WO1989009477A1 - Agencement micromecanique - Google Patents
Agencement micromecanique Download PDFInfo
- Publication number
- WO1989009477A1 WO1989009477A1 PCT/DE1989/000156 DE8900156W WO8909477A1 WO 1989009477 A1 WO1989009477 A1 WO 1989009477A1 DE 8900156 W DE8900156 W DE 8900156W WO 8909477 A1 WO8909477 A1 WO 8909477A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micromechanical device
- substrate
- layer
- changing element
- sensor elements
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 230000005291 magnetic effect Effects 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 238000005530 etching Methods 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 4
- 238000001459 lithography Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/26—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
- B23Q1/34—Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
- B23Q1/36—Springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C5/00—Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0005—Lift valves
- F16K99/0007—Lift valves of cantilever type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0042—Electric operating means therefor
- F16K99/0044—Electric operating means therefor using thermo-electric means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/1821—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/0036—Switches making use of microelectromechanical systems [MEMS]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/0074—Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/008—Multi-layer fabrications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H61/00—Electrothermal relays
- H01H2061/006—Micromechanical thermal relay
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H61/00—Electrothermal relays
- H01H61/02—Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
Definitions
- the invention relates to a micromechanical device with a position-variable element, which has a fixed and a loose end and consists of layers of different materials with different thermal expansion arranged one above the other.
- the position of the element is changed by changing the temperature, as a result of which the layers expand to different extents.
- the position change can be used for different purposes, e.g. B. for switching contacts.
- an additional electrode is attached to the switching element, which forms a capacitor with the movable switching tongue and whose position is changed with the aid of electrostatic forces.
- electrostatically operated elements lie in the fact that the electrostatic force decreases rapidly with increasing distance, which is why the position of the position-changing element may only change minimally during the switching process.
- the position of the bimaterial element can be changed by a defined amount by a predeterminable heating power.
- the current position of the position-changing element cannot be determined exactly since it depends not only on the heating power but also on the ambient temperature. An exact positioning of the position-changing element is therefore not guaranteed.
- the invention is based on the object of specifying a micromechanical device with a position-changeable element which can be positioned and regulated.
- This object is achieved according to the invention in that sensor elements (6, 7) for position detection are mounted on a micromechanical device with a position-variable element and the output signals of the sensor elements (6, 7) are used by means of a control circuit for position control of the element become.
- the sensor elements record the current position of the position-variable element and, starting from the known position, allow any desired change in position.
- the new position can be maintained unaffected by fluctuations in the ambient temperature.
- the device is built on a silicon wafer in (100) orientation. This means that a commercially available chip is used as the starting material.
- the position-changing element according to this claim consists of a combination of materials with different thermal expansion coefficients. The layer sequence is chosen so that the position-changing element is bent toward the substrate side when the temperature is increased.
- the heater is arranged as an electrical resistance between or on the layers so that uniform heating is ensured. Because of the low heat capacity of the position-variable element, a strong temperature increase per electrical output is achieved.
- Piezo resistors are used as sensors that take advantage of the piezoresistive effect. This static effect is with semiconductors Particularly well developed for silicon and is suitable for measuring tensile or compressive loads. Another advantage is that piezoresistors can be easily manufactured using the technology of integrated circuits.
- the sensors are formed as strips of piezoelectric or ferroelectric material. Depending on the application, the piezoelectric effect or the ferroelectric effect are then used to measure the deflection. If, for example, the change in position of the position-changing element is to be detected, the dynamic piezoelectric effect is suitable.
- the sensor elements are formed as films made of electrically conductive material. Two films each are applied in such a way that they form a capacitor, with a capacitor plate on the position-changing element and the other plate on the stationary substrate.
- the change in the position of the position-changing element can then be determined by changing the capacitance of the capacitor. This method is characterized by a particularly high sensitivity. The change in position can also be detected with the aid of magnetic effects.
- the sensors and the heater are thermally decoupled.
- sensor and heater signals are linked to one another in a control loop.
- the position-changing element is held in a predeterminable position, for example by regulating the heating power.
- the control loop and the micromechanical device are integrated on the same semiconductor chip. As a result, several identical, controllable micromechanical devices can be produced simultaneously on a semiconductor wafer.
- a further development of the device into a light modulator is characterized in claim 8, in which the position-variable element is coated with a reflective metal layer.
- the advantage of this device is that it can both be adjusted in a predeterminable direction and - when an oscillating voltage is applied - is suitable for modulating a light beam.
- the device is designed as an electrical switch or electrically driven relay. All of the marked developments of the invention are advantageously produced using the methods known in micromechanics and in microelectronics and are compatible with standard IC processes. The individual components are structured using planar lithography processes. The voltage levels customary in microelectronics are sufficient for the operation of a device according to the invention.
- micromechanical device and its further training are characterized by a high degree of miniaturization, high accuracy, great reliability and low costs.
- FIG. 1 shows a micromechanical device with a position-changing element in top view (a) and sections along the section lines AA '(b) BB « (C) CC (d),
- FIG. 2 shows a development of the device into an electrically adjustable mirror in cross section (a) and in top view (b),
- 3 shows a development of the device to an electrically driven microvalve in cross section (a) and in top view (b)
- 4 shows a development of the device into an electrically controlled relay in cross section (a) and in supervision (b)
- FIG. 5 shows the method steps for producing a micromechanical device according to the invention.
- the position-changing element (1) of the device in Fig. 1 consists of a layer of silicon or a silicon compound (e.g. 4 ⁇ m thick) with a low coefficient of thermal expansion. To form a bimaterial, it is partially covered with a metal layer (2) with a significantly higher coefficient of expansion (e.g. a 2 ⁇ m thick gold layer). An electrically operated heating resistor (3) (e.g. made of polycrystalline silicon) is arranged between these layers or on the metal layer. Because of the greater coefficient of thermal expansion of the metal, the movable position-changing element is pressed in the direction of an etching pit (4) which is etched into the substrate (5) with the aid of anisotropic etching methods. The dashed line indicates a possible position of the deflected element.
- the absolute temperature of the two layers (1, 2) determines the current position of the element, this is influenced both by changes in the ambient temperature and by the conditions of heat dissipation.
- sensors (6, 7) attached eg piezo resistors made of silicon), the resistance of which depends on the deflection of the element.
- the sensors (6, 7) and the heating resistor (3) are linked in a common electrical control circuit so that the position-changing element can be held in any desired position.
- the element is composed of three webs which open into a common surface.
- the sensors (6, 7) are attached to the side webs, and the heating resistor (3) is attached to the center web.
- the position-changing element (1) is designed as a web with a widened loose end, which is covered with a highly reflective metal layer.
- the metal layer (2), the heating resistor (3) and the sensors (6, 7) are attached to the narrow area of the web.
- This development represents an electrically controllable light modulator.
- an incident light beam (8) is reflected in itself; in the position indicated by the broken line, the light beam (9) leaves the modulator at an adjustable angle of reflection.
- many modulators can be operated on a chip in common mode. In order to reflect different parts of a light beam in different directions, the modulators are controlled individually.
- the position-changing element (1) is a web a widened loose end that serves as a valve plate.
- the metal layer (2), the heating resistor (3) and the sensors (6y 7) are attached to the narrow area of the web.
- the position-changeable element (1) is held at a predeterminable distance from the substrate (5) by a spacer layer (10) (for example an epitaxially deposited silicon layer).
- the etching pit (4) is designed in the form of a valve opening.
- a switch contact (11) made of metal is attached to the loose end of the position-changing element (1), while the element in the area of the fixed end is formed with a metal layer (2) to form a bimaterial and has a heating resistor (3).
- two electrodes (12, 13) are arranged on the substrate, which are electrically short-circuited by the contact (11) after activation of the element (1).
- FIGS. 2, 3 and 4 are advantageously further developed in that the sensor elements are accommodated on separate webs and are thus decoupled from the heating resistors.
- the process steps for producing a device according to the invention are shown schematically in FIG. 5.
- a highly bordoded silicon layer (14) is epitaxially deposited on a silicon wafer in (100) orientation, which serves as substrate (5). It supplies the material for the position-changing element (1).
- a passivation layer -C15) e.g. - silicon nitrite
- - as material for both the heating resistor (3) and the sensors (6, 7) - a polycrystalline silicon layer (16) are deposited in succession, which is then doped.
- the heating resistor (3) and the sensors (6, 7) are produced with the aid of lithographic processes and by etching the polycrystalline silicon layer (16). After a passivation layer (17) has been applied, further lithography steps follow.
- a metal layer is deposited and formed into the second layer (2) of the bimaterial by lithographic steps and an etching process.
- the position-changing element (1) is formed by isotropic etching of the epitaxial layer (14) and the etching pit (4) is formed by anisotropic etching of the substrate (5).
- a low-doped layer can also be used as the material for the position-changing element.
- the etching process is then ended by an electrochemical etching stop on the layer surface.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- Fluid Mechanics (AREA)
- Micromachines (AREA)
Abstract
Un agencement micromécanique comprend un élément à position variable composé d'un système de deux matériaux et susceptible d'être amené à une position prédéterminable et d'y être maintenu. La position instantanée de l'élément est saisie par des capteurs intégrés et le signal de mesure est combiné au courant du corps chauffant dans un circuit commun de réglage à des fins de réglage de la position. Parmi les modes de réalisation décrits, on trouve un modulateur de lumière, un commutateur à actionnement électrique et une microsoupape à commande électrique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3809597A DE3809597A1 (de) | 1988-03-22 | 1988-03-22 | Mikromechanisches stellelement |
DEP3809597.1 | 1988-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989009477A1 true WO1989009477A1 (fr) | 1989-10-05 |
Family
ID=6350368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1989/000156 WO1989009477A1 (fr) | 1988-03-22 | 1989-03-10 | Agencement micromecanique |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE3809597A1 (fr) |
WO (1) | WO1989009477A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469749A1 (fr) * | 1990-07-31 | 1992-02-05 | Hewlett-Packard Company | Soupape de contrôle utilisant élément de flambage |
WO1992014199A1 (fr) * | 1991-01-30 | 1992-08-20 | Infusaid, Inc. | Regulateur de debit |
WO1995002180A1 (fr) * | 1993-07-06 | 1995-01-19 | International Business Machines Corporation | Capteur calorimetrique |
EP0874379A1 (fr) * | 1997-04-23 | 1998-10-28 | Asulab S.A. | Micro-contacteur magnétique et son procédé de fabrication |
WO1999024783A1 (fr) * | 1997-11-06 | 1999-05-20 | Mcnc | Positionneur microelectromecanique |
US5955817A (en) * | 1996-12-16 | 1999-09-21 | Mcnc | Thermal arched beam microelectromechanical switching array |
US6040748A (en) * | 1997-04-21 | 2000-03-21 | Asulab S.A. | Magnetic microswitch |
US6438954B1 (en) | 2001-04-27 | 2002-08-27 | 3M Innovative Properties Company | Multi-directional thermal actuator |
US6483419B1 (en) | 2000-09-12 | 2002-11-19 | 3M Innovative Properties Company | Combination horizontal and vertical thermal actuator |
US6531947B1 (en) | 2000-09-12 | 2003-03-11 | 3M Innovative Properties Company | Direct acting vertical thermal actuator with controlled bending |
US6708491B1 (en) | 2000-09-12 | 2004-03-23 | 3M Innovative Properties Company | Direct acting vertical thermal actuator |
EP3217020A1 (fr) * | 2016-03-10 | 2017-09-13 | Hamilton Sundstrand Corporation | Clapet et ensemble armature/clapet destiné à être utilisé dans une servovanne |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3814617A1 (de) * | 1988-04-29 | 1989-11-09 | Fraunhofer Ges Forschung | Greifvorrichtung |
DE4031248A1 (de) * | 1990-10-04 | 1992-04-09 | Kernforschungsz Karlsruhe | Mikromechanisches element |
DE4117892C1 (fr) * | 1991-05-31 | 1992-11-26 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De | |
DE4234237C2 (de) * | 1992-10-10 | 2000-11-30 | Bosch Gmbh Robert | Temperaturkompensierter Mikroaktor |
DE19504689A1 (de) * | 1995-02-13 | 1996-08-14 | Thomas Dr Grauer | Mikromechanisches Sitzventil |
DE29804124U1 (de) * | 1998-03-09 | 1999-07-08 | Honeywell B.V., Amsterdam | Elektrothermisch betätigbares Kleinventil |
DE19849700C2 (de) | 1998-10-28 | 2001-06-28 | Festo Ag & Co | Mikroventilanordnung |
US6236139B1 (en) | 1999-02-26 | 2001-05-22 | Jds Uniphase Inc. | Temperature compensated microelectromechanical structures and related methods |
US6590313B2 (en) | 1999-02-26 | 2003-07-08 | Memscap S.A. | MEMS microactuators located in interior regions of frames having openings therein and methods of operating same |
US6137206A (en) * | 1999-03-23 | 2000-10-24 | Cronos Integrated Microsystems, Inc. | Microelectromechanical rotary structures |
US6218762B1 (en) | 1999-05-03 | 2001-04-17 | Mcnc | Multi-dimensional scalable displacement enabled microelectromechanical actuator structures and arrays |
US6291922B1 (en) | 1999-08-25 | 2001-09-18 | Jds Uniphase, Inc. | Microelectromechanical device having single crystalline components and metallic components |
US6255757B1 (en) | 1999-09-01 | 2001-07-03 | Jds Uniphase Inc. | Microactuators including a metal layer on distal portions of an arched beam |
US6211598B1 (en) | 1999-09-13 | 2001-04-03 | Jds Uniphase Inc. | In-plane MEMS thermal actuator and associated fabrication methods |
FR2818795B1 (fr) | 2000-12-27 | 2003-12-05 | Commissariat Energie Atomique | Micro-dispositif a actionneur thermique |
US6731492B2 (en) | 2001-09-07 | 2004-05-04 | Mcnc Research And Development Institute | Overdrive structures for flexible electrostatic switch |
DE10310072B4 (de) * | 2002-03-08 | 2005-07-14 | Erhard Prof. Dr.-Ing. Kohn | Mikromechanischer Aktor |
DE10243997B4 (de) * | 2002-09-21 | 2005-05-25 | Festo Ag & Co. | Mikroventil in Mehrschichtaufbau |
US20050092079A1 (en) * | 2003-10-03 | 2005-05-05 | Ales Richard A. | Diaphragm monitoring for flow control devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1584914A (en) * | 1978-03-02 | 1981-02-18 | Standard Telephones Cables Ltd | Semiconductor actuated switching devices |
US4423401A (en) * | 1982-07-21 | 1983-12-27 | Tektronix, Inc. | Thin-film electrothermal device |
US4585209A (en) * | 1983-10-27 | 1986-04-29 | Harry E. Aine | Miniature valve and method of making same |
WO1987002472A1 (fr) * | 1985-10-16 | 1987-04-23 | British Telecommunications Public Limited Company | Fixation d'un organe mobile |
-
1988
- 1988-03-22 DE DE3809597A patent/DE3809597A1/de active Granted
-
1989
- 1989-03-10 WO PCT/DE1989/000156 patent/WO1989009477A1/fr unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1584914A (en) * | 1978-03-02 | 1981-02-18 | Standard Telephones Cables Ltd | Semiconductor actuated switching devices |
US4423401A (en) * | 1982-07-21 | 1983-12-27 | Tektronix, Inc. | Thin-film electrothermal device |
US4585209A (en) * | 1983-10-27 | 1986-04-29 | Harry E. Aine | Miniature valve and method of making same |
WO1987002472A1 (fr) * | 1985-10-16 | 1987-04-23 | British Telecommunications Public Limited Company | Fixation d'un organe mobile |
Non-Patent Citations (2)
Title |
---|
IBM JOURNAL OF RESEARCH AND DEVELOPMENT. Januar 1968, NEW YORK US Seite 113 - 118; R.J.WILFINGER: "The Resonistor:A Frequency Selective Device Utilising the Mechanical Resonance of a Silicon Substrate" siehe Seite 114, rechte Spalte, letzter Absatz Seite 117, linke Spalte, letzter Absatz; Figuren 8, 10, 11 * |
TRANSDUCERS'87 1987, Seite 834 - 837; W.RIETHMULLER: "Micromechanical silicon actuators based on thermal expansion effects." siehe das ganze Dokument (in der Anmeldung erw{hnt) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469749A1 (fr) * | 1990-07-31 | 1992-02-05 | Hewlett-Packard Company | Soupape de contrôle utilisant élément de flambage |
WO1992014199A1 (fr) * | 1991-01-30 | 1992-08-20 | Infusaid, Inc. | Regulateur de debit |
WO1995002180A1 (fr) * | 1993-07-06 | 1995-01-19 | International Business Machines Corporation | Capteur calorimetrique |
US6324748B1 (en) | 1996-12-16 | 2001-12-04 | Jds Uniphase Corporation | Method of fabricating a microelectro mechanical structure having an arched beam |
US5955817A (en) * | 1996-12-16 | 1999-09-21 | Mcnc | Thermal arched beam microelectromechanical switching array |
US6023121A (en) * | 1996-12-16 | 2000-02-08 | Mcnc | Thermal arched beam microelectromechanical structure |
US6114794A (en) * | 1996-12-16 | 2000-09-05 | Cronos Integrated Microsystems, Inc. | Thermal arched beam microelectromechanical valve |
US6040748A (en) * | 1997-04-21 | 2000-03-21 | Asulab S.A. | Magnetic microswitch |
EP0874379A1 (fr) * | 1997-04-23 | 1998-10-28 | Asulab S.A. | Micro-contacteur magnétique et son procédé de fabrication |
WO1999024783A1 (fr) * | 1997-11-06 | 1999-05-20 | Mcnc | Positionneur microelectromecanique |
US6483419B1 (en) | 2000-09-12 | 2002-11-19 | 3M Innovative Properties Company | Combination horizontal and vertical thermal actuator |
US6531947B1 (en) | 2000-09-12 | 2003-03-11 | 3M Innovative Properties Company | Direct acting vertical thermal actuator with controlled bending |
US6708491B1 (en) | 2000-09-12 | 2004-03-23 | 3M Innovative Properties Company | Direct acting vertical thermal actuator |
US6438954B1 (en) | 2001-04-27 | 2002-08-27 | 3M Innovative Properties Company | Multi-directional thermal actuator |
EP3217020A1 (fr) * | 2016-03-10 | 2017-09-13 | Hamilton Sundstrand Corporation | Clapet et ensemble armature/clapet destiné à être utilisé dans une servovanne |
US10458440B2 (en) | 2016-03-10 | 2019-10-29 | Hamilton Sundstrand Corporation | Flapper and armature/flapper assembly for use in a servovalve |
US10954972B2 (en) | 2016-03-10 | 2021-03-23 | Hamilton Sunstrand Corporation | Flapper and armature/flapper assembly for use in a servovalve |
Also Published As
Publication number | Publication date |
---|---|
DE3809597A1 (de) | 1989-10-05 |
DE3809597C2 (fr) | 1990-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1989009477A1 (fr) | Agencement micromecanique | |
DE69303893T2 (de) | Betatigungseinheiten und mikrosensoren in soi-technik | |
US5536963A (en) | Microdevice with ferroelectric for sensing or applying a force | |
EP0129736B1 (fr) | Capteur avec résistances en silicium polycristalline | |
DE2919418C2 (fr) | ||
EP1410047B1 (fr) | Composant micromecanique | |
DE102014217799B4 (de) | Piezoelektrischer Positionssensor für piezoelektrisch angetriebene resonante Mikrospiegel | |
DE3638390A1 (de) | Vibrations-beschleunigungsmesser | |
EP0880671A2 (fr) | Dispositifs en porte-a-faux de torsion microfabriques pour une detection de force sensible | |
EP0494143B1 (fr) | Dispositif pour mesurer des forces mecaniques et des effets dynamiques | |
EP1350078A1 (fr) | Detecteur de flux micromecanique a revetement extensible | |
EP1801554A2 (fr) | Capteur pour la mesure sans contact d'une température | |
WO1997013130A2 (fr) | Composant electronique de detection de pression statique et dynamique | |
EP0793801A1 (fr) | Detecteur de pression | |
DE4228795C2 (de) | Drehratensensor und Verfahren zur Herstellung | |
WO2007087767A1 (fr) | Système micromécanique à déflexion et son utilisation | |
EP0454901A1 (fr) | Capteur de force | |
EP2138450B1 (fr) | Structure des électrodes pour un élément microméchanique | |
DE3742385A1 (de) | Beschleunigungsempfindliches elektronisches bauelement | |
WO2021123147A1 (fr) | Élément piézoélectrique mobile et son procédé de production | |
US5189918A (en) | "null" flow sensor | |
EP1332374A1 (fr) | Procede et dispositif de reglage electrique du zero pour un composant micromecanique | |
DE4017265A1 (de) | Mikromechanisches bauelement und verfahren zur herstellung desselben | |
DE102005006958A1 (de) | Messverfahren und -Vorrichtung zur Bestimmung von Piezokoeffizienten | |
WO1990003560A2 (fr) | Fabrication de microstructures a face frontale en oxynitrure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |