WO1996006868A1 - Copolymere de dienes insature conjugue a du nitrile, son procede de production et composition de caoutchouc vulcanisable - Google Patents
Copolymere de dienes insature conjugue a du nitrile, son procede de production et composition de caoutchouc vulcanisable Download PDFInfo
- Publication number
- WO1996006868A1 WO1996006868A1 PCT/JP1995/001132 JP9501132W WO9606868A1 WO 1996006868 A1 WO1996006868 A1 WO 1996006868A1 JP 9501132 W JP9501132 W JP 9501132W WO 9606868 A1 WO9606868 A1 WO 9606868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copolymer
- unsaturated nitrile
- weight
- amount
- polymerization
- Prior art date
Links
- 229920001577 copolymer Polymers 0.000 title claims abstract description 182
- 239000000203 mixture Substances 0.000 title claims abstract description 95
- 150000002825 nitriles Chemical class 0.000 title claims abstract description 86
- 229920001971 elastomer Polymers 0.000 title claims description 66
- 239000005060 rubber Substances 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 28
- -1 alkylthiol compound Chemical class 0.000 claims abstract description 45
- 239000000178 monomer Substances 0.000 claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 34
- 229910052717 sulfur Chemical group 0.000 claims abstract description 30
- 239000003607 modifier Substances 0.000 claims abstract description 23
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 18
- 238000009826 distribution Methods 0.000 claims abstract description 12
- 125000004434 sulfur atom Chemical group 0.000 claims abstract description 8
- 239000003999 initiator Substances 0.000 claims abstract description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 58
- 238000004073 vulcanization Methods 0.000 claims description 52
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 49
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 30
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 23
- 239000011593 sulfur Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000004816 latex Substances 0.000 claims description 19
- 229920000126 latex Polymers 0.000 claims description 19
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 16
- 238000001746 injection moulding Methods 0.000 claims description 15
- 238000005345 coagulation Methods 0.000 claims description 14
- 230000015271 coagulation Effects 0.000 claims description 14
- 125000004414 alkyl thio group Chemical group 0.000 claims description 13
- 239000012763 reinforcing filler Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 238000007720 emulsion polymerization reaction Methods 0.000 claims description 12
- 239000002736 nonionic surfactant Substances 0.000 claims description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 9
- 239000003995 emulsifying agent Substances 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 150000002367 halogens Chemical class 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 8
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 8
- 150000001721 carbon Chemical group 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 6
- 150000001993 dienes Chemical group 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 3
- 239000001095 magnesium carbonate Substances 0.000 claims description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 3
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000391 magnesium silicate Substances 0.000 claims description 3
- 229910052919 magnesium silicate Inorganic materials 0.000 claims description 3
- 235000019792 magnesium silicate Nutrition 0.000 claims description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 3
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 1
- 238000007334 copolymerization reaction Methods 0.000 abstract description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 23
- 239000003921 oil Substances 0.000 description 23
- 238000009472 formulation Methods 0.000 description 20
- 238000011109 contamination Methods 0.000 description 19
- 238000007792 addition Methods 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000010526 radical polymerization reaction Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- 238000002657 hormone replacement therapy Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 9
- 239000000701 coagulant Substances 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 150000001412 amines Chemical group 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000012744 reinforcing agent Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- XKLJHFLUAHKGGU-UHFFFAOYSA-N nitrous amide Chemical compound ON=N XKLJHFLUAHKGGU-UHFFFAOYSA-N 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000344 soap Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- 210000003323 beak Anatomy 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000010059 sulfur vulcanization Methods 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 3
- 229960002447 thiram Drugs 0.000 description 3
- 239000004636 vulcanized rubber Substances 0.000 description 3
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- ARGCQEVBJHPOGB-UHFFFAOYSA-N 2,5-dihydrofuran Chemical compound C1OCC=C1 ARGCQEVBJHPOGB-UHFFFAOYSA-N 0.000 description 2
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 101100515517 Arabidopsis thaliana XI-I gene Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- AUZONCFQVSMFAP-UHFFFAOYSA-N disulfiram Chemical compound CCN(CC)C(=S)SSC(=S)N(CC)CC AUZONCFQVSMFAP-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000001031 gas chromatography-thermal energy analyser Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000001256 steam distillation Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- YPGLTKHJEQHKSS-ASZLNGMRSA-N (1r,4ar,4bs,7r,8as,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,7,8,8a,9,10,10a-dodecahydrophenanthrene-1-carboxylic acid Chemical compound [C@H]1([C@](CCC2)(C)C(O)=O)[C@@]2(C)[C@H]2CC[C@@H](C(C)C)C[C@@H]2CC1 YPGLTKHJEQHKSS-ASZLNGMRSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- UJPKMTDFFUTLGM-UHFFFAOYSA-N 1-aminoethanol Chemical compound CC(N)O UJPKMTDFFUTLGM-UHFFFAOYSA-N 0.000 description 1
- BSZXAFXFTLXUFV-UHFFFAOYSA-N 1-phenylethylbenzene Chemical compound C=1C=CC=CC=1C(C)C1=CC=CC=C1 BSZXAFXFTLXUFV-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-N 2,2-dimethylbutyric acid Chemical compound CCC(C)(C)C(O)=O VUAXHMVRKOTJKP-UHFFFAOYSA-N 0.000 description 1
- RWGJDHDOFUBENT-UHFFFAOYSA-N 2,3-diethyl-4-hydroxybenzenecarbodithioic acid Chemical compound CCc1c(O)ccc(C(S)=S)c1CC RWGJDHDOFUBENT-UHFFFAOYSA-N 0.000 description 1
- XSQHUYDRSDBCHN-UHFFFAOYSA-N 2,3-dimethyl-2-propan-2-ylbutanenitrile Chemical compound CC(C)C(C)(C#N)C(C)C XSQHUYDRSDBCHN-UHFFFAOYSA-N 0.000 description 1
- GSFSVEDCYBDIGW-UHFFFAOYSA-N 2-(1,3-benzothiazol-2-yl)-6-chlorophenol Chemical compound OC1=C(Cl)C=CC=C1C1=NC2=CC=CC=C2S1 GSFSVEDCYBDIGW-UHFFFAOYSA-N 0.000 description 1
- KWIPUXXIFQQMKN-UHFFFAOYSA-N 2-azaniumyl-3-(4-cyanophenyl)propanoate Chemical compound OC(=O)C(N)CC1=CC=C(C#N)C=C1 KWIPUXXIFQQMKN-UHFFFAOYSA-N 0.000 description 1
- FGPSBIZLGSMYRW-UHFFFAOYSA-N 2-butylbenzenecarbodithioic acid Chemical compound CCCCC1=CC=CC=C1C(S)=S FGPSBIZLGSMYRW-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical compound CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 1
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 1
- IRQPEEVWTDUJBJ-UHFFFAOYSA-N 4-hydroxy-2,3-dimethylbenzenecarbodithioic acid Chemical compound Cc1c(C)c(ccc1O)C(S)=S IRQPEEVWTDUJBJ-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- YTSOPNVGIRELLQ-UHFFFAOYSA-N CC(CS)CC(CC(CCC)C)C Chemical compound CC(CS)CC(CC(CCC)C)C YTSOPNVGIRELLQ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- QUUCYKKMFLJLFS-UHFFFAOYSA-N Dehydroabietan Natural products CC1(C)CCCC2(C)C3=CC=C(C(C)C)C=C3CCC21 QUUCYKKMFLJLFS-UHFFFAOYSA-N 0.000 description 1
- NFWKVWVWBFBAOV-UHFFFAOYSA-N Dehydroabietic acid Natural products OC(=O)C1(C)CCCC2(C)C3=CC=C(C(C)C)C=C3CCC21 NFWKVWVWBFBAOV-UHFFFAOYSA-N 0.000 description 1
- FVCPXLWAKNJIKK-UHFFFAOYSA-N Dimexano Chemical compound COC(=S)SSC(=S)OC FVCPXLWAKNJIKK-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KGMSWPSAVZAMKR-UHFFFAOYSA-N Me ester-3, 22-Dihydroxy-29-hopanoic acid Natural products C1CCC(C(O)=O)(C)C2C1(C)C1CCC(=C(C)C)C=C1CC2 KGMSWPSAVZAMKR-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- HXKCUQDTMDYZJD-UHFFFAOYSA-N Methyl selenac Chemical compound CN(C)C(=S)S[Se](SC(=S)N(C)C)(SC(=S)N(C)C)SC(=S)N(C)C HXKCUQDTMDYZJD-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- KGMSWPSAVZAMKR-ONCXSQPRSA-N Neoabietic acid Chemical compound [C@H]1([C@](CCC2)(C)C(O)=O)[C@@]2(C)[C@H]2CCC(=C(C)C)C=C2CC1 KGMSWPSAVZAMKR-ONCXSQPRSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- FVWBVKKTOMVBMR-UHFFFAOYSA-N OCCC=1C(=C(C=CC1)C(=S)S)CC Chemical compound OCCC=1C(=C(C=CC1)C(=S)S)CC FVWBVKKTOMVBMR-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 101150046432 Tril gene Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- ZGBSOTLWHZQNLH-UHFFFAOYSA-N [Mg].S(O)(O)(=O)=O Chemical compound [Mg].S(O)(O)(=O)=O ZGBSOTLWHZQNLH-UHFFFAOYSA-N 0.000 description 1
- XAQHXGSHRMHVMU-UHFFFAOYSA-N [S].[S] Chemical compound [S].[S] XAQHXGSHRMHVMU-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- 235000011128 aluminium sulphate Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940090948 ammonium benzoate Drugs 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- QNRMTGGDHLBXQZ-UHFFFAOYSA-N buta-1,2-diene Chemical compound CC=C=C QNRMTGGDHLBXQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- SKOLWUPSYHWYAM-UHFFFAOYSA-N carbonodithioic O,S-acid Chemical compound SC(S)=O SKOLWUPSYHWYAM-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- NFWKVWVWBFBAOV-MISYRCLQSA-N dehydroabietic acid Chemical compound OC(=O)[C@]1(C)CCC[C@]2(C)C3=CC=C(C(C)C)C=C3CC[C@H]21 NFWKVWVWBFBAOV-MISYRCLQSA-N 0.000 description 1
- 229940118781 dehydroabietic acid Drugs 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PGAXJQVAHDTGBB-UHFFFAOYSA-N dibutylcarbamothioylsulfanyl n,n-dibutylcarbamodithioate Chemical compound CCCCN(CCCC)C(=S)SSC(=S)N(CCCC)CCCC PGAXJQVAHDTGBB-UHFFFAOYSA-N 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 1
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- NXPHCVPFHOVZBC-UHFFFAOYSA-N hydroxylamine;sulfuric acid Chemical compound ON.OS(O)(=O)=O NXPHCVPFHOVZBC-UHFFFAOYSA-N 0.000 description 1
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004005 nitrosamines Chemical class 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- QUPCNWFFTANZPX-UHFFFAOYSA-M paramenthane hydroperoxide Chemical compound [O-]O.CC(C)C1CCC(C)CC1 QUPCNWFFTANZPX-UHFFFAOYSA-M 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- SFLGSKRGOWRGBR-UHFFFAOYSA-N phthalane Chemical compound C1=CC=C2COCC2=C1 SFLGSKRGOWRGBR-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- FZYCEURIEDTWNS-UHFFFAOYSA-N prop-1-en-2-ylbenzene Chemical compound CC(=C)C1=CC=CC=C1.CC(=C)C1=CC=CC=C1 FZYCEURIEDTWNS-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- KFDFYCRDUBAKHD-UHFFFAOYSA-M sodium;carbamate Chemical compound [Na+].NC([O-])=O KFDFYCRDUBAKHD-UHFFFAOYSA-M 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 1
- 229940052367 sulfur,colloidal Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- LYDRKKWPKKEMNZ-UHFFFAOYSA-N tert-butyl benzoate Chemical compound CC(C)(C)OC(=O)C1=CC=CC=C1 LYDRKKWPKKEMNZ-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940071127 thioglycolate Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/917—Manipulative processes involving a sulfur-containing treating agent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1386—Natural or synthetic rubber or rubber-like compound containing
Definitions
- the present invention relates to an unsaturated nitrile monoconjugated copolymer, a method for producing the same, and a vulcanizable rubber composition obtained by blending the copolymer with a vulcanizing agent.
- Unsaturated nitrile-one conjugated diene copolymer excellent in balance with cold resistance a method for producing the copolymer by dividingly adding a specific thiol compound as a molecular weight modifier, and sulfur-based vulcanization with the copolymer
- the present invention relates to a vulcanizable rubber composition which is compounded with a vulcanizing agent. Background technology
- NBR acrylic nitrile-butadiene rubber
- Injection molding of NBR requires not only flow characteristics but also high crosslinking efficiency by high-temperature and short-time vulcanization, that is, high-speed vulcanization.
- vulcanization of rubber tends to be vulcanized as the vulcanization temperature increases, and therefore, injection molded products are considered to have lower tensile stress and rebound resilience than compression molded products ( For example, Journal of the Rubber Society of Japan, Vol. 59, No. 4, pp. 214-215, 1996.
- Methods such as a method of reducing these residual amounts have been proposed.
- such a conventionally proposed method not only does not sufficiently achieve high-speed vulcanizability in NBR injection molding, but also impairs other properties such as cold resistance and compression set.
- NBR requires a balance between oil resistance and cold resistance depending on the purpose of use.
- Japanese Patent Publication No. 62-79334 discloses that the composition of acrylonitrile is divided into acrylonitrile during polymerization and added. A method for narrowing the distribution width ⁇ ⁇ has been proposed.
- an object of the present invention is to provide excellent high-speed vulcanization suitability, particularly in injection molding applications, having good and balanced oil resistance and cold resistance, and good mechanical properties.
- An object of the present invention is to provide an unsaturated nitrile-conjugated gen copolymer which gives a vulcanizate having strength.
- Another object of the present invention is to provide a method by which such a copolymer can be produced with high productivity.
- Another object of the present invention is to provide a vulcanizable rubber composition which is excellent in a balance between high-temperature and high-speed vulcanization properties, oil resistance and cold resistance, and gives a vulcanizate having good mechanical strength.
- the present invention provides a C12-C16 alkylthio group having at least three tertiary carbon atoms and a sulfur atom directly bonded to at least one of the tertiary carbon atoms. , Having a molar ratio of at least 0.01 to 3 mol per 100 mol of monomer units constituting the molecule, a Mooney viscosity of 15 to 150, and an amount of unsaturated nitriles of 10 to 10 mol. To 60% by weight, and the unsaturated nitrile-conjugated gen copolymer having an unsaturated nitrile composition distribution width ( ⁇ ⁇ ) of 3 to 20 is provided.
- the present invention relates to a method for copolymerizing unsaturated nitrile with a conjugated diene in the presence of a molecular weight modifier and a radical initiator, wherein at least three tertiary carbon atoms are used as a molecular weight modifier. And an alkylthiol compound having 12 to 16 carbon atoms and having a sulfur atom directly bonded to at least one tertiary carbon atom therein, and having a total monomer amount of 30 to 90% % By weight, and when the polymerization conversion reaches 20 to 70%, the remaining amount of the monomer is added to the polymerization system.
- a method for producing a tolyl conjugated gen copolymer is provided.
- the present invention relates to a vulcanizable composition
- a vulcanizable composition comprising 0.1 to 10 parts by weight of a sulfur-based vulcanizing agent per 100 parts by weight of the unsaturated nitrile conjugated gen copolymer.
- a rubber composition is provided.
- FIG. 1 is a chart of iH—NMR measurement of the unsaturated nitrile-conjugated diene copolymer V of the present invention obtained in Example 2.
- FIG. 2 is a 13 C-NMR measurement chart of the unsaturated nitrile conjugated gen copolymer V of the present invention obtained in Example 2.
- the unsaturated nitrile-conjugated diene copolymer of the present invention has a carbon number of 1 having at least three tertiary carbon atoms and a sulfur atom directly bonded to at least one tertiary carbon atom.
- the unsaturated nitrile conjugated gen copolymer of the present invention preferably contains 3 to 20% by weight, more preferably 5 to 15% by weight, of a component having a number average molecular weight of 35,000 or less. . If the content of components having a number average molecular weight of 35,000 or less is excessively high, the mechanical strength decreases. If the content is excessively low, the workability will be poor. By incorporating an appropriate amount of a component having a number average molecular weight of 35,000 or less, the workability can be improved while maintaining good mechanical strength. .
- the ratio (MwZMn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the above-mentioned unsaturated nitrile-conjugated gen copolymer is usually 2.3 to 5.5, preferably 2. 7-4. If MwZMn is excessively large, the workability is poor even if an appropriate amount of a component having a number average molecular weight of 35,000 or less is contained.
- the content of the unsaturated unsaturated nitrile unit in the copolymer is from 10 to 60% by weight, preferably from 20 to 50% by weight.
- the composition distribution width ( ⁇ AN) of the unsaturated nitrile is 3 to 20 and preferably 5 to 15.
- a vulcanized rubber having an excellent balance between oil resistance and cold resistance cannot be obtained.
- the unsaturated nitril include acrylonitrile, methacrylonitrile, ⁇ -chloro acrylonitrile, and the like.
- Specific examples of the conjugated diene include 1,3-butadiene, 2,3-dimethylbutadiene, isoprene, and 1,3-pentadiene.
- copolymerizable monomers include vinyl monomers such as styrene, ⁇ -methylstyrene, and vinyl pyridine; non-conjugated monomers such as vinyl norbornene, dicyclopentane, and 1,4-hexadiene Unsaturated carboxylic acid monomer such as (meth) acrylic acid; (meth) methyl acrylate, (meth) ethyl acrylate, (meth) propyl acrylate, (meth) butyl acrylate, (meth) Unsaturated carboxylic acid ester monomers such as hexyl acrylate, cyclohexyl (meth) acrylate, and lauryl (meth) acrylate; and polyethylene glycol (meth) acrylate and polybutene glyco
- NBR acrylonitrile-butadiene rubber
- Suitable and usually commercially available products having a low nitrile content or an extremely high nitrile content can be used, and NBR having an optimum bound acrylonitrile content is selected according to the required performance.
- At least three tertiary carbon atoms and a sulfur atom directly bonded to at least one tertiary carbon atom in the molecule of the unsaturated nitrile-conjugated gen copolymer of the present invention are particularly preferred.
- the above alkylthio group is present in an amount of at least 0.03 mol, preferably at least 0.0, per 100 mol of the monomer units constituting the molecule.
- the amount of c present in 7 mol or more, more preferably 0.09 mol or more, and the amount of the alkylthio group is usually 0.3 mol or less.
- the unsaturated nitrile conjugated gen copolymer of the present invention can be used, as a molecular weight modifier, in the presence of a radical polymerization initiator, as at least three tertiary carbon atoms and at least one tertiary carbon atom therein.
- alkylthiol compound having a carbon number of 12 to 16 having a thiol group directly bonded to an atom is used, and polymerization is started in the presence of 30 to 90% by weight of the total amount of monomers. When the amount reaches 70%, the remaining amount of the monomer is added to the polymerization system, and the product is produced by radical polymerization of unsaturated nitrile and conjugated gen.
- the type and amount of the monomer to be dividedly added are appropriately selected depending on the desired amount of the unsaturated nitrile and the composition distribution width ( ⁇ ) of the unsaturated nitrile. For example, when the amount of bound nitrile is less than 37%, the unsaturated nitrile is generally added during the polymerization, and when the amount of bound nitrile is 37% or more, the conjugated gen is generally polymerized. Add in. The number of additions is appropriately determined as needed.
- the radical polymerization initiator used is not particularly limited, but usually, an organic peroxide, a redox polymerization initiator system, an azo compound, a persulfate, or the like is used.
- the amount of the polymerization initiator to be used is usually 0.005 to 3 parts by weight per 100 parts by weight of the monomer. Further, the polymerization temperature is preferably in the range of 0 to 100 ° C. c Specific examples of the alkylthiol compound used as a molecular weight modifier when producing the unsaturated nitrile conjugated gen copolymer of the present invention include 2, 2 ', 4,6,6'-Bentamethylhebutane-1-thiol and 2,2', 4,6,6 ', 8,8'-butamethylnonane-1-thiol.
- 2,2 ', 4,6,6'-pentamethylheptane-1-thiol is particularly preferable, and the unsaturated nitrile-conjugated gen- omer copolymer produced using the thiol compound has a high vulcanization property. Is extremely good.
- the alkyl thiol compound used as a molecular weight regulator may be used alone or independently. It can be used in combination. Also, if necessary, it can be used in combination with another compound conventionally known as a molecular weight regulator in radical polymerization.
- the alkyl thiol compound should be contained at least 50% by weight or more, preferably 80% by weight or more, more preferably 95% by weight or more of the total weight of the molecular displacement regulator used.
- molecular weight regulators in radical polymerization include 2,4,4-trimethylpentane-12-thiol, dodecane-12-thiol, 2,2,6,6- Alkyl thiol compounds such as tetramethylheptane-14-methanethiol and 2,4,6-trimethylnonane-1-thiol; dimethylxanthogen disulfide, getylxanthogen disulfide, diisoprovylxanthen disulfide, etc.
- Xanthogen disulfides such as tetramethylthiuram disulfide, tetraethylthiuram disulfide and tetrabutylthiuram disulfide; halogenated hydrocarbons such as carbon tetrachloride and bromide titanium; Hydrocarbons such as diphenylethane; and acrolein and methachlore , Aryl alcohol, 2-ethylhexyl thioglycolate, terpinolene, ⁇ -terbinene, water terbinene, dipentene, ⁇ -methylstyrene dimer (2-4 diphenyl 4-methyl-11-pentene is 50% by weight or more. , 2,5-dihydrofuran, 3,6-dihydro 2-bin, phthalane, 1,2-butadiene, 1,4-hexadiene, and the like.
- the amount of the molecular weight modifier used in the radical polymerization is usually 0.05 to 3 parts by weight, preferably 0.1 to 1 part by weight, per 100 parts by weight of the monomer mixture used for the copolymerization. And the amount used in this range is advantageous in adjusting the molecular weight of the obtained copolymer.
- two or more types of copolymers having different molecular weights which are separately manufactured using the above-mentioned molecular weight modifier, may be adjusted without depending on the method of dividingly adding the molecular weight modifier in the polymerization process. it can.
- the polymerization conversion of radical polymerization can be increased to 75% or more, preferably The conversion can be as high as 80% or more, and as a result, the nitrile rubber can be produced with high productivity.
- t-dodecyl mercaptan which has been used as a general-purpose molecular weight regulator in radical polymerization of nitrile rubber, is a mixture of isomers of alkyl thiol compounds having 9 to 16 carbon atoms.
- the nitrile rubber obtained by using a mixture of the polymers as a molecular weight modifier does not provide sufficient high-speed vulcanizability during high-temperature short-time vulcanization such as injection molding.
- the method for producing an unsaturated nitrile-conjugated gen copolymer of the present invention even when the polymerization conversion is set to a high value of 80% or more, for example, It is possible to obtain nitrile rubber with excellent high-speed vulcanizability, such as a high value of the maximum torque in the vulcanization curve measured using an oscillating disk-rheometer.
- the method of radical polymerization is not particularly limited, and bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like can be appropriately selected as necessary. Among them, emulsion polymerization is preferred.
- the obtained copolymer is subjected to high-temperature short-time vulcanization such as injection molding In this case, the problem of mold contamination is further improved.
- carboxylic acid emulsifier examples include fatty acid soap and rosin acid soap.
- fatty acid soap is a long-chain aliphatic carboxylic acid having 12 to 18 carbon atoms, for example, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and the like, and a mixture of these aliphatic carboxylic acids.
- the rosin acid soap is selected from sodium salts or potassium salts of disproportionated or hydrogenated natural rosins such as gamulodin, padrozine or tall oil rosin.
- rosins are mainly composed of abietic acid, levobimalic acid, parastolic acid, dehydroabietic acid, tetrahydroabietic acid and neoabietic acid.
- the amount of the emulsifier is not particularly limited, usually, monomer 1 0 0 part by weight, per 0.0 5 to 0 parts by weight, c unsaturated nitrile one and preferably 0.5 to 3 parts by weight
- polymerization is carried out by a usual emulsion polymerization method, and when a predetermined conversion is reached, hydroxylamine, sodium carbamate or the like is added to terminate the polymerization.
- the polymerization terminator used is not particularly limited, and is conventionally used Terminators having an amine structure such as hydroxylamine, sodium dimethyldithiocarbamate, and the like can be used.
- a terminating agent which does not generate nitrosamine or which is generated only in a very small amount, which has been attracting attention in recent years, can be advantageously used.
- the production of the unsaturated nitrile-conjugated diene copolymers of the present invention surprisingly does not have an amine structure or an amine. Even with the use of a terminator that is considered to generate little nitrosamine even though it has a structure, it is possible to obtain a copolymer rubber that exhibits high-speed vulcanizability during sulfur vulcanization and has good mechanical strength. it can.
- Detergents that are considered to generate less nitrosamine even with an amine structure include getyl hydroxyamine, hydroxyamine sulfonic acid and its alkali metal salts, hydroxyamine sulfate, and the like.
- examples of the terminator having no amine structure include hydroxydimethylbenzenedithiocarboxylic acid, hydroxyethylethylbenzenedithiocarboxylic acid, and hydroxydiethylbenzenedithiocarboxylic acid.
- Aromatic hydroxydithiocarboxylic acids such as butylbenzenedithiocarboxylic acid and the like, alkali metal salts thereof, hydroquinone derivatives, catechol derivatives and the like can be mentioned. These radical polymerization terminators can be used alone or in combination of two or more.
- the amount of the terminator used is not particularly limited, but is usually 0.1 to 10 parts by weight based on 100 parts by weight of the total monomers.
- the remaining monomers are removed by heating, steam distillation, etc., and then subjected to ordinary emulsion polymerization, such as an inorganic coagulant such as calcium chloride or aluminum sulfate, a polymer coagulant or a thermosensitive coagulant. Add the coagulant used to coagulate and recover the copolymer. The recovered copolymer is washed with water and dried to obtain the desired copolymer.
- an inorganic coagulant such as calcium chloride or aluminum sulfate
- a polymer coagulant or a thermosensitive coagulant such as sodium chloride or aluminum sulfate
- Add the coagulant used to coagulate and recover the copolymer Add the coagulant used to coagulate and recover the copolymer.
- the recovered copolymer is washed with water and dried to obtain the desired copolymer.
- a nonionic surfactant is added to the copolymer latex prepared as described above, and then the copolymer latex is placed in a substantially halogen-free coagulation bath in which a metal salt is dissolved, and heated. By coagulating the mixture, an unsaturated nitrile conjugated gen copolymer substantially containing no halogen can be produced.
- substantially contains no halogen means that the copolymer contains no halogen or halogen of 3 ppm or less.
- the latex coagulation method As described above, crumbs having an appropriate size and porosity and having good drying properties can be easily produced. The amount used can be reduced. Thus, the obtained unsaturated nitrile-conjugated gen copolymer contains substantially no halogen, and the vulcanized molded product is used in contact with a metal such as a sealing material. Occasionally there is no problem of metal corrosion, and good mechanical strength is maintained.
- the nonionic surfactant to be added to the latex include alkylene oxide adducts of alkyl phenol formalin condensate (for example, oxyethylene-oxypropylene coadduct), polyoxyethylene alkyl ether, and polyoxyethylene.
- alkylaryl ethers examples thereof include alkylaryl ethers, polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene oxybrovirene block polymer, alkylsulfinyl alcohol, and fatty acid monoglycerides.
- nonionic surfactants may be used alone or in combination of two or more, and are appropriately selected depending on coagulation conditions.
- an oxyethylene-l-oxypropylene coadduct of an alkyl phenol formalin condensate is preferred.
- This coadduct exhibits a good thermogelling effect.
- the addition amount of the nonionic surfactant is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the polymer. If the amount is too small, the above effect is not observed. On the other hand, if the amount exceeds 5 parts by weight, the effect is not substantially changed.
- a halogen-free metal salt As the metal salt dissolved during coagulation and dissolution, a halogen-free metal salt is used, and specific examples thereof include metal sulfates such as aluminum sulfate, magnesium sulfate, and sodium sulfate. Among them, aluminum sulfate and sulfuric acid Magnesium is preferred.
- the amount of the metal salt to be used is preferably 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight, per 100 parts by weight of the polymer. If the amount of the metal salt is less than 0.5 parts by weight, coagulation in the coagulation bath becomes insufficient or crumbs become enlarged. On the other hand, 50 weight Beyond this part, the solidification rate is dominated by the metal salt and the crumb becomes poorly porous.
- the cloud point of the nonionic surfactant is preferably in the range of 10 to 100. If the S point is too low, cooling is required to keep the temperature below the cloud point, while if it is too high, high temperature is used to solidify. Need
- the coagulated polymer is recovered, washed with water and dried to obtain the desired copolymer.
- a sulfur-based vulcanizing agent to the unsaturated nitrile-conjugated gen copolymer of the present invention, a rubber composition having high-speed vulcanization properties and well-balanced oil resistance and cold resistance can be obtained.
- Sulfur vulcanizing agents used include powdered sulfur, sulfur sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and other sulfur; sulfur chloride, sulfur dichloride, morpholine 'disulfide, alkylphenol disulfide, Sulfur compounds such as N, ⁇ 'dithio-bis (hexahydro-2 ⁇ -azebinone-12), phosphorus-containing polysulfide, and high-molecular polysulfide; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4 'monomorpholinodithio)
- a sulfur-containing vulcanization accelerator such as benzothiazol is exemplified.
- vulcanization accelerators such as zinc white and stearic acid; guanidine, aldehyde-amine, aldehyde ammonia-based, thiazol-based, sulfenamide-based, thiourea-based
- Other vulcanization accelerators such as Zantitol, can be used.
- the amount of the sulfur-based vulcanization accelerator to be used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.1 to 100 parts by weight of the unsaturated ditriallyl-conjugated diene copolymer. ⁇ 5 parts by weight.
- the rubber composition does not contain a sulfur vulcanizing agent as a vulcanizing agent, Good high-speed vulcanizability cannot be achieved in vulcanization.
- a vulcanizing agent other than a sulfur-based vulcanizing agent such as an organic peroxide-based vulcanizing agent can be appropriately used in addition to the sulfur-based vulcanizing agent.
- organic peroxide-based vulcanizing agent used in combination are, for example, t-butyl hydroveloxide, cumene hydroveroxide, g-t-butyl peroxide, t-butyl cumyl belvoxide, 2,5-dimethyl-t-oxide.
- vulcanizing agents include polyfunctional compounds such as trimethylol bromide remethacrylate, divinylbenzene, ethylene dimethacrylate, and triallyl isocyanurate. Furthermore, metal soap Z-sulfur, triazine nodithiol rubinate, polycarboxylic acid Zonium salt, polyamine (hexamethylene diamine, triethylene tetramine, hexamethylene diamine carbamate, ethylene diamine Vulcanizing agents such as carbamate, triethylene diamine, etc.) and ammonium benzoate can also be used if necessary.
- polyfunctional compounds such as trimethylol bromide remethacrylate, divinylbenzene, ethylene dimethacrylate, and triallyl isocyanurate.
- the rubber composition of the present invention may contain, if necessary, other compounding agents used in the rubber field, for example, reinforcing agents (such as various types of carbon black, silica, and talc), fillers (such as calcium carbonate). , Clay, etc.), processing aids, process oils (including plasticizers), antioxidants, and antiozonants.
- reinforcing agents such as various types of carbon black, silica, and talc
- fillers such as calcium carbonate. , Clay, etc.
- processing aids such as process oils (including plasticizers), antioxidants, and antiozonants.
- thermoplastic resins can be blended with the rubber composition of the present invention.
- thermoplastic resins blended in the rubber composition of the present invention examples include vinyl chloride resin.
- NBR has poor weather resistance
- a composition in which a vinyl chloride resin is blended with NBR is generally used in a field where weather resistance is required.
- this composition has the disadvantage that the vulcanization rate in sulfur vulcanization is reduced, and consequently the mechanical strength is reduced and the compression set is increased.
- those obtained by blending the rubber composition of the present invention with a vinyl chloride resin have excellent suitability for high-speed vulcanization, and the vulcanizates have good mechanical strength, compression set and balance in addition to good weather resistance. It has excellent oil and cold resistance.
- the vinyl chloride resin to be used is not particularly limited, but usually one having an average polymerization degree of 600 to 20,000 is used.
- the mixing ratio of the unsaturated nitrile conjugated gen copolymer to the vinyl chloride resin is usually 95 to 50 parts by weight, preferably 80 to 60 parts by weight.
- the amount is 5 to 50 parts by weight, preferably 20 to 40 parts by weight, based on the weight of the vinyl chloride resin.
- a mixture of about 70 parts by weight of an acrylonitrile-butadiene copolymer and a vinyl chloride resin is most suitable.
- the method of blending the unsaturated nitrile-one conjugated diene copolymer with the vinyl chloride resin is not particularly limited, but usually, the unsaturated nitrile-one conjugated diene copolymer and the vinyl chloride resin powder are mixed with a Banbury mixer or the like. Mix at high temperature using a dry blend method, or mix the unsaturated nitrile-one conjugated gen copolymer and vinyl chloride resin in latex state, coagulate and dry, and then heat-treat using an extruder, Banbury mixer, etc. Latex coprecipitation method or the like.
- a notable reinforcing agent is a non-black reinforcing filler.
- bonbon black has been used as the most excellent NBR reinforcing agent.
- Use non-black reinforcing agent In many cases, the reinforcing effect is very small or hardly recognized.
- a high level of reinforcing effect can be achieved by the combination of the non-black reinforcing filler.
- non-black reinforcing filler refers to an inorganic filler that exhibits a reinforcing effect when incorporated into an unsaturated nitrile-conjugated gen copolymer and is non-black.
- non-black reinforcing filler those other than carbon black, which are generally known as synthetic rubber reinforcing agents, are used, and are usually used in white or light-colored compounds.
- non-black reinforcing filler examples include silica such as dry silica, wet silica, synthetic silicate silica and colloidal silica; activated calcium carbonate; special calcium carbonate; basic magnesium carbonate; Ultrafine magnesium silicate; hard clay.
- silica such as dry silica, wet silica, synthetic silicate silica and colloidal silica
- activated calcium carbonate special calcium carbonate
- basic magnesium carbonate basic magnesium carbonate
- Ultrafine magnesium silicate hard clay.
- fillers heavy calcium carbonate, talc, diatomaceous earth, alumina and the like, which can provide a reinforcing effect, can also be used.
- white carbon white carbon, basic magnesium carbonate, activated calcium carbonate and ultrafine magnesium silicate are preferred.
- the blending amount of the non-black reinforcing filler is generally selected in the range of 100 to 500 parts by weight based on 100 parts by weight of the unsaturated nitrile conjugated gen copolymer rubber, and is preferably , 30 to 200 parts by weight.
- the rubber composition of the present invention may contain, if necessary, acrylic rubber, fluorine rubber, styrene-butadiene copolymer rubber, ethylene-propylene-diene terpolymer rubber (EPDM), natural rubber, polyisoprene rubber. Other rubbers can be used in combination with the unsaturated ditri-conjugated gen copolymer.
- the method for producing the rubber composition of the present invention is not particularly limited, usually, a raw rubber and a vulcanization system are mixed with a usual mixer such as a roll or a Banbury mixer.
- the rubber composition is produced by kneading and mixing with a compounding agent.
- the nitrogen content in the copolymer was measured by the Geldar method, and the amount of bound nitrile was determined by calculation (unit:%).
- the weight% of the component was determined.
- composition distribution width of unsaturated nitrile is determined by high performance liquid chromatography, and its outline is described in Rubber Chemistry and Technology 63. (2), pp. 181-191 (1990). Have been. That is, the unsaturated nitrile-one conjugated diene copolymer is measured by high performance liquid chromatography under the following measurement conditions, and the half width of the chromatogram is defined as ⁇ AN.
- ⁇ AN the half width of the chromatogram
- the copolymer was placed in a closed container containing water, and the mixture was boiled for 12 CTCX for 24 hours to extract soluble components. The extract was concentrated, and the chlorine concentration (unit: Ppm) was measured by ion chromatography.
- the copolymer was subjected to Soxhlet extraction with methanol, concentrated, and nitrosamine fiber (unit: ppm) was measured with a gas chromatography thermal energy analyzer (GC-TEA). did.
- Disulfide 1.5 1--cyclohexyl 2 '' 'benzo
- the evaluation was made as 1 when the surface of the steel sheet was not contaminated, and as 5 when the entire surface was significantly contaminated, and displayed on a scale of 5 according to the degree of contamination.
- the unvulcanized rubber composition prepared according to the formulation shown in Table 1 (Formulation A) or Table 2 (Formulation B) was vulcanized under the conditions of 16 (TC X 20 minutes). A 2 mm thick sheet was punched out using a No. 3 dumbbell to form a test piece, which was measured.
- Hardness was measured using a JIS spring type A-type hardness tester.
- the rebound resilience was measured according to JIS K6301 (unit:%).
- Oil resistance was measured in accordance with JIS K6301 by setting the rubber specimen to 120 in lubricating oil No. 3 (kinematic viscosity 31.9 to 34.1, aniline point 69.5 ⁇ 1.C, flash point 162.7.C). After soaking for 72 hours, the volume change rate (unit:%) was measured. However, in the case of a composition containing a vinyl chloride resin, use Fuel C (mixture of 50% by volume of isooctane and 50% by volume of toluene) instead of Lubricating Oil No. 3 and immerse at 40 for 48 hours. Was.
- Fuel C mixture of 50% by volume of isooctane and 50% by volume of toluene
- the sheet metal SAE 1020 was tested for corrosivity by the General Motor (GM) method. Details of the test method are as follows.
- the unvulcanized rubber composition prepared according to the formulation shown in Table 1 was A test piece (2 mm x 5 cm x 5 cm) was prepared from a 2 mm thick sheet obtained by vulcanizing at 160 ° C for 20 minutes, and the test piece was placed on two metal plates (S AE1020,
- copolymers I to XI were obtained, respectively.
- Table 4 shows the measurement results of the amounts of bound butadiene and bound nitrile in each copolymer, as well as the Mooney viscosity and other properties of the copolymer.
- PMHT was added in portions during the copolymerization.
- each copolymer was prepared according to the formulation shown in Table 1 (formulation A). After kneading with a mixer to obtain a rubber composition, it was subjected to breath vulcanization at 160 C for 20 minutes, and the physical properties of the obtained vulcanized product were evaluated. Table 4 shows the results.
- the molecular weight regulator was changed to commercially available t-dodecyl mercaptan (TDM, manufactured by Filibs Petroleum Oil Co.), butadiene and acrylonitrile were copolymerized under the same conditions as in Example 2 to obtain copolymer VII. I got Table 3 shows the polymerization results.
- Table 4 shows the results of evaluating the physical properties of the vulcanizates of the copolymer VII in the same manner as in Example 1. Comparative example 2
- Butane brewing equipment (parts) 0.42 Selling 1 " ⁇ ifn
- FIG. 1 shows an i H-NMR measurement chart of the copolymer II
- FIG. 2 shows an isc-NMR measurement chart.
- the vulcanizable rubber compositions (Examples 1 to 9) in which the unsaturated nitrile-one conjugated diene copolymers I to VI and IX to XI of the present invention and a sulfur-based vulcanizing agent are blended are as follows.
- the scorch time (T 5 ) measured by the slicing disc rheometer was short, and the maximum torque (V m ⁇ ) was high, indicating that it was excellent in high-speed vulcanization.
- V m ⁇ maximum torque
- Emulsion polymerization using commercially available t-dodecyl mercaptane has the effect of adding acrylonitrile at the time of polymerization to improve oil resistance and cold resistance. Although good and balanced, it does not provide sufficient high-speed vulcanizability, low mechanical strength, and low rebound resilience. Mold contamination is also poor.
- Copolymer XXI was obtained by polymerization in substantially the same manner as in Examples 1 to 9 except that the amounts of butadiene and acrylonitrile and the amount of the molecular weight regulator PMH were changed as shown in Table 5.
- Table 5 shows the measurement results of the amount of bound butadiene and bound nitrile in the copolymer, and the Mooney viscosity and other properties of the copolymer.
- the NMR measurement of the acrylonitrile-loop-tagene copolymer XI I confirmed the presence of a 1,1-di (2,2-dimethylbutane) -1-ethylthio group.
- Example 10 the copolymer VII obtained by dividingly adding acrylonitrile at the time of polymerization was used.Thus, despite the low amount of bound acrylonitrile in the copolymer, the TlD by Geman's torsion test was low, and the volume was low. The low rate of change indicates that the oil resistance and cold resistance are good and balanced while maintaining a high mechanical level. Furthermore, since the molecular weight modifier PMHT is added in a time-division manner during polymerization, the workability evaluation result by garbage die is also good, indicating that the copolymer is excellent in mechanical strength and workability.
- Copolymer latex was prepared in substantially the same manner as in Examples 1 to 9 except that the amounts of butadiene, acrylonitrile and molecular weight modifier PMHT were changed as shown in Table 7. ⁇ S ⁇ j.
- copolymer latex To the obtained copolymer latex, 1 part of an alkylphenol formalin condensate oxyethylene-hydroxypropylene adduct (nonionic surfactant “Ramtel NP-5150”) is added, and then 3 parts of aluminum sulfate are dissolved as a coagulant.
- the copolymer latex was dropped into a 5-liter coagulation tank equipped with a stirrer containing a coagulation water bath, and the coagulation bath was kept at 50 eC to coagulate the copolymer. The generated crumb was taken out, washed with water and dried under reduced pressure at 50 to obtain copolymers XIV to XXI, respectively.
- Table 7 shows the measurement results of the amount of bound butadiene and the amount of bound nitrile in each copolymer, as well as the viscosity of the copolymer and other properties. NMR measurement of the acrylonitrile-butadiene copolymers XIV to XXI confirmed the presence of the 1,1-di (2,2-dimethylbutadecyl) -11-ethylthio group.
- the acrylonitrile-butadiene copolymer was kneaded with a Banbury mixer together with a reinforcing filler shown in Table 8 according to the formulation shown in Table 2 (formulation B) to obtain a rubber composition. And vulcanized for 20 minutes, and the physical properties of the obtained vulcanized product were evaluated. The results are shown in Tables 8 and 9.
- Butadiene and acrylonitrile were copolymerized under the same conditions as in Example 12 except that the molecular weight modifier was changed to commercially available t-dodecylmercaptan (manufactured by Filibus Sekiyu KK) to obtain a copolymer XXII.
- Table 7 shows the polymerization results. NMR measurement of copolymer XXII revealed that 1,1-di (2,2-dimethyl bromide) Bill) The presence of the 1-ethylthio group was not confirmed.
- Tables 8 and 9 show that vulcanizable rubbers containing unsaturated nitrile-conjugated gen copolymers XI V to XX I, an inorganic reinforcing agent and a sulfur vulcanizing agent (Examples 11 to 23)
- the results show that the scorch time (T 5) measured by the oscillating 'disc rheometer is short, and the maximum torque (Vm ⁇ ) is high, indicating that it is excellent in high-speed vulcanization.
- T 5 scorch time measured by the oscillating 'disc rheometer
- Vm ⁇ maximum torque
- the copolymer latex was coagulated using aluminum sulfate as a coagulant during the production of the copolymer. Virtually free of halogens and therefore does not present metal corrosion problems.
- Copolymer latexes were prepared in the same manner as in Examples 1 to 9, except that the amounts of butadiene, acrylonitrile and the molecular weight modifier PMHT were changed as shown in Table 10.
- Nonionic surfactants listed in Table 10 were added to the obtained copolymer latex. (The addition amounts shown in Table 10 are parts by weight).
- the copolymer latex was dropped into a 5 liter coagulation tank equipped with a stirrer containing a coagulation water bath in which a fixed amount of a coagulant shown in Table 10 was dissolved. And the polymer was coagulated. The generated crumbs were taken out, washed with water, and dried under reduced pressure at 50 ° C to obtain respective copolymers.
- Table 11 shows the measurement results of the amount of bound butadiene and the amount of bound nitrile in each copolymer, as well as the Mooney viscosity and other properties of the copolymer. NMR measurement of the acrylonitrile-butadiene copolymer obtained in Examples 24 and 25 confirmed the presence of the 1,1-di (2,2-dimethylbrovir) -11-ethylthio group.
- each copolymer was kneaded with a Banbury mixer according to the formulation shown in Table 1 to obtain a rubber composition, which was then vulcanized with 16 OeC for 20 minutes to obtain a rubber composition.
- the physical properties of the vulcanized product were evaluated. The results are shown in Table 12.
- the vulcanizable rubber composition (Examples 24, 25) comprising the unsaturated nitrile-one conjugated diene copolymer of the present invention and a sulfur-based vulcanizing agent was obtained from an oscillating * disk.
- the scorch time (TV,) measured with a rheometer is short, and the maximum torque (VK) is high, indicating that it has excellent high-speed vulcanizability.
- VK maximum torque
- unsaturated nitrile-conjugated gen copolymers are substantially free of halogens and therefore do not pose metal corrosion problems. It is also excellent in mold contamination.
- the molecular weight modifier ⁇ ⁇ ⁇ ⁇ was added in a time-division manner during polymerization, so that the results of the evaluation of workability by a garbage die were good, and the mechanical strength and workability were excellent. It can be seen that the copolymer was obtained.
- the emulsion polymerization using t-dodecylmercaptan (commercially available), which is conventionally known as a general-purpose molecular weight regulator in radical polymerization (Comparative Example 7), has a sufficiently high speed vulcanization. Low mechanical strength, low rebound resilience. Mold contamination is also poor. NMR measurement of this copolymer revealed no presence of the 1,1-di (2,2-dimethylpropyl) -1-ethylthio group.
- Industrial applicability According to the present invention, the mechanical strength is high, the oil resistance and the cold resistance are well-balanced, and the vulcanization at a high temperature and a short time exhibits excellent high-speed vulcanization, and the problem of mold contamination is improved.
- Unsaturated nitrile conjugated gen copolymers are provided. Since this copolymer has excellent high-speed vulcanization properties, it is particularly suitable for use in injection molding, and can improve the productivity and labor saving in molding rubber products.
- this copolymer has excellent high-speed vulcanization properties, it is particularly suitable for use in injection molding, and can improve the productivity and labor saving in molding rubber products.
- productivity in the production process is improved, and the obtained copolymer is used as a rubber composition. Has good workability.
- the weather resistance can be improved without substantially adversely affecting the vulcanization speed, mechanical strength and compression set.
- the unsaturated nitrile one conjugated diene copolymer of the copolymer is blended with non-black reinforcing charge ⁇ the rubber composition containing the c present invention a high level reinforcing effect close to the carbon black of the invention can be obtained
- the vulcanizable rubber composition containing as a raw rubber component is suitable for O-rings and other sealing materials.
