WO1993021322A1 - Procede de regulation et de determination de la morphogenese d'organes vegetaux, un gene homeotique, un element promoteur utilise a cet effet, et utilisations connexes - Google Patents
Procede de regulation et de determination de la morphogenese d'organes vegetaux, un gene homeotique, un element promoteur utilise a cet effet, et utilisations connexes Download PDFInfo
- Publication number
- WO1993021322A1 WO1993021322A1 PCT/US1993/003508 US9303508W WO9321322A1 WO 1993021322 A1 WO1993021322 A1 WO 1993021322A1 US 9303508 W US9303508 W US 9303508W WO 9321322 A1 WO9321322 A1 WO 9321322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- whorl
- petunia
- flower
- petal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 108700005087 Homeobox Genes Proteins 0.000 title claims abstract description 37
- 230000025342 organ morphogenesis Effects 0.000 title 1
- 241000196324 Embryophyta Species 0.000 claims abstract description 120
- 230000014509 gene expression Effects 0.000 claims abstract description 117
- 210000000056 organ Anatomy 0.000 claims abstract description 58
- 239000013598 vector Substances 0.000 claims abstract description 42
- 108700019146 Transgenes Proteins 0.000 claims abstract description 39
- 108010048671 Homeodomain Proteins Proteins 0.000 claims abstract description 19
- 102000009331 Homeodomain Proteins Human genes 0.000 claims abstract description 19
- 230000005014 ectopic expression Effects 0.000 claims abstract description 8
- 230000019552 anatomical structure morphogenesis Effects 0.000 claims abstract description 4
- 241000207748 Petunia Species 0.000 claims abstract 18
- 102100020720 Calcium channel flower homolog Human genes 0.000 claims description 84
- 101000932468 Homo sapiens Calcium channel flower homolog Proteins 0.000 claims description 84
- 239000012634 fragment Substances 0.000 claims description 33
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 32
- 108020004414 DNA Proteins 0.000 claims description 25
- 230000009466 transformation Effects 0.000 claims description 19
- 101150062587 flower gene Proteins 0.000 claims description 12
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 9
- 238000009396 hybridization Methods 0.000 claims description 9
- 239000013612 plasmid Substances 0.000 claims description 9
- 102000053602 DNA Human genes 0.000 claims description 5
- 101150048726 E9 gene Proteins 0.000 claims description 5
- 108010066133 D-octopine dehydrogenase Proteins 0.000 claims description 3
- 108020004511 Recombinant DNA Proteins 0.000 claims description 3
- 235000021307 Triticum Nutrition 0.000 claims description 3
- 108010058731 nopaline synthase Proteins 0.000 claims description 3
- 108010033040 Histones Proteins 0.000 claims description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 claims description 2
- 108010083942 mannopine synthase Proteins 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 3
- 241000209140 Triticum Species 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 136
- 230000009261 transgenic effect Effects 0.000 abstract description 37
- 230000012010 growth Effects 0.000 abstract description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 230000004048 modification Effects 0.000 abstract description 8
- 238000012986 modification Methods 0.000 abstract description 8
- 238000010276 construction Methods 0.000 abstract description 6
- 230000009452 underexpressoin Effects 0.000 abstract description 4
- 230000000638 stimulation Effects 0.000 abstract description 2
- 240000007377 Petunia x hybrida Species 0.000 description 71
- 210000004027 cell Anatomy 0.000 description 49
- 210000001519 tissue Anatomy 0.000 description 42
- 238000011161 development Methods 0.000 description 36
- 230000018109 developmental process Effects 0.000 description 36
- 241001573881 Corolla Species 0.000 description 27
- 238000004458 analytical method Methods 0.000 description 23
- 210000001339 epidermal cell Anatomy 0.000 description 23
- 239000002299 complementary DNA Substances 0.000 description 22
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 21
- 230000004069 differentiation Effects 0.000 description 19
- 230000006870 function Effects 0.000 description 18
- 241000701489 Cauliflower mosaic virus Species 0.000 description 17
- 230000008124 floral development Effects 0.000 description 17
- 230000002018 overexpression Effects 0.000 description 15
- 108020004999 messenger RNA Proteins 0.000 description 14
- 241000207875 Antirrhinum Species 0.000 description 12
- 108091026890 Coding region Proteins 0.000 description 11
- 229930002877 anthocyanin Natural products 0.000 description 11
- 235000010208 anthocyanin Nutrition 0.000 description 11
- 239000004410 anthocyanin Substances 0.000 description 11
- 150000004636 anthocyanins Chemical class 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 108700001191 DEFICIENS Proteins 0.000 description 10
- 230000019612 pigmentation Effects 0.000 description 10
- 101150010867 DEFA gene Proteins 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 102000053187 Glucuronidase Human genes 0.000 description 8
- 108010060309 Glucuronidase Proteins 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000000636 Northern blotting Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 108010060641 flavanone synthetase Proteins 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 238000002105 Southern blotting Methods 0.000 description 6
- 230000032823 cell division Effects 0.000 description 6
- 101000690427 Petunia hybrida Floral homeotic protein AGAMOUS Proteins 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 235000019804 chlorophyll Nutrition 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000001850 reproductive effect Effects 0.000 description 5
- 230000008128 stamen development Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 241000219194 Arabidopsis Species 0.000 description 4
- 206010010356 Congenital anomaly Diseases 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000035800 maturation Effects 0.000 description 4
- 150000007523 nucleic acids Chemical group 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- YZCUMZWULWOUMD-NDEPHWFRSA-N 5-fluoro-4-(4-fluoro-2-methoxyphenyl)-N-[4-[(methylsulfonimidoyl)methyl]pyridin-2-yl]pyridin-2-amine Chemical compound COc1cc(F)ccc1-c1cc(Nc2cc(C[S@@](C)(=N)=O)ccn2)ncc1F YZCUMZWULWOUMD-NDEPHWFRSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 240000008839 Petunia integrifolia Species 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940126364 enitociclib Drugs 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000005305 organ development Effects 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000000844 transformation Methods 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 241000589158 Agrobacterium Species 0.000 description 2
- 240000001436 Antirrhinum majus Species 0.000 description 2
- 101150058917 CHS gene Proteins 0.000 description 2
- 241001164374 Calyx Species 0.000 description 2
- 206010061764 Chromosomal deletion Diseases 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 240000007652 Petunia axillaris Species 0.000 description 2
- 108700005078 Synthetic Genes Proteins 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- OIXLLKLZKCBCPS-RZVRUWJTSA-N (2s)-2-azanyl-5-[bis(azanyl)methylideneamino]pentanoic acid Chemical compound OC(=O)[C@@H](N)CCCNC(N)=N.OC(=O)[C@@H](N)CCCNC(N)=N OIXLLKLZKCBCPS-RZVRUWJTSA-N 0.000 description 1
- YEDFEBOUHSBQBT-UHFFFAOYSA-N 2,3-dihydroflavon-3-ol Chemical compound O1C2=CC=CC=C2C(=O)C(O)C1C1=CC=CC=C1 YEDFEBOUHSBQBT-UHFFFAOYSA-N 0.000 description 1
- YVOOPGWEIRIUOX-UHFFFAOYSA-N 2-azanyl-3-sulfanyl-propanoic acid Chemical compound SCC(N)C(O)=O.SCC(N)C(O)=O YVOOPGWEIRIUOX-UHFFFAOYSA-N 0.000 description 1
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 1
- 101150027500 AGL6 gene Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000208173 Apiaceae Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 108700007114 Arabidopsis AGAMOUS Proteins 0.000 description 1
- 108010037365 Arabidopsis Proteins Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101100490647 Arabidopsis thaliana AGL6 gene Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101150076489 B gene Proteins 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 241001054943 Calibrachoa parviflora Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241000220485 Fabaceae Species 0.000 description 1
- 101150117028 GP gene Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 101000663222 Homo sapiens Serine/arginine-rich splicing factor 1 Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 101000693242 Mus musculus Paternally-expressed gene 3 protein Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 240000004370 Pastinaca sativa Species 0.000 description 1
- 235000017769 Pastinaca sativa subsp sativa Nutrition 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 108020005120 Plant DNA Proteins 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102100037044 Serine/arginine-rich splicing factor 1 Human genes 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005200 bud stage Effects 0.000 description 1
- 230000000453 cell autonomous effect Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- -1 electroporation Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000037983 regulatory factors Human genes 0.000 description 1
- 108091008025 regulatory factors Proteins 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/827—Flower development or morphology, e.g. flowering promoting factor [FPF]
Definitions
- the present invention relates generally to the genetic determination of plant morphology, and more particularly, to the control of such morphology by techniques involving recombinant genetic technology. 10
- gene sequences are disclosed as are aspects of gene structure that control differentiation (the MADS-box), and their interaction with other homeotic genes determining flower organ morphology. These investigations identified the mutation of the genes and the consequences of such mutation, and sought to better understand the interrelationship of the combinatorial actions between the homeotic genes determining the four primary components of the flower.
- the present invention is predicated in part on the broad discovery that the controlled expression of a homeotic gene, such as the gene green petal disclosed herein, can cause the conversion of a particular plant organ to another desired plant organ. More particularly, the invention is illustrated in a first embodiment by the overexpression of the homeotic gene green petal in petunia, to cause the conversion of sepals to petals so that an additional whorl of petals results. A further observation in this embodiment is that, in some instances the wild type petals exhibit lateral growth and form inverted structures that give the appearance of an additional whorl of petals.
- the overexpression of the same transgene causes the petal structures of the petunia flower to exhibit varying degrees of sepaloid characteristics. This modification is believed to occur by causing the downregulation and consequent underexpression of the homeotic gene green petal in wild type petunia plants.
- the present invention relates to the modification of the organs of a flower to modify the structure of the wild type petals without modification to the reproductive portions thereof.
- a petunia flower is converted to define an additional whorl of petals by the ectopic expression of the homeotic flower gene green petal that is itself the subject of a further aspect of the present invention.
- the overexpression of the green petal gene causes the conversion of sepals to petals, and is also found in some instances to stimulate lateral growth of the existing petals to form inverted petal structures that give the appearance of the formation of an additional whorl of petals. Further, the inverted petal structures may come into contact and fuse to each other, and diverge from the existing petal structure.
- the invention also extends to the homeotic flower gene green petal in petunia having the DNA sequence set forth in Figure 2 and in Sequence Identification No. 1 (SEQ ID NO:l) presented in co-parent application Serial No. 07/867,580 filed April 13, 1992, and later on herein.
- the petunia flower is converted to define petals with sepaloid characteristics by introducing a transgene construct corresponding to the green petal gene of the present invention.
- the introduction of this green petal clone is observed to suppress the expression of the target endogenous gene and as demonstrated herein, causes this conversion of the petal structure.
- the invention extends further to DNA sequences that code the expression of the amino acid sequence set forth in Figure 2, as well as DNA sequences that would hybridize thereto.
- the invention further extends to the operative linkage of said DNA sequence to an expression control sequence, including promoters such as the 35S promoter of the cauliflower mosaic virus.
- the expression control sequence may be the modified 35S promoter (m35S) disclosed herein.
- m35S modified 35S promoter
- other promoters such as the 35S promoter represented by VIP27 depicted in FIGURE 7, nopaiine synthetase and the rbcs E9 gene from pea are representative of other nonlimiting examples thereof.
- the CaMV 35S promoter is preferred as it is constitutively expressed and is particularly well-suited for the method illustrated herein.
- the invention extends to a plant transformation vector containing the DNA sequence of Figure 2, and specifically, to the pMON 530 vector illustrated in the restriction map presented in Figure 3 herein.
- the invention also extends to a novel promoter construct for the homeotic flower gene green petal in petunia designated herein VIP 149 and depicted in FIGURE 5 A.
- the promoter of the invention is comprised of the -90 to +8 fragment of the CaMV 35S promoter and a fragment corresponding to four ligated fragments comprised of two alternations of each of the DNA sequences denominated 4xB3 and 2xTX4, respectively, set forth in FIGURE 5B and in respective Sequence Identification Nos. 2 and 3 herein, corresponding to SEQ ID NO:l and SEQ ID NO:2 presented in co-parent application Serial No. 07/909,589 filed July 6, 1992.
- FIGURE 1 illustrates the interaction of the homeotic genes defining the structures of the flower, with Figure IA depicting schematically the expression of each of the component genes to define the structures indicated below, and Figure IB illustrating the present invention wherein the overexpression of one of the genes (i.e., a component of "B") interacts with the gene referred to as "A" to cause the conversion of sepals to petals, as specifically illustrated herein.
- Figure IA was presented in Coen et al., 1991, supra.
- FIGURE 2 depicts the full nucleic acid sequence for the homeotic gene green petal as well as the deduced amino acid sequence thereof.
- the nucleotides are numbered from 1 to 881, and the amino acids are numbered from 1 to 231.
- This sequence is identically depicted in the SEQUENCE LIS ⁇ NG presented later on herein, in accordance with 37 C.F.R. 1.821-825, enacted October 1, 1990, and is cumulatively and alternately referred to as SEQ ID NO:l.
- FIGURE 3 is a restriction map illustrating the preparation of the' vector containing the green petal gene that was prepared for the practice of the present method in accordance with the first aspect of the invention.
- FIGURE 4 is a restriction map illustrating one aspect of the preparation of the vector containing the promoter element of the present invention, and particularly, the combination of the cDNA of the green petal gene with the vector VIP149.
- FIGURE 5A is a restriction map illustrating the construction of the promoter of the present invention.
- FIGURE 5B depicts both the upper and lower strands of nucleic acid sequences for the fragments identified herein as 4xB3 and 2xTX4, respectively, that are included in the promoter element of the present invention.
- the nucleotides for 4xB3 are numbered from 1 to 252, and the nucleotides for 2xTX4 are numbered from 1 to 114.
- Both sequences are identically depicted in the SEQUENCE LISTING presented later on herein, in accordance with 37 C.F.R. 1.821-825, enacted October 1, 1990, and are referred to as SEQ ID NO:2 and SEQ. ID NO:3, respectively.
- FIGURE 6 is a restriction map illustrating a further aspect of the preparation of the vector containing the promoter element of the present invention, and particularly, the introduction of the vector containing the combination of the cDNA of the green petal gene and the m35S promoter into the vector pMON721 to form VIP162.
- FIGURE 7 is a restriction map illustrating the preparation of an alternate vector used in the method of the present invention, and particularly, the construction of the vector VIP152.
- FIGURE 8 is a restriction map illustrating the construction of the combination of the cDNA of the green petal gene and that of the glucuronidase coding sequence (GUS) to form the construct identified as V1P142, the operative portion of which in turn, is ultimately introduced into VIP27 to form the vector VIP 152.
- GUS glucuronidase coding sequence
- FIGURE 9 is a photograph depicting the appearance of a petunia flower having a phenotype prepared by the first aspect of the method of the invention.
- FIGURES 10A-10D are a series of photographs depicting the appearance of a petunia flower having a variety of phenotypes prepared by the second aspect of the method of the invention.
- FIGURE 11 depicts restriction maps of the chimeric gene constructs J84, VIP 162 and VIP 186 prepared in accordance with Example 3 herein.
- FIGURE 12 comprises schematic diagrams of the Petunia hybrida wild type flower
- Se Sepal
- Li Corolla Limb
- Tu Corolla Tube
- An Anther
- St Style and Stigma
- Ov Ovary.
