WO1996019578A9 - PROCEDES ET COMPOSITIONS DE DETECTION ET DE TRAITEMENT D'INFECTIONS MYCOBACTERIENNES A L'AIDE D'UN OPERON ahpCF - Google Patents
PROCEDES ET COMPOSITIONS DE DETECTION ET DE TRAITEMENT D'INFECTIONS MYCOBACTERIENNES A L'AIDE D'UN OPERON ahpCFInfo
- Publication number
- WO1996019578A9 WO1996019578A9 PCT/NZ1995/000133 NZ9500133W WO9619578A9 WO 1996019578 A9 WO1996019578 A9 WO 1996019578A9 NZ 9500133 W NZ9500133 W NZ 9500133W WO 9619578 A9 WO9619578 A9 WO 9619578A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inh
- ahpc
- operon
- mycobacteria
- ahpf
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 61
- 239000000203 mixture Substances 0.000 title claims description 17
- 208000015181 infectious disease Diseases 0.000 title claims description 8
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 83
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 81
- 229920001184 polypeptide Polymers 0.000 claims abstract description 80
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 75
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 75
- 239000002157 polynucleotide Substances 0.000 claims abstract description 75
- 230000035772 mutation Effects 0.000 claims abstract description 49
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims abstract description 26
- 102000007456 Peroxiredoxin Human genes 0.000 claims abstract description 8
- 108030002458 peroxiredoxin Proteins 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 claims description 48
- 101150024831 ahpC gene Proteins 0.000 claims description 31
- 239000012472 biological sample Substances 0.000 claims description 29
- 201000008827 tuberculosis Diseases 0.000 claims description 25
- 239000012634 fragment Substances 0.000 claims description 23
- 239000002773 nucleotide Substances 0.000 claims description 20
- 125000003729 nucleotide group Chemical group 0.000 claims description 20
- 229960005486 vaccine Drugs 0.000 claims description 17
- 239000003814 drug Substances 0.000 claims description 16
- 229940079593 drug Drugs 0.000 claims description 15
- 239000013068 control sample Substances 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000003752 polymerase chain reaction Methods 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 9
- 108020004999 messenger RNA Proteins 0.000 claims description 9
- 208000027531 mycobacterial infectious disease Diseases 0.000 claims description 9
- 206010062207 Mycobacterial infection Diseases 0.000 claims description 7
- 241000186367 Mycobacterium avium Species 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 239000013604 expression vector Substances 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- 241000894007 species Species 0.000 claims description 6
- 230000002238 attenuated effect Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 102000030936 alkylhydroperoxide reductase activity Human genes 0.000 claims description 2
- 108091000038 alkylhydroperoxide reductase activity Proteins 0.000 claims description 2
- 230000005764 inhibitory process Effects 0.000 claims description 2
- 238000007912 intraperitoneal administration Methods 0.000 claims description 2
- 238000001990 intravenous administration Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 150000001451 organic peroxides Chemical class 0.000 claims description 2
- 238000003259 recombinant expression Methods 0.000 claims description 2
- 238000007920 subcutaneous administration Methods 0.000 claims description 2
- 241000589343 Methylobacter luteus Species 0.000 claims 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 abstract description 154
- 238000011282 treatment Methods 0.000 abstract description 9
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 230000003115 biocidal effect Effects 0.000 abstract description 3
- 238000012512 characterization method Methods 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 46
- 239000000523 sample Substances 0.000 description 46
- 241000186366 Mycobacterium bovis Species 0.000 description 42
- 102000004169 proteins and genes Human genes 0.000 description 26
- 210000004027 cell Anatomy 0.000 description 24
- 235000018102 proteins Nutrition 0.000 description 22
- 108010053835 Catalase Proteins 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 19
- 101150005343 INHA gene Proteins 0.000 description 19
- 102000016938 Catalase Human genes 0.000 description 18
- 239000013598 vector Substances 0.000 description 16
- 241000187480 Mycobacterium smegmatis Species 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 239000000427 antigen Substances 0.000 description 13
- 108091007433 antigens Proteins 0.000 description 13
- 102000036639 antigens Human genes 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 108700026244 Open Reading Frames Proteins 0.000 description 12
- 238000009396 hybridization Methods 0.000 description 12
- 241000588724 Escherichia coli Species 0.000 description 11
- 241001302239 Mycobacterium tuberculosis complex Species 0.000 description 11
- 101150013110 katG gene Proteins 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 238000003018 immunoassay Methods 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000004075 alteration Effects 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- -1 for e.g. Proteins 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 8
- 150000007523 nucleic acids Chemical group 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 101710163270 Nuclease Proteins 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 230000003302 anti-idiotype Effects 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000001018 virulence Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 102000002933 Thioredoxin Human genes 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- NWMHDZMRVUOQGL-CZEIJOLGSA-N almurtide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)CO[C@@H]([C@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O NWMHDZMRVUOQGL-CZEIJOLGSA-N 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 3
- 229960002001 ethionamide Drugs 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229960003350 isoniazid Drugs 0.000 description 3
- 101150066555 lacZ gene Proteins 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000013605 shuttle vector Substances 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 108060008226 thioredoxin Proteins 0.000 description 3
- 229940094937 thioredoxin Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 2
- 108030002440 Catalase peroxidases Proteins 0.000 description 2
- 241000193469 Clostridium pasteurianum Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 241000186362 Mycobacterium leprae Species 0.000 description 2
- 108700015872 N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 101150061301 ahpF gene Proteins 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000006192 cellular response to oxidative stress Effects 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- YHQZWWDVLJPRIF-JLHRHDQISA-N (4R)-4-[[(2S,3R)-2-[acetyl-[(3R,4R,5S,6R)-3-amino-4-[(1R)-1-carboxyethoxy]-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoic acid Chemical compound C(C)(=O)N([C@@H]([C@H](O)C)C(=O)N[C@H](CCC(=O)O)C(N)=O)C1[C@H](N)[C@@H](O[C@@H](C(=O)O)C)[C@H](O)[C@H](O1)CO YHQZWWDVLJPRIF-JLHRHDQISA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 108010039939 Cell Wall Skeleton Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 241001475178 Dira Species 0.000 description 1
- 108050004627 Disulphide isomerases Proteins 0.000 description 1
- 102000016155 Disulphide isomerases Human genes 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 101710198510 Enoyl-[acyl-carrier-protein] reductase [NADH] Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 101001056976 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) Catalase-peroxidase Proteins 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000833492 Homo sapiens Jouberin Proteins 0.000 description 1
- 101000651236 Homo sapiens NCK-interacting protein with SH3 domain Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100024407 Jouberin Human genes 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100490139 Mus musculus Acer3 gene Proteins 0.000 description 1
- 241001467553 Mycobacterium africanum Species 0.000 description 1
- 241001502334 Mycobacterium avium complex bacterium Species 0.000 description 1
- 241000187482 Mycobacterium avium subsp. paratuberculosis Species 0.000 description 1
- 241000187919 Mycobacterium microti Species 0.000 description 1
- 241000187490 Mycobacterium scrofulaceum Species 0.000 description 1
- 101100509674 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) katG3 gene Proteins 0.000 description 1
- 108700020354 N-acetylmuramyl-threonyl-isoglutamine Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108010090127 Periplasmic Proteins Proteins 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 101000633277 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Peroxiredoxin TSA1 Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229940031567 attenuated vaccine Drugs 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000004520 cell wall skeleton Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- JMUHBNWAORSSBD-WKYWBUFDSA-N mifamurtide Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)OCCNC(=O)[C@H](C)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1NC(C)=O JMUHBNWAORSSBD-WKYWBUFDSA-N 0.000 description 1
- 229960005225 mifamurtide Drugs 0.000 description 1
- 108700007621 mifamurtide Proteins 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 238000004848 nephelometry Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229960002950 novobiocin Drugs 0.000 description 1
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000013492 plasmid preparation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 208000008128 pulmonary tuberculosis Diseases 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- XETCRXVKJHBPMK-MJSODCSWSA-N trehalose 6,6'-dimycolate Chemical compound C([C@@H]1[C@H]([C@H](O)[C@@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](COC(=O)C(CCCCCCCCCCC3C(C3)CCCCCCCCCCCCCCCCCC)C(O)CCCCCCCCCCCCCCCCCCCCCCCCC)O2)O)O1)O)OC(=O)C(C(O)CCCCCCCCCCCCCCCCCCCCCCCCC)CCCCCCCCCCC1CC1CCCCCCCCCCCCCCCCCC XETCRXVKJHBPMK-MJSODCSWSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- PIEPQKCYPFFYMG-UHFFFAOYSA-N tris acetate Chemical compound CC(O)=O.OCC(N)(CO)CO PIEPQKCYPFFYMG-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Definitions
- the invention relates to mate ⁇ als and methods used in the diagnosis and treatment of mycobacterial diseases, and more specifically to DNA sequence(s) associated with resistance to isoniazid and its analogs in mycobacteria, methods for isolating such sequence(s), and the use of such sequence(s) in human and animal medical practice.
