RU2376369C2 - МУТАНТ БАКТЕРИИ РУБЦА РОДА Mannheimia (ВАРИАНТЫ) - ПРОДУЦЕНТ ЯНТАРНОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ - Google Patents
МУТАНТ БАКТЕРИИ РУБЦА РОДА Mannheimia (ВАРИАНТЫ) - ПРОДУЦЕНТ ЯНТАРНОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ Download PDFInfo
- Publication number
- RU2376369C2 RU2376369C2 RU2006122804/13A RU2006122804A RU2376369C2 RU 2376369 C2 RU2376369 C2 RU 2376369C2 RU 2006122804/13 A RU2006122804/13 A RU 2006122804/13A RU 2006122804 A RU2006122804 A RU 2006122804A RU 2376369 C2 RU2376369 C2 RU 2376369C2
- Authority
- RU
- Russia
- Prior art keywords
- mutant
- mannheimia
- gene
- rumen
- bacteria
- Prior art date
Links
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 title claims abstract description 109
- 241001293415 Mannheimia Species 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000001384 succinic acid Substances 0.000 title claims abstract description 48
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 title claims abstract description 13
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 73
- 241000894006 Bacteria Species 0.000 claims abstract description 57
- 210000004767 rumen Anatomy 0.000 claims abstract description 49
- 230000002779 inactivation Effects 0.000 claims abstract description 38
- 150000007524 organic acids Chemical class 0.000 claims abstract description 25
- 235000005985 organic acids Nutrition 0.000 claims abstract description 25
- 108700023483 L-lactate dehydrogenases Proteins 0.000 claims abstract description 22
- 108010008221 formate C-acetyltransferase Proteins 0.000 claims abstract description 22
- 101150006213 ackA gene Proteins 0.000 claims abstract description 17
- 101100433987 Latilactobacillus sakei subsp. sakei (strain 23K) ackA1 gene Proteins 0.000 claims abstract description 16
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 claims abstract description 8
- 108010092060 Acetate kinase Proteins 0.000 claims abstract description 7
- 108700023175 Phosphate acetyltransferases Proteins 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 74
- 101150070013 pfl gene Proteins 0.000 claims description 34
- 101150111581 pflB gene Proteins 0.000 claims description 25
- 101150023641 ppc gene Proteins 0.000 claims description 21
- 230000030414 genetic transfer Effects 0.000 claims description 20
- 102000003855 L-lactate dehydrogenase Human genes 0.000 claims description 17
- 230000006801 homologous recombination Effects 0.000 claims description 16
- 238000002744 homologous recombination Methods 0.000 claims description 16
- 239000001963 growth medium Substances 0.000 claims description 13
- 230000000415 inactivating effect Effects 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 3
- 101150112579 ptaA gene Proteins 0.000 claims 1
- 101150041530 ldha gene Proteins 0.000 abstract description 26
- 101100398785 Streptococcus agalactiae serotype V (strain ATCC BAA-611 / 2603 V/R) ldhD gene Proteins 0.000 abstract description 19
- 101100386830 Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) ddh gene Proteins 0.000 abstract description 19
- 230000001580 bacterial effect Effects 0.000 abstract description 19
- 101150026107 ldh1 gene Proteins 0.000 abstract description 19
- 239000003814 drug Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 38
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 23
- 239000008103 glucose Substances 0.000 description 23
- 239000002609 medium Substances 0.000 description 17
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 17
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 241000029538 [Mannheimia] succiniciproducens Species 0.000 description 12
- 238000000855 fermentation Methods 0.000 description 12
- 230000004151 fermentation Effects 0.000 description 12
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000012634 fragment Substances 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 241000606750 Actinobacillus Species 0.000 description 6
- 241000722955 Anaerobiospirillum Species 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 229960005322 streptomycin Drugs 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101150109655 ptsG gene Proteins 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 241000722954 Anaerobiospirillum succiniciproducens Species 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 101150025220 sacB gene Proteins 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- PKAUICCNAWQPAU-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)acetic acid;n-methylmethanamine Chemical compound CNC.CC1=CC(Cl)=CC=C1OCC(O)=O PKAUICCNAWQPAU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000605896 Fibrobacter succinogenes Species 0.000 description 1
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 1
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 1
- 241000192026 Ruminococcus flavefaciens Species 0.000 description 1
- 101100309436 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) ftf gene Proteins 0.000 description 1
- 241001648293 Succinivibrio dextrinosolvens Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000009604 anaerobic growth Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 1
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Настоящее изобретение относится к биотехнологии, в частности к мутанту бактерий рубца рода MANNHEIMIA, полученному путем инактивации гена лактатдегидрогеназы (IdhA) и гена пируват-формиат лиазы (pfl), мутанту бактерий рубца рода MANNHEIMIA, полученному путем инактивации гена лактатдегидрогеназы (IdhA), гена пируват-формиат лиазы (pfl), гена фосфотрансацетилазы (pta) и гена ацетаткиназы (ackA), мутанту бактерий рубца рода MANNHEIMIA, полученному путем инактивации гена лактатдегидрогеназы (IdhA), гена пируват-формиат лиазы (pfl) и гена фосфоенолпируваткарбоксилазы (ppc), к способам получения янтарной кислоты путем культивирования указанных выше мутантов в анаэробных условиях. По сравнению с прежними штаммами дикого типа, продуцировавшими различные органические кислоты, бактериальные мутанты настоящего изобретения обладают способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот снижена или отсутствует. 7 н. и 21 з.п. ф-лы, 13 ил., 1 табл.
Description
Область техники, к которой относится изобретение
Настоящее изобретение имеет отношение к мутанту бактерий рубца, который продуцирует янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот снижена или отсутствует; а также к способу продукции янтарной кислоты, который характеризуется культивированием таких мутантов в анаэробных условиях.
Уровень техники
Различные анаэробные микроорганизмы, включая Succinivibrio dextrinosolvens, Fibrobacter succinogenes, Ruminococcus flavefaciens и т.п., продуцируют янтарную кислоту как конечный продукт метаболизма глюкозы (Zeikus, Annu. Rev. Microbiol., 34:423, 1980). О штаммах, продуцирующих янтарную кислоту с выходом, полезным с точки зрения промышленного производства, до сих пор не сообщалось за исключением Anaerobiospirillum succiniciproducen, для которого известно, что он продуцирует янтарную кислоту из глюкозы в высоких концентрациях и с высоким выходом в присутствии избыточных количеств CO2 (David et al., Int. J. Syst. Bacterial., 26:498, 1976). Тем не менее, так как Anaerobiospirillum succiniciproducens является облигатным анаэробным микроорганизмом, ферментационный способ продукции янтарной кислоты с применением этого микроорганизма имеет недостаток, который заключается в том, что сам способ становится нестабильным при контакте микроорганизма даже с небольшим количеством кислорода.
Чтобы преодолеть этот недостаток, был сконструирован штамм Mannheimia succiniciproducens 55E, который обладает не только устойчивостью к кислороду, но также высокой продуктивностью синтеза органической кислоты. Однако, так как этот штамм, кроме янтарной кислоты, продуцирует также муравьиную кислоту, уксусную кислоту и молочную кислоту, он обладает недостатками, среди которых низкий выход и большие затраты в процессе очистки при удалении других органических кислот, не являющихся янтарной кислотой. В различных источниках литературы сообщалось о рекомбинантных штаммах Е. coli, используемых для продукции янтарной кислоты. Если у штаммов Е. coli происходит инактивация гена, кодирующего лактатдегидрогеназу, и гена, кодирующего пируват-формиат лиазу, то им затруднительно расти в анаэробных условиях. Кроме того, у этих штаммов слишком низкий выход, чтобы применять их в промышленном масштабе, так как хотя молочная кислота и не продуцируется в качестве продукта ферментации, считают, что другие метаболиты (уксусная кислота и этанол) составляют примерно половину от продукции янтарной кислоты. Чтобы преодолеть такие недостатки, клетки Е. coli выращивали в аэробных условиях и затем для индукции ферментации янтарной кислоты создавали анаэробные условия роста. Однако в результате этой попытки низкая продуктивность все еще сохранялась (Vemuri et al., J. Ind. Microbiol. Biotechnol., 28:325, 2002). Также было сообщено о других примерах, в которых в Е. coli вводят гены таких ферментов, как пируваткарбоксилаза, фосфоенолпируваткарбоксилаза, фосфоенолпируваткарбоксикиназа и малик-фермент, которые фиксируют CO2 в метаболическом пути ферментации янтарной кислоты, усиливая таким способом продукцию янтарной кислоты (Vemuri et al., Appl. Environ. Microbiol., 68:1715, 2002; Millard et al., Appl. Environ. Microbiol., 62:1808, 1996; Chao и Liao, Appl. Environ. Microbiol., 59:4261, 1993; Stols и Donnelly, Appl. Environ. Microbiol., 63:2695, 1997).