- various rubber products such as belts, hoses and rolls, vibration-proof rubbers, electric products, It can be used for a wide range of parts, such as motor vehicle parts, industrial supplies, and footwear.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/793,677 US5703189A (en) | 1994-08-29 | 1995-06-07 | Unsaturated nitrile-conjugated diene copolymer, process for producing same and vulcanizable rubber composition |
EP95921120A EP0779300B1 (en) | 1994-08-29 | 1995-06-07 | Unsaturated nitrile-conjugated diene copolymer, process for producing the same, and vulcanizable rubber composition |
DE69506885T DE69506885T2 (de) | 1994-08-29 | 1995-06-07 | Ungesättigtes nitrilkonjugiertes diencopolymer, verfahren zu dessen herstellung und vulkanisierbare kautschukzusammensetzung |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22609994A JP3579929B2 (ja) | 1994-08-29 | 1994-08-29 | 不飽和ニトリル−共役ジエン共重合体、その製造方法および加硫性ゴム組成物 |
JP6/226099 | 1994-08-29 | ||
JP23939594A JP3603344B2 (ja) | 1994-09-07 | 1994-09-07 | 不飽和ニトリル−共役ジエン共重合体、その製造方法および加硫性ゴム組成物 |
JP23939694A JP3582110B2 (ja) | 1994-09-07 | 1994-09-07 | 不飽和ニトリル−共役ジエン共重合体と塩化ビニル樹脂とからなるゴム組成物 |
JP6/239396 | 1994-09-07 | ||
JP6/239395 | 1994-09-07 | ||
JP26136494A JP3603350B2 (ja) | 1994-09-30 | 1994-09-30 | 不飽和ニトリル−共役ジエン共重合体、その製造方法および加硫性ゴム組成物 |
JP6/261365 | 1994-09-30 | ||
JP6/261364 | 1994-09-30 | ||
JP26136594A JP3582113B2 (ja) | 1994-09-30 | 1994-09-30 | 不飽和ニトリル−共役ジエン共重合体と非黒色補強性充填剤とからなるゴム組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996006868A1 true WO1996006868A1 (fr) | 1996-03-07 |
Family
ID=27529795
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/001132 WO1996006868A1 (fr) | 1994-08-29 | 1995-06-07 | Copolymere de dienes insature conjugue a du nitrile, son procede de production et composition de caoutchouc vulcanisable |
PCT/JP1995/001133 WO1996006869A1 (fr) | 1994-08-29 | 1995-06-07 | Copolymere diene a conjugaison nitrile insature, procede de production et composition de caoutchouc vulcanisable |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/001133 WO1996006869A1 (fr) | 1994-08-29 | 1995-06-07 | Copolymere diene a conjugaison nitrile insature, procede de production et composition de caoutchouc vulcanisable |
Country Status (4)
Country | Link |
---|---|
US (2) | US5703189A (ja) |
EP (2) | EP0779300B1 (ja) |
DE (2) | DE69518528T2 (ja) |
WO (2) | WO1996006868A1 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3302317B2 (ja) * | 1998-03-05 | 2002-07-15 | 三菱レイヨン株式会社 | ジエン系ゴム重合体ラテックスの製造法 |
DE10027768A1 (de) * | 2000-06-07 | 2001-12-13 | Bayer Ag | Verzweigte Copolymere auf Basis von ungesättigten Nitrilen und konjugierten Dienen |
JP4899262B2 (ja) * | 2000-11-13 | 2012-03-21 | Jsr株式会社 | 不飽和ニトリル−共役ジエン系ゴム及びゴム組成物並びにこれらの製造方法 |
US6762232B2 (en) * | 2000-12-08 | 2004-07-13 | Longwood Industries, Inc. | Molded objects |
JP2002201310A (ja) * | 2000-12-27 | 2002-07-19 | Bridgestone Corp | ゴム組成物 |
US6841623B2 (en) * | 2001-06-29 | 2005-01-11 | Bayer Inc. | Low molecular weight nitrile rubber |
CN100349936C (zh) | 2002-02-28 | 2007-11-21 | 日本瑞翁株式会社 | 蘸浸-成型胶乳,蘸侵-成型组合物和蘸浸-成型的物品 |
JP3852356B2 (ja) * | 2002-03-27 | 2006-11-29 | 日本ゼオン株式会社 | ディップ成形用組成物、ディップ成形品およびその製造方法 |
US7455863B2 (en) * | 2002-11-07 | 2008-11-25 | Smarthealth, Inc. | Flexible elastomer articles and methods of manufacturing |
US7585526B2 (en) | 2002-11-07 | 2009-09-08 | Smarthealth, Inc. | Flexible elastomer articles and methods of manufacturing |
CA2413607A1 (en) * | 2002-12-05 | 2004-06-05 | Bayer Inc. | Process for the preparation of low molecular weight hydrogenated nitrile rubber |
CA2413636A1 (en) * | 2002-12-05 | 2004-06-05 | Bayer Inc. | Adhesive compositions |
WO2004083298A1 (ja) * | 2003-03-20 | 2004-09-30 | Jsr Corporation | ジエン系ゴム・無機化合物複合体及びその製造方法 |
US7776368B2 (en) * | 2003-08-13 | 2010-08-17 | Smarthealth, Inc. | Gloves containing dry powdered aloe and method of manufacturing |
US7364672B2 (en) * | 2004-12-06 | 2008-04-29 | Arlon, Inc. | Low loss prepregs, compositions useful for the preparation thereof and uses therefor |
US20080009211A1 (en) * | 2006-07-07 | 2008-01-10 | Matthew Raymond Himes | Assemblies useful for the preparation of electronic components and methods for making same |
CN101605828B (zh) * | 2006-12-28 | 2012-11-28 | Jsr株式会社 | 耐油性橡胶用聚合物的制法、耐油性橡胶用聚合物、耐油耐候性橡胶用组合物及橡胶成型体 |
DE102007024008A1 (de) * | 2007-05-22 | 2008-11-27 | Lanxess Deutschland Gmbh | Nitrilkautschuke |
DE102007024011A1 (de) * | 2007-05-22 | 2008-11-27 | Lanxess Deutschland Gmbh | Nitrilkautschuke |
DE102007024010A1 (de) * | 2007-05-22 | 2008-11-27 | Lanxess Deutschland Gmbh | Nitrilkautschuke |
CN101423586B (zh) * | 2007-11-01 | 2011-09-07 | 中国石油天然气股份有限公司 | 一种高转化率丁二烯-丙烯腈共聚橡胶的制造方法 |
MX2010008257A (es) * | 2008-01-29 | 2010-08-18 | Lanxess Deutschland Gmbh | Cauchos de nitrilo que contienen opcionalmente grupos terminales alquiltio que estan opcionalmente hidrogenados. |
MX2010008259A (es) * | 2008-01-29 | 2010-08-18 | Lanxess Deutschland Gmbh | Cauchos de nitrilo opcionalmente hidrogenados que opcionalmente contienen grupos terminales alquiltio. |
CA2713449C (en) * | 2008-01-29 | 2016-08-30 | Lanxess Deutschland Gmbh | Nitrile rubbers which optionally contain alkylthio terminal groups and which are optionally hydrogenated |
DE102008056975A1 (de) | 2008-11-13 | 2010-05-20 | Lanxess Deutschland Gmbh | Lagerstabile, hydroxylmodifizierte Mikrogellatices |
US9023914B2 (en) * | 2009-09-17 | 2015-05-05 | Lanxess Deutschland Gmbh | Nitrile rubbers and production thereof in organic solvents |
EP2316861A1 (de) * | 2009-11-03 | 2011-05-04 | LANXESS Deutschland GmbH | Nitrilkautschuke |
PL2368916T3 (pl) * | 2010-03-25 | 2013-03-29 | Lanxess Int Sa | Sposób wytwarzania kauczuków nitrylowych wolnych od wody i rozpuszczalników |
EP2423234A1 (de) * | 2010-08-31 | 2012-02-29 | LANXESS Deutschland GmbH | Kautschukblends aus verschiedenen Nitrilkautschuken |
ITMI20111170A1 (it) | 2011-06-27 | 2012-12-28 | Polimeri Europa Spa | "procedimento per la preparazione di gomme nitrile" |
EP2860196A1 (de) | 2013-10-14 | 2015-04-15 | LANXESS Deutschland GmbH | Nitrilkautschuke mit niedrigen Emissionswerten |
US10414901B2 (en) | 2014-02-03 | 2019-09-17 | Arlanxeo Deutschland Gmbh | Stabilized rubbers |
EP3124511B1 (en) * | 2014-03-27 | 2025-04-02 | Zeon Corporation | Nitrile group-containing copolymer rubber, crosslinkable rubber composition and crosslinked rubber product |
US9932434B2 (en) | 2014-07-31 | 2018-04-03 | Zeon Corporation | Nitrile group-containing copolymer rubber, cross-linkable rubber composition, and cross-linked rubber |
EP3034518B1 (de) | 2014-12-19 | 2017-05-24 | ARLANXEO Deutschland GmbH | Farbstabile Nitrilkautschuke |
CN105837752B (zh) * | 2015-01-15 | 2018-07-10 | 中国石油天然气股份有限公司 | 一种耐寒丁腈橡胶的制备方法 |
KR101848245B1 (ko) * | 2015-03-27 | 2018-04-12 | 니폰 제온 가부시키가이샤 | 리튬 이온 이차 전지 정극용 바인더 조성물, 리튬 이온 이차 전지 정극용 슬러리 조성물, 리튬 이온 이차 전지용 정극 및 리튬 이온 이차 전지 |
WO2016166063A1 (de) | 2015-04-13 | 2016-10-20 | Arlanxeo Deutschland Gmbh | Emissionsarme, nitrilkautschuke enthaltende pulverförmige mischungen |
EP3081689A1 (de) | 2015-04-13 | 2016-10-19 | ARLANXEO Deutschland GmbH | Textile bodenbeläge mit niedrigen emissionswerten |
WO2017116145A1 (ko) * | 2015-12-28 | 2017-07-06 | 주식회사 엘지화학 | 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무 |
CN107849195B (zh) | 2015-12-28 | 2020-10-23 | 株式会社Lg化学 | 丁苯橡胶的制备方法和丁苯橡胶 |
CN114380949B (zh) * | 2020-10-21 | 2024-03-01 | 中国石油天然气股份有限公司 | 丁腈橡胶及其制备方法和应用 |
CN114380948B (zh) * | 2020-10-21 | 2024-03-01 | 中国石油天然气股份有限公司 | 丁腈橡胶及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0441512A (ja) * | 1990-06-08 | 1992-02-12 | Asahi Chem Ind Co Ltd | ジエン系共重合体ラテックスの製造法 |
JPH0441511A (ja) * | 1990-06-08 | 1992-02-12 | Asahi Chem Ind Co Ltd | ジエン系共重合体ラテックスの製造方法 |
JPH04323203A (ja) * | 1991-04-23 | 1992-11-12 | Kuraray Co Ltd | チオール基を有する重合体の製法 |
JPH0550530B2 (ja) * | 1984-08-28 | 1993-07-29 | Dainippon Ink & Chemicals |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB828803A (en) * | 1955-06-27 | 1960-02-24 | Monsanto Chemicals | Process for polymerizing conjugated 1.3-dienes |
US3322746A (en) * | 1964-04-29 | 1967-05-30 | Texas Us Chem Co | Emulsion polymerization of polybutadiene |
US4004072A (en) * | 1973-05-01 | 1977-01-18 | Mitsubishi Rayon Co., Ltd. | Process for producing acrylonitrile polymers |
US3970623A (en) * | 1974-11-29 | 1976-07-20 | The Goodyear Tire & Rubber Company | Adhesive composition containing a copolymer of butadiene, styrene, and acrylonitrile, plus a tackifying resin |
US4060680A (en) * | 1975-04-10 | 1977-11-29 | Imperial Chemical Industries Limited | Production of acrylonitrile copolymers |
DD124526A1 (de) * | 1975-11-17 | 1977-03-02 | Werner Hufenreuter | Verfahren zur herstellung von copolymeren mit verbesserten eigenschaften aus konzentrierten dienen und polaren vinylmonomeren |
US4027090A (en) * | 1976-02-05 | 1977-05-31 | Standard Oil Company | Mercaptan-hydrocarbon chain modifiers in acrylonitrile copolymers |
US4082818A (en) * | 1976-05-17 | 1978-04-04 | The Standard Oil Company | Mercaptan activation by acid in the copolymerization of acrylonitrile |
JPS6055532B2 (ja) * | 1976-08-16 | 1985-12-05 | ジェイエスアール株式会社 | ニトリルゴムの製造方法 |
US4145494A (en) * | 1978-05-10 | 1979-03-20 | The General Tire & Rubber Company | Aqueous free radical emulsion polymerization |
JPS6033135B2 (ja) * | 1981-08-11 | 1985-08-01 | 日本ゼオン株式会社 | 耐油性ゴム組成物 |
JPS627934A (ja) * | 1985-07-03 | 1987-01-14 | Hitachi Ltd | 可変容量式タ−ボチヤ−ジヤ |
DE3836777A1 (de) * | 1988-10-28 | 1990-05-03 | Bunawerke Huels Gmbh | Verfahren zum desaktivieren von radikalen |
JP3030665B2 (ja) * | 1991-06-07 | 2000-04-10 | 森六株式会社 | 空調用吹出口装置の二重射出成形方法 |
WO1994022924A1 (en) * | 1993-03-30 | 1994-10-13 | Nippon Zeon Co., Ltd. | Unsaturated nitrile/conjugated diene copolymer, process for producing the same, and rubber composition |
JP3477849B2 (ja) * | 1994-09-30 | 2003-12-10 | 日本ゼオン株式会社 | ニトリル基含有高飽和共重合体ゴムとエチレン系飽和型共重合体ゴムとからなるゴム組成物 |
-
1995
- 1995-06-07 DE DE69518528T patent/DE69518528T2/de not_active Expired - Lifetime
- 1995-06-07 US US08/793,677 patent/US5703189A/en not_active Expired - Lifetime
- 1995-06-07 EP EP95921120A patent/EP0779300B1/en not_active Expired - Lifetime
- 1995-06-07 DE DE69506885T patent/DE69506885T2/de not_active Expired - Fee Related
- 1995-06-07 WO PCT/JP1995/001132 patent/WO1996006868A1/ja active IP Right Grant
- 1995-06-07 WO PCT/JP1995/001133 patent/WO1996006869A1/ja active IP Right Grant
- 1995-06-07 US US08/793,678 patent/US5807941A/en not_active Expired - Lifetime
- 1995-06-07 EP EP95921121A patent/EP0779301B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0550530B2 (ja) * | 1984-08-28 | 1993-07-29 | Dainippon Ink & Chemicals | |
JPH0441512A (ja) * | 1990-06-08 | 1992-02-12 | Asahi Chem Ind Co Ltd | ジエン系共重合体ラテックスの製造法 |
JPH0441511A (ja) * | 1990-06-08 | 1992-02-12 | Asahi Chem Ind Co Ltd | ジエン系共重合体ラテックスの製造方法 |
JPH04323203A (ja) * | 1991-04-23 | 1992-11-12 | Kuraray Co Ltd | チオール基を有する重合体の製法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0779300A4 * |
Also Published As
Publication number | Publication date |
---|---|
DE69518528T2 (de) | 2001-01-11 |
DE69506885D1 (de) | 1999-02-04 |
EP0779300A1 (en) | 1997-06-18 |
EP0779301A1 (en) | 1997-06-18 |
DE69506885T2 (de) | 1999-05-12 |
DE69518528D1 (de) | 2000-09-28 |
EP0779300A4 (en) | 1997-11-26 |
EP0779300B1 (en) | 1998-12-23 |
EP0779301B1 (en) | 2000-08-23 |
EP0779301A4 (en) | 1997-11-26 |
US5807941A (en) | 1998-09-15 |
US5703189A (en) | 1997-12-30 |
WO1996006869A1 (fr) | 1996-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996006868A1 (fr) | Copolymere de dienes insature conjugue a du nitrile, son procede de production et composition de caoutchouc vulcanisable | |
EP0692496B1 (en) | Unsaturated nitrile/conjugated diene copolymer, process for producing the same, and rubber composition | |
JP3477849B2 (ja) | ニトリル基含有高飽和共重合体ゴムとエチレン系飽和型共重合体ゴムとからなるゴム組成物 | |
EP0704479B1 (en) | Composite of highly saturated nitrile rubber with fiber, and belt composed thereof | |
EP1291369B1 (en) | Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber | |
JP2021008640A (ja) | ゴム用組成物及びその用途 | |
JP3603350B2 (ja) | 不飽和ニトリル−共役ジエン共重合体、その製造方法および加硫性ゴム組成物 | |
JP3391116B2 (ja) | ニトリル基含有高飽和共重合体ゴム、その製造方法および加硫性ゴム組成物 | |
JP3579929B2 (ja) | 不飽和ニトリル−共役ジエン共重合体、その製造方法および加硫性ゴム組成物 | |
JP3582113B2 (ja) | 不飽和ニトリル−共役ジエン共重合体と非黒色補強性充填剤とからなるゴム組成物 | |
WO2021079981A1 (ja) | クロロプレン共重合体ラテックス及びその製造方法 | |
JP3603344B2 (ja) | 不飽和ニトリル−共役ジエン共重合体、その製造方法および加硫性ゴム組成物 | |
CN112673063B (zh) | 氯丁二烯共聚物胶乳组合物和其成型物 | |
JP3689922B2 (ja) | 共役ジエン重合ゴムまたは共役ジエン−芳香族ビニル化合物共重合ゴム、その製造方法および加硫性ゴム組成物 | |
JPH08245841A (ja) | 振動減衰材用クロロプレンゴム組成物及び振動減衰材用クロロプレンゴム成型加硫物 | |
JP3477848B2 (ja) | ニトリル基含有高飽和共重合体ゴムと塩化ビニル樹脂とからなるゴム組成物 | |
JP4741837B2 (ja) | 化粧パフ用共重合体ラテックス | |
JP3582110B2 (ja) | 不飽和ニトリル−共役ジエン共重合体と塩化ビニル樹脂とからなるゴム組成物 | |
CN117715970A (zh) | 聚合物胶乳组合物、浸渍成型体、以及聚合物胶乳组合物的制造方法 | |
WO2023127858A1 (ja) | 硫黄変性ポリクロロプレンラテックス組成物およびその製造方法並びにゴム成形物および浸漬製品 | |
CN114144438A (zh) | 丙烯酸酯橡胶的制造方法 | |
JPS5914056B2 (ja) | ゴム組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 08793677 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995921120 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995921120 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995921120 Country of ref document: EP |