- M. bovis. and M. a ricanum remains the largest cause of human death in the world from a single infectious disease, and is responsible for one in four avoidable adult deaths in developing countries. In addition, in 1990, there was a 10% increase in the incidence of tuberculosis in the United States. Further, M. bovis causes tuberculosis in a wide range of animals, and is a major cause of animal suffering and economic loss in animal industries.
- INH isoniazid (isonicotinic acid hydrazide, INH), rifampicin, and pyrazinamide.
- INH was first reported to be active against M. tuberculosis in 1952, and particularly active against M. tuberculosis and M . bovis. However, mutants resistant to INH have emerged since then, and today such mutants account for as many as 26% of the clinical M. tuberculosis isolates in certain U.S. cities.
- INH-resistant strains are associated with a loss of catalase activity, and deletions of the catalase-peroxidase gene ( atGJ correlate with INH resistance in certain M. tuberculosis isolates. Furthermore, transfer of the wild-type M. tuberculosis katG gene to INH-resistant M. smegmatis: M. tuberculosis and M. bovis confers INH sensitivity, suggesting that catalase-peroxidase activity is required for INH-sensitivity. However, in some studies only 10 to 25% of the INH-resistant isolates appear to be catalase negative, indicating that INH resistance can be due to other tactors.
- INH resistance inh ⁇
- inh ⁇ another gene involved in INH resistance, inh ⁇ , was identified and alterations in this gene, particularly in its promoter region, have been found to occur in some but not all INH- resistant isolates that were catalase positive.
- INH-resistant M. tuberculosis strains whose resistance cannot be explained by loss or mutation of either the ka Q or inhA genes.
- Drug resistance can be caused by many mechanisms, including mutations in the drug target that reduce the binding of the drug or mutations that lead to increased production of the target.
- the mechanism by which INH inhibits mycobacteria and its precise target of action are unknown.
- Biochemical evidence has suggested that both INH and ethionamide (ETH, a structural analog of INH) block mycolic acid biosynthesis in mycobacteria. It has also been suggested that the cellular response to oxidative stress, particularly levels of hydrogen peroxide, is involved in INH-susceptibility.
- INH has been found to inhibit mycolic acid biosynthesis in cell-free extracts of mycobacteria, and the target protein has been identified as InhA, an enzyme which has significant homology to the lipid biosynthetic enzyme, enoyl ACP reductase. INH does not appear to act directly on this enzyme so an intermediate or intermediates appear to be involved. In addition, in certain cases, low-level INH resistance correlates not with the loss of catalase activity but with the coacquisition of ETH resistance, suggesting that the two drugs may share a common target. Furthermore, it has been proposed that the reactive oxygen intermediates formed during interactions between INH and peroxidases may suggest a mode of action for INH.
- This invention is based upon the discovery of an operon in mycobacteria, designated as ahpCF. It contains two large open reading frames (ORFs) that may encode the two protein components of the enzyme, alkyl hydroperoxide reductase (Ahp reductase). Mutations within this operon, particularly within the promoter region preceding the first open reading frame, upregulate the expression of the operon and confer INH resistance.
- ORFs alkyl hydroperoxide reductase
- the present invention provides isolated and recombinant polynucleotide sequences and polypeptides encoded therein that are associated with resistance to INH and its structural analogs in members of the genus mycobacteria, particularly those of the M. tuberculosis complex, including M. tuberculosis.
- the polynucleotides of the invention have many uses. For example, they are useful in assessing the susceptibility of various strains of the M. tuberculosis complex to INH type antibiotics, as decoys and antisense oligonucleotides to prevent the expression of polypeptides associated with INH resistance, and for the expression of the polypeptides encoded therein.
- polypeptides encoded in the polynucleotides and/or antibodies directed to them may also have use in immunoassays for the detection of INH-resistant strains, in the determination of whether an INH-type antibiotic may be effective against tuberculosis, and in the treatment of individuals for infection with these strains.
- embodiments of the invention include the following: An isolated polynucleotide comprised of a nucleotide sequence of at least 15 nucleotides ofan ahpCF operon of mycobacteria.
- nucleotide sequence includes a sequence from a promoter region of the operon.
- polynucleotide as described above wherein the polynucleotide is a recombinant expression vector comprised of control sequences operably linked to a segment encoding the AhpC and/or AhpF polypeptide or fragment or variant thereof.
- a host cell comprised of a polynucleotide selected from the group of polynucleotides described above.
- a method of treating an individual for infection caused by a member of the mycobacterial complex comprising: (a) providing a composition comprised of a polynucleotide capable of inhibiting mRNA activity from an ahpCF operon of the infecting species and a suitable excipient; and
- a method of assessing susceptibility of a strain of mycobacteria in a biological sample to INH comprising:
- step (b) comprises a promoter region of the operon.
- PCR polymerase chain reaction
- the method may be further comprised of providing a comparable portion of wild- type INH-sensitive ahpCF operon from the mycobacteria, and the determination of whether a mutation exists in the biological sample is by comparison with the wild-type ahpCF operon.
- a method of assessing susceptibility of a strain of mycobacteria m a biological sample to INH comprising:
- step (c) is performed by comparing the level of messenger RNA transcribed from the ahpC gene in the biological sample with the level of messenger RNA transcribed by the ahpC gene in the control sample, or alternately, wherein step (c) is performed by comparing the level of AhpC polypeptide in the biological sample with the level of AhpC polypeptide in the control sample.
- a method for producing a compound that inhibits alkyl hydroperoxide reductase activity comprising:
- a recombinant mycobacterial vaccine comprised of attenuated mutants selected from the group consisting of BCG, M. tuberculosis, and M. bovis. wherein the mutants are host cells containing a mutated ahpCF operon.
- Figure 1 presents a DNA sequence from M. bovis ATCC 35729
- Figure 2 shows the amino acid sequences for two large open reading frames (ORFs) encompassed within the DNA sequence shown in Figure 1.
- Figure 3 shows the alignment of the amino acid sequences of the polypeptides from ORF1 of ahpCF from M. bovis ATCC 35729 with some other sequences of related amino acid homology.
- Figure 4 shows a comparison of the amino acid translation of ORF2 ofahpCF from M. bovis with AhpF from E. coli.
- Figure 5 is a schematic diagram ofpYUB18. showing significant features of the genome and restriction nuclease cleavage sites.
- Figure 6 presents a DNA sequence from the parental M. bovis
- Figure 7 is a half-tone reproduction of a Southern blot, in which INH sensitive and resistant strains were probed for the catalase gene katG.
- Figure 8 is a drawing of subfragments of the ahpCF operon, showing which elements of the operon are capable of conferring INH resistance.
- Figure 9 is a half-tone reproduction of a primer extension analysis performed on RNA isolated from M. smegmatis using the primer 5'- AGCGGTGAGCTGGTAGGCGGGGAATTGATC (SEQ ID NO: 15).
- the invention stems from the discovery of ahpCF. an operon comprising two ORFs that encodes polypeptides that are a target for INH in a strain of the M. tuberculosis complex. It is probable that mutations of this operon render mycobacteria INH-resistant. Methods of screening for INH-resistance are routine, and are known within the art.
- the operon was identified using a genetic strategy.
- a genomic library was constructed in a shuttle cosmid vector from an INH-resistant mutant of M. bovis. Transferral of the library into a wild type (i.e., INH-sensitive) M. smegmatis strain
- R£CTIFIED 6 SHEET (RULE 91) allowed the identification of clones that consistently conferred INH-resistance.
- I he DNA fragments that conferred INH-sensitivity to M. smegmatis were subjected to DNA sequencing. The derived DNA sequence is shown in Figure 1. Sequence analysis revealed two ORFs separated by 26 base pairs indicating the two ORFs are part of the same operon.
- the first ORF (ORFl) does not have a ribosome binding site immediately upstream of the first potential start codon, TTG at positions 712-714.
- the next six potential start codons also lack ribosome binding sites.
- the first potential start codon with a likely upstream ribosome binding site is ATG at positions 880-882. This has a ribosome binding site GAGGAG at positions 870-875.
- ORFl is therefore shown as beginning at positions 880-882.
- ORFl (positions 880-1467) encodes a protein of 25 kDa which has significant homology to the polypeptide encoded in the coding region of ORFl of the ahpCF operon from other bacteria ( Figure 3 and Table 1). Because of this high homology, ORFl is denoted as ahpC.
- ORF2 The second large ORF (ORF2) begins 26 bp downstream from ahpC at positions 1493-1495. It has a potential ribosome binding site GGGA at positions 1485-1488.
- ORF2 (positions 1493-2152) encodes a protein of 22 kDa which is 19% identical to ahpF. of E. coli. Comparisons at the DNA level revealed a small amount of terminal sequence that was homologous between ORF2 of the M. bovis ahpCF operon, and an ORF downstream of the putative ahpC gene of M avium. There are also DNA sequences downstream of the putative ahpC gene in M. leprae that have high homology to ORF2, but these are not associated with a large ORF.
- ORF2 of M. bovis has been denoted ahpF.
- a polynucleotide from an INH resistant strain of M. bovis that encodes the ahpCF operon has been identified, isolated, cloned, sequenced and characterized.
- the nucleic acid sequence of the coding strand for this polynucleotide is shown in Figure 1.
- Figure 2 shows the putative amino acid sequences of the polypeptides encoded in the polynucleotide.
- the corresponding polynucleotide of the INH sensitive parent has also been obtained and sequenced, revealing that INH resistance is conveyed by a point mutation in the transcriptional start site of the ahpCF promoter region. Examples 9 and 10 (infra) suggest that the mutation leads to increased production of the ahpC gene product, which in turn is responsible for conveying INH resistance.
- ahpCF promoter Disclosed herein are two point mutations in the ahpCF promoter currently known to be associated with INH resistance.
- This invention also contemplates alternative alterations to the ahpCF operon which would affect the expression and/or function of the gene products thereof, thereby imparting various degrees of sensitivity or resistance to INH.
- Any of the uses of the invention disclosed herein should be considered generic, and can be adapted, if necessary, for application to any of the contemplated ahpCF alterations.
- any mutation in the promoter region which improves the binding of an intracellular component involved in transcription or a positive controlling elements of transcription would increase the transcription rate.
- Any mutation in the promoter region which impairs the binding of a negative controlling element like a repressor protein would have the same effect.
- the ahpCF operon could be duplicated in the strain, also resulting in increased expression of AhpC, and resistance to INH.
- mutations in the coding region of ahpC could be associated with INH resistance; in particular, those that altered the active site of AhpC so as to increase its catalytic activity. It is desirable to be able to test and treat any alteration which imparts INH resistance.
- This invention also contemplates a converse set of alterations to the ahp h operon which would result in decreased expression and/or function of the gene products, which may increase sensitivity to INH, compared with the wild type.
- the ahpCF operon associated with INH resistance in strains of the M. tuberculosis complex provides the practitioner of ordinary skill with compositions and methods useful in the diagnosis and treatment of pathogenic states resulting from infection with mycobacteria, particularly INH-resistant strains.
- target of action for INH refers to one or both of the polypeptides AhpC and AhpF, encoded in an ahpCF operon of mycobacteria, and preferably in members of the M. tuberculosis complex.
- ahpCF operon refers to a polynucleotide that encodes polypeptides that are present in mycobacteria, wherein the polypeptides have substantial amino acid homology and equivalent function to the AhpC and AhpF proteins of M. bovis.
- substantial amino acid homology means at least about 60% homology, generally at least about 70% homology, even more generally at least about 80% homology, and at times at least about 90% homology to any of the indicated polypeptides.
- the operon includes regions that are responsible for the control of transcription or expression of the encoded polypeptide, including promoter regions, enhancer regions, ribosomal binding regions, and sites capable of binding any other component involved in the regulation of transcription.
- AhpC polypeptide and “AhpF polypeptide” refer to polypeptides encoded in individual open reading frames within the ahpCF operon in mycobacteria, in either INH-resistant or INH-sensitive variants.
- AhpCF polypeptide refers to any polypeptide encoded within the ahpCF operon.
- polynucleotide refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, this term includes double- and single-stranded DNA and RNA.
- modifications for example, labels which are known in the art (e.g., Sambrook, et al.), methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates), those containing pendant moieties, such as, for example, proteins (including for e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine), those with intercalators (e.g., acridine, psoralen), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids), as well as unmodified forms of the polynucleotide.
- labels which are known in
- the invention includes as an embodiment isolated polynucleotides comprised of sequences encoding polypeptides associated with isoniazid (INH) resistance in mycobacteria or active fragment thereof. These isolated polynucleotides contain less than about 50%, preferably less than about 70%, and more preferably less than about 90% of the chromosomal genetic material with which the sequence encoding the polypeptide is usually associated in nature.
- An isolated polynucleotide "consisting essentially ol" a sequence encoding an INH resistance associated polypeptide lacks other sequences encoding other polypeptides derived from the mycobacterial chromosome.
- INH isoniazid
- the invention also includes as embodiments recombinant polynucleotides containing a region encoding ahpCF operon gene products for mycobacteria.
- polynucleotide intends a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of a polynucleotide with which it is associated in nature; or (2) is linked to a polynucleotide other than that to which it is linked in nature; or (3) does not occur in nature.
- a purified or recombinant polynucleotide comprised of a sequence encoding AhpC or AhpF of mycobacteria or variant or active fragment thereof may be prepared by any technique known to those of skill in the art using the polynucleotide sequences provided herein. For example, they can be prepared by isolating the polynucleotides from a natural source, or by chemical synthesis, or by synthesis using recombinant DNA techniques.
- polypeptide refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like.
- polypeptides containing one or more analogs of an amino acid including, for example, unnatural amino acids
- polypeptides with substituted linkages as well as the modifications known in the art, both naturally occurring and non-naturally occurring.
- cloning vectors and expression vectors comprised of a sequence encoding AhpC and/or AhpF or variant or fragment thereof. Suitable cloning vectors may be constructed according to standard techniques, or may be selected from the large number of cloning vectors available in the art.
- cloning vector selected may vary according to the host cell intended to be used, useful clomng vectors will generally have the ability to self replicate, may possess a single target for a restriction endonuclease, and may carry genes for a readily selectable marker (e.g., antibiotic resistance or sensitivity markers). Suitable examples include plasmids and bacterial viruses, e.g., pUC18, mpl8, mpl9, pBR322, pMB9, ColEl, pCRl, RP4, phage DNAs, and shuttle vectors (e.g., pSA3 and pAT28. Preferred vectors include pBLUSCRIPT Ilks (TM) (Stratagene), and pYUB18.
- TM pBLUSCRIPT Ilks
- Expression vectors generally are replicable polynucleotide constructs that encode a polypeptide operably linked to suitable transcriptional and translational regulatory elements.
- suitable transcriptional and translational regulatory elements examples include promoters, enhancers, ribosomal binding sites, and transcription and translation initiation and termination sequences.
- the regulatory elements employed in the expression vectors containing a polynucleotide encoding AhpC, AhpF or an active fragment thereof would be functional in the host cell used for expression. It is also contemplated that the regulatory sequences may be derived from the ahpCF operon; thus, a promoter or terminator sequence may be homologous (i.e., from mycobacteria) to the coding sequence.
- the invention also includes recombinant host cells comprised of any of the above described polynucleotides that contain a sequence encoding an AhpC and/or AhpF polypeptide of mycobacteria.
- the polynucleotides may be inserted into the host cell by any means known in the art.
- "recombinant host cells”, “host cells”, “cells”, “cell lines”, “cell cultures”, and other such terms denoting microorganisms or higher eukaryotic cell lines cultured as unicellular entities refer to cells which can be, or have been, used as recipients for recombinant vector or other transfer DNA, and include the progeny of the original cell which has been transformed.
- progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation.
- Hosts which may be used include prokaryotic cells (e.g., bacterial cells such as E. coli. mycobacteria, and the like) and eukaryotic cells (e.g., fungal cells, insect cells, animal cells, and plant cells, and the like).
- prokaryotic cells are generally preferred, and E. coli and M. smegmatis are particularly suitable.
- Transformation refers to the insertion of an exogenous polynucleotide into a host cell, irrespective of the method used for the insertion, for example, direct uptake, transduction, f-mating or electroporation.
- the exogenous polynucleotide may be maintained as a non-integrated vector, for example, a plasmid, or alternatively, may be integrated into the host cell genome.
- polynucleotides comprised of sequences encoding AhpC and/or AhpF maybe of use in the detection of mycobacteria in biological samples, and mutant forms of these polypeptides associated with INH resistance may be of use in the detection of INH- resistant forms.
- a “biological sample” refers to a sample of tissue or fluid isolated from an individual, including but not limited to, for example, plasma, serum, spinal fluid, lymph fluid, the external sections of the skin, respiratory, intestinal, and genitourinary tracts, tears, saliva, milk, blood cells, tumors, organs, and also samples of in vitro cell culture constituents (including but not limited to conditioned medium resulting from the growth of cells in cell culture medium, putatively infected cells, recombinant cells, and cell components).
- Particularly useful samples in the diagnosis of human pulmonary tuberculosis are sputum and lung aspirates, and cultures thereof.
- the term “clinical sample” is synonymous with "biological sample”.
- the term "individual” as used herein refers to vertebrates, particularly members of the mammalian or avian species, and includes but is not limited to domestic animals, sports animals, and primates, including humans.
- oligomers of approximately 8 nucleotides or more can be prepared, either by excision from recombinant polynucleotides or synthetically, which hybridize with the mycobacterial sequences in the plasmids and are useful in identification of the INH-resistant and INH-sensitive mycobacteria.
- the probes are a length which allows the detection of the AhpC and/or AhpF encoding sequences by hybridization.
- nucleotides While 6-8 nucleotides may be a workable length, sequences of about 10-12 nucleotides are preferred, about 15 nucleotides are more preferred, and about 20 nucleotides appears optimal.
- probes can be prepared using routine methods, including automated oligonucleotide synthetic methods. For use as probes, complete complementarity is desirable, though it may be unnecessary as the length of the fragment is increased.
- a polynucleotide comprising all or part of the nucleic acid sequences of an ahpjCE operon, and particularly polynucleotides with sequences from the promoter region, may be used as probes for INH-resistance.
- the probes may be labelled, for example with radioactive isotopes.
- Usual isotopes include, for example P and P.
- the probes are capable of hybridizing to the genetic elements associated with INH-resistance.
- the probe may be the entire nucleotide sequence depicted in Figure 1. However, shorter probes are preferred.
- a preferred embodiment of this invention is a probe useful for detecting either of the point mutations in the promoter region of the ahpCF operon that convey INH resistance. Particularly preferred are probes capable of hybridizing to the promoter region of either the INH resistant or INH sensitive strains, but not both.
- Promoter region in this context means any region or subregion of the ahpCF operon upstream from the coding region of the ahp_C gene, and is at or near a site involved in promoting gene transcription.
- probes which encompass the actual codon which is mutated in INH resistant strains are those encompassing the 5-mer sequences GGTAC, GGCAC, CGTAA, and CGCAA, optionally extended in the 5' and/or the 3' direction according to the sequence in Figure 1 to include other residues; probes encompassing the 7-mer sequences CGGTACG, CGGCACG, TCGTAAC, TCGCAAC, optionally extended in the same fashion; probes encompassing the 10-mer sequences TCACGGYACG (SEQ ID NO: 16), CACGGYACGA (SEQ ID NO: 17), ACGGYACGAT (SEQ ID NO: 18), CGGYACGATG (SEQ ID NO: 19), ATGTCGYAAC (SEQ ID NO:20), TGTCGYAACC (SEQ ID NO:21), GTCGYAACCA (SEQ ID NO:22), TCGYAACCAA (SEQ ID NO:23), optionally extended in the same fashion, where Y is T or C. It is
- the biological sample to be analyzed such as blood or serum
- the biological sample to be analyzed may be treated, if desired, to extract the nucleic acids contained therein.
- the resulting nucleic acid from the sample may be subjected to gel electrophoresis or other size separation techniques; alternatively, the nucleic acid sample may be dot blotted without size separation.
- the probes are usually labeled. Suitable labels, and methods for labeling probes are known in the art, and include, for example, radioactive labels incorporated by nick translation or kinasing, biotin, fluorescent probes,
- the nucleic acids extracted from the sample are then treated with the labeled probe under hybridization conditions of suitable stringencies.
- the probes can be made completely complementary to the allelic form of polynucleotide that has been targeted. With this goal, high stringency conditions usually are desirable in order to prevent false positives.
- the stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, length of time, and concentration of formamide. These factors are outlined in, for example, Maniatis, T. (1982).
- amplification techniques in hybridization assays.
- Such techniques include, for example, the polymerase chain reaction (PCR) technique described which is by Saiki et al. (1986), by Mullis, U.S. Patent No. 4,683,195, and by Mullis et al. U.S. Patent No. 4,683,202.
- PCR polymerase chain reaction
- This technique may be used in conjunction with other techniques, for example, in single-strand conformation polymorphism analysis (see infra., in the Examples).
- Suitable reagents to perform a diagnostic procedure can be provided in the form of a diagnostic kit.
- the reagent supplied will depend on the nature of the assay, and may be a polynucleotide probe, a polypeptide, an antibody, or an enzyme substrate.
- the reagent may be labeled; alternatively, the reagent may be unlabeled and the ingredients for labeling may be included in the kit in separate containers.
- the kit may also contain other suitably packaged reagents and materials needed for the particular hybridization protocol, for example, standards, as well as instructions for conducting the test. If the kit is to be used for an assay system which includes PCR technology it may also include primers for the PCR reaction.
- the ahpCF operon sequences and polypeptides encoded therein may also be used for screening for drugs against mycobacteria, particularly members of the mycobacterial complex, and more particularly M. tuberculosis and M. bovis.
- it can be used to express the INH-resistant and INH-sensitive polypeptides, or fragments thereof, encoded in allelic forms of ahpCF. Utilizing these polypeptides in in vitro assays, one could monitor the effect of candidate drugs on alkyl hydro peroxidase activity. Drugs that inhibit this enzyme are candidates for therapy of mycobacterial diseases.
- Drugs that may be tested for effectiveness in this type of system include INH, ETH, rifampicin, streptomycin, ethambutol, ciprofloxacin, novobiocin and cyanide.
- the ahpCF operon sequences may also be used to design polynucleotides that can be used for treatment of mycobacterial infections, including those caused by * tuberculosis. M. avium. and M. bovis.
- One method of treating a mycobacterial infection utilizing the ahpCF operon is by providing antisense polynucleotides or triplex forming polynucleotides which can be used to inhibit the transcription or translation of mRNA from the ahpCF operon, for example antisense polynucleotides, triplex forming polynucleotides, decoys, and ribozymes.
- antisense polynucleotides triplex forming polynucleotides, decoys, and ribozymes.
- these types of polynucleotides are also included within the invention.
- These polynucleotides may be prepared by a variety of techniques known in the art, including chemical synthesis and recombinant technology. After preparation they can then be administered, either alone or in combination with other compositions to treat mycobacterial infections, including tuberculosis.
- the compositions containing these polynucleotides may also include suitable excipients.
- the sequence ofahpCF can also be used to assess the susceptibility of various strains of mycobacteria, and particularly of M. tuberculosis or M. bovis. in a clinical sample to INH. This susceptibility comparison is based upon the detection of a mutant allele as compared to the wild-type ahpCF allele that is INH-sensitive. Procedures to perform this type of assessment will be readily evident to those of skill in the art. For example, one procedure to perform this assessment is described in the Examples, and is based upon isolation of the chromosomal DNA of the bacterium, and amplification of the ahpCF region by PCR using primers specific for the region, based upon the ahpCF sequences provided herein.
- a mutation associated with INH resistance can then be detected by single-strand conformation polymorphism analysis, or by direct sequencing of the amplified region.
- a probe encompassing the sequence associated with INH resistance can be used in a direct hybridization assay, such as a blotting assay. INH resistance would be indicated by a positive result with a probe specific for a sequence associated with resistance, or by a negative result with a probe specific for a sequence associated with INH sensitivity.
- the activity of the ahpC gene can be used to determine the INH susceptibility of a mycobacteria strain in a biological sample.
- Activity in this context means the level of transcription of the gene into messenger RNA, which may be followed by translation of the RNA into a peptide, which in turn may be followed by other events such as a display of enzymatic activity by the transcribed protein.
- suitable assays for measuring the activity ot ahpC 1. hybridization blot assays and single strand protection assays using a polynucleotide specific for ahpC messenger RNA; 2.
- the assay is usually conducted both on the sample to be tested, and on a control sample.
- the control sample should contain a strain of mycobacteria with a known susceptibility to INH. It can be either INH susceptible, or INH resistant.
- strain in the control sample is INH sensitive, then similar activity of ahpC in the test sample indicates INH sensitivity; a higher activity indicates INH resistance. If the strain in the control sample is INH resistant, then similar activity of ahpC in the test sample indicates INH resistance, while lower activity indicates a degree of INH sensitivity. Depending on the nature of the assay, it may or may not be necessary that the testing of the biological sample and the control sample be contemporaneous.
- the ahpCF promoter region may be used to promote the transcription and expression of heterologous genes.
- An example of heterologous expression of the lacZ gene is described infra.
- the ahpCF promoter is isolated, or prepared by polynucleotide synthesis from the sequence data. A fusion polynucleotide is formed, in which the promoter is operably linked to a gene that is not ahpC. The construct is then transfected into the desired species of mycobacteria using a suitable vector plasmid.
- compounds which block the activity of AhpC or AhpF polypeptides are also used to promote the transcription and expression of heterologous genes.
- ahpCF (which may be enzymes) can be prepared utilizing the sequence information ofahpCF. This is performed by overexpressing AhpC and/or AhpF, purifying the polypeptide(s), and then performing X-ray crystallography on the purified polypeptide(s) to obtain its(their) molecular structure. Next, compounds are created which have similar molecular structures to all or portions of the polypeptide(s). The compounds are then combined with the polypeptide(s) and attached thereto so as to block the biochemical activity of the polypeptide(s).
- the ahpCF polynucleotide may also be used to produce a vaccine to confer immunity against the product of the gene.
- the ahpCF polynucleotide may also be used to prepare attenuated strains of mycobacteria or BCG, and recombinants thereof.
- a mutated ahpCF operon is selected or engineered which has a lower level of expression than wild type mycobacteria, which may render it even more susceptible to INH than the wild type.
- the level of expression would be chosen to maximize INH sensitivity, while leaving the strain with the minimum amount ofahpCF activity that is consistent with viability and the desired growth rate.
- this would be combined with other attenuation strategies, such as alteration of the mycobacteria virulence gene.
- the resulting strain could be used in a vaccine to stimulate immunity against mycobacteria. Genes expressing proteins from other pathogens could be transfected into the attenuated strain, thereby providing protection against other diseases.
- the list of pathogens which would be suitable for this strategy is extensive, and includes leprosy, polio, malaria, AIDS, hepatitis B, hepatitis C, and tetanus.
- polypeptides of the invention include those encoded in allelic variants of ahpCE, and are in purified or recombinant form. These polypeptides include fragments of the entire polypeptides encoded in the ORFs.
- polypeptides of the invention include variants of AhpC and/or AhpF which differ from the native amino acid sequences by the insertion, substitution, or deletion of one or more amino acids. These variants may be prepared chemically, or by alteration of the polynucleotide sequences encoding AhpC or AhpF, using techniques known in the art, for example, by site-specific primer directed mutagenesis.
- polypeptides can be purified by any means known in the art, including, for example freeze-thaw extraction, salt fractionation, column chromatography, affinity chromatography and the like.
- the polypeptides of the invention may find use as therapeutic agents lor treatment of mycobacterial infection. "Treatment” as used herein refers to prophylaxis and/or therapy.
- the AhpC and/or AhpF polypeptides can be prepared as discrete entities or incorporated into a larger polypeptide, and may find use as described herein.
- the immunogenicity of the epitopes of AhpC and/or AhpF may also be enhanced by preparing them in mammalian or yeast systems fused with or assembled with particle-forming proteins such as, for example, that associated with hepatitis B surface antigen. See, e.g., U.S. Pat. No. 4,722,840.
- Vaccines may be prepared from one or more immunogenic polypeptides derived from AhpC and/or AhpF.
- the polypeptides of this invention can also be used in a polypeptide vaccine.
- AhpC and/or AhpF are provided in a suitable form for administration to human or other mammalian subjects.
- Vaccines can be prepared for injection, or for oral or intranasal administration.
- the polypeptide(s) may be prepared to render them more immunogenic by a technique or combination of techniques known in the art, such as aggregation with a cross-linking agent like glutaraldehyde, fragmentation, linking to a carrier like keyhole limpet hemocyanin (KLH), and cyclization.
- KLH keyhole limpet hemocyanin
- such vaccines are prepared as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared.
- the preparation may also be emulsified, or the protein encapsulated in liposomes.
- the active immunogenic ingredients are often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof.
- the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the vaccine.
- adjuvants which may be effective include but are not limited to: aluminum hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine (CGP 11637, referred to as nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-( 1 '-2'-dipalmitoyl-sn-glycero-3 -h ydroxyphos ⁇ horyloxy)-ethylamine (CGP 19835 A, referred to as MTP-PE), and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 e
- an adjuvant may be determined by measuring the amount of antibodies directed against an immunogenic polypeptide containing an AhpC or AhpF antigenic sequence resulting from administration of this polypeptide in vaccines which are also comprised of the various adjuvants.
- the vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are • suitable for other modes of administration include suppositories and, in some cases, oral formulations or formulations suitable for distribution as aerosols.
- binders and carriers may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably l%-2%.
- Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10%-95% of active ingredient, preferably 25%-70%.
- the proteins may be formulated into the vaccine as neutral or salt forms.
- Pharmaceutically acceptable salts include the acid addition salts (formed with free amino groups of the peptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids such as acetic, oxalic, tartaric, maleic, and the like. Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- the vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be prophylactically and/or therapeutically effec ⁇ tive.
- the quantity to be administered which is generally in the range of 5 micrograms to 250 micrograms of antigen per dose, depends on the subject to be treated, capacity of the subject's immune system to synthesize antibodies, and the degree of protection desired. Precise amounts of active ingredient required to be administered may depend on the judgment of the practitioner and may be peculiar to each subject.
- the vaccine may be given in a single dose schedule, or preferably in a multiple dose schedule.
- a multiple dose schedule is one in which a primary course of vaccination may be with 1-10 separate doses, followed by other doses given at subsequent time intervals required to maintain and or reenforce the immune response, for example, at 1-4 months for a second dose, and if needed, a subsequent dose(s) after several months.
- the dosage regimen will also, at least in part, be determined by the need of the individual and be dependent upon the judgment of the practitioner.
- the vaccine containing the immunogenic AhpC and/or AhpF antigen(s) may be administered in conjunction with other immunoregulatory agents, for example, immune globulins, as well as antibiotics.
- the AhpCF antigens may be used for the preparation of antibodies.
- the immunogenic polypeptides prepared as described above are used to produce antibodies, including polyclonal and monoclonal. If polyclonal antibodies are desired, a selected mammal (e.g., mouse, rabbit, goat, horse) is immunized with an immunogenic polypeptide bearing AhpC or AhpF epitope(s). Serum from the immunized animal is collected and treated according to known procedures. If serum containing polyclonal antibodies to an AhpCF epitope contains antibodies to other antigens, the polyclonal antibodies can be purified by immunoaffinity chromatography. Techniques for producing and processing polyclonal antisera are known in the art, see for example, Mayer and Walker (1987).
- Monoclonal antibodies directed against AhpCF epitopes can also be readily produced by one skilled in the art.
- the general methodology for making monoclonal antibodies by hybridomas is well known.
- Immortal antibody-producing cell lines can be created by cell fusion, and also by other techniques such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, e.g., M. Schreier et al. (1980); Hammerling.et al. (1981); Kennett et al. (1980); see also, U.S. Patent Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,466,917; 4,472,500;
- Panels of monoclonal antibodies produced against AhpC or AhpF epitopes can be screened for various properties; i.e., for isotype, epitope affinity, etc.
- Antibodies both monoclonal and polyclonal, which are directed against AhpCF epitopes are particularly useful in diagnosis, and those which are neutralizing may be useful in passive immunotherapy.
- Monoclonal antibodies in particular, may be used to raise anti-idiotype antibodies.
- Anti-idiotype antibodies are immunoglobulins which carry an "internal image" of the antigen of the infectious agent against which protection is desired. See, for example, Nisonoff, A., et al. (1981) and Dreesman et al. (1985). Techniques for raising anti-idiotype antibodies are known in the art. See, for example, Grzych (1985), MacNamara et al. (1984), and Uytdehaag et al. (1985). These anti-idiotype antibodies may also be useful for treatment, vaccination and/or diagnosis of mycobacterial infections, as well as for an elucidation of the immunogenic regions of AhpCF antigens.
- AhpCF polypeptides are useful in immunoassays to detect the presence of anti ⁇ bodies to mycobacteria.
- Anti-AhpCF antibodies are useful in immunoassays to detect the presence of AhpCF antigens.
- relatively high levels of AhpC would indicate that a strain of mycobacteria in a biological sample has a highly active ahpCF operon, and is probably INH resistant.
- Protocols may be based, for example, upon competition, direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or involve immunoprecipitation.
- An immunoassay will involve the interaction between at least one epitope derived from either AhpC or AhpF, and an antibody specific for the epitope. A first component of this interaction (the epitope or the antibody) will be supplied as a reagent, the other component (the antibody or the epitope, respectively) will be supplied either as a control sample, or as a biological sample in which the level of the component is to be determined.
- the formation of the complex between antibody and epitope is detected by many techniques known in the art, including precipitation and nephelometry. Often, the complex is detected by supplying the reagent with a label, either before or after the complexing reaction.
- the labels may be, for example, enzymatic, fluorescent, chemiluminescent, radioactive, or dye molecules. As- says which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
- the label may be attached directly to the reagent, or supplied through a reaction with a second reagent, such as anti-immunoglobulin or protein A.
- an immunoassay for an anti-AhpCF antibody(s) will involve selecting and preparing the test sample suspected of containing the antibodies, such as a biological sample, then incubating it with an antigenic (i.e., epitope-containing) AhpCF polypeptide(s) under conditions that allow antigen-antibody complexes to form, and then detecting the formation of such complexes.
- the polypeptide component may comprise a single epitope or a combination of epitopes derived from AhpC and or AhpF.
- the epitopes may be natural isolates, or provided in separate recombinant polypeptides, or together in the same recombinant polypeptides. Suitable incubation conditions are well known in the art.
- the immunoassay may be, without limitations, in a heterogenous or in a homogeneous format, and of a standard or competitive type.
- the polypeptide is typically bound to a solid support to facilitate separation of the sample from the polypeptide after incubation.
- solid supports that can be used are nitrocellulose (e.g., in membrane or microtiter well form), polyvinyl chloride (e.g., in sheets or microtiter wells), polystyrene latex (e.g., in beads or microtiter plates, polyvinylidine fluoride (known as Immulon), diazotized paper, nylon membranes, activated beads, and Protein A beads.
- Dynatech IMMULON 1 or IMMULON 2 (TM) microtiter plates, or 0.25 inch polystyrene beads (Precision Plastic Ball) can be used in the heterogeneous format.
- the solid support containing the antigenic polypeptide is typically washed after separating it from the test sample, and prior to detection of bound antibodies. Both standard and competitive formats are known in the art.
- Complexes formed comprising anti-AhpCF antibody are detected by any of a number of known techniques, depending on the format.
- unlabeled anti-AhpCF antibodies in the complex may be detected using a conjugate of antixenogeneic Ig complexed with a label, (e.g., an enzyme label).
- the test sample typically a biological sample
- anti-AhpCF antibodies under conditions that allow the formation of antigen-antibody complexes.
- the antibody component may be, for example, a monoclonal antibody directed towards an AhpCF epitope(s), a combination of monoclonal antibodies directed towards epitopes of one mycobacterial antigen, monoclonal antibodies directed towards epitopes of different mycobacterial antigens, polyclonal antibodies directed towards the same antigen, or polyclonal antibodies directed towards different antigens. It may be desirable to treat the biological sample to release putative bacterial components prior to testing.
- a "sandwich assay" may be employed, where antibody bound to a solid support is incubated with the test sample; washed; incubated with a second, labeled antibody to the analyte, and the support is washed again. Analyte is detected by determining if the second antibody is bound to the support.
- a competitive format which can be either heterogeneous or homogeneous, a test sample is usually incubated with antibody and a labeled, competing antigen is also incubated, either sequentially or simultaneously.
- M. bovis ATCC 35729 and M. bovis ATCC 35728 were selected for study. Both strains were shown to be catalase negative and not to have the inhA mutation that characterized another INH resistant M. bovis strain (Banerjee et al. Science 263:227, 1994).
- Plasmid pYUB 18 is a multicopy E. coli-mycobacteria shuttle cosmid that contains a selectable kanamycin gene and a cos site (J.T. Beslile et al., J. Bacteriol. 173:6991 (1991); S.B. Snapper et al., Mol. Microbiol. 4:1911 (1990); W.R. Jacobs et al., Methods Enzymol. 204:537 (1991)).
- a restriction enzyme map of pYUB18 showing some significant features of the genome is shown in Figure 5.
- the cosmid library was prepared as follows using standard techniques. Chromosomal DNA was purified from ATCC 35729, and subjected to partial digestion with Sau3Al: fragments between about 30-50 kb were purified by sucrose gradient purification and ligated to linearized pYUB18. Resulting cosmids were packaged into S- phage using a commercial kit (GIGAPACK GOLD (TM), Stratagene) according to the manufacturer's directions, and transfected into E. coli: approximately 10,000 colonies were obtained. The colonies were pooled and the plasmids amplified, using standard plasmid preparation techniques.
- TM GAPACK GOLD
- the cosmid library was then transformed into M. smegmatis strain mc 155 by electroporation. Transformants were selected by growth on medium containing kanamycin. Approximately 2000 kanamycin resistant clones were patched onto media containing 25 Tg/mL INH. Twelve INH resistant clones were identified. The first ORF is preceded by putative -10 and -35 promoter regions, indicated in
- FIG. 2 by single underlining.
- the potential ribosome binding site is indicated in Figure 2 by double underlining.
- This DNA sequence of the ahpCF operon of ATCC 35729 has been submitted to GenBank, and is assigned the accession number U24084.
- cosmids were extracted from the transformants.
- Cultures of M. smegmatis (5 ml) were incubated with cycloserine and ampicillin for 3 hours before harvest. The cells were pelleted and resuspended in 0.25 ml of 40 mM Tris acetate, 2 mM EDTA, Ph 7.9. To this, 0.5 ml of lysing solution was added (50 mM Tris, 3% sodium dodecylsulfate (SDS)) and the solution was mixed for 30 minutes.
- SDS sodium dodecylsulfate
- the sample was heated to 600C for 20 minutes, cooled for 10 minutes and the DNA was extracted by adding 0.8 ml phenol (containing 50 mM NaCl). This was centrifuged and the upper layer containing the DNA was removed. To precipitate the DNA, a half volume of 7.5 M ammonium acetate was added, incubated on ice for 30 minutes and then centrifuged for 30 minutes. The DNA was resuspended in 10 mM Tris, 1 mM EDTA. Southern blot hybridization with a probe of the inhA gene of restriction digests of the cosmids revealed that only one of the cosmids contained the inhA gene.
- a library of 2-4 kb partial Sau3AI fragments of one (pUHA210) of the remaining 11 cosmids that did not contain inhA was subcloned into pYUB 18.
- a plasmid, pUHA211 , conferring INH resistance on M. smegmatis was selected and isolated in the same way as its parent cosmid pUHA210.
- the sequence of the insert in pUHA211 was obtained as follows.
- the insert in pUHA211 was cloned into the vector pBLUESCRIPT II KS+ (TM) (Stratagene, California) to form pUHA212.
- This vector contains the T3 and T7 promoters which were used for the sequencing.
- Sequencing of pUHA212 was carried out using the dsDN A • cycle sequencing system from GIBCO BRL, Life Technologies, according to the manufacturer's directions.
- the radioactive labelled nucleotide was [K- 3 P] ATP, available from Amersham.
- the sequencing program used was, GCG Sequence Analysis Software Package.
- the nucleic acid sequence for the insert in pUHA212 and the amino acid sequence from two large open reading frames encompassed within it are shown in Figure 2.
- the AhpC polypeptide predicted from the M. bovis ahpC gene sequence shows homology with a number of thiol-specific antioxidant enzymes from bacteria, yeast, and human. AhpC and AhpF in E. coli and S. typhimurium have been proposed to be involved in the cellular response to oxidative stress. In M. smegmatis. the effect of hydrogen peroxide on INH-susceptibility suggests these genes may be involved in INH resistance.
- Figure 3 provides a comparison of the AhpC from M. bovis ATCC 35729 with related sequences obtained from GenBank, and aligned using the computer algorithm PILEUP.
- the thiol-specific antioxidant enzymes are sometimes referred to as "protector" proteins.
- M. bovis AhpC has 33% amino acid sequence identity to the AhpC component of alkyl hydroperoxide reductase, an E. coli enzyme which is a heterodimer of AhpC and AhpF chains.
- M. bovis AhpC also has 65% identity to the gene product ofdirp22 (dirA).
- DirA iron-repressible genes from Corynebacterium diptheriae
- Other related proteins are AhpC from S. typhimurium.
- AhpC from C. pasteurianum.
- TSA from cerevisiae. and PAG from H. sapiens.
- the thiol-specific antioxidant of S. cerevisiae exists as a homodimer of 25 kDa subunits, each containing two cysteine residues: Cys-47 and Cys-170.
- M. bovis AhpC has two cysteine residues in equivalent positions.
- INH and peroxidases form intermediates like carbonyl, peroxy and isonicotinyl radicals (Shoeb et al., Antimicrob. Ag. Chemother 27:404, 1985) and this oxidation process has been proposed as a mechanism for the mode of action of INH (Johnsson and Schulz, 1994).
- AhpC may act as a protector protein to confer INH resistance.
- the predicted M. bovis AhpF has only a low level of homology with AhpF from other organisms.
- Figure 4 shows a best-fit comparision of the protein encoded in ORF2 (top) with the AhpF from E. coli (below). Vertical lines indicated identity; dots between the sequences indicate similarity; asterisks indicate residues that are 10 amino acids apart.
- the M. bovis AhpF has a Cys-X-X-Cys (SEQ ID NO:24) motif (underlined), which is characteristic of a family of disulphide oxidoreductases such as thioredoxin, disulphide isomerase, and DsbA, a periplasmic protein required for disulfide bond formation in E. coli.
- DNA was harvested from M. bovis ATCC 35723 which is the INH-sensitive parent strain from which M. bovis ATCC 35729 was derived. This DNA was digested with the two restriction enzymes NotI and Bglll and the resulting fragments were cloned into pBluescript II KS+. A clone containing a plasmid which incorporated the ahpCF operon was identified by colony hybridization with a probe of part of the insert of pUHA212. The wild type ahpCF operon incorporated in this plasmid, denoted pUHA313, was sequenced in a similar manner to the pUHA212 insert. The DNA sequence of the ahpCF operon of ATCC 35723 (the INH sensitive parent) is shown in Figure 6 (SEQ ID NO: 14). The sequence has been submitted to GenBank, and is assigned the accession number U24083.
- the panel comprised 5 strains of M. bovis: ATCC 35729, the INH resistant strain characterized in Example 3; ATCC 35723, the INH sensitive strain from which it was derived; ATCC 35728, another INH resistant strain derived from the same parent; WAg201 , a different INH sensitive parent; and WAg405, an INH resistant strain derived therefrom.
- the panel also comprised 2 strains of M. tuberculosis: ATCC 27294, an INH sensitive parent strain; and ATCC 35822, an INH resistant descendant strain of ATCC 27294.
- Catalase activity of an INH-sensitive strain of M. bovis was determined.
- the enzyme was first isolated from the strain by pelleting a culture of M. bovis. resuspending it in 50 mM potassium phosphate buffer, pH 7, and adding it to a tube containing 0.5 g zirconium beads (Biospecs products), and vortexing for 5 min. The sample was centrifuged briefly, the supernatant collected and diluted to 4 ml with 50 mM potassium phosphate buffer, and filter sterilized through 0.22 Tm filters. Catalase catalyzes the conversion ofH 2 O 2 to H 2 O and O 2 .
- Catalase activity was assayed by incubating an aliquot of supernatant, prepared as above, with 3 Tm H 2 O 2 in a total volume of 3 ml for 5 minutes. The reaction was stopped by adding 1.5 ml of titanium tetrachloride reagent (1.5 mg/ml TiCl 4 in 4.5 M H 2 SO 4 ). The absorbance was read at 410 nm and the catalase activity was calculated using a standard curve of the amount of hydrogen peroxide versus wavelength at 410 nm; the activity was expressed as Tmol/min/mg protein.
- Catalase activity was detected in all strains that were sensitive to INH, but none of the strains that were resistant to INH. There is an approximate correlation between catalase activity and the virulence of the strain. However, certain strains (notably ATCC 35728) can be virulent even in the absence of detectable catalase activity.
- DNA preparations from different M. bovis strains were digested with restriction nucleases and subjected to Southern analysis by standard techniques, using a 4.5 kb polynucleotide probe for the katG gene.
- DNA preparations from different M. bovis strains were digested with restriction nucleases and subjected to Southern analysis by standard techniques, using a 4.5 kb polynucleotide probe for the katG gene.
- a katG gene encoding functional catalase activity was integrated back into the genomes of ATCC 25728 and ATCC 35729, using similar techniques to those outlined elsewhere in this disclosure. As a result, INH resistance was reduced from 64 Tg/ml to 1 Tg/ml and 0.5 Tg/ml, respectively.
- mutation of the inhA gene can also confer INH resistance, it was important to establish the status of inhA in the strains analyzed herein. Mutations that confer INH resistance have been mapped to two well-separated nucleotides in the coding region of inhA (Banerjee et al., Science 263:227, 1994), and also to the promoter region (Kapur et al., Arch. Pathol. Lab. Med. 119:131, 1995). Therefore, the relevant regions were retrieved from each of the mycobacteria strains of the panel, and the nucleotide sequence was determined.
- the promoter region of inhA was amplified using primer 5'- CAGCGCTTTTGCACGCA (SEQ ID NO:25) and 5'-CCAGGACTGAACGGGAT (SEQ ID NO:26) to produce a 350 bp fragment and the PCR product cloned using TA cloning kit (Invitrogen). Both strands were sequenced by cycle sequencing with the amplification primers.
- Results are shown in Table 2.
- the sequence of the inhA promoter was compared to that of WAg201, and if identical is denoted in the Table as wild type (W.T.).
- the coding region of inhA was sequenced near the previously reported mutations at positions 16 and 94 of the protein.
- the presence of any mutation affecting position 16 was determined using primers 5'-GCGAGCTATATCTCCGG (SEQ ID NO:27) and 5'- CATGATCGGCAGCAGCG (SEQ ID NO:28).
- the presence of any mutation affecting position 94 was determined using primer 5'-TCAGCGCATCACCGACC (SEQ ID NO:29) and 5'-CATGATCGGCAGCAGCG (SEQ ID NO:28).
- the PCR products were cloned and sequences as described above. Sequences identical to WAg201 are denoted as W.T.
- primers were designed to amplify a 200 bp region of the promoter upstream from the start codon.
- the promoter region was amplified using primers 5'-GCAACGTCGACTGGCTC (SEQ ID NO:30) and 5'-CGGTCCTCGAACTCGTC (SEQ ID NO:31).
- the PCR product was cloned into pKSl l+ using the TA CLONING KIT (TM) (Invitrogen), and both strands of the promoter region were sequenced using the amplification primers and an additional primer 5'-GTGGCATGACTCTCCTC (SEQ ID NO:32). Nucleotide sequences near the previously determined mutation site of ATCC
- Primer extension analysis revealed that the mutation in position 72 occurs at the transcriptional start site.
- Total RNS was isolated from a pelleted culture of M. smegmatis which had been transformed with the integrating vector pYUB178::aphC using TRIzolTM (Gibco/BRL) and the manufacturer's protocol.
- Primer extension analysis was performed as described by Levin and Hatfull (1993) except that the annealing conditions used were 30°C for 16 hours and the reverse transcriptase temperature used was 50°C for 2 hours. Results are shown in Figure 9.
- H37Rv (ATCC 27294) GGCACGATGG AATGTCGCAA (SEQ ID NO:33)
- the 2.1 kb insert of ATCC 35729 was treated with restriction nucleases NotI (N), EcoRI (E), P_sjl (P), and figJII (B), producing the fragments shown in Figure 8.
- N restriction nucleases NotI
- E EcoRI
- P P_sjl
- B figJII
- the object of the next experiment was to determine the effect of the mutation in the ahpCF operon of mycobacteria strains on the function of the promoter region.
- the strains tested were ATCC 35723 (wild type, INH sensitive), ATCC 35729 (one mutation, INH resistant), and ATCC 35728 (two mutations, INH resistant).
- Primers 5'-CTCGGATCCACTGCTGAACCACTGCTT-3' (SEQ ID NO:36) and 5'-CTCGGATCCGACTCTCCTCATCATCAA-3' (SEQ ID NO:37) were used to amplify the promoter region of the ahpC gene from different strains.
- the amplified product was digested with BamHI and ligated into the BamHI cloning site ofpYUB76. This is a mycobacterial shuttle vector with a promoterless reporter gene, lacZ. immediately downstream of the cloning site.
- the vector constructs were electroporated into E. coli and selected on media containing 25 Tg/ml kanamycin and 40 Tg/ml X-Gal.
- Colonies containing the wild-type promoter were colorless, while the colonies containing a mutated promoter were pale blue. All three constructs were sequenced to verify that no errors had been introduced by the amplification procedure. The constructs
- Results are shown in Table 4. The values shown are the mean ⁇ standard deviation for three independent experiments.
- the ahpC promoter with a single mutation (ATCC 35729) showed a six-fold higher level of activity than the wild type.
- the ahp£ • promoter with two mutations (ATCC 35822) showed a 10-fold higher level of activity.
Abstract
Les modes de réalisation de l'invention sont basés sur l'identification et la caractérisation d'un opéron déterminant la résistance mycobactérienne à l'antibiotique isoniaside (INH) et ses analogues. Cet opéron, appelé ahpCF, code des polypeptides, AhpC et AhpF, lesquels sont susceptibles de se combiner pour former une réductase d'hydropéroxyde d'alkyle active pouvant être soit une cible directe pour l'INH soit agir pour conférer une résistance à l'INH. L'invention concerne également la séquence de l'opéron ahpCF mutant illustrant que la résistance à l'INH peut être conférée par une mutation dans la région promotrice. L'invention concerne également des polynucléotides ainsi que des polypeptides utiles dans le diagnostic et le traitement.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95941938A EP0805863A2 (fr) | 1994-12-20 | 1995-12-20 | PROCEDES ET COMPOSITIONS DE DETECTION ET DE TRAITEMENT D'INFECTIONS MYCOBACTERIENNES A L'AIDE D'UN OPERON ahpCF |
AU43185/96A AU708456B2 (en) | 1994-12-20 | 1995-12-20 | Methods and compositions for detecting and treating mycobacterial infections using an ahpCF operon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ27022294 | 1994-12-20 | ||
NZ270222 | 1994-12-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO1996019578A2 WO1996019578A2 (fr) | 1996-06-27 |
WO1996019578A3 WO1996019578A3 (fr) | 1996-08-29 |
WO1996019578A9 true WO1996019578A9 (fr) | 1996-10-03 |
Family
ID=19925097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NZ1995/000133 WO1996019578A2 (fr) | 1994-12-20 | 1995-12-20 | PROCEDES ET COMPOSITIONS DE DETECTION ET DE TRAITEMENT D'INFECTIONS MYCOBACTERIENNES A L'AIDE D'UN OPERON ahpCF |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0805863A2 (fr) |
AU (1) | AU708456B2 (fr) |
CA (1) | CA2210378A1 (fr) |
WO (1) | WO1996019578A2 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2275177A1 (fr) * | 1996-12-12 | 1998-06-18 | Leopold Flohe | Tryparedoxine peroxydase |
NO994317L (no) * | 1999-09-06 | 2001-03-07 | Veso As V Tore B Tjaberg | Diagnosemetode |
US7288261B2 (en) * | 2000-07-10 | 2007-10-30 | Colorado State University Research Foundation | Mid-life vaccine and methods for boosting anti-mycobacterial immunity |
WO2002061063A1 (fr) * | 2001-01-30 | 2002-08-08 | Universite Catholique De Louvain | Structure cristalline de peroxyredoxine 5 et son utilisation pour concevoir des homologues structuraux |
EP1484413A1 (fr) * | 2003-06-03 | 2004-12-08 | Leopold Prof. Dr. Flohé | Essai pour l'identification des inhibiteurs du système antioxydant de Mycobacterium |
US7892566B2 (en) * | 2005-08-09 | 2011-02-22 | Hav Vaccines Limited | Immunogenic constructs |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09501823A (ja) * | 1993-05-13 | 1997-02-25 | アール.,ジュニア ヤコブス,ウィリアム | inhA遺伝子を用いるミコバクテリア感染の検出および処置のための方法および組成物 |
-
1995
- 1995-12-20 AU AU43185/96A patent/AU708456B2/en not_active Ceased
- 1995-12-20 CA CA002210378A patent/CA2210378A1/fr not_active Abandoned
- 1995-12-20 WO PCT/NZ1995/000133 patent/WO1996019578A2/fr not_active Application Discontinuation
- 1995-12-20 EP EP95941938A patent/EP0805863A2/fr not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Clewell et al. | Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn918) | |
US7541181B2 (en) | Vector carrying a polynucleotide which encodes a GSD polypeptide from Mycobacterium paratuberculosis | |
US5700683A (en) | Virulence-attenuating genetic deletions deleted from mycobacterium BCG | |
US5783386A (en) | Mycobacteria virulence factors and a novel method for their identification | |
EP3447149B1 (fr) | Séquences hcbi comme marqueur précoce pour le développement futur du cancer et de maladies du snc et comme cible pour le traitement et la prévention du cancer | |
WO1996025519A9 (fr) | Deletions de sequences genomiques mycobacteriennes en correlation avec une attenuation de la virulence | |
AU708456B2 (en) | Methods and compositions for detecting and treating mycobacterial infections using an ahpCF operon | |
AU690121B2 (en) | Methods and compositions for detecting and treating mycobacterial infections using an inhA gene | |
WO1996019578A9 (fr) | PROCEDES ET COMPOSITIONS DE DETECTION ET DE TRAITEMENT D'INFECTIONS MYCOBACTERIENNES A L'AIDE D'UN OPERON ahpCF | |
US5686590A (en) | Methods and compositions for detecting and treating mycobacterial infections using an INHA gene | |
EP0736098A1 (fr) | Facteurs de virulence de mycobacteries et procede pour leur identification | |
US7659055B2 (en) | Fragments of nucleic acids specific to mycobacteria which are members of the M. tuberculosis complex and their applications for the detection and the differential diagnosis of members of the M. tuberculosis complex | |
EP1348036A2 (fr) | Protection contre les infections mycobacteriennes | |
JPH09501308A (ja) | 接触仲介性溶血素のレギュレーター | |
US5846718A (en) | Identification of pyrazinamide-resistant mycobacteria and methods for treating mycobacterial infections | |
US20050267025A1 (en) | Compositions and methods for treatment of infectious and inflammatory diseases | |
MINH et al. | Characterization of Vibrio cholerae O1 isolated in Vietnam | |
WO2001051517A9 (fr) | Proteines de type hemolysine candida | |
JPH0915244A (ja) | 抗クラミジア・ニューモニエ抗体の測定法及びその試薬、並びにクラミジア・ニューモニエ感染の診断薬 |