し、 リン酸 0. 5g/l, フッ酸 0. 5g/l, ピロ リン酸 5gZl, 下記化学式 (29)に示す共重合体 (フエノールとビスフ ェノールのモル比 =3: 3) 0. 6g/lを含有し pH3. 5に調整した金属表 面処理剤で 50°C、 20秒スプレー化成処理を行った。 処理後、 水洗し 190。C、 2分間水切り乾燥を行った。 評価結果を表 11に示す。
<化学式 (29)の共重合体の合成方法 >
化学式 (29)の共重合体の合成方法を下記に示す。
(以下余白)
Figure imgf000059_0001
攪拌装置、 還流冷却機及び温度計を備えた反応装置にフヱノール 3モル (28 2 g) ^ ビスフエノール A 3モル (684 g)、 p—トルエンスルホン酸 0. 3 gを仕込み、 160°Cで 2時間反応させた。 次に内温を 100°Cまで下げ、 37 %ホルムアルデヒド水溶液 (ホルムアルデヒドとして 5モル) (406 g) を 1 時間かけて添加し、 100°Cで 2時間還流反応を行い、 140°Cまで常圧脱水反 応を行った。 次いで、 真空脱水を行い、 系内の温度が 160°Cまで昇温したとこ ろで 合反応を終了とした。 次いで、 120°Cまで温度を下げ、 プチルセロソ ルブ 1650 gを添加し、 ®Ι合物を完全に溶解させ、純水 1650 gを 100 ルブ 1650 gを添力 αし、重縮合物を完全に溶解させ、純水 1650gを 100 °C以下で添加し、系内の温度が 50°Cまで下がったところで、 N—メチルァミノ エタノール 6モル (450 g) を添加し、 37%ホルムアルデヒド水溶液 6モル (486. 6 g) を 1時間かけて添加し、 50°Cで 1時間反応させ、 更に 90。C で 1. 5時間反応させた。 得られた樹脂溶液は、 粘度が 0. 15 P a · s、 遊離 ホルムアルデヒドカ 0%、 遊離フヱノールが 0%、 180。C1時間の不揮発分が 31. 1%あり、 pH 2のリン酸水溶液に溶解した。
<実施例 35〜37, 比較例 19〜20>
表 11に示すように、下記化 (30)〜 (34) に示す共重合体中のフヱ ノール Zビスフエノ一ルのモゾレ i ¾び共重合体の添加量を変え、 その他の成分の 含有量は上記 ¾ϋ例 34と同様の金属表面処理剤で、 上記実施例 34に準拠して 表面処理を行った。 評価結果を表 11に示す。 なお、 化学式 (30) 〜 (34) の共重合体は前記化学式 (29) の共重合体の合成法に準じて合成した。
(以下余白)
6
Figure imgf000061_0001
フヱノール
ビスフヱノール のモル比- 7 : 2 CH, ) 2 (31)
Figure imgf000062_0001
フエノール/ ビスフエノール のモル比- 4 : 5
(32)
Figure imgf000063_0001
Z 9
Figure imgf000064_0001
Figure imgf000064_0002
Figure imgf000064_0003
CO
O
206lO/96dr/X3d ε 9
Figure imgf000065_0001
ο
Figure imgf000065_0002
ω
Z06lO/96df/XDd 9 £0 6 OAV 表 1 金属表面処理剤中の共重合体の組成 評 価 項 目
共重合体 共重合体の フエノ-ル/ビスフエ ル
の 種 類 添加量(g/1) のモル比 耐沸水黒変性 滑り性 塗膜密着性 耐褐変性
34 (29) 0. 6 3 : 3 〇 O O 〇
35 (30) 1. 5 2 : 6 O 〇 〇 〇
05 施 36 (31) 5. 0 7 : 2 O O o 〇 例 37 (32) 9. 5 4 : 5 O 〇 o o 比
較 19 (33) 5. 0 1 : 0 O O 〇 X 例 20 (34) 5. 0 0 : 1 X △ 〇 O
ぐ実施例 38 >
Al—Mn系 (J I S-A3004)成型缶を 30 g Z 1濃度の酸性脱脂剤 (「サーフクリーナー NHC 250」 日本ペイント (株) 製) で 75°C、 60秒 スプレー脱脂した後、 水洗し、 リン酸 0. 5 g/1, フッ酸 0. 5g/l, ピロ リン酸 5 gZl、上記化学式 (33)に示すアミン変性フヱノール系樹脂 0. 6g/l, 上記化学式 (34) に示すアミン変成ビスフエノール A系樹脂 0. 6 gZlを含有し PH3. 5に調整した金属表面処理剤で 50°C、 20秒スプレー 化成処理を行った。 処理後、 水洗し 190°C、 2分間水切り乾燥を行った。 評価 結果を表 12に示す。
<実施例 39〜41, 比較例 21〜22〉
化学式 (33) に示すアミン変成フエノール系樹脂と化学式 (34) に示すァ ミン変成ビスフエノール A系樹脂の含有量を変え、 その他の成分の含有量は上記 mssと同様の金属表面処理剤で、上記実施例 38に準拠して表面処理を行 つた。 評価結果を表 12に示す。
(以下余白)
表 12 金 属 表 面 処 理 剤 中 の 樹 脂 組 成 評 価 項 目
(33) に示す ノ-ル 樹脂(g/1) / ノ-ル 樹脂/
(34) に示すビス hトル A樹脂(g/1) ビスフ - 樹脂の比率 耐沸水黒変性 滑り性 塗膜密着性 耐褐変性
38 0. 6/0. 6 50/50 ο 〇 ο 〇
39 1. 0/0. 2 , 83/17 ο 〇 〇 〇 施 40 0. 2/1. 0 17/83 ο 〇 〇 〇 例 41 0. 1/0. 1 50/50 ο 〇 〇 〇 比
校 21 1. 2/0 10 οκο ο 〇 〇 X 例 22 0/1. 2 0/1 00 X △ 〇 〇
これらの結果から、 本発明の金属表面処理剤によれば、 耐食性 (耐沸水黒変性) 、 滑り性、 ト途途隙 著桦、 耐褐変性のいずれの性能も従来のものに比べ向上し ていることが判明した。
次に、 有機高 化合物と他の添加剤とを含む金属表面処理剤の好ましい難 態様を以下に示す。
実施例 42〜51及び比較例 23〜25
