WO1996014268A1 - Production de poudres de borure metallique - Google Patents
Production de poudres de borure metallique Download PDFInfo
- Publication number
- WO1996014268A1 WO1996014268A1 PCT/AU1995/000740 AU9500740W WO9614268A1 WO 1996014268 A1 WO1996014268 A1 WO 1996014268A1 AU 9500740 W AU9500740 W AU 9500740W WO 9614268 A1 WO9614268 A1 WO 9614268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron
- boride
- oxide
- metal
- powder
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 19
- 239000002184 metal Substances 0.000 title claims abstract description 19
- 239000000843 powder Substances 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052796 boron Inorganic materials 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 35
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000010936 titanium Substances 0.000 claims abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 claims abstract description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000002386 leaching Methods 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 39
- 229910044991 metal oxide Inorganic materials 0.000 claims description 17
- 150000004706 metal oxides Chemical class 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 238000006722 reduction reaction Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 4
- 238000000498 ball milling Methods 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000000713 high-energy ball milling Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 239000000047 product Substances 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 13
- 229910007948 ZrB2 Inorganic materials 0.000 abstract description 6
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 abstract description 6
- 150000002739 metals Chemical class 0.000 abstract description 5
- 238000010316 high energy milling Methods 0.000 abstract description 4
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract description 3
- 239000004411 aluminium Substances 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 238000005520 cutting process Methods 0.000 abstract description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical group [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910033181 TiB2 Inorganic materials 0.000 abstract 2
- 239000006227 byproduct Substances 0.000 abstract 2
- 239000003638 chemical reducing agent Substances 0.000 abstract 2
- 239000012467 final product Substances 0.000 abstract 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000004455 differential thermal analysis Methods 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- SQWOCMZNVYUDSE-UHFFFAOYSA-N [Zr+4].[Zr+4].[Zr+4].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] SQWOCMZNVYUDSE-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- YWCYJWYNSHTONE-UHFFFAOYSA-O oxido(oxonio)boron Chemical compound [OH2+][B][O-] YWCYJWYNSHTONE-UHFFFAOYSA-O 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58071—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
Definitions
- This invention concerns the production of metal borides, especially (but not exclusively) borides of metals which are in Group IVB of the Periodic Table.
- the method of this invention involves the high energy milling of metallic oxides with boron in its amorphous or crystalline form, to produce, after annealing at a relatively low temperature, a reactive powder mixture from which boron oxide, B 2 0 2 , can be removed to leave the metal boride or a mixture of metal borides.
- metal borides exhibit the properties of extreme hardness, high melting point, high electrical conductivity, good thermal shock resistance, chemical inertness and durability.
- Borides of titanium and zirconium are refractory materials used as ballistic armour, as coatings for cutting tools, and, in the foundry and refractory industries, as crucibles and dies for handling molten metals. They are also used in the electrolytic production of aluminium, where their superior performance particularly their corrosion resistance - in comparison with the carbon cathodes normally used for this purpose is especially advantageous.
- zirconium boride is used in hypersonic re-entry vehicles, for leading edges, nose caps, and rocket nozzle inserts.
- TiB 2 and ZrB 2 are also used as components of high temperature composite materials such as TiB 2 /TiC, ZrB 2 /ZrC and Al 2 0 3 /TiB 2 .
- titanium boride and zirconium boride usually involves the borothermic and carbothermic reduction of titania and zireonia, respectively.
- the main disadvantages of such techniques are
- the reaction requires the establishment of a high temperature, which is about 2,000°C when titanium boride is being produced, and is in the range of from 1,400°C to 1,700°C in the case of the production of zirconium boride; and (ii) the boride product is a polycrystalline material having an average grain size measured in microns ( ⁇ ) , whereas sub-micron particles are more useful when forming a dense refractory product.
- This objective is achieved by high energy ball milling, preferably under vacuum conditions, of a dry powder mixture of a metal oxide (or a mixture of metal oxides) and boron. Heating the fine (nanostructural) powder so produced to a temperature in the range of from about 750°C to 1,100°C enables a thermochemical reaction (the borothermic reduction of the metal oxide or oxides) to take place, with the average particle size of the boride(s) produced by this reaction remaining in the sub-micron range.
- the oxide of boron that is also produced by this reaction usually the dioxide, B 2 0 2 , in the amorphous state, can be removed from the product powder, preferably by the known technique of leaching with hot water - unless the (or a) required product boride is also soluble in hot water.
- a method of producing a metal boride which comprises the sequential steps of (a) forming a powder mixture of the metal oxide and boron;
- the metal oxide is preferably an oxide of a Group IVB metal, titania and zireonia being examples of Group IVB metal oxides.
- step (a) more than one metal oxide may be mixed with boron in step (a) , in which case the product of this method will be a mixture of metal borides, which can be formed into a composite boride material.
- a mixture of borides is also produced if the metal oxide of step (a) is a mixed oxide (such as ilmenite, FeTi0 3 ).
- the boron used to form the mixture of step (a) may be amorphous boron or crystalline boron. If crystalline boron is used, a longer milling of the powder mixture will be required to produce the fine powder product of step (b), which is preferably a fine powder in which all the grains have a diameter of less than 1 micrometre (although, in practice, a number of crystallite grains may agglomerate to form a polycrystalline "particle" which has a diameter in excess of 1 micron).
- the boride produced by the method of the present invention may be mixed with a fugitive binder and/or a sintering aid, then moulded under pressure and sintered (using either hot pressing or pressureless sintering) to produce a dense body.
- the boride product may be mixed with another boride, a carbide, an oxide or other suitable material to produce a composite material having desirable properties.
- the high energy milling step is performed under a primary vacuum of about 10 "2 torr, in a planar ball mill of the type described in the specification of Australian patent No 639,945. That ball mill is also described in the specification of International patent application No PCT/AU90/00471 (WIPO Publication No 91/04810).
- suitable ball milling devices may be used to perform the present invention.
- Figure 1 is a series of X-ray diffraction patterns, in graph form, with the intensity of the x-radiation of each pattern being shown in arbitrary units.
- Figure 2 shows, also in graph form, differential thermal analysis data obtained from samples of titanium dioxide milled with amorphous boron.
- Figure 3 comprises two further x-ray diffraction patterns, obtained from a sample of zireonia milled with amorphous boron.
- Figure 4 presents differential thermal analysis data for the product of a sample of zireonia milled with amorphous boron.
- Figure 5 comprises further x-ray diffraction patterns, obtained from a sample of ilmenite that has been milled with amorphous boron.
- Figure 6 shows the differential thermal analysis data obtained from a sample of ilmenite which has been milled with amorphous boron. Best modes of performing the invention Example 1
- the evolution of the structure of the powder as the milling time increased was monitored by observing the x-ray diffraction patterns of the milled powder, obtained using cobalt K ⁇ radiation.
- the thermal properties of the milled powder were studied using a Shimadzu differential thermal analyser model No DTA-50.
- the size of the particles in the milled powder was also monitored, using a scanning electron microscope.
- Trace (a) of Figure 1 is the x-ray diffraction pattern of the sample milled in vacuo for 25 hours. This trace shows that the Ti0 2 component of the milled powder had retained the anatase structure. The broadening of the x-ray diffraction peaks and the low intensity observed are due to the very small grain size of the milled powder; they are characteristic features of milled powders.
- trace (b) of Figure 1) After milling for 140 hours (trace (b) of Figure 1), there has been a phase transformation of the titanium dioxide, from the anatase structure (which is stable below 700 ⁇ C) to the rutile structure. This mechanically induced phase transition is consistent with other reported observations of milled titanium dioxide.
- FIG. 2 shows the conventional differential thermal analysis (DTA) traces which were obtained for the samples of the powder mixture which had been milled for 25 hours (trace (a)) and 140 hours (trace (b)).
- DTA trace for the powder mixture milled for 25 hours includes three exothermic peaks, at 762.62°C, at 857.21 ⁇ C and at 897.56 ⁇ C.
- the higher temperature peaks overlap and form a broad second exothermic peak in the temperature range 785°C to 1,000°C.
- the DTA trace for the powder mixture milled for 140 hours contains a similar first exothermic peak, but with a small shift to a lower temperature (760.07 ⁇ C), and a second broad peak having a more complicated structure. Several overlapping peaks are clearly visible in a temperature range which begins at a lower temperature than that of the beginning of the broad peak of the powder sample milled for 25 hours.
- thermochemical reaction corresponding to the first DTA trace peak the powder sample milled for 25 hours was heated (in the Differential Thermal Analyser) in an atmosphere of argon to 785°C, maintained at that temperature for about two minutes, then cooled rapidly.
- the x-ray diffraction pattern of the resultant material is shown as trace (c) of Figure 1.
- This XRD trace clearly shows that there has been a reaction of the titanium dioxide with the amorphous boron, leading to the production of a mixture of Ti 2 0 3 and TiB0 3 .