- FIGURE 13 depicts the petunia V26 flower.
- FIGURE 14 depicts sections of V26 and gp (PLV) flowers.
- (C) A transverse section of a V26 flower.
- (D) A transverse section of a gp (PLV) flower. Note that the stamen filaments are not fused to the second whorl sepal-tube (c.f. Figure 2D).
- FIGURE 15 depicts the flower of gp (PLV).
- a mature gp (PLV) flower A mature gp (PLV) flower.
- G A sepaloid stamen often found in gp (PLV) flowers.
- H A gp (PLV) flower at a late stage of development. Note that the extra third whorl sepaloid organs can develop regions with petaloid characteristics (arrow).
- II Close-up of gp (PLV) flower with the first and second whorl sepals removed. Note the stamen filaments (not fused to the second whorl organs) and a sepaloid sixth organ, initiated between the stamen (arrow).
- FIGURE 16 presents the results of the expression of MADS-box genes and CAB in floral organs of V26, gp (PLV) and co-suppression plants.
- Total RNA was isolated from young and mature flower buds of V26 (upper panels), PLV (middle panels) and SD15c (lower panels). Filters containing 7 ⁇ g of RNA per lane were hybridyzed to specific probes derived from the genes indicated.
- the panels within one box were derived from one filter, therefore the strength of the hybridization signal can be directly compared within a box.
- Lane 1, 2, 3 and 4 represent RNA isolated from whorl 1, 2, 3 and 4, respectively.
- (H) Total RNA - was isolated from young and mature flowers of transgenic line SD15d, Lane 2/3 represents RNA isolated from the combined second and third whorl tissue. Lane 1 and 4 represent RNA isolated from whorl 1 and 4, respectively.
- FIGURE 17 presents Southern blot analysis of wild type and gp (PLV) genomic DNA. Genomic DNAs were digested with Hindi ⁇ , size fractionated on an agarose gel, and blotted onto a Genescreen Plus filter. The blot was hybridized to a full length pMADSl cDNA (see Methods) and after hybridization it was washed under high stringent conditions. The three pMADSl gene fragments are indicated by arrows. Lane 1, V26; lane 2, V30; lane 3, W115; lanes 4-7, a segregating population of wild type and gp (PLV) plants; lane 4 and 6, wild-type plants; lane 5 and 7, gp (PLV) plants.
- FIGURE 18 presents the results of phenotypic analyses of flowers of pMADSl complementation plants.
- Leaf tissue from hybrid GP/gp was used for transformation with the 35S-pMADSl gene construct J84 (see Methods, Example 3) and one transgenic, line (Ml) which showed an over-expression phenotype (see Halfter et al., 1993) was back-crossed with gp (PLV).
- Genomic DNAs of progeny plants (Mla-z) were analyzed for the presence of wild-type pMADSl and the 35S-pMADSl transgene. Flowers of plants that did not carry the wild-type pMADSl gene but contained one or more copies of the 35S-pMADSl transgene (Mla-d) were analyzed (B-F).
- FIGURE 19 presents Northern blot analysis of gp transgenic plants expressing pMADSl or pMADS2.
- Total RNA was isolated from mature flower buds of gp (PLV) transgenic plants expressing the 35S-pMADSl transgene J84 (A) or the 35S-pMADS2 transgene VIP186 (B).
- Equal amounts (7 ⁇ g) of RNA were analyses on identical Northern blots using gene-specific probes.
- Lane 1, 2, 3 and 4 represent RNA isolated from whorl 1, 2, 3 and 4, respectively.
- the signal for pMADS2 and fbpl in Figure 19B can be compared directly to the signal in Figure 16B and 16C, respectively (same hybridization)
- FIGURE 20 presents the results of phenotypic analysis of pMADSl co-suppression plants.
- Wild-type petunia plants V26
- VIP 162 35S-pMADSl chimeric gene construct
- Transgenic plant SD15 was selfed and flowers of progeny plants (SD15a-d), showing different degrees of co-suppression were analyzed.
- the tube and petal tissue of this flower are not fully developed.
- the second whorl tube is much reduced and in the limb sectors of petal or petaloid tissue have developed.
- (D) SD15c The flowers from this line are an almost completely phenocopy of gp (PLV) flowers.
- E SD15c. Same flower as (D), but one week later. After anthesis the second whorl can develop some petaloid characteristics.
- FIGURE 21 presents the different end-stages of petal development in petunia.
- A Hand-made tissue sections from mature second whorl organs of:
- gp (PLV) sepal The upper and lower epidermal cell layer are translucent, trichomes are present on both faces and the inner parenchyma cells are green.
- the upper and lower epidermal cell layer shows sectors of petaloid cells, pigmented with anthocyanins.
- the upper epidermal cell layer is almost completely petaloid, with only a few trichomes on the adaxial face.
- the inner parenchyma cells are small although still pigmented green.
- V26 petal The upper and lower epidermal cell layer consist of small cone shaped cells, pigmented with anthocyanins.
- the parenchyma cells are small and white.
- (B) A schematic presentation of the different end-stages of petal development in petunia.
- the default state of the second whorl organ is sepaloid, characterized by jigsaw-shaped epidermal cells, trichomes, stomata and large, green parenchyma cells.
- Petal differentiation suppresses the formation of trichomes, and stomata, while the epidermal cells can become pigmented and loose their characteristic jigsaw-shape (more round).
- Full petal differentiation results in small, white parenchyma cells and epidermal cells that are small, cone-shaped and pigmented purple with anthocyanins.
- C A schematic presentation of the growth stages that transform a sepaloid organ into a petal.
- the sepal is formed by growth S.
- petal differentiation When petal differentiation is activated this growth is transformed into C and additional growth occurs (Cl, C2 and C3), leading to the petal stucture.
- FI is the growth of the filament which occurs above the zone of stamen initiation.
- the growth of C3 and F2 occurs under the zone of petal and stamen initiation, resulting in a congenital fusion of stamen filament to the corolla tube.
- amino acid residues described herein are preferred to be in the "L" isomeric form.
- residues in the "D” isomeric form can be substituted for any L- amino acid residue, as long as the desired functional property of immunoglobulin- binding is retained by the polypeptide.
- NH2 refers to the free amino group present at the amino terminus of a polypeptide.
- COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide.
- amino-acid residue sequences are represented herein by formulae whose left and right orientation is in the conventional direction of amino- terminus to carboxy-terminus. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino-acid residues.
- the above Table is presented to correlate the three-letter and one-letter notations which may appear alternately herein.
- a “replicon” is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo; i.e., capable of replication under its own control.
- a "vector” is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.
- a "DNA molecule” refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in its either single stranded form, or a double- stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA, such as that found in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.
- sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA).
- a method for the control and determination of plant organ identity comprising the overexpression of one or more of the homeotic genes that have been determined to control the structural identity of the plant organs in question.
- the present invention is specifically illustrated herein with respect to the flower petunia, wherein the overexpression of the homeotic transgene green petal, results in a first embodiment in the conversion of sepals to petals, and in certain instances, the stimulation of petal growth to cause the formation of inverted petal structures from the extended lateral edges of the original petals.
- the overexpression of the green petal gene results in the conversion of petals to sepals. More particularly, the method of the invention appears to cause the down regulation of the expression of both the transgene and its endogenous counterpart, and it is this underexpression that is believed to cause in turn, the structural modification of the petals.
- the invention extends further to the petunia flowers modified by the methods hereof, and to the cloned and characterized gene depicted in Figure 2 and in SEQ ID NO: 1 herein.
- the present invention arose from an extension of the genetic and molecular biological analysis of mutants. Genetic and molecular biological analysis of mutants of Arabidopsis and Antirrhinum has led to the proposal of a model for the action of homeotic genes to define flower organ identity. Three gene products have been identified to determine by individually or in a combinatorial manner, the flower organs (FIGURE 1, generally).
- the Antirrhinum gene ovulata specifies sepal development, but in combinatorial expression with the deficiens gene, petals are defined.
- the plena gene product is necessary for the development of the generative organs, the stamen and the carpel. While it is sufficient for carpel identity, additional gene expression of deficiens is required for stamen development.
- the expression of the gene in object may proceed by the preparation of the gene to include one or more promoters and the placement of the same in a suitable vector.
- the cauliflower mosaic virus (CaMV) 35S promoter is employed within the plant transformation vector pMON 530.
- the green petal cDNA was cloned into a ⁇ Zap subcloned as an Smal fragment containing the complete coding region of the gene, a small part of the leader from the poly A tail and additional polylinker sequences from the cloning vector.
- CaMV cauliflower mosaic virus 35S promoter
- Specific protocols for the preparation of vectors containing green petal cDNA are described in the Materials and Methods section of Examples 1 and 2 presented later on herein. These preparations are presented herein as illustrative and not restrictive, the scope of the invention naturally extending to other vectors, promoters and protocols suitable for use in plant transformation.
- Such promoters may be obtained from plants or viruses and include, but are not limited to, the green petal (GP) gene, the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmid of Agrobacterium tumefaciens), the wheat histone H3 gene, the rbcs E9 gene from pea, the cauliflower mosaic virus (CaMV) 19S and 35S promoters [Odell et al., NATURE 313:810 (1985)], the light-inducible promoter from the small subunit of ribulose bisphosphate carboxylase (ssRUBISCO) as set forth in commonly assigned U.S.
- GP green petal
- NOS nopaline syntha
- Patent No. 4,990,607 and the mannopine synthase promoter [Velten et al. EMBO J. 3:2723-30 (1984); and Velten et al., NUCLEIC ACID RES. 13:6981-98 (1985)] and where desired, mixtures of one or more of the above. All of these promoters have been used to create various types of DNA constructs which have been expressed in plants, (see, e.g., PCT publication WO84/02913) (Rogers et al., Monsanto).
- the CaMV 35S promoter is preferred herein because of its ability to be constitutively expressed. More generally, the strength and specificity of the promoter will affect the degree of penetrance of the gene, and in turn, the extent of conversion of the sepals to petals, and the extent of the enhancement of petal growth. Accordingly, the selection and use of a promoter that is highly active (eg. exhibits strong expression) in sepals, and/or the use of multiple promoters, would further improve the results obtainable by the present method.
- the invention extends to a particular promoter designated herein VIP149 and depicted in FIGURE 5A.
- the promoter of the invention is comprised of the -90 to +8 fragment of the CaMV 35S promoter and a fragment corresponding to four ligated fragments comprised of two alternations of each of the DNA sequences denominated 4xB3 and 2xTX4, respectively, set forth in FIGURE 5B and in respective Sequence Identification No. 2 (SEQ ID NO:2) and Sequence Identification No. 3 (SEQ ID NO:3).
- DNA sequence of the homeotic gene green petal or other homeotic gene of interest may be embodied in a vector such as disclosed herein in its form as sequenced, it is to be understood that, where desired, such coding sequence may be modified, to create mutants, either by random or controlled mutagenesis, using methods known to those skilled in the art. Accordingly, the invention may extend to the expression of truncated proteins and fusion proteins, sense and antisense constructs, as well as unmodified genes.
- the 3' non-translated region contains a polyadenylation signal which fimctions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the mRNA.
- suitable 3' regions are the 3' transcribed, non-translated regions containing the polyadenylated signal of genes from the T-DNA of Agrobacterium, the soybean storage protein genes, the small subunit of the RuBP carboxylase gene, and the rbcs E9 gene from pea.
- the RNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence.
- This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA.
- the 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence.
- the non-translated leader sequence can be part of the promoter sequence, or can be derived from an unrelated promoter or coding sequence as discussed above.
- a DNA construct of the present invention can be inserted into the genome of a plant by any suitable method.
- Suitable plant transformation vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, such as those described by Herrera-Estrella et al. [NATURE 303:209 (1983); Bevan et al. NATURE 304: 184 (1983); Klee et al. BIO/TECHNOLOGY 3:637-642 (1985); Fraley et al., BIOTECHNOLOGY 3:629 (1985) and EPO Publication 120,516 (Schilperoort, et al.)].
- Choice of methodology for the regeneration step is not critical, with suitable protocols being available for hosts from Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, etc.), Cucurbitaceae (melons and cucumber), Gramineae (wheat, rice, corn, etc.), Solanaceae (potato, tobacco, tomato, peppers) and various horticultural crops. Gene expression can be altered in plants from each of the aforesaid families pursuant to the present invention.
- the homeotic gene green petal from petunia was cloned and characterized. The following experiment was performed with this gene, and discloses the preparation of a petunia flower with two whorls of petals by transgenic ectopic expression of the gene in accordance with the method of the present invention.
- the cDNA (Smal-fragment) of the green petal gene was cloned into the Smal-site of the expression cassette of the plant transformation vector pMON 530 (Cuozzo et al., 1987).
- This vector ⁇ ntains the Cauliflower Mosaic Virus 35S promoter and the E9 polyadenylation site of the rbcs E9 gene from pea, which results in constitutive expression of the transgene in planta (Fig. 3).
- the recombinant vector was transferred to the Agrobacterium tumefaciens strain GV31111SE.
- Transformation of petunia was performed by Agrobacterium tumefaciens mediated gene transfer using the leaf disc method (Horsch et al., 1985). Transgenic plants were selected on kanamycin and regenerated. Plants, were rooted and transferred to soil in the greenhouse to score phenotypes.
- the transgenic plants expressed of the green petal gene at high levels were analyzed by Northern blot experiments.
- the transgenic plants produced flowers with a homeotic phenotype.
- the sepals were partially converted into petals.
- the transgenic flowers have a petal tube-like structure containing the petal color anthocyanin.
- the growth of existing petals was enhanced so that the petals grew laterally and inverted to present what appears to be an additional whorl of petals.
- the inverted portions of the petals fused to each other to form separate petal structures.
- FIG. 4 A flower representative of this phenotype is shown in Figure 4. Referring in detail to Figure 4, the illustrated phenotype exhibits the development of additional inverted petals resulting from the lateral outgrowth of the wild-type structures, as well as substantial conversion of the sepals into petal structures.
- the green petal (GP) coding sequence was isolated from a petunia Wl 15 cDNA library using a PCR fragment spanning the so-called MADS-box region from the Antirrhinum Deficiens gene.
- the cDNA was cloned as an Xbal-Kpnl fragment in the vector VIP149 to generate clone VIP160 (see FIGURE 4).
- VIP149 contains the -90 to +8 fragment of the CaMV 35S promoter (A-domain, Benfey et al., 1990), 4 copies of an optimized ASF-1 binding site (Katagiri et al., 1989), and 4 copies of a B3 domain (Benfey et al., supra).
- FIGURE 5 A shows the construction of VIP149 and FIGURE 5B shows the sequence of 4xB3 and 2xTX4.
- this modified promoter has been named the m35S promoter.
- the m35S promoter plus GP coding sequence was isolated from VIP 160 as a partial HindlH-Kpnl fragment and cloned in the Hind ⁇ l-Kpnl site of the binary vector VIP26 (van der Krol and Chua, 1991) to generate clone VIP 162 (see FIGURE 6).
- the additional vector VIP 152 was constructed by cloning the GP-cDNA as Xbal- ERV fragment into VIP27 to generate VIP142 (see FIGURE 7).