(1)被処理物:
A 1—Mn系 (J I S-A3004) アルミニウム合金板を D I加工等して得 られた成型缶。
(2)塗装下地用皮膜評価方法:
a)耐沸水黒変性 (耐食性) :
本実施例及び比較例の組成物によつて表面処理を行つた被処理物の缶底 部分を沸騰水道水中に 30分間浸漬した後の外観評価を次の基準で行った
〇 外観の変化なし
△ 僅かに黒変
X
b)塗装下地用皮膜表面の滑り性:
本実施例の方法で化成処理を行った被処理物を 「HE I DON— 14」 型試験機で 5mm 0鋼球、 荷重 50 g、 触針速度 30 Omm/m i n. で 動摩擦係数を求めた。
〇 : 0. 6未満
△ : 0. 6〜0. 8
X : 0. 8を超える場合
c ) 塗膜密着性:
バーコ一夕一によつて B AS F社製塗料 (ベース塗料; EB-70-0 01 N 15 OmgZm2 、 クリヤー; EB - 69 - 002N 6 Omg /m2 ) を被処理物に塗装する。 そしてこの塗装された被処理物を、 ゥェ ッジベンディング加工し、 折れ曲り部をニチバン製セロテープによりテー プ剥離した時の塗膜剥離評価を次の基準で行つた。
〇 : テープ剥離長さが 15mm未満
Δ : テープ剥離長さが 15〜 20 mm
X : テープ剥離長さが 2 Ommを超える
(3) 窒素原子含館機高分子化合物
アクリル系樹脂 (M) :
Figure imgf000070_0001
3000
*1: HEA ヒドロキシェチルァクリレート
*2: p— TB S パラ一 tーブチルスチレン
*3: DMAEA N—ジメチルアミノエチルァクリレート フヱノール系樹脂 (N) 下記化学式 (35) に示す化合物である フヱノール系樹脂 (0) 下記化学式 (36) に示す化合物である
0 H
Figure imgf000070_0002
Figure imgf000070_0003
(4)金属表面処理条件;
ぐ実施例 42 >
A 1 -Mn系 (J I S— A3004)成型缶を酸性脱脂剤 (「サ一フクリーナ 一 NHC250J 日本ペイント (株) 製) 308 /1の濃度で75て、 60秒ス プレー脱脂した後、水洗し、 リン酸 5g/l, フッ酸 0. 5 g/1, 有機高 好化合物として窒素原子含有アクリル系樹 fl旨を 1. OgZl, 酸化剤として過 酸化水素 0. 5£ 1を含有し ^13. 5に調整した金属表面処理剤で 50て、 20秒スプレー化 β¾ 理を行った。 処理後、 水洗し 190°C、 2分間水切り乾燥 を行った。 評価結果を表 13に示す。
<実施例 43〜51, 比較例 23〜25>
表 13に示すように、上記有機高分子化合物の種類及び含有量、酸化剤の種類 及び含有量、 P Hを変え、 その他の成分の含有量は上記実施例 42と同様の金属 表面処理剤で、 上記実施例 42に準拠して表面処理を行った。 評価結果を表 13 に示す。
(以下余白)
表 1 3 金尿表而処理剂の組成 評価 JJHil 冇機髙分子化合物 酸化剂 pH 耐沸水黒変性 mり性 塗膜密¾性 翻 含有!: (g/e) 糨類 含有!; (g〃)
実施例 4 2 CM) 1.0 H202 0.5 3.5 〇 〇 〇
43 (M) 1.0 NaN02 0.5 3.5 〇 〇 〇
44 (M) 1.0 NaCL03 0.5 3.5 〇 〇 〇
45 (Μ') 1.0 NaBr03 0.5 3.5 〇 〇 〇 ο
46 (Μ) 1.0 H202 0.5 3.5 〇 〇 〇
4 7 (Μ> 0.01 H202 0.5 3.5 〇 〇 〇
4 8 (Μ') 1.0 H202 9.0 3.5 〇 〇 〇
4 9 (Μ) 9.0 H202 0.02 3.5 〇 〇 〇
5 0 (Ν) 1.0 H202 0.5 3.0 〇 〇 〇
5 1 (0) 1.0 H202 0.5 3.5 〇 〇 〇 比較例 2 3 ('Μ') 1.0 H202 0.005 3.5 X A 〇
2 4 (Μ:) 0.005 H202 0.5 3.5 X X 〇
2 5 (·Μ:) 15.0 H202 0.5 3.5 〇 〇 △
これらの結果から、 本発明の金属表面処理剤によれば、 耐食性 (耐沸水黒変性) に優れ、 かつ更に滑り性、 上塗塗膜密着性、 のいずれの性能も従来のものに比べ 向上していることが判明した。
実施例 52〜 58及び比較例 26〜 27
(1) 被処理物:
A 1一 Mn系 (J I S— A3004) アルミニウム合金板を D I加工等して得 られた成型缶。
(2) 塗装下地用皮膜評価方法:
a) 耐沸水黒変性 (耐食性) :
本実施例及び比較例の組成物によつて表面処理を行つた被処理物を沸騰 水道水中に 30分間浸漬した後の外見評価を次の基準で行つた。
〇 : 外観の変化なし
△ : 僅かに黒変
X : 黒変
b ) 塗装下地用皮膜表面の滑り性:
本実施例の方法で化成処理を行った被処理物を 「HE I DON— 14」 型試験機で 5 mm 0鋼球、荷重 50 g、 触針速度 300 mm/m i n. で 動摩擦係数を求めた。
〇 : 0. 55未満
Δ : 0. 55〜0. 8
X : 0. 8を超える場合
c) 塗膜密着性:
バーコ一夕によって B AS F社製塗料 (E B-70-001N 150 mg/m2 、 クリャ一: EB— 69— 002N 6 Omg/m2 ) を被処 理物に塗装する。 そしてこの塗装された被処理物を、 ゥヱッジペンディン グ加工し、折れ曲り部をニチバン製セ口テープによりテープ剥離した時の 塗膜剥離評価を次の基準で行つた。 〇 テープ剥離長さが 15 mm未満
△ テープ剥離長さが 15〜 20 mm
X テープ剥離長さが 2 Ommを超える
(3).金属表面処理条件;
ぐ実施例 52 >
Al—Mn系 (J I S-A 3004)麵缶を酸性脱脂剤 (「サーフクリーナ 一 NHC 250J 日本ペイント (株) 製) 30g//lの濃度で75°C、 60秒ス プレー脱脂した後、 水洗し、 リン酸 5g/l, フッ酸 0. 5 g/1, ピロリ ン酸、 アルミニウムイオン、 有機高^化合物として下記 (P) を含有し pH3. 5に調整した金属表面処理剤で 50°C、 20秒スプレー化成処理を行った。 処理 後、 水洗し 190°C、 2分間水切り乾燥を行った。 評価結果を表 14に示す。 く実施例 52〜58, 比較例 26〜27〉
表 14に示すように、上記有機高^^化合物の種類、 含有量、 リン酸イオン濃 度、 アルミニウムイオン濃度、 pHを変え、 その他の成分の含有量は上記実施例 42と同様の金属表面処理剤で、上記実施例 42に準拠して表面処理を行った。 評価結果を表 14に示す。
(以下余白)
Figure imgf000075_0001
註) (P) : フヱノール樹脂:下記化学式 (37) に示す樹脂である
(Q) :ポリビニルフェノール系樹脂:下記化学式 (38) に示す樹脂で ある
(R) : ビスフヱノール A樹脂:下記化学式 (39) に示す樹脂である (M) :アミン変性力チォン樹脂-ァクリル系樹脂 (前記) L
Figure imgf000076_0001
Figure imgf000076_0002
Figure imgf000076_0003
Z:06tO/96dT/X d[ 9 £0/ム 6 OAV これらの結果から、 本発明の金属表面処理剤によれば、 低リン酸イオン濃度で あっても、耐食性 (耐沸水黒変性) 、 滑り性、 上塗塗膜密着性、 被処理物の外観、 処理液の外観は良好であることが判明した。
実施例 59〜70及び比較例 28〜31
(1)被処理物:
A 1—Mn系 (J I S-A3004) アルミニウム合金板を D I加工等して得 られた成型缶。
(2)塗装下地用皮膜評価方法:
a)耐沸水黒変性 (耐食性) :
本実施例及び比較例の組成物によつて表面処理を行つた被処理物の缶底 部分を沸騰水道水中に 30分間浸漬した後の外観評価を次の基準で行った。
〇 外観の変化なし
Δ 僅かに黒変
X
b)塗装下地用皮膜表面の滑り性:
本実施例の方法で化成処理を行った被処理物を 「HE IDON— 14」 型試,で 5mm0鋼球、 荷重 50 g、 触針速度 30 Omm/m i n. で動 摩擦係数を求めた。
〇 : 0. 6未満
Δ 0. 6-0. 8
X 0. 8を超える場合
c ) 塗膜密着性:
バーコ一夕によって B AS F社製塗料 (EB-70-001N 150 mg/m2 、 クリヤー; EB— 69— 002 N 6 Omg/m2 ) を披処 理物に塗装する。 そしてこの塗装された被処理物を、 ゥエッジペンディン グ加工し、 折れ曲り部をニチバン製セ口テープによりテープ剥離した時の 塗膜剥離評価を次の基準で行つた。 〇 : テープ剥離長さが 15mm未満
△ : テープ剥離長さが 15〜20mm
X : テープ剥離長さが 2 Ommを超える
( 3 ) 陽ィォン性窒素原子含有樹脂
註) (P) : フエノール樹脂:上記化学式 (37) に示す樹脂である
(Q) :ポリビニルフヱノ一ル樹脂:上記化学式 (38) に示す樹脂であ る
(R) : ビスフヱノール A樹脂:上記化学式 (39) に示す樹脂である (M) :ァミノ変性カチオン樹脂: (前記)
(4)金属表面処理条件;
<実施例 59〉
A 1一 Mn系 (J I S— A3004)趣缶を酸性脱脂剤 (「サーフクリーナ — NHC 250J 日本ペイント (株) 製) 30 1の濃度で75 、 60秒ス プレー脱脂した後、 水洗し、 リン酸 0. 5gZl, フッ酸 0. 5gZl, 有機高 ^^化合物として陽イオン性窒素原子含有ァクリル系樹脂を 1 gZl, 多価ァニ オンとしてモリブデン酸イオンを 0. 02 gZlを含有し pH3. 5に調整した 金属表面処理剤で 50°C、 20秒スプレー化成処理を行った。 処理後、 水洗し 1 90°C、 2分間水切り乾燥を行った。 評価結果を表 15に示す。
<実施例 60〜70, 比較例 28〜31〉
表 15に示すように、 上記有機高分子化合物の種類及び含有量、 多価ァニォン の種類及び含有量、 pHを変え、 その他の成分の含有量は上記実施例 59と同様 の金属表面処理剤で、 上記実施例 59に準拠して表面処理を行った。 評価結果を 表 15に示す。
(以下余白) 表 15 金屈表而処理剤の組成 評価項目 有機高分子化合物 多価ァニオン pH 耐沸水黒変性 滑り性 塗膜密着性 脑 含有量 (g/ ) mm (g/ ί)
実施例 59 (P) 1.0モリブデン酸 0.02 3.5 〇 〇 〇
60 (P) 1.0 タングステン酸 0.05 3.5 〇 〇 〇
6 1 CP) 0.1 タングステン^ 5 3 〇 〇 〇
62 (P) 5.0 タングステン酸 0.1 4 O 〇 o
63 (P) 10.0 リンモリブデン酸 0.01 3.5 〇 〇 〇
64 (P). 1.0 リンタングステン酸 0.05 3.5 〇 〇 〇
65 (P) 2.0ケィタングステン酸 0.03 3.5 〇 〇 〇
66 (P) 0.01 ケィタングステン酸 5 3.5 〇 〇 〇
67 (P) 1.0バナジン酸 0.5 3.5 〇 〇 〇
68 (Q) 1.0モリブデン酸 0.05 3.5 〇 〇 〇
69 (R) 1.0モリブデン酸 0.05 3.5 〇 〇 〇
70 (M) 1.0モリブデン酸 0.05 3.5 〇 〇 〇 比較例 28 (P) 1.0 3.5 X △ O
29 (P) 0.005 モリブデン酸 0.05 3.5 X X A
30 (P) 15.0モリブデン酸 0.05 3.5 〇 〇 Δ
31 1.0 タングステン酸 15 3.5 X X 厶
これらの結果から、 本発明の金属表面処理剤によれば、 耐食性 (耐沸水黒変性) に優れ、 更に滑り性、 上塗塗膜密着性、 のいずれの性能も従来のものに比べ向上 していること力判明した。
産業上の利用可能性
本発明に係る金属表面処理剤及び金属表面処理方法は、 食缶、 自動車のボディ 一、鋼板のコイルコーティング、 建材等の金属表面処理に用いることができる。

Claims

請求の範囲
1. 水溶性、 水分散性又はエマルシヨン性であって、 少なくとも下記 ] に示 す窒素原子、 又は陽イオン性ィォゥ原子を 1原子以上含有する有機高^^化合物 又はその塩を含有することを特徴とする金属表面処理剤。
[a]
R ,
/
-N
\
R 2
(式中、 R 1 、 R2 :水 ¾、 水酸基、 炭素数 1~10の S換してもよい
直鎮又は分岐状のアルキル基又は炭素数 i ~ェ 0 の S換してもよい直鏆又は分岐状のアル力ノール 基)
又は
3
/
N - R
4
\
R,
(式中、
R 3 R R, 水素、 水酸基、 炭索数 1 ~ 1 0の s換して よい
直 aa又は分岐状のアルキル ¾又は炭¾¾ 1 ~ 10 の S換してもよい直瑣又は分岐状のアル力ノール 基)
2. 請求項 1に記載の金属表面処理剤において、
前記有機高分子化合物又はその塩は、 エポキシ系樹脂、 アクリル系樹脂、 ウレ 夕ン系樹脂、 フエノール系樹脂、 ポリブタジェン系樹脂、 ポリアミ ド系樹脂、 ォ レフィン系樹脂の ヽずれかであることを特徵とする金属表面処理剤。
3. 請求項 1に記載の金属表面処理剤において、
前記窒素原子を 1原子以上含有する有機高分子化合物又はその塩は、 分子量 5 0 0当たりフエ二ル基を 1〜5個と、 水酸基を 1〜5個と、 窒素原子を 1〜1 0 個とを含有することを特徴とする金属表面処理剤。
4. 請求項 1に記載の金属表面処理剤において、
前記陽ィォン性ィォゥ原子を 1原子以上含有する有機高 化合物又はその塩 は、 分子量 5 0 0当たりフヱニル基を 1〜5個と、 水酸基を 1〜1 2個と、 陽ィ ォン性ィォゥ原子を 0. 1〜 7個とを含有することを特徵とする金属表面処理剤 c
5. 請求項 2に記載の金属表面処理剤において、
前記有機高^ ^化合物がァクリル系樹脂であつて、
前記ァクリル系樹脂は、 下記 [b] 、 [ c ] 及び [d] に示す構造のモノマー からなる共重合体であることを特徴とする金属表面処理剤。
(以下余白)
R,
CH2 =C-CY1 R7 N- R8 ) ii [b]
O
(式中、 R 水素又はメチル基、
R '炭素数 1~ 5のアルキレン基、
R 炭素数 1~ 5のアルキル基、
Y — NH—又は一 0—、
n : 2又は 3
CH= CH
2
[c]
R,
(式中、 R9 : メチル基、 ェチル基、 ブチル基又は tert-ブチル基)
R
10
CH9 =C-COR1lOH Cd]
o
(式中、 R n:水素又はメチル基、
jJ:炭素数 1〜 5のアルキレン基)
6. 請求項 2に記載の金属表面処理剤において、
前記有機高^ ^化合物がフェノール系樹脂であつて、
前記フエノール系樹脂は、 下記 [e] に示す繰り返し単位を有する樹脂である ことを特徴とする金属表面処理剤。
Figure imgf000084_0001
(式中、 Α、12' R13- R
Ί4' 水 、 炭¾数 1~5の!!換 ·非
15 a換ァルキ
ル基又はアル力ノール基、
Χ1 · Xl X, Xo ' :水衆、 水酸基、 炭 ¾S1~5の !3換 ·
弗 a换アルキル基
k . m : ~5, = 1〜3)
7. 請求項 2に記載の金属表面処理剤において、
前記有機高 化合物がフェノール系樹脂であつて、
前記フエノーノレ系樹脂は、 下記 [f ] に示す構造のフヱノール化合物モノマー と、
下記 [ ] に示す構造のジアルキルベンゼングリコールモノマーと、 ホルムアルデヒ ドと、
下記 [h] に示す構造のァミンと、 の重縮合物又はその塩であることを特徴と する金属表面処理剤。
Figure imgf000084_0002
水衆、 水酸基、 数 ι~5の a換
(式中、 X, . χχ ' Χ2 · Χ2
非 at换アルキル
Figure imgf000085_0001
R :水紫、 炭 ¾数1~5の ¾换 .非 S换アルキル基
(式中. R
16'
'5)
[h]:
HN 又は
Figure imgf000085_0002
(式中、 R, ~R5 :水素、 水酸基、 炭素数 1~10の置換してもいてよい
直鎖又は分岐状のアルキル基、 炭素数 1~10の置換
してもよい直鎖又は分枝状のアル力ノール基)
8. 請求項 2に記載の金属表面処理剤において、
前記有機高分子化合物がフェノール系樹脂であつて、
前記フエノール系樹脂は、 有機酸又は無機酸を触媒として、 上記 [f] に示す 構造のフエノール化合物モノマー 1モルに対し、上記 [g] に示す構造のジアル キルベンゼングリコールモノマーを 0. 02〜0. 6モルと、上記 [g] に示す 構造のジアルキルベンゼングリコールモノマ一との和が 0. 7〜0. 9モルとな る量のホルムアルデヒドとを、 反応させて得られたフヱノール縮合物に、 上記 [h] に示す構造のアミンを 0. 5〜2. 0モルと、 前記アミンと同量の ホルムアルデヒドと、 を反応させて得られたフヱノール樹脂であることを特徴と する金属表面処理剤。
9. 請求項 2に記載の金属表面処理剤において、
前記有機高分子化合物がフェノール系樹脂であつて、
前記フヱノール系樹脂は、 下記 [i]に示すフエノールの繰り返し単位と、下 記 [j]及び Z又は [k]のビスフヱノールの繰り返し単位と、 を有し、
[i] : Cj]及び Z又は [k]の重量比が 90: 10〜10: 90であり、 前記フェノ一ル系樹脂が、 金属表面処理剤 1リットル当たり 0. 01〜: L O g 含有されていることを特徴とする金属表面処理剤。
[门
Figure imgf000086_0001
Figure imgf000086_0002
Figure imgf000087_0001
Y, Y , Y
(式中、 R18' R19' R20, R2r 22, R23 5
:水素、 水酸基、 炭素数 1~10の直鎖又は分岐状のアルキル基又は
炭素数 1~10の直鎖又は分岐状のアル力ノール基、
m, n. pはそれぞれ 2~50。
これらアルキル基及びアル力ノール基は官能基によって置換されて
いてもよい )
10. 請求項 2に記載の金属表面処理剤において、
前記有機高分子化合物がフヱノ一ル系樹脂であつて、
前記フエノール系樹脂は、 上記 [f ] に示す構造のフエノール化合物と、 下記
[1] に示すビスフヱノール化合物と、 ホルムアルデヒドとの縮合物に、 上記 [h] に示す構造のァミンが、 少なくとも 1種結合されているフヱノール一ビス フエノールーホルムアルデヒド重縮合物又はその塩であつて、
前記フヱノール化合物 Cf ] と前記ビスフヱノール化合物 [1] とのモル比が、 9 : 1〜1 : 9であるフヱノール一ビスフヱノール一ホルムアルデヒド重縮合物 又はその塩を、 金属表面処理剤 1リットル当たり 0. 01〜10 g含有すること を特徵とする金属表面処理剤。
Figure imgf000088_0001
Y 7
(式中、 Y6 . Υ 7 :水素、 水酸基、 炭素数 1〜 1 0の直鎖又は分岐状の
アルキル基又は炭素数 1〜1 0の直鎖又は分岐状のアル カノ一ル基。 これらアルキル基及びアルカノ一ル基は 官能基によって置換されていてもよい )
1 1. 請求項 1から請求項 1 0のいずれかに記載の金属表面処理剤は、更に重金 属又は重金属錯フッ化物、 硝酸重金属塩、 リン酸重金属塩を含有することを特徴 とする金属表面処理剤。
1 2. 請求項 1から請求項 1 0のいずれかに記載の金属表面処理剤は、更に酸化 剤を含有し、
前記有機高^ 1化合物又はその塩は、 金属表面処理剤に対して 0. 0 1〜: L 0 g/
前記酸化剤は、 金属表面処理剤に対して 0. 0 1〜: L 0 gZ 含有されてい ることを特徴とする金属表面処理剤。
1 3. 請求項 1 2に記載の金属表面処理剤は、 更に無機酸を 0. 0 1〜1 0 gZ 1含有することを特徵とする金属表面処理剤。
1 4. 請求項 1 3に記載の金属表面処理剤は、 更に重金属を 1 0 gZ 1未満含有 することを特徴とする金属表面処理剤。
1 5. 請求項 1 1又は請求項 1 4に記載の金属表面処理剤において、
前記重金属は、 ジルコニウム、 モリブデン、 タングステン、 ニオブ、 ニッケル、 コバルト、 マンガン、 タンタルの少なくとも 1種であることを特徴とする金属表 面処理剤。
1 6. 請求項 1 2に記載の金属表面処理剤において、
前記酸化剤は、 過酸化水素、亜硝酸、 亜硝酸塩、 過ホウ酸、 塩素酸、塩素酸塩、 臭素酸、臭素酸塩の少なくとも 1種以上であることを特徴とする金属表面処理剤。
1 7. 請求項 1から請求項 1 0のいずれかに記載の金属表面処理剤は、更にリン 酸イオンとアルミニウムイオンとを含み、
前記有機高分子化合物又はその塩は、 金属表面処理剤に対して 0. 0 1〜: L 0 s/
前記リン酸イオンは、 金属表面処理剤に対して 0. 0 1〜0. 8 gZ l、 前記アルミニウムイオンは、 金属表面処理剤に対して 0. 0 1〜 5 g/ l、 含有されていることを特徴とする金属表面処理剤。
1 8. 請求項 1から請求項 1 0のいずれかに記載の金属表面処理剤は、 更に多価 ァニオンを含み、
前記有機高分子化合物又はその塩は、 金属表面処理剤に対して 0. 0 1〜: L 0 g/ l、
前記多価ァニオンは、 金属表面処理剤に対して 0. 0 3〜1 0 gZ l、 含有さ れていることを特徴とする金属表面処理剤。
1 9. 請求項 1 8に記載の金属表面処理剤において、
前記多価ァニオンは、 モリブデン酸、 タングステン酸、 バナジン酸、 リンモリ ブデン酸、 リンタングステン酸、 ゲイタンダステン酸及びその塩の少なくとも 1 種以上であることを特徴とする金属表面処理剤。
2 0. 請求項 1から請求項 1 9の 、ずれかに記載の金属表面処理剤を、 金属表面 に接触させ、 引き続き水洗し、 乾燥することを特徴とする金属表面処理方法。
2 1. 請求項 1から請求項 1 9のいずれかに記載の金属表面処理剤で処理された ことを特徴とする表面処理金属材料。
PCT/JP1996/001902 1995-07-10 1996-07-09 Traitements de surface de metaux, procede de traitement de surface de metaux et materiau metallique ayant subi un traitement de surface WO1997003226A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96922270A EP0838537B1 (en) 1995-07-10 1996-07-09 Metal surface treatments, method for treating metal surface, and surface-treated metallic material
DE69616066T DE69616066T2 (de) 1995-07-10 1996-07-09 Metalloberflächenbehandlung, verfahren dafür und obeflächenbehandeltes metallisches material

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP17323995A JP3871361B2 (ja) 1995-07-10 1995-07-10 金属表面処理組成物及び金属表面処理方法
JP7/173239 1995-07-10
JP7/312367 1995-11-30
JP31236795A JP3881392B2 (ja) 1995-11-30 1995-11-30 金属表面処理組成物及び金属表面処理方法
JP7475196A JPH09263682A (ja) 1996-03-28 1996-03-28 フェノール樹脂組成物及びその製造方法
JP8/74756 1996-03-28
JP8/74751 1996-03-28
JP7475696A JPH09263952A (ja) 1996-03-28 1996-03-28 金属表面処理剤、表面処理方法及び表面処理金属材
JP15223396A JPH101780A (ja) 1996-06-13 1996-06-13 金属表面処理剤、処理方法及び表面処理された金属材料
JP8/152236 1996-06-13
JP8/152234 1996-06-13
JP15223496A JPH101788A (ja) 1996-06-13 1996-06-13 金属表面処理剤、処理方法及び表面処理された金属材料
JP8/152235 1996-06-13
JP15223696A JP3789553B2 (ja) 1996-06-13 1996-06-13 金属表面処理剤、処理方法及び表面処理された金属材料
JP8/152233 1996-06-13
JP15223596A JPH101781A (ja) 1996-06-13 1996-06-13 金属表面処理剤、処理方法及び表面処理された金属材料

Publications (1)

Publication Number Publication Date
WO1997003226A1 true WO1997003226A1 (fr) 1997-01-30

Family

ID=27572667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001902 WO1997003226A1 (fr) 1995-07-10 1996-07-09 Traitements de surface de metaux, procede de traitement de surface de metaux et materiau metallique ayant subi un traitement de surface

Country Status (4)

Country Link
EP (1) EP0838537B1 (ja)
CA (1) CA2226524A1 (ja)
DE (1) DE69616066T2 (ja)
WO (1) WO1997003226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061175A1 (fr) * 2001-01-31 2002-08-08 Nihon Parkerizing Co., Ltd Agent de traitement de surface pour materiau metallique et procede de traitement de surface

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972433A (en) * 1997-12-05 1999-10-26 Calgon Corporation Method for treatment of metal substrates using Mannich-derived polyethers
TWI268965B (en) 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
JP2006161115A (ja) * 2004-12-08 2006-06-22 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
CN101142079B (zh) 2005-03-16 2012-11-14 日本帕卡濑精株式会社 表面处理金属材料
US7475786B2 (en) * 2005-08-03 2009-01-13 Ppg Industries Ohio, Inc. Can coatings, methods for coating can and cans coated thereby
EP3237560B1 (en) 2014-12-24 2021-11-10 Swimc Llc Styrene-free coating compositions for packaging articles such as food and beverage containers
US11981822B2 (en) 2014-12-24 2024-05-14 Swimc Llc Crosslinked coating compositions for packaging articles such as food and beverage containers
US11059989B2 (en) 2017-06-30 2021-07-13 Valspar Sourcing, Inc. Crosslinked coating compositions for packaging articles such as food and beverage containers
CA2982739C (en) 2015-04-15 2023-06-27 Henkel Ag & Co. Kgaa Thin corrosion protective coatings incorporating polyamidoamine polymers
CN116515039B (zh) * 2023-06-27 2023-09-08 济南雅歌新材料科技有限公司 一种水基共聚微球二氧化碳吸收剂及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959050A (ja) * 1972-08-21 1974-06-07
JPS49113735A (ja) * 1973-02-16 1974-10-30
JPS5341325A (en) * 1976-09-29 1978-04-14 Hodogaya Chem Co Ltd Aqueous suspension for coating
JPS57501289A (ja) * 1980-08-27 1982-07-22
JPH01177379A (ja) * 1988-01-04 1989-07-13 Kao Corp 金属表面処理用添加剤および金属表面処理用水溶液
JPH0243375A (ja) * 1988-08-03 1990-02-13 Sumitomo Metal Ind Ltd 溶融亜鉛系めっき鋼板の表面処理液
JPH0243376A (ja) * 1988-08-03 1990-02-13 Sumitomo Metal Ind Ltd 耐黒変性、耐食性溶融亜鉛系めっき鋼板の製造方法
JPH0331484A (ja) * 1989-06-27 1991-02-12 Nippon Parkerizing Co Ltd 亜鉛または亜鉛系メッキ材料の黒色化処理法
JPH05186737A (ja) * 1992-01-10 1993-07-27 Mitsubishi Petrochem Co Ltd 金属表面処理剤及び金属表面処理方法
JPH05247381A (ja) * 1992-03-05 1993-09-24 Nissan Chem Ind Ltd 金属表面処理用組成物
JPH06316771A (ja) * 1993-04-30 1994-11-15 Nkk Corp 溶接性、耐食性および鮮映性に優れた有機複合被覆鋼板
JPH0825553A (ja) * 1994-07-16 1996-01-30 Sumitomo Metal Ind Ltd 皮膜処理Al−Zn合金めっき鋼板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol
US4795506A (en) * 1986-07-26 1989-01-03 Detrex Corporation Process for after-treatment of metals using 2,2-bis(4-hydroxyphenyl)alkyl poly derivatives
US4978399A (en) * 1988-01-04 1990-12-18 Kao Corporation Metal surface treatment with an aqueous solution
US4992116A (en) * 1989-04-21 1991-02-12 Henkel Corporation Method and composition for coating aluminum
JPH03207766A (ja) * 1990-01-10 1991-09-11 Nippon Parkerizing Co Ltd ぶりきdi缶の表面処理方法
WO1991019828A1 (en) * 1990-06-19 1991-12-26 Henkel Corporation Liquid composition and process for treating aluminium or tin cans to impart corrosion resistance and reduced friction coefficient
JPH04187782A (ja) * 1990-11-21 1992-07-06 Nippon Parkerizing Co Ltd ぶりきdi缶用表面処理液
US5427632A (en) * 1993-07-30 1995-06-27 Henkel Corporation Composition and process for treating metals
JP3539756B2 (ja) * 1994-04-15 2004-07-07 日本パーカライジング株式会社 金属材料表面処理用重合体組成物および処理方法
JP2771110B2 (ja) * 1994-04-15 1998-07-02 日本パーカライジング株式会社 アルミニウム含有金属材料用表面処理組成物および表面処理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959050A (ja) * 1972-08-21 1974-06-07
JPS49113735A (ja) * 1973-02-16 1974-10-30
JPS5341325A (en) * 1976-09-29 1978-04-14 Hodogaya Chem Co Ltd Aqueous suspension for coating
JPS57501289A (ja) * 1980-08-27 1982-07-22
JPH01177379A (ja) * 1988-01-04 1989-07-13 Kao Corp 金属表面処理用添加剤および金属表面処理用水溶液
JPH0243375A (ja) * 1988-08-03 1990-02-13 Sumitomo Metal Ind Ltd 溶融亜鉛系めっき鋼板の表面処理液
JPH0243376A (ja) * 1988-08-03 1990-02-13 Sumitomo Metal Ind Ltd 耐黒変性、耐食性溶融亜鉛系めっき鋼板の製造方法
JPH0331484A (ja) * 1989-06-27 1991-02-12 Nippon Parkerizing Co Ltd 亜鉛または亜鉛系メッキ材料の黒色化処理法
JPH05186737A (ja) * 1992-01-10 1993-07-27 Mitsubishi Petrochem Co Ltd 金属表面処理剤及び金属表面処理方法
JPH05247381A (ja) * 1992-03-05 1993-09-24 Nissan Chem Ind Ltd 金属表面処理用組成物
JPH06316771A (ja) * 1993-04-30 1994-11-15 Nkk Corp 溶接性、耐食性および鮮映性に優れた有機複合被覆鋼板
JPH0825553A (ja) * 1994-07-16 1996-01-30 Sumitomo Metal Ind Ltd 皮膜処理Al−Zn合金めっき鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0838537A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061175A1 (fr) * 2001-01-31 2002-08-08 Nihon Parkerizing Co., Ltd Agent de traitement de surface pour materiau metallique et procede de traitement de surface

Also Published As

Publication number Publication date
EP0838537B1 (en) 2001-10-17
CA2226524A1 (en) 1997-01-30
EP0838537A4 (en) 1998-10-07
DE69616066D1 (de) 2001-11-22
EP0838537A1 (en) 1998-04-29
DE69616066T2 (de) 2002-05-29

Similar Documents

Publication Publication Date Title
US6589324B2 (en) Agent for treating metallic surface, surface-treated metal material and coated metal material
TWI449807B (zh) Metal surface treatment agent and metal surface treatment method
AU2016363456B2 (en) Chromium-free surface-treated tinplate, production method and surface treating agent therefor
TWI242587B (en) Conductive, organic coatings
JP5718752B2 (ja) 金属表面処理剤及びその処理剤で処理してなる金属材料
TW438907B (en) Anticorrosive coatings and anticorrosive treatment
AU2012254470B2 (en) Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
WO1997003226A1 (fr) Traitements de surface de metaux, procede de traitement de surface de metaux et materiau metallique ayant subi un traitement de surface
JP2003226982A (ja) 金属材料用表面処理組成物
KR20160091906A (ko) 아연-알루미늄-마그네슘 합금 도금 강판의 표면 처리 방법
JP2004218074A (ja) 化成処理剤及び表面処理金属
US5646211A (en) Autodeposition coating composition
JP3871361B2 (ja) 金属表面処理組成物及び金属表面処理方法
JP2771110B2 (ja) アルミニウム含有金属材料用表面処理組成物および表面処理方法
JPH101782A (ja) 金属表面処理剤、処理方法及び表面処理された金属材料
JP7117292B2 (ja) 鋼、亜鉛めっき鋼、アルミニウム、アルミニウム合金、マグネシウムおよび/または亜鉛-マグネシウム合金を含む金属表面を腐食保護前処理するための改善された方法
JP6367462B2 (ja) 亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤、被覆方法及び被覆鋼材
JPS6257668B2 (ja)
KR19980033026A (ko) 아크릴수지함유 금속표면처리 조성물, 처리방법 및 처리금속재료
EP0139845A2 (en) Coating composition
JPH11276987A (ja) 耐食性、塗装性および耐指紋性に優れた有機複合被覆金属材料、及びその製造方法
JP3789553B2 (ja) 金属表面処理剤、処理方法及び表面処理された金属材料
JPH06146003A (ja) 耐食性・塗装性に優れた表面処理金属材
JP4091330B2 (ja) 金属表面処理剤用ポリマー組成物
JP2000104021A (ja) 缶蓋用アルミニウム塗装材およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2226524

Country of ref document: CA

Ref country code: CA

Ref document number: 2226524

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996922270

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996922270

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996922270

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载