- Removal of the B 2 0 2 product could have been achieved by heating to a temperature of about 1,500°C, to vaporise the B 2 0 2 .
- the B 2 0 2 went into solution and the fine particle size of TiB 2 product was not destroyed.
- a powder mixture of zirconium dioxide (the material marketed by Hopkin and Williams Ltd, having a baddeleyite structure) and amorphous boron was prepared such that the atomic ratio of zirconium to boron was 1:4.
- This powder mixture was dry milled in the ball mill used for Example 1, for 20 hours, under the same vacuum conditions.
- the x-ray diffraction pattern obtained from the milled powder is shown as trace (a) of Figure 3. It will be noted that the peaks in this XRD pattern correspond to the zireonia structure, with broadening due to a decrease in the crystallite size of the milled powder.
- the differential thermal analysis trace obtained for this milled powder is presented in Figure 4.
- the DTA trace of Figure 4 is clearly different from the DTA traces obtained from the milled Ti0 2 /boron powder mixtures.
- the trace of Figure 4 has a weak exothermic peak at approximately 750°C and a more pronounced exothermic peak at 1,012°C.
- the closest standard diffraction pattern to the XRD pattern obtained of the higher symmetry structure material was the pattern of Zr0 2 JCPDS file No 27-997.
- the zireonia/boron mixture milled for 20 hours, was heated to 1,100° (which is a temperature above the second exothermic peak of the DTA trace) , held at that temperature for several minutes, then cooled.
- the x-ray diffraction pattern of the resultant powder is shown as trace (b) of Figure 3. Most of the peaks of this trace correspond to zirconium boride, ZrB 2 . Some small peaks corresponding to zireonia are also present, together with two small peaks which the present inventors have not yet matched with a chemical compound. It is clear from the XRD pattern, however, that ZrB 2 is the major product of the thermochemical reaction that has occurred during the short annealing at 1,100°C.
- Boron dioxide which was also present in the material annealed at 1,100°C, was removed by washing with hot water.
- Ilmenite supplied as a mineral sand by Westralian Sands Limited, was mixed with amorphous boron and samples of this powder mixture were dry milled in the ball mill used for Examples 1 and 2, under the same vacuum conditions.
- the ilmenite had the following composition:
- the powder product obtained by annealing the milled ilmenite/boron mixture at 1,100°C contained the amorphous B 2 0 2 phase.
- Hot water leaching of the product powder removed the B 2 0 2 and also a significant amount of the FeB.
- an alternative technique for removing the B 2 0 2 would be required if the desired end-product of the borothermic reduction is a mixture of iron boride and titanium boride.
- the present invention provides a convenient and economic method for producing borides, which has the following advantageous features:
- a high purity boride product is obtained; (c) only a relatively short period of high energy dry milling is required; (d) the annealing of the milled powder product requires a relatively low energy input as the annealing time is short and the annealing temperature is relatively low; and (e) the powder product comprises fine (sub-micron) grains, which are particularly useful for the production of refractory and other dense bodies, and composites with other materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Des borures de titane et de zirconium ont traditionnellement été produits par réduction borothermique et carbothermique. Ce procédé requiert des températures extrêmement élevées, de l'ordre d'environ 2000 °C pour le carbure de titane et de 1400 °C