Между тем, известно, что инакгивация гена ptsG в Е. coli вносит вклад в улучшение продукции бактерий и продукции янтарной кислоты (Chatterjee et al., Appl. Environ. Microbiol., 67:148, 2001), но у большинства бактерий рубца ген ptsG отсутствует и, таким образом, у них есть преимущество, состоящее в том, что им не требуется процесс инактивации гена ptsG, как в случае с Е. coli. Недавно был успешно проведен опыт, в котором гены ферментов, фиксирующих СО2 в метаболическом пути янтарнокислого брожения, вводили в бактерии рубца, включая род Actinobacillus и род Anaerobiospirillum. Однако в этом опыте в больших количествах продуцировались другие органические кислоты или выход янтарной кислоты был слишком низким и в результате этого не был достигнут необходимый уровень для применения в промышленном производстве.
Раскрытие изобретения
Таким образом, в процессе интенсивных исследований, чтобы усовершенствовать штаммы бактерий, которые продуцируют с высоким выходом янтарную кислоту, разработчики настоящего изобретения сконструировали бактериальные мутанты Mannheimia sp.LPK (KCTC 10558 ВР) с помощью инактивации гена лактатдегидрогеназы (ldhA) и гена пируват-формиат лиазы (pfl) бактерии Mannheimia succiniciproducens 55E, которая относится к бактериям рубца, и из штамма LPK сконструировали бактериальные мутанты Mannheimia sp.LPK7 и LPK4 с помощью инактивации гена фосфотрансацетилазы (ptd), и гена ацетаткиназы (ackA), и гена фосфоенолпируваткарбоксилазы (ррс) соответственно, затем подтвердили, что культура таких бактериальных мутантов в анаэробных условиях запасает с высоким выходом янтарную кислоту, осуществляя таким образом настоящее изобретение.
Таким образом, главной целью настоящего изобретения является предоставление мутанта бактерий рубца, который продуцирует с высоким выходом янтарную кислоту, в то время как другие органические кислоты не продуцируются, а также способ производства этого мутанта.
Другой целью настоящего изобретения является предоставление способа продукции янтарной кислоты, который характеризуется культивированием указанных бактериальных мутантов в анаэробных условиях.
Чтобы достичь указанных целей, в одном аспекте настоящее изобретение обеспечивает мутанта бактерий рубца, в котором ген, кодирующий лактатдегидрогеназу (ldhA), и ген, кодирующий пируват-формиат лиазу (pfl), были инактивированы и который обладает способностью продуцировать янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
В другом аспекте настоящее изобретение обеспечивает мутанта бактерий рубца, в котором были инактивированы ген, кодирующий лактатдегидрогеназу (ldhA), ген, кодирующий пируват-формиат лиазу (pfl), ген, кодирующий фосфотрансацетилазу (pta), и ген, кодирующий ацетаткиназу (ackA), и который обладает способностью продуцировать янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
Еще в одном аспекте настоящее изобретение обеспечивает мутанта бактерий рубца, в котором были инактивированы ген, кодирующий лактатдегидрогеназу (ldhA), ген, кодирующий пируват-формиат лиазу (pfl), и ген, кодирующий фосфоенолпируваткарбоксилазу (ррс), и который обладает способностью продуцировать янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
В настоящем изобретении бактерии рубца предпочтительно являются гомоферментативными бактериями, которые могут быть выбраны из группы, включающей род Mannheimia, род Actinobacillus и род Anaerobiospirillum, и которые продуцируют только янтарную кислоту, в то время как продукция других органических кислот снижена или отсутствует. В предпочтительном воплощении настоящего изобретения мутант бактерий рубца представляет собой Mannheimia sp. LPK, LPK7 или LPK4.
Еще в одном аспекте настоящее изобретение предоставляет способ создания мутанта бактерий рубца, который обладает способностью продуцировать янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует, способ, включающий инактивацию гена, кодирующего лактатдегидрогеназу (ldhA), и гена, кодирующего пируват-формиат лиазу (pfl), в бактериях рубца, которые выбирают из группы, включающей род Mannheimia, род Actinobacillus и род Anaerobiospirillum.
В способе производства мутанта бактерий рубца предпочтительно проводят инактивацию генов ldhA и pfl с помощью гомологичной рекомбинации. Гомологичную рекомбинацию предпочтительно проводят, применяя вектор для генетического обмена, содержащий инактивированный ген ldhA, и вектор для генетического обмена, содержащий инактивированный ген pfl. Предпочтительно вектор, содержащий инактивированный ген ldhA, является pMLKO-sacB, вектор, содержащий инактивированный ген pfl, является pMPKO-sacB.
Еще в одном аспекте настоящее изобретение предоставляет способ производства мутанта бактерий рубца, который обладает способностью продуцировать янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует, способ, включающий дополнительную инактивацию гена, кодирующего фосфотрансацетилазу (pta), и гена, кодирующего ацетаткиназу (ackA) в бактериях рубца, которые выбирают из группы, включающей род Mannheimia, род Actinobacillus и род Anaerobiospirillum; и где ген, кодирующй лактатдегидрогеназу (ldhA), и ген, кодирующй пируват-формиат лиазу (pfl), были инактивированы.
Инактивацию генов pta и ackA предпочтительно проводили с помощью гомологичной рекомбинации. Гомологичную рекомбинацию предпочтительно проводили, применяя вектор для генетического обмена, содержащий инактивированные гены pta или ackA. Вектор для генетического обмена, содержащий инактивированные гены pta или ackA, предпочтительно является pPTA-sacB.
Еще в одном аспекте настоящее изобретение предоставляет способ производства мутанта бактерии рубца, который обладает способностью продуцировать янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует, способ, включающий дополнительную инактивацию гена, кодирующего фосфоенолпируваткарбоксилазу (ррс) в бактериях рубца, которые выбирают из группы, включающей род Mannheimia, род Actinobacillus и род Anaerobiospirillum, и где ген, кодирующий лактатдегидрогеназу (ldhA), и ген, кодирующий пируват-формиат лиазу (pfl), были инактивированы.
Инактивацию гена ррс предпочтительно проводили с помощью гомологичной рекомбинации. Гомологичную рекомбинацию предпочтительно проводили, применяя вектор для генетического обмена, содержащий инактивированный ген ррс. Вектор для генетического обмена, содержащий инактивированный ген ррс, предпочтительно является pPPC-sacB.
В настоящем изобретении мутант бактерий рубца, обладающий инактивированным геном, кодирующим лактатдегидрогеназу (ldhA), и инактивированным геном, кодирующим пируват-формиат лиазу (pfl), предпочтительно является Mannheimia sp.LPK (KCTC 10558 ВР).
Еще в одном аспекте настоящее изобретение предоставляет вектор для генетического обмена pMLKO-sacB, содержащий инактивированный ген ldhA; вектор для генетического обмена pMPKO-sacB, содержащий инактивированный ген pfl; вектор для генетического обмена pPTA-sacB, содержащий инактивированные гены pta и ackA; и вектор для генетического обмена pPPC-sacB, содержащий инактивированный ген ppc.
Еще в одном аспекте настоящее изобретение предоставляет способ продукции янтарной кислоты, способ, включающий стадии культивирования мутантов бактерий рубца в анаэробных условиях и извлечение янтарной кислоты из культуральной среды.
Термин «инактивация», употребляемый в тексте, означает, что гены, кодирующие ферменты, модифицируются таким образом, что ферменты не могут вырабатываться. В настоящем изобретении оба гена: лактатдегидрогеназы (ldhA) и пируват-формиат лиазы (pfl) были идентифицированы с помощью общедоступной генетической информации о штамме Mannheimia succiniciproducens 55E, который относится к бактериям рубца, и затем оба гена удаляли из Mannheimia succiniciproducens 55E с применением векторов, содержавших инактивированные гены, и таким образом конструировали бактериальный мутант Mannheimia sp.LPK (KCTC 10558 ВР). Затем инактивировали каждый из генов pta-ackA и ррс бактериального мутанта Mannheimia sp. LPK, создавая таким способом различные бактериальные мутанты. Затем было подтверждено, что такие бактериальные мутанты продуцируют янтарную кислоту в высоких концентрациях, в то время как продукция других органических кислот снижена или отсутствует.
Бактериальные мутанты настоящего изобретения {Mannheimia sp. LPK, LPK4 и LPK7) являются грамотрицательными факультативными анаэробами, они относятся к неподвижным палочкам или коккобациллам, они не производят эндоспоры и могут продуцировать в анаэробных условиях янтарную кислоту.
Краткое описание фигур
Фигура 1 демонстрирует способ конструирования вектора, содержащего инактивированный ген ldhA (pMLKO-sacB).
Фигура 2 демонстрирует способ конструирования вектора, содержащего инактивированный ген pfl (pMPKO-sacB).
Фигура 3 демонстрирует способ конструирования бактериального мутанта (LPK) с помощью инактивации генов ldhA и pfl в Mannheimia succiniciproducens 55E.
Фигура 4 - фотография электрофореза, демонстрирующего инактивацию генов ldhA и pfl в Mannheimia sp.LPK [M: маркер молекулярной массы лямбда HindIII; дорожки 1-3: ПЦР-продукт LU1 & КМ1 (1,5 т.п.н.); дорожки 4-6: ПЦР-продукт LD2 & КМ2 (1,7 т.п.н.); дорожки 7-9: ПЦР-продукт PU1 & СМ1 (2,2 т.п.н.) и дорожки 10-12: ПЦР-продукт PD2 & СМ2 (1,6 т.п.н)].
Фигура 5 демонстрирует характеристики культивирования Mannheimia sp.LPK в анаэробных условиях при насыщении СО2.
Фигура 6 демонстрирует способ конструирования вектора, содержащего инактивированные гены pta и ackA (pPTA-sacB).
Фигура 7 представляет собой способ конструирования вектора, содержащего инактивированный ген ppc (pPPC-sacB).
Фигура 8 демонстрирует способ конструирования бактериального мутанта LPK7 с помощью инактивации генов pta и ackA в Mannheimia sp. LPK.
Фигура 9 демонстрирует способ конструирования бактериального мутанта LPK4 с помощью инактивации гена ррс в Mannheimia sp. LPK.
Фигура 10 - фотография электрофореза, демонстрирующего инактивацию генов pta и ackA в Mannheimia sp.LPK7 [M: маркер «лестница» молекулярной массы (1 т.п.н.); дорожка 1: ПЦР-продукт Р13 & Р14 (1,1 т.п.н.) и дорожка 2: ПЦР-продукт Р15 & Р16 (1,5 т.п.н.)].
Фигура 11 - фотография электрофореза, демонстрирующего инактивацию гена ppc в Mannheimia sp.LPK4 [M: маркер «лестница» молекулярной массы (1 т.п.н.); дорожка 1: ПЦР-продукт Р13 & Р17 (1,1 т.п.н.) и дорожка 2: ПЦР-продукт Р15 & Р18 (1,5 т.п.н.)].
Фигура 12 демонстрирует характеристики культивирования Mannheimia sp. LPK7 в анаэробных условиях при насыщении СO2.
Фигура 13 демонстрирует характеристики культивирования Mannheimia sp. LPK4 в анаэробных условиях при насыщении CO2.
Осуществление изобретения
Далее настоящее изобретение будет детально раскрыто с помощью примеров. Однако для специалистов в этой области техники очевидно, что эти примеры даны исключительно в иллюстративных целях и не ограничивают объем настоящего изобретения.
Более детально, следующие примеры иллюстрируют только способ, включающий инактивацию генов в штамме рода Mannheimia для получения бактериальных мутантов и последующей продукции янтарной кислоты в высокой концентрации с помощью этих бактериальных мутантов. Однако специалистам в этой области техники также будут очевидны способы, с помощью которых мутанты бактерий рубца с инактивацией в этих генах получают из других штаммов бактерий рубца, таких как род Actinobacillus и род Anaerobiospirillum, и янтарную кислоту продуцируют, применяя штаммы бактерий.
Кроме того, следующие примеры иллюстрируют только определенные виды сред выращивания и способов культивирования. Однако для специалистов в этой области техники будет очевидным применение других сред, отличающихся от сыворотки, раствора кукурузного экстракта (CSL), как описано в литературе (Lee et al., Bioprocess Biosyst. Eng., 26:63, 2003; Lee et al., Appl. Microbiol. Biotechnol., 58:663, 2002; Lee et al., Biotechnol. Lett., 25:111, 2003; Lee et al., Appl. Microbiol. Biotechnol., 54:23, 2000; Lee et al., Biotechnol. Bioeng., 72:41, 2001), и применение различных методов, таких как метод подпитываемой культуры или метод непрерывной культуры.
Пример 1: Конструирование pMLKO-sacB
Чтобы инактивировать ген лактатдегидрогеназы (ldhA) с помощью гомологичной рекомбинации, следующим образом был сконструирован вектор для генного обмена. Вначале, используя геномную ДНК Mannheimia succiniciproducens 55E (КСТС 0769 ВР) в качестве матрицы, проводили ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 1 и SEQ ID NO: 2, и затем полученный ПЦР-фрагмент разрезали с помощью SaсI и PstI и вводили в вектор pUC18 (New England Biolabs, Inc., Beverly, Mass.), конструируя таким образом вектор pUC18-Ll.
SEQ ID NO: 1: 5'-CAGTGAAGGAGCTCCGTAACGCATCCGCCG (LS1)
SEQ ID NO: 2: 5'-CTTTATCGAATCTGCAGGCGGTTTCCAAAA (LP1)
После этого, используя геномную ДНК Mannheimia succiniciproducens 55E в качестве матрицы, проводили ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 3 и SEQ ID NO: 4, и полученный ПЦР-фрагмент разрезали с помощью PstI и HindIII и вводили в вектор pUC18-Ll, конструируя таким образом вектор pUC18-Ll-L2.
SEQ ID NO: 3: 5'-GTACTGTAAACTGCAGCTTTCATAGTTAGC (LP2)
SEQ ID NO: 4: 5'-GCCGAAAGTCAAGCTTGCCGTCGTTTAGTG (LH2)
Вектор pUC4K (Pharmacia, Freiburg, Germany) разрезали с помощью PstI, и полученный ген, устойчивый к канамицину, сливали с вектором pUC18-Ll-L2, разрезанным с помощью PstI, конструируя таким образом вектор pUC18-Ll-KmR-L2. Линкер, указанный ниже в виде последовательности SEQ ID NO: 5, вставляли в вектор pUC18-L1-KmR L2, разрезанный с помощью SacI, конструируя таким образом новый сайт рестрикции XbaI.
SEQ ID NO: 5: 5'-TCTAGAAGCT
ПЦР с использованием в качестве матрицы вектора pKmobsacB (Schafer et al., Gene, 145:69, 1994) проводили, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 6 и 7, и полученный ПЦР-продукт разрезали с помощью XbaI и вставляли в указанный выше ферментативный сайт рестрикции XbaI, конструируя таким образом вектор pMLKO-sacB (Фигура 1).
SEQ ID NO: 6: 5'-GCTCTAGACCTTCTATCGCCTTCTTGACG (SXF)
SEQ ID NO: 7: 5'-GCTCTAGAGGCTACAAAATCACGGGCGTC (SXR)
Пример 2: Конструирование вектора рМРКО-sacB
Чтобы инактивировать ген пируват-формиат лиазы (pfl) с помощью гомологичной рекомбинации, следующим образом был сконструирован вектор для генного обмена. Матрицу вектора pKmobsacB, содержащего ген sacB (Genbank 02730) амплифицировали с помощью ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NО: 8 и SEQ ID NO: 9. Полученный ПЦР-продукт sacB разрезали с помощью PstI и BamHI и вводили в вектор pUC19 (Stratagene Cloning Systems. La Jolla, Calif.), конструируя таким образом вектор pUC19-sacB.
SEQ ID NO: 8: 5'-AGCGGATCCCCTTCTATCGCCTTCTTGACG (SBG)
SEQ ID NO: 9: 5'-GTCCTGCAGGGCTACAAAATCACGGGCGTC (SPR)
Используя геномную ДНК Mannheimia succiniciproducens 55E в качестве матрицы, проводили ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 10 и SEQ ID NO: 11. Полученный ПЦР-фрагмент разрезали с помощью BamHI и вставляли в вектор pUC19-sacB, разрезанный с помощью BamHI, конструируя таким образом вектор pUC19-sacB-pfl.
SEQ ID NO: 10: 5'-CATGGCGGATCCAGGTACGCTGATTTCGAT (PB1)
SEQ ID NO: 11: 5'-CAAGGATCCAACGGATAAAGCTTTTATTAT (PB2)
Чтобы получить ген, устойчивый к хлорамфениколу, проводили ПЦР, используя вектор pACYC184 (New England Biolabs, Inc., Beverly, Mass.) в качестве матрицы, с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 12 и SEQ ID NO: 13. Полученный ПЦР-продукт разрезали с помощью SmaI и вставляли в вектор pUC19-sacB-pfl, разрезанный с помощью BstI1071, конструируя таким образом вектор pMPKO-sacB (Фигура 2).
SEQ ID NO: 12: 5'-CTCGAGCCCGGGGTTTAAGGGCACCAATAA (CTR)
SEQ ID NO: 13: 5'-CTCGAGCCCCGGGCTTTGCGCCGAATAAAT (CTF)
Пример 3: Конструирование штамма Mannheimia sp.LPK
Фигура 3 демонстрирует способ конструирования мутантного штамма (LPK) с помощью инактивации генов ldhA и pfl в Mannheimia succiniciproducens 55E. Mannheimia succiniciproducens 55E выращивали на чашке в среде LB, содержащей 10 г/л глюкозы, и культивировали при 37°С в течение 36 часов. Образовавшиеся колонии инокулировали в 10 мл жидкой среды LB с глюкозой и культивировали в течение 12 часов. Культуральную питательную среду с хорошо выросшими бактериями инокулировали в пропорции 1% на 100 мл жидкой среды LB с глюкозой и культивировали на термостатированном шейкере при 200 об/мин при 37°С.
Когда культуральная питательная среда достигала приблизительно 0,2-0,3 единиц OD (оптической плотности) после 4-5 часов инкубации, ее центрифугировали при 4°С и 4000 об/мин в течение 10 мин, чтобы собрать клетки. Затем клетки вновь суспендировали в 200 мл 10%-ного раствора глицерина при 4°С. Суспензию центрифугировали при 4°С и 4000 об/мин в течение 10 мин и клетки собирали и вновь суспендировали в 200 мл 10%-ного раствора глицерина при 4°С и центрифугировали при 4°С и 4000 об/мин в течение 10 мин, чтобы собрать клетки. Клетки суспендировали в глицерине при соотношении объемов 1:1 для получения концентрата клеток.
Полученный таким образом концентрат клеток смешивали с векторами для генетического обмена pMLKO-sacB и pMPKO-sacB, сконструированными в Примерах 1 и 2, и затем подвергали электропорации в условиях 1,8 кВ, 25 мкФ и 200 Ом. В смесь для электропорации добавляли 1 мл жидкой среды LB с глюкозой и растили смесь в термостатированном шейкере при 37°С и 200 об/мин в течение одного часа. Культуральную питательную среду помещали в чашки с твердой средой LB с глюкозой, содержащей подходящий антибиотик [Km (конечная концентрация 25 мкг/мл) или Cm (6,8 мкг/мл)] и растили при 37°С в течение 48 час и более. Чтобы отобрать колонии, где произошел только один двойной кроссовер, образовавшиеся колонии наносили в виде штрихов на среду LB с сахарозой (среда LB с 100 г/л сахарозы), содержащей 25 мкг/мл Km или Cm (6,8 мкг/мл). Через 24 часа образовавшиеся колонии вновь наносили в виде штрихов на идентичную чашку.
Колонию (мутант), образовавшуюся на чашке, растили в жидкой среде LB с глюкозой, содержащей антибиотик, и из выращенного штамма выделяли геномную ДНК с помощью метода, описанного Rochelle et al. (FEMS Microbiol. Lett., 100:59, 1992). ПЦР проводили, используя в качестве матрицы геномную ДНК мутанта, и ПЦР-продукт разделяли электрофоретически, чтобы подтвердить инактивацию генов ldhA и pfl в ПЦР-продукте.
Для подтверждения инактивации гена ldhA ПЦР проводили дважды следующим образом. Сначала геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 14 и SEQ ID NO: 15.
SEQ ID NO: 14: 5'-GACGTTTCCCGTTGAATATGGC (KM1)
SEQ ID NO: 15: 5'-CATTGAGGCGTATTATCAGGAAAC (LUI)
Затем геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 16 и SEQ ID NO: 17. Продукты, полученные в двух ПЦР, разделяли электрофоретически для подтверждения инактивации гена ldhA по их размерам (1,5 т.п.н.) (Фигура 4).
SEQ ID NO: 16: 5'-GCAGTTTCATTTGATGCTCGATG (KM2)
SEQ ID NO: 17: 5'-CCTCTTACGATGACGCATCTTTCC (LD2)
Чтобы подтвердить инактивацию гена pfl, дважды проводили ПЦР следующим образом. Сначала геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 18 и SEQ ID NO: 19.
SEQ ID NO: 18: 5'-GGTGGTATATCCAGTGATTTTTTTCTCCAT (CM1)
SEQ ID NO: 19: 5'-CTTTGCAACATTATGGTATGTATTGCCG (PU1)
Затем геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ED NO: 20 и SEQ ID NO: 21. Продукты, полученные в двух ПЦР, разделяли электрофоретически для подтверждения инактивации гена pfl по их размерам (1,5 т.п.н.) (Фигура 4). На Фигуре 4 представлен маркер молекулярной массы (ДНК фага лямбда, гидролизованная HindIII), дорожки 1-3 представляют ПЦР-продукт LUI & KM1 (1,5 т.п.н.), дорожки 4-6 представляют ПЦР-продукт LD2 & КМ2 (1,7 т.п.н.), дорожки 7-9 представляют ПЦР-продукт PU1 & СМ1 (2,2 т.п.н.) и дорожки 10-12 представляют ПЦР-продукт PD2 & СМ2 (1,6 т.п.н.).
SEQ ID NO: 20: 5'-TACTGCGATGAGTGGCAGGGCGGGGCGTAA (СМ2)
SEQ ID NO: 21: 5'-CCCCAGCATGTGCAAATCTTCGTCAC (PD2)
Инактивация гена ldhA была подтверждена тем, что продукт, полученный в ПЦР с применением праймеров (LU1 и КМ1) последовательностей SEQ ID NO: 14 и SEQ ID NO: 15 имел размер 1,5 т.п.н. и в то же время продукт, полученный в ПЦР с применением праймеров (LD2 и КМ2) последовательностей SEQ ID NO: 16 и SEQ ID NO: 17 имел размер 1,7 т.п.н. Инактивация гена pfl была подтверждена тем, что продукт, полученный в ПЦР с применением праймеров (PU1 и СМ1) последовательностей SEQ ID NO: 18 и SEQ ID NO: 19, имел размер 2,2 т.п.н. и в то же время продукт, полученный в ПЦР с применением праймеров (PD2 и СМ2) последовательностей SEQ ID NO: 20 и SEQ ID NO: 21 имел размер 1,6 т.п.н. Расположение каждого праймера показано на Фигуре 3. Мутант, сконструированный указанным выше способом, то есть мутант с инактивацией генов ldhA и pfl, был назван «Mannheimia sp. LPK» и был депонирован под каталожным номером КСТС 10881ВР 26 ноября 2003 г.в Корейскую коллекцию типовых культур (КСТС) Корейского исследовательского института биологической науки и биотехнологии (KRIBB).
Пример 4: Характеристики ферментации Mannheimia sp. LPK
Для того чтобы исследовать характеристики ферментации мутанта Mannheimia sp.LPK, сконструированного как указано выше в Примере 3, его растили в анаэробных условиях с насыщением СО2 и полученный продукт анализировали. Сначала 100 мл среды прекультивирования, включающей 20 г/л глюкозы, 5 г/л полипептона, 5 г/л дрожжевого экстракта, 3 г/л К2НРO4, 1 г/л NaCl, 1 г/л (NH4)2SO4, 0,2 г/л CaCl2·2H2O, 0,2 г/л MgCl2·6H2O и 10 г/л MgCO3, насыщали СО2, а затем в среду прекультивирования инокулировали Mannheimia sp. LPK и прокультивировали при 39°С в течение 14 час. Затем 0,9 л культуральной среды, содержащей 20 г/л глюкозы, 5 г/л полипептона, 5 г/л дрожжевого экстракта, 3 г/л К2НРO4, 1 г/л NaCl, 5 г/л (NH4)2SO4, 0,2 г/л CaCl2·2H2O, 0,2 г/л MgCl2·6H2O и 5 г/л Na2CO3 помещали в культуральный резервуар на 2,5 л, и 100 мл прокультивированных микроорганизмов инокулировали в культуральную среду и культивировали в закрытом виде (batch cultured) при 39°С и рН 6,5, поддерживая поступление диоксида углерода со скоростью потока 0,25 vvm.
Концентрацию клеток в культуральной среде измеряли с помощью спектрофотометра (Ultraspec 3000, Pharmacia Biotech., Sweden) и количество сукцината, глюкозы, лактата, ацетата и формиата измеряли с помощью ВЭЖХ (колонка Aminex HPX-87Н, Bio-Rad, USA) (Фигура 5). Символы на Фигуре 5 относятся к изменениям концентрации клеток (●), сукцината (о), глюкозы (■), формиата (◇) и ацетата (△) от времени пассажа культуры. Как показано на Фигуре 5, после 14 час культивирования концентрация поглощенной глюкозы составила 20 г/л и концентрация продуцированного сукцината была 17,2 г/л, что указывает на то, что выход сукцината (количество продуцированного сукцината/количество поглощенной глюкозы) составляет 81% и объем продуктивности сукцината (концентрация продуцированного сукцината/затраченное время) составляет 1,23 г/л/час. Способ продукции янтарной кислоты настоящего изобретения с применением выращивания Mannheimia sp.LPK в анаэробных условиях при насыщении СO2 продемонстрировал значительное увеличение выхода по сравнению с продукцией янтарной кислоты при выращивании родительского штамма Mannheimia succiniciproducens 55E в анаэробных условиях при насыщении СО2 и продемонстрировал соотношение янтарная кислота/уксусная кислота 40,7:1, указывающее на то, что он может продуцировать янтарную кислоту с небольшой продукцией или отсутствием продукции побочных продуктов.
Пример 5: Конструирование вектора pPTA-sacB
Чтобы инактивировать ген фосфотрансацетилазы (pta) и ген ацетаткиназы (ackA) с помощью гомологичной рекомбинации, следующим образом был сконструирован вектор для генного обмена. Сначала геномную ДНК Mannheimia sp.LPK (KCTC 10558BP) в качестве матрицы амплифицировали с помощью ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 22 и SEQ ID NO: 23, и полученный ПЦР-фрагмент разрезали с помощью XbaI и BamHI и вводили в вектор pUC19, конструируя таким образом вектор pUC19-PTAl.
SEO ID NO: 22: 5'-GCTCTAGATATCCGCAGTATCACTTTCTGCGC
SEQ ID NO: 23: 5'-TCCGCAGTCGGATCCGGGTTAACCGCACAG
После этого геномную ДНК Mannheimia sp.LPK в качестве матрицы амплифицировали с помощью ПЦР, используя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 24 и SEQ ID NO: 25, и полученный ПЦР-фрагмент разрезали с помощью XbaI и SacI и вставляли в вектор pUC19-PTAl, конструируя таким образом вектор pUC19-PTA12.
SEQ ID NO: 24: 5'-GGGGAGCTCGCTAACTTAGCTTCTAAAGGCCATGTTTCC
SEQ ID NO: 25: 5'-GCTCTAGATATCCGGGTCAATATCGCCGCAAC
Плазмиду рIС156 (Steinmetz et al., Gene, 142:79, 1994), содержащую ген устойчивости к стрептомицину (GenBank X02588), амплифицировали в качестве матрицы с помощью ПЦР, используя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 26 и SEQ ID NO: 27, и полученный ПЦР-фрагмент (ген устойчивости к стрептомицину) вырезали с помощью EcoRV и вводили в вектор pUC19-PTA12, конструируя таким образом вектор pUC19-PTA1S2, имеющий ген устойчивости к стрептомицину. Сконструированный вектор pUC19-PTA1S2 разрезали с помощью SacI и BamHI и вводили в вектор pUC19-SacB (см. Пример 2), конструируя таким образом вектор a pPTA-sacB (Фигура 6).
SEQ ID NO: 26: 5'-GAATTCGAGCTCGCCCGGGGATCGATCCTC
SEQ ID NO: 27: 5'-CCCGGGCCGACAGGCTTTGAAGCATGCAAATGTCAC
Пример 6: Конструирование вектора рРРС-sacB
Чтобы инактивировать ген фосфоенолпируваткарбоксилазы (ррс) с помощью гомологичной рекомбинации, следующим образом был сконструирован вектор для генного обмена. Сначала геномную ДНК Mannheimia sp.LPK в качестве матрицы амплифицировали с помощью ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 28 и SEQ ID NO: 29, и полученный ПЦР-фрагмент разрезали с помощью XbaI и BamHI и вводили в вектор pUC19, конструируя таким образом вектор pUC 19-PPC1.
SEQ ID NO: 28: 5'-TACGGATCCCCAGAAAATCGCCCCCATGCCGA
SEQ ID NO: 29: 5'-GCTCTAGATATCGTTTGATATTGTTCCGCCACATTTG
После этого геномную ДНК Mannheimia sp.LPK в качестве матрицы амплифицировали с помощью ПЦР, применяя праймеры, указанные ниже в виде последовательностей SEQ ID NO: 30 и SEQ ID NO: 31, и полученный ПЦР-фрагмент разрезали с помощью XbaI и SacI и вставляли в вектор pUC19-PPC1, конструируя таким образом вектор pUC19-PPC12.
SEQ ID NO: 30: 5'-GCTCTAGATATCCGTCAGGAAAGCACCCGCCATAGC
SEQ ID NO: 31: 5'-GGGGAGCTCGTGTGGCGCTGCGGAAGTAAGGCAAAAATC
Ген устойчивости к стрептомицину, вырезанный с помощью EcoRV (см. Пример 5), вводили в вектор pUC19-PPC12, чтобы сконструировать вектор pUC19-PPC1S2. Вектор pUC19-PPClS2 разрезали с помощью SacI и BamHI и вводили в вектор pUC19-SacB, конструируя таким образом вектор pPPC-sacB (Фигура 7).
Пример 7: Конструирование штаммов Mannheimia sp.LPK7 и LPK4
Фигуры 8 и 9 демонстрируют способы конструирования мутантных штаммов LPK7 и LPK4 с помощью инактивации генов pta-ackA и ррс в Mannheimia sp.LPK соответственно.
Mannheimia sp.LPK помещали на чашку со средой LB, содержащей 10 г/л глюкозы, и культивировали при 37°С в течение 36 час. Образовавшиеся колонии инокулировали в 10 мл жидкой среды LB с глюкозой и культивировали в течение 12 час. Культуральную питательную жидкость с достаточно хорошо выросшими бактериями инокулировали в пропорции 1% на 100 мл жидкой среды LB с глюкозой и культивировали в термостатированном шейкере при 37°С.
Концентрат клеток собирали из полученной культуральной питательной среды так, как описано в Примере 3. Собранный концентрат клеток смешивали с векторами для генетического обмена pPTA-sacB и pPPC-sacB, сконструированными, как описано в Примерах 5 и 6, и затем подвергали электропорации в условиях 1,8 кВ, 25°F и 200 Ом. Смесь для электропорации добавляли в 1 мл жидкой среды LB с глюкозой и культивировали в термостатированном шейкере при 200 об/мин и 37°С в течение одного часа.
Культуральную питательную среду помещали в чашку с твердой средой LB с глюкозой, содержащей антибиотик стрептомицин (конечная концентрация 50 мкг/мл), и культивировали при 37°С, по меньшей мере, в течение 48 час. Чтобы выбрать колонию, в которой произошел двойной кроссовер, образовавшиеся колонии наносили в виде штрихов на среду LB с сахарозой (среда LB, содержащая 100 г/л сахарозы), содержащую 50 мкг/мл стрептомицина. Через 24 часа образовавшиеся колонии наносили в виде штрихов на такую же чашку. Колонию (мутант), образовавшуюся на чашке, культивировали в жидкой среде LB с глюкозой, содержащей антибиотик, и из культивированного штамма выделяли геномную ДНК с помощью метода Rochelle et al. Выделенную геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР и ПЦР-продукт разделяли электрофоретически для подтверждения инактивации обоих генов pta-ackA и ррс.
Чтобы подтвердить инактивацию гена pta-ackA, дважды проводили ПЦР следующим образом. Сначала геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 32 и SEQ ID NO: 33. Затем геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 34 и SEQ ID NO: 35.
SEQ ID NO: 32: 5'-CCTGCAGGCATGCAAGCTTGGGCTGCAGGTCGACTC
SEQ ID NO: 33: 5'-GCTGCCAAACAACCGAAAATACCGCAATAAACGGC
SEQ ID NO: 34: 5'-GCATGTAACTTTACTGGATATAGCTAGAAAAGGCATCGGGGAG
SEQ ID NO: 35: 5'-GCAACGCGAGGGTCAATACCGAAGGATTTCGCCG
Продукты, полученные в двух ПЦР, разделяли электрофоретически для подтверждения инактивации гена pta-ackA по их размерам (Фигура 10). На Фигуре 10 М представляет собой маркер «лестницу» молекулярной массы (1 т.п.н.), дорожка 1 представляет собой ПЦР-продукт Р13&Р14(1,1 т.п.н.) и дорожка 2 представляет собой ПЦР-продукт Р15 & Р16 (1,5 т.п.н.). Инактивация гена pta-ackA была подтверждена тем, что продукт, полученный в ПЦР с применением праймеров последовательностей SEQ ID NO: 32 и SEQ ID NO: 33 (Р13 & Р14), имел размер 1,1 т.п.н. и в то же время продукт, полученный в ПЦР с применением праймеров последовательностей SEQ ID NO: 34 и SEQ ID NO: 35 (Р15 & Р16), имел размер 1,5 т.п.н. Расположение праймеров показано на Фигуре 8. Мутант, сконструированный указанным выше способом, то есть штамм, полученный путем инактивации гена pta-ackA в Mannheimia sp. LPK, был назван «Mannheimia sp. LPK7» и был депонирован под каталожным номером КСТС 10626 ВР в КСТС, международный депозитарный отдел.
Кроме того, чтобы подтвердить инактивацию гена ррс, дважды проводили ПЦР следующим образом. Сначала геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 32 и SEQ ID NPO: 36. Затем геномную ДНК мутанта в качестве матрицы амплифицировали с помощью ПЦР с применением праймеров, указанных ниже в виде последовательностей SEQ ID NO: 34 и SEQ ID NO: 37.
SEQ ID NO: 36: 5'-GATCCAGGGAATGGCACGCAGGCTTTCAACGCCGCC
SEQ ID NO: 37: 5'-GCAAAGCCAGAGGAATGGATGCCATTAACCAATAGCG
Продукты, полученные в двух ПЦР, разделяли электрофоретически для подтверждения инактивации гена ррс по их размерам (Фигура 11). На Фигуре 11 М представляет собой маркер «лестницу» молекулярной массы (1 т.п.н.), дорожка 1 представляет собой ПЦР-продукт Р13 & Р17 (1,1 т.п.н.) и дорожка 2 представляет собой ПЦР-продукт Р15 & Р18 (1,5 т.п.н.). Инактивация гена ppc была подтверждена тем, что продукт, полученный в ПЦР с применением праймеров последовательностей SEQ ID NO: 32 и SEQ ID NO: 36 (P13 & P17), имел размер 1,1 т.п.н., в то же время продукт, полученный в ПЦР с применением праймеров последовательностей SEQ ID NO: 34 и SEQ ID NO: 37 (P 15 & P 18), имел размер 1,5 т.п.н. Расположение праймеров показано на Фигуре 9. Мутантный штамм, сконструированный указанным выше способом, то есть штамм, полученный инактивацией гена ррс, в Mannheimia sp.LPK был назван «Mannheimia sp.LPK4».
Пример 8: Характеристики ферментации LPK7 и LPK4
Для того чтобы исследовать характеристики ферментации Mannheimia sp.LPK7 и LPK4, сконструированных, как указано выше в Примере 7, мутантов растили в анаэробных условиях с насыщением CO2 и полученные продукты анализировали. Сначала в 200 мл среды прекультивирования, описанной в Примере 4, инокулировали Mannheimia sp.LPK7 и LPK4 и прокультивировали при 39°С в течение 24 час. Затем 1,8 л культуральной среды, такой же как в Примере 4, за исключением того, что концентрация глюкозы составляла 18 г/л (конечная концентрация 100 мМ), помещали в культуральный резервуар на 6,6 л, 100 мл прокультивированных микроорганизмов инокулировали в культуральную среду и затем культивировали в одном цикле при 39°С и рН 6,5, поддерживая поступление диоксида углерода со скоростью потока 0,25 vvm.
Концентрацию клеток, сукцината, глюкозы, лактата, ацетата и формиата измеряли так же, как в Примере 4 (Фигуры 12 и 13). Символы на Фигурах 12 и 13 относятся к изменениям концентрации клеток (● в верхней части фигуры), сукцината (● в нижней части фигуры), глюкозы (□), формиата (◆) и ацетата (▲) от времени культивирования. Как показано на Фигуре 12, после 22 час культивирования Mannheimia sp.LPK7 концентрация поглощенной глюкозы составила 100 мМ и концентрация продуцированного сукцината была 124 мМ, что указывает на то, что выход сукцината (количество продуцированного сукцината/количество поглощенной глюкозы) составляет 124 мол.%. И продукция ацетата значительно снизилась (Таблица). Так же как показано на Фигуре 13, после 22 час культивирования Mannheimia sp.LPK4 концентрация поглощенной глюкозы составила 100 мМ и концентрация продуцированного сукцината была 123,7 мМ, что указывает на то, что выход сукцината (количество продуцированного сукцината/количество поглощенной глюкозы) составляет 123,7 мол.%. И продукция ацетата значительно снизилась (Таблица). Способ продукции янтарной кислоты настоящего изобретения с помощью культивирования Mannheimia sp.LPK7 в анаэробных условиях при насыщении СО2 продемонстрировал значительное увеличение выхода янтарной кислоты и также 9,8-кратное увеличение соотношения янтарная кислота:уксусная кислота по сравнению с продукцией янтарной кислоты при культивировании родительского штамма Mannheimia succiniciproducens 55E в анаэробных условиях при насыщении СО2, указывающее на то, что с помощью способа настоящего изобретения можно продуцировать янтарную кислоту с незначительной продукцией или отсутствием продукции побочных продуктов.
Как было сообщено Bulter et al., даже если все известные до настоящего времени гены микроорганизмов, ответственные за продукцию ацетата, инактивированы, значительное количество ацетата продуцируется при метаболизме аминокислот и жирных кислот, механизм которого до сих пор не известен (Bulter et al. PNAS, 101:2299, 2004). Таким образом, в настоящем изобретении все пути продукции ацетата, известные в настоящее время, были отключены и были достигнуты высокий выход ферментации сукцината и высокая концентрация сукцината при ферментации.
Несмотря на то, что настоящее изобретение было детально описано с отсылками к специфическим деталям, специалистам в этой области техники будет очевидно, что это описание имеет отношение только к предпочтительным воплощениям и не ограничивает объем настоящего изобретения. Таким образом, действительный объем настоящего изобретения будет определен в прилагаемой Формуле изобретения и ее эквивалентах.
Применимость в промышленном производстве
Как описано и детально предоставлено выше по сравнению с прежним способом продукции янтарной кислоты с применением облигатных анаэробных штаммов, мутантные штаммы Mannheimia sp. (LPK, LPK7 и LPK4) продуцируют янтарную кислоту в анаэробных условиях при насыщении СO2 и являются факультативными анаэробами, обладающими высокой резистентностью по отношению к кислороду. Таким образом, продукция янтарной кислоты с применением таких мутантов может не только устранить нестабильность способа ферментации, вызываемую воздействием кислорода и т.п., но также устранить продукцию других органических кислот, таким образом делая возможным оптимизировать и максимизировать способ очистки и выход продукции.
Claims (30)
1. Мутант бактерий рубца рода Mannheimia, модифицированный таким образом, что в указанном мутанте инактивированы ген, кодирующий лактатдегидрогеназу (IdhA), и ген, кодирующий пируват-формиат лиазу (pfl), и который обладает способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
2. Мутант бактерий рубца по п.1, отличающийся тем, что бактерии рубца являются гомоферментативными бактериями, продуцирующими только янтарную кислоту, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
3. Мутант бактерий рубца по п.1, отличающийся тем, что мутант бактерий рубца является Mannheimia sp.LPK.
4. Мутант бактерий рубца по п.3, отличающийся тем, что указанный Mannheimia sp.LPK представляет собой КСТС 10558 ВР.
5. Мутант бактерий рубца рода Mannheimia, модифицированный таким образом, что в указанном мутанте инактивированы ген, кодирующий лактатдегидрогеназу (IdhA), ген, кодирующий пируват-формиат лиазу (pfl), ген, кодирующий фосфотрансацетилазу (pta), и ген, кодирующий ацетаткиназу (ackA), и который обладает способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
6. Мутант бактерий рубца по п.5, отличающийся тем, что бактерии рубца являются гомоферментатавными бактериями, продуцирующими только янтарную кислоту, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
7. Мутант бактерий рубца по п.5, отличающийся тем, что мутант бактерий рубца является Mannheimia sp.LPK7.
8. Мутант бактерий рубца по п.7, в котором указанный Mannheimia sp.LPK7 представляет собой КСТС 10626 ВР.
9. Мутант бактерий рубца рода Mannheimia, модифицированный таким образом, что в указанном мутанте инактивированы ген, кодирующий лактатдегидрогеназу (IdhA), ген, кодирующий пируват-формиат лиазу (pfl), и ген, кодирующий фосфоенолпируваткарбоксилазу (ppc), и который обладает способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
10. Мутант бактерий рубца по п.9, отличающийся тем, что бактерии рубца являются гомоферментативными бактериями, продуцирующими только янтарную кислоту, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует.
11. Мутант бактерий рубца по п.9, отличающийся тем, что мутант бактерий рубца является Mannheimia sp.LPK.4.
12. Способ получения мутанта бактерий рубца рода Mannheimia, обладающего способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует, способ, включающий инактивацию гена, кодирующего лактатдегидрогеназу (IdhA), и гена, кодирующего пируват-формиат лиазу (pfl).
13. Способ по п.12, отличающийся тем, что инактивацию генов IdhA и pfl проводят с помощью гомологичной рекомбинации.
14. Способ по п.13, отличающийся тем, что гомологичную рекомбинацию проводят, применяя вектор для генетического обмена, содержащий инактивированный ген IdhA, и вектор для генетического обмена, содержащий инактивированный ген pfl.
15. Способ по п.14, отличающийся тем, что вектор для генетического обмена, содержащий инактивированный ген IdhA, является вектором pMLKO-sacB, и вектор для генетического обмена, содержащий инактивированный ген pfl, является вектором pMPKO-sacB.
16. Способ получения мутанта бактерий рубца рода Mannheimia, обладающего способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует, включающий инактивацию гена, кодирующего фосфотрансацетилазу (pta), и гена, кодирующего ацетаткиназу (ackA) в бактерии рубца рода Mannheimia, имеющей инактивированый ген, кодирующий лактатдегидрогеназу (IdhA), и ген, кодирующий пируват-формиат лиазу (pfl).
17. Способ по п.16, отличающийся тем, что мутант бактерий рубца рода Mannheimia, имеющий инактивированные гены, кодирующие лактатдегидрогеназу (IdhA) и пируват-формиат лиазу (pfl), является Mannheimia sp.LPK (KLCTC 10558BP).
18. Способ по п.16, отличающийся тем, что инактивацию гена pta и ackA проводят с помощью гомологичной рекомбинации.
19. Способ по п.18, отличающийся те, что гомологичную рекомбинацию проводят с применением вектора для генетического обмена, содержащего инактивированные гены pta и ackA.
20. Способ по п.19, отличающийся тем, что вектор для генетического обмена, содержащий инактивированные гены pta и ackA, является вектором pPTA-sacB.
21. Способ получения мутанта бактерий рубца рода Mannheimia, обладающего способностью продуцировать янтарную кислоту в высокой концентрации, в то время как продукция других органических кислот в анаэробных условиях снижена или отсутствует, способ, включающий инактивацию гена, кодирующего фосфоенолпируваткарбоксилазу (ррс), в бактерии рубца рода Mannheimia, имеющий инактивированый ген, кодирующий лакгатдегидрогеназу (IdhA), и ген, кодирующий пируват-формиат лиазу (pfl).
22. Способ по п.21, отличающийся тем, что мутант бактерий рубца, имеющий инактивированные гены, кодирующие лактатдегидрогеназу (IdhA) и пируват-формиат лиазу (pfl), является Mannheimia sp.LPK (KCTC 10558 ВР).
23. Способ по п.21, отличающийся тем, что инактивацию гена ррс проводят с помощью гомологичной рекомбинации.
24. Способ по п.23, отличающийся тем, что гомологичную рекомбинацию проводят с применением вектора для генетического обмена, содержащего инактивированный ген ррс.
25. Способ по п.24, отличающийся тем, что вектор для генетического обмена, содержащий инактивированный ген ррс, является вектором рРРС-sacB.
26. Способ получения янтарной кислоты, включающий культивирование мутанта бактерий рубца по любому из пп.1, 5 или 9 в анаэробных условиях и выделение янтарной кислоты из культуральной среды.
27. Способ по п.26, отличающийся тем, что культивирование является гомоферментацией, в которой продуцируется янтарная кислота в высокой концентрации, тогда как продукция других органических кислот снижена или отсутствует.
28. Способ по п.26, отличающийся тем, что мутант бактерий рубца является Mannheimia sp.LPK, LPK7 или LPK4.
Приоритет:
Приоритет:
27.11.2003 по пп.1-4, 12-15, 26-28;
23.04.2004 по пп.5-11, 16-28.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030084934A KR100556099B1 (ko) | 2003-11-27 | 2003-11-27 | 루멘 박테리아 변이균주 및 이를 이용한 숙신산의 제조방법 |
KR10-2003-0084934 | 2003-11-27 | ||
KR1020040028105A KR100630819B1 (ko) | 2004-04-23 | 2004-04-23 | 신규 루멘 박테리아 변이균주 및 이를 이용한 숙신산의제조방법 |
KR10-2004-0028105 | 2004-04-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006122804A RU2006122804A (ru) | 2008-01-10 |
RU2376369C2 true RU2376369C2 (ru) | 2009-12-20 |
Family
ID=36609129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006122804/13A RU2376369C2 (ru) | 2003-11-27 | 2004-05-20 | МУТАНТ БАКТЕРИИ РУБЦА РОДА Mannheimia (ВАРИАНТЫ) - ПРОДУЦЕНТ ЯНТАРНОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ |
Country Status (12)
Country | Link |
---|---|
US (1) | US7470530B2 (ru) |
EP (1) | EP1692271B2 (ru) |
JP (2) | JP4672671B2 (ru) |
AT (1) | ATE439427T1 (ru) |
AU (1) | AU2004292642B2 (ru) |
BR (1) | BRPI0416437A (ru) |
CA (1) | CA2545363C (ru) |
DE (1) | DE602004022584D1 (ru) |
DK (1) | DK1692271T4 (ru) |
NZ (1) | NZ547305A (ru) |
RU (1) | RU2376369C2 (ru) |
WO (1) | WO2005052135A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2537003C2 (ru) * | 2010-08-30 | 2014-12-27 | Корея Эдванст Инститьют Оф Сайенс Энд Текнолоджи | Мутантный микроорганизм, продуцирующий янтарную кислоту, способ его получения и способ получения янтарной кислоты (варианты). |
RU2631922C1 (ru) * | 2016-12-02 | 2017-09-28 | Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) | Штамм дрожжей Yarrowia lipolytica - продуцент янтарной кислоты (варианты) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100676160B1 (ko) | 2005-08-19 | 2007-02-01 | 한국과학기술원 | 말릭효소를 코딩하는 유전자로 형질전환된 재조합 미생물 및 이를 이용한 숙신산의 제조방법 |
KR100727054B1 (ko) | 2005-08-19 | 2007-06-12 | 한국과학기술원 | 푸마레이트 하이드라타제 c를 코딩하는 유전자로 형질전환된 재조합 미생물 및 이를 이용한 숙신산의 제조방법 |
KR100679638B1 (ko) | 2005-08-19 | 2007-02-06 | 한국과학기술원 | 포메이트 디하이드로게나제 d 또는 e를 코딩하는 유전자로 형질전환된 미생물 및 이를 이용한 숙신산의 제조방법 |
CN1321185C (zh) * | 2005-12-20 | 2007-06-13 | 哈尔滨工业大学 | 乙酸激酶基因 |
CN100432215C (zh) * | 2006-01-24 | 2008-11-12 | 江南大学 | 一种微生物发酵生产丁二酸的菌种和方法 |
KR100957772B1 (ko) | 2006-03-23 | 2010-05-12 | 주식회사 엘지화학 | 4―hydroxybutyrate(4HB)생성능을가지는 변이체 및 이를 이용한 4HB의 제조방법 |
KR100762962B1 (ko) | 2006-05-04 | 2007-10-04 | 한국과학기술원 | 게놈정보 및 인실리코 분석을 이용한 배양배지의 제조방법 |
KR100780324B1 (ko) * | 2006-07-28 | 2007-11-29 | 한국과학기술원 | 신규 순수 숙신산 생성 변이 미생물 및 이를 이용한 숙신산제조방법 |
US7646297B2 (en) | 2006-12-15 | 2010-01-12 | At&T Intellectual Property I, L.P. | Context-detected auto-mode switching |
LT2821494T (lt) | 2007-03-16 | 2017-04-25 | Genomatica, Inc. | 1,4-butandiolio ir jo pirmtakų biosintezės būdai ir kompozicijos |
WO2008133131A1 (ja) | 2007-04-16 | 2008-11-06 | Ajinomoto Co., Inc. | 有機酸の製造方法 |
BRPI0810011B1 (pt) | 2007-04-17 | 2021-11-30 | Ajinomoto Co., Inc | Método para produzir uma substância ácida tendo um grupo carboxila |
JP2010187542A (ja) * | 2007-06-14 | 2010-09-02 | Ajinomoto Co Inc | 有機酸の製造方法 |
KR101103839B1 (ko) * | 2007-07-12 | 2012-01-06 | 한국과학기술원 | 순수 숙신산 생성 변이균주 및 이를 이용한 숙신산제조방법 |
ES2587402T3 (es) | 2007-08-17 | 2016-10-24 | Basf Se | Miembro productor de ácido carboxílico de la familia Pasteurellaceae |
KR101042242B1 (ko) | 2007-09-07 | 2011-06-17 | 한국과학기술원 | 1,4-부탄디올 생성능을 가지는 변이체 및 이를 이용한1,4-부탄디올의 제조방법 |
JP5644108B2 (ja) | 2007-12-06 | 2014-12-24 | 味の素株式会社 | 有機酸の製造方法 |
AU2009291825B2 (en) * | 2008-09-10 | 2016-05-05 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol |
EP2202294B1 (en) | 2008-12-23 | 2015-10-21 | Basf Se | Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid |
EP2204443B1 (en) | 2008-12-23 | 2015-11-25 | Basf Se | Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of suc-cinic acid |
KR101093199B1 (ko) * | 2009-02-12 | 2011-12-12 | 한국과학기술원 | 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물 및 이를 이용한 숙신산의 제조방법 |
US8673598B2 (en) * | 2009-02-16 | 2014-03-18 | Basf Se | Microbial succinic acid producers and purification of succinic acid |
US8129169B2 (en) | 2009-06-04 | 2012-03-06 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol and related methods |
WO2011066076A1 (en) | 2009-11-25 | 2011-06-03 | Genomatica, Inc. | Microorganisms and methods for the coproduction of 1,4-butanediol and gamma-butyrolactone |
CA2841461C (en) | 2011-07-22 | 2020-05-26 | Myriant Corporation | Fermentation of glycerol to succinic acid by recombinant e. coli |
CN102732449B (zh) * | 2012-04-25 | 2013-05-22 | 南京工业大学 | 产琥珀酸放线杆菌菌株yh123及其应用 |
US11932845B2 (en) | 2012-06-04 | 2024-03-19 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
US9657316B2 (en) | 2012-08-27 | 2017-05-23 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto |
US9932611B2 (en) | 2012-10-22 | 2018-04-03 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing succinate related thereto |
TWI794644B (zh) | 2012-12-17 | 2023-03-01 | 美商奇諾麥提卡公司 | 用於增加甲醇存在下之還原當量可利用性及用於製造與其相關己二酸、6-胺基己酸、己二胺或己內醯胺之微生物及方法 |
JP2014150747A (ja) * | 2013-02-06 | 2014-08-25 | Sekisui Chem Co Ltd | 変異微生物、並びに、コハク酸の生産方法 |
JP2016165225A (ja) | 2013-07-09 | 2016-09-15 | 味の素株式会社 | 有用物質の製造方法 |
WO2015118051A1 (en) | 2014-02-07 | 2015-08-13 | Basf Se | Modified microorganism for improved production of fine chemicals on sucrose |
US10287558B2 (en) | 2014-02-07 | 2019-05-14 | Basf Se | Microorganisms for succinic acid production |
US10273485B2 (en) | 2014-02-07 | 2019-04-30 | Basf Se | Modified microorganism with improved biomass separation behaviour |
JP6672162B2 (ja) | 2014-03-19 | 2020-03-25 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 発酵のための炭水化物の制限的供給を伴うグリセロールの使用 |
JP2017216881A (ja) | 2014-12-26 | 2017-12-14 | 味の素株式会社 | ジカルボン酸の製造方法 |
US10393371B2 (en) | 2016-12-30 | 2019-08-27 | Whirlpool Corporation | Gas burner |
US11279955B2 (en) | 2017-05-19 | 2022-03-22 | Basf Se | Process for producing an organic compound |
EP3502241A1 (en) | 2017-12-21 | 2019-06-26 | Basf Se | Modified microorganism for improved production of succinate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5521075A (en) * | 1994-12-19 | 1996-05-28 | Michigan Biotechnology Institute | Method for making succinic acid, anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants |
RU2119536C1 (ru) * | 1997-01-21 | 1998-09-27 | Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм escherichia coli - продуцент l-гистидина |
KR19990014331A (ko) * | 1997-07-31 | 1999-02-25 | 박원훈 | 형질전환 대장균 ss373 및 이를 이용한 숙신산의 생산방법 |
KR20020003712A (ko) * | 2000-06-29 | 2002-01-15 | 이승동 | 유기산을 생산하는 균주 및 이를 이용한 유기산의 생산방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3783081T2 (de) * | 1986-06-11 | 1993-04-15 | Michigan Biotech Inst | Verfahren zur herstellung von bernsteinsaeure durch anaerobe fermentation. |
US5770435A (en) * | 1995-11-02 | 1998-06-23 | University Of Chicago | Mutant E. coli strain with increased succinic acid production |
JP4074365B2 (ja) | 1998-01-28 | 2008-04-09 | 三菱化学株式会社 | ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株 |
-
2004
- 2004-05-20 JP JP2006541014A patent/JP4672671B2/ja not_active Expired - Lifetime
- 2004-05-20 WO PCT/KR2004/001210 patent/WO2005052135A1/en active Application Filing
- 2004-05-20 NZ NZ547305A patent/NZ547305A/en not_active IP Right Cessation
- 2004-05-20 CA CA2545363A patent/CA2545363C/en not_active Expired - Lifetime
- 2004-05-20 US US10/580,556 patent/US7470530B2/en not_active Expired - Lifetime
- 2004-05-20 DK DK04734158.1T patent/DK1692271T4/da active
- 2004-05-20 DE DE602004022584T patent/DE602004022584D1/de not_active Expired - Lifetime
- 2004-05-20 RU RU2006122804/13A patent/RU2376369C2/ru active
- 2004-05-20 AT AT04734158T patent/ATE439427T1/de not_active IP Right Cessation
- 2004-05-20 AU AU2004292642A patent/AU2004292642B2/en not_active Expired
- 2004-05-20 EP EP04734158.1A patent/EP1692271B2/en not_active Expired - Lifetime
- 2004-05-20 BR BRPI0416437-7A patent/BRPI0416437A/pt not_active Application Discontinuation
-
2010
- 2010-07-23 JP JP2010165726A patent/JP2010263911A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5521075A (en) * | 1994-12-19 | 1996-05-28 | Michigan Biotechnology Institute | Method for making succinic acid, anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants |
RU2119536C1 (ru) * | 1997-01-21 | 1998-09-27 | Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм escherichia coli - продуцент l-гистидина |
KR19990014331A (ko) * | 1997-07-31 | 1999-02-25 | 박원훈 | 형질전환 대장균 ss373 및 이를 이용한 숙신산의 생산방법 |
KR20020003712A (ko) * | 2000-06-29 | 2002-01-15 | 이승동 | 유기산을 생산하는 균주 및 이를 이용한 유기산의 생산방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2537003C2 (ru) * | 2010-08-30 | 2014-12-27 | Корея Эдванст Инститьют Оф Сайенс Энд Текнолоджи | Мутантный микроорганизм, продуцирующий янтарную кислоту, способ его получения и способ получения янтарной кислоты (варианты). |
RU2631922C1 (ru) * | 2016-12-02 | 2017-09-28 | Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) | Штамм дрожжей Yarrowia lipolytica - продуцент янтарной кислоты (варианты) |
Also Published As
Publication number | Publication date |
---|---|
DE602004022584D1 (de) | 2009-09-24 |
NZ547305A (en) | 2009-05-31 |
CA2545363C (en) | 2011-11-15 |
JP2010263911A (ja) | 2010-11-25 |
AU2004292642A1 (en) | 2005-06-09 |
JP4672671B2 (ja) | 2011-04-20 |
WO2005052135A1 (en) | 2005-06-09 |
JP2007512015A (ja) | 2007-05-17 |
EP1692271A4 (en) | 2007-08-08 |
DK1692271T3 (da) | 2009-10-19 |
BRPI0416437A (pt) | 2007-02-21 |
AU2004292642B2 (en) | 2008-02-07 |
US20070054387A1 (en) | 2007-03-08 |
RU2006122804A (ru) | 2008-01-10 |
EP1692271A1 (en) | 2006-08-23 |
ATE439427T1 (de) | 2009-08-15 |
EP1692271B2 (en) | 2022-08-03 |
DK1692271T4 (da) | 2022-09-26 |
US7470530B2 (en) | 2008-12-30 |
CA2545363A1 (en) | 2005-06-09 |
EP1692271B1 (en) | 2009-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2376369C2 (ru) | МУТАНТ БАКТЕРИИ РУБЦА РОДА Mannheimia (ВАРИАНТЫ) - ПРОДУЦЕНТ ЯНТАРНОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ | |
KR100780324B1 (ko) | 신규 순수 숙신산 생성 변이 미생물 및 이를 이용한 숙신산제조방법 | |
CN102165056B (zh) | 生产l-氨基酸的微生物和使用其生产l-氨基酸的方法 | |
ES2654512T3 (es) | Nuevo microorganismo mutante productor de acido succínico que utiliza sacarosa y glicerol simultáneamente, y método para producir acido succínico utilizando el mismo | |
JP2016518145A (ja) | コハク酸を生産するための組換え大腸菌、及び組み換え大腸菌の使用 | |
CN102994439A (zh) | 一株产莽草酸的大肠杆菌重组菌及其构建方法及应用 | |
RU2422526C2 (ru) | СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ ДРОЖЖЕЙ, ПРИНАДЛЕЖАЩИХ К РОДУ Yarrowia | |
JP2015528312A (ja) | 低pH条件下での発酵による有機酸の生産 | |
KR101103839B1 (ko) | 순수 숙신산 생성 변이균주 및 이를 이용한 숙신산제조방법 | |
KR100630819B1 (ko) | 신규 루멘 박테리아 변이균주 및 이를 이용한 숙신산의제조방법 | |
CN104974946A (zh) | 耐高渗透压的重组大肠杆菌及其应用 | |
ZA200604108B (en) | Novel rume bacteria variants and process for preparing succinic acid employing the same | |
KR20050051149A (ko) | 루멘 박테리아 변이균주 및 이를 이용한 숙신산의 제조방법 | |
KR100603749B1 (ko) | 신규 루멘 박테리아 변이균주 및 이를 이용한 숙신산의제조방법 | |
ES2715930T3 (es) | Productores microbianos de ácido succínico novedosos y purificación del ácido succínico | |
TWI357929B (en) | Novel rumen bectria variants and process for prepa |