- VIP27 contains the ⁇ -Glucuronidase (GUS) coding sequence from plasmid pBIlOl.l (Clonetec, Palo Alto CA) in the vector pBSII (Stratagene). This puts 80% of the GP coding sequence in front of the Glucuronidase (GUS) coding sequence, however the two coding sequences are not in frame.
- the fused sequence was isolated from VIP 142 as an Xbal-ERl fragment and cloned into the Xbal-ERl site of the binary vector VIP26 (see FIGURE 8). Constructs VIP27, 142, 149 and 160 are all in the vector pBSII (Stratagene), and constructs 162 and 152 are in the binary vector pMON721 (Monsanto).
- VIP162 and VIP152 were mobilized to the Agrobacterium tumefaciens strain ABI and transformation of petunia line V26 was done by standard leaf disc transformation method (Horsch et al., 1985). After selection on kanamycin transgenic petunia plants were grown under normal greenhouse conditions.
- the petunia GP gene was isolated from a petunia W115 flower bud cDNA library using as a probe a PCR fragment from the Antirrhinum Deficiens gene.
- the Deficiens gene has been shown to have a B-function in Antirrhinum flower development (Coen et al., 1991 and FIGURE 1). From this screen a petunia cDNA was isolated and sequenced.
- the protein encoded by the cDNA showed a high homology to the Deficiens protein.
- RNA transcripts encoded by the cDNA were found in petal and stamen tissue of petunia flowers suggesting a B-gene function of this gene, in petunia flower development.
- the gene was named Green Petal gene (GP-gene), after the mutant petunia "green petal" in which this gene is missing.
- the GP cDNA was cloned downstream of the m35S-promoter (VIP162; see Material and Methods) or downstream of the 35S promoter, fused out of frame to the GUS coding sequence (VIP152; see Material and Methods) and by transforming a wild type petunia plant with these transgenes, plants were obtained in which the GP function in flowers is partially to completely repressed. It is theorized that this suppression of GP expression is the result of the co-suppression phenomenon discussed earlier herein.
- FIGURE 10A-D are photographs taken of three transgenic plants that show an increasing loss of GP function during petal development.
- Transgenic plant VIP162-15 (FIGURE 10A) shows a reduction of the corolla pigmentation and a slightly reduced corolla outgrowth.
- FIGURE 10B shows the flower of a plant with a more severe effect on petal development. The petal shows reduced growth in sectors; some sectors are green, some are white and some sectors are pigmented (transgenic VIP162-3, FIGURE 10B).
- the 'wild-type' petunia flower and the flower of the homeotic mutant gp are described below, and it is shown that the latter contains a deletion for the petunia MADS-box gene pMADSl.
- the role of pMADSl in second whorl petal and third whorl stamen development is demonstrated, through both complementation and co-suppression studies. With these experiments a series of flowers with different end points of second whorl petal developmentwas created, thus enabling the dissection of the differentiation pathway for the conversion of a sepaloid structure into a petal.
- Petunia plants were grown under standard greenhouse conditions.
- the pMADSl and pMADS2 cDNA's were isolated from Petunia hybrida line W115.
- the fbpl gene which has been isolated and described by Angenent et al. (1992) was isolated from Petunia hybrida line R27.
- the petunia 'green petal' mutant line PLV was resulted from gamma-ray treatment and was kindly provided by Dr. E. Farcy (INRA, Dyon, France).
- Other hybrid lines used in our experiments were Petunia hybrida line V26 and V30.
- the (presumed) ancestor petunia lines that were used are: Petunia axillaris (SI and S2, the different S numbers designate different origins), Petunia inflata (S6 and S14), Petunia parviflora (S4), Petunia violacea (S9 and S10), Petunia integrifolia (S12 and S13) and Petunia parodii (S8). These lines were kindly provided by Dr. R. Koes (Free University, Amsterdam, Holland). Plant transformations were performed as described by Horsch et al. (1985) using leafdiscs from V26 (construct VIP 162), a hybrid of V26 and PLV (construct J84) or PLV (construct VIP186).
- the overexpression construct J84 was made by cloning the pMADSl cDNA fragment into a vector containing the CaMV 35S promoter and rbcS-E9 polyA addition signal (Halfter et al, 1993).
- the pMADSl co-suppression construct VIP 162 was made by cloning the cDNA as an Xbal -Kpn 1 fragment downstream - of a modified 35S (m35S) promoter in the vector pBSII (Stratagene) to generate clone VIP160.
- the modified 35S promoter contains the -90 to +8 fragment of the CaMV 35 S promoter (AS10, Benfey et al., 1990) with 4 copies of the B3 domain (Benfey et al., 1990) and 4 copies of an optimized AS-1 binding site (Katagiri et al, 1989) placed upstream.
- the m35S promoter has been shown to direct the expression of a ⁇ -Glucuronidase reporter gene in all cell layers of the petunia petal (van der Krol, unpublished results).
- the m35S promoter plus pMADSl coding sequence was isolated from VIP 160 as a partial Hindlll-Kpnl fragment and cloned between the Hindlll-Kpnl site of the binary vector VIP26 (van der Krol and Chua, 1991) to generate clone VIP162.
- the pMADS2 gene construct was made by inserting the EcoRl fragment of the pMADS2 cDNA into a binary vector which contains both the mCaMV-35S promoter and the rbcS-E9 polyA addition signal to form VIP 186.
- the chimeric gene constructs that were introduced into the petunia genome are set forth in Figure 11. Southern and Northern analyses.
- Genomic plant DNA isolated from about 1 gram of leaf tissue, was digested with restriction endonucleases, size fractionated on agarose gels and blotted onto Genescreen-plus membrane (DuPont). The hybridization and washing conditions were similar as for the Northern blots (see below).
- Total RNA was isolated from plant tissue using the RNaid isolation procedure (BIO 101). Flower buds were dissected into first, second, third and fourth whorl tissue. The young flower bud material we used measured, from base to the tip of the first whorl sepal, 5-15 mm for V26 and V30, 5-20 mm for W115 and 5-10 mm for PLV.
- the second whorl tissue is mainly light green in color and covers the third and fourth whorl organs and the third whorl stamen filaments have not elongated.
- the mature flower bud material consisted for V26 and V30 of closed flower buds 5-6 cm long (measured from the base to the tip of second whorl petal), for W115 closed flower buds 6-7 cm long and for PLV open flowers with stamen filaments fully elongated, but before anthesis.
- V30, V26 and W115 the mature floral bud stage coincides with the peak in the second whorl CHS gene expression (Koes et al., 1989).
- RNA samples were fractionated on 1.2% agarose gels containing 6% formaldehyde. Gels were blotted onto Genescreen-plus (DuPont) according to the manufacturers instructions and hybridized to random primed labeled DNA (Boehringer) in 20% formamide, 5xSSC, 1% SDS, 5x Denhards, 10 ⁇ g/ml Salmonsperm DNA at 42°C. Blots were either washed at non-stringent conditions (0.5 hr., 2x SSC, 65°C) or stringent conditions (0.5 hr., 0.2x SSC, 65°C). Gene-specific probes (cDNA fragments without the MADS-box region) were used for each of the genes. The fbpl probe, covering nucleotides 494-760 (Angenent et al., 1992) was generated by polymerase chain reaction amplification using R27 genomic DNA as template.
- the flower close-ups and hand-made tissue sections were photographed under a NIKON SMA-U stereomicroscope. Epidermal peels taken from sepal or petal tissue were, before photographing, vacuum infiltrated with water to remove air-pockets. The microscopic sections were made and stained as described by Natarella and Sink (1971) and photographed in bright field either under the NIKON SMZ-U stereo microscope or a NIKON optiphot microscope. All images were processed in Adobe photoshop and assembled in Aldus Pagemaker. The Northern images were compressed vertically (20%).
- FIG. 13D shows a stained cross-section near the base of a 10-mm long floral bud illustrating the fusion of the filament to the tube. From the point of separation the filaments become a smooth, round structure with flat, elongated epidermal cells that are lightly pigmented near the anther sacs (Figure 13E).
- the lower and upper epidermal cell layer of the sepal appear similar morphologically, consisting of jigsaw-shaped epidermal cells, stomata and trichomes (Figure 13F).
- the inner and outer epidermal cell layer of the corolla tube are comprised of flat, elongated cells that may be pigmented (Figure 13G) and trichomes are only present on the outside of the corolla tube (see Figure 13C).
- trichomes are only found on the lower epidermis and are mainly associated with the main vascular bundles.
- the cells are round, cone-shaped, and pigmented with anthocyanins (Figure 13H).
- the epidermal cells at the lower side of the limb vary from jigsaw-shape to round ( Figure 131 and 13J) and may have the characteristic cone-shape of the upper epidermal cells. Near the main vein the lower epidermal cells are not always pigmented ( Figure 13J).
- the 'green petal' fPL flower The petunia gp mutant is characterized by a homeotic conversion of the second whorl petal into sepal.
- the gp phenotype was obtained in plants by a spontaneous mutation (line M64), by EMS treatment (line R100) and by gamma radiation mutagenesis (line PLV). All of these mutations are recessive.
- the flowers of the gp line PLV are described (de Vlaming et al, 1984). Sections of young flower buds (up to 3-mm long, measured from the base to the tip of the first whorl sepals) of V26 and gp (PLV) are almost indistinguishable morphologically (cf. Figure 14A and 14B).
- FIGS. 14C and 14D show a cross section through a 15-mm long flower bud of V26 and of gp (PLV), respectively.
- parenchyma cells of the second whorl organ in gp are not as large as those of the first whorl sepal but smaller than those of the petal, and the cell wall staining is more like that of sepal than petal ( Figures 14E and 14F).
- Figure 15 A shows the mature flower of gp (PLV).
- the first whorl sepals are fused at their base, as in V26 and show near the base only a very slight reduction in chlorophyl pigmentation as compared to the V26 sepals (compare Figure 15B with Figure 12B).
- the upper and lower epidermal cell layer of the gp (PLV) first whorl sepal are similar to those of the V26 sepal (not shown).
- the gp (PLV) second whorl sepals are slightly thinner than the first whorl sepal tissue and shows no marked reduction of chlorophyl synthesis near their base (Figure 15C).
- Figures 15D and 15E show an epidermal peel from the abaxial and adaxial face of the second whorl sepal, respectively.
- the epidermal cells on both faces resemble those of the V26 sepal (jigsaw-shaped cells, stomata and trichomes).
- the second whorl organs of gp are sepals by virtue of their green pigmentation, cell size and shape, and the presence of trichomes and stomata on both faces.
- stamen development in the gp (PLV) mutant is similar to that in wild-type petunia and leads to the formation of anther sacs which produce viable pollen, some developmental differences are apparent.
- the stamen filaments of gp (PLV) are not fused to the second whorl ( Figure 15F, see also cross-section in Figure 14D).
- Sepalloid structures however, often emerge from the third whorl stamens ( Figure 15G) or additional sepaloid third whorl organs are initiated between the stamen filaments ( Figure 15H and 151).
- V26 and gp (PLV) flowers of four petunia MADS-box genes that were isolated in the laboratory of the inventors (Kush et al., 1993, Tsuchimoto, submitted) and fbpl, a petunia MADS-box gene isolated by Angenent et al. (1992).
- pMADSl has a 693-bp open reading frame encoding a protein which shows a 93% identity to the Antirrhinum DEFA MADS-box region and a 77% identity outside of the MADS-box region (Sommer et al., 1990).
- pMADS2 is 972-bp long and encodes a protein of 213 amino acids.
- This gene shares 87% identity with the Antirrhinum GLOBOSA gene MADS-box region and a 60% amino acid homology outside the MADS-box region (Trobner et al., 1992).
- fbpl also shares homology to GLO (87% identical within the MADS-box and 66% identical outside of the MADSbox).
- Both the fbpl and pMADS2 genes are present in the hybrid lines W115 (used to isolate pMADSl-4) and R27 (used to isolate fbpl) as well as in different presumed ancestor lines from petunia (see Methods; southern analysis not shown).
- the two other petunia MADS-box genes, pMADS3 and pMADS4, that were sequenced show homology to the Arabidopsis AGAMOUS gene (Yanofsky et al., 1990) and the AGL6 gene (Ma et al., 1991), respectively. Sequence analysis of these genes will be published elsewhere (S. Tsuchimoto, submitted).
- pMADSl In V26 this gene is mainly expressed in the second and third whorls ( Figure 16A, upper panel). No expression could be detected in gp (PLV), either at an early or late stage of flower development ( Figure 16A, middle panel).
- Figure 16B shows that the expression of this gene in V26 is mainly in the second and third whorls.
- this gene is expressed at a very low level and only at young stages of flower development ( Figure 16B, middle panel) whereas its expression in the third whorl (stamens) is increased in both young and mature gp (PLV) floral buds compared to that in V26.
- fbpl In V26 the fbpl gene, like pMADS2, is expressed in the second and third whorls ( Figure 16C). In gp (PLV) fbpl expression is only detected in the second whorl at a very low level in early stages of development whereas no expression is detected at the late stage of second whorl development. However, in the third whorl of gp (PLV) fbpl expression is elevated both in young and mature flower buds compared to that in V26 ( Figure 16C, middle panel).
- Figure 16D shows that this gene is expressed in the third and fourth whorls of V26 ( Figure 16D, upper panel) as well as in gp (PLV) ( Figure 16D, middle panel). In the fourth whorl of gp (PLV) the mRNA level is slightly higher than in the wild-type V26.
- pMADS4 The expression of this gene is mainly detected in the first, second and fourth whorls of V26 flowers ( Figure 16E, upper panel). Expression in the mature second whorl is lower and in the mature fourth whorl is higher in gp (PLV), compared to V26 ( Figure 16E, compare upper and middle panel).
- CHS CHS expression is detected in all four whorls of the V26 flower, but the expression is elevated in the mature petal tissue. In the mutant gp (PLV) the CHS gene is also expressed in all four whorls ( Figure 16F, middle panel); however, its up-regulation in the mature second whorl is no longer detected. By contrast, in the third whorl of the gp (PLV) flowers the CHS expression level is higher compared to that of mature stamens of V26.
- CAB The CAB gene expression is high in the first two whorl of both V26 ( Figure 16G, upper panel) and gp (PLV) ( Figure 16G, middle panel). In the mature wild type flower the CAB gene expression level diminishes in petals and carpels and the mRNA is not detected in mature stamens.
- pMADSl is deleted from the genome of gp (PLV).
- FIG. 17 shows the hybridization profile of a pMADSl probe to genomic DNA of three wild-type hybrid lines (V26, V30 and W115) and a segregating population of gp mutant and wild-type plants (four out of twenty plants analyzed are shown). It was found that the DNA isolated from gp plants did not hybridize to the pMADSl probe, demonstrating that this gene is deleted from the genome. Therefore, gp (PLV) is a null mutant for pMADSl.
- the gp (PLV) phenotype is a phenotypic marker for chromosome IV of P.hybrida, thus placing the pMADSl gene on chromosome IV (de Vlaming et al., 1984).
- the 'green petal' phenotype has also been obtained by EMS treatment of petunia seeds (line RlOO). Southern analysis of this mutant did not reveal any difference between mutant and wild-type pMADSl restriction fragments (not shown).
- pMADSl restores petal development in gp (PLV).
- pMADSl is an essential gene for petunia petal development it was necessary to show that the gp phenotype can be complemented by the pMADSl gene function. Because of regeneration problems associated with gp (PLV) a cross between this mutant and V26 was performed. A plant (GP/gp) from the progeny was used for leaf disc transformation to introduce a 35S-pMADSl gene (J84, see Methods). One of the resulting transgenic plants, carrying three independentl inserts of J84 and showing an over-expression phenotype (Halfter et al., 1993; Figure 7A), was back-crossed to gp/gp (PLV) plants.
- the progeny plants were analyzed for the presence of the wild-type pMADSl gene and the 35S-pMADSl transgene by Southern blot hybridization and for their floral phenotype.
- three plants were identified that neither contained a wild-type pMADSl gene nor a 35S-pMADSl transgene in their genome and these plants had a gp phenotype.
- Ten other plants did not contain any wild type pMADSl gene but had one or more copies of the 35S-pMADSl transgene.
- Figure 19A shows a Northern blot analysis of RNA isolated from mature flowers of Mia plants, and Mlc plus Mid plants.
- the pMADSl transgene shows high expression in the first two whorls and low expression in the inner two whorls.
- the expression of the transgene in Mia is very low (expression in third and fourth whorl is only visible after prolonged exposure), which correlates with the lack of complementation in petal development in these transgenic plants.
- the co-suppression of pMADSl was manifested in a gradation of phenotypes ranging from a decrease in petal pigmentation (five out of twenty transgenic plants, SD15 see Figure 20A), reduced petal growth (one out of twenty, SD6 see Figure 20B), reduced growth and differentiation (one of twenty, SD12 see Figure 20C) to a complete lack of petal differentiation, resulting in sepaloid structures in the second whorl (one of twenty, SD3 see Figure 20D).
- a partial petal differentiation of the second floral whorl in SD3 plants could occur upon aging of the plant (mainly after anthesis has occurred), resulting in slightly pigmented sepaloid second whorl structures (SD3, Figure 20E).
- the changed phenotype of the transgenic flowers is attributed to a co-suppression of the pMADSl gene because the pMADSl mRNA steady state level was substantially reduced in these transgenic lines (see below).
- the co-suppression phenotype was stably inherited to the next generation for lines SD12 and SD3.
- the progeny from the selfed transgenic line SD15 showed a segregating population of plants among which petal development varied from wild-type (SD15a), medium petal development (SD15b) to sepaloid petals (SD15c). This was due to the segregation of three independent inserts of the m35S-pMADSl transgene (Southern blot analysis not shown).
- SD15c is a transgenic line which showed a 'green petal' phenotype ( Figures 16A-G, lower panels) and in SD15d, a transgenic line which showed a limited second whorl development and petaloid stamens ( Figure 16H). Because there was no clear separation between second and third whorl in SD15d, tissue of these two whorls was combined for RNA analysis.
- RNA analysis of V26 and gp (PLV) and the pMADSl complementation plants indicated that both pMADS2 and fbpl are regulated by pMADSl (see above). Therefore, the lack of pMADS2 and fbpl expression in the second whorl of SD15c is likely due to the reduced pMADSl gene expression in this whorl, rather than a non-specific co-suppression effect of the 35S-pMADSl transgene.
- the expression of pMADS2 and fbpl is elevated ( Figure 16B and 16C, middle panels).
- FIG. 21 A shows the different end-stages of second whorl organ development, starting with the gp sepal ( Figure 21A-1), V26 partial co-suppression ( Figure 21A-2 and -3), gp partial restoration, and ending with wild type petal. Similar end-stages of petal development are shown schematically in FigurelOB.
- the petal differentiation in the epidermal cell layer suppresses trichome and stomata formation, and promotes longitudinal and lateral cell divisions in the tube and the limb.
- the fully differentiated petaloid epidermal cell is a small, round and cone-shaped cell with a high level of pigmentation by anthocyanins.
- the parenchyma cells of the inner cell layers of mature petal tissue are smaller than those in mature sepal tissue, and do not show any green pigmentation. Since the (macro) surface area of mature petal tissue is approximately twice that of sepal tissue while the parenchyma cells and epidermal cells of the petal are up to five-fold smaller than those of the sepal, petal development consists of many additional cell divisions, besides the cell divisions that are necessary to make up the (default) sepal structure.
- the transgenic line SD15b which shows a sepaloid second whorl in the mature flower, can still develop petal-like tissue (SD15b before anthesis, Figure 17D, as well as after anthesis, Figure 17E). The same can be seen in the complementation experiment (petal sector in Mlb, Figure 20B and petal development in Mlc, Figure 20C and 20D). How far a cell can differentiate into a complete petaloid cell depends on when the genes of the petal differentiation pathway are activated. A mature sepaloid cell may not easily undergo a change in shape but become pigmented with anthocyanins, whereas a young sepaloid cell may become altered in cell shape and/or divide to give rise to a fully differentiated petaloid cell.
- the growth patterns that transform a sepaloid organ into a petal are illustrated in Figure 21C.
- the sepal growth (S in Figure 21C) includes a congenital fusion at the base of the five sepaloid organs, leading to a tube-structure.
- This tube-structure corresponds to the fused part of the corolla limb; the corolla tube has no real equivalent in gp (see below).
- S-growth is transformed into C-growth ( Figure 21C) and extended by additional lateral cell divisions (Cl in Figure 21C), additional longitudinal cell divisions at the base which make up a part of the corolla tube (C2 in Figure 21C) and additional cell divisions under the base of the sepal and the stamen (C3 and F2 in Figure 21C) which make up the part of the corolla tube with the fused stamen filaments.
- the C3 and F2 growth are most easily affected by pMADSl co-suppression, and least easily complemented by pMADSl expression in gp (PLV) plants.
- mutant gp suffers a chromosomal deletion that includes the pMADSl locus. Moreover, petal development in gp can be restored by a 35S-pMADSl transgene, while the gp phenotype is obtained by pMADSl co-suppression. These results combined indicate that the pMADSl -gene can be designated as GP. Although pMADSl does not control stamen growth in the third whorl, it does have minor effects in this whorl by suppressing formation of petaloid cells and additional organs.
- the petal differentiation pathway appears to be dosage dependent, since the degree of complementation is correlated with the expression level Figure 19A) and copy number of the 35S-pMADSl transgene (Figure 18E and F). Partial complementation by the 35S-pMADSl transgene could occur in defined sectors ( Figure 16B). Such a sector is phenotypically similar to a sector in the DEFA (def-621) mutant in which somatic reversion has occured during second whorl development, resulting in the restoration of DEFA expression (Carpenter and Coen, 1990). However, the sector in Mlb is genetically different because in this tissue the pMADSl gene is under control of the 'constitutive' CaMV 35S-promoter.
- pMADSl regulates the expression of pMADS2 and fbpl in the second whorl. Since pMADS-box gene expression varies throughout floral development and at similar stages among different Petunia hybrida lines, caution should be exercised in interpretating differences in expression levels among plants with different genetic backgrounds. The effect of the absence of pMADSl on pMADS2 and fbpl expression, however, was consistently observed ( Figures 16B and C, Figure 19A). In the second whorl pMADSl up-regulates, whereas in the third whorl it down-regulates pMADS2 and fbpl expression (compare expression in V26 and gp (PLV), Figures 16A, B and C).
- pMADSl has also been shown to up-regulate its own and pMADS2 expression in first whorl tissue of transgenic plants in which the ectopic expression of pMADSl resulted in the homeotic conversion of sepals to petals (Halfter et al., 1993).
- the expression of fbpl in another 'green petal' mutant (M68) has been reported previously (Angenent et al, 1992) but the pMADSl expression in this line has not been described. Also, in these analyses the effect of floral development on the expression levels of fbpl was not considered.
- the expression of pMADS3 was largely unaffected by the presence or absence of pMADSl gene expression, as was pMADS4 gene expression.
- the petunia pMADSl is genetically redundant for third whorl stamen development.
- a minor effect of pMADSl in the third whorl is the suppression of petaloid cell formation on the stamen filaments.
- a similar third-whorl function would be masked in DEFA and AP3 mutants because they do not develop stamens.
- petunia stamen development in the absence of pMADSl coincides with the up-regulation of pMADS2 and fbpl expression.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Botany (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Physiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5518586A JPH07505779A (ja) | 1992-04-13 | 1993-04-13 | 植物器官の形態形成を制御し決定するための方法,そのためのホメオ遺伝子,プロモーター,及び関連するその用途 |
EP93909324A EP0640132A1 (fr) | 1992-04-13 | 1993-04-13 | Procede de regulation et de determination de la morphogenese d'organes vegetaux, un gene homeotique, un element promoteur utilise a cet effet, et utilisations connexes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86758092A | 1992-04-13 | 1992-04-13 | |
US07/867,580 | 1992-04-13 | ||
US90958992A | 1992-07-06 | 1992-07-06 | |
US07/909,589 | 1992-07-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1993021322A1 true WO1993021322A1 (fr) | 1993-10-28 |
WO1993021322A9 WO1993021322A9 (fr) | 1994-01-20 |
Family
ID=27128009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/003508 WO1993021322A1 (fr) | 1992-04-13 | 1993-04-13 | Procede de regulation et de determination de la morphogenese d'organes vegetaux, un gene homeotique, un element promoteur utilise a cet effet, et utilisations connexes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0640132A1 (fr) |
JP (1) | JPH07505779A (fr) |
WO (1) | WO1993021322A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994000582A3 (fr) * | 1992-06-30 | 1994-02-17 | For Plant Breeding And Reprodu | Procede d'obtention d'une plante a morphologie florale modifiee, et procede de protection des plantes contre les insectes nuisibles |
WO2002044390A3 (fr) * | 2000-11-28 | 2003-09-12 | Du Pont | Genes de developpement floral |
WO2004067723A3 (fr) * | 2003-01-30 | 2005-02-24 | Pioneer Hi Bred Int | Genes du developpement floral |
CN111088261A (zh) * | 2020-01-15 | 2020-05-01 | 南京林业大学 | 一种矮牵牛花器官发育基因PhDof28及其应用 |
-
1993
- 1993-04-13 EP EP93909324A patent/EP0640132A1/fr not_active Withdrawn
- 1993-04-13 WO PCT/US1993/003508 patent/WO1993021322A1/fr not_active Application Discontinuation
- 1993-04-13 JP JP5518586A patent/JPH07505779A/ja active Pending
Non-Patent Citations (8)
Title |
---|
BIOLOGICAL ABSTRACTS vol. 93 , 15 March 1992, Philadelphia, PA, US; abstract no. 64690, GERATS, A.G.M. 'Mutants involved in floral and plant development in petunia' * |
EMBL SEQUENCE DATABASE RELEASE 35, ACC. NO. X69946 26-2-93 * |
EMBO JOURNAL vol. 9, no. 3, March 1990, EYNSHAM, OXFORD GB pages 605 - 613 SOMMER, H., ET AL. 'Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors' * |
J. CELL. BIOCHEM. SUPPL., KEYSTONE SYMPOSIUM ON EVOLUTION AND PLANT DEVELOPMENT, HELD JAN. 26- FEB. 1, 1993. vol. 17B, 1993, page 14 HALFTER, U., ET AL. 'Overexpression of the homeotic floral gene green petal in petunia results in the homeotic conversion of sepal into petal' * |
PLANT MOLECULAR BIOLOGY. vol. 19, no. 5, August 1992, DORDRECHT, THE NETHERLANDS. pages III - VI LIFSCHITZ, E., ET AL. 'News and views' * |
SCIENCE vol. 250, 16 November 1990, LANCASTER, PA US pages 931 - 936 SCHWARZ-SOMMER, Z., ET AL. 'Genetic controlof flower development by homeotic genes in Antirrhinum majus' * |
THE PLANT CELL. vol. 4, no. 5, May 1992, ROCKVILLE, MD, USA. pages 507 - 512 CHASAN, R. 'Meeting report: A feast of maize genetics' * |
THE PLANT CELL. vol. 4, no. 8, August 1992, ROCKVILLE, MD, USA. pages 867 - 870 CLARKE, A.E., ET AL. 'Meeting report: Forefronts of flowering' * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994000582A3 (fr) * | 1992-06-30 | 1994-02-17 | For Plant Breeding And Reprodu | Procede d'obtention d'une plante a morphologie florale modifiee, et procede de protection des plantes contre les insectes nuisibles |
WO2002044390A3 (fr) * | 2000-11-28 | 2003-09-12 | Du Pont | Genes de developpement floral |
WO2004067723A3 (fr) * | 2003-01-30 | 2005-02-24 | Pioneer Hi Bred Int | Genes du developpement floral |
CN111088261A (zh) * | 2020-01-15 | 2020-05-01 | 南京林业大学 | 一种矮牵牛花器官发育基因PhDof28及其应用 |
Also Published As
Publication number | Publication date |
---|---|
JPH07505779A (ja) | 1995-06-29 |
EP0640132A1 (fr) | 1995-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
van der Krol et al. | Functional analysis of petunia floral homeotic MADS box gene pMADS1. | |
Angenent et al. | Co‐suppression of the petunia homeotic gene Fbp2 affects the identity of the generative meristem | |
Southerton et al. | Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY | |
Matsuoka et al. | Expression of a rice homeobox gene causes altered morphology of transgenic plants. | |
Jeon et al. | leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development | |
DE69635890T2 (de) | Genetische kontrolle des blühens | |
Zhang et al. | Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in arabidopsis. | |
CA2695929C (fr) | Gene regulateur de la hauteur d'une plante et ses utilisations | |
US6809234B1 (en) | Scarecrow gene, promoter and uses thereof | |
US5686649A (en) | Suppression of plant gene expression using processing-defective RNA constructs | |
US5744693A (en) | Plants having altered floral development | |
US11643665B2 (en) | Nucleotide sequences encoding Fasciated EAR3 (FEA3) and methods of use thereof | |
CA2629363A1 (fr) | Gene emp4 | |
JP3054694B2 (ja) | 植物の形態を変化させる転写因子の遺伝子およびその利用 | |
CA2224407A1 (fr) | Genes controlant le developpement de la floraison et la dominance apicale des plantes | |
CN101629176A (zh) | 一种培育花器官败育的水稻的方法及其专用dna片段 | |
WO1993021322A1 (fr) | Procede de regulation et de determination de la morphogenese d'organes vegetaux, un gene homeotique, un element promoteur utilise a cet effet, et utilisations connexes | |
WO1993021322A9 (fr) | Procede de regulation et de determination de la morphogenese d'organes vegetaux, un gene homeotique, un element promoteur utilise a cet effet, et utilisations connexes | |
US8461414B2 (en) | Gene having endoreduplication promoting activity | |
JP3943321B2 (ja) | Madsボックス遺伝子を標的とした植物の花型の改良 | |
WO2001096582A2 (fr) | Proteines de type ligand de signalisation d'origine vegetale | |
JP3952246B2 (ja) | 花粉特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法 | |
US20020129407A1 (en) | Plant gene required for male meiosis | |
KR100455620B1 (ko) | 벽판-특이적 아연 핑거 전사 인자 유전자를 이용한 화분수정률의 감소 방법 | |
AU779114B2 (en) | Control of flowering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/21-21/21,DRAWINGS,REPLACED BY NEW PAGES 1/34-34/34 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |
Free format text: JP,US, EUROPEAN PATENT(AT,BE,DE,DK,FR,GB,IE,IT,LU,MC,NL,PT,SE) |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993909324 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1993909324 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993909324 Country of ref document: EP |