à 1700 °C pour le borure de zirconium, ce qui résulte en un matériau polycristallin d'une granulométrie de l'ordre du micron, moins utile que les particules de dimensions sous-microniques dans la formation de produits réfractaires denses. On a résolu ce problème en effectuant le broyage à sec et à énergie élevée du matériau de départ (ilménite, zircone) et du bore agissant comme agent réducteur, sous vide ou en atmosphère inerte, pour former des particules de dimensions sous-microniques, et en réalisant ensuite une réduction borothermique à une température comprise entre 750 °C et 1100 °C en atmosphère inerte pour produire le borure (TiB2ZrB2) et un sous-produit de B2O2 amorphe. Le bore est un réducteur modéré qui réagit aisément avec les parties oxyde de fer du minerai, mais pas avec TiO2/ZrO2, qu'il convertit en métaborate, puis en TiB2/ZrB2. Le bore contenu dans le matériau de départ peut être à l'état cristallin ou amorphe. Le borure obtenu est de l'ordre du sous-micron (∫1ν), moins coûteux que ses prédécesseurs et aisément compacté et fritté sous forme d'un corps dense. Le produit final s'applique notamment aux blindages anti-projectiles, aux revêtements pour outils de coupe, aux creusets et aux matrices pour métaux fondus, aux cathodes pour la production électrolytique de l'aluminium, aux bords d'attaque et aux coiffes destinés à des véhicules effectuant une rentrée dans l'atmosphère à des vitesses hypersoniques, à des cols rapportés de tuyères de fusées, et à des composites haute température. Le sous-produit B2O2 peut être séparé du borure par lessivage à l'eau chaude.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU37681/95A AU3768195A (en) | 1994-11-08 | 1995-11-08 | Production of metal boride powders |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPM9330A AUPM933094A0 (en) | 1994-11-08 | 1994-11-08 | Production of borides |
AUPM9330 | 1994-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996014268A1 true WO1996014268A1 (fr) | 1996-05-17 |
Family
ID=3783845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1995/000740 WO1996014268A1 (fr) | 1994-11-08 | 1995-11-08 | Production de poudres de borure metallique |
Country Status (2)
Country | Link |
---|---|
AU (1) | AUPM933094A0 (fr) |
WO (1) | WO1996014268A1 (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999059754A1 (fr) * | 1998-05-15 | 1999-11-25 | Advanced Nano Technologies Pty Ltd | Procede de produciton de poudres ultrafines |
US6203768B1 (en) | 1995-08-28 | 2001-03-20 | Advanced Nano Technologies Pty Ltd | Process for the production of ultrafine particles |
SG106032A1 (en) * | 1998-10-02 | 2004-09-30 | Univ Singapore | Method for the production of ultrafine particles and nanocomposites |
US7170138B2 (en) | 1993-10-01 | 2007-01-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR100839827B1 (ko) | 2007-03-23 | 2008-06-19 | 한국과학기술연구원 | 전이금속 붕화물 분말의 제조 방법 |
CN102417188A (zh) * | 2011-08-30 | 2012-04-18 | 中国科学院上海硅酸盐研究所 | 一种低氧含量亚微米级过渡金属硼化物粉体的制备方法 |
WO2014153637A1 (fr) * | 2013-03-28 | 2014-10-02 | Hydro-Quebec | Procédé de production d'un matériau de gradient de champ aux propriétés sur-mesure |
CN106517225A (zh) * | 2016-11-15 | 2017-03-22 | 广东工业大学 | 一种超细M1‑xTixB2粉体的制备方法 |
WO2017223481A1 (fr) * | 2016-06-23 | 2017-12-28 | Alcoa Usa Corp. | Systèmes et procédés de fabrication de poudres céramiques et de produits céramiques |
CN110078489A (zh) * | 2019-05-13 | 2019-08-02 | 海宁联丰磁业股份有限公司 | 一种低损耗软磁铁氧体材料及其制备方法 |
CN110818432A (zh) * | 2019-11-19 | 2020-02-21 | 华南理工大学 | 一种超细高熵硼化物纳米粉体及其制备方法 |
WO2020077771A1 (fr) * | 2018-10-15 | 2020-04-23 | 广东工业大学 | Poudre de métal fondue solide ultrafine à entropie élevée, son procédé de préparation et son application |
CN112919913A (zh) * | 2021-03-16 | 2021-06-08 | 矿冶科技集团有限公司 | 高纯超细硼化铪粉体的制备方法、硼化铪粉体 |
CN113104857A (zh) * | 2021-04-14 | 2021-07-13 | 吉林大学 | 一种过渡金属硼化物的低温制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110642261B (zh) * | 2019-10-18 | 2022-08-05 | 福州大学 | 一种自组装无模板制备磷酸硼负载氧化硼复合物的三明治型空心球的方法 |
CN113816392A (zh) * | 2021-10-14 | 2021-12-21 | 北京华威锐科化工有限公司 | 一种硼化铪粉体的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225000A (en) * | 1975-08-21 | 1977-02-24 | Komatsu Ltd | Method for production of feb powder |
JPS60235717A (ja) * | 1984-05-07 | 1985-11-22 | Shibason:Kk | 超微細2ほう化チタン粉末の製造方法 |
JPS6395113A (ja) * | 1986-10-13 | 1988-04-26 | Kawasaki Steel Corp | 金属硼化物を主成分とする微粉末の製造方法 |
JPS6461312A (en) * | 1987-08-31 | 1989-03-08 | Toyota Central Res & Dev | Production of titanium diboride |
EP0351198A2 (fr) * | 1988-07-12 | 1990-01-17 | The Dow Chemical Company | Synthèse de poudres de borures de métaux réfractaires d'une taille de particules déterminée |
JPH03193623A (ja) * | 1989-12-25 | 1991-08-23 | Toyo Kohan Co Ltd | Mo↓2FeB↓2系複硼化物粉末の製造方法 |
JPH04243913A (ja) * | 1991-01-25 | 1992-09-01 | Sumitomo Metal Mining Co Ltd | ホウ化物微粉末の製造方法 |
SU1766632A1 (ru) * | 1990-12-28 | 1992-10-07 | Московский институт тонкой химической технологии | Способ получени порошка диборида титана |
-
1994
- 1994-11-08 AU AUPM9330A patent/AUPM933094A0/en not_active Abandoned
-
1995
- 1995-11-08 WO PCT/AU1995/000740 patent/WO1996014268A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225000A (en) * | 1975-08-21 | 1977-02-24 | Komatsu Ltd | Method for production of feb powder |
JPS60235717A (ja) * | 1984-05-07 | 1985-11-22 | Shibason:Kk | 超微細2ほう化チタン粉末の製造方法 |
JPS6395113A (ja) * | 1986-10-13 | 1988-04-26 | Kawasaki Steel Corp | 金属硼化物を主成分とする微粉末の製造方法 |
JPS6461312A (en) * | 1987-08-31 | 1989-03-08 | Toyota Central Res & Dev | Production of titanium diboride |
EP0351198A2 (fr) * | 1988-07-12 | 1990-01-17 | The Dow Chemical Company | Synthèse de poudres de borures de métaux réfractaires d'une taille de particules déterminée |
JPH03193623A (ja) * | 1989-12-25 | 1991-08-23 | Toyo Kohan Co Ltd | Mo↓2FeB↓2系複硼化物粉末の製造方法 |
SU1766632A1 (ru) * | 1990-12-28 | 1992-10-07 | Московский институт тонкой химической технологии | Способ получени порошка диборида титана |
JPH04243913A (ja) * | 1991-01-25 | 1992-09-01 | Sumitomo Metal Mining Co Ltd | ホウ化物微粉末の製造方法 |
Non-Patent Citations (7)
Title |
---|
DERWENT ABSTRACT, Accession No. 93-319129/40, Class P53; & SU,A,1 766 632, (MOSCOW FINE CHEMICALS TECHNOLOGICAL INSTITUTE), 7 October 1992. * |
PATENT ABSTRACTS OF JAPAN, C-1016, page 49; & JP,A,04 243 913 (SUMITOMO METAL MINING COMPANY LIMITED), 1 September 1992. * |
PATENT ABSTRACTS OF JAPAN, C-341, page 15; & JP,A,60 235 717, (SHIBASON KABUSHIKI KAISHA), 22 November 1985. * |
PATENT ABSTRACTS OF JAPAN, C-526, page 106; & JP,A,63 095 113, (KAWASAKI STEEL CORPORATION), 26 April 1988. * |
PATENT ABSTRACTS OF JAPAN, C-607, page 5; & JP,A,01 061 312, (TOYOTA CENTRAL RESEARCH AND DEVELOPMENT), 8 March 1989. * |
PATENT ABSTRACTS OF JAPAN, C-885, page 164; & JP,A,03 193 623, (TOYO KOHAN COMPANY LIMITED), 23 August 1991. * |
PATENT ABSTRACTS OF JAPAN, Volume 1, No. 64, page 859; & JP,A,52 025 000, (KOMATSU SEISAKUSHO KABUSHIKI KAISHA), 24 February 1977. * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7170138B2 (en) | 1993-10-01 | 2007-01-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6203768B1 (en) | 1995-08-28 | 2001-03-20 | Advanced Nano Technologies Pty Ltd | Process for the production of ultrafine particles |
WO1999059754A1 (fr) * | 1998-05-15 | 1999-11-25 | Advanced Nano Technologies Pty Ltd | Procede de produciton de poudres ultrafines |
SG106032A1 (en) * | 1998-10-02 | 2004-09-30 | Univ Singapore | Method for the production of ultrafine particles and nanocomposites |
KR100839827B1 (ko) | 2007-03-23 | 2008-06-19 | 한국과학기술연구원 | 전이금속 붕화물 분말의 제조 방법 |
CN102417188A (zh) * | 2011-08-30 | 2012-04-18 | 中国科学院上海硅酸盐研究所 | 一种低氧含量亚微米级过渡金属硼化物粉体的制备方法 |
CN102417188B (zh) * | 2011-08-30 | 2013-10-16 | 中国科学院上海硅酸盐研究所 | 一种低氧含量亚微米级过渡金属硼化物粉体的制备方法 |
EP2978712A4 (fr) * | 2013-03-28 | 2016-11-16 | Hydro Québec | Procédé de production d'un matériau de gradient de champ aux propriétés sur-mesure |
WO2014153637A1 (fr) * | 2013-03-28 | 2014-10-02 | Hydro-Quebec | Procédé de production d'un matériau de gradient de champ aux propriétés sur-mesure |
WO2017223481A1 (fr) * | 2016-06-23 | 2017-12-28 | Alcoa Usa Corp. | Systèmes et procédés de fabrication de poudres céramiques et de produits céramiques |
CN106517225A (zh) * | 2016-11-15 | 2017-03-22 | 广东工业大学 | 一种超细M1‑xTixB2粉体的制备方法 |
CN106517225B (zh) * | 2016-11-15 | 2021-02-12 | 广东工业大学 | 一种超细M1-xTixB2粉体的制备方法 |
WO2020077771A1 (fr) * | 2018-10-15 | 2020-04-23 | 广东工业大学 | Poudre de métal fondue solide ultrafine à entropie élevée, son procédé de préparation et son application |
CN110078489A (zh) * | 2019-05-13 | 2019-08-02 | 海宁联丰磁业股份有限公司 | 一种低损耗软磁铁氧体材料及其制备方法 |
CN110818432A (zh) * | 2019-11-19 | 2020-02-21 | 华南理工大学 | 一种超细高熵硼化物纳米粉体及其制备方法 |
CN110818432B (zh) * | 2019-11-19 | 2024-05-17 | 华南理工大学 | 一种超细高熵硼化物纳米粉体及其制备方法 |
CN112919913A (zh) * | 2021-03-16 | 2021-06-08 | 矿冶科技集团有限公司 | 高纯超细硼化铪粉体的制备方法、硼化铪粉体 |
CN113104857A (zh) * | 2021-04-14 | 2021-07-13 | 吉林大学 | 一种过渡金属硼化物的低温制备方法 |
Also Published As
Publication number | Publication date |
---|---|
AUPM933094A0 (en) | 1994-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996014268A1 (fr) | Production de poudres de borure metallique | |
US6793875B1 (en) | Nanostructured carbide cermet powders by high energy ball milling | |
Koc | Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture | |
US4921531A (en) | Process for forming fine ceramic powders | |
Walton Jr et al. | Cermets from thermite reactions | |
Rabiezadeh et al. | Synthesis and sintering of TiB2 nanoparticles | |
Ricceri et al. | A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis | |
JPS59169983A (ja) | 耐火性金属硼化物物品およびその製造方法 | |
Welham | Formation of nanometric TiB2 from TiO2 | |
CZ260493A3 (en) | Process for producing sintered spherical particles of aluminium oxide | |
Reddy | Processing of nanoscale materials | |
Cutler et al. | Synthesis and Densification of Oxide‐Carbide Composites | |
Welham et al. | Mechanochemical formation of metal–ceramic composites | |
CA1329695C (fr) | Poudre sous-micronique tres reactive de diborure de titane et produits fabriques a partir de celle-ci | |
Welham | Formation of TiB2 from rutile by room temperature ball milling | |
EP0402677B1 (fr) | Procédé pour la production de nitrure de bore cubique à partir de nitrure de bore hexagonal revêtu | |
Welham et al. | Formation of nanometric hard materials by cold milling | |
Swift et al. | Tungsten powder from carbon coated WO3 precursors | |
Naidoo et al. | Preparation of (Ti, Ta)–(C, N) by mechanical alloying | |
Ağaoğulları et al. | Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride | |
Krishnarao et al. | Thermite assisted synthesis of ZrB 2 and ZrB 2–SiC through B 4 C reduction of ZrO 2 and ZrSiO 4 in air | |
EP2128087A1 (fr) | Procédé de production de carbures de métaux de transition et/ou de carbures doubles | |
Ahmadian et al. | The effect of ball-milling parameters on the structures of Ti3AlC2 MAX phase and resultant Ti3C2Tx MXene | |
Omran et al. | Effect of extra carbon addition on the self-propagation high-temperature synthesis characteristics of WO3-H3BO3-Mg-C system | |
WO1989005280A1 (fr) | Procede de production de fines poudres ceramiques et ses produits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |